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ABSTRACT 

 

 

Desalination of Seawater Using a High-Efficiency Jet Ejector.  (May 2005)  

Manohar D. Vishwanathappa, B.E.,  Karnatak University 

Chair of Advisory Committee: Dr. Mark T. Holtzapple 

 
 
 

 The ability to produce potable water economically is the primary 

focus of seawater desalination research. There are numerous methods to 

desalinate water, including reverse osmosis, multi-stage flash distillation, 

and multi-effect evaporation. These methods cost more than potable water 

produced from natural resources; hence an attempt is made in this 

research project to produce potable water using a modified high-

efficiency jet ejector in vapor-compression distillation. 

 The greater efficiency of the jet  ejector is achieved by properly 

mixing propelled and motive streams. From experiments conducted using 

air, the pressure rise across the jet ejector is better in case of one or two 

mixing vanes and the highest back pressure (pinch valve closed 83.33%). 

At other pinch valve closings, the air velocity through the jet ejector was 

high, so the extra surface area from the mixing vanes caused excessive 

friction and lowered the efficiency. 
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CHAPTER I  

INTRODUCTION 

Earth is a water-rich planet,  which is fortunate because water is key 

to man’s progress. It  is essential for agricultural and industrial growth 

and is required to support  growing urban populations. 

 

I.1 Water Sources 

Most of the available water on earth is seawater. Of all  the earth’s 

water,  97% is in oceans and about 2% is in glaciers and ice caps (Table 

I.1).  The rest is available in lakes, rivers, and underground. All natural 

waters contain dissolved salts.  Also industries produce saline waters, 

which are not suitable for direct use. 

 

 
Table I.1  Water distribution throughout the world [1]. 

Oceans 97.23% 

Ice Caps and Glaciers 2.14% 

Groundwater 0.61% 

Freshwater Lakes 0.01% 

Other 0.01% 

 
_________                  
This thesis follows the style and format of Desalination. 
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I.2 Water Demands 

The four most important uses of water are 

1. Drinking 

2. Domestic 

3. Agricultural 

4. Industrial 

The minimum per-capita water requirements have been estimated at 

1100 L/day [2]. The actual amount varies and depends on the standard of 

living. In the USA for example, the per-capita consumption of water is 

6600 L/day [2], which includes industrial and agricultural use. 

 

I.3 Water Problem 

The annual precipitation on earth is adequate for the needs of the 

earth’s population; however, its distribution is not uniform. In many parts 

of the world (especially the Middle East),  which have limited or no water 

resources, rainfall is almost non-existent.  Also, most of it  is unfit  for 

human consumption without treatment [3].  Another factor, which 

compounds the water shortage problem, is rapid population growth. In the 

past 50 years, the world’s population has more than doubled. This rapid 

growth is more pronounced in water-short areas [4]. Other factors are 

rising standards of living, urban growth, industrialization, expansion of 
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irrigation agriculture, pollution of natural water reserves (by industrial 

waste and sewage), and cultural development [5]. 

Water shortages are not confined to arid lands, which comprise 

more than 60% of the earth’s total surface. Even in countries where plenty 

of water is available, many supply and quality problems exist  and some 

areas experience shortages [3]. 

 

I.4 Solution to the Water Problem 

The demand for a steady, economical supply of water is constantly 

increasing around the world. Often it  does not match the available supply. 

It  does not seem possible that supply will equal demand in the near future 

[6]; therefore, sound water resources development and management is and 

will  be a constant challenge. In many countries, water policy will  be an 

essential ingredient of economic policy. There are many solutions to the 

water problem, including control of water consumption, conservation, 

improved distribution and storage, reclamation, purification and reuse, 

crops that use less water,  tapping of new sources, etc. Desalination is  

seriously considered only when all the other possibilities have been ruled 

out [7]. 

Seawater desalination plants have been constructed in many 

countries, especially the arid Middle East,  only because there were no 

other available alternatives. The objective of desalination is to provide 

water with salinity below 500 ppm [7]. The major problems associated 
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with desalination have been very high capital and operating costs. Over 

the past several years, the cost of desalting has gone down but it  is stil l  

quite high. It  still  cannot compete with the cost of natural fresh water, 

which has the advantage that i t  requires minimal treatment to make it  

potable [6]. 

 Though many methods have been proposed to desalt  saline waters, 

only a few have been developed to commercial viability. The majority of 

commercial desalination processes have been perfected over the past 50 

years. The applicability of any process depends on the amount of salts 

contained in the available feed water and on process economics. 

 

I.5 Classification of Desalination Process 

Desalination processes are divided into (i)  thermal methods, which 

involve heating water to its boiling point to produce water vapor, and (ii) 

membrane processes, which use a membrane to move either water or salt 

into two zones, one salty and one fresh. The main thermal method 

employed is distillation, where saline water is progressively heated in 

subsequent vessels at  lower pressures. Brief descriptions of the main 

desalination processes are provided below. 
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I.5.1 Distillation processes 

Multi-Stage Flash Distillation  is the most widely used desalination 

method. It  involves heating saline water to high temperatures and 

passing it  though vessels of decreasing pressures, which flashes off 

water vapor. The flashed water vapor condenses on heat exchanger 

surfaces that preheat the incoming salt  water.  The condensed vapor 

is collected as fresh water [2]. 

Multi-Effect Distillation uses multiple vessels of decreasing 

pressure, similar to multistage flash distillation. The major 

difference is that evaporation occurs at the heat exchanger surface, 

which can lead to fouling [7]. 

Vapor-Compression Distillation  uses a compressor to pressurize 

water vapors from the evaporating saline water. The compressed 

water vapors condense providing the heat needed to evaporate water 

from the salt solution. This process is driven by the work invested 

in the compressor [5]. 

I.5.2 Membrane processes 

Reverse Osmosis  is a pressure-driven process, which forces water 

through a selective membrane, leaving salts behind [8, 9].  

Electrodialysis  is a voltage-driven process and uses an electric 

potential to move salts selectively through a membrane, leaving 

fresh water behind [5]. 

 



 6

 Ion Exchange  passes water through beds of ion exchange resins 

where cations are exchanged with hydrogen ions attached to the 

resin, and anions are exchanged with hydroxide ions attached to a 

different type of resin. The ion exchange resins are rejuvenated 

using acids and bases [3]. 

 

I.6 Objective 

This research is concerned with desalinating seawater using vapor 

compression technology that employs a high-efficiency steam jet ejector.  

The primary focus of this work is to test  the efficiency of the steam jet 

ejector. The new design needs to tested and further optimized for greater 

pressure rise across the jet ejector. For experimental convenience, its 

efficiency is measured using compressed air rather than steam. Air is easy 

to regulate, readily available, and the motive stream (compressed air) and 

propelled stream (atmospheric air) can mix properly and be discharged 

safely. Also, the results obtained will  be similar for the both fluids. To 

test the efficiency, compressed air is passed through the nozzle into the 

jet  ejector for different numbers of mixing vanes and various back 

pressures. 
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CHAPTER II  

DESALINATION METHODS 

 A desalting device essentially separates saline water into two 

streams: the fresh water stream (low salts) and the concentrate or brine 

stream (high salts).  The device requires energy to operate and can use a 

number of different technologies for the separation. This section briefly 

elaborates on various desalting processes. 

 

II.1 Multi-Stage Flash Distillation 

As shown in Figure II.1, multi-stage flash distillation (MSF), 

seawater is heated in a vessel called the brine heater [10]. This is 

generally done by condensing steam on a bank of tubes that passes 

through the vessel,  which in turn heats the seawater. This heated seawater 

then flows into another vessel,  called a stage ,  where the reduced pressure 

causes the water to boil or flash [11]. Generally, only a small percentage 

of this water is converted to steam, because boiling will continue only 

until  the water cools (furnishing the heat of vaporization) to the boiling 

point [12]. 



8

 

 

 

 

Figure II.1 Diagram of a multi-stage flash distillation plant [after 24]. 
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The flashed steam generated is converted to fresh water by 

condensing on heat exchanger tubes that run through each stage. The 

tubes are cooled by the incoming feed water going to the brine heater. 

This, in turn, warms the feed water thereby reducing the amount of 

thermal energy needed in the brine heater to raise the temperature of the 

seawater. 

The concept of distill ing water with a vessel operating at a reduced 

pressure is not new and has been used for well  over century. MSF plants 

have been built  commercially since the 1950s. Typically, an MSF plant 

can contain from 4 to about 40 stages (not to be confused with effects). 

They are generally built  in units of about 4000 to 30,000 m3/day [13]. The 

MSF plants usually operate with top feed temperatures (after the brine 

heater) of 90 – 120oC [14]. One factor that affects the thermal efficiency 

of the plant is the difference in temperature from the brine heater to the 

condenser on the cold end of the plant.  Operating a plant at  the higher 

temperature limits of 120oC increases the efficiency, but it  also increases 

the potential for detrimental scale formation and accelerated corrosion of 

metal surfaces [14]. 

 

II.2 Multiple–Effect Distillation 

 Multiple-effect distil lation (MED) has been used for industrial  

distillation for a long time. Some of the early water distillation plants 

used MED, but this process was displaced by MSF units because of cost 
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factors and their resistance to fouling. However, in the past decade, 

interest in MED has renewed, and a number of new designs have been 

built .  Most new MED units operate at  lower temperatures [15]. 

Like MSF, MED occurs in a series of vessels (effects) with each 

subsequent effect operated at a lower pressure (see Figure II.2).  This 

permits the seawater feed to undergo multiple boiling without supplying 

additional heat after the first effect [15]. In an MED plant,  the seawater 

enters the first  effect and is heated to the boiling point after being 

preheated in tubes. Seawater is either sprayed or otherwise distributed 

onto the surface of evaporator tubes in a thin film to promote rapid 

boiling and evaporation. The tubes are heated by steam from a boiler,  or 

other source, which is condensed on the opposite side of the tubes. The 

condensate from the boiler steam is recycled to the boiler for reuse [16]. 

Only a portion of the seawater applied to the tubes in the first  effect 

is evaporated. The remaining feed water is fed to the second effect, where 

it  is again applied to a tube bundle. In turn, these tubes are heated by the 

vapors created in the first effect.  This vapor is condensed to fresh water 

product, while giving up heat to evaporate a portion of the remaining 

seawater feed in the next effect.  This continues for several effects, with 8 

or 16 effects being found in a typical large plant [16]. 
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Figure II.2 Diagram of a multi-effect distillation plant [after 24].  
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Usually, the remaining seawater in each effect must be pumped to 

the next effect to apply it  to the next tube bundle. Additional 

condensation occurs in each effect on tubes that bring the feed water from 

its source through the plant to the first effect.  This warms the feed water 

before it  is evaporated in the first  effect [15]. 

MED plants are typically built  in units of 2000 to 10,000 m3/day 

[16]. Some of the more recent plants have been built  to operate with a top 

temperature (in the first effect) of about 70oC, which reduces the potential 

for scaling of sea water within the plant,  but it  increases the need for 

additional heat transfer area in the form of tubes [15]. Although the 

number of MED plants is still  relatively small compared to MSF plants, 

their numbers have been increasing [16]. 

 

II.3 Reverse Osmosis 

 In comparison to distillation and electrodialysis, RO is relatively 

new, with successful commercialization occurring in the early 1970’s. RO 

is a membrane separation process in which the water from a pressurized 

saline solution is separated from the solutes [17]. No heating or phase 

change is necessary for this separation. The major energy required for 

desalting is for pressurizing the feed water [18]. 

 In practice, the saline water is pumped into a closed vessel where it  

is pressurized against the membrane (see Figure II.3).  As a portion of the 

water passes through the membrane, the remaining feed water increases in
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Figure II.3 Basic components of a reverse osmosis plant [after 24].  
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salt  content [19]. At the same time, a portion of this feed water is 

discharged without passing through the membrane. Without this controlled 

discharge, the pressurized feed water would continue to increase in salt 

concentration, creating such problems as precipitation of supersaturated 

salts and increased osmotic pressure across the membranes [19]. The 

amount of the feed water discharged to waste in this brine stream varies 

from 20 to 70% of the feed flow, depending on the salt content of the feed 

water [20]. 

 An RO system has the following basic components [20]: 

•  Pretreatment 

•  High-pressure pump 

•  Membrane assembly 

•  Post-treatment 

Pretreatment is important in RO because the feed water must pass 

through very narrow passages during the process; therefore, suspended 

solids must be removed and the water pre-treated so that salt  precipitation 

or microorganism growth does not occur on the membrane. Usually, the 

pretreatment consists of fine filtration and the addition of acid or other 

chemicals to inhibit  precipitation [21]. 

The high-pressure pump supplies the pressure needed to enable the 

water to pass through the membrane and have the salts rejected. This 

pressure ranges from 250 to 400 psig for brackish water and from 800 to 

1180 psig for seawater [20]. 
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The membrane assembly consists of a pressure vessel and a 

membrane that permits the feed water to be pressurized against the 

membrane. The membrane must withstand the entire pressure drop across 

it .  The semi-permeable membranes are fragile and vary in their ability to 

pass fresh water and reject the passage of salts [21]. No membrane is 

perfect in its ability to reject salts,  so a small amount of salts passes 

through the membrane and appears in the product water.  

RO membranes are made in variety of configurations. Two of the 

most commercially successful are spiral-wound sheet and hollow fine 

fiber [20]. Both of these configurations are used to desalt both brackish 

and sea water, although the construction of the membrane and pressure 

vessel will  vary depending on the manufacturer and expected salt  content 

of the feed water. 

Post-treatment consists of stabilizing the water and preparing it  for 

distribution. This post-treatment might consist of removing gases such as 

hydrogen sulfide and adjusting the pH [21]. 

Two developments have helped to reduce the operating costs of RO 

plants during the past decade [20]: (1) membranes that operate efficiently 

with lower pressures and (2) energy recovery devices. Low-pressure 

membranes are being widely used to desalt brackish water.  The energy 

recovery devices connect to the concentrate stream as it  leaves the 

pressure vessel. The water in the concentrate stream loses only about the 

15 to 60 psig relative to the applied pressure from the high-pressure 
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pump, so turbines can convert the remaining pressure drop to rotating 

energy, which is reinvested in the pumps [21]. 

 

II.4 Electrodialysis 

 Electrodialysis was commercially introduced in the early 1960’s, 

about 10 years before reverse osmosis (RO). The development of 

electrodialysis provided a cost-effective way to desalt brackish water and 

spurred considerable interest in this area. 

Electrodialysis depends on the following general principles [22]: 

•  Most salts dissolved in water are ionic, being positively 

(cationic) or negative (anionic) charged. 

•  These ions are attracted to electrodes with an opposite electric 

charge. 

•  Membranes can be constructed to permit selective passage of 

either anions or cations. 

The dissolved ionic constituents in a saline solution such as sodium (+), 

chloride (-),  calcium (++), and carbonate (--) are dispersed in water, 

effectively neutralizing their individual charges [22]. When electrodes 

connected to an outside source of direct current are placed in a container 

of saline water, electrical current is carried through the solution, with the 

ions tending to migrate to the electrode with the opposite charge (see 

Figure II.4).  
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Figure II.4 Basic components of an electrodialysis plant [after 24]. 
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For these phenomena to desalinate water,  membranes that will  allow 

either cations or anions (but not both) to pass are placed between a pair of 

electrodes. These membranes are arranged alternatively with an anion 

selective membrane followed by a cation-selective membrane. A spacer 

sheet that permits water to flow along the face of the membrane is placed 

between each pair of membranes. 

One spacer provides a channel that carries feed (and product) water, 

whereas the next carries brine. As the electrodes are charged and saline 

feed water flows along the product water spacer at right angles to the 

electrodes, the anions in the water are attracted and diverted toward the 

positive electrode. This dilutes the salt content of the water in the product 

water channel.  The anions pass through the anion-selective membrane, but 

cannot pass any farther than the cation-selective membrane, which blocks 

its path and traps the anion in the brine. Similarly, cations under the 

influence of the negative electrode move in the opposite direction through 

the cation-selective membrane to the concentrate channel on the other 

side. Here, the cations are trapped because the next membrane is anion 

selective and prevents further movement towards the electrode. 

By this arrangement, concentrated and diluted solutions are created 

in the spaces between alternating membranes. These spaces, bounded by 

the two membranes (one anionic and the other cationic) are called cells 

[23]. A cell pair consists of two cells,  one from which the ions migrated 
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(the dilute cell  for the product water) and the other in which the ions 

concentrate (the concentrate cell for the brine stream) [22]. 

The basic electrodialysis unit consists of several hundred cell pairs 

bound together with electrodes on the outside and is referred to as a 

membrane stack. Feed water passes simultaneously in parallel paths 

through all  of the cells to provide a continuous flow of desalted product 

water and brine to emerge from the stack. Depending on the design of the 

system, chemicals may be added to the streams in the stack to reduce the 

potential for scaling [23]. 

II.4.1 Application  

Electrodialysis has the following characteristics that lend it  to 

various applications [22]: 

•  Capability for high recovery. 

•  Energy usage that is proportional to the salts removed. 

•  Ability to treat water with a higher level of suspended solids than RO. 

•  Lack of effect by non-ionic substances such as silica. 

•  Low chemical usage for pretreatment.  

 

II.5 Other Processes 

 A number of other processes have been used to desalt  saline waters. 

These processes have not achieved the commercial success of distil lation, 

electrodialysis, vapor compression, and RO, but they may prove valuable 
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under special circumstances or with further development. The most 

significant of these processes are freezing, membrane distillation, and 

solar humidification [22]. 

 Vapor-compression distillation (both thermal and mechanical) is 

discussed in detail in the next chapter.  

 

II.6 Summary 

The drinking water crisis announced for 2000 – 2020 has elicited 

strong interest in rapidly developing desalination techniques that are 

cheaper,  simpler,  hardier, more reliable, and if possible, less energy-

consuming and more environmental friendly. The cost of producing fresh 

water through desalination, once quite high, has considerably dropped: it  

can dip below $1/m3 for large-capacity units [12]. 
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CHAPTER III  

VAPOR-COMPRESSION DISTILLATION 

 Vapor-compression (VC) distillation is generally used for small- 

and medium-scale water desalting units. Vapor compression distillation 

plants are known to be compact and efficient systems that require shaft 

work to perform compression [25]. One of the main advantages of VC is 

the reuse of the vapor generated in the last  effect,  after elevating its 

pressure and temperature by compression.  

The vapor is usually compressed by either mechanical (MVC) or 

thermal (TVC) means. In MVC, mechanically driven compressors are used 

whereas in TVC, steam jet boosters are used [26].  In this section, first 

thermal vapor compression is discussed along with the high-efficiency 

steam jet ejector and later the mechanical compressor (MVC) is discussed 

along with Roots blower-operated MVC. VC units have been built  in a 

variety of configurations to promote heat exchange to evaporate seawater.  

 

III.1 Thermal Vapor-Compression 

Steam jet ejectors are employed in the chemical process industries 

and refineries in numerous and often unusual ways. They provide, in most 

cases, the best way to produce a vacuum in process plants because they 

are rugged and simple; therefore, they are easily maintained. Their 

capacities can vary from the very smallest to enormous quantities. 
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Because of their simplicity and the manner of their construction, 

difficulties are unusual even under the most extreme conditions. Ejectors, 

which are properly designed for a given situation, are very forgiving of 

errors in estimated quantities to be handled and of upsets in operation and 

are found to be easily changed to give the exact results [26].  

To become fully versed in the essential elements of a steam jet 

ejector,  the principle of operation will be considered first .  An ejector is a 

device in which a high-velocity jet of fluid mixes with a second fluid 

stream; the mixture is discharged into a region at a pressure higher than 

the source of the second fluid [25]. 

Figure III.1 shows the following parts [27]: 

a. The steam chest through which the propelling steam is admitted. 

b. The steam nozzle through which the propelling steam expands and 

converts its pressure energy into kinetic energy. 

c. The vapor chamber through which the vapor to be evacuated enters 

and distributes i tself around the steam nozzle. 

The diffuser through which the steam and entrained load is compressed 

and discharged at a pressure higher than the suction. 
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Figure III.1 Basic jet  ejector assembly [28]. 
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 To explain how an ejector operates,  a simple ejector (Figure III.2) 

mounted on a vacuum vessel will  be used. Even though an ejector operates 

continuously, the illustrations are broken into stages for simplicity [29]. 

STAGE 1: High-pressure steam is fed, at relatively low velocity, into the 

motive fluid connector, 1. 

Nozzle Head:  (Steam Chest) This is simply a nozzle holder. It  connects 

the nozzle to the high-pressure steam line and aligns it  with the diffuser. 

Motive and Propelled Fluids:  Steam is used as the motive fluid because it  

is readily available. However an ejector can be designed to work with 

other gases or vapors if their thermodynamic properties are known. Water 

and other liquids are sometimes good propelled fluids as they condense 

large quantities of vapor instead of having to compress them. Liquids will 

also handle small amounts of non-condensable gases. 

STAGE 2:  The motive high-pressure steam enters the nozzle and issues 

into the suction head as high-velocity, low-pressure jet.  
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Nozzle:  This is a device for converting the pressure and thermal energy of 

high-pressure steam or other fluid into kinetic energy. 

Suction Head:  This is the vacuum chamber and connects to the system 

being evacuated. The high-velocity steam jet issues from the nozzle and 

rushes through the suction head. 

STAGE 3:  A low absolute pressure at 2 (inside suction head) entrains all  

of the adjacent gases in the vacuum vessel,  accelerates them to a high 

velocity and sweeps them into the diffuser.  

The Diffuser:  The process in the diffuser is the reverse of that in the 

nozzle. It  converts a high-velocity, low-pressure jet stream into a high-

pressure, low-velocity stream. 

STAGE 4:  In the final stage, the high-velocity stream, passing through 

the diffuser, is compressed and exhausted at the pressure of the discharge 

line. 
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Figure III.2  Simple jet ejector mounted on vacuum vessel [30]. 
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III.1.1 Shock wave in the diffuser  

 A simple tube could be used as a diffuser, but its efficiency is too 

low for most applications. The inlet can be tapered to provide a smoother 

path for the load fluid to enter and mix with the jet fluid, and the outlet 

can be tapered to reduce the velocity of the mixture in a manner that 

converts kinetic energy into pressure energy [25]. In the converging 

section of the diffuser, mixing becomes complete and there is some rise in 

pressure. When a supersonic stream enters the straight section of the 

diffuser, a very sharp pressure rise occurs along with a slowing of the 

stream, which is known as compression shock  [31]. In the diverging 

section of the diffuser, pressure builds to the exhaust l ine and velocity is 

lowered to where it  is just sufficient to keep the mass moving [25]. 

III.1.2 Variation of velo ressure in a stage 

 Figure III.3 shows

and suction materials thr

the lowest-pressure spot 

rapid manner. Then the m

the mixture emerges at 

pressure is usually some

[32]. 
city and p
 how velocity and pressure vary for the motive 

ough an ejector stage. Both streams flow toward 

in the stage and mix together in a violent and 

ixture slows down and the pressure rises before 

low velocity at the discharge. The discharge 

where between the motive and suction pressure 
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Figure III.3  Variation of velocity and pressure in a jet ejector [33]. 
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In TVC, a steam jet compressor is operated by external motive 

steam of higher pressure and temperature, typically supplied by a boiler 

(see Figure III.4).  The motive steam sucks the vapor produced in the last 

effect by expansion in an ejector to a pressure slightly lower than that of 

this effect [25]. The mixture of vapors is then compressed in a diffuser to 

a pressure that meets the requirement in the top effect.  An amount 

equivalent to the withdrawn vapor proceeds down into the MEB system 

whereas the rest returns to the boiler loop [27].  

The efficiency of the steam jet ejector is quite low, 25-30% [26], 

and it  drops rapidly whenever design conditions are altered. Moreover, the 

ejector can operate only across a limited number of effects otherwise the 

amount of motive steam required would increase significantly. 

 

III.1.3 Ejector family 

 Ejectors are extremely versatile from two viewpoints: They can be 

made of almost any solid material,  and they can use a wide variety of 

pressurized gases or liquids to pump gases, l iquids, and even granular 

solids. Table III.1 is an overview of the ejector family. It  categorizes 

ejectors by motive fluid and load (suction) material.  This is simply one 

display of selected applications [25,27]. 
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Figure III.4 Diagram of a thermal vapor-compression plant [24].  
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Table III.1 Ejector applications based on the motive and load streams 
[25, 27]. 

 

Load materials  

Fluid Water Vapor, 

Steam 

Air Gas, Vapor Liquid Solids 

Steam Refrigeration, 

stripping, 

drying, 

compressor 

Vacuum, 

compressor

Vacuum, 

compressor 

Pump, 

heater, 

injector 

 

Air  Vacuum, 

compressor

Vacuum, 

compressor 

Sampling, 

mixing 

Conveyor 

Gas, 

Vapor 

 “BTU 

controller,” 

vacuum 

Compressor, 

vacuum 

Sampling, 

mixing 

Conveyor 

Liquid Vacuum, 

condenser 

Vacuum, 

pump 

priming 

Vacuum Pump, 

mixing 

Conveyor, 

mixing 
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III.2 High-Efficiency Jet Ejector 

This section discusses the high-efficiency jet ejector invented and 

designed by Dr. Mark T. Holtzapple. So far, no papers have been 

published and this section is completely based on the patent disclosure by 

Dr. Holtzapple [34 to 38]. 

The jet ejector is designed to be very efficient. Conventional jet 

ejectors add motive stream to the propelled stream in a single stage. 

Because the velocities of the two streams are very different,  this is an 

inefficient process. In contrast,  a high-efficiency jet ejector (Figure III.5) 

introduces the motive stream to the propelled stream in a series of stages, 

which is more efficient.  The critical feature of this design is that it  allows 

the motive stream and propelled stream to be blended in a manner that 

minimizes the velocity differences between the two streams, thus 

optimizing efficiency. As part of the research work, the jet ejector 

efficiency was determined by using compressed air instead of steam 

because it  is easy to regulate, readily available, and the motive stream 

(compressed air) and propelled stream (atmospheric air) can mix properly 

and safely discharged. The experimental procedure and the results 

obtained are discussed in the next chapter.  The experimental data (in FPS 

and SI units) and details of all  the equipment are documented in Appendix 

section. 
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Figure III.5  A schematic representation of a high-efficiency jet ejector.  
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 Figure III.6 shows the experimental desalination process using a 

high-efficiency jet ejector. Salt-containing feed flows through the 

degassifier into the primary heat exchanger. The salt-containing liquid 

boils,  producing low-pressure vapors. The vapors are removed from the 

primary heat exchanger using a jet ejector.  Superheated steam is injected 

into the jet ejectors at supersonic speed. The pressurized vapor exiting the 

jet ejector condenses in a primary heat exchanger. The heat of 

condensation provides the heat of evaporation for the salt  solution. The 

vapors also flow into the secondary heat exchanger, where they condense. 

Distilled liquid water is recovered from all the heat exchangers and 

concentrated salt solution from the primary heat exchanger. The distilled 

product water is used to preheat the incoming salt-containing liquid so 

that,  when steady operation is reached, the net energy required is only 

that necessary to drive the compressor.  
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Figure III.6  Desalination process using high-efficiency jet  ejector. 
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 Three jet ejectors are connected in series in a loop with the primary 

heat exchanger. The superheated steam is the motive fluid and vapor from 

the heat exchanger is the propelled fluid in this process. The superheated 

steam and vapor from the primary heat exchanger are mixed in the jet 

ejector. The process instrumentation includes temperature measurement of 

superheated steam, salt-containing feed, and distilled water (product).  The 

flow rates of salt-containing feed, superheated steam, and distilled water 

were measured using flow meters. The superheated steam is passed 

through the steam filter to remove liquid droplets.  The pressure gauges 

are used to measure the gauge pressure at condensing and boiling sides of 

the primary heat exchanger. A vacuum pump is connected to the double-

pipe heat exchanger to remove air from the desalination system, so the 

unit can be operated under vacuum. A differential pressure gauge is used 

to measure the pressure rise between the boiling and condensing side of 

the heat exchanger. 
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III.3 Mechanical Vapor-Compression 

VC distillation was first applied during World War II for shipboard 

use. This was due to the very large number of vessels propelled by diesel 

engines, which were better suited to furnish mechanical energy than steam 

[39]. The VC distiller was extensively used also in advance base military 

operations, where the distil ler with its internal combustion-engine drive 

would be skid-mounted for high portability [40]. These units had the 

virtue of using the same fuel as the accompanying automotive transport 

equipment, as well as being much easier to operate than equivalent 

thermal distillers. 

Following World War II,  many of these small units were used by 

those engaged in oil production in remote areas. Efforts to build larger 

units of the same type culminated in several installations for the U.S. Air 

Force, each producing approximately 200,000 gallons per day (gpd) [39]. 

Each of these installations, exemplified by the one at Kindley Air Force 

Base in Bermuda, had four identical units operating in parallel.  Each unit 

had a Roots blower-type VC, a single condenser-evaporator, and a three-

fluid heat exchanger for preheating the incoming seawater by cooling the 

brine and condensate [41]. These vapor compressors were very expensive 

and appeared to be as large as was practical with the Roots blower-type 

design. This type of compressor was preferred because it  overcame the 

problem of evaporator scaling; as scale accumulated, the discharge 

pressure could be increased to produce an increased steam pressure on the 
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condensing side and thus maintain the rated output [42]. Water produced 

by these units was expensive, and careful review of operating data 

indicated that reductions in water cost would require the prevention of 

scale deposition, the improvement of heat-transfer coefficients in the 

evaporator, and increased compressor efficiency [43]. 

The MVC system (Figure III.7) raises the vapor temperature to a 

level higher than that of the saturation conditions in the top effect. The 

difference in temperature is essential for the evaporation process in this 

effect [44]. Capacities and possible pressure ratios of the available vapor 

compressors play major roles in the limitations imposed on MVC systems; 

hence, a small number of effects with small inter-effect temperature 

differences are applied to minimize the mechanical energy input required 

to drive the compressor. Usually, compression ratios of about 1.58 are 

recommended [45]. Compressor maintenance for smooth operation 

presents a big problem for the operator.  Carryover can cause difficulties 

and affect the unit performance. This could be reduced by using 

demisters, but the pressure drop across the compressor would increase, 

giving a higher compression ratio. Moreover operating at low 

temperatures increases the handled volume considerably and the 

compressor power would increase accordingly. Thus, it  is common 

practice to use MVC for a limited number of effects at  temperatures close 

to atmospheric pressure [44]. 
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Figure III.7 Diagram of a mechanical vapor-compression plant [after 24].  
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III.4 Roots Blower VC 

A Roots compressor/blower (Figure III.8) is a positive-displacement 

machine that uses two or more rotating lobes in a specially shaped 

cylinder [47]. The lobes, each of which looks like a figure 8, intermesh 

with each other using timing gears and suck gas in from inlet to the 

outlet.  

 

 

 

Figure III.8 Roots blower compressor [47].  
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 The Roots blower does not actually compress the gas; it  is simply a 

gas mover. Compression occurs because the gas is forced into a closed 

conduit;  thereby causing the gas to become pressurized after i t  leaves the 

Roots blower [47]. 

The rotating impellers intermesh quite closely, but contact is 

avoided by using precision timing gears. Although these gears are splash 

lubricated, because they are external to the cylinder barrel,  the machine 

provides oil-free gas. 

 The existing VC desalination unit was supplemented with the Roots 

blower (Figure III.9) to increase its capacity. The Roots blower 

compresses the vapor (propelled stream) before it  passes to the jet 

ejectors. The Roots blower was operated with a variable-speed electric 

motor at 900 rpm, 1050 rpm, 1200 rpm, and 1500 rpm.  
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Figure III.9 Roots blower-type mechanical vapor compressor.  
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III.5 Comparison of various desalination processes 

At present,  seawater is desalted using various thermal processes or 

by reverse osmosis,  whereas brackish water is converted into drinking 

water mainly by reverse osmosis and electrodialysis [48]. Table III.2, 

shows the classification of desalination processes, and Table III.3 shows 

the key process data of different desalination process. 

 

 

Table III.2 Overview of commercial desalination process [48]  

Process Group 
(Phase Change) 

Process Form of Energy Required 

MSF Heat 
MED Heat 

DISTILLATION 
(Liquid to Vapor) 

VC or MVC Heat or Mechanical energy 
 

Reverse osmosis Mechanical energy MEMBRANE PROCESSES 
(no phase change) Electrodialysis Electrical energy 
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Table III.3 Key process data [48]  

 MSF MED TVC MVC RO ED 
Operating 
temperature 
(oC) 

<120 <70 <70 <70 <45 <45 

Form of energy Steam Steam Steam Mechanical 
(electrical) 

Mechanical 
(electrical) 

Electrical 

Electrical 
energy 
consumption 
(kWh/m3) 

3.5 1.5 1.5 8 – 14 4 – 7 1.0 

Typical salt 
content of raw 
water (ppm 
TDS) 

30,000 – 
100,000 

30,000 – 
100,000 

30,000 – 
100,000 

30,000 – 
50,000 

1000 – 
45,000 

100 – 
3000 

Product water 
quality (ppm 
TDS) 

<10 <10 <10 <10 <500 <500 

Current single 
train capacity 
(m3/d) 

5000 – 
60,000 

500 – 
12,000 

100 – 
20,000 

10 – 2500 1 – 10,000 1 – 
12,000 

III.6 Summary 

MVC requires expensive items such as the compressor with all  i ts 

limitations and drawbacks whereas TVC requires a steam boiler.  However, 

for both systems, practical l imitations are imposed on the capacity and 

number of effects.  The capacity of vapor compression distillation is rarely 

above 600 m3/day and in some designs it  reaches 1500 m3/day [14]. 

However, a VC system could play a bigger role in the desalination 

industry if larger plants were built  and/or higher performance ratios were 

attained. VC units are usually built  in the 0.005 to 0.5 mgd range. They 

are often used for resorts,  industries, and drilling sites where fresh water 

is not readily available. 
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CHAPTER IV  

RESULTS, DISCUSSION AND CONCLUSION 

The process specification requires steam at rate of 300 lb/hr and 

100 psig, but the boiler is undersized and produces steam at a rate of 180 

lb/hr and 100 psig. Hence, the options were: (i) to purchase a new boiler,  

which can produce steam at rate of 300 lb/hr and 100 psig, or (ii)  use 

existing compressed air tank, which can discharge compressible air at rate 

of 300 lb/hr and 100 psig. The first option was ruled out as it  required 

more capital investment and also time to install  and test if i t  works at 

process specification. Hence, the experiments were conducted at 

StarRotor Corporation to determine the efficiency of the jet ejector using 

compressed air.   

Air is easy to regulate, readily available, and the motive stream 

(compressed air) and propelled stream (atmospheric air) can mix properly 

and be discharged safely. Also, the results obtained will be similar for the 

both fluids (steam, air).  The efficiency was determined for various mass 

flow rates, different number of mixing vanes and for various back 

pressures. The newly constructed thermal vapor compression desalination 

unit was operated with tap water and later supplemented with the Roots 

Blower, but the data was not obtained at this point,  as this is the first  

design and testing of a high-efficiency jet  ejector operated desalination 

unit,  which requires further optimization of jet ejectors. 
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IV.1 Experimental Procedure 

Compressed air was passed through the nozzle shown in Figure 

IV.1. The temperature and pressure were measured at the inlet and outlet 

of the nozzle (Tables B.6, B.7). From these values, the velocity of the 

motive stream exiting the nozzle was calculated (Table IV.1) using the 

compressible flow velocity equation. 

Pressurized air from a fixed-volume tank was supplied to the 

nozzle. The air exiting the nozzle passed through the jet ejector with five 

the mixing vanes and with no pinch valve closings (Figure IV.2).  The 

inlet pressure, inlet temperature, pressure rise across the jet  ejector,  and 

outlet  dynamic pressure were noted for each run (Tables B.8, B.9). The jet 

ejector was back pressurized by closing the pinch valve inch-by-inch for a 

given number of mixing vanes. The readings were noted at each pinch 

valve closing (Tables B.8, B.9). The above steps were repeated for 

different numbers of mixing vanes and for various Pinch valve closings 

(Tables B.10 to B.17). From these values, the velocity and mass flow rate 

through the jet ejector was calculated for different numbers of mixing 

vanes and for various pinch valve closings (Tables IV.2 to IV.6).  The 

experimental setup and the MixAlco pilot plant pictures are shown in 

Figures A.1 to A.32. 
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Thermocouple (T1) 

 

 

Table IV.1 Calculated values at the outlet of the nozzle (Figure IV.1) for 
the motive air mass flow rate.  

Figure IV.1 Experimental setup of high-efficiency jet ejector nozzle. 

 
 
 

Dens (kg/m3) V1 (m/s) V2 = Vm (m/s) Mm (kg/s) Efficiency (%)

1.25 722.13 562.86 0.020 94.02 

1.25 690.12 527.86 0.019 94.07 

1.25 652.34 490.03 0.018 94.56 

1.25 606.08 448.95 0.016 94.58 

1.25 546.12 411.19 0.015 94.91 

Pressure gauge (P1) 

U-tube 
manometer, 
Pressure (P2) 

Compressed 
air tank 

Thermocouple (T2) 



 

 
 
 
 

 

Figure IV.2 Experimental setup of jet ejector with five mixing vanes and no pinch valve closing. 
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Table IV.2 Calculated values for the data obtained with five mixing vanes (Figures IV.2, A.3 to A.5) for 
various pinch valve closings.  

Jet ejector with five mixing vanes with no pinch valve closing 
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020      562.86 0.45 0.47 20.81  90.48 22.40 264.02
0.019        527.86 0.43 0.45 19.83 91.52 22.68 234.13
0.018        490.03 0.40 0.42 18.80 92.43 22.33 201.75
0.016        448.95 0.38 0.40 17.72 95.00 24.00 171.86
0.015        411.19 0.35 0.37 16.56 94.67 23.67 124.54

Jet ejector with five mixing vanes with Pinch Valve Closing 1  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020      562.86 0.44 0.46 20.23  90.50 22.00 405.99
0.019        527.86 0.41 0.43 19.22 91.56 21.63 343.73
0.018        490.03 0.39 0.41 18.27 92.64 21.78 281.46
0.016        448.95 0.37 0.39 17.38 93.89 23.38 219.18
0.015        411.19 0.36 0.37 16.32 94.67 23.67 156.92

Jet ejector with five mixing vanes with Pinch Valve Closing 2  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020      562.86 0.43 0.45 19.83  90.49 21.50 592.79
0.019        527.86 0.41 0.43 19.22 91.56 21.63 498.15
0.018        490.03 0.39 0.41 18.27 92.64 21.78 435.88
0.016        448.95 0.37 0.39 17.38 93.89 23.38 343.73
0.015        411.19 0.36 0.37 16.32 94.67 23.67 249.07

Jet ejector with five mixing vanes with Pinch Valve Closing 3  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020      562.86 0.33 0.35 15.44  89.53 16.50 1556.72
0.019        527.86 0.32 0.34 14.92 90.83 16.89 1307.65
0.018        490.03 0.31 0.33 14.65 92.13 17.33 1120.84
0.016        448.95 0.30 0.32 14.24 93.66 19.00 871.76
0.015        411.19 0.30 0.31 13.96 94.60 19.67 622.69
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Table IV.3 Calculated values for the data obtained with three mixing vanes (Figures A.6 to A.9) for various 
pinch valve closings.  

Jet ejector with three mixing vanes with no pinch valve closing 
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020      562.86 0.48 0.50 22.10  90.46 24.00 311.35
0.019        527.86 0.45 0.47 21.09 91.54 23.74 281.45
0.018        490.03 0.43 0.45 20.03 92.59 24.00 234.13
0.016        448.95 0.40 0.42 18.59 93.81 25.25 201.75
0.015        411.19 0.38 0.39 17.15 94.60 25.00 139.48

Jet ejector with three mixing vanes with Pinch Valve Closing 1  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020      562.86 0.47 0.49 21.65  90.49 23.50 420.94
0.019        527.86 0.44 0.46 20.52 91.56 23.21 358.67
0.018        490.03 0.42 0.44 19.63 92.62 23.44 326.29
0.016        448.95 0.40 0.42 18.48 93.81 25.25 234.02
0.015        411.19 0.38 0.39 17.15 94.60 25.00 171.86

Jet ejector with three mixing vanes with Pinch Valve Closing 2  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020      562.86 0.45 0.47 21.00  90.52 22.50 717.34
0.019        527.86 0.42 0.44 19.73 91.58 22.16 607.75
0.018        490.03 0.41 0.43 19.01 92.63 22.89 530.53
0.016        448.95 0.39 0.41 18.05 93.84 24.63 388.56
0.015        411.19 0.37 0.38 16.68 94.64 24.33 296.39

Jet ejector with three mixing vanes with Pinch Valve Closing 3  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020      562.86 0.35 0.37 16.32  89.85 17.50 1868.06
0.019        527.86 0.33 0.35 15.70 90.98 17.42 1589.11
0.018        490.03 0.33 0.35 15.44 92.35 18.44 1384.86
0.016        448.95 0.32 0.34 14.92 93.78 20.25 1043.63
0.015        411.19 0.32 0.33 14.51 94.67 21.00 717.34
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Table IV.4 Calculated values for the data obtained with two mixing vanes (Figures A.10 to A.13) for various 
pinch valve closings.  

Jet ejector with two mixing vanes with no pinch valve closing 
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.52 0.54 23.71  90.60 26.00 343.72 
0.019       527.86 0.49 0.51 22.33 91.66 25.84 311.34 
0.018       490.03 0.46 0.48 21.41 92.73 25.67 264.02 
0.016       448.95 0.43 0.45 19.67 93.90 27.13 219.18 
0.015       411.19 0.40 0.41 17.75 93.78 26.33 156.92 

Jet ejector with two mixing vanes with Pinch Valve Closing 1  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.50 0.52 23.01  90.70 25.00 513.09 
0.019       527.86 0.47 0.49 21.69 91.75 24.79 450.83 
0.018       490.03 0.45 0.47 20.76 92.77 25.11 405.99 
0.016       448.95 0.42 0.44 19.16 93.57 26.50 296.39 
0.015       411.19 0.38 0.39 17.42 94.81 25.00 201.75 

Jet ejector with two mixing vanes with Pinch Valve Closing 2  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.49 0.51 22.49  90.73 24.50 871.76 
0.019       527.86 0.46 0.48 21.13 91.78 24.26 747.23 
0.018       490.03 0.44 0.46 20.17 92.80 24.56 637.63 
0.016       448.95 0.41 0.43 18.74 93.47 25.88 513.09 
0.015       411.19 0.38 0.39 17.18 94.80 25.00 358.67 

Jet ejector with two mixing vanes with Pinch Valve Closing 3  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.36 0.38 16.95  90.18 18.00 2490.75 
0.019       527.86 0.35 0.37 16.47 91.39 18.47 1868.07 
0.018       490.03 0.34 0.36 15.98 92.60 19.00 1618.99 
0.016       448.95 0.33 0.35 15.48 93.97 20.88 1183.11 
0.015       411.19 0.33 0.34 14.95 94.84 21.67 841.87 
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Table IV.5 Calculated values for the data obtained with one mixing vane (Figures A.14 to A.17) for various 
pinch valve closings.  

Jet ejector with one mixing vane with no pinch valve closing 
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.56 0.58 25.56  91.14 28.00 530.53 
0.019       527.86 0.52 0.54 23.87 92.20 27.42 435.88 
0.018       490.03 0.49 0.51 22.41 93.19 27.33 388.56 
0.016       448.95 0.45 0.47 20.75 94.34 28.38 296.39 
0.015       411.19 0.41 0.42 18.63 95.05 27.00 201.75 

Jet ejector with one mixing vane with Pinch Valve Closing 1  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.55 0.57 24.93  91.19 27.50 670.13 
0.019       527.86 0.51 0.53 23.45 92.24 26.89 560.42 
0.018       490.03 0.49 0.51 22.24 93.19 27.33 498.15 
0.016       448.95 0.44 0.46 20.17 94.38 27.75 358.67 
0.015       411.19 0.41 0.42 18.31 95.05 27.00 364.02 

Jet ejector with one mixing vane with Pinch Valve Closing 2  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.56 0.58 25.65  91.14 28.00 1011.25 
0.019       527.86 0.49 0.51 22.51 92.30 25.84 809.49 
0.018       490.03 0.46 0.48 21.23 93.29 25.67 747.23 
0.016       448.95 0.42 0.44 19.57 94.44 26.50 575.36 
0.015       411.19 0.40 0.41 17.75 95.07 26.33 388.56 

Jet ejector with one mixing vane with Pinch Valve Closing 3  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.34 0.36 15.86  90.10 17.00 2615.29 
0.019       527.86 0.33 0.35 15.48 91.36 17.42 2241.68 
0.018       490.03 0.32 0.34 15.11 92.62 17.89 1838.17 
0.016       448.95 0.31 0.33 14.82 94.10 19.63 1369.92 
0.015       411.19 0.31 0.32 14.55 95.02 20.33 934.33 52
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Table IV.6 Calculated values for the data obtained with no mixing vanes (Figures A.18 to A.21) for various 
pinch valve closings.  

Jet ejector with no mixing vanes with no pinch valve closing 
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.65 0.67 29.59  93.67 32.50 684.96 
0.019       527.86 0.61 0.63 27.65 94.53 32.16 637.63 
0.018       490.03 0.55 0.57 25.24 95.29 30.67 468.26 
0.016       448.95 0.50 0.52 22.93 96.21 31.50 358.67 
0.015       411.19 0.45 0.46 20.46 96.88 29.67 234.13 

Jet ejector with no mixing vanes with Pinch Valve Closing 1  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.61 0.63 27.79  93.77 30.50 856.82 
0.019       527.86 0.57 0.59 25.86 94.60 30.05 732.28 
0.018       490.03 0.53 0.55 23.95 95.30 29.56 607.75 
0.016       448.95 0.47 0.49 21.77 96.21 29.63 468.26 
0.015       411.19 0.43 0.44 19.26 96.85 28.33 326.28 

Jet ejector with no mixing vanes with Pinch Valve Closing 2  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.57 0.59 26.17  93.78 28.50 1153.22 
0.019       527.86 0.54 0.56 24.44 94.58 28.47 1028.68 
0.018       490.03 0.50 0.52 22.76 95.27 27.89 841.87 
0.016       448.95 0.45 0.47 20.65 96.17 28.38 622.69 
0.015       411.19 0.42 0.43 18.74 96.83 27.67 435.88 

Jet ejector with no mixing vanes with Pinch Valve Closing 3  
Mm  (kg/s) Vm  (m/s) Mp  (kg/s) Mt  (kg/s) Vt  (m/s) Efficiency (%) Mp/Mm ∆P (Pa) 

0.020     562.86 0.37 0.39 17.18  91.92 18.50 2179.41 
0.019       527.86 0.36 0.38 16.71 93.09 19.00 1853.12 
0.018       490.03 0.34 0.36 16.11 94.00 19.00 1556.72 
0.016       448.95 0.33 0.35 15.48 95.39 20.88 1120.84 
0.015       411.19 0.33 0.34 14.95 96.32 21.67 794.55 
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Air density is given by 

( )W b aM P Pd
RT

+
=   

where,  d  = Density of air (kg/m3) 

  Pa  = Barometric pressure (Pa) 

Pb  = Gauge pressure (Pa) 

  T  = Absolute temperature (K) 

  R  = Gas constant (Pa.m3/mol.K) 

  Mw  = Air molecular weight = 0.029 kg/mol 

 

The compressible air velocity is given by [46] 
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where,   V = Compressed air velocity (m/s) 

  γ = Cp/Cv  = 1.4 for air 

  Ps  = Static pressure (Pa) 

  d  = Density of air (kg/m3) 

  Ps ta g  = Stagnation pressure (Pa) 

 

The mass flow rate is given by 

m AVd=  

where,  m  = Mass flow rate (kg/s) 

  d  = Density of air (kg/m3) 
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V  = Velocity (m/s)  

A  = Area of the outlet ( )  2rπ=

  r = Radius of the exiting pipe (m) 

 

The nozzle efficiency [44] is calculated as follows 
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where, V1 = Velocity at inlet of nozzle (m/s) 

  Vm = Velocity at outlet  of nozzle (m/s) 

  P1 = Pressure at inlet of nozzle (Pa) 

  P2 = Pressure at outlet of nozzle (Pa) 

 

The efficiency of the jet ejector (Somsak Watanawanavet,  graduate 

student, Texas A&M University) is given by 

Energy at ejector outlet
Energy at ejector inlet
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where, η  = Efficiency of the jet  ejector 

  mt  = Total mass flow rate at the outlet of the jet ejector (kg/s) 

mp  = Propelled mass flow rate (kg/s) 

  mm  = Motive mass flow rate (kg/s) 

  Vt  = Total velocity at the outlet  of the jet ejector (m/s) 

  Vm  = Motive velocity (m/s) 

  Vp  = Propelled velocity (m/s) 

  vm  = Volume of motive stream at nozzle exit (m3/kg) 

vp  = Volume of propelled stream at inlet (m3/kg)  

Pt  = Static pressure at the outlet of the jet ejector (Pa) 

 Pm  = Static pressure at the nozzle outlet  (Pa) 

  Pp  = Static pressure at the inlet of the jet ejector (Pa) 

 

IV.2 Results and Discussion 

From Table IV.6, the data obtained for the jet ejector with no back 

pressure and no internal vanes is 

Pb  = 2.2 inches of water (gauge) = 547.96 Pa (gauge) 

T  = 302.09 K 

Pa  = Ambient pressure = 32 inches of mercury = 108,365.73 Pa 

(absolute) 
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The air density at the above data is,  
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From Table 1b, the motive velocity and motive mass flow rate for the 

compressible air were calculated as follow: 
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562.861 m/sV =  

The mass flow rate is,  

dVAm =  

dVrm 2π=  
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0.020m =  kg/s 

The nozzle efficiency is,  
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The jet  ejector efficiency is,  
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The plots of ratio of propelled to motive mass (mp /mm),  pressure 

rise (∆P), and efficiency (η) for various mass flow rates and numbers of 

mixing vanes for various back pressures are shown in Figures IV.3 to 

IV.14. From the plots of pressure rise versus number of mixing vanes, it  

is observed that as the back pressure increases, the pressure rise across 

the jet ejector also increases in the case of one and two mixing vanes 

compared to zero mixing vanes. The plots of efficiency for various motive 

mass flow rates versus number of mixing vanes for various back pressures 

show that the efficiency increases with decreasing motive mass and 

decreasing back pressure. At other pinch valve closings, the air velocity 

through the jet ejector was high, so the extra surface area from the mixing 

vanes caused excessive friction and lowered the efficiencies. The slope of 

the efficiency and ratio of propelled to motive mass curve decreases with 

increase in the back pressure for any given motive mass flow rate.  
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Figure IV.3 Plot of propelled to motive mass ratio vs. number of mixing vanes for various mass flow rates and 

no pinch valve closing (Figures A.2, A.6, A.10, A.14, A.18). 61
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Figure IV.4 Plot of propelled to motive mass ratio vs. number of mixing vanes for various mass flow rates and 

Pinch Valve Closing 1 (Figures A.3, A.7, A.11, A.15, A.19).  
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Figure IV.5 Plot of propelled to motive mass ratio vs. number of mixing vanes for various mass flow rates and 

Pinch Valve Closing 2 (Figures A.4, A.8, A.12, A.16, A.20).  
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Figure IV.7 Plot of pressure rise across the jet ejector vs. number of mixing vanes for various mass flow rates 

and no pinch valve closing (Figures A.2, A.6, A.10, A.14, A.18).  
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Figure IV.8  Plot of pressure rise across the jet ejector vs. number of mixing vanes for various mass flow rates 

and Pinch Valve Closing 1 (Figures A.3, A.7, A.11, A.15, A.19).  
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Figure IV.9 Plot of pressure rise across the jet ejector vs. number of mixing vanes for various mass flow rates 

and Pinch Valve Closing 2 (Figures A.4, A.8, A.12, A.16, A.20).  

67

 



 

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6

Number of mixing vanes

Pr
es

su
re

 r
is

e 
(P

a)

 

mm = 0.020 kg/s 

mm = 0.019 kg/s 

mm = 0.018 kg/s 

mm = 0.016 kg/s 

mm = 0.015 kg/s 

Figure IV.10 Plot of pressure rise across the jet ejector vs. number of mixing vanes for various mass flow rates 

and Pinch Valve Closing 3 (Figures A.5, A.9, A.13, A.17, A.21). 
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Figure IV.11 Plot of efficiency of the jet ejector vs. number of mixing vanes for various mass flow rates and 

no pinch valve closing (Figures A.2, A.6, A.10, A.14, A.18). 
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Figure IV.12 Plot of efficiency of the jet ejector vs. number of mixing vanes for various mass flow rates and 

Pinch Valve Closing 1 (Figures A.3, A.7, A.11, A.15, A.19).  
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Figure IV.13 Plot of efficiency of the jet ejector vs. number of mixing vanes for various mass flow rates and 

Pinch Valve Closing 2 (Figures A.4, A.8, A.12, A.16, A.20).  71
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IV.3 Conclusion 

The two important objectives of this newly designed jet  ejector are 

(i) to improve the efficiency of the jet ejector,  and (ii)  eliminate the shock 

wave in the diffuser of jet ejector. The first  objective was achieved by 

placing the nozzle at the converging section of the diffuser, which helps 

to pre-accelerate the propelled stream and mix more efficiently with the 

motive stream. The lower the difference in the velocity of two streams, 

the more efficient is the mixing. This can be observed in Figures IV.11 to 

IV.14, the efficiency increases with decreasing motive mass flow rate. 

 The conventional jet  ejector has lower efficiency of 25 – 30%, 

where as the newly designed jet  ejector has efficiency greater than 90%. 

The low efficiency in the conventional jet ejector is due to higher 

momentum (mass x velocity) difference of propelled and motive streams. 

The propelled stream has zero momentum where as the propelled stream is 

at higher momentum, which results in inefficient mixing of two streams 

and lower pressure rise across the jet  ejectors. The high efficiency is due 

to the following reasons: (i) low velocity difference between the propelled 

and motive stream, (ii)  new efficiency equation formulated considering 

the kinetic energy, flow energy and pressure energy, and (ii i)  elimination 

of the shock wave in the diffuser.  
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IV.4 Future Work and Recommendations  

 The jet ejector can be optimized using computer modeling. The 

high-efficiency jet  ejector should be tested at greater pressure rise across 

the jet ejector with higher back pressures for one or two mixing vanes 

compared to zero mixing vanes. Further, it  is important to study the effect 

of nozzle diameter and placement. After implementing the necessary 

changes from the above studies, i t  is important to retest the jet ejector in 

the vapor-compression desalination unit.  
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APPENDIX A 

 The schematic presentation of the experimental setup of jet ejector 

with different number of mixing vanes and for various pinch valve closing 

is shown. Also, the photos of experimental setup and the desalination 

process are shown. 



 

 

 

 

 

 

Figure A.1 A schematic representation of pinch valve closings during the jet ejector experiment. The tube of 6 
in (0.1524 m) was closed inch-by-inch (5 in = 0.127 m, 4 in = 0.1016 m, 3 in = 0.0762 m) each time to create 
back pressure in the system. 
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Figure A.2 Experimental setup of jet ejector with all  the mixing vanes and no pinch valve closing. 
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Figure A.3 Experimental setup of jet ejector with all  the mixing vanes and Pinch Valve Closing 1. 
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Figure A.4 Experimental setup of jet ejector with all  the mixing vanes and Pinch Valve Closing 2. 
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Figure A.5 Experimental setup of jet ejector with all  the mixing vanes and Pinch Valve Closing 3. 
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Figure A.6 Experimental setup of jet ejector with three mixing vanes and no pinch valve closing. 
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Figure A.7 Experimental setup of jet ejector with three mixing vanes and Pinch Valve Closing 1. 
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Figure A.8 Experimental setup of jet ejector with three mixing vanes and Pinch Valve Closing 2. 
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Figure A.9 Experimental setup of jet ejector with three mixing vanes and Pinch Valve Closing 3. 
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Figure A.10 Experimental setup of jet ejector with two mixing vanes and no pinch valve closing. 
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Figure A.11 Experimental setup of jet ejector with two mixing vanes and Pinch Valve Closing 1. 
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Figure A.12 Experimental setup of jet ejectors with two mixing vanes and Pinch Valve Closing 2. 
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Figure A.13 Experimental setup of jet ejector with two mixing vanes and Pinch Valve Closing 3. 
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Figure A.14 Experimental setup of jet ejector with one mixing vane and no pinch valve closing. 
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Figure A.15 Experimental setup of jet ejector with one mixing vane and Pinch Valve Closing 1. 
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Figure A.16  Experimental setup of jet ejector with one mixing vane and Pinch Valve Closing 2.  
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Figure A.17 Experimental setup of jet ejector with one mixing vane and Pinch Valve Closing 3. 
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Figure A.18 Experimental setup of jet ejector with no mixing vanes and no pinch valve closing. 
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Figure A.19 Experimental setup of jet ejector with no mixing vanes and Pinch Valve Closing 1. 
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Figure A.20 Experimental setup of jet ejector with no mixing vanes and Pinch Valve Closing 2. 
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Figure A.21 Experimental setup of jet ejector with no mixing vanes and Pinch Valve Closing 3. 
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Figure A.22  The experimental setup showing jet ejector and the extension at the outlet along with the pinch 

valve. 
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Figure A.23  The experimental setup showing jet  ejector and the extension at the inlet to obtain a narrow flow 

of propelled stream before mixing with motive stream. 
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Figure A.24  The experimental setup showing the measuring instruments used to measure inlet pressure, inlet 

temperature, pressure rise across the jet ejector, and dynamic pressure at the outlet.  

 

104



 

 

Figure A.25  The experimental setup showing the pitot-tube placed at the outlet  of the jet ejector to measure the 

dynamic pressure. 
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Figure A.26  A closer look of the pinch valve located at the outlet of the jet ejector,  which is used to create 

back pressure inside the system. 
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Figure A.27  The inside view of the jet ejector showing the mixing vanes and the nozzle. (a) The left picture 

shows the nozzle pointing towards the diffuser is placed at the center of the mixing vanes. (b) The right picture 

shows the three internal mixing vanes located in the diffuser section of the jet ejector for proper mixing of 

motive and propelled streams. 
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Figure A.28  MixAlco biomass pilot plant located at Texas A&M University, College Station campus. 
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Figure A.29  The steam produced from the boiler was superheated using the super-heater before entering the jet 

ejector as motive stream. 
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Figure A.30  A closer look of the desalination unit,  showing the three jet ejectors connected in series. 
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Figure A.31  A closer look at the primary and secondary heat exchangers connected to the jet ejectors, which 

are used to distill  water. 
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Figure A.32 The TVC method was supplemented with the Roots Blower to improve the performance. The Roots 

Blower was used to mechanically compress vapor before entering the jet ejector. 
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Figure A.33 Diagram of a high-efficiency jet ejector representing position of mixing vanes and nozzle. 
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Figure A.34 Diagram of mixing vanes used in a high-efficiency jet  ejector operated desalination process.
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Figure A.35 Diagram of a product water tank used in a high-efficiency jet 

ejector operated desalination process. 
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Figure A.36 Diagram of a level control tank used in a high-efficiency jet 

ejector operated desalination process. 
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Figure A.37 Diagram of a primary heat exchanger used in a high-

efficiency jet ejector operated desalination process. 

 



 118

 

Figure A.38 Diagram of a secondary heat exchanger used in a high-

efficiency jet ejector operated desalination process. 
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APPENDIX B 

 The static pressures at jet  ejector inlet (Pp),  nozzle outlet (Pm),  and 

jet ejector outlet (Pt) were obtained using CFD simulation software. The 

above values for various motive and total mass flow rate, different 

number of mixing vanes, and various back pressures are noted below 

(Tables B.1 to B.6). 

 

Table B.1  Static pressures with five mixing vanes (Figures A.2 to A.5) 
for various pinch valve closings (back pressures). 

Pm  (Pa) Pp  (Pa) Pt  (Pa) 
No pinch valve closing 

102481.56 103694.32 101328.60 
102477.24 103505.60 101328.50 
102472.86 103321.70 101328.50 
102432.17 101763.25 101327.30 
102370.20 102832.50 101327.40 

Pinch Valve Closing 1 
102477.20 103505.60 101328.50 
102459.10 103103.60 101328.20 
102442.20 102904.40 101327.90 
102401.00 102853.70 101327.60 
102370.20 102832.50 101327.40 

Pinch Valve Closing 2 
102472.90 103321.70 101328.50 
102459.10 103103.60 101328.20 
102442.20 102904.40 101327.90 
102401.00 102853.70 101327.60 
102370.20 102832.50 101327.40 

Pinch Valve Closing 3 
102432.20 101763.30 101327.30 
102423.50 101764.10 101327.20 
102415.00 101768.30 101327.10 
102372.70 101902.50 101326.90 
102345.70 102028.60 101326.90 
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Table B.2  Static pressures with three mixing vanes (Figures A.6 to A.10) 
for various pinch valve closings (back pressures). 

Pm  (Pa) Pp  (Pa) Pt  (Pa) 
No pinch valve closing 

102495.04 104293.40 101328.80 
102475.66 103827.80 101328.50 
102457.80 103588.40 101328.23 
102412.20 103330.40 101327.70 
102377.80 103136.70 101327.50 

Pinch Valve Closing 1 
102490.45 104088.40 101328.00 
102471.40 103638.80 101328.40 
102453.90 103410.10 101328.20 
102412.20 103330.40 101327.70 
102377.80 103136.70 101327.50 

Pinch Valve Closing 2 
102481.60 103694.30 101328.60 
102463.20 103277.10 101328.30 
102449.97 103236.60 101328.00 
102408.50 103166.70 101327.70 
102374.01 102982.30 101327.50 

Pinch Valve Closing 3 
102440.12 102035.95 101327.55 
102427.50 101894.00 101327.30 
102418.60 102024.20 101327.30 
102398.10 102157.90 101327.10 
102354.20 102278.55 101327.10 
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Table B.3  Static pressures with two mixing vanes (Figures A.10 to A.13) 
for various pinch valve closings (back pressures). 

Pm  (Pa) Pp  (Pa) Pt  (Pa) 
No pinch valve closing 

102676.70 104744.50 101330.30 
102690.90 104255.82 101329.80 
102702.75 103815.95 101329.40 
102688.10 103553.00 101329.76 
102690.90 104255.82 101329.80 

Pinch Valve Closing 1 
102691.00 104323.30 101330.05 
102705.90 103867.33 101329.60 
102710.90 103634.70 101329.20 
102702.75 103815.95 101329.40 
102703.90 102897.90 101328.10 

Pinch Valve Closing 2 
102698.10 104121.01 101329.90 
102713.30 103680.80 101329.50 
102718.30 103458.10 101329.10 
102702.75 103815.95 101329.40 
102703.90 102897.90 101328.10 

Pinch Valve Closing 3 
102774.95 101938.50 101328.03 
102781.01 101941.22 101327.90 
102781.01 101946.50 101327.80 
102783.12 102121.43 101327.50 
102761.82 102218.60 101327.60 
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Table B.4  Static pressures with one mixing vane (Figures A.14 to A.17) 
for various pinch valve closings (back pressures). 

Pm  (Pa) Pp  (Pa) Pt  (Pa) 
No pinch valve closing 

102593.91 104629.24 101331.60 
102624.11 104010.00 101330.90 
102638.21 103628.30 101330.35 
102623.12 103260.90 101329.60 
102676.44 102933.20 101328.30 

Pinch Valve Closing 1 
102607.63 104435.50 101331.50 
102638.66 103836.70 101330.70 
102638.21 103628.30 101330.35 
102639.40 103118.60 101329.40 
102676.44 102933.20 101328.30 

Pinch Valve Closing 2 
102593.90 104629.20 101331.60 
102667.34 103504.20 101330.40 
102683.00 103162.90 101329.90 
102671.75 102845.65 101329.10 
102694.10 102807.55 101328.20 

Pinch Valve Closing 3 
102887.34 101384.90 101328.24 
102884.90 101411.80 101328.10 
102878.20 101439.20 101327.90 
102837.80 101593.90 101327.70 
102800.04 101716.83 101327.63 
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Table B.5  Static pressures with no mixing vanes (Figures A.18 to A.21) 
for various pinch valve closings (back pressures). 

Pm  (Pa) Pp  (Pa) Pt  (Pa) 
No pinch valve closing 

102345.60 102652.50 101329.10 
102378.40 102275.10 101328.20 
102417.67 101882.80 101327.30 
102438.12 101676.40 101326.70 
102491.50 101337.20 101326.10 

Pinch Valve Closing 1 
102391.90 102146.20 101328.20 
102425.80 101831.70 101327.50 
102442.60 101693.20 101327.00 
102477.04 101436.20 101326.30 
102517.80 101202.60 101325.90 

Pinch Valve Closing 2 
102438.60 101704.50 101327.40 
102461.40 101535.60 101326.90 
102479.50 101431.00 101326.60 
102502.80 101288.40 101326.10 
102530.10 101138.40 101325.80 

Pinch Valve Closing 3 
102672.40 100167.76 101325.23 
102674.20 100237.50 101325.30 
102673.41 100379.20 101325.30 
102653.77 100571.80 101325.30 
102646.96 100642.20 101325.30 
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Table B.6 Data obtained at the inlet and outlet of the nozzle (Figure IV.1) 
in FPS units.  

 
P1 (psig) T1 (

o
F) P2 (psig) T2 (

o
F) 

130.0 90.9 55.0 58.0 

110.0 90.1 45.0 57.5 

90.0 88.1 36.0 58.3 

70.0 86.1 28.0 56.5 

50.0 84.1 22.0 56.4 

 

Table B.7 Data obtained at the inlet and outlet of the nozzle (Figure IV.1) 
in SI units.  

 
P1 (Pa) T1 (K) P2 (Pa) T2 (K) 

896318.4 305.9 379211.6 287.6 

758423.3 305.4 310264.1 287.3 

620528.1 304.3 248211.3 287.8 

482633.0 303.2 193053.2 286.8 

344737.9 302.1 151684.7 286.7 

 

Note: Pressures P1 and P2 are gauge pressures. 
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Table B.8 Data obtained at the outlet of the jet ejector with five mixing 
vanes (Figure A.2 to A.5) for various pinch valve closings in FPS units.  

 
Jet ejector with five mixing vanes and with no pinch valve closing 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
12.9 130 86.4 1.09 1.06 
28.5 110 85.7 0.99 0.94 
48.0 90 84.4 0.89 0.81 
74.3 70 82.5 0.79 0.69 
109.7 50 80.7 0.69 0.50 

Jet ejector with five mixing vanes and with Pinch Valve Closing 1 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
13.7 130 87.2 1.03 1.63 
29.8 110 88.6 0.93 1.38 
47.8 90 88.8 0.84 1.13 
74.2 70 88.3 0.76 0.88 
109.7 50 87.7 0.67 0.63 

Jet ejector with five mixing vanes and with Pinch Valve Closing 2 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
10.2 130 84.3 0.99 2.38 
28.2 110 85.4 0.93 2.00 
45.4 90 85.5 0.84 1.75 
72.6 70 85.0 0.76 1.38 
108.1 50 84.5 0.67 1.00 

Jet ejector with five mixing vanes and with Pinch Valve Closing 3 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
12.6 130 84.7 0.60 6.25 
30.2 110 84.4 0.56 5.25 
48.1 90 83.5 0.54 4.50 
75.6 70 81.8 0.51 3.50 
112.1 50 80.1 0.49 2.50 
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Table B.9 Data obtained at the outlet  of the jet ejector with all  the mixing 
vanes (Figure A.2 to A.5) for various pinch valve closings in SI units.  

 
Jet ejector with five mixing vanes and with no pinch valve closing 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
12.9 896318.4 303.37 271.49 234.02 
28.5 758423.3 302.98 246.58 234.13 
48.0 620528.1 302.26 221.68 201.75 
74.3 482633.0 301.21 196.77 171.86 
109.7 344737.9 300.21 171.86 124.54 

Jet ejector with five mixing vanes and with Pinch Valve Closing 1 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
13.7 896318.4 303.82 256.55 405.99 
29.8 758423.3 304.59 231.64 343.73 
47.8 620528.1 304.71 209.22 281.46 
74.2 482633.0 304.43 189.29 219.18 
109.7 344737.9 304.09 166.88 156.92 

Jet ejector with five mixing vanes and with Pinch Valve Closing 2 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
10.2 896318.4 302.21 246.58 592.79 
28.2 758423.3 302.82 231.64 498.15 
45.4 620528.1 302.87 209.22 435.88 
72.6 482633.0 302.59 189.29 343.73 
108.1 344737.9 302.32 166.88 249.07 

Jet ejector with five mixing vanes and with Pinch Valve Closing 3 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
12.6 896318.4 302.43 149.45 1556.72 
30.2 758423.3 302.26 139.48 1307.65 
48.1 620528.1 301.76 134.51 1120.84 
75.6 482633.0 300.82 127.11 871.76 
112.1 344737.9 299.87 122.11 622.69 

 

Note: The inlet pressure is gauge pressure. 
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Table B.10 Data obtained at the outlet of the jet ejector with three mixing 
vanes (Figure A.6 to A.9) for various pinch valve closings in FPS units.  

 
Jet ejector with three mixing vanes and with no pinch valve closing 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
11.0 130 91.4 1.23 1.250 
26.5 110 90.8 1.12 1.125 
47.1 90 89.5 1.01 0.937 
74.3 70 87.7 0.87 0.813 
111.2 50 86.2 0.74 0.563 

Jet ejector with three mixing vanes and with Pinch Valve Closing 1 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
13.0 130 83.5 1.33 2.063 
28.6 110 84.2 1.18 1.813 
48.4 90 84.1 1.08 1.625 
75.5 70 83.5 0.92 1.187 
112.4 50 83.1 0.76 0.813 

Jet ejector with three mixing vanes and with Pinch Valve Closing 2 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
12.5 130 87.4 1.27 3.5 
28.4 110 88.1 1.12 3.0 
47.4 90 87.9 1.02 2.563 
75.1 70 87.5 0.88 2.063 
110.5 50 87.1 0.74 1.437 

Jet ejector with three mixing vanes and with Pinch Valve Closing 3 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
11.5 130 91.2 0.72 10.0 
27.5 110 92.8 0.68 7.5 
47.0 90 92.7 0.64 6.5 
73.5 70 92.1 0.60 4.75 
110.3 50 91.3 0.56 3.375 
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Table B.11 Data obtained at the outlet of the jet ejector with three mixing 
vanes (Figure A.6 to A.9) for various pinch valve closings in SI units.  

 
Jet ejector with three mixing vanes and with no pinch valve closing 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
11.0 896318.4 306.15 306.36 311.35 
26.5 758423.3 305.82 278.96 281.45 
47.1 620528.1 305.09 251.57 234.13 
74.3 482633.0 304.09 216.69 201.75 
111.2 344737.9 303.26 184.32 139.48 

Jet ejector with three mixing vanes and with Pinch Valve Closing 1 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
13.0 896318.4 305.76 293.91 420.94 
28.6 758423.3 305.87 264.02 358.67 
48.4 620528.1 305.54 241.61 326.29 
75.5 482633.0 304.82 214.21 234.02 
112.4 344737.9 304.21 184.32 171.86 

Jet ejector with three mixing vanes and with Pinch Valve Closing 2 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
12.5 896318.4 306.43 276.47 717.34 
28.4 758423.3 306.87 244.09 607.75 
47.4 620528.1 306.76 226.66 530.53 
75.1 482633.0 306.48 204.24 388.56 
110.5 344737.9 306.21 174.35 296.39 

Jet ejector with three mixing vanes and with Pinch Valve Closing 3 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
11.5 896318.4 307.71 166.88 1868.06 
27.5 758423.3 308.09 154.43 1589.11 
47.0 620528.1 308.09 149.45 1384.86 
73.5 482633.0 307.93 139.48 1043.63 
110.3 344737.9 307.65 132.01 717.34 

 

Note: The inlet pressure is gauge pressure. 
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Table B.12 Data obtained at the outlet  of the jet ejector with two mixing 
vanes (Figure A.10 to A.13) for various pinch valve closings in FPS units.  

 
Jet ejector with two mixing vanes and with no pinch valve closing 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
7.1 130 80.7 1.41 1.375 
22.4 110 81.9 1.25 1.25 
40.1 90 81.5 1.15 1.063 
66.5 70 80.6 0.97 0.875 
102.2 50 79.6 0.79 0.625 

Jet ejector with two mixing vanes and with Pinch Valve Closing 1 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
13.5 130 83.5 1.33 2.063 
29.5 110 84.2 1.18 1.813 
49.1 90 84.1 1.08 1.625 
76.4 70 83.5 0.92 1.187 
111.5 50 83.1 0.76 0.813 

Jet ejector with two mixing vanes and with Pinch Valve Closing 2 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
18.2 130 87.4 1.27 3.5 
33.3 110 88.1 1.12 3.0 
52.1 90 87.9 1.02 2.563 
79.2 70 87.5 0.88 2.063 
115.4 50 87.1 0.74 1.437 

Jet ejector with two mixing vanes and with Pinch Valve Closing 3 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
9.3 130 91.2 0.72 10.0 
26.2 110 92.8 0.68 7.5 
43.1 90 92.7 0.64 6.5 
69.0 70 92.1 0.60 4.75 
103.4 50 91.3 0.56 3.375 
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Table B.13 Data obtained at the outlet  of the jet ejector with two mixing 
vanes (Figure A.10 to A.13) for various pinch valve closings in SI units.  

 
Jet ejector with two mixing vanes and with no pinch valve closing 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
7.1 896318.4 300.21 351.19 343.72 
22.4 758423.3 300.87 311.34 311.34 
40.1 620528.1 300.65 286.34 264.02 
66.5 482633.0 300.15 241.61 219.18 
102.2 344737.9 299.59 196.77 156.92 

Jet ejector with two mixing vanes and with Pinch Valve Closing 1 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
13.5 896318.4 301.76 331.27 513.09 
29.5 758423.3 302.15 293.91 450.83 
49.1 620528.1 302.09 269.00 405.99 
76.4 482633.0 301.76 229.15 296.39 
111.5 344737.9 301.54 189.29 201.75 

Jet ejector with two mixing vanes and with Pinch Valve Closing 2 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
18.2 896318.4 303.93 316.33 871.76 
33.3 758423.3 304.32 278.96 747.23 
52.1 620528.1 304.21 254.06 637.63 
79.2 482633.0 303.98 219.18 513.09 
115.4 344737.9 303.76 184.32 358.67 

Jet ejector with two mixing vanes and with Pinch Valve Closing 3 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
9.3 896318.4 306.04 179.33 2490.75 
26.2 758423.3 306.93 169.37 1868.07 
43.1 620528.1 306.87 159.41 1618.99 
69.0 482633.0 306.54 149.45 1183.11 
103.4 344737.9 306.09 139.48 841.87 

 

Note: The inlet pressure is gauge pressure. 
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Table B.14 Data obtained at the outlet of the jet ejector with one mixing 
vane (Figure A.14 to A.17) for various pinch valve closings in FPS units.  

 
Jet ejector with one mixing vane and with no pinch valve closing 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
16.1 130 85.8 1.64 2.125 
33.4 110 83.3 1.43 1.75 
54.3 90 81.1 1.26 1.563 
82.2 70 79.7 1.08 1.187 
119.3 50 77.5 0.87 0.813 

Jet ejector with one mixing vane and with Pinch Valve Closing 1 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
11.3 130 87.8 1.56 2.687 
28.4 110 86.0 1.38 2.25 
45.4 90 84.0 1.24 2.0 
77.2 70 81.7 1.02 1.437 
113.5 50 80.3 0.84 1.063 

Jet ejector with one mixing vane and with Pinch Valve Closing 2 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
15.3 130 88.3 1.65 4.063 
32.0 110 88.4 1.27 3.25 
51.5 90 87.9 1.13 3.0 
78.4 70 87.1 0.96 2.313 
115.0 50 86.0 0.79 1.563 

Jet ejector with one mixing vane and with Pinch Valve Closing 3 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
16.4 130 92.3 0.63 10.5 
30.5 110 92.9 0.60 9.0 
50.5 90 92.7 0.57 7.375 
78.3 70 92.3 0.55 5.5 
114.2 50 91.9 0.53 3.75 
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Table B.15 Data obtained at the outlet of the jet ejector with one mixing 
vane (Figure A.14 to A.17) for various pinch valve closings in SI units.  

 
Jet ejector with one mixing vane and with no pinch valve closing 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
16.1 896318.4 303.04 408.48 530.53 
33.4 758423.3 301.65 356.18 435.88 
54.3 620528.1 300.43 313.84 388.56 
82.2 482633.0 299.65 269.00 296.39 
119.3 344737.9 298.43 216.69 201.75 

Jet ejector with one mixing vane and with Pinch Valve Closing 1 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
11.3 896318.4 304.15 388.56 670.13 
28.4 758423.3 303.15 343.73 560.42 
45.4 620528.1 302.04 308.85 498.15 
77.2 482633.0 300.76 254.06 358.67 
113.5 344737.9 299.98 209.22 364.02 

Jet ejector with one mixing vane and with Pinch Valve Closing 2 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
15.3 896318.4 304.43 410.97 1011.25 
32.0 758423.3 304.48 316.33 809.49 
51.5 620528.1 304.21 281.46 747.23 
78.4 482633.0 303.76 239.11 575.36 
115.0 344737.9 303.15 196.77 388.56 

Jet ejector with one mixing vane and with Pinch Valve Closing 3 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
16.4 896318.4 306.65 156.92 2615.29 
30.5 758423.3 306.98 149.45 2241.68 
50.5 620528.1 306.87 141.97 1838.17 
78.3 482633.0 306.65 136.99 1369.92 
114.2 344737.9 306.43 132.01 934.33 

 

Note: The inlet pressure is gauge pressure. 
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Table B.16 Data obtained at the outlet of the jet ejector with no mixing 
vanes (Figure A.18 to A.21) for various pinch valve closings in FPS units.  

 
Jet ejector with no mixing vanes and with no pinch valve closing 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
16.1 130 84.1 2.20 2.75 
31.5 110 83.8 1.92 2.53 
52.2 90 82.9 1.60 1.875 
79.6 70 81.4 1.32 1.437 
115.4 50 80.5 1.05 0.937 

Jet ejector with no mixing vanes and with Pinch Valve Closing 1 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
14.4 130 86.3 1.94 3.437 
30.0 110 86.7 1.68 2.937 
50.1 90 86.4 1.44 2.437 
77.1 70 85.8 1.19 1.875 
113.5 50 85.3 0.93 1.313 

Jet ejector with no mixing vanes and with Pinch Valve Closing 2 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
13.4 130 87.1 1.72 4.623 
30.0 110 87.1 1.50 4.125 
49.2 90 86.4 1.3 3.375 
78.0 70 85.2 1.07 2.5 
113.2 50 84.0 0.88 1.75 

Jet ejector with no mixing vanes and with Pinch Valve Closing 3 

Time (s) Inlet Pr (psig) Temp (oF) Dyn Pr (in H2O) Pr rise (in H2O) 
84. 130 80.8 0.74 8.75 
29.5 110 78.5 0.70 7.437 
49.5 90 76.4 0.65 6.25 
79.3 70 74.1 0.60 4.5 
117.0 50 72.5 0.56 3.187 
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Table B.17 Data obtained at the outlet of the jet ejector with no mixing 
vanes (Figure A.18 to A.21) for various pinch valve closings in SI units.  

 
Jet ejector with no mixing vanes and with no pinch valve closing 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
16.1 896318.4 302.09 547.96 684.96 
31.5 758423.3 301.93 478.22 637.63 
52.2 620528.1 301.43 398.52 468.26 
79.6 482633.0 300.59 328.78 358.67 
115.4 344737.9 300.09 261.53 234.13 

Jet ejector with no mixing vanes and with Pinch Valve Closing 1 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
14.4 896318.4 303.32 483.21 856.82 
30.0 758423.3 303.54 418.45 732.28 
50.1 620528.1 303.37 358.67 607.75 
77.1 482633.0 303.04 296.39 468.26 
113.5 344737.9 302.76 231.64 326.28 

Jet ejector with no mixing vanes and with Pinch Valve Closing 2 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
13.4 896318.4 303.76 428.41 1153.22 
30.0 758423.3 303.76 373.61 1028.68 
49.2 620528.1 303.37 323.79 841.87 
78.0 482633.0 302.71 266.51 622.69 
113.2 344737.9 302.04 219.18 435.88 

Jet ejector with no mixing vanes and with Pinch Valve Closing 3 

Time (s) Inlet Pr (Pa) Temp (K) Dyn Pr (Pa) Pr rise (Pa) 
14.5 896318.4 300.26 184.32 2179.41 
29.5 758423.3 298.98 174.35 1853.12 
49.5 620528.1 297.82 161.89 1556.72 
79.3 482633.0 296.54 149.45 1120.84 
117.0 344737.9 296.54 139.48 794.55 

 

Note: The inlet pressure is gauge pressure. 
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