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ABSTRACT 
 
 

Modeling of Impact Dynamics of a Tennis Ball with a Flat Surface. (May 2004) 

Syed Muhammad Mohsin Jafri, B.E., NED University, Pakistan 

Chair of Advisory Committee: Dr. John M. Vance 

       
 
 
 A two-mass model with a spring and a damper in the vertical direction, 

accounting for vertical translational motion and a torsional spring and a damper 

connecting the rotational motion of two masses is used to simulate the dynamics of a 

tennis ball as it comes into contact with a flat surface. The model is supposed to behave 

as a rigid body in the horizontal direction. The model is used to predict contact of the 

ball with the ground and applies from start of contact to end of contact. The springs and 

dampers for both the vertical and the rotational direction are linear. Differential 

equations of motion for the two-mass system are formulated in a plane. Two scenarios of 

contact are considered: Slip and no-slip. In the slip case, Coulomb’s law relates the 

tangential contact force acting on the outer mass with the normal contact force, whereas 

in the no-slip case, a kinematic constraint relates the horizontal coordinate of the center 

of mass of the system with the rotational coordinate of the outer mass. Incorporating 

these constraints in the differential equations of motion and applying initial conditions, 

the equations are solved for kinematics and kinetics of these two different scenarios by 

application of the methods for the solutions of second-order linear differential equations. 

Experimental data for incidence and rebound kinematics of the tennis ball with  

incidence zero spin, topspin and backspin is available. The incidence angles in the data 

range from 17 degrees up to 70 degrees. Simulations using the developed equations are 

performed and for some specific ratios of inner and outer mass and mass moments of 

inertia, along with the spring-damper coefficients, theoretical predictions for the 
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kinematics of rebound agree well with the experimental data. In many cases of 

incidence, the simulations predict transition from sliding to rolling during the contact, 

which is in accordance with the results obtained from available experimental 

measurements conducted on tennis balls. Thus the two-mass model provides a 

satisfactory approximation of the tennis ball dynamics during contact.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  v 

 
DEDICATION 

 
 
 

To my  

Family and Teachers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



  vi 

ACKNOWLEDGMENTS 
 
 

 I would like to express my earnest gratitude to Dr. John M.Vance, my advisor, 

who provided me with an opportunity to work on this interesting thesis topic. His broad 

knowledge and patience, with great insight and wisdom inspired me to work for the 

comprehensive formulation of this topic within the limitations of assumptions in the 

analysis. He has been an invaluable help to me and his great communication has been of 

enormous encouragement. 

 

 I will like to thank Dr. Alan Palazzolo and Dr. Guy Battle for serving on my 

thesis committee. I have benefited immensely from their teaching while attending 

classes under them. The concepts and analytical methods that I gathered from those 

classes have been extremely valuable and useful for the completion of my thesis. 

 

 Finally, I will like to thank all of my friends at the Turbomachinery lab and at 

home for their encouragement and help in many aspects. I am thankful to all of you. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  vii 

NOMENCLATURE 
 
 
 X Axis  - Horizontal coordinate direction 
 
 Y Axis  - Vertical coordinate direction  
 

V1  - Incident velocity of mass center of tennis ball [L/T] 
 
 V2  -  Rebound velocity of mass center of tennis ball [L/T] 
 
 θi  - Incident angle [-] 
 
 θr  - Rebound angle [-] 
 

ω1  - Incident spin [1/T] 
 
 ω2  - Rebound spin [1/T] 

 
Vy1  - Vertical component of incident velocity [L/T] 
 
Vx1  - Horizontal component of incident velocity [L/T] 
 
Vy2  - Vertical component of rebound velocity [L/T] 
 
Vx2  - Vertical component of rebound velocity [L/T] 
 
t  - Time [T] 
 
tc  - Time of contact [T] 
 
n  - Dimensionless contact time [-] 
 
y(t)  - Vertical motion coordinate of mass M1 [L] 

 

)(ty
•

  - Vertical velocity of mass M1 [L/T] 
 

)(ty
••

  - Vertical acceleration of mass M1 [L/T2] 
 
x(t)  - Horizontal motion coordinate of system [L] 
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)(tx
•

  - Horizontal velocity of system [L/T] 
 

)(tx
••

  - Horizontal acceleration of system [L/T2]   
 
R  - Outer radius of tennis ball [L] 
 
M  - Mass of tennis ball [FT2/L] 

  
 M1  - Mass of inner core [FT2/L] 
 
 M2  - Mass of outer shell [FT2/L] 
 
 Ky  - Stiffness of the spring in vertical direction [F/L] 
 
 Cy  - Damping coefficient of the vertical damper [FT/L] 
 
 ζy  - Damping ratio of vibration in vertical direction [-] 
 
 ωy  - Natural frequency of vibration in vertical direction [1/T] 
 
 ωdy  - Damped natural frequency in vertical direction [1/T] 
 
 I  - Mass moment of inertia of tennis ball [FLT2] 
 
 I1  - Mass moment of inertia of inner core [FLT2] 
 

I2  - Mass moment of inertia of outer shell [FLT2] 
 
 Kθ  - Torsional stiffness [FL] 
 
 Cθ  - Torsional damping coefficient [FLT] 
 
 ζθ  - Torsional damping ratio [-] 
 
 ωθ  - Torsional natural frequency [1/T] 
 
 ωdθ  - Damped torsional natural frequency [1/T] 
  
 µ  - Sliding coefficient of friction [-] 
 
           µ   - Time-averaged coefficient of friction [-] 
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COR  - Vertical coefficient of restitution [-] 
 
 HCOR  - Horizontal coefficient of restitution [-] 
 
 FX(t)  - Tangential or frictional contact force [F] 
 
 FY(t)  - Normal contact force [F] 
 
 θ1(t)  - Rotational motion coordinate of inner core [-] 
 
 θ2(t)  - Rotational motion coordinate of outer shell [-] 

 

)(1 t
•

θ   - Rotational velocity of inner core [1/T] 
 

)(2 t
•

θ   - Rotational velocity of outer shell [1/T] 
  

)(1 t
••

θ   - Angular acceleration of inner core [1/T2] 
 

)(2 t
••

θ   - Angular acceleration of outer shell [1/T2] 
 

)(tθ   - Relative rotational coordinate [-] 
 

)(t
•

θ   - Relative rotational velocity [1/T] 
 

)(t
••

θ   - Relative rotational acceleration [1/T2]  
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CHAPTER I 

INTRODUCTION 

 
BACKGROUND OF IMPACT DYNAMICS 
 
 
 Historically, the topic of impact dynamics has been of both experimental and 

theoretical interest from the time of Newton to the present time. Impact dynamics has its 

importance in mechanical systems whenever two or more bodies, one of which is in 

motion with respect to the others, come into contact with each other for a short duration 

of time. This brief contact creates contact forces of significant magnitudes that can 

change dramatically the kinematics of the bodies involved in the contact. The impact can 

occur in mechanical systems, for instance, when a rotor supported on the magnetic 

bearings falls on its retainer bearings due to the failure of the magnetic bearings. In this 

situation, the rotor impacts the inside surface of the retainer bearings and hence upon its 

rebound from the bearing surface, its velocity and spin changes significantly from what 

it was when it came into contact with the bearing. Another important problem where 

impact dynamics plays an important part is the collision of a rotor with its stator, when 

the clearance between the rotor and the stator is very small and rotor contacts the stator 

due to the vibration induced by its imbalance. Contact forces of high magnitudes are 

usually developed when the rotating speeds are high, so that the contact forces have the 

destructive potential for both the rotor and the stator. Analysis of this and all such 

problems with the application of impact dynamics can help design the proper speeds and 

material selection for the moving parts, so as to devise some means of avoiding the 

contact and in case of contact, avoiding the failure of the parts involved. Also 

measurements made on the rotating machineries which show different vibration 

signatures can be compared with the theoretical predictions from an 
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impact dynamics model of such machineries and hence used to diagnose the root cause 

of the problem.  

   

Impact can also be seen in a beneficial context, for the case of rotordynamic 

bumpers which are used to suppress vibration amplitudes in rotating machines operating 

near their critical speeds. In this case, the bumpers, which are mounted around the rotor, 

are impacted by the rotor near the critical speed and their frictional and damping 

properties allow the suppression of vibration amplitudes. The impact with the bumpers 

also provides damping to the system when properly designed. Improperly designed, 

bumpers can create violent dynamic instabilities, such as dry friction whip. 

 

 From a theoretical point of view, impact dynamics can be analyzed in two ways: 

Rigid-body collisions and deformable body collisions. The rigid-body collision approach 

is based on the classical Newtonian viewpoint of considering the impact as an 

instantaneous phenomena and describing the loss of kinetic energy of the colliding 

bodies in terms of a parameter called as coefficient of restitution. Newton’s laws of 

motion are applied to the body before and after collision, and then the kinematics is 

solved for the rebound in terms of the incidence kinematics. There is no description of 

whatever happens during the collision, nor any description of the duration of contact, 

because these parameters are simply eliminated from the equations of motions while 

solving for the rebound kinematics in terms of a coefficient of restitution. From the 

flexible-body point of view, which is credited to Hertz for its development, the impact is 

not considered as an instantaneous phenomenon but rather a phenomenon involving a 

finite duration of time, no matter however small. The colliding bodies involved are 

considered to be deformable in a small region around the point of contact. During this 

contact time, the contact forces are developed and the bodies change their kinematic and 

kinetic properties gradually, usually in form of continuous mathematical functions. 

Newton’s laws are applied during the contact based on the assumed form of contact 

force, which in turn is usually dependent on the geometric and elastic properties of the 
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bodies involved in the collision. The equations of motion are solved and the kinematics 

during the contact and at rebound is determined.  

 

The application of this concept of finite contact duration and the assumption of 

the contact force can then be applied to a problem where the experimental measurements 

are available regarding the rebound kinematics given the incident kinematics such as 

incident translational velocities and angular spins, so that the developed impact model 

can be implemented and the results developed thereof can be compared against the 

measurements to ascertain the accuracy of the model. If such a problem can be modeled 

with a linear model of contact force, then it will definitely provide an efficient method of 

computation in terms of time and effort. One such problem of impact found in the 

literature is the incidence and rebound of tennis ball with flat surfaces of varying 

properties, the modeling and simulation of which is the objective of this thesis. The next 

section describes the relevant theoretical and experimental research appropriate to this 

objective. 

 

 

LITERATURE REVIEW 

 

 Wang [1] conducted experiments on the impacts of tennis balls with acrylic 

surface, with varying incident conditions. In his experiments, he varied the angles of 

incidence from 17 degrees up to 70 degrees, and for all incident angles, the tennis ball 

was thrown on the surface with zero spin, topspin and backspin. The average incident 

translational speeds were around 17 m/s. From the measurements, he concludes that the 

tennis ball incident with backspin rebounds at a higher rebound angle than the ball with 

zero spin, which in turn rebounds at a higher rebound angle than the ball thrown with 

topspin. He also proposes a damped contact force model to predict the velocities at 

rebound, for only one case of incidence angle. 
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 Smith [2] conducted experiments on the tennis balls in order to study the effect 

of the angle of incidence, the velocity of incidence and the spin of incidence on the angle 

of rebound. He projected the tennis balls on a Laykold court surface and the angles of 

projections were 15, 30, 45, 60 and 75 degrees. The tennis ball was incident with the 

zero spin, the topspin and the backspin. He concludes that in general, a ball thrown with 

the backspin will rebound at a high angle than with either the zero spin or the topspin. 

Further more, he concludes that the angle of rebound for the backspin and the zero spin 

will be greater than the corresponding angles of incidences for these incident spins. For 

the topspin, the angle of rebound, in general, will be either equal to or less than the angle 

of incidence. Considering the effects of incident velocity on the angle of rebound, he 

concludes that the rebound angles for the balls incident with the topspin will be higher 

for higher incident translational velocities. For backspin, the opposite is concluded. 

From zero spin results, the conclusion for the backspin holds that the higher the incident 

velocity, the higher is the rebound angle. 

 

Cross [3] conducted measurements on the vertical bounce of various sports balls 

with no spin, including tennis balls, with the help of piezo disks. From his experiments 

on different balls, he obtained the time varying form of normal contact forces during 

impact, which generally showed asymmetry about the time axis. He estimated the time 

of contact for various balls and curve fitted the force wave-forms into mathematical 

functions to obtain the displacements and velocities as functions of time during contact. 

He concludes that the impact of tennis balls can be approximated as the one in which the 

vertical coefficient of restitution can be treated as independent of incident velocity and 

also that the contact force for tennis ball contact can be modeled as linear force model. 

Cross [4] conducted further measurements on the tennis ball with oblique incidences 

with various flat surfaces but zero incident spin in all cases. He employs Brody’s [5] 

model of tennis ball impact and shows from his measurements that the model reasonably 

well predicts the rebound kinematics, including rebound spin. He concludes from the 

measurements of tangential to normal impulses during the contact that for higher angles 
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of incidences and rougher surfaces, the tennis ball during its contact with the surface 

does not continue to slide, but that there is a transition in the motion from sliding to 

rolling mode during the contact. Due to this occurrence of rolling mode in the motion 

during contact, the ball leaves at a higher rebound horizontal velocity and lower spin, 

then will be expected if it were sliding throughout the contact. He verifies this by 

modifying Brody’s equations to account for this transition and shows that the theoretical 

results agree well with the observations. He defines another parameter analogous to the 

vertical coefficient of restitution, called the horizontal coefficient of restitution. 

Horizontal coefficient of restitution is defined as the ratio of rebound horizontal velocity 

of contact point to incident horizontal velocity of contact point. For the rolling mode, it 

will be expected that the horizontal coefficient of restitution will be equal to 

zero(because the contact point has no relative motion with respect to the ground in 

rolling mode), whereas his measurements reveal it does not when it should, as per 

Brody’s model. This forms some deviation between Brody’s model and his 

measurements. He concludes that the deviation can be explained if the tennis ball is 

considered as flexible in horizontal direction of motion as well. 

 

Brody [5] presented a model for the bounce of a tennis ball from a flat surface, in 

which the incident vertical velocity component is not too high. He models the tennis ball 

as a hollow sphere, with certain thickness. He considers the separate scenarios of sliding 

and rolling throughout the motion. His model for both cases is based upon the 

application of Newton’s impulse and momentum laws applied at incidence and rebound 

and incorporates the vertical coefficient of restitution and sliding coefficient of friction 

in the formulations. He concludes that for the sliding mode, the rebound horizontal 

velocity is dependent upon incident vertical velocity as well as coefficients of friction 

and restitution, whereas for the rolling mode, the horizontal rebound velocity is 

dependent only on the incident horizontal velocity. He develops a relation for transition 

between sliding to rolling and concludes that the transition will occur depending strictly 

upon the coefficient of sliding friction and the angle of incidence of the tennis ball.  
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Hubbard and Stronge [6] consider the analysis and experiments of the bounce of 

hollow balls on flat surfaces. They consider various dynamic properties of the table 

tennis balls such as the elastic deformation under the action of the interaction force, the 

contact force itself and the velocity of rebound. They consider in detail the geometry of 

the ball and conduct their analysis using a finite element method.  

 

Hubbard [7] considers the impact phenomena of the ball with both the classic 

point of view considering both no duration of contact as well as finite duration of contact 

by using spring-damper models to model the impact of solids with each other. From 

these later simplified models, he develops the idea of the coefficient of restitution for the 

central as well as oblique impacts and explains the velocities of rebound.  He also 

considers a number of contact models to model the normal contact force. His methods 

represent the nonlinear models of the contact; he accordingly solves most of the contact 

problems with the help of numerical techniques. 

 

 Stevenson, Bacon and Baines [8] describe the measurements of the normal 

contact forces using the piezo disks. They show the inelasticity of the vertical incident 

collisions for the cases of collisions of steel ball bearings and plumber’s putty balls with 

pads made of different surfaces. They derived the relationship between the voltage 

output obtained from the measurements and the normal contact force. They vary the 

height of drop as well the types of surface to determine the normal contact force. Also 

they estimate the duration of contact for various vertical incident collisions. Their 

experiments indicate that the normal contact force can not be described as perfectly 

symmetrical about the time axis, rather it has some asymmetry. They concluded that the 

impulse imparted to the colliding ball with a surface is dependent on the type of surface 

as well as the height from which it is dropped. 
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Malcolm [9] describes the properties of piezoelectric films for measurements and 

shows an example of impact. Minnix and Carpenter [10] use the piezoelectric film to 

perform experiments on different balls and obtain the impact force as a function of time.  

 

The International Tennis Federation (ITF) [11] provides the standards of some of 

the parameters for the tennis balls that need to be met for them to give the level of 

performance expected to be met out of them. In their standards, they mention the 

procedures for the testing of the balls as well as the forward and return deformations 

values for the testing of the balls. They mention the range of the deformation values for 

the balls. Also they mention the coefficient of restitution range values to be expected out 

of the tennis balls. They also mention the construction of tennis balls and how the 

internal pressure is maintained inside some of the designs, and what must be the values 

of the internal pressures under different conditions. 

 

 

 Lankarani and Nikravesh [12] employ the Hertz theory of contact to model the 

two-body and multi-body impact, neglecting the effect of friction. They elaborate the 

idea that the kinetic energy loss during an impact can be interpreted as the damping term 

in the contact force equation. Thus the contact force will consist not only of the elastic 

term, but also a damping term. The form of the normal contact force in their analysis is 

non-linear. They apply the Newton’s impulse and momentum laws, and express the 

deformation of the colliding bodies, which they call indentation, and the indentation 

velocities in terms of the initial approach velocities, normal coefficient of restitution and 

the masses of the bodies. Thus they derive a contact force equation and thence 

investigate the kinematics occurring during and at the end of contact. They apply this 

theory to multi-body impact. 

 

 Stronge [13] performs a theoretical analysis of impact problem and calculates 

how friction does mechanical work to dissipate energy. Sonderbaarg [14] conducted 
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measurements on the rebound of solid spheres made of steel and pyrex glass from 

various surfaces of varying dimensions. He concludes that the vertical coefficient of 

restitution is dependent on both the incident surface and the bounce surface. The vertical 

coefficient is more or less a constant, varying initially with some geometric parameters 

of the system. The horizontal coefficient of restitution, in his paper defined as the ratio 

of rebound horizontal velocity of center of mass to incident horizontal velocity of center 

of mass, is not a constant value and varies significantly with the incident angles 

 
Keller [15] considers the problem of impact of two bodies with friction. He 

derives the equations of motion for the bodies and considers the impact as a 

phenomenon involving a finite duration of contact. He shows in the analysis that if the 

slip velocity between two bodies changes direction, the friction force reverses in 

direction, so that the energy at rebound is lesser than at incidence. 

  

Hudnut and Flansburg [16] have modeled the collision problem of gliders on air 

tracks as masses connected by linear springs. Gliders are specially shaped metal objects 

that are used for experiments on air tracks and they levitate on the air tracks when air is 

passed through the track. They have performed the experiments on the collisions of 

gliders with various initial separations and they show that the elastic modeling of the 

collisions of gliders provides a more comprehensive and realistic picture of the rebound 

phenomenon as compared to the classical approach, employing the impulse and 

momentum equations applied to the impact and rebound. 

 

 Bayman [17] derives the wave equation for the contact modeling of two bodies 

which collide elastically and which can be modeled as linear Hooke’s springs. He 

considers the wave propagation through the bodies and estimates the duration of contact 

during collision. He also concludes that the elastic wave reflections from both bodies 

play an important role in determining the time of contact. 
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 Johnson [18] applies the theory of elasticity at the contact point of the super ball 

to explain the unusual bounce phenomenon it shows when it is thrown with backspin. He 

shows that these phenomenon can not at all be explained by the rigid-body impact 

theory. He concludes that it is the tangential flexibility at the interface of super ball and 

the flat surface which imparts the super ball its unusual properties of bounce. Hunt and 

Crossley [19] consider a non-linear force model based on Hertz theory of contact to the 

case of solids impacting at low speeds. From energy considerations and the work done 

by the contact force, they conclude that the velocity -dependent coefficient of restitution 

can be regarded as damping in a second-order, non-linear differential equation 

describing the contact motion of two bodies.  

 

 

RESEARCH OBJECTIVE 

 

The objective is to develop a computationally efficient model and method of 

analysis to predict impact dynamics and kinematics of a tennis ball. 

 

 

RESEARCH METHOD 

 

The method investigated is to apply a piecemeal theory of linear vibrations and 

impact dynamics to the phenomena of the impact, contact and rebound of a tennis ball 

striking ground or any other flat surface. The main predictions of interest are going to be 

the rebound spin and translational velocities, the contact forces during contact, the 

translational and spin velocity variations with time during contact and the identification 

of an important dynamic parameter called coefficient of restitution that relates the 

velocities before and after impact, given the mass, stiffness (translational and torsional) 

of the ball, amount of damping, incoming spin and translational velocities and angles of 

impact.  
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CHAPTER II 
 
 

MODELING AND ANALYSIS OF A TENNIS BALL IMPACT 
 

 

IMPACT MODEL FOR A TENNIS BALL 

 

Impact of a tennis ball with a surface is considered in detail with the dynamic 

parameters taken into account. Consider a tennis ball striking a surface, as shown in the 

following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Kinematic parameters of the tennis ball striking the non-smooth surface. 

 

Kinematic parameters of the tennis ball incident on ground surface are shown in figure 1. 

The incident parameters are: 

 

1. Translational speed of the center of mass, V1 

2. Angle of the velocity vector with respect to ground (incident angle of the ball),θ1 

  
     C 

iθrθ

1V2V

Y

X 

C 

ω1 

+θ

ω2 
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3. Spin of the ball about its centroidal axis, ω1 

 

Similarly, rebound parameters of the ball are: 

 

4. Translational speed of the center of mass, V2 

5. Angle of the velocity vector with respect to ground (rebound angle of the ball), θ2 

6. Spin of the ball about its centroidal axis perpendicular to plane of the page, ω2 

 

The kinematics on rebound is related to the kinematics at impact with the help of 

dynamics, or Newton-Euler equations of motion.  

 

Physical modeling of the impact phenomena of the ball with the ground and the 

derivation of the equations of motion consists in modeling the ball as a linear spring-

damper system as soon as it contacts the ground. This linear spring-damper system is for 

modeling the vertical translation motion as well as rotational motion of the ball. The 

motions before and after impact are determined by two physical possibilities during 

impact: 

 

(a) No Slip or Rolling condition 

(b) Sliding or slipping condition 

 

For modeling of spin of the ball, the ball is modeled as a two-mass system connected 

by torsional spring and damper. This torsional spring-damper is also considered as a 

linear pair. From these modeling elements, equations of motion for the ball during the 

impact are derived and then the results are compared with the available experimental 

data. In this thesis, by incident conditions is meant the kinematics of the ball before it 

contacts the ground, whereas initial conditions will be the values of the kinematic 

parameters as soon as it comes into contact with ground. 
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MOTION IN Y-DIRECTION 

 

Physical model for the impact of the ball with the ground is illustrated in figure 

2: 

 

 

 

 

 

 

    

 

 

 

 

Fig. 2 Linear spring-damper-mass model for vertical impact. 

 

For physical description of the problem, the ball is modeled as having an inner 

core and an outer core. As soon as the ball touches the ground, the outer core comes into 

contact with the ground and is stopped whereas the inner core continues to move down. 

The outer and the inner core are connected with a linear spring-damper as shown in 

following figure on next page: 

 

 

 
 
 

 
 

 

 
 
       M 

    K  
C



  13 

           

           

           

           

           

           

           

           

           

           

           

           

            

Fig. 3 Inner core (mass M1) and outer shell (mass M2) connected by linear spring-

damper 

elements. 

 

Initial conditions of the kinematics can be expressed as follows: 

 

1)0(

0)0(

yVy

y

=

=
•  

i.e., measured from the position of the inner core as soon as outer core touches the 

ground, initial displacement of the inner core is zero whereas it carries the vertical 

velocity component indicated above. This vertical component of velocity is vertical 

velocity of the ball seen as a whole just before impact. The above two relations are initial 

conditions for vertical motion during the contact. 

 

Equation of motion in the vertical direction is: 

   
   M1 

 
  M2 

Ky Cy 

y 
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0)()()(1 =++
•••

tyKtyCtyM yy     (1) 

 

Equation (1) describes motion of the inner core of the ball and it helps to model 

contact duration time when the ball is going to be rebounded, as well as the velocity of 

the ball at rebound. 

 

Solution of equation (1) is given as follows: 

 

)sin()( 1 te
V

ty dy
t

dy

y yy ω
ω

ωζ−=     (2) 

 

after applying the initial conditions of velocity and displacement. Definitions of the 

symbols are given as: 

 

y

y
y M

C
ω

ζ
12

=    
1M

K y
y =ω   21 yydy ζωω −=  

 

 

It can be seen from equations (1) and (2) how the spring-damper approach is 

employed to model a collision, or impact problem to one of the vibration problem. 

 

The physical significance of the above model can be explored by observing that 

the time of rebound for the ball, i.e., the time in which downward motion is completely 

reversed, inner core mass M1 reaches its original position and with negative velocity in 

the Y-direction is simply half of the period of this simple vertical spring-mass-damper 

system. 

 

 The time of contact is given as follows: 
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dy
Ct ω

π
=      (3) 

 

Differentiating equation (2) with respect to time, it is seen that: 

 

)cos()sin()( 1
1 teVte

V
ty dy

t
ydy

t

dy

yy yy ωω
ω

ζω ζωζω −−
•

+
−

=    (4) 

 

It can be immediately seen that this approach used to describe the collision 

process is not only applicable in finding out the rebound vertical velocity component but 

also the variation of the vertical velocity with time during the contact. 

 

For evaluating the vertical velocity at rebound for inner mass, simply substituting 

the value of contact time in equation (4), it can be seen that: 

 

1
1 2

)( yc Vety y

y

ζ

πζ

−
−•

−=      (5) 

 

Now for finding out the vertical velocity at rebound of the tennis ball, or in other 

words, of the two-mass system, it is necessary to apply the conservation of linear 

momentum between the time the contact ends (at which the inner mass moves with the 

rebound velocity given by equation (5)) and some time after the ball has left the ground 

such that the inner and outer mass are moving with some common value of vertical 

velocity. Expressing it in mathematical form: 

 

2211 )()( yc VMMtyM +=
•

     (6) 
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 In equation (6), vy2 is the velocity of rebound and is related to the vertical 

coefficient of restitution as follows: 

 

12 )( yy VCORV −=      (7) 

 

Combining equations (5), (6) and (7), the following equation is obtained which 

can be used to determine the damping ratio and damping coefficient of the two-mass 

model in vertical direction: 

 

)()(

1

211 2

COR
M

MMe y

y

+
=−

−

ξ

πξ

     (8) 

 

It can be seen that the coefficient of restitution is dependent on the system 

dynamic parameters such as mass, stiffness and damping and these parameters determine 

as to what fraction the velocity of rebound is of the incoming velocity in Y-direction. 

 

 

MOTION IN THE HORIZONTAL DIRECTION 

 

Motion in the x-direction presents two possible scenarios of impact for the ball, 

that is, rolling and slipping. For either case, the basic equation of motion in the x-

direction is given as: 

 

)()( 21 txMMFX

••

+=∑     (9) 
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The model can be presented in Figure 4 below: 

 

 

 

 

           

           

           

           

           

           

       

 

Fig. 4 The model, motion and force in x-direction.  

 

Depending on whether there is rolling or slipping condition, we accordingly have the 

following equations: 

 

Kinematical constraint- rolling 

 

)()( 2 tRtx θ=               (10) 

Kinetic constraint- sliding 

           

))0()0(sgn()()( 2

••

−= θµ RxtFtF YX              (11) 
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Equation (8) represents the rolling condition-it relates the kinematic parameters, 

namely the translational displacement of the inner core with the rotational displacement 

or coordinate of the outer core, as soon as the ball contacts the ground. 

 

Equation (9), on the other hand, expresses the relationship between the horizontal 

force acting on the outer shell and the normal reaction on the outer core as soon as 

contact is made. It is the statement of Coulomb’s law of sliding friction, with ‘µ’ as the 

coefficient of sliding friction. In equation (9), “sgn” represents sign function, which is 

defined as follows: 

 

1)sgn( +=A  , A>0 

1)sgn( −=A ,  A<0   (12) 

 

Equations in (A) above indicate that when this function acts on an argument, 

which in turn itself can be a function, then it either attaches +1 or –1 with the argument. 

Physically, its use in equation (9) means that the friction force during the sliding motion 

can be either in the positive coordinate direction or in the negative coordinate direction, 

depending upon the velocity of point of contact with the ground. The velocity of the 

point of contact is not only determined by the translational velocity but also the 

incoming spin velocity and will be discussed later in this chapter. 

 

Once the rotational equation of motion for the ball is formulated, these conditions 

can be used in conjunction with the vertical motion to describe the dynamics of the ball 

during contact with ground in either of the two modes of motion i.e., sliding or rolling. 
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ROTATIONAL EQUATIONS OF MOTION 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

Fig. 5 Model and coordinates of the rotational motion. 

 

Figure 5 shows the model and the coordinates used for the formulation of the 

rotational equations of motion. In this figure, it is seen that a torsional spring and damper 

connect the inner and outer core. As in the case of vertical motion, these elements are 

considered as linear. As can be guessed, the damping element will give rise to the 

concept of rotational coefficient of restitution. 

 

Applying Newton-Euler equations of motion, the rotational equations of motions are 

written as follows: 

 

GG MtI =
••

)(θ               (13) 
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Applying equation (10) to the inner and the outer core, considering the torsional 

spring, damper and finally, the horizontal friction force acting on the outer shell, the 

equations of motion are derived as follows in Figure 6: 

 

 

 

         

          

 

 

 

 

 

 

 

        (a) Inner core 

 

            (b) Outer shell 

 

Fig. 6 Free body diagrams of the inner core and the outer core.  
 

 

 

Inner core 
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Outer core 

 

0)())()(())()(()( 121222 =−−+−+
••••

RtFttKttCtI Xθθθθθ θθ             (15) 

 

In order to solve equations (11) and (12) completely, we need one more equation, 

that relates Fx(t) to one of the other parameters, namely θ2(t) or the vertical motion. 

These are the conditions of rolling and sliding, respectively. 

 

First, consider the case of rolling. 

 

Rolling motion 

 

Using equation (7) and equation (8), it can be seen that: 

 

)()()( 221 tRMMtFX

••

+−= θ               (16) 

 

The negative sign is due to the reason that in the rolling motion, velocity of the 

contact point is zero at all instants, and hence the friction force then becomes dependent 

only on the sign of the incident horizontal velocity. Since in the chosen coordinate 

system, the incident horizontal velocity is always positive, accordingly the direction of 

the rolling friction force is always in the negative x-direction. This is not necessarily so, 

however, for the sliding friction force. 

 

Using equations (12) and (13), it can be seen that the resulting differential 

equation of rotational motion is: 

 

0))()(())()(()())(( 12122
2

212 =−+−+++
••••

ttKttCtRMMI θθθθθ θθ          (17) 
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Now it is possible to solve equations (11) and (14) completely.  

 

Defining: 

 

)()()( 21 ttt θθθ −=                (18) 

 

Dividing equations (11) and (14) by their respective coefficients of the first 

terms, and then subtracting from each other, using equation (15), the following rotational 

equation of motion in one single coordinate is obtained: 

 

0)()
)(

11()()
)(

11()( 2
2121

2
2121

=
++

++
++

++
•••

t
RMMII

Kt
RMMII

Ct θθθ θθ     (19)         

 

It is obvious that the term M1+M2 is the total mass of the ball. 

 

This is a second-order linear differential equation and it can be solved 

analytically. The initial conditions are given as follows: 

0)0( =θ  i.e., no relative motion between the inner and outer core at instant of 

contact 

 

In order to determine the initial condition regarding velocity, it is first necessary 

to determine the initial spin of the outer shell upon contacting the ground. It can be 

determined by applying the conservation of kinetic energy between the incident and 

initial impact of the two-mass model as follows: 

 

2
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In equation (17) above, T0 is the total incident kinetic energy of the ball. This 

energy can be expressed in terms of the ball as a whole, as well as in terms of the two-

mass model, as expressed by the terms on right hand side.  

 

 During the no slip case, from equation (8), the initial conditions are related as: 

 

)0()0( 2

••

= θRx  

 

Hence the energy equation can be solved for the initial spin of the outer core as follows: 

 

2
2

22
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2
1

2
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2
))0(()0(
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yMIIMV
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•
• ωω
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where )0(1 ωω =  

 

The initial condition for θ related to spin velocity will be: 

 

2
2

2
1

22
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IIMVX
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• ωω
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Thus the solution of equation (16) is given as follows: 
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where the following definitions are given: 
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As can be seen from equation (17), this equation has a similar form as the one for 

the case of vertical motion with a linear spring-mass-damper.  

 

Differentiating equation (17) with respect to time, the relative spin velocity is 

obtained i.e., 

)cos()0()sin(
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n nn
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=  (23) 

 

So the spin velocity at rebound can be determined by substituting for ‘t’ the value 

of tc from equation (3). This is an based on assumption that the spin velocities of both 

the inner and the outer masses attain the same values well before the contact is over and 

hence the spin velocities at rebound can be determined by using the contact time of 

vertical motion. 

 

 

Sliding motion 

 

In the sliding scenario, as indicated by equation (9), the tangential force (friction) 

and the normal contact force are related by the coefficient of dynamic friction. Using this 

equation in equation 12, the following equation for the spin of the outer core is obtained: 

 

0))(sgn())()(())()(()( 121222 =+−+−+
••••

RtFttKttCtI Yµθθθθθ θθ                  (24)
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During contact between the ball and the ground, the normal contact force can be 

expressed as follows: 

 

)()()( tKytyCtFY −−=
•

                                                                   (25) 

 

Substituting equation 20 into equation 19, the following differential equation results: 

 

)])()([sgn())()(())()(()( 121222 tKytyCRttKttCtI +=−+−+
•••••

µθθθθθ θθ     (26)            

 

 

VELOCITY OF CONTACT POINT AND SIGN OF CONTACT FORCE 

 

In the two-mass model of the tennis ball, the ball moves as a rigid body in the x-

direction. The direction of the sliding friction force from the ground to the outer core of 

the ball depends upon the direction of the velocity of the contact point on the ball at the 

instant the outer core comes into contact with the ground; i.e. the sliding friction force 

acts opposite to the initial contact point velocity. 

 

The contact point initial velocity can be determined as follows: 

 

CAXA ViVV /

^

1

→→

+=                (27) 

 

In equation (23), the first term on the right hand side is the velocity of the center 

of mass of the ball in x-direction, as soon as it contacts the ground, whereas the second 

term is the relative velocity of the contact point with respect to the center of mass, 

considering center of mass as fixed and the contact point moving about point C with 

angular spin ω. 
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However, this computation of the contact point velocity requires careful 

consideration with regards to the possibilities of incoming angular spin as topspin, 

backspin or zero spin. Consequently, each one is considered on the next pages: 

 

 

 

Topspin 

 

In topspin, the direction of spin is such that the surface velocity of the bottom 

point due to angular spin alone is in opposition to the center of mass velocity. 

Consequently, from equation (22), the contact point velocity can be evaluated as 

follows: 
^

11 )( iRVV XA ω−=
→

               (28) 

 

Hence the direction determination of sliding friction force is now strictly a matter 

of whether the center of mass translational velocity is greater than or less than the 

rotational surface velocity, which is the Rω1 term (In case they are equal at the very 

onset of impact, then VA is zero and it is then a case of rolling motion). 

 

Based on equation (23), then the sign function relevant to the sliding friction 

force as described in equation (9) can be evaluated as follows: 

 

11 ωRVX > , sgn = +1 

,11 ωRVX <  sgn = -1 
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Backspin 

 

From equation (23), the contact point velocity can be determined for the case of 

incident backspin as follows (ω1 is positive for backspin in the chosen coordinate 

system): 
^

11 )( iRVV XA ω+=
→

              (29) 

 

Physically, in backspin, the direction of incoming angular spin is such that the 

velocity of the bottom point of the ball due to spin alone is in the same direction as the 

center of mass velocity at the moment of impact. 

 

Inspecting equation (24), it can be immediately concluded that the sign of the 

sliding friction force acting on the ball for the case of incoming backspin can be 

determined as follows: 

 

Sgn = +1 

Zero spin 

 

For incident zero spin, equation (22) indicates that: 

 
^

1 iVV XA =
→

                                                         (30) 

 

Consequently, sign of the sliding friction force in this case can be determined as 

follows: 

     Sgn = +1 
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Now, in equation 21, results of equation 2 and equation 4 can be substituted to 

yield an equation of motion for the relative spin, which is a non-homogenous differential 

equation and hence must be solved for transient and forced response (forced response is 

in the form of the normal force which is also a function of time). 

 

With the same procedure as used for the rolling motion and using the notation 

developed in equation 15, the equation of motion for the relative spin becomes: 
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Equation 22 is of the following form: 

 

)cos()sin()()()( 21 tetetctbta tt βγβγθθθ αα +=++
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             (32) 

 

where the following notation has been used: 
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The particular solution of equation 26 is as follows: 
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   )cos()sin()( tBetAet tt
p ββθ αα +=                (33) 

 

where: 
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The homogenous solution of equation 26 is as follows: 

 

0)( =thθ                 (36) 

since:  

   0)0()0()0( =−=
•

ωωθ  for sliding motion. 

     

The complete solution to equation (22) is, therefore, 

 

)()()()( tttt pph θθθθ =+=                (37)  

 

MOTION IN X-DIRECTION 

 

Rolling 

 

From equation 14, it is seen that: 
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       (38) 

 

From equation (18) and equation (19), the solution for the relative spin has 

already been determined. This can be substituted in equation (34) above to obtain a 

differential equation for outer shell, which can then be solved for angular spin and 

displacement by successive integrations. Once the angular spin velocity of the outer shell 

is obtained, it can be related to the translational velocity of the center of mass of the ball 

in X-direction using equation (8). Hence a complete solution for rebound is obtained in 

the no-slip case, with the  solution for vertical velocity already determined earlier on. 

 

 

Sliding 

 

From equations 21, 22 and 28, it is seen that: 
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Hence from equations 21, 26 and 28, angular acceleration of the outer shell is 

determined and thus by successive integrations, its angular velocity as well as 

displacement as a function of time during contact can be determined. 

 

For the sliding motion, motion in the X direction is independent of the spin 

velocity of the outer shell. Using equations 7, 9 and 20, it can be seen that the 

acceleration in X direction can be simply expressed for the sliding case as follows: 
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Then by utilizing equations 2 and 4, and substituting the results in equation 31, 

the acceleration of the ball in X direction during sliding, as a function of time, is 

obtained. 

 

Then successive integrations lead to the velocity and displacement of the ball in 

the X direction. 

 

Equations developed thus for the tennis ball in both scenarios i.e., slip and no-

slip, then represent the two dimensional model and the motion during the contact with 

the ground. With the knowledge of the motion, the contact forces can be formulated and 

the contact problem completely solved. 

 

 

EFECT OF HIGH INCIDENT VERTICAL VELOCITY COMPONENT ON ROLLING 

MOTION 

 

In rolling motion, when there is high incident vertical velocity, it is possible that 

the ball squashes asymmetrically and as a result, the normal force of contact does not 

pass through the center of the ball but has some x-eccentricity about the center, as shown 

in the figure below: 
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Fig. 7 Effect of high incident velocity on the ball during rolling. 

 

 

 

As shown in figure 7, the way in which this effect is taken into account in the 

present model is simply that since the ball is considered as a rigid body in the horizontal 

motion (x-direction), the normal contact force FY(t) is offset from the common center of 

mass X-coordinate by a distance ‘ε’. This results in a moment about the center of outer 

shell. Accordingly, the equations of rotational motion for the outer core need to be re-

formulated and then the coupled rotational equations of motion need to be solved to get 

the solution considering this effect. 

 

  

 

2

 θ

 
F X (t))   

  

 

 
  

FY(t) 

θ

1

S gn( 

X 

Y 

KΘ

Cθ



  33 

Equations (1), (2), (4) and (8) still hold. Equation of motion for the outer shell can be re-

written as follows: 

0)()())()(())()(()( 121222 =+−−+−+
••••

εθθθθθ θθ tFRtFttKttCtI YX               (41)

          

 

Equation (36) is same as equation (12) except for the moment term due to normal 

contact force FY(t). Utilizing equations (13) and (20), equation (36) can be written as: 
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εθθθθθ θθ      (42)           

 

 

Adopting the same procedure as in analysis of rolling without the eccentric force, 

the two rotational equations of motion can be written as: 
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where    

 

)()()( 21 ttt θθθ −=  

 

Subtracting equation (39) from (38), the following equation of relative rotational motion 

between the inner core and the outer shell is obtained: 
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Equation (40) is a second-order, non-homogenous, linear differential equation 

with constant coefficients. Solution to (40) consists of complementary function plus 

particular integral. Complementary solution to equation (40) is identical to that of 

equation (16) and is given by equation (17).  

 

In order to obtain the particular integral, equation (40) is written in the following 

notation to facilitate the description of solution: 
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              (46) 

 

In equation (41), upon comparison with equation (40), the coefficients are 

defined as follows: 
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Then the particular solution to equation (41) is given as follows: 
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where: 
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Hence, complete solution to the rolling problem then becomes: 
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with A and B given by equations (44) and (45) above. 

 

 

OFFSET DISTANCE AS A FUNCTION OF VERTICAL IMPACT VELOCITY 

 

 As the vertical component of impact velocity increases, the flatness becomes 

more pronounced in the tennis ball [1,5]. It can be assumed that the offset distance ‘ε’ of 

the normal reaction from center of mass of the tennis ball during rolling is a function of 

the vertical component of impact velocity. If a linear functional relationship is assumed, 

this can be expressed as: 

 

     21)( CVCV yy +=ε                                                                 (51) 

While performing the simulations (Chapter V) for the tennis ball , it was 

observed that ‘ε’ varies from 0.02 to 0.5 for vertical component velocities of 5 m/s and 
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16 m/s, respectively. These values are selected based on good agreement with 

experimental observations. It is then possible to calculate the values of coefficients C1 

and C2 using these extreme values. Thus, the following linear equations in C1 and C2 

result: 
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Solving these two equations: 

 

189.0
0431.0

2
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C
C

 

 

Thus the offset distance as a linear function of vertical component of impact velocity is 

expressed as: 

 

189.00431.0)( −= yy VVε                                                (53) 

 

Using equation (49), the offset distance can now be obtained at any value of 

vertical componet of impact velocity between 5 m/s and 16 m/s or beyond 16 m/s. 

Equation (49) has been utilized in Chapter V in simulations whenever the ball’s motion 

changes from sliding to rolling. Then the ‘ε’ value is needed and can be calculated using 

equation (49) to use in rolling motion simulation. 
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TRANSITION BETWEEN SLIDING AND ROLLING: TIME-AVERAGED 

COEFFICIENT OF FRICTION 

 

 Recall from the moment equation written for the outer shell in pure rolling 

(equation (42) in Chapter II), that due to the eccentricity of the normal force with respect 

to the center of mass of the two-mass system, there is a counter-clockwise moment, 

which is expressed as: 

 

( )E YM F tε= −       (54) 

 

 In tennis ball dynamics, the moment expressed in equation (54) corresponds to 

the opposing moment that tends to retard the ball while it is in rolling motion. The 

opposing moment given by equation (54) can be converted to an equivalent “rolling 

friction force FR”, as follows: 
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Equation (55) represents the average opposing moment acting on the tennis ball 

during contact. The radius used to evaluate the average friction force is the radius of the 

outer shell,’R’. In a similar way, the average sliding friction force can be expressed as: 
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 Since the rolling friction defined by equation (55) is less than sliding friction, 

 

R SF F<  

 

It follows from equations (55) and (56) that: 

 

     SR
ε µ<                                                   (57)

    

Or: 

 

R Sµ µ<        (58) 

 

In (57), µR can be defined as rolling friction coefficient and is given as the ratio 

of the eccentricity distance from the center of mass to the radius of the ball. The 

inequality (56) is obtained because ‘ε’ is not a function of time (equation (55)) and hence 

the remaining terms in equations (54) and (55) simply cancel out. 

 

Recall from equation (53) that ‘ε’ is a function of the vertical component of 

incident velocity. From inequality (57), it can be seen that for the values of coefficient of 

sliding friction 0.55 and radius of the tennis ball 1.3 in., the offset distance must satisfy 

the following constraint: 

 

0.715inε <       

 

 From equation (53), the maximum value of ‘ε’ for the simulations in case of 

maximum value of vertical component of incident velocity of arounf 16 m/s turns out to 

be 0.500 in. Thus constraint (58) is satisfied in all the simulations whenever the rolling 

takes place during motion of the tennis ball with the ground. 
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In tennis ball dynamics, collision problems that involve rolling during contact 

always start from pure sliding contact and then during contact, the motion of the tennis 

ball changes from sliding to pure rolling. In such problems , an expression for a time-

averaged coefficient of friction, can be defined as follows: 

 

 

∫

∫
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Thus, a problem that involves transition from sliding to the pure rolling during 

contact can be identified or its accuracy of solution can be checked by evaluating the 

time-averaged coefficient of friction in equation (59) and comparing its value against the 

coefficient if kinetic friction in pure sliding. If there is a motion transition during 

contact, then the value evaluated from equation (59) will be appreciably less than the 

coefficient of kinetic friction of the surface involved in contact. Hence the time-averaged 

value calculated using equation (59) serves as a check that shows if sµ µ< ,then rolling 

probably occurs . 

 

Equation (59) can be simplified, since the integrals in numerator and 

denominator on the right hand side can be expressed in terms of the mass and velocities 

of the ball in the two coordinate directions, using Newton’s second law of motion as 

follows: 

 

dt
dvmtF X

X −=)(              (60) 
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dt
dv

mtF Y
Y −=)(              (61) 

 

Integrating equations (60)and (61) from start of collision (t = 0) to the end of 

collision (t = tc), following expressions are obtained: 
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In equation (61), the rebound component of velocity in the vertical direction can 

be related to the incident component of velocity in the vertical direction by an 

experimentally determined coefficient of restitution as follows: 

 

12 )( YY VCORV −=                (64) 

 

 When equations (62) to (64) are inserted in equation (59), the following 

expression for the time-averaged coefficient of friction results: 
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Thus, if a tennis ball impact problem is solved with transition of motion from 

pure sliding to pure rolling during the contact (as determined by the condition when the 

contact point velocity goes to zero as motion changes from pure sliding to pure rolling), 

the solution of the velocities can be incorporated in equation (65) to calculate the time-

averaged coefficient of friction during the contact. If transition occurs during the contact, 

then the value calculated from equation (65) will be less than the coefficient of kinetic 
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friction for the pure sliding. If no rolling occurs during contact and there is only sliding 

motion, the value calculated from equation (65) will then be almost equal to the value of 

the coefficient of kinetic friction. 

 

 Equation (65) can also be applied to experimentally determined data for the 

tennis ball dynamics to find out whether transition from sliding to pure rolling occurs 

during particular cases of impact. Equation (65) is used in Chapter IV to calculate the 

time-averaged coefficient of friction for an experimental data on tennis ball impact [1], 

for estimates of transition from sliding to pure rolling during contact. 

 

 

INNER AND OUTER CORE DYNAMIC PARAMETERS 

 

In order to perform dynamic simulation of the tennis ball using the two-mass 

model, it is first necessary to ascertain physically feasible values of the inner and outer 

core dynamic parameters. These parameters include masses, mass moments of inertia, 

and radii of the two masses in the model.  

There are various possibilities as regards to the feasible dynamic parameters. 

First of all, it is necessary to describe the equations for various dynamic parameters 

which are interrelated to each other. After that, it is possible to derive various 

combinations of dynamic parameters for the two masses. 

 

Inner core 

 

Mass of the inner core can be written in terms of its weight density and volume as 

follows: 
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Mass moment of inertia of the inner core can be described by the following equations: 

 

2
111 3

2 RMI =                                                                (67) 

Outer core 

 

In a similar manner, mass of the outer shell can be described as: 
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And its mass moment of inertia can be expressed as: 

 

2
222 5

2 RMI =                                                                (69) 

In order that this model truly represents a tennis ball, there are simple constraints 

on the inner and outer cores’ masses and mass moments of inertia and these are that the 

sum of the inner and outer core masses and mass moments of inertia should equal, 

respectively, to the mass and mass moment of inertia of a real tennis ball. 

 

These constraints can be expressed as follows: 

 

MMM =+ 21                                                               (70) 

 

III =+ 21                                                                     (71) 

 

For a tennis ball, the average mass is about 0.000329 lb-s2/in whereas its mass 

moment of inertia about its centroidal axes is 0.00028 lb-s2-in (Chapter IV). 
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 Final constraints to be placed are dimensional constraints on the radii of inner 

and outer core. For a tennis ball, maximum radius of outer shell is 1.3 in. [11] and for 

inner core, the radius must be less than the outer shell. 

 

Mathematically, this can be expressed as: 

 

                                                    3.12 =R in.                                                               (72)                             

 21 RR <  

 

Based on equations (66) to (72), the following physically possible sets of 

dynamic parameters can be obtained: 

 

(a)                                                       M1 = M2 = M/2 

I1 =  0.0001008 lb-s2-in = 0.353I 

I2 =  0.0001853 lb-s2-in = 0.647I 

I = 0.00028 lb-s2-in 

R1 = 1.24 in. 

γ1 = 0.008 lb/in3 

γ2 = 0.06 lb/in3 

 

(b)      M1 = 2M/3 

     M2 = M/3 

I1 = 0.0001403 lb-s2-in = 0.532I 

I2 = 0.0001235 lb-s2-in = 0.468I 

I = 0.000264 lb-s2-in 

R1 = 1.26 in. 

γ1 = 0.01 lb/in3 

γ2 = 0.07 lb/in3 
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(c)     M1 = 3M/4 

     M2 = M/4 

I1 = 0.000165 lb-s2-in = 0.641I 

I2 = 0.00009267 lb-s2-in = 0.359I 

I = 0.000257 lb-s2-in 

R1 = 1.29 in. 

γ1 = 0.0105 lb/in3 

γ2 = 0.300 lb/in3 

 

In calculating the weight density for the outer shell in case (a), the inside radius 

of the shell has been taken as 1.25 in. For cases (b) and (c), this value has been taken as 

1.27 in. and 1.295 in., respectively. 

 

 In Chapter III and Chapter V, simulations of the tennis ball have been performed 

using these dynamic parameters. It should be noticed that in cases (b) and (c), the sum 

total of mass moments of inertia of inner and outer masses are not equal to 0.00028 lb-

s2-in, but instead these values turn out to be 0.000264 and 0.000257 lb-s2-in, 

respectively. These values obtained for total mass moment of inertia are not very far off 

the experimentally determined value of 0.00028 lb-s2-in (Chapter IV), with percentage 

difference as 6 % and 7%, respectively. This might as well be the uncertainty in 

experimental measurements. The reason these dynamic parameters have been used in 

Chapter III and Chapter V is that these parameters give good agreements with 

experimental rebound motion of the tennis ball, and the error in mass moment of inertia 

is not large.  
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CHAPTER III 
 
 

GRAPHICAL RESULTS OF SOLUTIONS OF EQUATIONS OF 

MOTION 

 
 

In the previous chapter, the equations of motion for the tennis ball impact with the 

ground have been derived and their solutions formulated for the cases of the tennis ball’s 

motion as the slip and the no- slip scenarios during its contact with the ground. 

Kinematic and kinetic parameters of importance during the contact, as found from the 

analysis of the equations of motion for both cases of the slip and the no-slip are 

described below: 

  

(a) Vertical displacement of the ball as a function of time ( y(t)) 

(b) Vertical velocity of the ball as a function of time ( ))(ty
•

 

(c) Horizontal velocity of the ball as a function of time ( )(tx
•

) 

(d) Angular spin of the ball as a function of time ( ))(2 t
•

θ  

(e) Normal contact force as a function of time ( ))(tFY  

(f) Tangential contact force (friction force) as a function of time ( ))(tFX  

 

Solutions for the equations of motion with regards to the above mentioned kinematic and 

kinetic parameters are described as follows: 

 

SLIDING THROUGHOUT THE CONTACT 

 

For reference, solutions of the equations of motion for the sliding case are repeated 

below: 
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Equations (2) and (4) are equally valid for the no-slip case, since the y-motion, 

according to the two-mass elastic model as well as per Newton’s second law of motion, 

is not affected by either scenario. 
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These equations are plotted in MathCAD using the codes shown in Appendix B. 

For each physical variable, the curves are plotted parametrically in MathCAD. The 

results and their descriptions are described on the following pages. 

 

 

 

Vertical displacement as a function of time 
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    Fig. 8 Vertical displacement during contact as a function of time. 

 

 

Figure 8 shows the predicted vertical displacement of the inner core mass as a 

function of time, during the contact of the outer core with the ground. The graphs are 

plotted for certain values of the inner core mass, a damping coefficient of the vertical 
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damper, and a stiffness coefficient of the vertical damper. The three curves correspond to 

three different incident vertical velocity components. It can be seen that maximum 

displacement of the inner core mass, corresponding to maximum compression of the 

tennis ball during contact, increases as  the incident vertical velocity increases. Also it 

can be observed from figure 8 that due to presence of the damper in the model, the 

curves are not symmetrical but are rather asymmetrical. This agrees well with the 

physical measurements of the tennis ball displacements [3]. 

 

 

Vertical velocity as a function of time 
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     Fig. 9 Vertical velocity during contact as a function of time. 

 

 

Figure 9 shows the curves of the vertical velocity during the contact as a function 

of time. The three curves correspond to different coefficients of restitution, which in turn 

is determined by a combination of the inner core mass, the stiffness of the spring and the 
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vertical damping coefficient, as can be seen from equation (6). The mass and stiffness 

are the same in the curves in figure 9, only  the damping coefficients are different. 

Figure 9 indicates that the higher the coefficient of restitution in the vertical direction, 

the higher is the value of the rebound velocity in the same direction and vice versa. If the 

coefficient of restitution approaches unity, the rebound velocity in the vertical direction 

will be almost the same as the incident velocity in vertical direction. 

 

 

Horizontal velocity as a function of time 
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       Fig. 10 Horizontal velocity during contact as a function of time. 
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Fig. 11 Horizontal velocity during contact as a function of time(effect of initial velocity). 

     

 

Figures 10 and 11 show the horizontal velocity of the center of mass of the ball 

during the sliding scenario as a function of time. There are two graphs for the horizontal 

velocity during the contact. In figure 10, the incident horizontal velocity is a constant 

whereas the coefficient of sliding friction is different for the three curves. In figure 11, 

the coefficient of sliding friction is same, whereas the incident horizontal velocities are 

different.  

 

In figure 10, it can be seen that the horizontal velocity is decreasing during the 

contact. This is due to the direction of friction force which is acting in an opposite 

direction to the incident horizontal velocity for this particular case considered. This is 

always the case with the zero spin or backspin incidences, but not always for the topspin. 

The higher the coefficient of sliding friction, the greater is the decline in the horizontal 

velocity during the contact and subsequently the rebound horizontal velocity. From 

figure 11, it can be seen that the friction slows down the ball as expected.  
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Fig. 12 Horizontal velocity during contact as a function of time(high topspin). 

  

 

The horizontal velocity during the sliding scenario can also increase during the 

contact, as shown by figure 12. This can happen only when the ball is incident with a 

high topspin so that the initial surface velocity due to the spin is greater than the incident 

horizontal velocity. In this case, the physical situation is reverse of the other cases 

presented in the other graphs. From figure 12, the higher the friction (corresponding to a 

higher sliding coefficient of friction), the greater the rebound horizontal velocity.  
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Angular velocity as a function of time  
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       Fig. 13 Angular spin during contact as a function of time. 

 

 

The angular spin of the outer shell, interpreted as the angular velocity of the ball, 

is shown in figure 13 for three different incident cases, namely the zero spin, the top spin 

and the back spin. It can be seen that the angular spin during the contact is increasing as 

a function of time for all the three cases. The angular spin decreases to zero and then 

reverses its direction for the back spin, in this particular case considered. For the top 

spin, the increase in the angular spin occurs  when the surface velocity due to the 

incident spin is less than the incident horizontal velocity, but the angular velocity 

decelerates for the top spin if the rotational surface velocity at the incidence is greater 

than the incident horizontal velocity of the center of mass. The reason for the increment 

of the angular velocity during the contact for all the cases considered here is that the 
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torque exerted on the outer shell of the model due to the friction force is acting in an 

anti-clockwise direction (the positive direction as per the coordinate system selected for 

the analysis of the model) and due to this torque, the outer shell moves in the positive 

rotational direction and this is the reason that the angular spin increases with time. 
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                  Fig. 14 Angular spin as a function of time.  

 

 

Figure 14 shows the angular spin as a function of time with an incident top spin. 

The three curves in figure 14 correspond to three different sliding friction coefficients 

and indicate that the higher the friction, the more spin the ball will acquire during the 

contact. This argument always holds true for the zero spin and the back spin cases, but 

not always necessarily for the op spin incidence. In the top spin case, if the incident 
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surface velocity due to the spin is greater than the incident horizontal velocity, the 

friction force acts in a direction opposite to the surface velocity and due to the frictional 

torque, the angular spin decreases as a function of time, whereas the horizontal velocity 

increases as a function of time. In that case, then the higher the friction, the lower the 

rebound angular spin and vice versa.  

 

Normal contact force as a function of time 
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         Fig. 15 Normal contact force as a function of time. 

          

 

Figure 15 shows the normal contact force as a function of time. The three curves 

correspond to different incident vertical velocities. It can be seen from the curves that the 

higher the incident vertical velocity, the larger the magnitude of the compressive normal 

force developed in the spring-damper combination. Physically, it will correspond to a 
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greater magnitude of normal force exerted on the ball’s surface as it comes in contact 

with the ground. The three curves all correspond to fixed inner core mass, stiffness and 

damping coefficients. Also, it should be observed from the curves that due to the 

presence of a finite amount of the damping in the vertical direction in the system, the 

normal force curves are not symmetrical and their maxima do not occur at n = 0.5, but 

rather they occur before n = 0.5. This prediction is consistent with the physical 

measurements of the normal contact forces conducted on the tennis balls [3,8,10]. 

 

 

Tangential (frictional) contact force as a function of time 
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  Fig. 16 Frictional force as a function of time. 

 

+θ 

-θ 

X

Y

+ω 



  56 

Figure 16 shows the tangential contact force as a function of time for three 

different values of the sliding friction coefficients. Due to the direct relationship between 

the tangential force and the normal force as implied by Coulomb’s law for sliding 

friction, it can be seen that the shape of the tangential force curve during the sliding is 

the same as the normal contact force curve, only that it is scaled by the friction 

coefficient factor. The higher the value of the sliding friction coefficient, the greater the 

magnitude of tangential force during the contact and vice versa. It should be noted that 

the sliding friction force can also be in the positive coordinate direction, as opposed to 

the curves shown in figure 16. This can happen when the relative tangential velocity at 

the point of contact is directed in the negative x-direction. This itself is possible only for 

the topspin incident, when the surface velocity due to the spin is higher than the incident 

horizontal component of the translational velocity of the center of mass of the ball. 

 

 

NO-SLIP THROUGHOUT THE CONTACT 

 

In the no-slip case, the equations for the horizontal velocity, angular spin of outer 

shell (and the inner core) and the tangential contact force are different from the ones 

presented for the sliding case. These are presented as follows: 
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The expressions for the vertical displacement, vertical velocity, and the normal 

contact force remain the same as in the sliding case. The above solutions are 

implemented in MathCAD software using the code given in Appendix B. These 

equations are plotted on the following pages: 
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Angular velocity as a function of time 
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Fig. 17 Rolling angular velocity as a function of time. 

 

 

Figure 17 shows the rolling angular velocity curves as a function of time, 

corresponding to three different incident horizontal velocity components and neglecting 

the effect of the eccentricity of the normal force through the center of the ball. All the 

curves correspond to the case of zero spin. The curves indicate that the higher the 

incident horizontal component of the translational velocity, the larger will be the rolling 

angular velocity. Initial conditions of the spins as shown on n = 0 correspond to the 

initial condition obtained for the outer shell as indicated on page 20, Chapter II. Thus the 

curves simply do not start from the initial condition of Vx1/R, but rather from the initial 

condition as defined in equation (18) for the outer shell. From the curves in figure 17, it 

is also observed that the spin decreases and well before the contact is over (which occurs 

at n =1), the angular spin increases and then attains a steady state value. An explanation 

of this behavior in terms of the model is that since the inner and the outer cores, as far as 
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the rotational motion is concerned, are connected with a linear torsional spring –damper 

system, then as soon as the half-period of vibration of the outer core is completed, it is 

acted upon by torques from the torsional spring and the damper and this causes 

acceleration of its angular velocity. After this, the angular spin attains the steady-state 

value. This is due to the high damping of the torsional damper as well as the reason that 

the frictional force keeps on decreasing in magnitude so that frictional torque is balanced 

by the internal torques, namely from the spring and the damper. As a result, any further 

vibrations die out and the outer core rotates as a rigid body with almost a constant value 

of the angular spin, towards the end of the contact. This initial deceleration of the spin 

and attainment of a steady-state value is always the case with the zero spin and backspin 

impacts, but not always necessarily for the topspin impacts. 

 

It should be noticed that the curves as shown in figure 17are not the only 

possibility of the motion of the outer shell. If the initial angular spin of inner core is 

higher than the initial spin velocity of the outer shell compatible with the rolling, which 

is determined in Chapter II, only for the case of the topspin, then in that case, the outer 

shell will be accelerated instead of being retarded, because the initial torque acting on 

the outer shell from the torsional damper will be acting in the positive rotational 

direction. The graphs for such a case of topspin are presented in figure 18 on the next 

page. 
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Fig. 18 Angular spin of outer shell as a function of time (Special case of topspin). 
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        Fig. 19 Angular spin of outer shell as a function of time. 
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In Figure 19 are shown the angular spin curves of the outer shell corresponding 

to three different incident spins of the ball. The curves correspond to the zero spin, the 

topspin and the backspin impact, when the angles of incidence and the incidence 

translational velocities are the same for all the three cases. The curves indicate that the 

outer shell will rotate at a higher spin for the topspin impact as compared to the zero spin 

and the backspin. The backspin yields the lowest value of the rolling angular spin. This 

is due to the reason that in the model considered, the initial torque opposing the spin of 

the outer shell will be highest for the backspin, due to its spin direction as compared to 

either of the zero spin or the topspin. For the top spin, the initial torque will be lower 

than the zero spin, because this torque is proportional to the difference in initial angular 

spins of the inner mass and the outer mass. Since the difference in initial angular spins is 

less for the topspin case and hence the value of the initial torque opposing the spin of the 

outer shell is less as compared to the zero spin, the outer shell will spin faster as 

compared to the zero spin. As the outer shell rotates, the torsional spring connecting the 

inner and the outer masses starts winding. When it is unwinded, it starts exerting a 

torque on the two masses causing an acceleration for the outer shell and deceleration for 

the inner core. In figure 19, this acceleration of the outer shell is indicated as a hump in 

the curves of the angular spin velocities.  

 

Finally, the effect of offset distance from the horizontal coordinate of the center 

of mass of the system to the normal reaction force, neglecting the weight of the outer 

shell, can be observed on the angular spin of the outer shell as shown in figure 20 on the 

next page. From figure 20 on the next page, it can be seen that the higher the offset 

distance, the lower the rolling spin, keeping the rest of the dynamic parameters as same. 

The effect of the offset is often referred to as “rolling friction”. 
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   Fig. 20 Angular spin velocity as a function of time 

                        (effect of  offset distances). 

 

 

Figure 20 shows curves corresponding to three different offset distances. The 

graphs indicate clearly that the torque developed by the normal force due to the offset 

(which happens pronouncedly when the incident vertical component of the velocity gets 

higher and higher) slows down the angular spin during the rolling motion. It develops a 

torque which acts on the outer shell and opposes its angular spin. This is true for the 

cases of zero spin, topspin and backspin. For the zero offset distance, it can be seen that 

the rolling angular velocity attains almost a steady-state value well before the contact 

ends. 
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Horizontal velocity as a function of time 
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Fig. 21 Horizontal velocity as a function of time (effect of initial conditions). 
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              Fig. 22 Horizontal velocity as a function of time (effect of spin). 
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 Figures 21 and 22 on the previous page (figures 21 and 22) show the horizontal 

velocity of the center of mass of the two-mass elastic system as a function of time during 

the no-slip case. Figure 21 corresponds to three different incident horizontal velocities of 

the center of mass. Figure 22 corresponds to three different incident spins. All cases are 

for the topspins. For the zero spin and backspin, trends of the curves will be the same. 

 

From figure 21, it can be seen that the horizontal velocity during the contact 

decreases as a function of time. The higher the initial incident horizontal velocity, the 

larger will be the rebound value of the horizontal velocity. In this graph, only the 

incident horizontal speeds are different; the rest of the parameters used to generate the 

curves are identical. From figure 22, it can be seen that the ball incident at a higher spin 

but with the same value of incident horizontal velocity, will rebound at a higher 

horizontal velocity. Thus its angle of rebound will be lower for higher incident spin, if its 

starts rolling. 
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Tangential contact force as a function of time 
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Fig. 23 Tangential friction force as a function of time. 

 

 

The tangential friction force(maintaining the no-slip constraint) as a function of 

time for three different incident spins is shown in figure 23. From the graphs in figure 23 

it can be seen that the tangential force magnitude increases with less spin and vice versa. 

It can be seen that the frictional force starts from negative values, thus validating that it 

will retard the horizontal velocity during the contact, as can be seen from the previous 

graphs. The force graph eventually attains the steady value very near to zero. Thus the 

friction force decreases with time to such an extent that its magnitude becomes almost 

equal to zero and then the outer shell starts rotating as a rigid body subjected to no 

torques (either from the spring-damper or the friction). 
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TRANSITION BETWEEN SLIDING AND ROLLING DURING CONTACT 

 

Based on kinematic parameters presented for the cases of the sliding and the 

rolling, it is now possible to determine transition from the sliding to the rolling motion 

during the contact of the ball with the ground. This transition usually takes place when 

the ball is incident at large angles of incidence. The transition from the sliding to the 

rolling motion during the contact can occur for all of the zero spin, the topspin and the 

backspin impacts.  

 

 

 

 
Fig. 24 Transition from sliding to rolling motion.  

 

Figure 24 shows curves of the angular spin during the sliding scenario, multiplied 
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center of mass of the system. The curves correspond to a specific sliding friction 

coefficient and the other parameters are the same for each curve. It can be seen from the 

curves that the horizontal velocity curve intersects the topspin curve at a smaller value of 

‘n’ as compared to the zero spin. For this particular case, it does not intersect the 

backspin curve at all. The intersection point of the curves physically implies the 

introduction of the kinematic no-slip constraint, due to which the sliding motion ceases 

and the ball starts rolling during the contact for remainder of the contact. It can be seen 

that the topspin actually helps in getting to the rolling mode earlier than either of the 

zero spin or the backspin. The rolling can occur for the backspin case, but then it is a 

strong function of the sliding friction coefficient of the surface, the horizontal 

component of incident velocity as well as the vertical component (angle of incidence) 

and the magnitude of the incident backspin itself. If the ball is incident at a high value of 

backspin and the angle of incidence is low with a high value of the incident horizontal 

velocity, it will keep on sliding throughout the contact, unless the sliding friction 

coefficient is very high (around 0.7 to 0.9). This is all easily deducible from the velocity 

and the angular spin curves. In the sliding, it has been observed that the rebound 

horizontal velocity decreases as the coefficient of friction increases and the incident 

horizontal velocity is decreases. This physically means a rough surface with a high 

friction force and a lesser initial velocity (high incidence angle). Due to the high friction 

force, the velocity reduces at a higher rate (more deceleration) and a stage is reached 

when the horizontal velocity of the center of mass and the surface velocity due to spin 

become equal (the angular spin is accelerating at the same time due to the friction torque 

acting on it). When this stage is reached, as shown by the intersection points of the 

curves, the relative velocity of the contact point with respect to the ground becomes zero 

and it starts rolling. This can be taken into account in the solutions of the equations of 

motion for the spin of the outer shell and the horizontal velocity of the center of mass by 

using in the solutions for the rolling the limits from the instant ‘nrtc’ to tc, instead of 

from 0 to ‘tc’ where ‘nr’ corresponds to the fraction of time of the total contact time 

where the curves intersect. When the two solutions are combined in this piecewise 
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manner, this will represent a complete solution including the transition from the sliding 

to the rolling mode of motion. 

 

EXAMPLES FOR ILLUSTRATING THE APPLICATION OF EQUATIONS 

 

In order to illustrate the application of the equations of motion and their solutions 

as outlined in Chapters II and the beginning of Chapter III, two examples of impact of 

the tennis ball with the ground are considered, which are simulated by the two-mass 

model. The examples will be the impact of the ball with the ground having friction at a 

low angle of incidence and a high angle of incidence with the topspin in each case, such 

that the incident horizontal velocity component is greater than the surface velocity due to 

the spin. Thus in both cases, the initial contact point velocity will be in the positive 

direction.  

 

For the first case of impact simulation, consider the case of a ball incident with 

translational velocity of 17 m/s of the center of mass, with the topspin of 100 rad/s and 

an angle of incidence of around 18 degrees, measured with respect to surface of the 

ground. This is a really shallow angle of incidence. The initial conditions for impact are 

calculated as follows: 

 

13.16)18cos(17cos 0
1 === iX VV θ  m/s 

33.5)18sin(17sin 0
1 === iY VV θ  m/s 

 

The values calculated are the initial conditions for the motion in X and Y 

directions, respectively. The given value of the topspin of 100 rad/s is the initial 

condition for the spin motion. Suppose further that the surface with which the ball strikes 

is acrylic surface for which the coefficient of sliding friction is around 0.55. Also, the 

vertical coefficient of restitution on this surface can be taken as around 0.76. 
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In order to simulate the above impact problem with the help of the two mass 

model, first of all, a selection of the dynamic parameters for the two-mass model is 

required such that their combination makes the vertical coefficient of restitution as 0.76. 

 Accordingly, the dynamic parameters are selected as follows: Inner core mass, 

2M/3, outer shell mass M/3. Stiffness coefficient , 80 lb/in (14040 N/m). However, in 

order to determine the damping coefficient Cy, equation (6) must be used. Using 

equation (8) in Chapter II, the value of Cy that gives the vertical coefficient of restitution 

as 0.76 is found out as: 

 

0113.0=yC  lb-s/in (1.984 N-s/m) 

  

For selecting the rotational parameters, the inner and outer core mass moments of 

inertia are selected as 0.532I and 0.468I, respectively (Chapter II). The torsional stiffness 

coefficient of the torsional spring is selected as 1000 lb-in/rad (113.26 N-m/rad). 

 

 On the basis of assumption that the damped periods of the relative spin and the 

vertical motion are equal, the damping ratio in the rotational motion can be calculated as 

follows: 

 

dyd ωω θ =  

        22 11 ynyn ξωξω θθ −=−   
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        Fig. 25 Surface and center of mass velocities during contact. 

 

 

Next, the horizontal velocities of the center of mass of the two-mass system and 

surface velocity of the outer shell are plotted on the same graph as shown in figure 25. 

This is done to find out if with the choice of the selected parameters, there is an onset of 

the rolling motion during the contact or that there is simply the sliding motion right till 

the end of contact. From figure 25, it can be seen that the graphs do not intersect during 

the contact time, indicating that the rolling does not occur and the ball keeps on sliding 

during the contact. Hence there is no need for the piecewise solution during the contact 

in this scenario, since there is no rolling.  

  

Thus in this case, the horizontal component of the velocity at rebound is 12.667 

m/s, as read from the graph, at n=1 and found out from MathCAD software. 

 

461.122 =XV  m/s 

The rebound value of the spin of the outer shell is: 
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586.3712 =ω  rad/s 

 

Positive sign of the spin velocity indicates that the rebound spin will be an 

increase of topspin. Comparing the value of the rebound with the incident spin, it can be 

seen that the spin value increases by more than twice, due to the friction torque acting on 

the outer shell which accelerates the spin. 

 

The value of rebound angle is: 

 

0

2

2 644.16)
461.12
053.4tan()tan( −=−== a

V
Va

X

Y
rθ  

 

The contact force graphs are plotted as follows: 
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           Fig. 26 Normal and tangential contact forces. 
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Figure 26 predicts the variation of the normal and the tangential contact forces 

with the contact time.  

 

The value of the time-averaged coefficient of friction for this case can be 

calculated using equation (63) in Chapter II as follows: 

 

400.0=µ  

 

This value is not greatly less than the value of the coefficient of sliding friction, 

which is 0.5. This shows that indeed in this case, the sliding occurs throughout the 

motion of the ball. This is also verified from figure 25, which shows that the ball does 

not start pure rolling during contact. 

 

Consider the next case of impact simulation, in which the incident angle is 

increased from 18 degrees to 42 degrees, measured with respect to the ground surface. 

The incident topspin is 100 rad/s, whereas the incident translational velocity is 17 m/s. 

Thus the initial conditions for impact are calculated as follows: 

 

=== )42cos(17)cos( 0
1 iX VV θ 12.63 m/s 

37.11)42sin(17)sin( 0
1 === iY VV θ m/s 

 

Values of the dynamic parameters for both the vertical as well as the rotational 

parameters are the same as for the first case. 

 

The vertical component of the velocity at the rebound can be evaluated from the 

value of vertical coefficient of restitution as: 

 

646.82 −=∴ YV m/s 
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Next, the center of mass velocity and the surface velocity, both in the X 

direction, are plotted on the same graph to ascertain whether there is an onset of the 

rolling during the ball’s contact with the ground: 

 

       

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Surface velocity
Center of mass velocity

Finding out onset of rolling 

H
or

iz
on

ta
l v

el
oc

iti
es

, m
/s

Dimensionless contact time, n

 
 

Fig. 27 Horizontal velocities of the two-mass model. 

 

 

From figure 27, it can be seen that unlike the first case, the graphs intersect at 

around n = 0.35 (exact value is n = 0.342 as found from MathCAD code). Hence the 

rolling motion begins during the contact time as early as before half of the contact time 

is elapsed.  

This indicates that the ball will not keep on sliding during the contact: more than 

50 % of its contact time is spent in the rolling or the no-slip mode, in this particular case. 
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It is important to accommodate this transition and then connect the piecewise solutions 

of the sliding and the rolling to form a complete solution. 

 

In order to complete the solution, the solution for the sliding velocities for both 

the horizontal velocity of the center of mass of the model as well as the angular spin of 

the outer shell should start from time n = 0 to n = 0.342. At n = 0.342, the rolling or the 

no-slip solution takes over from the sliding solution. The values of the horizontal 

velocity of mass center as well as the spin, at this particular intersecting point of the 

graphs, form the initial conditions for the rolling equations, as well as the value n = 

0.342 which becomes the lower limit of integration for the solutions of the angular spin 

in the rolling contact. Applying these conditions and using the code in MathCAD, the 

graphs of the horizontal velocity of the mass center and the angular spin of the outer core 

are depicted in figure 28 on next page. 

 

As can be seen from figure 28, the solutions are piecewise. The break in the 

graphs indicates the instant of time during the contact at which the sliding motion ceased 

and the rolling took place. 
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Fig.28 Horizontal and spin velocities during contact.  
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The rebound values can be obtained from the MathCAD code (as well as less 

accurately from end points of the graphs) as: 

 

813.92 =XV  m/s 

181.2972 =ω  rad/s 

 

The angle of rebound with respect to the surface is thus: 

 

0

2

2 38.41)
813.9
646.8tan()tan( −=−== a

V
Va

X

Y
rθ  

 

The magnitude of rebound velocity is: 

 

=+= 2
2

2
22 YX VVV 15.99 m/s 

 

The value of average coefficient of friction, as calculated from equation (63), is: 

 

127.0=µ  

 

The value is appreciably less than the coefficient of sliding friction, which is 0.55. This 

shows that the transition indeed takes place and hence the motion changes from sliding 

to rolling as indicated by figure 28. 

 

This completes the rebound motion predictions for both the cases. 

 

 

 

 



  77 

CHAPTER IV 
 
 

EXPERIMENTAL DATA 
 

 

In this chapter, two major experimental measurements for the tennis ball are 

described: the impact and rebound kinematics for three spin options, namely the zero 

spin, the topspin and the backspin [1]. These results are taken from the doctoral thesis of 

J.C.Wang, 1989, who conducted the experiments on the dynamics of the tennis balls and 

evaluated the rebound kinematics of the tennis balls given varying conditions of incident 

kinematics. The second experimental measurement is that of the mass moment of inertia 

of the tennis ball using a simple setup. This second measurement has been conducted by 

the author to determine an estimate of the numerical value of mass moment of inertia of 

the tennis ball, in order to use this value for the simulations of the tennis ball (Chapter 

V). 

 

EXPERIMENTAL PROCEDURE 

 

As mentioned in Wang [1], the experimental procedure used to conduct the study 

of the incident and the rebound kinematics consists of an experimental design, test 

equipment, and apparatus. Following this, the data obtained is digitized and analyzed to 

convert the experimental results into the numerical values. The experimental test 

equipment consists of a ball pitching machine, an acrylic test surface, a camera in a 

single frame mode, two strobotacs for providing flashes of light at the impact point, 

operating at 20,000 flashes per minute, a function generator used to control the time 

period between the flashes of the strobotacs and a counter-timer, which is used to check 

the period of the flashes of the strobotac lights and check if there is any error in the 

period. 

 



  78 

The stroboscopic photography is a relatively modern technique for understanding 

and analyzing the motion of bodies. Since a camera usually can not take many pictures 

in a short duration of time, for example, of an impact (the impact duration is of the order 

of milliseconds), the strobotacts provide basis of what is called as stroboscopic 

photography. As soon as the ball hits the impact point on the surface, the camera shutter 

is opened for around one second and at the same time, a picture is taken. However, the 

strobotact lights are also flashing at the object of interest, in this case, a tennis ball, for as 

short as duration of 1 microsecond and about 20,000 times per minute. This illuminates 

the object for a very short duration and hence in a sense, divides 1 second picture of the 

camera, which otherwise would be a still picture, in a sequence of images due to the 

strobotac flash images. This produces the perception of a continuous motion as a 

sequential motion in one single picture of the camera. This produces what is called as the 

stroboscopic effect.  The schematic of the arrangement is shown in Figure 29. 

 

Based on this procedure, the tennis ball’s images before, during and after the 

contact were developed. The images were then transferred into a digitizing board and a 

coordinate system was established there, that marked coordinates of the center of mass 

of the ball, point where the ball touches the test surface, and two-cross points across the 

diameter of the ball (that were marked before the experiment to ascertain the angular 

spin). Once the coordinates were located, the incident and the rebound velocities were 

calculated using the sequential images from the stroboscopes and dividing the difference 

of the respective X and Y coordinates by the strobe period, which was 0.003 seconds.  
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However, there is a possibility of an error in analysis of the data in a sense that 

for the impact and the rebound kinematics, the coordinates were located for the tennis 

balls that were slightly before impact and slightly after impact, not at the exact point 

where the incidence and rebound occurred [1].  

 

In order to get to the impact points and the rebound points, the linear curve fit 

based on the images before the impact and after the impact was utilized. This may 

introduce some error in the estimation of the horizontal and vertical velocities, because 

even if the force in X direction is neglected, the ball will follow a parabolic trajectory, 

instead of a linear path, as is assumed in the data analysis.  

 

This in turn affects the angle of incidence and the rebound, and based on the 

equations mentioned in [1], this as well affects the incident and the rebound spin. This 

might be a source of error in the data analysis as shown in [1] by the values of standard 

deviation in the experimental values of the kinematics. 
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          Fig. 29 Schematic drawing of experimental arrangement [1]. 
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Wang’s data has been used by this author to construct Tables 1 to 6 and Figures 

30 to 32. Experimental results for the impact and rebound kinematics are shown in tables 

1 through 6. The experimental results are arranged such that the first five columns in 

each table indicate the incident kinematics, arranged in the order of incidence angle, the 

horizontal component of velocity at incidence, the vertical component of velocity at 

incidence, the resultant translational velocity of the center of mass of the ball at 

incidence, and the angular velocity of the ball at the incidence. The remaining five 

columns indicate counter-part kinematics parameters at rebound from the ground, in 

exactly the same order.  

 

All the angles are measured in degrees, the translational velocities and the 

components are all measured in meters per second, and the angular velocities are 

measured in radians per second. 

 

For each of the cases of the zero spin, the topspin, and the backspin, there are two 

tables. The first table has already been described, whereas in the second table, along with 

the incoming and the rebound kinematics are shown the coefficients of restitution in the 

vertical and the horizontal directions, and kinetic energies, immediately before and after 

the impact.  

 

The vertical coefficient of restitution for each angle of incidence is calculated by 

dividing the negative of the vertical rebound velocity by the vertical incident velocity, 

whereas the horizontal coefficient is obtained by the ratio of the rebound horizontal 

velocity to the incident horizontal velocity.  
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The kinetic energies immediately before and after the impact are determined 

from the resultant values of the translational velocities of the center of mass of the ball 

(V1 and V2) and the spin speeds (ω1 and ω2). The equations used to evaluate the kinetic 

energies from the given data are: 

 

2
1

2
11 2

1
2
1 ωIMVT +=  

2
2

2
22 2

1
2
1 ωIMVT +=  

 

It will be seen from the experimental data that the calculated values of the kinetic 

energies indicate there is a loss of kinetic energy associated with each of the impacts. 

These losses are a result of the friction force acting on the ball as well as the damping 

associated with the bounce of the ball in the vertical direction. 

 

Figures 30 through 32 show the experimental results on the tennis ball in 

graphical form.
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Table 1 Incidence and rebound kinematics with incident zero spin 

 

Table 2 Incidence and rebound kinematics for zero spin impact (with restitution coefficients and kinetic energies) 

 

 

 

θi VX1 VY1 V1 ω1 θr VX2 VY2 V2 ω2 
(Degrees) (m/s) (m/s) (m/s) (rad/s) (Degrees) (m/s) (m/s) (m/s) (rad/s) 

                    
17.13 15.62 4.81 16.36 -5.34 -20.83 11.09 -4.22 11.73 239.1 
22.85 15.62 6.71 17.00 2.61 -32.39 8.84 -5.76 10.55 313.2 
34.47 14.49 9.95 17.59 -1.1 -45.04 7.66 -7.66 10.84 293.31 
41.1 13.46 11.74 17.87 23.46 -50.33 7.25 -8.73 11.36 239.99 

48.55 11.7 13.25 17.70 10.63 -55.37 6.47 -9.37 11.4 213.17 
58.94 9.16 15.19 17.74 10.63 -70.42 3.87 -10.87 11.54 144.69 
67.84 6.57 16.14 17.44 1.15 -76.12 2.74 -11.09 11.44 96.25 

θi V1 ω1 θr V2 ω2 εy εx T1 T2 
(Degrees) (m/s) (rad/s) (Degrees) (m/s) (rad/s)   (lb-in) (lb-in) 
                    

17.13 16.36 -5.34 -20.83 11.73 239.1 0.87734 0.70999 68.181 44.823 
22.85 17.00 2.61 -32.39 10.55 313.2 0.85842 0.56594 73.62 45.125 
34.47 17.59 -1.1 -45.04 10.84 293.31 0.76985 0.52864 78.813 44.642 
41.1 17.87 23.46 -50.33 11.36 239.99 0.74361 0.53863 81.436 42.721 

48.55 17.70 10.63 -55.37 11.4 213.17 0.70717 0.55299 79.821 40.874 
58.94 17.74 10.63 -70.42 11.54 144.69 0.7156 0.42249 80.182 37.501 
67.84 17.44 1.15 -76.12 11.44 96.25 0.68711 0.41705 77.475 34.921 
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Table 3 Incidence and Rebound kinematics for tennis ball with incident topspin 
 

 

Table 4 Incidence and rebound kinematics for topspin impact (with restitution coefficients and kinetic energies) 
 

θi V1 ω1 θr V2 ω2 εy εx T1 T2 
(Degrees) (m/s) (rad/s) (Degrees) (m/s) (rad/s)   (lb-in) (lb-in) 
                    

18.3 16.99 138.2 -23.09 11.94 386.1 0.8761726 0.680719 76.794 61.806 
22.64 17.54 158.06 -30.54 12.03 398.11 0.9051852 0.639901 82.638 63.965 
33.94 17.89 152.53 -40.58 12.71 323.74 0.8276553 0.650708 85.503 59.071 
42.38 18.64 136.32 -43.33 13.3 285.46 0.7266932 0.702762 91.681 58.992 
47.7 17.81 147.58 -51.88 12.56 236.54 0.7501898 0.646912 84.521 49.751 
61.07 17.48 146.74 -62.41 11.89 163.87 0.6886854 0.652071 81.513 40.603 
70.91 17.36 145.88 -67.6 11.95 119.09 0.6741916 0.802469 80.405 38.800 

θi VX1 VY2 V1 ω1 θr VX2 VY2 V2 ω2 
(Degrees) (m/s) (m/s) (m/s) (rad/s) (Degrees) (m/s) (m/s) (m/s) (rad/s) 

                    
18.3 16.13 5.33 16.99 138.2 -23.09 10.98 -4.67 11.94 386.1 
22.64 16.19 6.75 17.54 158.06 -30.54 10.36 -6.11 12.03 398.11 
33.94 14.83 9.98 17.89 152.53 -40.58 9.65 -8.26 12.71 323.74 
42.38 13.76 12.55 18.64 136.32 -43.33 9.67 -9.12 13.3 285.46 
47.7 11.98 13.17 17.81 147.58 -51.88 7.75 -9.88 12.56 236.54 
61.07 8.45 15.29 17.48 146.74 -62.41 5.51 -10.53 11.89 163.87 
70.91 5.67 16.39 17.36 145.88 -67.6 4.55 -11.05 11.95 119.09 
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Table 5 Incidence and Rebound kinematics for tennis ball with incident backspin 

 
 

Table 6 Incidence and rebound kinematics for backspin impact (with restitution coefficients and kinetic energies) 

 

θi VX1 VY2 V1 ω1 θr VX2 VY2 V2 ω2 
(Degrees) (m/s) (m/s) (m/s) (rad/s) (Degrees) (m/s) (m/s) (m/s) (rad/s) 

                    
17.42 16.18 5.08 16.96 -168.32 -20.31 10.56 -3.91 11.26 105.5 
22.44 15.95 6.59 17.26 -148.05 -28.25 9.82 -5.27 11.14 170.35 
34.79 14.35 9.97 17.48 -157.58 -49.78 6 -7.09 9.29 261.54 
40.48 13.8 11.78 18.15 -179.12 -58.19 5.36 -8.64 10.17 208.97 
45.21 12.02 12.11 17.07 -164.57 -65.58 4.12 -9.08 9.99 175.12 
58.76 9.12 15.04 17.61 -184.04 -74.78 2.81 -10.29 10.68 106.79 
67.62 6.57 15.95 17.25 -165.53 -81.72 1.57 -10.84 10.98 71.43 

θi V1 ω1 θr V2 ω2 εy εx T1 T2 
(Degrees) (m/s) (rad/s) (Degrees) (m/s) (rad/s)   (lb-in) (lb-in) 

                    
17.42 16.96 -168.32 -20.31 11.26 105.5 0.769685 0.652658 78.114 34.199 
22.44 17.26 -148.05 -28.25 11.14 170.35 0.799697 0.615674 79.632 36.573 
34.79 17.48 -157.58 -49.78 9.29 261.54 0.711133 0.418118 82.076 33.681 
40.48 18.15 -179.12 -58.19 10.17 208.97 0.733447 0.388406 89.397 33.813 
45.21 17.07 -164.57 -65.58 9.99 175.12 0.749794 0.342762 78.854 30.665 
58.76 17.61 -184.04 -74.78 10.68 106.79 0.684176 0.308114 84.784 31.004 
67.62 17.25 -165.53 -81.72 10.98 71.43 0.679624 0.238965 80.481 31.582 
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Fig. 30 Incident vs rebound kinematics for zero spin [1]. 
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   Fig. 31 Incident versus rebound kinematics for topspin [1]. 
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Fig. 32 Incident versus rebound kinematics for backspin [1]. 
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From the data presented in Tables 1 through 6, values of the time-averaged 

coefficient of friction are calculated using equation (63) in Chapter II, and presented in 

the following table for three cases of zero spin, top spin and back spin. 

 

       Table 7.  Time-averaged coefficient of friction values for experimental data 

Incidence Angles 

(Degrees) 

Zero Spin Top Spin Back Spin 

18 0.502 0.515 0.625 

23 0.543 0.453 0.516 

34 0.388 0.284 0.489 

42 0.303 0.188 0.413 

48 0.231 0.184 0.373 

60 0.203 0.114 0.249 

70 0.141 0.04 0.186 

 

 

From the values presented in Table 7 for the time-averaged friction factors, it can 

be seen that for zero spin incidence, the first three incidences, starting roughly from 18 

degrees to 35 degrees, the friction factor is near the value of 0.55. However, after this, 

the value of the friction factor decreases gradually with each incidence until it reaches 

the value of 0.141 at an angle approximately equal to 70 degrees, at which there is not 

only sliding during motion but also pure rolling. 

 

 For top spin incidences at same angles as zero spin, the values of the friction 

factors are seen to be decreasing more with increasing incidence angle. This shows that 

for top spin, rolling during contact occurs earlier as compared to zero spin. Note the last 

two values for top spin in Table 7, which are appreciably less than 0.55, thus proving 

that the ball changes its motion from sliding to rolling during these cases.  
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 For back spin, the friction factor is higher as compared to both top spin and zero 

spin, thus showing that the ball incident with back spin undergoes rolling only at high 

angles of incidence. For zero and top spin incidence, transition of motion from sliding to 

rolling will start as early when angle of incidence reaches around 35 to 40 degrees, but 

for the ball incident with strong back spin, like in the experimental data presented, the 

transition will start only at around 55 to 60 degrees angle of incidence. 

 

The results of the experimental measurements on the tennis ball as shown in the 

previous graphs in figures 31 to 33 show that the angle of rebound is greater than the 

angle of incidence in case of the backspin impact. In case of the topspin, its trend is the 

same as the backspin case. For the zero spin impact, the angles of rebound are very close 

to those for the topspin impacts. 

 

The vertical coefficient of restitution varies for each case of the zero spin, the top 

spin and the backspin, but trend still follows nearly a straight line, which indicates that 

the vertical coefficient of restitution for each spin case can be taken, on an average, as a 

constant. The average vertical coefficient of restitution for all cases comes in a range of 

0.74 to 0.78, which is a normally accepted range for this parameter [1]. 

 

The horizontal coefficient of restitution which is calculated and presented in the 

tables and can be directly deduced from the graphs of the rebound and the incident 

horizontal velocities, does show some scatter. It is not as constant as the vertical 

coefficient of restitution, but for zero spin and topspin impacts, values for this parameter 

are not as scattered as is the case with the backspin impact. 
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MEASUREMENT OF THE MASS MOMENT OF INERTIA OF A TENNIS BALL 

 

The mass moment of inertia of a tennis ball is determined experimentally as a 

part of this thesis to obtain a numerical value of this important rotational parameter of 

the tennis ball which is used in the impact simulations (Chapter V).  

 

Theoretical background of measurement for mass moment of inertia  

 

 The mass moment of inertia of an object can be determined by performing a 

twisting test on the object. A twisting test is basically a torsional vibration of the object 

so that it is hung or supported vertically downwards from a ceiling with two or more 

strings of any appropriate material that can withstand the weight of the object. The 

torsional vibration is induced by giving an angular twist of a small amplitude about the 

vertical axis of the object that passes through its center of mass of it and then measuring 

the period of the ensuing vibrations. In order to develop an analytical expression for the 

torsional natural frequency as a function of the mass moment of inertia, first of all, the 

following two linear equivalent systems are considered and their equations of motion are 

derived in order to establish an expression for the horizontal equivalent stiffness of a 

pendulum. 
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Fig. 33 Equivalent linear vibrating systems. 

 

It can be seen from figure 33 that the two systems are equivalent and given the 

frequency of vibration of one, the frequency of vibration of the other can be deduced. 

The governing equations of motion and the kinematics for the above systems are 

presented as follows: 

∑
••

= θOO IM  

02 =+
••

θθ mgLmL  

0=+
••

θθ
L
g                                                   (76) 
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θ
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For small amplitudes ‘θ’, the kinematics of two systems are related as: 

 

θLx =  

 

Substituting this relation in the differential equation for ‘θ’, the following 

equation of motion for an equivalent spring-mass system is obtained: 

 

0=+
••

x
L
gx  

0=+
••

x
L

mgxm  

 

If the equivalent system is considered separately, its governing differential equation of 

motion is(neglecting damping): 

 

0=+
••

kxxm  

 

Thus the equivalent stiffness coefficient for the system is: 

 

L
mgk =                                           (77) 

 

This expression provides the stiffness of an equivalent spring-mass system to that 

of a mass hanging by a rod or a taut and an inflexible string. 

 

Based on the same principle of an equivalent system, consider now a disk shaped 

object suspended by two strings, which is subjected to a twisting test (torsional vibration 

about its center of mass) and an equivalent system supported tangentially by equivalent 

springs. This is illustrated in figure 34 below: 
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Fig. 34 Equivalent torsional vibrating systems. 

 

  

In this set of vibrating systems, the above system is subjected to an angular twist 

about the center of mass of the object supported by two strings of equal length. As a 

result, the system starts vibrating about its vertical centroidal axis which is shown as a 

dotted line in figure 34. An equivalent system is obtained if, instead of being supported 

on strings, the object is supported by the two equivalent springs connected tangentially 

to it. When the object is given a small twist about its vertical centroidal axis, it will start 

vibrating. The following equations of motion are derived to determine the mass moment 

L 

m

R 

θ 
R

O
k 
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of inertia of the object about its mass center in terms of the other system parameters with 

the help of the equivalent system: 

 

∑
••

= θOO IM  

 

Now the external moment acting on the vibrating object (neglecting damping) can be 

expressed as follows: 

 

∑
••

=−= θOO IFRM 2  

 

where ‘F’ is the tangential force exerted on the object by a spring and the two supporting 

springs are assumed to be identical. Furthermore, ‘F’ can be expressed as follows: 

 

θθ R
L

mgkRF
2

==  

 

where the value of the equivalent stiffness coefficient  is obtained from the consideration 

of the previous equivalent systems. The factor of 2 comes from the presence of the two 

strings to support the object instead of a single string.  

 

 Thus the differential equation of motion of the equivalent system is obtained by 

combining the above equations as follows: 

 

02 =+
••

θθ R
L

mgIO  

 

Equivalently, this equation can be written as: 
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0
2

=+
••

θθ
LI

mgR

O

                                       (78) 

 

Comparing equation (78) above to the standard second-order linear differential equation 

describing a vibrating system, the natural frequency can be expressed as follows: 

 

LI
mgR

O
n

2
2 =ω  

 

From above equation, the mass moment of inertia of the object about its centroidal axis 

can be obtained as: 

 

2

2

n
O L

mgRI
ω

=                                              (79)  

 

Thus in the experimental setup for a twisting test, if the torsional period of 

vibration ‘T’ of the object is measured, its mass moment of inertia can be determined, 

since 
Tn
πω 2

=  

 

 

Experimental setup 

 

 A simple experimental setup based on the idea of a twisting test is used to 

determine the mass moment of inertia of the tennis ball. The setup consists of a tennis 

ball hung from the ceiling by two strings, each about 1m (39.37 in.) long. A meter stick 

and a foot-scale are required for the measurements of string length. A stopwatch is 

needed to measure the rotational period of vibration of the tennis ball. This is depicted in 

figure 35.  
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Fig. 35 Experimental setup to measure the mass moment of inertia. 

 

 The strings are taped to the ball at the points on the surface so that it becomes 

very nearly tangent to the surface when the upper ends are joined to the ceiling by the 

tape as well. To make the two supporting strings parallel and of equal length is not very 

easy and it took several trials and measurements of the string lengths until they became 

equal and parallel. Then the twisting test was performed on the ball and the readings 

were obtained.  

 

 

 

 

Strings

Tennis ball 
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Results of the experiment 

 

Several tests, with each one recording the time for 10 complete vibrations were 

performed and then the average was taken to determine the time period of torsional 

vibrations. Results are listed in the following table: 

 

Table 8. Experimental results of the twisting test on the tennis ball 

Test Number Number of Cycles Time for Cycles(seconds) 

1 10 15.2 

2 10 15.1 

3 10 15.2 

4 10 15.1 

5 10 15.3 

6 10 15.1 

7 10 15.1 

8 10 15.2 

9 10 15.1 

10 10 15.2 

Total 100 151.6 

 

  

The average time period of the torsional oscillations is calculated from the above 

experimental results as: 

 

516.1
100

6.151
==T  seconds 

 

Based on this value of the time period, the circular natural frequency of the 

torsional oscillations is calculated as: 
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144.42
==

Tn
πω rad/s 

 

The values of the other physical parameters of the system are as follows: 

 

m = 0.127 lb = 0.000329 lb-s2/in 

g = 386.4 in/s2 

R = 1.25 in. 

L = 101.6 cm = 39.99 in. 

 

Substituting these values in equation (79), the mass moment of inertia of the 

tennis ball about its centroidal axis is calculated as: 

 

00028.0
)144.4)(99.39(

)25.1)(4.386)(000329.0(
2

2

==OI  lb-s2-in 

  

This value of the mass moment of inertia will be used as a benchmark for the 

simulations of the tennis ball (Chapter V).  
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CHAPTER V 
 
 

BEST RESULTS COMPARISONS WITH THE MEASUREMENTS 
 

 

From the simulation results as presented in Appendix C, there are some 

parameters of the two-mass elastic systems that consistently seem to produce reasonable 

results for the rebound motion of the tennis ball as compared against the experimental 

measurements of the same parameters. These results seem to produce reasonable results 

for the incident zero spin, top spin and back spin cases for varying angles of incidences. 

Therefore, the results of the rebound kinematics developed by those selected parameters 

of the two-mass elastic systems are described in the following pages. In order to get the 

damping coefficient in the vertical direction, cy, for each of the cases of the zero spin, the 

top spin and the back spin, the average vertical coefficient of restitution for each case is 

calculated as follows: 

 

7

7

1
∑

== i
iCOR

COR  

 

Based on the value obtained above for that particular case, and having the spring 

constant and the mass ratios fixed, equation (6) is utilized to vary the coefficient for 

different values of the damping coefficients until the theoretical value of the coefficient 

of restitution, as given by equation (6), matches with the experimental value above. 

 

Three cases for the parameters that yield reasonable agreements with the experiments are 

described in the following table: 
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 Table 9. Dynamic ratios for all cases of incident angles and spins giving best results 

   
 
 

For the zero spin impact, it can be seen from the simulation results and from the 

simulated kinematic graphs during the contact that above an incident angle of 20 

degrees, the ball enters into the rolling mode. The time of contact, tc, predicted by the 

simulations agrees very well with the experimental determinations of the contact times 

of tennis balls [4].  The contact duration usually spans from 4.5 ms to 5.5 ms. The 

predicted contact times vary in the same range for the different angles of incidence. Thus 

the contact duration is in close agreement with the experimental values. 

 

For the topspin impacts, the simulations show that the rolling mode occurs during 

contact as angle of incidence is increased from 17 degrees to 23 degrees. Due to rolling, 

the horizontal velocity at the rebound is higher as compared to what it would be if it 

were sliding throughout the contact. This causes the simulated angles of rebound to be 

smaller than the angles of incidence. This agrees well with the experimental observations 

(Figs.30-32) in that the rebounds from the topspin impact are usually at smaller angles 

than incident and relatively less loss of horizontal component of incident velocity. The 

simulated rebound angles for the topspin impacts agree well with this observation.  

 

The results achieved for the rebound spins for the three cases of the zero spin, the 

topspin and the backspin are encouraging and agreement with the experiments seems 

reasonable (Figs.36-44). In almost all case, the spin values are slightly higher than the 

experimental values. This might be attributed to some complicated effects of stick-slip 

Cases M1 M2 Ky I1 I2 kθ 

 Lb-s2/in Lb-s2/in Lb/in Lb-in-s2 Lb-in-s2 Lb-in/rad 

1 2M/3 M/3 80 0.532I 0.468I 1000 

2 2M/3 M/3 90 0.532I 0.468I 1000 

3 M/2 M/2 72 0.353I 0.647I 1000 
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occurring at the interface of the tennis ball and the ground, which have not been taken 

into account in this model. 

          

 For the backspin impacts, the simulations show that the rolling mode occurs later 

than for the corresponding cases of the zero spin or the topspin impacts. Due to 

occurrence of rolling at later instant of contact in case of backspin as compared to either 

zero spin or topspin, the rebound horizontal velocity is smaller as compared to either of 

zero spin or topspin incidence (since most of the contact time of the ball is in sliding 

motion for the backspin impact, and a small percentage of the contact time is in rolling 

mode). This causes the simulated angles of rebound to be higher than the angles of 

incidence. This simulation prediction agrees very well with the experimental 

observations (Figs.40-42) which reveal that the backspin impacts on the tennis court 

surfaces generate large angles of rebound, which are always higher than the 

corresponding angles of incidences. 

  

The simulated horizontal velocities at the rebound are generally higher than the 

experimental values (Figs.36-44) and the reason again might be the presence of some 

tangential flexibility, or in other words, elasticity in the X direction, that has not been 

accommodated in this model. 
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                         Incident vs. rebound angles                         Incident vs. rebound horizontal velocities  
            

             Incident vs. rebound vertical velocity  
 

     Fig. 36 Incident vs rebound parameters for the zero spin (average COR = 0.765), case 1. (cy = 0.0225 lb-s/in) 
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      Fig. 37 Incident vs rebound parameters for the zero spin (average COR = 0.765), case 2. (cy = 0.0239 lb-s/in) 
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Fig. 38  Incident vs rebound parameters for the zero spin (average COR = 0.765), case 3. (cy = 0.0185 lb-s/in) 
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          Fig. 39  Incident vs rebound parameters for the top spin (average COR = 0.778), case 1. (cy = 0.0211 lb-s/in) 
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            Fig. 40  Incident vs rebound parameters for the top spin (average COR = 0.778), case 2. (cy = 0.0224 lb-s/in) 
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                                 Incident vs. rebound vertical velocity                                                                     Incident vs. rebound angular spin 
                Fig. 41  Incident vs rebound parameters for the top spin (average COR = 0.778), case 3. (cy = 0.0173 lb-s/in) 
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                               Incident vs. rebound vertical velocity                                                                     Incident vs. rebound angular spin 
   Fig. 42  Incident vs. rebound parameters for the back spin (average COR = 0.732), case 1. (cy = 0.0262 lb-s/in) 
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                                Incident vs. rebound vertical velocity                                                                     Incident vs. rebound angular spin 
             Fig. 43  Incident vs. rebound parameters for the back spin (average COR = 0.732), case 2. (cy = 0.0277 lb-s/in) 
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                Fig. 44   Incident vs. rebound parameters for the back spin (average COR = 0.732), case 3. (cy = 0.0215 lb-s/in)
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CHAPTER VI 

CONCLUSIONS 

 
 
 

Simulation results of the experimental measurements on the tennis balls with 

selected parameters were presented in Chapter V. The results show that in general, the 

two mass model gives a fairly reasonable approximation of the rebound kinematics of 

the tennis ball. 

 

 From the simulations, it can be concluded that the offset parameter ‘ε’ (rolling 

friction) plays an important and a crucial part for the success of most of the simulations 

where there is a transition from the sliding to the rolling mode. This will always occur 

when the angle of incidence gets larger, which in turn implies a large vertical velocity 

component. The larger the vertical velocity component, the greater is the effect of the 

moment about the center of mass of the system produced by the normal contact force. 

 

The application of linear vibrations theory and impact dynamics to the simulation 

of tennis ball using a two-mass model predicts the kinematics of the rebound, especially 

the rather challenging parameter of the spin of rebound reasonably well. The model is 

efficient from the point of view of computation time and effort, and it is simple to 

understand, since it is a linear model. The results indicate that the linear theory can be 

used to predict the impact phenomena with good success. 

 

Incorporating the vertical stiffness and the torsional stiffness as well as the 

damping in the model, which can be deduced by the simple bounce height experiments, 

the model can be used to predict the rebound velocities, the spins and the angles of 

rebounds. Also the model can be used to successfully predict the time of contact of the 
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tennis ball with the ground, the onset of rolling or no-slip motion and the contact forces 

acting on the ball. 

 

The simulations of the experimental results as presented in tables C-7 to tables C-

27 present the time of contact (duration of contact). As can be found from references [3] 

and [5], the average time of contact that has been measured for the tennis balls is 

somewhere around 4.5 ms to 5 ms. From the simulation results, the average contact time 

varies very much in the same range, with 4.5ms to 5ms as the most frequent occurrence. 

This indicates that the model indeed predicts the time of contact very well. 

 

Finally, the selected three cases of the dynamic parameters that gave the best 

agreements with the measurements indicate that the inner core mass is always slightly 

higher in both the mass and the mass moment of inertia to give the best fit with the 

measurements.
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APPENDIX A 

 PARTICULAR SOLUTION OF SECOND-ORDER, NON-

HOMOGENOUS, ORDINARY LINEAR DIFFERENTIAL EQUATION 
 

Consider the following differential equation: 
 
 

)cos()sin( 212

2

tetec
dt
db

dt
da tt βγβγθθθ αα +=++                                             (A1) 

 
 

In the above equation, the coefficients of the variables on the left hand side are 

all constants. In this equation, only θ and t are the variables involved, hence the 

remaining symbols on the right hand side are all constants as well. The constants γ1 and 

γ2 are non-zero, so equation (A1) is a non-homogenous, second- order, ordinary 

differential equation with constant coefficients. It is desired to determine the particular 

solution of the above differential equation.  

 

In order to determine the solution of equation (A1), the method of undetermined 

coefficients is used. Accordingly, the assumed particular solution of equation (A1) is of 

the form: 

 

)cos()sin()( tBetAet tt ββθ αα +=                  (A2) 

 

where ‘A’ and ‘B’ are the constants whose values have to be determined. 

 

 The first and second derivatives of the assumed function in equation (A2) are 

readily evaluated as follows: 
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))(cos())(sin( BAteBAte
dt
d tt αβββαβθ αα ++−=     (A3) 

 

)](2)[cos(]2)()[sin( 2222
2

2

βααββαββαβθ αα −++−−= BAteBAte
dt
d tt    (A4) 

 

Substituting equations (A2), (A3) and (A4) in equation (A1), the following 

algebraic equation is obtained: 

 

)cos()sin()cos()sin()cos()(

)sin()()cos(])(2[)sin(]2)([

21

2222

tetetcBetcAeteBAb

teBAbteBAateBAa

ttttt

ttt

βγβγβββαβ

ββαββααββαββα

ααααα

ααα

+=++++

−+−++−−

 

(A5) 

 

The coefficients for the time functions on the left and the right hand side in 

equation (A5) can be compared to obtain the following linear simultaneous equations in 

‘A’ and ‘B’: 

 

          1
22 )(]2)([ γβααββα =+−+−− cABAbBAa                                        (A6) 

 
                      2

22 )(])(2[ γαββααβ =+++−+ cBBAbBAa                                       (A7) 
 
 
Separating the terms involving ‘A’ and ‘B’, the above equations can be re-written as: 
 

 
1

22 )2(])([ γβαβαβα =+−++− baBcbaA                                      (A8) 
 

2
22 ])([)2( γαβαβαβ =++−++ cbaBbaA                                      (A9) 
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Solving equations (A8) and (A9) simultaneously, the values of ‘A’ and ‘B’ are 

determined as: 

 

]
)2(

)([
])2(})([{

)2( 22
1

22222 βαβ
αβαγ

γ
βαβαβα

βαβ
ba

cbaa
bacba

baA
+

++−
+

++++−
+

=          

(A10) 

 

)2(
)( 1

22

βαβ
γαβα

ba
cbaaAB

+
−++−

=                  (A11) 

 
(‘B’ is expressed in terms of ‘A’. Once ‘A’ is known from equation (A10), ‘B’ is known 

from equation (A11)). 

 

From equations (A10), (A11) and (A2), it can be seen that the particular solution 

of equation (A1) is completely established in terms of the constants involved in the 

differential equation (A1). Thus substituting the values of ‘A’ and ‘B’ from equations 

(A10) and (A11) into equation (A2), which is the assumed particular solution, the 

particular integral of equation (A1) is determined. 
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APPENDIX B 
 
 

MATHCAD CODES FOR VARIOUS KINEMATICS 
 
 
 
 
Vertical displacement during contact 
 
 
 
D n M1, cy, ky, Vy1,( ) Vy1i Vy1 39.37⋅←

W 0.127←

g 386.4←

R 1.25←

ωy
ky
M1

←

ξy
cy

2 M1⋅ ωy⋅
←

ωdy ωy 1 ξy
2

−⋅←

Vy1i
R ωdy⋅

e

n− ξy⋅ π⋅ ωy⋅

ωdy
⋅ sin n π⋅( )⋅

:=

 
 
 

The code above generates the vertical displacement of the inner core mass M1, 

given the stiffness of the spring and the damping coefficient of the damper in the vertical 

direction, as well as the incident vertical velocity. The code requires, as its arguments, 

the numerical values of the inner core mass M1, the damping coefficient, the stiffness 

coefficient and the incident vertical velocity. The ‘n’ inside the brackets on the right 

hand side of the first line of the code indicates that the dimensionless contact time ‘n’ is 

also present in the equations. As the equations inside the code indicate, the displacement 

is plotted as a function of dimensionless contact time ‘n’. Given the physical parameters, 

it calculates the damping ratio, the undamped natural frequency and the damped natural 
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frequency inside the code and then on the basis of these quantities, the vertical velocity 

during the contact is determined. 

 

 
Code for rebound velocity in Y direction 
 
The following code generates the velocity of rebound (in m/s) in Y direction during any 

instant of contact and at any value of the dynamic parameters (to be inputted in FPS 

units). 

 
 
Vy M1 ky, cy, n, Vy1,( ) Vyi Vy1 39.37⋅←

ωy
ky
M1

←

ξy
cy

2 M1⋅ ωy⋅
←

ωdy ωy 1 ξy
2

−⋅←

Vyi− ξy⋅ ωy⋅ e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅

ωdy
sin n π⋅( )⋅ Vyi e

ξy− ωy⋅
n π⋅

ωdy
⋅

⋅ cos n π⋅( )⋅+

⎛⎜
⎜
⎜⎝

⎞
⎟

⎠
39.37

:=

 
 
 

 

The code for the vertical velocity during the contact is shown above. With the 

incident vertical velocity input in meters per second, and the remaining physical 

parameters in FPS units, it gives the vertical velocity during the contact as a function of 

dimensionless contact time, ‘n’. It gives the final answers in SI units. 
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Code for X velocity of the ball during sliding 
 
 
 
Vxs µ M1, cy, ky, n, Vx1, Vy1,( ) Vyi Vy1 39.37⋅←

Vxi Vx139.37⋅←

ωy
ky
M1

←

ξy
cy

2 M1⋅ ωy⋅
←

ωdy ωy 1 ξy
2

−⋅←

y
Vyi
ωdy

e

n− ξy⋅ π⋅ ωy⋅

ωdy
⋅ sin n π⋅( )⋅←

Vy
Vyi− ξy⋅ ωy⋅ e

ξy− ωy⋅
n π⋅

ωdy
⋅

⋅

ωdy
sin n π⋅( )⋅ Vyi e

ξy− ωy⋅
n π⋅

ωdy
⋅

⋅ cos n π⋅( )⋅+

⎛⎜
⎜
⎜⎝

⎞
⎟

⎠
←

ax
µ−

M
cy Vy⋅ ky y⋅+( )⋅←

Vx1 cy
Vyi
ωdy

⋅ e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ sin n π⋅( )⋅←

Vx2
ky Vyi⋅

ωdy
ξy− ωy⋅

ξy
2

ωy
2

⋅ ωdy
2

+

e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ sin n π⋅( )⋅

⎛⎜
⎜
⎜⎝

⎞
⎟
⎠

⋅←

Vx3
ky Vyi⋅

ωdy
ωdy−

ξy
2

ωy
2

⋅ ωdy
2

+

e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ cos n π⋅( )⋅
ωdy

ξy
2

ωy
2

⋅ ωdy
2

+

+

⎛⎜
⎜
⎜⎝

⎞
⎟
⎠

⋅←

Vxi
µ

M
Vx1 Vx2+ Vx3+( )⋅−

:=
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The above code evaluates the horizontal component of velocity of the two-mass 

system during the sliding contact as a function of the dimensionless contact time, ‘n’. As 

can be seen form the code, it is a function that is dependent on the vertical parameters of 

the two-mass system. The results that combine to produce the horizontal velocity during 

the contact are the integrations of the acceleration function. The code indicates the 

results for the case in which the friction force goes opposite to the X velocity. In case it 

goes in the same direction as the X velocity (topspin, in which surface velocity due to 

spin is higher than incident horizontal velocity), simply the sign if the term following 

Vxi in the last line should be put positive instead of the negative to give the correct 

velocity variation. 

 

Code for the angular velocity of the ball during sliding 

 

 

 
   ω1:=    (Incident angular spin) 

  

Vy1 := (Incident vertical velocity in m/s)

Vx1 ::= (Incident horizontal velocity in m/s)

Vyi Vy1 39.37 ⋅ := Vy1 (Incident vertical velocity in in/s)

Vxi Vx1 39.37 ⋅ := Vx1 (Incident horizontal velocity in in/s) 

I 0.000342 := (Mass moment if inertia of ball (FPS units)) 

IG := (Mass moment of inertia of inner core) 

I2:= (Mass moment of inertia of outer shell) 
k θ:= (Torsional stiffness)
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a1
1

1
IG

1
I2

+⎛⎜
⎝

⎞
⎠

←

 
 

ωy
ky
M1

←
 

 

ξy
cy

2 M1⋅ ωy⋅
←

 
 

 

ωθ kθ
1
IG

1
I2

+⎛⎜
⎝

⎞
⎠

⋅←
 

 

 
 

b1 c θ := c θ 

c1 k θ := k θ 

ω d θ ωθ 1 ξθ 
2 

− ⋅ := ξθ 

ω dy ω y 1 ξ y 
2 

− ⋅ := ξ y 

R 1.25 := (Outer radius of the ball(FPS units)) 

cy:= (Damping coefficient(FPS units))

ky:= (Stiffness coefficient(FPS units))

M 0.000329 := (Mass of the ball(FPS units))

M1:= (Mass of inner core)

M2:= (Mass of outer shell)
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γ1
µ R⋅
I2

ky Vyi⋅

ωdy
cy ξy⋅ Vyi⋅ ωy⋅

ωdy
−⎛

⎜
⎝

⎞
⎠

⋅
1
IG

1
I2

+⎛⎜
⎝

⎞
⎠

1−
⋅←

 
 

γ2
µ R⋅
I2

cy⋅ Vyi⋅
1
IG

1
I2

+⎛⎜
⎝

⎞
⎠

1−
⋅←

 
 

 

 
 

A1
2 a1⋅ α1⋅ β1⋅ b1 β1⋅+( )

a1 α1
2

⋅ a1 β1
2

⋅− b1 α1⋅+ c1+( )2
2 a1⋅ α1⋅ β1⋅ b1 β1⋅+( )2

+
⎡
⎣

⎤
⎦

γ2
γ1 a1 α1

2
⋅ a1 β1

2
⋅− b1 α1⋅+ c1+( )⋅

2 a1⋅ α1⋅ β1⋅ b1 β1⋅+( )+
⎡
⎢
⎣

⎤
⎥
⎦

⋅←

 
 

 

B1
A1 a1 α1

2
⋅ a1 β1

2
⋅− b1 α1⋅+ c1+( )⋅ γ1−

2 a1⋅ α1⋅ β1⋅ b1 β1⋅+( )←
 

 

vθos1
cθ

I2
A1 e

ξy− ωy⋅
n π⋅

ωdy
⋅

⋅ sin n π⋅( )⋅ B1 e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ cos n π⋅( )⋅+ B1−

⎛
⎜
⎝

⎞

⎠⋅:=
 

 

vθos2
kθ

I2
0

n

nA1 e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ sin n π⋅( )⋅ B1 e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ cos n π⋅( )⋅+

⎛
⎜
⎝

⎞

⎠
π

ωdy
⋅

⌠
⎮
⎮
⎮
⌡

d⋅:=

 
 
 

vθos3

0

n

nγ1 e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ sin ωdy
n π⋅

ωdy
⋅⎛

⎜
⎝

⎞
⎠

⋅ γ2 e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ cos ωdy
n π⋅

ωdy
⋅⎛

⎜
⎝

⎞
⎠

⋅+

⎛
⎜
⎜
⎝

⎞

⎠
π

ωdy
⋅

⌠
⎮
⎮
⎮
⌡

d ω1+:=

 
 

α 1 ξ y − ω y ⋅ := ω y 

β 1 ω dy := ω dy 
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vθos vθos1 vθos2+ vθos3+:=     (Angular velocity of outer shell) 
 
 
Code for the angular velocity of the ball during rolling 
 
 
 Vy1:=     (Incident vertical velocity in m/s) 

 Vx1:=    (Incident horizontal velocity in m/s) 

 Vyi:=Vy1.39.37  (Incident vertical velocity in in/s) 

 Vxi:=Vx1.39.37  (Incident horizontal velocity in in/s) 

 ω1:=     (Incident angular spin) 
 

 

 

 
 

 
ε := (Eccentricity of normal force)

R 1.25 := (Outer radius of the ball(FPS units)) 

cy:= (Damping coefficient(FPS units))

ky:= (Stiffness coefficient(FPS units))

M 0.000329 := (Mass of the ball(FPS units))

M1:= (Mass of inner core)

M2:= (Mass of outer shell)

I 0.000342 := (Mass moment if inertia of ball (FPS units)) 

IG:= (Mass moment of inertia of inner core) 

I2:= (Mass moment of inertia of outer shell) 
k θ:= (Torsional stiffness)
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ωθ kθ
1
IG

1

I2 M R2
⋅+

+⎛
⎜
⎝

⎞

⎠
⋅←

 
 
 

ξθ 1
ωy
ωθ

⎛
⎜
⎝

⎞
⎠

2
1 ξy

2
−( )⋅−←

 
 
 

ωdθ ωθ 1 ξθ
2

−⋅←  
 
a1

1
1
IG

1

I2 M R2
⋅+

+⎛
⎜
⎝

⎞

⎠

←

 
 

cθ 2 ξθ⋅
kθ

1
IG

1

I2 M R2
⋅+

+⎛
⎜
⎝

⎞

⎠

⋅←

 
 
b1 cθ←  
 
c1 kθ←  
 

γ1
ε−

I2 M R2
⋅+

ky Vyi⋅

ωdy
cy ξy⋅ Vyi⋅ ωy⋅

ωdy
−⎛

⎜
⎝

⎞
⎠

⋅
1
IG

1

I2 M R2
⋅+

+⎛
⎜
⎝

⎞

⎠

1−
⋅←

 
 

γ2
ε−

I2 M R2
⋅+

cy⋅ Vyi⋅
1
IG

1

I2 M R2
⋅+

+⎛
⎜
⎝

⎞

⎠

1−
⋅←

 
 
 

ω y ky 
M1 

:= 
M1 

ξ y cy 
2 M1 ⋅ ω y ⋅ 

:= 
ω y 

ω dy ω y 1 ξ y 
2 

− ⋅ := ξ y 
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A1
2 a1⋅ α1⋅ β1⋅ b1 β1⋅+( )

a1 α1
2

⋅ a1 β1
2

⋅− b1 α1⋅+ c1+( )2
2 a1⋅ α1⋅ β1⋅ b1 β1⋅+( )2

+
⎡
⎣

⎤
⎦

γ2
γ1 a1 α1

2
⋅ a1 β1

2
⋅− b1 α1⋅+ c1+( )⋅

2 a1⋅ α1⋅ β1⋅ b1 β1⋅+( )+
⎡
⎢
⎣

⎤
⎥
⎦

⋅←

 
 
 

B1
A1 a1 α1

2
⋅ a1 β1

2
⋅− b1 α1⋅+ c1+( )⋅ γ1−

2 a1⋅ α1⋅ β1⋅ b1 β1⋅+( )←
 

 

θi
M Vxi2( )⋅ I ω1

2
⋅+ IG ω1

2
⋅−

I2 M R2
⋅+

←

 
 
 
n:=0,0.001…1 
 

vθor1 n( )
kθ

I2 M R2
⋅+

0

n

n
ω1 θi−( )

ωdθ
e

ξθ− ωθ⋅
n π⋅

ωdy
⋅

⋅ sin ωdθ
n π⋅

ωdy
⋅⎛

⎜
⎝

⎞
⎠

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

π

ωdy
⋅

⌠
⎮
⎮
⎮
⌡

d⋅:=

 
 
 

vθor2 n( )
kθ

I2 M R2
⋅+

0

n

nA1 e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ sin ωdy
n π⋅

ωdy
⋅⎛

⎜
⎝

⎞
⎠

⋅ B1 e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ cos ωdy
n π⋅

ωdy
⋅⎛

⎜
⎝

⎞
⎠

⋅+ B1−

⎛
⎜
⎜
⎝

⎞

⎠
π

ωdy
⋅

⌠
⎮
⎮
⎮
⌡

d⋅:=

 
 
 

vθor3 n( )
cθ

I2 M R2
⋅+

ω1 θi−( )
ωdθ

e
ξθ− ωθ⋅

n π⋅

ωdy
⋅

⋅ sin ωdθ
n π⋅

ωdy
⋅⎛

⎜
⎝

⎞
⎠

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=

 
 
 
 

vθor4 n( )
cθ

I2 M R2
⋅+

A1 e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ sin ωdy
n π⋅

ωdy
⋅⎛

⎜
⎝

⎞
⎠

⋅ B1 e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ cos ωdy
n π⋅

ωdy
⋅⎛

⎜
⎝

⎞
⎠

⋅+ B1−

⎛
⎜
⎜
⎝

⎞

⎠
⋅:=

 
 

α 1 ξ y − ω y ⋅ := ω y 

β 1 ω d θ := ω d θ 
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vθor5 n( )

0

n

nγ1 e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ sin ωdy
n π⋅

ωdy
⋅⎛

⎜
⎝

⎞
⎠

⋅ γ2 e
ξy− ωy⋅

n π⋅

ωdy
⋅

⋅ cos ωdy
n π⋅

ωdy
⋅⎛

⎜
⎝

⎞
⎠

⋅+

⎛
⎜
⎜
⎝

⎞

⎠
π

ωdy
⋅

⌠
⎮
⎮
⎮
⌡

d θi+:=

 
 
 
vθor n( ) vθor1 n( ) vθor2 n( )+ vθor3 n( )+ vθor4 n( )+ vθor5 n( )+  
 
 
 
Vxr n( ) R vθor n( )⋅  
 
 
 
Code for the transition point during contact (sliding to rolling transition) 
 
 

 
 

 
 

 

 
ω 2 v θ os sol ( ) := sol 

n= 

sol root Vxs n ( ) R v θ os n ( ) ⋅ − n , ( ):= n 

sol = sol 

Vx sol ( ) = sol 

Vx (sol 
 

 
R 

= 

v θ os sol ( ) = sol 
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APPENDIX C 
 

COMPARISON OF THEORY WITH EXPERIMENT 
 

 

SIMULATION RESULTS 

 

Some simulation results for the tennis ball dynamics are shown on the following 

pages. For each incident angle and for the major cases of zero spin, topspin and 

backspin, there are several possibilities of varying the mass, the stiffness, the damping, 

the mass moment of inertias and the torsional stiffness parameters and then obtaining the 

rebound kinematics. Accordingly, first of all, three cases for the impact have been 

categorized as zero spin, topspin and backspin. Then, for each of those major categories, 

sub-categories have been formed based on the angles of incidence of the ball with the 

ground. For the experimental data available [1], the angles of incidence vary from 17 

degrees to 70 degrees. For each angle of incidence, the cases column on the extreme left 

of the Tables indicates that the dynamic input parameters of the tennis ball model are 

varied i.e., the inner core mass, the torsional stiffness, the moments of inertia etc. and 

these variations produce the simulated values in the columns for the rebound velocities, 

the rebound angle and the time of contact of the ball with the ground, which are the last 

five columns. 

 

The fixed inputs are the parameters that are constant for each incidence angle. 

These include the horizontal and the vertical components of the incident velocity, with 

the values being input the same as those found out from the experimental results for each 

of these angles. Another important fixed parameter to be used in order to generate the 

simulated values of the kinematics includes the vertical coefficient of restitution, with 

the value being input same as that obtained from the corresponding experimental result. 

The first four columns in the table are ones that directly affect the value of the vertical 

coefficient of restitution (equation (6), Chapter 1) and these input parameter values are 
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adjusted for each simulation such that the theoretical value of the coefficient of 

restitution is equal to the one input, which in turn is equal to the experimental value for 

that particular case. Another fixed input parameter is coefficient of sliding friction. All 

simulations are based on an assumption that the damped period of vibration in relative 

rotation is equal to the period of vibration in vertical motion. This ensures that the 

rotational vibrations complete their one cycle during the impact and that the cycle is not 

incomplete when the contact finally ends. Equating these two periods also provides with 

an estimation of the damping ratio in the rotation. The value of 1000 lb-in/rad has been 

used for torsional stiffness, since it produces the best agreements with the experiments, 

and also that it fits the description of a tennis ball as a relatively stiff torsional spring [1]. 

The solutions of the differential equations derived in chapter II have been coded in the 

MathCAD software and all the results have been obtained from there. 

 

The actual experiments [1] were performed on an acrylic surface, for which the 

average sliding coefficient of friction is 0.55. This same value is used throughout the 

simulations for this parameter. 

 

It is helpful to ascertain some fixed physical parameters of the whole system. 

 

Mass of tennis ball 

 

According to [1], the tennis ball weight is around 0.0576 kg or 0.127 lb. From the 

International Tennis Federation (ITF) standards, the weight should be between 56.0 

grams and 59.4 grams. For the simulations, the weight of 0.127 lb has been selected. 

 

The mass can be calculated as follows: 

 

4.386
127.0

==
g

WM =
in
slb

2

000329.0 −  
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SELECTED CASES 

 

 The selected cases for comparison with the experiment are presented in tables 7 

to 27 and figures 35 to 51. 
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ZERO SPIN IMPACT 

 

17 degrees angle of incidence 

Fixed Inputs: 

Incident horizontal velocity = Vx1 =15.62 m/s 

Incident vertical velocity = Vy1 = 4.81 m/s 

Incident spin velocity = ω1 = 0 rad/s 

Vertical coefficient of restitution = 0.877 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad    
Table C1. Dynamic parameters and simulation results 

 
 

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-s2 Lb-in-s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.029 0.352I 0.647I 0.00028 -4.217 13.399 73.846 -15.356 4.791 
2 M/2 M/2 80 0.031 0.352I 0.647I 0.00028 -4.217 13.403 73.901 -15.352 4.546 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -4.217 13.394 74.527 -15.362 4.288 
4 2M/3 M/3 72 0.0107 0.532I 0.468I 0.00026 -4.217 12.308 244.57 -16.645 5.488 
5 2M/3 M/3 80 0.0113 0.532I 0.468I 0.00026 -4.22 12.309 245.44 -16.645 5.206 
6 2M/3 M/3 90 0.0119 0.532I 0.468I 0.00026 -4.219 12.307 245.86 -16.646 4.908 
7 3M/4 M/4 90 0.00187 0.634I 0.366I 0.00025 -4.219 11.691 298.83 -17.471 5.202 
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2. 23 degrees angle of incidence 
Fixed Inputs: 

Incident horizontal velocity = Vx1 =15.62 m/s 

Incident vertical velocity = Vy1 = 6.71 m/s 

Incident spin velocity = ω1 = 0 rad/s 

Vertical coefficient of restitution = 0.858 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

 
 
Table C2. Dynamic parameters and simulation results 

 

 
 
 

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in-s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.029 0.352I 0.647I 0.00028 -5.757 12.521 104.24 -22.292 4.791 
2 M/2 M/2 80 0.031 0.352I 0.647I 0.00028 -5.757 12.528 103.09 -24.669 4.546 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -5.754 12.54 104.57 -24.671 4.288 
4 2M/3 M/3 72 0.0107 0.532I 0.468I 0.00026 -5.76 11.08 335.56 -27.468 5.488 
5 2M/3 M/3 80 0.0113 0.532I 0.468I 0.00026 -5.76 11.087 335.76 -27.441 5.206 
6 2M/3 M/3 90 0.0119 0.532I 0.468I 0.00026 -5.757 11.095 336.01 -27.444 4.908 
7 3M/4 M/4 90 0.00187 0.634I 0.366I 0.00025 -5.762 11.47 361.26 -26.649 5.202 
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3. 35 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =14.49 m/s 

Incident vertical velocity = Vy1 = 9.95 m/s 

Incident spin velocity = ω1 = 0 rad/s 

Vertical coefficient of restitution = 0.7698 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

                 
Table C3. Dynamic parameters and simulation results 

 

 
 

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.029 0.352I 0.647I 0.00028 -7.654 9.895 152.47 -37.569 4.791 
2 M/2 M/2 80 0.031 0.352I 0.647I 0.00028 -7.654 9.904 152.87 -37.730 4.546 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -7.663 9.923 152.74 -37.622 4.288 
4 2M/3 M/3 72 0.0107 0.532I 0.468I 0.00026 -7.648 9.97 301.94 -37.714 5.488 
5 2M/3 M/3 80 0.0113 0.532I 0.468I 0.00026 -7.654 10.144 307.20 -37.014 5.206 
6 2M/3 M/3 90 0.0119 0.532I 0.468I 0.00026 -7.648 10.148 307.32 -37.018 4.908 
7 3M/4 M/4 90 0.00187 0.634I 0.366I 0.00025 -7.652 11.089 335.82 -34.608 5.202 
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4. 41 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =13.46 m/s 

Incident vertical velocity = Vy1 = 11.74 m/s 

Incident spin velocity = ω1 = 0 rad/s 

Vertical coefficient of restitution = 0.7436 

Coefficient of sliding friction = µ = 0.55     

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

                 
Table C4. Dynamic parameters and simulation results 

                 
                 
   

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.029 0.352I 0.647I 0.00028 -8.733 8.038 180.24 -48.172 4.791 
2 M/2 M/2 80 0.031 0.352I 0.647I 0.00028 -8.733 8.049 180.37 -47.334 4.546 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -8.733 8.071 180.21 -47.259 4.288 
4 2M/3 M/3 72 0.0107 0.532I 0.468I 0.00026 -8.734 9.269 280.70 -43.278 5.488 
5 2M/3 M/3 80 0.0113 0.532I 0.468I 0.00026 -8.728 9.169 277.67 -43.582 5.206 
6 2M/3 M/3 90 0.0119 0.532I 0.468I 0.00026 -8.726 9.273 280.83 -43.263 4.908 
7 3M/4 M/4 90 0.00187 0.634I 0.366I 0.00025 -8.727 9.219 279.18 -42.429 5.202 
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5. 48 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =11.7 m/s 

Incident vertical velocity = Vy1 = 13.25 m/s 

Incident spin velocity = ω1 = 0 rad/s 

Vertical coefficient of restitution = 0.7072 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

 
Table C5. Dynamic parameters and simulation results 

                            
 
 

Cases M1 
 

M2 ky cy I1 I2 kθ Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.029 0.352I 0.647I 0.00028 -9.363 6.14 185.95 -58.795 4.791 
2 M/2 M/2 80 0.031 0.352I 0.647I 0.00028 -9.363 6.149 186.21 -56.703 4.546 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -9.362 6.16 186.55 -56.667 4.288 
4 2M/3 M/3 72 0.0107 0.532I 0.468I 0.00026 -9.366 7.891 238.98 -49.876 5.488 
5 2M/3 M/3 80 0.0113 0.532I 0.468I 0.00026 -9.363 7.894 239.06 -49.896 5.206 
6 2M/3 M/3 90 0.0119 0.532I 0.468I 0.00026 -9.373 7.894 239.07 -49.884 4.908 
7 3M/4 M/4 90 0.00187 0.634I 0.366I 0.00025 -9.369 7.795 245.5 -50.239 5.202 
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6. 59 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =9.16 m/s 

Incident vertical velocity = Vy1 = 15.19 m/s 

Incident spin velocity = ω1 = 0 rad/s 

Vertical coefficient of restitution = 0.7156 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

 
      Table C6. Dynamic parameters and simulation results    

                 
                
 

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.029 0.352I 0.647I 0.00028 -10.87 4.702 142.39 -67.970 4.791 
2 M/2 M/2 80 0.031 0.352I 0.647I 0.00028 -10.87 4.672 141.49 -66.766 4.546 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -10.88 4.68 141.47 -66.723 4.288 
4 2M/3 M/3 72 0.0107 0.532I 0.468I 0.00026 -10.88 5.747 174.05 -62.136 5.488 
5 2M/3 M/3 80 0.0113 0.532I 0.468I 0.00026 -10.87 5.745 173.99 -62.155 5.206 
6 2M/3 M/3 90 0.0119 0.532I 0.468I 0.00026 -10.87 5.742 173.90 -62.168 4.908 
7 3M/4 M/4 90 0.00187 0.634I 0.366I 0.00025 -10.87 5.185 163.30 -64.511 5.202 
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7. 68 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =6.57 m/s 

Incident vertical velocity = Vy1 = 16.14 m/s 

Incident spin velocity = ω1 = 0 rad/s 

Vertical coefficient of restitution = 0.6871 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

 
Table C7. Dynamic parameters and simulation results 

 
 

 

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.029 0.352I 0.647I 0.00028 -11.14 3.179 96.283 -75.562 4.791 
2 M/2 M/2 80 0.031 0.352I 0.647I 0.00028 -11.14 3.183 96.389 -74.049 4.546 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -11.13 3.188 96.55 -74.032 4.288 
4 2M/3 M/3 72 0.0107 0.532I 0.468I 0.00026 -11.14 3.701 112.09 -71.543 5.488 
5 2M/3 M/3 80 0.0113 0.532I 0.468I 0.00026 -11.09 3.698 111.99 -71.561 5.206 
6 2M/3 M/3 90 0.0119 0.532I 0.468I 0.00026 -11.13 3.693 111.84 -71.644 4.908 
7 3M/4 M/4 90 0.00187 0.634I 0.366I 0.00025 -11.13 0.554 16.78 -87.151 5.202 
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Fig.C1  Kinematic parameters and their variation with time during contact, case 1
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TOPSPIN IMPACT 

 
18 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =16.13 m/s 

Incident vertical velocity = Vy1 = 5.33 m/s 

Incident spin velocity = ω1 = 138.20 rad/s 

Vertical coefficient of restitution = 0.876 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

Table C8. Dynamic parameters and simulation results 

                
            

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.03 0.352I 0.647I 0.00028 -4.67 13.681 219.55 -18.847 4.794 
2 M/2 M/2 80 0.0318 0.352I 0.647I 0.00028 -4.67 13.683 217.01 -18.841 4.548 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -4.669 13.683 220.02 -18.852 4.288 
4 2M/3 M/3 72 0.0123 0.532I 0.468I 0.00026 -4.672 12.766 386.62 -20.085 5.489 
5 2M/3 M/3 80 0.0129 0.532I 0.468I 0.00026 -4.668 12.771 386.76 -20.082 5.208 
6 2M/3 M/3 90 0.0137 0.532I 0.468I 0.00026 -4.669 12.777 386.93 -20.077 4.910 
7 3M/4 M/4 90 0.00345 0.634I 0.366I 0.00025 -4.67 12.762 386.48 -20.099 5.517 
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2. 23 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =16.19 m/s 

Incident vertical velocity = Vy1 = 6.75 m/s 

Incident spin velocity = ω1 = 158.06 rad/s 

Vertical coefficient of restitution = 0.905 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

      Table C9. Dynamic parameters and simulation results   

                
 
 
 

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.03 0.352I 0.647I 0.00028 -6.11 13.088 261.08 -25.025 4.794 
2 M/2 M/2 80 0.0318 0.352I 0.647I 0.00028 -6.11 13.091 260.02 -25.009 4.548 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -6.107 13.092 259.25 -25.022 4.288 
4 2M/3 M/3 72 0.0123 0.532I 0.468I 0.00026 -6.111 12.968 392.72 -25.217 5.489 
5 2M/3 M/3 80 0.0129 0.532I 0.468I 0.00026 -6.107 12.971 392.83 -25.248 5.208 
6 2M/3 M/3 90 0.0137 0.532I 0.468I 0.00026 -6.117 12.975 392.95 -25.216 4.910 
7 3M/4 M/4 90 0.00345 0.634I 0.366I 0.00025 -6.11 13.821 418.55 -23.849 5.517 
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3. 34 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =14.83m/s 

Incident vertical velocity = Vy1 = 9.98 m/s 

Incident spin velocity = ω1 = 152.53 rad/s 

Vertical coefficient of restitution = 0.827 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

            
Table C10. Dynamic parameters and simulation results 

 
 
 

Cases M1 
 

M2 ky cy I1 I2 kθ Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.03 0.352I 0.647I 0.00028 -8.257 10.244 304.86 -38.87 4.794 
2 M/2 M/2 80 0.0318 0.352I 0.647I 0.00028 -8.257 10.248 305.18 -38.862 4.548 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -8.258 10.249 305.73 -38.836 4.288 
4 2M/3 M/3 72 0.0123 0.532I 0.468I 0.00026 -8.251 11.78 356.76 -35.002 5.489 
5 2M/3 M/3 80 0.0129 0.532I 0.468I 0.00026 -8.249 11.737 355.44 -35.110 5.208 
6 2M/3 M/3 90 0.0137 0.532I 0.468I 0.00026 -8.252 11.783 356.86 -34.995 4.910 
7 3M/4 M/4 90 0.00345 0.634I 0.366I 0.00025 -8.249 12.414 375.96 -33.604 5.517 
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4. 42 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =13.76m/s 

Incident vertical velocity = Vy1 = 12.55 m/s 

Incident spin velocity = ω1 = 136.32 rad/s 

Vertical coefficient of restitution = 0.726 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

Table C11. Dynamic parameters and simulation results 

                
         
 
 

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.03 0.352I 0.647I 0.00028 -9.119 9.318 282.18 -44.382 4.794 
2 M/2 M/2 80 0.0318 0.352I 0.647I 0.00028 -9.119 9.324 282.36 -44.319 4.548 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -9.105 9.33 282.56 -44.307 4.288 
4 2M/3 M/3 72 0.0123 0.532I 0.468I 0.00026 -9.107 10.803 327.16 -40.134 5.489 
5 2M/3 M/3 80 0.0129 0.532I 0.468I 0.00026 -9.108 9.813 297.18 -42.859 5.208 
6 2M/3 M/3 90 0.0137 0.532I 0.468I 0.00026 -9.106 10.638 322.16 -40.573 4.910 
7 3M/4 M/4 90 0.00345 0.634I 0.366I 0.00025 -9.109 11.096 336.04 -39.384 5.517 
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5. 48 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =11.98m/s 

Incident vertical velocity = Vy1 = 13.17 m/s 

Incident spin velocity = ω1 = 147.58 rad/s 

Vertical coefficient of restitution = 0.750 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

 
Table C12. Dynamic parameters and simulation results 

 
                
         

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.03 0.352I 0.647I 0.00028 -9.883 8.487 257.04 -49.346 4.794 
2 M/2 M/2 80 0.0318 0.352I 0.647I 0.00028 -9.883 8.491 257.15 -49.321 4.548 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -9.879 8.496 257.28 -49.293 4.288 
4 2M/3 M/3 72 0.0123 0.532I 0.468I 0.00026 -9.875 9.373 283.85 -46.503 5.489 
5 2M/3 M/3 80 0.0129 0.532I 0.468I 0.00026 -9.878 9.371 283.80 -46.523 5.208 
6 2M/3 M/3 90 0.0137 0.532I 0.468I 0.00026 -9.883 9.369 283.75 -46.549 4.910 
7 3M/4 M/4 90 0.00345 0.634I 0.366I 0.00025 -9.89 9.622 291.38 -45.755 5.517 
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6. 61 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =8.45 m/s 

Incident vertical velocity = Vy1 = 15.29 m/s 

Incident spin velocity = ω1 = 146.74 rad/s 

Vertical coefficient of restitution = 0.688 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

 
Table C13. Dynamic parameters and simulation results 

                
                
    

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.03 0.352I 0.647I 0.00028 -10.52 6.425 194.56 -58.591 4.794 
2 M/2 M/2 80 0.0318 0.352I 0.647I 0.00028 -10.52 6.425 194.59 -58.586 4.548 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -10.52 6.798 205.88 -57.112 4.288 
4 2M/3 M/3 72 0.0123 0.532I 0.468I 0.00026 -10.51 6.500 196.84 -58.287 5.489 
5 2M/3 M/3 80 0.0129 0.532I 0.468I 0.00026 -10.52 6.496 196.72 -58.303 5.208 
6 2M/3 M/3 90 0.0137 0.532I 0.468I 0.00026 -10.52 6.491 196.58 -58.322 4.910 
7 3M/4 M/4 90 0.00345 0.634I 0.366I 0.00025 -10.52 6.328 191.65 -58.69 5.517 
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7. 71 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =5.67 m/s 

Incident vertical velocity = Vy1 = 16.39 m/s 

Incident spin velocity = ω1 = 145.88 rad/s 

Vertical coefficient of restitution = 0.674 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

 
      Table C14. Dynamic parameters and simulation results   

                
                
  

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.03 0.352I 0.647I 0.00028 -11.05 4.795 145.21 -66.538 4.794 
2 M/2 M/2 80 0.0318 0.352I 0.647I 0.00028 -11.05 4.794 145.17 -66.533 4.548 
3 M/2 M/2 90 0.0338 0.352I 0.647I 0.00028 -11.04 4.791 145.11 -66.556 4.288 
4 2M/3 M/3 72 0.0123 0.532I 0.468I 0.00026 -11.05 4.27 129.32 -68.867 5.489 
5 2M/3 M/3 80 0.0129 0.532I 0.468I 0.00026 -11.05 4.265 129.16 -68.888 5.208 
6 2M/3 M/3 90 0.0137 0.532I 0.468I 0.00026 -11.05 4.259 128.99 -68.915 4.910 
7 3M/4 M/4 90 0.00345 0.634I 0.366I 0.00025 -11.05 3.799 115.06 -71.021 5.517 
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    Fig.C2 Kinematic parameters and their variation with time during contact, case 6.  
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BACKSPIN IMPACT 
 
1. 17 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =16.18 m/s 

Incident vertical velocity = Vy1 = 5.08 m/s 

Incident spin velocity = ω1 = -168.32 rad/s 

Vertical coefficient of restitution = 0.769 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

 
Table C15. Dynamic parameters and simulation results 

        

Cases M1 
 

M2 ky cy I1 I2 kθ Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-
in/rad 

m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.026 0.352I 0.647I 0.00028 -5.265 13.798 -88.94 -15.814 4.783 
2 M/2 M/2 80 0.0275 0.352I 0.647I 0.00028 -5.265 13.799 -88.74 -15.808 4.537 
3 M/2 M/2 90 0.00633 0.352I 0.647I 0.00028 -5.268 13.494 -100.6 -16.139 4.248 
4 2M/3 M/3 72 0.00728 0.532I 0.468I 0.00026 -5.267 12.614 95.18 -17.214 5.485 
5 2M/3 M/3 80 0.00768 0.532I 0.468I 0.00026 -5.265 12.622 95.76 -17.191 5.204 
6 2M/3 M/3 90 0.00815 0.532I 0.468I 0.00026 -5.263 12.614 96.46 -17.209 4.906 
7 3M/4 M/4 90 0.00230 0.634I 0.366I 0.00025 -5.266 5.302 166.99 -36.386 5.517 
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2. 22 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =15.95 m/s 

Incident vertical velocity = Vy1 = 6.95 m/s 

Incident spin velocity = ω1 = -148.05 rad/s 

Vertical coefficient of restitution = 0.799 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

 
Table C16. Dynamic parameters and simulation results 

                

   
       
 

Cases M1 
 

M2 ky cy I1 I2 kθ Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-
in/rad 

m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.026 0.352I 0.647I 0.00028 -3.908 12.86 -45.07 -22.264 4.783 
2 M/2 M/2 80 0.0275 0.352I 0.647I 0.00028 -3.908 12.861 -44.81 -22.275 4.537 
3 M/2 M/2 90 0.00633 0.352I 0.647I 0.00028 -3.907 12.466 -30.09 -22.905 4.248 
4 2M/3 M/3 72 0.00728 0.532I 0.468I 0.00026 -3.905 11.324 194.01 -24.936 5.485 
5 2M/3 M/3 80 0.00768 0.532I 0.468I 0.00026 -3.908 11.335 193.25 -24.906 5.204 
6 2M/3 M/3 90 0.00815 0.532I 0.468I 0.00026 -3.905 11.324 195.44 -24.939 4.906 
7 3M/4 M/4 90 0.00230 0.634I 0.366I 0.00025 -3.907 11.558 350.03 -24.495 5.517 
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3. 35 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =14.35 m/s 

Incident vertical velocity = Vy1 = 9.97 m/s 

Incident spin velocity = ω1 = -157.58 rad/s 

Vertical coefficient of restitution = 0.711 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

 
Table C17. Dynamic parameters and simulation results 

                
         

 

Cases M1 
 

M2 ky cy I1 I2 kθ Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-
in/rad 

m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.026 0.352I 0.647I 0.00028 -7.087 9.675 -1.783 -36.223 4.783 
2 M/2 M/2 80 0.0275 0.352I 0.647I 0.00028 -7.087 9.677 -1.386 -36.206 4.537 
3 M/2 M/2 90 0.00633 0.352I 0.647I 0.00028 -7.084 9.611 20.875 -36.432 4.248 
4 2M/3 M/3 72 0.00728 0.532I 0.468I 0.00026 -7.094 8.594 260.26 -39.523 5.485 
5 2M/3 M/3 80 0.00768 0.532I 0.468I 0.00026 -7.09 8.595 260.29 -39.507 5.204 
6 2M/3 M/3 90 0.00815 0.532I 0.468I 0.00026 -7.087 8.607 260.68 -39.48 4.906 
7 3M/4 M/4 90 0.00230 0.634I 0.366I 0.00025 -7.09 10.027 303.65 -35.264 5.517 
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4. 40.5 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =13.8 m/s 

Incident vertical velocity = Vy1 = 11.78 m/s 

Incident spin velocity = ω1 = -179.12 rad/s 

Vertical coefficient of restitution = 0.733 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

Table C18. Dynamic parameters and simulation results 

 
 

 
 

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.026 0.352I 0.647I 0.00028 -8.635 8.276 4.962 -46.216 4.783 
2 M/2 M/2 80 0.0275 0.352I 0.647I 0.00028 -8.635 8.279 5.43 -46.189 4.537 
3 M/2 M/2 90 0.00633 0.352I 0.647I 0.00028 -8.63 7.572 31.65 -48.763 4.248 
4 2M/3 M/3 72 0.00728 0.532I 0.468I 0.00026 -8.638 7.893 239.05 -47.577 5.485 
5 2M/3 M/3 80 0.00768 0.532I 0.468I 0.00026 -8.637 7.895 239.09 -47.579 5.204 
6 2M/3 M/3 90 0.00815 0.532I 0.468I 0.00026 -8.64 7.838 237.37 -47.779 4.906 
7 3M/4 M/4 90 0.00230 0.634I 0.366I 0.00025 -8.638 9.073 274.76 -43.593 5.517 
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5. 45 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =12.02 m/s 

Incident vertical velocity = Vy1 = 12.11 m/s 

Incident spin velocity = ω1 = -164.57 rad/s 

Vertical coefficient of restitution = 0.749 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

Table C19. Dynamic parameters and simulation results 

 
 
       
 

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.026 0.352I 0.647I 0.00028 -9.074 6.342 24.668 -55.049 4.783 
2 M/2 M/2 80 0.0275 0.352I 0.647I 0.00028 -9.074 6.344 25.15 -55.032 4.537 
3 M/2 M/2 90 0.00633 0.352I 0.647I 0.00028 -9.071 5.617 52.104 -58.225 4.248 
4 2M/3 M/3 72 0.00728 0.532I 0.468I 0.00026 -9.068 6.701 202.94 -53.548 5.485 
5 2M/3 M/3 80 0.00768 0.532I 0.468I 0.00026 -9.072 6.704 203.04 -53.518 5.204 
6 2M/3 M/3 90 0.00815 0.532I 0.468I 0.00026 -9.066 6.708 203.16 -53.523 4.906 
7 3M/4 M/4 90 0.00230 0.634I 0.366I 0.00025 -9.073 7.853 237.82 -49.123 5.517 
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6. 59 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =9.12 m/s 

Incident vertical velocity = Vy1 = 15.04 m/s 

Incident spin velocity = ω1 = -184.04 rad/s 

Vertical coefficient of restitution = 0.684 

Coefficient of sliding friction = µ = 0.55 

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

Table C20. Dynamic parameters and simulation results 

 
 
      
 

Cases M1 
 

M2 ky cy I1 I2 I Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-in- s2 m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.026 0.352I 0.647I 0.00028 -10.29 2.068 50.984 -78.635 4.783 
2 M/2 M/2 80 0.0275 0.352I 0.647I 0.00028 -10.29 2.071 51.583 -78.622 4.537 
3 M/2 M/2 90 0.00633 0.352I 0.647I 0.00028 -10.29 1.708 53.797 -80.572 4.248 
4 2M/3 M/3 72 0.00728 0.532I 0.468I 0.00026 -10.29 4.111 124.51 -68.205 5.485 
5 2M/3 M/3 80 0.00768 0.532I 0.468I 0.00026 -10.28 4.112 124.52 -68.208 5.204 
6 2M/3 M/3 90 0.00815 0.532I 0.468I 0.00026 -10.29 4.112 124.52 -68.214 4.906 
7 3M/4 M/4 90 0.00230 0.634I 0.366I 0.00025 -10.29 4.891 148.11 -64.573 5.517 
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7. 68 degrees angle of incidence 
 
Fixed Inputs: 
 
Incident horizontal velocity = Vx1 =6.57 m/s 

Incident vertical velocity = Vy1 = 15.95 m/s 

Incident spin velocity = ω1 = -165.53 rad/s 

Vertical coefficient of restitution = 0.679 

Coefficient of sliding friction = µ = 0  

Torsional stiffness coefficient = kθ = 1000 lb-in/rad 

Table C21. Dynamic parameters and simulation results 

             

Cases M1 
 

M2 ky cy I1 I2 kθ Vy2 Vx2 ω2 θ2 tc 

 Lb-
s2/in 

Lb-
s2/in 

Lb/in Lb-s/in Lb-in-
s2 

Lb-in-
s2 

Lb-
in/rad 

m/s m/s Rad/s Degrees msec 

1 M/2 M/2 72 0.026 0.352I 0.647I 0.00028 -10.83 0.76 23.02 -85.986 4.783 
2 M/2 M/2 80 0.0275 0.352I 0.647I 0.00028 -10.83 0.767 23.226 -85.952 4.537 
3 M/2 M/2 90 0.00633 0.352I 0.647I 0.00028 -10.84 0.685 20.748 -86.378 4.248 
4 2M/3 M/3 72 0.00728 0.532I 0.468I 0.00026 -10.82 2.273 68.844 -78.150 5.485 
5 2M/3 M/3 80 0.00768 0.532I 0.468I 0.00026 -10.83 2.272 68.8 -78.149 5.204 
6 2M/3 M/3 90 0.00815 0.532I 0.468I 0.00026 -10.83 2.269 68.728 -78.161 4.906 
7 3M/4 M/4 90 0.00230 0.634I 0.366I 0.00025 -10.82 2.734 82.803 -75.824 5.517 
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APPENDIX D 
 

ERROR ANALYSIS 
 

 

A simple error analysis can be performed for each of the cases of zero spin, top 

spin and back spin whereby the percentage difference between the theoretically 

predicted rebound parameters and experimentally determined values of these parameters 

are obtained. These percentage differences, with experimental values as reference, are 

obtained for all three sets of dynamic parameters used to perform the simulations of the 

tennis ball, namely Case 1, Case 2, and Case 3, as presented in Chapter V. The 

comparison of percentage differences will also give an idea of how the selection of 

varying dynamic parameters in Cases 1, 2 and 3 affects the rebound parameters. 

 

1. Zero Spin 

 

Case 1 

  Table D1. Percentage error for different incident angles 

Rebound Horizontal 

Velocity 

Rebound Angle Rebound Angular Spin 

10.992 19.476 2.655 

25.418 23.300 7.205 

32.428 18.107 4.736 

27.876 12.398 16.992 

20.108 5.141 10.404 

48.449 9.554 20.254 

34.963 3.669 16.357 
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Case 2 

Table D2. Percentage error for different incident angles 

Rebound Horizontal 

Velocity 

Rebound Angle Rebound Angular Spin 

10.974 19.464 2.829 

24.423 22.762 9.509 

32.480 18.132 4.778 

27.903 12.411 17.017 

22.009 5.927 12.151 

48.372 9.537 20.189 

34.781 3.642 16.196 

 

Case 3 

Table D3. Percentage error for different incident angles 

Rebound Horizontal 

Velocity 

Rebound Angle Rebound Angular Spin 

20.821 25.699 -69.115 

41.380 31.064 -66.717 

29.177 16.585 -48.017 

10.869 4.288 -24.897 

-5.100 6.184 -12.767 

21.498 3.479 -1.583 

14.635 0.516 0.034 
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2. Top Spin 

 

Case 1 

Table D4. Percentage error for different incident angles 

Rebound Horizontal 

Velocity 

Rebound Angle Rebound Angular Spin 

16.348 22.116 0.202 

25.203 27.828 -1.327 

21.627 17.481 9.791 

10.010 1.807 12.860 

20.916 8.337 19.980 

17.895 1.679 20.044 

-6.264 5.778 8.457 

 

Case 2 

Table D5. Percentage error for different incident angles 

Rebound Horizontal 

Velocity 

Rebound Angle Rebound Angular Spin 

16.348 22.116 -0.026 

25.241 27.848 -1.295 

22.104 17.735 10.229 

10.010 1.807 12.857 

20.890 8.325 19.958 

17.804 1.649 19.959 

-6.396 5.815 8.312 
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Case 3 

Table D6. Percentage error for different incident angles 

Rebound Horizontal 

Velocity 

Rebound Angle Rebound Angular Spin 

24.918 27.147 -43.135 

26.100 28.293 -34.418 

6.155 8.426 -5.832 

-3.640 6.944 -1.148 

9.509 2.920 8.664 

16.606 1.256 18.733 

5.385 2.651 21.932 

 

3. Back Spin 

 

Case 1 

Table D7. Percentage error for different incident angles 

Rebound Horizontal 

Velocity 

Rebound Angle Rebound Angular Spin 

19.526 19.175 -10.165 

15.427 18.395 13.443 

43.25 18.974 -0.474 

47.295 18.331 14.416 

62.718 19.334 15.943 

46.335 7.035 16.601 

44.713 3.343 -3.682 
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Case 2 

Table D8. Percentage error for different incident angles 

Rebound Horizontal 

Velocity 

Rebound Angle Rebound Angular Spin 

19.451 19.127 -8.566 

15.315 18.324 14.726 

43.450 19.054 -0.331 

46.231 17.975 13.590 

62.815 19.359 16.015 

46.335 7.035 16.605 

44.522 3.326 -3.783 

 

Case 3 

Table D9. Percentage error for different incident angles 

Rebound Horizontal 

Velocity 

Rebound Angle Rebound Angular Spin 

30.663 25.736 -184.300 

30.957 27.216 -126.457 

61.250 25.616 -100.682 

54.403 20.646 -97.625 

53.932 17.019 -85.914 

-26.406 6.126 -52.257 

-51.592 5.574 -67.773 

 

 

These results are presented in graphical form on next pages for each of the three 

incidences of zero spin, top spin and back spin. 
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Zero Spin 

 

Comparison of three cases for rebound horizontal velocity in 
Zero spin
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Comparison of three cases for rebound angle in Zero spin
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Comparison of rebound angluar spin for three cases with 
Zero incident spin
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Top Spin 

 

Comparison of rebound horizontal velocity for three cases in 
Top spin
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Comparison of rebound angle for three cases in Top spin
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Comparison of rebound angular spin for three cases with Top 
spin
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Back Spin 

 

Comparison of rebound horizontal velocity for three cases in 
Back spin
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Comparison of rebound angle for three cases in Back spin
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Comparison of rebound angular spin for three cases with 
Back spin
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