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ABSTRACT

Atomic and Nuclear Interference Phenomena

and Their Applications. (May 2005)

Yelena Anatolyevna Kuznetsova, B.S., Nizhny Novgorod State University, Russia;

M.S., Nizhny Novgorod State University, Russia

Chair of Advisory Committee: Dr. Olga Kocharovskaya

In this work, interference and coherence phenomena, appearing in atomic and

molecular ensembles interacting with coherent light sources, as electromagnetically

induced transparency (EIT), coherent population trapping (CPT), and slow group

velocity of light are investigated. The goal of the project is to make the steps towards

various applications of these phenomena, first, by studying them in solid media (which

are the most advantageous for applications), second, by suggesting some novel ap-

plications such as CPT-based plasma diagnostics, and realization of new types of

solid-state lasers (based on suppression of excited-state absorption via EIT). The

third goal of the project is extension of coherence and interference effects well-known

in optics to the gamma-ray range of frequencies and, correspondingly, from atomic to

nuclear transitions. A particular technique of chirped pulse compression applied to

Mössbauer transitions is considered and the possibility of compression of Mössbauer

radiation into ultrashort gamma-ray pulses is analyzed.

The theoretical treatment of the interference and coherence effects is based on

the semiclassical description of atom-light interaction, which is sufficient for correct

analysis of the phenomena considered here. Coherent media are considered in two-,

three-, and four-level approximations while their interaction with light is studied both

analytically and numerically using the Maxwell-Bloch set of equations.
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CHAPTER I

INTRODUCTION

Observation by R.W. Wood and A. Ellet [1] and interpretation by W. Hanle [2] of

resonance fluorescence signal depolarization by an external magnetic field in mercury

vapour started in 1924 the history of atomic and nuclear interference and coherence

phenomena. This effect named after Hanle is a direct consequence of the Zeeman

coherence created in the excited state by excitation with coherently polarized light.

The phenomenon can be described as the result of a quantum-mechanical interference

between the scattering amplitudes for the two possible routes from the ground state

to the excited state and back. This quantum-mechanical interference manifests itself

as a change in the polarization of the scattered resonance radiation as the separa-

tion of the Zeeman sub-levels of the excited level is varied. The interference effect

disappears when these levels are separated by more than their width Γ. The Hanle

effect provides a very reliable technique for measuring the lifetimes of excited levels

of atoms and molecules. In fact, the Hanle effect together with the level-crossing

phenomenon, which is its extension to nonzero magnetic fields and non-degenerate

states, have long been the only available Doppler-free spectroscopic techniques [3].

Nowadays atomic coherence and interference phenomena include so well-studied ef-

fects as self-induced transparency [4]; spin [5], photon [6], and Raman [7] echoes;

quantum [8], and Raman [9] beats; autoionization Fano-resonances [10], etc., and a

wealth of coherent phenomena observed in radio-frequency/microwave-optical double

resonance experiments such as Raman heterodyne technique [11], photon-echo nu-

clear double resonance [12], optical-pumping double resonance [13], coherent optical

The journal model is Physical Review A.
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double resonance [14]. They found numerous applications in atomic and molecular

spectroscopy.

In the last decade new interference phenomena, Coherent Population Trapping

(CPT), Lasing Without Inversion (LWI) and Electromagnetically Induced Trans-

parency (EIT), discovered in the late 1970s by G. Alzetta et al., and H.R. Gray et al.

[15], independently predicted in the works of O. Kocharovskaya and Y. Khanin, S.E.

Harris and M.O. Scully in the late 1980s [16] - early 1990s [17], respectively, attracted

enormous attention due to their unusual properties and potential applications. These

interference phenomena take place in multilevel atomic and molecular systems inter-

acting with coherent electromagnetic fields. The simplest system in which they are

observed is a three-level atomic or molecular system, shown in Fig.1, coupled to two

laser fields in such a way that the laser driven transitions are dipole allowed while

the third transition, typically Zeeman or hyperfine, is dipole forbidden. The inter-

ference occurs between transition pathways induced by the fields within the internal

quantum states of atoms and molecules. It can lead to dramatic modifications of the

optical response of the system. In particular, absorption of a probe field tuned in

resonance to some transition can be cancelled leading to an initially opaque medium

being rendered transparent for the probe field. This effect is termed Electromagneti-

cally Induced Transparency [18] owing to the fact that the transparency for the probe

field is induced by another electromagnetic, called driving or control, field(s). First

the destructive interference of this type leading to cancellation of the total transition

probability was discovered by Fano [10] who found that the ionization rate of an atom

shows pronounced reduction when the ionization can occur both by direct excitation

into the continuum and by a transition to an auto-ionizing state, having bound-state

character and lying in the continuum, followed by a rapid radiationless transition to

the continuum. As was shown by Heller and Popov [19], this Fano-type interference
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|1>

|2>

|1>

|2>

|3> |1>

|2>

|3>

a b c

|3>

Fig. 1. Generic three-level atomic or molecular systems coupled with two electro-

magnetic fields in which the interference effects are most easily realized: a) Λ

scheme; b) V scheme; c) ladder scheme.

can be realized even in the absence of the auto-ionizing state if an additional laser field

couples some bound state to the continuum. In this way it admixes the bound state

to the continuum thus creating an analog of an auto-ionizing state. This admixed

state was named Laser Induced Continuum Structure [20].

The interference between transition pathways requires that the atomic or molec-

ular system be in a superposition of its mutually coherent quantum states. The coher-

ently prepared medium was named ”phaseonium” [21]. It demonstrates a number of

new phenomena among which are Coherent Population Trapping [22]; Coherent Pop-

ulation Transfer [23]; the possibility of manipulation of the group velocity of a light

pulse propagating in the medium, i.e. to reduce it down to a few meters per second

[24] or even bring the pulse to a complete stop [25], imprint the quantum state carried

by pulse photons into a superposition of long-lived spin states of atoms and to later

retrieve it with (ideally) no losses [26], thus realizing the first steps toward optically

carried quantum information storage and processing and quantum computing.

Coherent Population Trapping was first observed by Alzetta [15] as suppression

of resonant fluorescence from sodium vapor in the presence of a multimode laser field
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applied to the Λ configuration of energy states shown in Fig.1a when the frequency

difference of the laser modes matched the frequency difference of the ground hyperfine

levels (two-photon resonance condition). In the absence of relaxation processes the

probability amplitude of the excited state |3 > is governed by the equation:

∂c3

∂t
= i

(
Ω1c1e

i∆31t + Ω2c2e
i∆32t

)
= i

(
Ω1c1e

i∆t + Ω2c2

)
ei∆32t, (1.1)

where the laser fields are defined via their Rabi frequencies Ω1,2 = µ31,32E1,2/2h̄ with

µ31,32 and E1,2 being the dipole moment matrix elements of the transitions |3 >↔ |1 >

and |3 >↔ |2 > and slowly varying amplitudes of the laser field electric components,

respectively; c1, c2 and c3 are the probability amplitudes of the corresponding states

in the interaction representation; ∆31,32 = ω31,32 − ω1,2 are the detunings of the laser

fields, having frequencies ω1,2, from the corresponding transitions whose frequencies

are ω31,32; ∆ = ω21 − (ω1 − ω2) is the two-photon detuning of the fields with respect

to the dipole forbidden |2 >↔ |1 > transition. In the situation of exact two-photon

resonance when ∆ = 0 Eq.(1.1) shows that there is a particular superposition of lower

levels: c1/c2 = −Ω2/Ω1 from which atoms are not excited to the upper state, thus

producing no fluorescence. This ”dark” or ”trapped” and orthogonal to it ”bright”

states are defined as:

|d >=
Ω2

Ω
|1 > −Ω1

Ω
|2 >, (1.2)

|b >=
Ω1

Ω
|1 > +

Ω2

Ω
|2 >, (1.3)

where Ω =
√

Ω2
1 + Ω2

2 is the effective Rabi frequency of the fields. The ”dark” state

is completely decoupled from the excited state and once the system is in this state it

becomes transparent for the applied optical fields. The ”bright” state is coupled to

the excited state and eventually all its population is transferred to the ”dark” state by
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Fig. 2. a) The Λ energy level scheme interacting with two cw electromagnetic fields in

which CPT is typically observed; b) Alternative description in terms of ”dark”

|d > and ”bright” |b > states, illustrating population transfer into the ”dark”

state by optical pumping.

the excited state spontaneous decay which goes into both states, so that the medium

ends up in a coherent superposition of lower states given by Eq.(1.2) and no longer

interacts with the fields (see Fig.(2)).

When both electromagnetic fields are of comparable strength, both lower levels

have comparable populations in the ”dark” state. If one of the fields is much stronger

than the other, for example Ω2 � Ω1, as follows from Eq.(1.2) the ”dark” state in

this situation coincides with |1 > (EIT situation). The system being pumped into

the ”dark” state leads to vanishing of the imaginary part of the susceptibility, linear

in the probe field strength, at two-photon resonance between the probe and control

fields. The susceptibility consists of two terms, the first one describes the direct ab-

sorption process at the |1 >→ |3 > transition, the second one is responsible for the

second possible path to the upper state involving the state |2 >, namely, it includes

processes as |1 >→ |3 >→ |2 >→ |3 >, |1 >→ |3 >→ |2 >→ |3 >→ |2 >→ |3 >,

etc. The second term has a negative sign with respect to the first one and, if the

state |2 > is metastable, these terms exactly cancel each other. The probe absorption

profile, determined by the imaginary part of the linear susceptibility, shows a narrow
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dip at exact two-photon resonance. The width of the resonance is determined neither

by the Doppler nor by the homogeneous/radiative widths of the transitions to the

upper state but rather by the decay rate of the phase coherence between amplitudes

of states |1 > and |2 >, which can be extremely small if the state |2 > is metastable.

It is worth noting that while CPT deals with an atomic response in the presence of

external fields, EIT, LWI and slow light describe self-consistent nonlinear propagation

of a bichromatic field through an optically thick resonant medium. The essence of EIT

is the possibility of propagation without absorption of a two-component strong field

under the condition of two-photon resonance while each component would be strongly

absorbed if propagates through the medium alone. According to the Kramers-Kronig

relation [27], a narrow dip in the imaginary part of the linear susceptibility is accompa-

nied by a steep non-anomolous dispersion feature in the real part of the susceptibility.

As was pointed out in [28], this dispersion can result in a small group velocity of a

light pulse propagating in a medium with EIT when the intensity of the pulse is small

compared to the intensity of the control field. This prediction was confirmed later

in a large number of experiments in gases, both hot and cold (BEC), and solid-state

materials, mostly in transition metal and rare-earth ion doped crystals and semicon-

ductors. The possibility of changing the velocity of a light pulse by adjusting the

intensity of an external control field is promising for devices such as optical buffers

and optical delay lines. As was mentioned above, this property of the EIT effect

allows one to map quantum states of photons of the probe pulse into spin excitations

of coherently driven atomic media. This happens due to existence in the EIT medium

of a combined excitation of photons of the probe field and spins, called a ”dark-state”

polariton [26]. Its properties, namely, propagation velocity and the ratio of photonic

and spin components, is governed by an external classical control field. By adiabat-

ically switching the control field off the polariton can be made completely spin-like
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and stopped, which results in the mapping of the photonic quantum state onto spin

states of an atomic ensemble. Later on the probe pulse can be retrieved by switching

the control field on and it will have the same quantum state as before.

EIT makes possible nonlinear mixing processes under the two-photon condition.

Indeed, nonlinear interactions are greatly enhanced at resonance, however, linear

absorption is also greatly enhanced. EIT allows one to eliminate linear absorption

leaving unchanged or even enhanced higher order susceptibilities (for example, second

and third) due to constructive interference of probability amplitudes [29]. Since the

control field threshold intensity required to establish EIT is typically much less than

the saturation intensity, it makes possible to realize nonlinear effects at the intensity

level corresponding to a single photon [30]. Using EIT many well-studied and new

nonlinear phenomena such as nonlinear frequency conversion [31] up to vacuum ul-

traviolet frequency range [32], optical phase conjugation [33], four-wave mixing [34],

etc. can be realized with much lower laser intensities. Recently, four-wave mixing

in cold 87Rb atoms was demonstrated requiring extremely low pump powers of a few

nanowatts and energies of less than a picojoule [35]. EIT results also in resonantly en-

hanced Kerr nonlinearities with extremely low-power laser fields [36], which could be

used in Cavity Quantum Electrodynamics as a means for enhancing photon-photon

interaction strength in a cavity under conditions of weak atom-cavity field coupling,

which is essential for realization of some quantum logic operations [37]. It also became

a basis of the so-called ”nonlinear optics with maximum coherence”, when a medium

initially prepared in a superposition state having large atomic or molecular coherence

serves as a local oscillator for nonlinear frequency conversion with an exceptionally

high conversion efficiency [38]. This technique was used to generate a broad spec-

trum of optical sidebands due to refractive index modulation of the medium by two

laser fields applied in almost two-photon resonance with a pair of molecular states in
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molecular deuterium [39]. The generated spectrum of sidebands can be compressed

into a train of subfemtosecond pulses; in a recent work [40] a single-cycle optical pulse

of 0.5 fs duration was obtained using this technique.

It was recognized early that by using quantum interference to suppress absorp-

tion while having stimulated emission unaffected lasers with reduced pump intensity,

or even without population inversion, can be realized [41]. LWI holds promise for ob-

taining laser action in spectral domains, e.g. the x-ray and gamma-ray range, where

conventional methods requiring population inversion and thus incoherent pump scal-

ing with the transition frequency at least as ν3 necessary to overcome spontaneous

emission from the metastable laser level are not available or difficult to implement

[42]. Incoherent pumping of population into upper states can also lead to appearance

of spectral regions with a resonantly enchanced refractive index [43] with at the same

time vanishing absorption.

Extremely narrow resonances associated with EIT and CPT can be naturally

applied for high-precision measurements, spectroscopy, and metrology, for example,

atomic clocks [44] and magnetometry [45].

One of the directions in nuclear spectroscopy attracting now a lot of attention

is application of optical techniques in the gamma-ray range of frequencies (mostly

to Mössbauer nuclear transitions owing to their narrow widths). This is a promising

approach since optical methods are already well-developed and understood. Thus

their extension to gamma rays would allow one to combine benefits of widely and

successfully used optical methods with advantages of an extremely short wavelength

of a gamma photon. It is especially interesting to extend interference phenomena to

gamma-rays, because they would offer the possibility of fine manipulation of gamma

photons. Such interference phenomenon as quantum beats resulting from different

transitions in a nucleus has long been observed at Mössbauer transitions [46]. An-
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other interesting effect also resulting from interference of probability amplitudes of

transitions originating from initially phased states was observed recently [47]: the ra-

diative decay rate of a radioactive nucleus 57Fe in 57FeBO3 was controlled by abrupt

(within the natural decay time of a nucleus excited state) switching of a crystal mag-

netization. Namely, when an external magnetic field controlling magnetization was

switched off the coherent nuclear decay was significantly reduced. Switching back

at later times restored it, starting with an intense radiation spike. Suppression and

restoration of the coherent nuclear decay originate in this experiment from drastic

changes of the nuclear states and of the interference within the nuclear transitions

caused by the magnetic switching. The central idea was to study the possibility of

storing excitation energy by suppressing the coherent decay and releasing the stored

energy later.

As was already mentioned before, such interference effect as LWI holds promise

for resolving the long-standing problem of a gamma-ray laser. Work in this direc-

tion has already started in 90’s with observation of Rabi-splitting of a Mössbauer

resonance line due to radio-frequency driving of the hyperfine-split ground state of a

composite nuclear-electronic system [48]. The next step was a demonstration of an

analog of electromagnetically induced transparency for gamma rays, when gamma ra-

diation absorption in a resonant Mössbauer absorber was reduced due to interference

between two paths from excited state hyperfine sublevels to a common ground state

[49]. The sublevels were moved to the point of level crossing by a dc magnetic field

collinear to the electric field gradient axis of the absorber material, and a dc trans-

verse magnetic field produced an anti-crossing effect, mixing the sublevels thus giving

rise to a coherence between them which resulted in the interference and absorption

suppression. Recently, it has been suggested in Ref.[50] that the coherent effects can

also be observed at the Mössbauer transitions via optical driving of electronic transi-
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tions. Various modifications of Mössbauer gamma-ray absorption spectra (splitting,

shifting, broadening, and narrowing of lines) by a coherent optical driving field have

been predicted.

Most coherence and interference effects with Mössbauer radiation are though ob-

served in scattering experiments as the radiation field emitted by a radioactive sponta-

neously decaying nuclear source interferes with the absorbed and re-emitted (forward

scattered) radiation field of the resonant absorber. If a phase of the Mössbauer source

radiation field is rapidly shifted by π, then the so-called gamma-echo is observed [51].

The explanation for this effect is that the phase shift turns the destructive interfer-

ence between the source and scattered radiation into constructive one resulting in

an echo. Interference can also take place between forward scatterred waves, and a

nuclear exciton is the most famous example [52]. The exciton is the delocalized ex-

cited state of an ensemble of nuclei created by a single gamma-quantum. In other

words, it is a spatially coherent superposition of excited states of all nuclei in the

ensemble, in each contributing term of the superposition one nucleus is excited with

a definite probability amplitude while all others are in the ground state. When the

phase correlation of the partial nuclear excitations is preserved during the lifetime

of the excited state, interference of the waves re-radiated by the nuclei occurs and

a coherent radiation field is built up in nuclear resonant scattering. The develop-

ment of synchrotron radiation sources allowed to observe new coherence phenomena

in nuclear forward scattering, including the nuclear exciton, due to the fact that the

excitation by a synchrotron radiation pulse is short compared to the nucleus excited

state lifetime and the forward scattering is well separated in time from excitation. In

the experiments with a Mössbauer source the forward scattered radiation is always

coupled with the incident radiation. This led to observation of such effects stemmimg

from the exciton formation as super-radiance [53], manifested as a huge increase of the
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coherent scattering intensity, and a speeding up of the nuclear decay, and dynamical

beats (modulation of the scattered intensity in time and in space, which is related to

sequential absorptions and re-emissions of gamma-photons by nuclei) [54].

The techniques, described above, which are based on interference within nuclear

transitions or different components of scattered fields, become complementary to

traditional Mössbauer spectroscopy. Their advantage is that they utilize not only the

amplitude, but also the phase of the radiation field, while the traditional spectroscopy

deals only with the strength of the field. Thus interference techniques provide refined

information about hyperfine interactions.

This research project pursues two major goals. First, to apply the coherence

and interference effects discussed above to media, such as doped crystals and plasma,

which are relatively less explored compared to gaseous media, suggesting along the

way new applications, including CPT - based magnetic field diagnostics in plasmas

and suppression of excited-state absorption in laser crystals. The second goal is to

extend the range of frequencies available for interference phenomena from optical to

gamma-ray range by studying them at nuclear transitions. A particular technique of

chirped pulse compression, well-known in optics, is considered in the project applied

to Mössbauer transitions and the possibility of compression of Mössbauer radiation

into ultrashort pulses is analyzed.

The organization of the dissertation is as follows. In Chapter II a method of mag-

netic field diagnostic in a plasma, based on the coherent population trapping effect,

is considered. Theory and experiment are presented, demonstrating the capability of

the technique to measure both the strength and the orientation of the field. Estimates

are given for the range of plasma parameters where the method can be applied.

In Chapter III a theoretical analysis of the basic requirements necessary for

realization of atomic interference and coherence phenomena: EIT, CPT, slow light
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and low-intensity nonlinear interactions, in solids is carried out. A class of materials,

namely, rare-earth and transition metal ion doped crystals, which are known to have

both narrow optical and spin transitions, is considered. Estimates are derived for

required laser intensities and expected efficiency of nonlinear interactions in these

materials.

In Chapter IV a method of suppression of excited-state absorption (ESA) pre-

venting laser action in many laser crystals is considered, using the effect of electro-

magnetically induced transparency. Estimates for the efficiency of ESA reduction

and required intensities of the driving field are presented for typical parameters of

dielectric host materials doped with rare-earth ions. Two particular crystals are con-

sidered in more detail, in which ESA suppression may result in laser action in the

ultraviolet and visible regions. Next, a pulsed regime of amplification in a crystal

with suppressed excited-state absorption is analyzed. Evolution of the probe and

control fields is studied both analytically and numerically. Estimates for the ultimate

probe pulse intensity, temporal width, and velocity are given for the amplifiers made

of rare-earth ion doped crystals.

In Chapter V the possibility to realize the well-known in optics chirped-pulse

compression technique in the gamma frequency range in order to produce short pulses

of Mössbauer radiation is theoretically considered.
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CHAPTER II

MAGNETIC FIELD DIAGNOSTIC OF PLASMAS BASED ON COHERENT

POPULATION TRAPPING

A detailed knowledge of an internal magnetic field is of great importance in various

fields of science and applications. Biomedical applications mostly rely on SQUID

(superconducting quantum interference device) detectors [55], in geophysics and ar-

chaeology optical pumping magnetometers [56] are used. The idea of using ultra-

narrow coherent population trapping resonances for high-resolution magnetometry

was proposed by M.O. Scully and M. Fleischhauer [45]. Later this idea was realized

experimentally in a number of groups (D. Budker, et al. [45], A. Nagel, et al. [45],

I. Novikova, et al. [45]), the magnetometric techniques utilized either absorptive or

dispersive (Nonlinear Magneto-Optical Rotation) properties of the transparency res-

onance. CPT-based magnetometers that use alkali metal vapors achieve sensitivities

of ∼ 1 fT Hz−1/2 [57], comparable to the SQUID sensitivity, and can be successfully

applied to measure small changes of magnetic fields. Recently a millimiter size CPT-

based magnetic sensor was realized in a sodium vapor with a sensititvity of 50 pT

Hz−1/2 [58], integrated on a chip and potentially scalable to even smaller size.

It looks attractive to apply the same technique to measure magnetic fields in a

plasma, since CPT resonances can be observed in a fluorescence signal, thus permit-

ting spatially localized detection of the magnetic field. Namely, if the plasma contains

atoms or ions with magnetic field dependent level splitting (Zeeman or hyperfine),

then resonant fluorescence from these test particles vanishes, provided that the fre-

quency difference of two laser beams sent through the plasma exactly matches the

frequency of the split transition.

The spectral resolution of the CPT signal is determined by the minimum width of
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the resonance in the fluorescence signal. It is given basically by the Zeeman sublevel

coherence decay rate for the unsaturated CPT limit, when the laser field intensities

do not significantly exceed the threshold value, necessary for CPT to be establish.

This threshold intensity is typically lower than the intensity required to saturate an

optical transition. The Zeeman coherence decay rate can be orders of magnitude

smaller than the optical transition’s natural and Doppler widths, which makes the

spectral resolution of the CPT signal quite high.

A number of techniques are used to measure magnetic fields in plasmas [59].

The most popular one utilizes external or internal probes, which are basically wire

coils. External probes measure a magnetic field distribution outside the plasma and

reconstruction methods are applied to calculate the internal fields. Internal probes

are inserted into the plasma and detect the field directly. The coils can measure small

flux densities with a less than millimiter spatial resolution and temporal resolution

given by the integration time of an integrating curcuit. The drawbacks of the colis

are: first, they disturb the plasma and are not applicable in hot plasmas, and second,

they respond to the rate of change of the field, not the field itself, which limits their

efficiency in detection of steady fields. Other methods are mostly laser-aided, they

use either Faraday rotation of e.m. field polarization if the magnetic field is present

in the plasma, or laser-induced fluorescence collected from particles naturally present

in the plasma or intentionally sent in for test purposes [60]. The Faraday effect gives

a line-of-sight integral of the field, thus the corresponding diagnostic is not local. The

method using laser-induced fluorescence detection is local, since a crossed exciting

and viewing beams are used, meaning that the fluorescence is observed from a well-

defined region. The laser-induced fluorescence technique, though, typically has poor

accuracy, since the fluorescence comes from Zeeman split transitions not resolved

because of large Doppler broadening. In order to get rid of the Doppler broadening
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an energetic neutral beam is usually injected into the plasma. A lithium beam is

typically used, since lithium has lines to the groud state of long (visible) wavelength

(670.8 nm). The main difficulty here is to produce a beam sufficiently energetic to

penetrate the plasma but sufficiently monoenergetic as not to obscure the Zeeman

splitting by the Doppler broadening. Another way to measure both the strength

and the direction of the magnetic field with the help of neutral beams (especially

hydrogen beams) is to utilize the motional Stark effect, when significant linear Stark

energy shifts are induced due to fast movement of neutral atoms in the magnetic

field. Sometimes solid pellets (often made of neutral lithium) are injected into the

plasma; while moving through the plasma, the pellet’s boundary gets ablated, lithium

atoms in the surrounding cloud become excited and reradiate at some characteristic

wavelength, due to the magnetic field the emission profile will show Zeeman splitting,

allowing to determine the magnitude of the field. The direction of the field can be

measured by viewing the emission from ionized atoms from the pellet, since they will

be moving along the lines of the field.

The general idea of the CPT-based method of magnetic field measurement in

plasmas is illustrated schematically in Fig.3 and can be explained in the following

way. Suppose that two laser beams with close wavelengths propagate in a plasma

and intersect at the point of interest, where the magnetic field is to be measured. It

is assumed that the plasma contains atoms or ions with an optical transition close to

a resonance with the optical field and ground or/and excited state of this transition is

split by the magnetic field into a set of Zeeman sublevels. By adjusting the frequencies

of the laser beams, the two-photon resonance condition can be satisfied and the CPT

dip in the fluorescence profile will be detected. By measuring the fluorescence spec-

trum from the intersection volume of the two beams as a function of their frequency

shift, the magnetic field magnitude and direction can be deduced from the positions
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Fig. 3. Schematic of the diagnostic method.

and amplitudes of the CPT resonances, as is shown below. This idea was suggested

and realized experimentally in our works [61, 62]. A similar technique was developed

independently and used recently in two-dimensional (2D) imaging of spatially inho-

mogeneous magnetic fields [63]. It was realized experimentally in a Na atomic vapor,

though, not in a plasma. It allows one to obtain 2D contours of constant magnetic

field in alkaline atomic vapors with high field resolution of the order of 1− 100 mG.

A. Theoretical background

The simplest atomic system suitable for the technique is a four-level system, depicted

in Fig.4, where the upper level is a singlet and the lower level is a triplet state. An

external magnetic field splits it into three Zeeman sublevels with level separation

equal to the Larmor frequency ωL = gµBB/h̄. Here g is the Lande factor of the lower

level, µB is the Bohr magneton, B is the magnetic field strength.

Consider two electromagnetic waves E1 and E2 with frequencies ω1 and ω2, re-

spectively, both propagating in the z-direction. The waves are linearly polarized such
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Fig. 4. Laser-coupling schemes, showing CPT resonance configurations in the atomic

system, studied in the experiment.

that either E1,E2||êx or E1,E2||êy with êi being the unit vector of the i polarization.

The arbitrarily oriented magnetic field is described by the angles α and β, see Fig.5.

We choose the quantization axis along k||êz.

For a given magnetic field, depending on the selection rules for the angular mo-

mentum, which are determined by laser field polarizations and magnetic field ori-

entation, CPT resonances will be observed in a fluorescence spectrum whenever the

two-photon resonance condition is satisfied:

ω1 − ω2 = ±ωL,±2ωL.

In the case B is along k, each linearly polarized e.m. field can be decomposed into

a combination of σ+ and σ− components, for which only transitions with ∆m = ±1

are respectively allowed. Therefore, if the two-photon detuning is varied, only the

CPT resonance at the double Larmor frequency, when ω1 − ω2 = ±2ωL, will be

observed (Fig.4a). The situation is changed if the magnetic field is tilted with respect

to k such that it now has a projection on the e.m. wave polarization direction.
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Fig. 5. Magnetic field orientation.

In this case selection rules also allow for the transition with ∆m = 0 due to the

fact that the e.m. fields now have an admixute of a π component. As a result an

additional resonance appears at the single Larmor frequency ω1−ω2 = ±ωL (Fig.4b).

A theoretical analysis of the interaction of two laser fields with the four-level system,

depicted in Fig.4a, shows that the magnetic field orientation can be determined from

the ratio of the fluorescence intensities of the CPT resonances at single and double

Larmor frequencies. The main assumptions used in the analysis are: 1) the laser field

intensities do not significantly exceed the CPT saturation limit; 2) the Doppler width

of the optical transition exceeds the Zeeman splitting; 3) the homogeneous linewidth

of the optical transition is smaller than the Zeeman splitting; 4) an average over the

distribution of optical transition frequencies due to the Doppler effect is carried out.

The fluorescence intensity is proportional to a steady-state upper level population

ρ44. In the Λ-system of Fig.4a formed by the σ−-component of the first field and the

σ+-component of the second field, ρ44 reduction ∆ρ44 owing to CPT is proportional

to the product of the intensities of the laser fields resonantly applied to the arms

of the system, each intensity being multiplied by the strength of the corresponding
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transition, given by the square of the dipole moment:

∆ρ44 ∼ I1

∣∣∣µ1
41

∣∣∣2 × I2

∣∣∣µ2
43

∣∣∣2 ∼ ∣∣∣Ω41
1

∣∣∣2 ∣∣∣Ω43
2

∣∣∣2 ,

where I1, I2 are the laser field intensities, µ1
41, µ

2
43 are the dipole moments of the

4 → 1, 4 → 3 transitions, which take into account the field polarizations, and the

Rabi frequencies of the laser fields are

Ω4i
j =

µj
4iEj

2h̄
=

µEj

2h̄
f4i(α, β) = Ωjf4i(α, β),

where the indicies i = 1, 2, 3 and j = 1, 2 denote the Zeeman sublevels of the lower

level and laser fields, respectively; µ contains an integral over the radial parts of the

lower and upper state wave functions; Ωj = µEj/2h̄ are the angular independent

Rabi frequencies of the laser fields; and f4i(α, β) gives the angular dependence of the

dipole moment. For identical polarizations fi is the same for E1 and E2.

In the case of resonance at the single Larmor frequency, shown in Fig.4b, two Λ-

schemes are formed by the σ−(+) and π-components of the fields. These Λ schemes are

resonant with different groups of atoms, simmetrically Doppler-shifted with respect

to the central frequency of the optical transition. The two groups give contributions

to ρ44 proportional to |Ω41
1 |

2 |Ω42
2 |

2
and |Ω42

1 |
2 |Ω43

2 |
2
, respectively. In the unsaturated

CPT limit, when |Ω1|2 + |Ω2|2 ∼ ΓWD (Γ is the Zeeman coherence decay rate, WD

is the optical transition Doppler linewidth [64]), the proportionality coefficients con-

taining information about the resonance profiles turn out to be identical for the three

Λ systems, considered above.

The ratio of the fluorescence intensities is then given by the following expression:

r =
Iw1−w2=wL

Iw1−w2=2wL
=
|Ω41

1 |
2 |Ω42

2 |
2
+ |Ω42

1 |
2 |Ω43

2 |
2

|Ω41
1 |

2 |Ω43
2 |

2 . (2.1)
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For the case E1,E2||êx,

f41 = −f ∗43 = i sin α + cos α cos β,

f42 = −
√

2 sin β cos α.

The ratio of intensities Eq.(2.1) has the form:

rx =
4 sin2 β

tan2 α + cos2 β
.

For the case E1,E2||êy,

f41 = −f ∗43 = −i cos α + sin α cos β,

f42 = −
√

2 sin β sin α.

This time the ratio Eq.(2.1) is given by:

ry =
4 sin2 β

cot2 α + cos2 β
.

From rx and ry one can determine cos2 β and tan2 α. This gives one four possible

directions of the magnetic field. In order to choose the right one, some additional

knowledge about the magnetic field geometry is required. The anvantage of this

method is that rx(y) is independent of the intensities of the fields and is determined

only by the geometry of the experiment.

B. Experimental results

To demonstrate the feasibility of the described technique we performed an experi-

ment in a plasma of a low-pressure glow neon discharge. The neon atomic energy

levels are shown in Fig.6. The electric-dipole allowed transition 2p53s3P1(J = 1) →

2p53p3P0(J = 0) of wavelength 607.4 nm was chosen for a number of reasons: 1) it is
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Fig. 6. Energy level diagram of a Ne atom. In the inset selection rules for different

polarizations of laser fields are depicted.

within the wavelength range of a typical dye laser; 2) the simple four-level structure

allows analytical expressions for CPT parameters be derived, as was shown in the

previous section; 3) the lower level has J = 1 (with the Lande factor g = 1.464) and

decays radiatively to the ground state with a decay rate ∼ 9 MHz, comparable to

that of the upper level. This makes the Zeeman coherence lifetime of the same order

as the time required to establish CPT. Therefore, it is important to verify that the

technique will work even in such unfavorable conditions.

The experimental setup, used in the present experiment, is illustrated schemati-

cally in Fig.7. A single-mode dye laser output at 607.4 nm, tuned to the 2p53s3P1 →

2p53p3P0 transition of a Ne atom, was split into two beams. The frequency of one

beam was shifted by an acousto-optic modulator (AOM) by ∆ω = 110 MHz. After

being recombined beams were propagated along the axis of a discharge tube. A tube

with a neon glow discharge (Ne pressure 1.5 Torr, discharge current 40 mA) was placed

into an external magnetic field. Its longitudinal component Bl was produced by a

solenoid and the transverse component Btr by Helmholtz coils. The Zeeman splitting

was varied for given laser field frequencies by sweeping the longitudinal component

of the magnetic field. The sweeping frequency was tuned in the range 20 − 40 Hz

to minimize low-frequency noise. It is worth noting that discharge parameters were
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Fig. 7. Experimantal setup.

slightly modulated by the alternating magnetic field. Fluorescence emitted from the

discharge in the direction perpendicular to the laser beam propagation direction was

separated by a monochromator and detected by a photomultiplier. The laser fields

had identical linear polarizations, which could be rotated to be either parallel or per-

pendicular to Btr. The powers of the laser beams were equal (approximately 2.5 mW

in each beam) with a beam spot of ∼ 1 mm in diameter, the resulting intensities

correspond to the unsaturated CPT regime, so power broadening of resonances is not

expected in the experiment.

In the course of the experiment we set Btr||ox, which corresponds to α = 0 in

the notations of Fig.5. According to Eq.(2.1) this gives

rx = 4 tan2 β = 4
B2

tr

B2
l

, ry = 0, (2.2)

the last result means that no CPT resonance at the single Larmor frequency will be

observed if E1,E2||êy, since in this case the magnetic field is perpendicular to the

laser beam polarization.

A series of CPT spectra in the presence of a static transverse magnetic field is

shown in Fig.8. The magnitude of the transverse field is given in terms of the current
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I through the Helmholtz coils. In the case of small Btr (I ≤ 200 mA) CPT dips are

observed only at frequency shifts ω1 − ω2 = 0,±2ωL. The resonance at zero shift,

which is due to formation of CPT in a degenerate Λ system, is of no interest for us

since it carries no information about the magnetic field. As the current is increased,

the resonance at the single Larmor frequency ω1 − ω2 = ±ωL appears.

The position of the CPT dip at the double Larmor frequency for I = 0 (Btr = 0)

gives the total magnetic field magnitude for a fixed laser beams frequency difference:

Btot = Bl =
∆ωh̄

2gµB

. (2.3)

In our case for ∆ω = 110 MHz the resonance was detected for Btot = 26.2 G. As

can be seen from Fig.8, it shifts to smaller values of Bl as Btr increases, as expected.

Eventually, for currents greater 550 mA the resonance strongly overlaps with the

resonance at Bl = 0 and is no longer detectable.

As can be seen from Fig.8, the width of the resonance at ω1 − ω2 = 2ωL in the

absence of the transverse field (I = 0) is ∼ 10 G, which corresponds to a spectral

width (FWHM) ∼ 42 MHz. This means that the Zeeman coherence decay rate in

our experiment, given by one-half of this value, is ∼ 21 MHz. It is the sum of

the radiative decay rate of 9 MHz and the collisional decay rate, which turns out to

be 12 MHz, due to collisions with ground-state neon atoms. Although the Zeeman

coherence decay rate is two times larger than the radiative decay rate of the upper

level, the resonances are still detectable.

In order to test the validity of Eq.(2.2), we calculated Btr from the ratio rx of

intensities of CPT resonances, observed in the experiment. It should be stressed here

that, if the frequency shift ∆ω is varied for a fixed magnetic field magnitude and

orientation, then the use of Eq.(2.2) is straightforward: Btot is determined from the

position of the CPT dip at either the double or single Larmor frequency, Btr and Bl
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Fig. 8. Experimental fluorescence intensity dependences on the longitudinal compo-

nent Bl for a number of values of the transverse component Btr, expressed

in terms of the current I through the Helmholtz coils; 1 - resonance at

ω1 − ω2 = ωL; 2 - resonance at ω1 − ω2 = 2ωL.
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Fig. 9. Difference in magnetic field magnitude and orientation between two types of

CPT resonances, observed in experiment.

are calculated from rx according to the following expressions:

Bl = 2Btot

√
1

4 + rx

,

Btr = Btot

√
rx

4 + rx

.

In the experiment Bl was swept for fixed ∆ω, therefore Eq.(2.2) has to be mod-

ified to give the correct values of Btr. As is illustrated in Fig.9, CPT resonances at

single and double Larmor frequencies occur for different values of Btot and β. To take

this into account we turn to the original expression Eq.(2.1) for rx, which gives:

rx =
4 cos2 β2 sin2 β2

cos4 β1

=
4
(
Btr/

∆ωh̄
gµB

)2
(
1−

(
Btr/

∆ωh̄
gµB

)2
)

(
1− 4

(
Btr/

∆ωh̄
gµB

)2
)

From this expression Btr is derived:

Btr =
∆ωh̄

gµB

√√√√2rx + 1−
√

3rx + 1

2(4rx + 1)
. (2.4)

The spectra in Fig.8 were fitted with several Lorentzians, one Lorentzian for

each CPT peak, two Lorentzians for the resonance at Bl = 0, and one for a smooth
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Fig. 10. Btr calculated from experimental CPT spectra according to Eq.(2.4).

background. The amplitudes of the Lorentzians were used as the intensities of the

CPT resonances. The resulting dependence of Btr, calculated according to Eq.(2.4),

on the current I through the Helmholtz coils is presented in Fig.10. The dependence

is linear, as expected; the slope 30.2 G/A of the linear fit to this dependence agrees

well with the magnetic constant 31.7 G/A of the Helmholtz coils, obtained from an

independent measurement by a magnetometer.

C. Discussion

The magnetic field measurement accuracy in the proposed technique is determined

by the spectral resolution of the CPT signal. It is usually very high, depending nei-

ther on the Doppler and natural linewidths of the optical transition, nor on the laser

linewidth provided the two beams are from the same laser source. In the unsaturated

CPT case the spectral resolution is given by the Zeeman coherence decay rate Γ. For

a metastable lower level this rate can be of the order of 100 kHz and the correspond-

ing field resolution is hundreds of milligauss; for a radiative lower level (as is the case

for the transition studied) the decoherence rate is 1 − 10 MHz, the corresponding

resolution is lower - several gauss. It is worth noting that excited states are strongly
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influenced by collisions. Thus the Zeeman coherence decay rate in the limit of unsatu-

rated CPT provides information about collisional rates, if the decoherence collisional

mechanisms are known. This method does not have any principal limitations on the

strength of the magnetic field; the only difficulty in the case of large fields, leading

to large Zeeman splittings, is in phase locking the laser fields if they come from dif-

ferent sources, but currently available optical methods solve this problem [65]. This

technique, though, is particularly advantageous for measuring small magnetic fields

(up to 1 kG), which are difficult to detect using conventional spectroscopic plasma

diagnostics, since they produce a tiny Faraday rotation and Zeeman splittings much

smaller than the Doppler width of any optical line.

The technique allows one to study nonstationary processes. The temporal reso-

lution is given by the CPT preparation time. This time, in turn, is proportional to

the radiative lifetime of the upper optical level. For a typical electric dipole-allowed

transition with oscillator strength f ∼ 1 the radiative lifetime is τ ∼ 10 − 100 ns.

The temporal resolution ∼ 10τ ∼ 0.1 − 1 µs is obtained from the requirement that

the CPT has enough time to form.

It is essential also that the time required to establish CPT be smaller than the

Zeeman coherence lifetime, otherwise the effect is not observed (it is worth noting

that in the experiment the Zeeman coherence decayed faster than the excited state

population, but the resonance was still detectable). It imposes a limit on the rates of

decoherence processes in the plasma of interest.

There is a requirement that the signal-to-noise ratio suffices to reliably detect

CPT resonances. It gives the minimum density of test particles and determines

the spatial resolution. Let us analyse it for an experimental situation where the

main source of noise is the background plasma emission at the resonant wavelength.

During the detection time ∆τ the number of resonantly emitted photons is Nr, while
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the background plasma produces Npl spontaneous photons. A useful fluorescence

signal is reliably detected if its intensity suffuciently exceeds the root-mean-square

value of the noise
√

Npl:

Nr ≥ 3
√

Npl. (2.5)

The number of resonantly emitted photons is proportional to the volume l3 with

l being the required spatial resolution, while Npl originates from the whole plasma

volume l2L along the collection optics field of view, where L is the characteristic scale

of the plasma. The condition Eq.(2.5) can be rewritten in the following form [61]:

√
Al4Ωsolidηt∆τ/4πL

∆Nup√
Nup

≥ 3, (2.6)

where A is the radiative decay constant of the upper state, Ωsolid/4π is the solid angle

observed by the collection optics, η is the quantum efficiency of the photodetector, t is

the transmission coefficient of the collection optics, Nup is the density of spectroscopic

particles excited by the discharge to the upper level, ∆Nup is the increase of the upper

level population density due to the action of the lasers.

Let us analyse the last two limitations of the method separately for cold and

hot plasmas. For cold, partially ionized plasmas, typically found in different types of

discharges, this technique is expected to be particularly useful due to the low values

of the magnetic field (≤ 0.2 − 0.3 T), where application of other diagnostics may

be difficult. These discharges are characterized by ion temperatures in the range of

0.025 − 5 eV, electron temperatures from 1 to 20 eV and ion/electron densities of

109 − 1012 cm−3. In such plasmas neutral atoms might be used as test particles.

The Zeeman coherence decays mainly due to neutral-neutral collisions, with a rate

νneut = σNneutv
T
neut, where σ ∼ 8·10−15 cm2 is the coherence-destroying collision cross-

section for a radiative level [66] (for a metastable level it is typically lower), Nneut is
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Fig. 11. Illustration of the calculation of population densities of upper and lower states.

Here A, Ag are radiative decay constants of the lower and upper levels, νe
gl,

νe
lu are the excitation rates due to inelastic collisions with electrons.

the density of neutral atoms, and the thermal velocity vT
neut =

√
3kT/m ∼ 3 ·104−106

cm/s. The collisional rate will be less than τ−1 = 10 MHz for Nneut < 1016 − 4 · 1017

cm−3, which corresponds to pressures of several Torrs.

Let us turn now to the signal-to-noise ratio calculation. In Eq.(2.6) we assume

that the upper level population density increase by the lasers action is of the order of

the initial density difference of the lower and upper states, ∆Nup ' Nlow −Nup. The

population densities of the upper and lower states are calculated from the requirement

of a balance between the excitation processes due to inelastic collisions with electrons,

which have a significantly larger temperature in comparison with atoms, and radiative

processes. We use the model of a test plasma atom, which includes the ground and two

excited states, as depicted in Fig.11, neglecting excitation into higher lying excited

states.

The population densities are easily calculated:

Nup = νe
luNlow/A,

Nlow = νe
glN0/Ag,
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where N0 is the population density of the ground state. The excitation rates due to

inelastic collisions with electrons are [67]

νe
gl = 3.2 · 10−7fgl

(
Ry

Elow

)3/2

e−Elow/kTe

√
Elow/kTep(Elow/kTe)Ne,

νe
lu = 3.2 · 10−7flu

(
Ry

∆E

)3/2

e−∆E/kTe

√
∆E/kTep(∆E/kTe)Ne. (2.7)

Here fgl,lu is the oscillator strength of the |g >→ |lower >, |lower >→ |upper >

transition, Elow is the energy of the lower state, ∆E is the energy difference of the

lower and upper states, kTe is the electron temperature in eV, Ry = 13.6 eV, and Ne

is the electron density in cm−3. We take the values kTe = 10 eV and Ne = 1010 cm−3,

typical for a cold plasma, the typical energies Elow ∼ 15 eV, and ∆E ∼ 2− 5 eV, and

the radiative decay constants A, Ag ∼ 107 − 108 s−1, typical for an electric dipole-

allowed transition (fgl,lu ∼ 1). The p function is equal to 0.1 for the |g >→ |lower >

and 0.3 for |lower >→ |upper > transitions. This gives excitation rates νe
gl ≈ 100

s−1, νe
lu ≈ (2− 6) · 103 s−1. We then have

∆Nup√
Nup

∼ Nlow −Nup√
Nup

=
√

N0

√√√√νe
gl/Ag

νe
lu/A

(1− νe
lu/A) ∼

∼
√

N0

√
νe

gl

νe
lu

≈ (0.1− 0.2)
√

N0.

This allows us to estimate the minimum density of test particles required by the need

for an adequate signal-to-noise ratio. Plugging into Eq.(2.6) the typical parameters

of a collection system (Ωsolid/4π ∼ 10−2, η ∼ 10−2, t = 0.5), the characteristic plasma

scale L = 1 m, and spatial and temporal resolution l ∼ 1 cm and ∆τ ∼ 1 µs, we

get N0 ≥ 107 − 108 cm−3. The range of parameters of a cold plasma at which the

technique is applicable, calculated according to the model we used above, is depicted

in Fig.12.
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Fig. 12. The approximate range of cold plasma parameters, where the method works.

In hot, fully ionized plasmas, ions might be used as test particles. If the tem-

perature of a plasma is very high, the main source of Zeeman decoherence is the

particle flight out of the laser beam, and it sets a limit on the thermal velocity of the

atoms/ions. Namely, the time-of-flight of a spectroscopic particle through the laser

beam has to exceed the CPT preparation time: τ < l/vT , where l is the laser beam

diameter, vT is the thermal velocity. For l = 1 cm and τ = 10 ns the maximum

velocity is vT < 106 m/s, or, equivalently, the maximum temperature T < 10 keV

(here and in the rest of the text the mass m ∼ 10mp is used in estimates). The main

coherence dephasing mechanism at smaller temperatures is ion-ion and ion-electron

collisions. For an estimate, we use integrated ion-ion and ion-electron elastic collision

rates [68]:

νii =
16πe4Z4NiLi

(3kTi)3/2m
1/2
i

, (2.8)

νei =
4πe4Z2NeLe

(3kTe)3/2m
1/2
e

. (2.9)

Here Ni, Ne are the ion and electron densities; mi and me are their masses, Z is the ion
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charge number, Li = 23 + 3/2lnTi,e− 1/2lnNi, Le = 24 + lnTe− 1/2lnNe for Te > 10

eV - Coulomb logarithms (Ti,e = min(Ti, Te), Ti, Te are in eV, Ni, Ne are in cm−3).

The rate of inelastic collisions with electrons can be estimated using Eq.(2.7). For an

estimate we take Li = Le = 10, Ti = Te = 10 − 104 eV, and Z = 1. The condition

νii, νei, ν
e
lu < 10 MHz is satisfied for ion and electron densities Ni, Ne < 1014 − 1015

cm−3. The higher the electron/ion temperature, the higher are the ion and electron

densities allowed as is clear from Eqs.(2.7)-(2.9).

Let us now estimate from Eq.(2.6) the minimum ion density reqiured to dis-

criminate a signal against noise. Supposing a thermalized plasma, we have ∆Nup '

Nlow−Nup = N0 exp(−Elow/kT )(1−exp(−∆E/kT )). The condition Eq.(2.6) assumes

the form:

√
Al4Ωsolidηt∆τN0/πL exp(−Elow/2kT ) sinh(∆E/2kT ) ≥ 3.

Let us estimate the detection limit for the case of high temperature, which is obviously

the worst from the signal-to-noise point of view due to the almost equal population

of levels by the discharge. For the same parameters of the collection system, plasma

scale, spatial and temperature resolution, for a dipole-allowed optical transition with

∆E = 2 − 5 eV, and taking the electron/ion temperature T = 10 − 104 eV, the

detection limit is N0 ≥ 105 − 1010 cm−3. This reasoning is summarized in Fig.13.

D. Conclusion

A local magnetic field diagnostic based on the coherent population trapping effect is

developed. The diagnostic is an extension of the laser induced fluorescence technique,

providing sub-Doppler and sub-natural spectral resolution by the use of a two-photon

Raman transition. The high spectral resolution of the CPT signal, determined by the
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Fig. 13. The range of hot plasma parameters, where the diagnostic is applicable.

Ti = Te was assumed.

Zeeman sublevel coherence decay rate, leads to a high magnetic field measurement

accuracy, nicely combined with good temporal and spatial resolution. The technique

is able to measure both the strength and the orientation of the field.

A demonstration experiment was carried out in a plasma produced in a low-

pressure neon glow discharge. It was shown that from the position of a CPT reso-

nance in the fluorescence spectrum the strength of the local magnetic field can be

obtained. By utilizing the dependence of the dipole moments of optical transitions

from different Zeeman sublevels of a lower level to a common upper level on magnetic

field orientation and laser field polarizations, it was demonstrated that the direction

of the field can be determined from the ratio of the fluorescence intensities of the two

types of CPT resonances. We made theoretical estimates of the range of tempera-

tures and densities for cold and hot plasmas, where the technique can be applied. The

estimates show that the technique is applicable to a variety of plasma configurations.

It might be particularly useful in magnetic confinement devices with low magnetic



34

fields, where application of other diagnostics may be difficult.



35

CHAPTER III

ATOMIC INTERFERENCE AND COHERENCE PHENOMENA IN SOLIDS

WITH A LONG-LIVED SPIN COHERENCE

Most of the theoretical and experimental work on EIT and CPT so far (with the

exception of a few experiments [69]-[79]) has delt with gaseous media. Motivated by

practical considerations to implement them in real devices one turns to solid materi-

als. Indeed, the obvious advantages of solids are high density of atoms, compactness,

absence of atomic diffusion (which is especially important for optical memory), and

simplicity and convenience in preparation and usage. On the other hand, the com-

monly known difficulties with realization of atomic interference effects in solids are

typically very broad optical lines and fast decay of any coherence.

At the moment a few proof-of principle EIT experiments have been fulfilled in

three different types of solid materials: in transition metal [69] and rare-earth ion

doped crystals with forbidden transitions lying in the band gap of a crystal [71]-

[74], in nitrogen vacancy centers in diamond [75, 76] and in semiconductors [77] on

inter-sub-band transitions in quantum wells, including EIT due to tunneling into the

same energy continuum [78], and in an exciton-biexciton system [79]. Transparency

of the order of 100% was achieved in some of them [71, 76, 77, 78]. However, this

required much higher intensities than in gaseous media and resulted in larger EIT

linewidths. The obvious difficulty of dealing with semiconductors is the very fast

decay (subpicosecond time) of electronic coherence. On the other hand, the spin

coherence decay time in EIT experiments with defect levels in crystals [71, 76] is of

the same order of magnitude (tens or hundreds of µs) as in experiments with gases

[80]. Rare-earth and transition metal ion activated crystals having discrete energy

levels lying in the band gap of the crystal are a solid-state analog of atomic gases,
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since they offer narrow electronic transitions. The combination of narrow optical

transitions with a long-lived spin coherence makes them promising for realization of

the described above interference and coherence phenomena.

Several questions arise. (i) What is the threshold for the driving field providing

EIT in solid materials? (ii) What is the EIT linewidth dependence on the intensity

of the driving field and other parameters of the system? (iii) What determines the

efficiency of nonlinear transformations and quantum light storage in solids? In order

to answer these questions, to explain the recent experimental data [71, 76], and to

identify the optimal regimes and the most suitable materials for realization of EIT, we

here generalize the theory of EIT for the case of solids with a long-lived coherence [64].

We take into account the major specifics of these materials as compared to gaseous

media, namely, homogeneous and inhomegeneous line broadening of both optical and

spin transitions as well as the difference between the longitudinal T1=spin-lattice and

transverse T2=spin-spin relaxation times in a low-frequency transition. In gases T1

and T2 are typically indistiguishable, being defined by the lifetime of the atoms in

the light beam.

A. Susceptibility of a Λ system

Let us consider the energy scheme depicted in Fig.14. In this three-level Λ scheme

one of the two lower-levels (c) is coupled to the upper level (a) by a coherent driving

laser and the transition a → b is probed by a weak coherent field. The atomic decays

as indicated ensure that each atom will come to a steady state condition.

In the present analysis we use the following assumptions: 1) The decay rates of

the transitions a → b (γ) and a → c (γ′) are assumed to be the same (γ); 2) the

probe field is weak so that a first order analysis is valid; 3) the strong driving field is
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Fig. 14. Λ-scheme under consideration.

on resonance with the a → c transition.

The semiclassical Hamiltonian describing the atom-field interaction for the sys-

tem under consideration can be written in the rotating wave approximation as

V = −h̄αe−iνt|a >< b| − h̄Ωe−ν0t|a >< c|+ H.c., (3.1)

where Ω = µacEd/2h̄ is the Rabi-frequency of the driving field; the Rabi frequency of

the probe field is defined by α = µabEp/2h̄; µab, µac are the matrix elements of the

dipole moment between levels a and b, a and c, respectively; and ν and ν0 are the

frequencies of the probe and driving fields. The equations of motion for the density

matrix elements are

ρ̇ab = −Γabρab − iα(ρaa − ρbb) + iΩρcb, (3.2)

ρ̇cb = −Γcbρcb − iαρca + iΩρab, (3.3)

ρ̇ac = −Γacρac − iαρbc − iΩ(ρaa − ρcc), (3.4)

ρ̇cc = −wcbρcc + wacρaa + wcbρbb − iΩ(ρca − ρac), (3.5)
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ρ̇aa = −(wab + wac)ρaa − iα(ρab − ρba)− iΩ(ρac − ρca), (3.6)

ρaa + ρbb + ρcc = 1. (3.7)

Here the Rabi frequencies were assumed real, Γij are defined as γij + i∆ij, wij are the

population relaxation rates, wcb = wbc so that before the action of the driving field the

levels b and c are equally populated (which is typical for spin transitions in solids even

at very low temperatures), and γab = γac = γ. The ∆ij’s are given by ∆ab = ωab−ν =

∆ + ∆ωab, ∆ac = ωac − ν0 = ∆0 + ∆ωac, ∆cb = ωcb − ν + ν0 = ∆ −∆0 + ∆ωcb, and

∆ωac = ∆ωab −∆ωcb. Here ωab, ωac and ωcb are the frequencies of the corresponding

transitions, ∆ωab and ∆ωcb are the deviations of the atomic frequencies of the a → b

and c → b transitions from the corresponding inhomogeneous line centers, and ∆ and

∆0 are the detunings of the probe and the driving fields from the line centers.

In the absence of the probe field the steady state solutions for the populations

are obtained from Eqs.(3.2)-(3.7) as

ρ(0)
aa =

2wcbΩ
2

2D
, (3.8)

ρ
(0)
bb =

4γXwcb + 2wcbΩ
2 + 2γΩ2

2D
, (3.9)

ρ(0)
cc =

4γXwcb + 2wcbΩ
2

2D
, (3.10)

where

X =
γ2 + ∆2

ac

2γ
, D = 4γXwcb + γΩ2(1 +

3wcb

wac

).

In terms of these populations ρab, governing the linear susceptibility of the

medium at the probe field wavelength, can be found to first order in the probe field

as

ρab =
−iα

ΓabΓcb + Ω2

[
Γcb(ρ

(0)
aa − ρ

(0)
bb ) +

Ω2

Γca

(ρ(0)
cc − ρ(0)

aa )

]
. (3.11)

Let us assume that the driving field is resonant, such that ∆0 = 0. Then ρab can be



39

written as

ρab =
−iα

Y

1

2D

[
−(γcb + i∆cb)(4Xγwcb + 2Ω2γ) +

Ω2

γ − i∆ωac

4γXwcb

]
, (3.12)

where

Y = (γ + i∆ + i∆ωab)(γcb + i∆cb) + Ω2.

In an inhomogeneously broadened solid system, the susceptibility should be av-

eraged over the entire range of the frequencies of the corresponding transition, which

is determined by the inhomogeneity of the crystaline fields in solids. Similarly, in EIT

experiments in gases the inhomogeneous Doppler broadening at the optical transitions

should be taken into account [81]. Inhomogeneous broadening at the low-frequency

(hyperfine or Zeeman) transition, caused in the case of co-propagating fields by the

residual Doppler effect (k2− k1)v, can be neglected as compared to the homogeneous

width of the transition determined by the time-of-flight of an atom through a laser

beam, because ωcb << ωab, ωac. However, in EIT experiments in solids (as well

as in gases with large ωcb [17]) inhomogeneous broadening at both one-photon and

two-photon transitions play an important role. Averaging of the susceptibility over

inhomogeneous profiles is described in the Appendix.

B. EIT-linewidth

In order to estimate the linewidth of the EIT resonance we evaluate the imaginary

part of the susceptibility, which is the sum of three terms χ
′′

= χ
′′
11 + χ

′′
12 + χ

′′
21,

calculated in the Appendix.

The susceptibility strongly depends on two parameters:

x =
Ω2γ

2wcb(W ab)2
,
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z =
γW cb

wcbW ab
, (3.13)

where 2W ab(cb) is the width of the inhomogeneously broadened optical (low-frequency)

transition. The parameter x can be presented in the form: x = Ω2/Ω2
inh, where Ω2

inh =

2wcb(W
ab)2/γ gives the characteristic value of the driving field intensity (Iinh ∼ Ω2

inh)

providing optical pumping for all atoms within an inhomogeneously broadened optical

line. Hence the parameter x defines the degree of optical pumping of atoms into the

ground state. The parameter z is defined by the ratio of the relative broadenings at

the low-frequency and optical transitions.

In a gaseous medium in the Λ scheme with co-propagating fields, where inhomo-

geneous broadening at the low-frequency transition (defined by the residual Doppler

effect, (k2 − k1)v) is negligible (and hence W cb should be replaced by wcb) this pa-

rameter takes the form: z = γ/W ab, i.e., it does not exceed 1. In a Bose-Einstein

condensate z = 1. In a solid medium it may be either less than or greater than 1,

depending on the magnitude of the inhomogenous broadening at the low-frequency

transition characterizing the dephasing between spins of different ions.

Usually the inhomogenous broadening at a spin transition is orders of magnitude

smaller than at an optical transition. Hence the term χ
′′
12, which is W cb/W ab times

smaller than χ
′′
11, can be neglected.

Typical shapes of χ
′′
11 and χ

′′
21 for different regimes of EIT are shown in Figs.15-19.

In order to estimate the linewidth of the EIT resonance we first find that the

maximum of χ′′ = χ′′11 + χ′′21 is χ′′max ≈ η/W ab at ∆ ≈ ±Ω. As the next step we

calculate the minimum absorption at zero detuning of the probe field, which is given

by the expression

χ′′(∆ = 0) =
η

W ab

x + z/2 + z
√

x/2

(1 +
√

x)(x + z/2)(1 + 2
√

x/z)
. (3.14)
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Fig. 15. A numerical calculation of susceptibility components under conditions

z << 1, x << 1, Ω2 ≥ γwcb. An antihole forms in χ
′′
21 and is clearly seen in

the resulting χ
′′

profile.
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Fig. 16. Susceptibility components under conditions z << 1, x >> 1. EIT resonance

is power-broadened.
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Fig. 17. Susceptibility components in the case z >> 1, x << 1. There is no EIT in

this regime.
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Fig. 18. Susceptibility in the case z >> 1, x ≥ z. EIT sets in when the driving

laser intensity exceeds a threshold value (Ω2 > W abW cb), EIT resonance is

power-broadened.
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Fig. 19. A numerical calculation of susceptibility under conditions z >> 1, x >> z.

EIT amplitude is 100%, the resonance is power-broadened.
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Let us define ΓEIT as χ′′(∆ = ΓEIT ) = (χ′′max + χ′′(∆ = 0))/2. Then the width

of the EIT resonance is obtained as

Γ2
EIT =

2
√

x

z
(W cb)2 (1 + x

√
x + 2x(1 + x)/z) (1 +

√
x/z + x/z)

x +
√

x + 1 + 2x(1 +
√

x)/z
×

×

1 +

1 +
z2

4x

(1 + 2x/z)2 (1 + 2
√

x/z)
2
(x +

√
x + 1 + 2x(1 +

√
x)/z)

2

(1 + x
√

x + 2x(1 + x)/z)
2
(1 +

√
x/z + x/z)

2


1/2
 .

(3.15)

Let us define also the transmission coefficient T as

T = exp

−2πkLη

W ab

1 +
√

x + 2x
z

(1 +
√

x)(1 + 2x
z

)(1 + 2
√

x
z

)

 , (3.16)

where k = νc is the wave number of the probe field, L is the length of the medium,

and η = Nµ2
ab/2h̄.

The threshold intensity of the driving field providing EIT and the dependence

of the EIT linewidth broadening and the transmission coefficient on the intensity are

essentially determined by the parameter z. Let us analyze two extreme limits: z << 1

and z >> 1.

1) z << 1.

This limit might be realized in solids with a relatively small inhomogeneous width

W cb of the low-frequency transition.

For low intensities of the driving laser (x << 1) the second term χ
′′
21 gives an

antihole (see Fig.15), formed due to absorption by the atoms resonantly pumped

from the state c to the ground state b. The width of the antihole is defined by the

magnitude of the maximal detuning for which atoms are optically pumped for a given

intensity: ∆ant = Ω
√

γ/wcb. This antihole is imposed on a broad background with

the width W ab representing the absorption of off-resonant atoms, which is described

by the term χ
′′
11.
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The line center absorption in this limit is χ′′(∆ = 0) ≈ η/(W ab(1 + 2
√

x/z)),

so EIT becomes observable as
√

x/z ∼ 1 or Ω2 ∼ γ(W cb)2/wcb. As long as this

condition is satisfied, χ′′(∆ = 0) is vanishingly small as ηz/2W ab
√

x when x << 1

and as ηz/2W abx when x >> 1.

The linewidth for low driving laser intensity, when some of the atoms (with

detunings within the antihole width) is optically pumped into the state b, i.e., x << 1,

is

Γ2
EIT =

2
√

x

z
(W cb)2

(
1 +

√
x/z

) 1 +

1 +
(1 + z/2

√
x)

2

(1 +
√

x/z)
2


1/2
 .

As EIT sets in with
√

x/z ∼ 1, the linewidth is ΓEIT ∼ W cb. Note that, generally

speaking, the threshold intensity (Ω2 ∼ γ(W cb)2/wcb) is larger than in a homoge-

neously broadened medium (Ω2 ∼ γγcb) by a factor (W cb)2/γcbwcb > 1. For higher

intensities, when
√

x/z >> 1 but still x << 1, we easily obtain

ΓEIT =⇒ Ω

√
2wcb

γ
. (3.17)

According to Eq.(3.17) the linewidth of EIT is linearly proportional to Ω, the

Rabi frequency of the driving field (i.e. the square root of the intensity) and is

independent of the inhomogeneous width W ab. For very high intensities of the driving

laser (x >> 1) when all atoms are optically pumped into the state b the general

formula (8a) takes the form of the traditional power broadening law:

ΓEIT =⇒ Ω2

W ab
. (3.18)

In Fig.20 the EIT linewidth and transmission coefficient dependence on the char-

acteristic combination of parameters 2
√

x/z = Ω
√

2wcb/γ(W cb)2 in the case z << 1

is highlighted. The logarithmic plot shows that at low intensity of the drive laser

(2
√

x/z < 1) the width is constant, but at higher (2
√

x/z > 1) it changes along a
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Fig. 20. Logarithmic plot illustrating EIT linewidth and transmission dependence on

the characteristic parameter 2
√

x/z in the case z << 1.

line with slope 1, and at even higher intensity (2
√

x/z ∼ 102) the slope changes to 2.

It is worth noting that with the introduction of an effective width δeff defined

as the magnitude of the maximum detuning for which atoms are optically pumped

into the ground state b, the EIT linewidth can always be presented in the form

ΓEIT = Ω2/δeff , which is similar to the EIT linewidth in a homogeneously broadened

medium, where ΓEIT = Ω2/γ.

The physical reason for a linear dependence of the EIT linewidth on Ω in the

case x << 1 is that δeff (which is defined in this range of intensities by the width

of the antihole) is proportional to Ω, i.e., more and more far-detuned atoms become

optically pumped into the ground state as Ω increases. On the other hand, at very

high intensity (x >> 1), when all atoms are optically pumped and hence δeff does

not increase any more after reaching its maximum value at x = 1, W ab, the EIT

linewidth broadens proportionally to the intensity.
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A similar linear dependence of the width of some sub-Doppler resonances on Ω

(see Eq.(3.17)) was obtained in earlier work by Feld and Javan in three-level laser

gain systems [82]. In the situation under study in [82] the relaxation rates at the

one-photon and two-photon transitions were of the same order, so that the resonance

width was fully determined by the Rabi frequency in the whole range of intensities.

A linear dependence of the EIT linewidth on the drive field Rabi frequency was found

in [81], where inhomogeneous broadening at the two-photon transition was ignored,

and also in [83] (though in a different regime corresponding to trapping of all atoms

(γbc = 0) and a relatively strong signal field contributing to the line broadening).

Note that at an arbitrary fixed value of intensity and given homogeneous broad-

ening the EIT linewidth in an inhomogeously broadened medium (ΓEIT = Ω2/δeff )

is essentially narrower than in a homogeneously broadened medium (ΓEIT = Ω2/γ).

The physical reason for this EIT line-narrowing effect is that power-broadening of

the line is weaker for off-resonant atoms. This line-narrowing effect is similar to that

discussed earlier by Feld and Javan [82]. At the same time the EIT linewidth can

never be reduced beyond its ultimate limit defined by W cb.

2)z >> 1.

Here no EIT is observed until x ∼ z, when χ′′(∆ = 0) ≈ η/(W ab(1 + 2x/z)); for

x >> z absorption at the line center is small as ηz/2W abx.

The corresponding linewidth for low intensity is

Γ2
EIT =

2x

z
(W cb)2 (1 + x/z)

1 +

{
1 +

(1 + z/2x)2

(1 + x/z)2

}1/2
 ,

so again EIT starts with ΓEIT ∼ W cb, but in this case with much higher intensity

Ω2 ∼ W abW cb (x ∼ z). For higher intensities (x >> z)

ΓEIT =⇒ Ω2

W ab
.
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For media with a large inhomogeneous width of the c → b transition, charac-

terized by the condition z >> 1, we see that a considerably higher (by the factor

W abW cb/γγcb ) intensity is required for EIT to be observed than in a homogeneously

broadened medium, and there is no linear dependence on the Rabi frequency of the

driving field as we found in the limit z << 1. From the very begining, when the inten-

sity of the driving laser exceeds the threshold intensity (Ω2 ∼ W abW cb) the linewidth

is power-broadened.

C. Group velocity in an inhomogeneously broadened EIT medium

The dispersive properties of an electromegnetically induced transparent medium are

as interesting as its absorption characteristics. It has been demonstrated both theoret-

ically and experimentally [24] that EIT is accompanied by steep frequency dispersion

(large derivative dn/dν) near the line center, which leads to a time delay of the probe

pulse and reduction in its group velocity. As is well known the group velocity of light

in a medium is given by

Vg =
c

n + νdn/dν
,

where n ' n0 + 2πχ′.

Under the experimental conditions of Refs.[24],[69]-[76] the refractive index n0 ∼

1 − 2 and in the EIT regime we can neglect n0 in comparison with νdn/dν, so that

Vg = c/(2πνdχ′/dν).

The time delay for a pulse in a sample of length L is then

TD = L(1/Vg − 1/c) =
2πνL

c

∂χ′

∂ν
.

For the inhomogeneously broadened system considered in section B the steepness of
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the dispersion function is given by the expression:

∂χ′

∂ν

∣∣∣∣∣
ν=ωab

=
η

W abW cb

2
√

x/z

1 +
√

x

1 +
√

x + x + 4x(1 +
√

x)/z + 4x2/z2

(1 + 2
√

x/z)2(1 + 2x/z)2
.

Let us again consider limits z << 1 and z >> 1.

1) z << 1

For low driving field intensities (x << 1) EIT becomes observable when
√

x ∼ z,

and

∂χ′

∂ν

∣∣∣∣∣
ν=ωab

≈ η

W ab

2
√

x/z

W cb
=

η

W ab

2
√

x

z

1

ΓEIT

.

When x << 1 and
√

x >> z

∂χ′

∂ν

∣∣∣∣∣
ν=ωab

≈ η

W ab

1

Ω
√

2wcb/γ
=

η

W ab

1

ΓEIT

.

For high driving laser intensities corresponding to x >> 1 the steepness is

∂χ′

∂ν

∣∣∣∣∣
ν=ωab

≈ η

Ω2
=

η

W ab

W ab

Ω2
=

η

W ab

1

ΓEIT

.

2) z >> 1

In this limit EIT becomes observable when x ∼ z. At this time

∂χ′

∂ν

∣∣∣∣∣
ν=ωab

≈ η

W ab

2x/z

(1 + 2x/z)2

1

W cb
=

η

W ab

2x/z

(1 + 2x/z)2

1

ΓEIT

.

For x >> z

∂χ′

∂ν

∣∣∣∣∣
ν=ωab

≈ η

Ω2
=

η

W ab

W ab

Ω2
=

η

W ab

1

ΓEIT

.

As we can see, in general case under EIT conditions the group velocity and

accordingly the time delay of the pulse are defined as:

Vg/c =
1

πω

h̄ΓEIT W ab

Nµ2
ab

, (3.19)

TD =
πωL

c

Nµ2
ab

h̄W abΓEIT

.
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Note that this is the last parameter TD which also defines the efficiency of the non-

linear transformations. So when the driving field intensity exceeds a threshold value

and EIT sets in, it is followed by steep dispersion, which is inversely proportional to

the EIT linewidth ΓEIT . In its turn, the group velocity of the probe pulse is linearly

proportional to the EIT width. So the smaller ΓEIT , the slower the group velocity

of light, which is fundamentally limited by the coherence lifetime γcb in a Doppler

broadened gaseous medium or by the inhomogeneous broadening of the low-frequency

transition W cb in a solid medium.

D. Comparison of the theory with the experiments on EIT and SGV

It is interesting to compare recent experiments on EIT and SGV with the results of

the above theory. In Refs.[71, 76] EIT was observed in a rare-earth doped crystal

(Pr3+ doped Y2SiO5 or Pr :YSO), and in N-V color centers in diamond respectively.

All relevant experimental parameters are listed in Table I.

Here wab, wcb are the population relaxation and γab, γcb are the coherence relax-

ation rates for a → b and c → b transitions; ∆νjit is the laser jitter; λ is the linewidth

of the a → b transition; f is the optical transition oscillator strength; and I is the

intensity of the driving laser.

Given the oscillator strength, the dipole moment of the optical transition can be

estimated as

µ2
ab = f

e2

h̄c

h̄2λ

4πme

, (3.20)

and, based on the intensity of the driving field, its Rabi frequency is

Ω =

√
2πµab

h̄
√

cn0

√
I.

We estimated the Rabi frequency used in Ref.[71] to be 500 kHz for I = 90
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Table I. The parameters of the solid media in the EIT experiments in Refs.[71, 76].

2W ab, 2W cb, w−1
ab , γ−1

ab , ∆νjit,

GHz kHz µs µs MHz

Pr:YSO 4 < 30 164 111 1

N-V 750 5.5 · 103 1.3 · 10−2 3.3 · 10−3 100

diamond

w−1
cb , γ−1

cb , λ, f I,

s µs nm W/cm2

Pr:YSO 100 500 605.7 3 · 10−7 90

N-V 5 · 10−3 40 637 0.1 280

diamond

W/cm2 in the Pr:YSO case, in Ref.[76] the Rabi frequency 160 MHz is cited for the

N-V diamond case. The density of Pr-ions in [71] was N = 4.7 · 1018 cm−3 and the

absorption coefficient was α = 10 cm−1; for the N-V color centers in [76] the density

of centers was N = 3 · 1018 cm−3 and the peak optical density was ∼ 0.3.

In Ref.[71] the system was rather six-level than three-level, and an additional

repump field was used, which made only a small fraction of Pr ions, confined within

the laser linewidth, interact with the laser fields. For these ions a six-level system

was reduced to a three-level Λ scheme with the laser jitter serving as an effective

inhomogeneous broadening at the optical transitions, resulting in the width of the

absorption spectrum 2W ab
eff ∼ 1.2 MHz. Accordingly, the effective density of Pr ions

with laser jitter was 4.7 · 1018 · 1.2·106

4·109 = 1.41 · 1015 cm−3 or even less depending on the

intensity of the repump laser.

The experimental and calculated values of the EIT linewidth and transmission
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T and estimates for parameters z and x are given in Table II. As we can see, the

theoretically calculated value of the EIT linewidth for Ref.[71] is larger than was

observed in the experiment. A possible explanation is that the medium was optically

thick (at the 9 mm length of the crystal the optical density was 9) and additional line

narrowing of the EIT resonance is expected in this situation [84]. The descripancy in

the observed and calculated transmissions for Ref.[76] (about seven times) is probably

due to the use of a repump laser, necessary to prevent reorientation of the N-V centers

in the diamond lattice.

Using the relation between the dipole moment and oscillator strength (3.20) the

ratio of the group velocity to the speed of light, according to (3.19), is

Vg/c =
2me

πh̄c

1

f

h̄c

e2

1

N/(ΓEIT W ab)
. (3.21)

A group velocity of the order of 1 − 10 m/s has been achieved in recent ex-

periments in gases. The parameters and results for the group velocity in gases are

summarized in Tables III,IV. As it is clear from Table IV, they are in good corre-

spondence with the theoretical calculations on the basis of Eq.(3.21). Note that in

the experiment by L.V. Hau et al. [24] the Rabi-frequency of the driving laser was an

order of magnitude greater than the threshold Rabi-frequency at which EIT starts, so

the resonance was power-broadened, which means that ΓEIT = Ω2/γab. If it were not

power-broadened, the EIT width would be just the coherence relaxation rate of the

low-frequency transition γcb, which would lead to Vg/c ' 1.3 · 10−10 (Vg ≈ 6 cm/s).

Let us compare now the group velocity, observed in a recent experiment by A.V.

Turukhin et al. in Pr3+:YSO [24] with the prediction of the above theory. The results

are given in Table II and in Fig.8. In Table II we list the experimental value of

the group velocity of 45 m/s and the corresponding calculated value of 4000 m/s.

The origin of the large difference in Vg (about 90 times) remains unclear. A possible
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Table II. The experimental and calculated EIT linewidth, transmission and group ve-

locities for EIT in solid media experiments.

2Γexp
EIT , 2Γcal

EIT , T exp, T cal, z x V exp
g V cal

g

kHz kHz % % m/s m/s

Pr3+:YSO 30 230 36 31 3 · 104 105 45 4000

N-V 8500 7800 70 11 5 0.1 − 470

diamond

explanation of this descripancy may be the square shape of the probe pulses used in

this experiment. A pulse of such shape is considerably modified during propagation

in a resonant medium, which may cause an uncertainty in the actual delay time and

group velocity. A more detailed comparison with this experiment is shown in Fig.21,

where calculated and experimentally observed group velocities (normalized to their

maximum values) are given for a range of driving field intensities. We can see that

the experimentally observed and theoretically calculated curves look very similar to

each other. Also, in Table II we give the theoretical prediction for the possible group

velocity in another solid system, namely, N-V color centers in diamond, where EIT

has been observed recently [11], but the group velocity has not been measured yet.

E. Solids vs. gases. Potential advantages of solids

As it is clear from the above discussion, the minimum value of the EIT linewidth

is defined by W cb and it is achieved when the intensity of the driving laser is about

the threshold value needed to observe EIT. In order to minimize inhomogeneous

broadening at the spin transition it is preferable to use hyperfine rather than Zeeman

splitting, choosing a lattice with the smallest possible nuclear spin of ligands. In some
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Fig. 21. Experimentally observed (triangles) and calculated (stars) time delay for

Pr3+:YSO in the experiment by A.V. Turukhin et al. [24].

Table III. The experimental parameters of EIT in gaseous media experiments.

W ab, W cb, γab, wab, wcb

MHz kHz MHz MHz Hz

M.M. Kash et al. [24] 270 103 150 3 103

L.V. Hau et al. [24] 10 20 10 10 1.6 · 104

γcb, λ, I, N, f

Hz nm mW/cm2 cm−3

M.M. Kash et al. [24] 103 795 10 2 · 1012 0.33

L.V. Hau et al. [24] 1.6 · 104 589 12 8 · 1013 1



57

Table IV. The experimental and calculated group velocities for EIT experiments in

gaseous media.

M.M. Kash et al. [24] L.V. Hau et al. [24] D. Budker et al. [24]

V exp
g , m/s 90 17 8

V cal
g , m/s 350 21 5

rare-earth doped crystals (for example, Eu3+:Y2SiO5, Pr3+:Y2SiO5, N-V color centers

in diamond) W cb can be of the order of 1−10 kHz, i.e., of the same order of magnitude

as in some EIT experiments in hot gases (M.M. Kash et al. [24]) and Bose-Einstein

Condensates (BEC’s) (L.V. Hau et al. [24]), where it is typically defined by the time

of flight of atoms through a laser beam. However, W cb in solid materials can not

overcome the record value of 1 Hz achieved in experiments with a paraffin coated Rb

cell (D. Budker et al. [24]).

The EIT threshold intensity in an inhomogeneously broadened medium in gen-

eral is higher than that in a homogenously broadened medium (Ω2 > γγcb) by the

factor (W cb)2/γcbwcb if z < 1 or by the factor W abW cb/γγcb if z > 1. The way to

reduce the requirement for the threshold intensity is to use materials with the small-

est possible inhomogeneous broadening of the spin transition. Note that for solids

with z < 1 it does not depend on W ab, while for solids with z > 1 it is propor-

tional to the inhomogeneous broadening of an optical transition. In the experiments

with solids discussed above z > 1 (see Table II). This is the reason the threshold

intensities were much higher than in gases. The typical value of the threshold in-

tensity for gaseous media with the parameters listed in Table III is of the order

of mW/cm2 while in experimental works with solids with the parameters listed in

Table I it is of the order of 10 − 103 W/cm2. In the case z > 1 it is reasonable
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also to use electric-dipole allowed optical transitions in combination with the small-

est possible inhomogeneous broadening of the optical transition. There is a wide

class of rare-earth ion doped dielectrics possesing a zero phonon line at low tem-

perature (up to 10 K) at the electric-dipole allowed f − d transitions lying in the

band-gap of a host matrix. Some examples include: Yb2+:MgF2, Pr3+:Cs2NaYCl6,

Ce3+:Cs2NaYCl6, Ce3+:LuPO4, Ce3+:YPO4, Ce3+:YAG, Ce3+:CaSO4, Tb3+:LiYF4,

Eu2+:CaS, Eu2+:MgS, Eu2+:MgF2, Eu2+:CaF2, Np4+:ZrSrO4, Pa4+:Cs2ZrCl6. Al-

though the inhomogeneous width of a dipole-allowed optical transition is usually

greater than that of a dipole-forbidden, there is no linear dependence between the

dipole moment and the inhomogeneous width, so the later can be reduced by con-

trolling the quality of the crystal sample. There are some rare-earths, namely, Pr3+

[85], Ce3+ [98], Eu2+ [87] and Tb3+ [88], whose dipole-allowed f − d transitions in

different hosts have relatively small inhomogeneous optical line broadening, ranging

from 40 GHz to 300 GHz. Note that inhomogeneous line broadening can be effectively

reduced down to the magnitude of the laser jitter (which can be as small as 1 kHz

[89]) using an optical repump scheme as it was done in [71]. This effectively reduces

the requirement for the EIT threshold intensity. The price to be paid for this is a

corresponding reduction in the effective atomic density of the dopants participating

in EIT.

Let us compare now the dispersive properties of EIT in gases and solids in order

to estimate the potential of solid materials for the slowing of light and realization of

nonlinear interactions.

On the basis of Eq.(3.21) the general recipe for achieving a slow group veloc-

ity is using highest possible dopant density, electric-dipole allowed transitions, and

the smallest possible inhomogeneous line broadening at both the spin and optical

transitions.
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One of the major advantages of solids as compared to gases is the high concentra-

tion. The concentration of dopants in solids can be much greater (about 1018 − 1022

cm−3) than the atomic density in gases (about 1010 − 1013 cm−3) for which atomic

collisions do not broaden the optical and spin transitions. This is crucial for the

slowing of light and for the efficiency of nonlinear processes.

Taking a combination of favorable parameters such as the density of impurity

ions of N ∼ 1022 cm−3, the inhomogeneous width of the spin transition W cb ∼ 10

kHz and the inhomogeneous width of the dipole-allowed (f ∼ 0.1) optical transition

W ab ∼ 50 GHz, and assuming that the EIT resonance is not power-broadened, one

can obtain:

Vg/c ' 10−13 (Vg ≈ 30µm/s).

Unfortunately in real materials it is difficult to realize such a favorable combina-

tion of parameters.

Let us consider Ce3+ doped crystals like YAG, LuPO4, YPO4, YLiF4, and

Cs2NaYCl6. The relatively high oscillator strength f ∼ 10−4 in these materials is

nicely combined with relatively small inhomogenous broadening of the optical tran-

sition: W ab ∼ 100 GHz [90]. Unfortunately there is no hyperfine structure (the spin

of Ce nuclei is zero) and inhomogeneous broadening at the Zeeman transition is typi-

cally rather large: W cb ∼ 1−10 MHz [91]. At the density of dopants N = 1020 cm−3,

it would give us Vg ≈ 200 m/s. The required intensity to observe EIT in such crystal

would be rather high, Ithres ≈ 5 kW/cm2.

Another example is Eu2+-doped crystals like Eu2+:CaF2, Eu2+:SrF2, Eu2+:MgF2,

and Eu2+:MgS. In these materials inhomogeneous broadening of the spin transition

is rather small: W cb ∼ 10 kHz [92], W ab = 40 − 60 GHz [87], and the density of

dopants can be relatively large: N ≈ 1019 cm−3. There is also a zero-phonon line
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at the 4f − 5d electric-dipole allowed optical transition with the oscillator strength

f ∼ 10−4 [87] and the wavelengths λ = 401 − 424 nm. According to Eq.(3.21), at

the density of dopants N = 1019 cm−3, this should lead to Vg ≈ 10 m/s. The EIT

threshold intensity would be Ithres ≈ 400 W/cm2. In Eu2+:MgS the inhomogeneous

width of the f − d transition is rather large W ab ∼ 6 THz [93], but the oscillator

strength of the transition is f ∼ 0.01− 0.02 [93, 94]. The wavelength of the 4f − 5d

transition is λ = 578 nm in this crystal. If we assume the width of the spin transition

W cb ∼ 10 kHz and the density of dopant ions N = 1019 cm−3, this gives the group

velocity estimate Vg ≈ 20 m/s. The intensity of the driving laser required for EIT to

be observed would be Ithres ≈ 600 W/cm2.

It is worth mentioning one more requirement to the proposed solid materials. It

is desirable that in the Λ-system under consideration both optical transitions be of

comparable strength to avoid using high laser power. In principle, if the lower levels

are different spin levels, both transitions to a common upper level cannot be allowed,

since spin is conserved in optical transitions. This restriction can be overcome eigher

by mixing of spin levels by an external magnetic field [76] or by using atoms or ions

with strong spin-orbit coupling in the case of electronic Zeeman lower levels, or strong

spin-orbit and hyperfine interactions for hyperfine lower levels. These interactions

lead to mixing of different electronic (nuclear) spin wave functions with spatial ones,

thus making both optical transitions allowed. The rare-earth ions doped into dielectric

crystals which we discuss above possess strong spin-orbit interaction because of their

high atomic numbers, so transitions from Zeeman sublevels to a common upper level

may be of equal strength [95]. In the case of hyperfine lower levels it is harder to find

transitions with comparable strength, since the hyperfine interaction is small, and

generally only transitions that preserve the nuclear spin Iz, are allowed. However, in

hosts where a rare-earth ion occupies a site of low symmetry, nuclear state mixing by
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the crystal field can give rise to ∆Iz 6= 0 transitions of comparable intensity [95, 96].
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CHAPTER IV

SUPPRESSION OF EXCITED-STATE ABSORPTION IN LASER CRYSTALS

USING ELECTROMAGNETICALLY INDUCED TRANSPARENCY

Currently, a lot of experimental effort in solid-state optics is devoted to searching

for laser materials suitable for tunable lasing, primarily in ultraviolet (UV) and vac-

uum ultraviolet (VUV) spectral regions. Mainly, researchers focus on optical crystals

doped with either transition metal or rare-earth ions [97]. The latter doped into wide

bandgap dielectric crystals have spectrally broad vibronic emission bands associated

with 4fn−15d ↔ 4fn interconfigurational transitions, whose energies lie mostly in UV

or VUV regions of the spectrum. The transitions are electric dipole allowed; there-

fore have large absorption and emission cross-sections, and are promising for efficient

tunable laser action. Interest in impurity-doped crystals is also motivated by the fact

that similar lasing media in the visible and near infrared are very robust and easy

to operate. The most famous examples are Ti:Sapphire, Cr:LiCaF, Ce:LiCaF, and

fixed-wavelength Nd:YAG, Nd:YLF, and Yb:YAG systems which can deliver high

laser power both in continuous wave and pulsed regimes.

However, not much progress has been made in developing solid-state UV and

VUV lasers. Thus far laser action in the UV was realized in several Ce3+ doped

dielectric host materials, emitting wavelengths tunable in the range 270 − 310 nm

[98]; in the VUV region only Nd3+:LaF3 demonstrates lasing with exceptionally large

photon energy corresponding to 172 nm wavelength with the possibility of tuning

from 170 nm to 175 nm [99]. Most of the materials in which laser oscillation has been

observed are listed in [97, 100].

There are two major obstacles in the way of making an impurity-doped crystal

lase in the UV or VUV. First of all, one has to create population inversion at an
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operating transition, which requires very high pump power densities, scaling as ν3

with the frequency of the pump. This problem can be rather satisfactorily solved by

introducing two- or three-step pumping via intermediate states of a dopant ion with

visible or near-UV light (see, for example, [101]). It also helps to prevent formation of

color center defects, produced by strong UV pumping and causing additional optical

losses. The second problem is more fundamental. It is the so called excited-state

absorption (ESA), i.e. absorption from metastable laser levels to higher-energy states.

The terminal state for ESA can be either a higher-lying discrete level or the conduction

band (CB) of a crystal. In the majority of rare-earth ion doped materials ESA at

emission or/and pump wavelengths reduces the efficiency or completely prohibits laser

action. This happens if the ESA cross-section σESA exceeds the stimulated-emission

cross-section σSE. For Nd3+:LaF3 and Ce3+ doped materials lasing is possible because,

luckily, σSE > σESA. Moreover, in many cases ESA prevents lasing not only in the UV

and VUV parts of the spectrum, but also in the visible and in the infrared. Some (but

not the only) examples of the materials in which laser action cannot be observed due

to ESA are the following: Ce3+:YAG [103] (red to green luminescence), Yb2+:CaF2

[100] (red to blue luminescence), Yb2+:MgF2 [104] (blue luminescence), Eu2+:CaF2

[106] (blue luminescence), Pr3+:YAG [102] (blue to near UV luminescence), Pr3+:YLF

[105] (UV luminescence), Nd3+:YLF [107] (VUV luminescence) and many others.

In this chapter a method for reduction of excited-state absorption is considered

[108], which makes use of the EIT phenomenon [17, 18]. Namely, absorption from

a populated excited electronic state can be suppressed under the action of an addi-

tional driving coherent field, resonantly coupling the terminal state of ESA to some

intermediate discrete state. We mainly focus on the possibility to suppress ESA at a

desired wavelength of laser oscillation in rare-earth ion doped laser materials.
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A. Typical ESA configurations

Let us first review common configurations in which ESA can prevent laser action.

The main focus will be on ESA reduction in wide bandgap optical crystals doped

with divalent or trivalent rare-earth ions because these materials are considered to be

the most promising for UV and VUV solid-state lasing.

Typically, rare-earth ions enter crystals in a trivalent state, but some of them (Ce,

Eu, Yb, Tm, and Sm) can be stabilized in a divalent state. In both cases the ground

state of a rare-earth ion is 4fn with Ce2+ being the only exception [109]. Energies of

excited 4fn levels typically extend from the IR into the VUV region while energies of

4fn−15d levels mostly lie in the UV and VUV parts of the spectrum. Parity-forbidden

4fn ↔ 4fn transitions are rather weak (typical absorption and stimulated emission

cross-sections are σ ∼ 10−21 ÷ 10−20 cm2) compared to much stronger parity-allowed

4fn ↔ 4fn−15d transitions (σ ∼ 10−19 ÷ 10−18 cm2). Having at the same time

broad emission and absorption bands, these interconfigurational transitions offer the

potential for wavelength-tunable laser operation. 4fn ↔ 4fn transitions can be used

for laser operation at a fixed wavelength in the UV or VUV.

The terminal level for ESA can be either a higher lying discrete state (Fig.22a)

or continuum states in the CB (Fig.22b). In the next subsections we will analyze

these two configurations separately and derive conditions for ESA suppression due to

EIT. ESA can also originate from charge transfer processes, but we do not consider

this situation.

1. Discrete terminal level for ESA

Consider the situation, depicted in Fig.22a, in which ESA occurs from an upper

operating state of a laser transition to a higher-lying discrete state. By resonantly
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Fig. 22. ESA at the laser oscillation wavelength in crystals activated with rare-earth

and transition metal ions.

coupling the terminal state 4 of the ESA transition to some auxiliarly state 3 by

an additional driving field, one can suppress absorption of the emitted field, as is

depicted in Fig.23.

It is worth to mention that in Refs.[110] the idea of using an additional control

field in order to manipulate absorption properties of a medium was applied to inhibit

two-photon absorption (TPA). TPA from a ground state to some excited state as

well as stepwise excitation were suppressed by using the control field, coupling an

intermediate state via which TPA occured, to some auxiliarly state. In the system

which we consider it is absorption from the excited, not the ground, state that is to

be suppressed; therefore the additional driving field has to couple the auxiliarly state

to the terminal rather than to the initial state of the ESA transition. In the case of

a discrete terminal level, as in Fig.23, the additional state 3 can be either of lower or

higher energy with respect to the terminal state 4, so that the ESA transition 2 ↔ 4

and the adjacent transition 3 ↔ 4 can form either Λ- or ladder-systems, provided

that the coherence at the two-photon transition 2 ↔ 3 is sufficiently long-lived.

In order to derive conditions, at which laser oscillation can be achieved, we
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Fig. 23. ESA to discrete terminal level and the scheme of its suppression by an addi-

tional coherent driving field.

consider linear gain/loss for a weak probe field εp in an active medium. To that

end we calculate the total optical polarization of the medium due to the probe field

resonant with transitions 2 ↔ 1 and 4 ↔ 2. The ultimate goal is to obtain conditions

under which the probe field is amplified in the presence of the driving field while in

the absence of one it is absorbed.

Density matrix equations, describing medium polarization in a linear approxi-

mation with respect to the probe field, can be written in the following form:

σ̇42 + i (ω42 − ωp) σ42 + i
εpµ42

2h̄
(ρ44 − ρ22)− i

εdµ43

2h̄
σ32 = −γ42σ42, (4.1)

σ̇21 + i (ω21 − ωp) σ21 + i
εpµ21

2h̄
(ρ22 − ρ11) = −γ21σ21, (4.2)

σ̇32 + i (ω32 + ωd − ωp) σ32 − i
ε∗dµ

∗
43

2h̄
σ42 + i

εpµ42

2h̄
σ∗43 = −γ32σ32, (4.3)

σ̇43 + i (ω43 − ωd) σ43 + i
εdµ43

2h̄
(ρ44 − ρ33)− i

εpµ42

2h̄
σ∗32 = −γ43σ43. (4.4)

Here ωp and ωd are the frequencies of the probe and driving fields respectively, µmn is

the dipole moment of the m ↔ n transition, σmn are the complex amplitudes of the

off-diagonal density matrix elements in the rotating-wave approximation (RWA) and
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γmn are their corresponding decay rates.

A steady-state solution of the above set of equations yields the following result

for the complex amplitude of a net polarization of the medium at the probe field

frequency:

P = N (σ21µ12 + σ42µ24) = i
εpN

2h̄

(
|µ21|2(ρ11 − ρ22)

i(ω21 − ωp) + γ21

+

+
|µ42|2

(
ρ22 − ρ44 + | εdµ43

2h̄
|2 ρ33−ρ44

(i(ω43−ωd)−γ43)(i(ω32−ωp+ωd)+γ32)

)
i(ω42 − ωp) + γ42 +

∣∣∣ εdµ43

2h̄

∣∣∣2 1
i(ω32−ωp+ωd)+γ32

 , (4.5)

where we neglect inhomogeneous broadening of both the one- and two-photon tran-

sitions. The negative or positive sign of the imaginary part of Eq.(4.5) determines

whether the probe field is amplified or absorbed, respectively, in the medium. We are

interested in the case of exact resonance of the probe field with the inverted transi-

tion 2 ↔ 1 (ωp = ω21) and exact resonance of the driving and probe fields with the

two-photon transition 3 ↔ 2 (ωp − ωd = ω32). Let us assume also that initially only

state 2 is populated. Then, the imaginary part of the polarization takes the form:

Im(P ) = −εpN

2h̄

(
|µ21|2

γ21

− |µ42|2 (γ42 + |Ωd|2/γ32)

(ω42 − ωp)2 + (γ42 + |Ωd|2/γ32)
2

)
, (4.6)

where Ωd = εdµ43/2h̄ is the Rabi frequency of the driving field.

All terms in Eq.(4.6) have clear physical meaning. The first one describes am-

plification of the probe field in the presence of inversion at the laser transition 2 ↔ 1

while the second one describes ESA, modified by the driving field. If Ωd = 0 (no

driving field), the imaginary part of the polarization reads

Im(P ) = −εpN

2h̄

(
|µ21|2

γ21

− |µ42|2γ42

(ω42 − ωp)2 + γ2
42

)
. (4.7)

A positive sign of this expression means that σESA > σSE and no gain for the probe

field is possible in the medium. However, for rather strong driving field (|Ωd|2 >
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|Ωth|2 = γ32γ42) ESA can be suppressed by a factor of |Ωd|2/γ32γ42 in the center of the

ESA line. Note that the threshold Rabi frequency Ωth of the driving field corresponds

to the standard EIT threshold [17]. It is expected since transitions 2 ↔ 4 and 3 ↔ 4

form a Λ-system, in which one-photon absorption from state 2 is suppressed due to

EIT if a strong driving field is applied to the adjacent transition. In order to achieve

gain the driving field Rabi frequency has to match the condition

|Ωd|2 > |Ω0|2 =
σESA

σSE

Ωth. (4.8)

In the above analysis inhomogeneous broadening was not taken into account. In

a solid medium the standard EIT threshold Rabi frequency in a Λ-system is modified.

As is shown in Chapter III, in the case of rare-earth ion doped crystals the modification

is that inhomogeneous linewidths of transitions have to be substituted instead of

homogeneous ones, so that |Ωth|2 = W inh
42 W inh

32 .

2. Suppression of ESA at infrared transitions with a visible control field used also

as a pump

Let us consider the level scheme depicted in Fig.24, which is typical for ESA in transi-

tion metal ion doped crystals. Emission from the metastable laser level 3 terminates

in the phonon sideband of the ground state, and the phonon state 2 rapidly (in ps

time) decays into the ground electronic state 1. ESA originates from the excited

electronic state 3 and typically terminates in some state 5 in the absorption band

of a higher-lying excited electronic state 4. The state 5 also rapidly decays to the

electronic state 4. So in the scheme of Fig.24 states 1, 3 and 4 are metastable and

the states 2, 5 are rapidly decaying. It is desirable that the state 4 rapidly decay

non-radiatively to the state 3 so that it does not accumulate population. We also

assume that the decay from the state 4 goes mostly to the state 3.
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Fig. 24. Typical ESA configuration in transition metal ion doped laser crystals.
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Excited-state absorption in this case can be suppressed using the driving field of

shorter wavelength, as is shown in Fig.24. An additional advantage of this scheme

is that the driving field can also serve as a pump, transferring population from the

ground state 1 to the upper laser level 3.

In order to obtain the conditions at which amplification is possible in the system,

we again analyze linear gain/loss for a weak probe field in the presence of a strong

driving field, assuming that initially all population is in the ground state. Two

electromagnetic fields are applied:

ε =
1

2

∑
j

εie
−iωjt+ikjz + c.c., j = p, d,

where εp, εd are the slowly varying amplitudes of the electric field components of the

probe and driving fields, respectively; ωp,d and kp,d are the corresponding frequen-

cies and wavenumbers. Fields are assumed to be plane waves propagating in the

z-direction.

Solution of the following dynamic equations for amplitudes σml of the density

matrix elements ρml, determined in RWA by standard formulae: ρ32 = σ32e
−iωpt+ikpz,

ρ53 = σ53e
−iωpt+ikpz, ρ31 = σ31e

−i(ωd−ωp)t+i(kd−kp)z, ρ51 = σ51e
−iωdt+ikdz, will give the

medium polarization in a linear approximation with respect to the probe field:

σ̇32 + (γ32 + i(ω32 − ωp)) σ32 + i
εpµ32

2h̄
(ρ33 − ρ22) = 0, (4.9)

σ̇53 + (γ53 + i(ω53 − ωp)) σ53 + i
εpµ53

2h̄
(ρ55 − ρ33)− i

εdµ51

2h̄
σ∗31 = 0, (4.10)

σ̇31 + (γ31 + i(ω31 − ωd + ωp)) σ31 + i
εdµ51

2h̄
σ∗53 − i

ε∗pµ
∗
53

2h̄
σ51 = 0, (4.11)

σ̇51 + (γ51 + i(ω51 − ωd)) σ51 + i
εdµ51

2h̄
(ρ55 − ρ11)− i

εpµ53

2h̄
σ31 = 0, (4.12)

where ωml is the frequency of the m ↔ l transition, µml is the corresponding dipole

moment, and γml is the decay rate of the coherence at the corresponding transition. In
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the steady-state regime the solution of these equations gives the following expression

for the medium polarization at the probe field wavelength:

P = N(σ32µ23 + σ53µ35) = i
εpN

2h̄

(
|µ32|2 (ρ22 − ρ33)

i(ω32 − ωp) + γ32

+

+ |µ53|2
(ρ33 − ρ55) (γ31 − i (ω31 − ωd + ωp))− |Ωd|2 ρ11−ρ55

γ51−i(ω51−ωd)

(γ53 + i (ω53 − ωd)) (γ31 − i (ω31 − ωd + ωp))

 . (4.13)

We need to analyze the case of an exact one- and two-photon resonance: ωp = ω32 =

ω53 and ωd − ωp = ω31, since in this case EIT is the most prominent.

The imaginary part of the polarization is:

Im(P ) =
εpN

2h̄

(
|µ32|2 (ρ22 − ρ33)

γ32

+ |µ53|2
(ρ33 − ρ55) γ31 − |Ωd|2 (ρ11 − ρ55) /γ51

γ53γ31 + |Ωd|2

)
.

(4.14)

The first term in Eq.(4.14) describes amplification of the probe field in the presence

of inversion at the laser transition 3 ↔ 2, the second one describes ESA of the probe

field from the upper operating level 3 and the third term gives the modification of

ESA by the driving field and originates from the coherence σ31.

Since the driving field also serves as a pump, it also determines level populations,

so that

ρ11 =
1 + 2 |Ωd|2

W54γ51

1 + 2 |Ωd|2
γ51

(
1

W32
+ 1

W43

) , (4.15)

ρ22 =
2 |Ωd|2

W21γ51

1 + 2 |Ωd|2
γ51

(
1

W32
+ 1

W43

) , (4.16)

ρ33 =
2 |Ωd|2

W32γ51

1 + 2 |Ωd|2
γ51

(
1

W32
+ 1

W43

) , (4.17)

ρ55 =
2 |Ωd|2

W54γ51

1 + 2 |Ωd|2
γ51

(
1

W32
+ 1

W43

) , (4.18)

ρ44 = 1− ρ11 − ρ22 − ρ33 − ρ55, (4.19)
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where Wml are population decay rates (see Fig.24), we assumed that W21, W54 �

W32, W43. Taking into account that W43 >> W32 and that the driving field is

suffuciently strong such that |Ωd|2 >> γ51W32, the populations are

ρ11 ≈
1

1 + 2|Ωd|2
γ51W32

≈ 0,

ρ22 ≈
W32

W21

≈ 0,

ρ33 ≈
2|Ωd|2
γ51W32

1 + 2|Ωd|2
γ51W32

≈ 1,

ρ55 ≈
W32

W54

≈ 0,

ρ44 ≈ 0.

Finally we arrive at the following result for the imaginary part of the polarization:

Im(P ) =
εpN

2h̄

2 |Ωd|2 /γ51W32

1 + 2|Ωd|2
γ51W32

−|µ32|2

γ32

+
|µ53|2

γ53

1−W32/2γ31

1 + |Ωd|2
γ53γ31

 , (4.20)

which shows that ESA can be suppressed in the EIT regime, when the driving field

Rabi frequency exceeds a threshold value:

|Ωd|2 � |Ωd|2th = γ53γ31 (4.21)

such that the second term in Eq.(4.20) is less than the first one resulting in Im(P ) < 0,

i.e., amplification.

3. ESA into the conduction band

In this subsection we show that ESA terminating in the CB of a host material can

be reduced in a similar way as in the case of a discrete terminal level. The phe-

nomenon of inhibited photoionization has been known since 1961 when Fano theo-
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retically explained experimental data on photoionization reduction in helium arising

from interaction of a discrete autoionizing state, imbedded into the continuum, with

continuum states [10]. The origin of the reduction is the destructive interference of

probability amplitudes of two pathways leading to ionization. Later, it was discovered

that a Fano-type continuum structure can be realized in a structureless continuum

by admixing a bound electronic state into the continuum with a laser [19]. This

phenomenon is called laser-induced continuum structure (LICS) and it is very well

studied in rare gases (for recent experimental results, see, for example, [111] and

references therein).

In order to show that ESA into the CB can be reduced in the same manner as

in the previous subsection, we consider a simple four-level model system, depicted

in Fig.25, in which the state 4 is now replaced by continuum electronic states in

the CB. We treat it as a structureless non-degenerate one-dimensional continuum,

which means that each electronic energy state in the CB is described by only one

quantum number - its energy. This assumption will make our consideration much

simpler and reveal the essential physics of the problem. In reality, however, more

than one continuum can be involved in the ESA process. For example, in the case

of ESA originating from a 4fn−15d level, the terminal state of an electron in the CB

can be either p-like or f -like.

The following assumptions are used in the analysis: 1) the medium is prepared

in state 2, so that no other state is populated; 2) both probe and driving fields couple

corresponding discrete levels to the same continuum; 3) fields are resonant only with

transitions designated in Fig.25; 4) wave-mixing processes are neglected; 5) only the

linear response of the medium to the probe field is analyzed in order to calculate the

linear gain.
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Fig. 25. ESA to continuum terminal levels.

The wave function, describing this three-level+continuum system, is

|Ψ >= A1|1 > +A2|2 > +A3|3 > +
∫

C|c > dEc.

The Hamiltonian of the system is Ĥ = Ĥ0 + V̂ , where the non-perturbed and pertur-

bation Hamiltonians are given by the expressions:

Ĥ0 = E1|1 >< 1|+ E2|2 >< 2|+ E3|3 >< 3|+
∫

Ec|c >< c|dEc,

V̂ = −µ21ε|2 >< 1| −
∫

µc2ε|c >< 2|dEc −
∫

µc3ε|c >< 3|dEc + h.c.,

and two laser fields are applied:

ε =
∑
j

εj

2
e−iωjt+ikjz + c.c., j = p, d.
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Similar to the previous subsection εp is the probe field, which is absorbed from the

emitting level 2 into the continuum and amplified at the 2 ↔ 1 transition; εd is the

driving field, applied at the adjacent 3 ↔ c transition, which inhibits ESA of the

probe field if certain conditions are met, as will be shown below. Both fields are

assumed to be plane waves propagating in the z-direction.

Writing the complex amplitudes of the quantum states in the form an = Ane
iEnt/h̄,

c = CeiEct/h̄, using the RWA, and adiabatically eliminating the continuum following

the procedure of Ref.[19], we effectively reduce the system to a three-level one:

ih̄
∂a1

∂t
= −

µ12ε
∗
p

2
a2e

−i((E2−E1)/h̄−ωp)t−ikpz, (4.22)

ih̄
∂a2

∂t
= −µ21εp

2
a1e

i((E2−E1)/h̄−ωp)t+ikpz−a2

(
|εp|2

4h̄
(P p

2 + iΓp
2/2) +

|εd|2

4h̄

(
P d

2 + iΓd
2/2

))

−a3

ε∗pεd

4h̄
e−i((E3−E2)/h̄−ωp+ωd)t−i(kp−kd)z

(
Πd

23 + iGd
23/2

)
, (4.23)

ih̄
∂a3

∂t
= −a3

(
|εp|2

4h̄
(P p

3 + iΓp
3/2) +

|εd|2

4h̄

(
P d

3 + iΓd
3/2

))

−a2
εpε

∗
d

4h̄
ei((E3−E2)/h̄−ωp+ωd)t+i(kp−kd)z (Πp

32 + iGp
32/2) . (4.24)

Here we introduce the following notations:

P l
m + iΓl

m/2 = lim
η→+0

∫ |µcm|2 dEc

(Ec − Em)/h̄− ωl − iη
=

= P
∫ |µcm|2 dEc

(Ec − Em)/h̄− ωl

+ iπh̄ |µcm|2Ec=Em+h̄ωl
, (4.25)

Πl
sq + iGl

sq/2 = lim
η→+0

∫ µscµcqdEc

(Ec − Em)/h̄− ωl − iη
=

= P
∫ µscµcqdEc

(Ec − Em)/h̄− ωl

+ iπh̄µscµcq|Ec=Em+h̄ωl
, (4.26)

with s, q, m = 2 or 3 and l = p or d. In the above expressions P l
m is the dynamic

Stark shift of the m-th state due to interaction with the l-th component of the optical
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field, Γl
m is the ionization rate of the m-th level due to the l-th field, and Πl

sq and Gl
sq

together determine the magnitude and the phase of the coherence at the transition

s ↔ q excited due to a Raman process via the continuum.

Let us now turn to the dynamic equations for amplitudes σml of the density

matrix ρml = AmA∗
l , determined by standard formulae: σ21 = ρ21e

−iωpt+ikpz, σ32 =

ρ32e
−i(ωp−ωd)t+i(kp−kd)z, σ31 = ρ31e

−i(2ωp−ωd)t+i(2kp−kd)z. From Eqs.(4.22)-(4.24) one

finds:

∂σ21

∂t
= −σ21∆21 + iΩp(ρ11 − ρ22) + i

ε∗pεd

4h̄2 σ31

(
Πd

23 + iGd
23/2

)
, (4.27)

∂σ32

∂t
= −σ32∆32 − iΩ∗

pσ31 + i
εpε

∗
d

4h̄2

(
ρ22 (Πp

32 + iGp
32/2)− ρ33

((
Πd

23

)∗
− i

(
Gd

23

)∗
/2
))

,

(4.28)

∂σ31

∂t
= −σ31∆31 − iΩpσ32 + i

εpε
∗
d

4h̄2 σ21 (Πp
32 + iGp

32/2) , (4.29)

where we use the Rabi frequency of the probe field Ωp = µ21εp/2h̄, and complex

dressed decay rates

∆21 = γ21 +
|εp|2

4h̄2

Γp
2

2
+
|εd|2

4h̄2

Γd
2

2
+ i

(
E2 − E1

h̄
− ωp −

|εp|2

4h̄2 P p
2 −

|εd|2

4h̄2 P d
2

)
,

∆32 = γ32 +
|εp|2

4h̄2

Γp
2 + Γp

3

2
+
|εd|2

4h̄2

Γd
2 + Γd

3

2
+

+i

(
E3 − E2

h̄
− ωp + ωd −

|εp|2

4h̄2 (P p
3 − P p

2 )− |εd|2

4h̄2

(
P d

3 − P d
2

))
,

∆31 = γ31 +
|εp|2

4h̄2

Γp
3

2
+
|εd|2

4h̄2

Γd
3

2
+ i

(
E3 − E1

h̄
− 2ωp + ωd −

|εp|2

4h̄2 P p
3 −

|εd|2

4h̄2 P d
3

)
,

including dynamic Stark shifts, transition broadening due to photoionization and phe-

nomenological coherence decay rates γml. We also introduce Raman Fano parameters

q(1) = 2Πp
32/G

p
32 and q(2) = 2Πd

23/G
d
23 and assume that both q(1) and q(2) are real. In

the vicinity of the two-photon resonance, E2 + h̄ωp = E3 + h̄ωd, they are approxi-

mately equal q1 ≈ q2 ≈ q because of Πp
32 ≈

(
Πd

23

)∗
, and Gp

32 ≈
(
Gd

23

)∗
. Assuming
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the quasi-stationarity condition, so that the duration of laser pulses τ satisfies the

condition τ |∆21,31,32| � 1, we neglect time derivatives and obtain coherences that

adiabatically follow the fields.

The two-photon coherence reads

σ32 = i
εpε

∗
d

4h̄2

Gp
32

2

 |Ωp|2 (ρ11 − ρ22)(q + i)

∆32(∆21∆31 + |εp|2|εd|2

(4h̄2)2
Gp

32Gd
23

4
(q + i)2) + ∆21 |Ωp|2

+

+
(ρ22(q + i)− ρ33(q − i))(∆21∆31 + |εp|2|εd|2

(4h̄2)2
Gp

32Gd
23

4
(q + i)2)

∆32(∆21∆31 + |εp|2|εd|2

(4h̄2)2
Gp

32Gd
23

4
(q + i)2) + ∆21 |Ωp|2

 . (4.30)

In the limit of strong driving field (|εd|2 � |εp|2) Eq.(4.30) reduces to

σ32 = i
εpε

∗
d

4h̄2

Gp
32

2

ρ22(q + i)− ρ33(q − i)

i∆ + |εd|2

4h̄2

Γd
2+Γd

3

2
+ γ32

, (4.31)

and

σ21 =
iΩp

∆21

(ρ11 − ρ22) =
iΩp(ρ11 − ρ22)

iD + |εd|2

4h̄2

Γd
2

2
+ γ21

, (4.32)

where

∆ =
E3 − E2

h̄
− ωp + ωd −

|εd|2

4h̄2

(
P d

3 − P d
2

)
,

D =
E2 − E1

h̄
− ωp −

|εd|2

4h̄2 P d
2 .

We can now plug these expressions into the propagation equation for the probe field:

∂εp

∂z
+

np

c

∂εp

∂t
=

4πiωp

cnp

P,

with polarization of the medium at the probe field frequency given by:

P = N
(
σ21µ12 + ρ22

εp

2h̄
(P p

2 + iΓp
2/2) + ρ33

εp

2h̄
(P p

3 + iΓp
3/2) + σ32

εd

2h̄
(Πd

23 + iGd
23/2)

)
.

Here np is the non-resonant refractive index of the medium at the probe frequency.
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The population of state 3 is negligible if the driving field is strong (EIT regime),

so that the polarization response P reads

P = i
εpN

2h̄

 |µ21|2 (ρ11 − ρ22)

iD + |εd|2

4h̄2

Γd
2

2
+ γ21

+

+ρ22(−iP p
2 + Γp

2/2) + ρ22(q + i)2 |εd|2
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32G

d
23
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1
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2+Γd

3

2
+ γ32

 .

Now we can analyze the imaginary part of the polarization, which determines ampli-

fication at the probe wavelength:

Im(P ) = −εpN

2h̄

(ρ22 − ρ11)
|µ12|2

(
|εd|2

4h̄2

Γd
2

2
+ γ21

)
D2 +

(
|εd|2

4h̄2
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2

2
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)2 − ρ22
Γp

2

2
−

ρ22
|εd|2

4h̄2

Γd
3Γ

p
2

4

(q2 − 1)
(
|εd|2

4h̄2

Γd
2+Γd

3

2
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)
+ 2q∆

∆2 +
(
|εd|2

4h̄2

Γd
2+Γd

3

2
+ γ32

)2

 . (4.33)

Similar to Eq.(4.6) the first term in the above expression describes amplification due

to population inversion at the operating transition. The second term, proportional

to the population of the emitting excited state and to the rate of absorption of the

probe field into the continuum, describes ESA. The third term, which is responsible

for ESA suppression, is a consequence of the two-photon coherence σ32 built up by

the driving and probe fields and due to EIT.

Introducing a dimensionless two-photon detuning

x =
∆

|εd|2

4h̄2

Γd
2+Γd

3

2
+ γ32

we can rewrite Eq.(4.33) as:

Im(P ) = −εpN

2h̄

(ρ22 − ρ11)
|µ21|2

(
|εd|2

4h̄2

Γd
2

2
+ γ21

)
D2 +

(
|εd|2

4h̄2

Γd
2

2
+ γ21

)2 − ρ22
Γp

2

2
×
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×


|εd|2
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Γd
3

2

|εd|2

4h̄2

Γd
2+Γd
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+ γ32
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+

|εd|2
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|εd|2

4h̄2

Γd
2+Γd

3

2
+ γ32


 . (4.34)

Here one immediately identifies the first term in large figure brackets proportional

to ∝ (x + q)2/(x2 + 1) as an asymmetric Fano resonance factor [10], responsible for

suppression of probe field absorption in the vicinity of a LICS. This absorption is

completely cancelled at the two-photon detuning x = −q. Once it is set to zero, only

the second term is left, describing residual excited-state absorption due to decoherence

at the Raman transition 3 ↔ 2. The decoherence rate has two contributions: 1)

intrinsic coherence decay rate of the Raman transition γ32 and 2) power broadening(
|εd|2

/
4h̄2)Γd

3,2/2 due to absorption of the driving field from level 2. If the power

broadening is small compared to the intrinsic decay rate (or the driving field intensity

is much less than the EIT threshold, which is the same):
(
|εd|2 /4h̄2

)
Γd

3,2/2 � γ32,

than there is no ESA suppression present. But if the intensity greatly exceeds the

threshold (
(
|εd|2 /4h̄2

)
Γd

3,2/2 →∞), then the gain factor

Im(P ) = −εpN

2h̄

(ρ22 − ρ11)
|µ21|2

(
|εd|2

4h̄2
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)2−

ρ22
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2

2

Γd
2

Γd
2 + Γd

3

]
(4.35)

demonstrates ESA suppression (the second term in Eq.(4.35)) by a factor of Γd
2/(Γ

d
2 +

Γd
3). Note that strong suppression requires Γd

3 � Γd
2.

In the most favorable situation when the driving field is not absorbed from state 2,

i.e. when Γd
2 = 0, according to Eq.(4.34) ESA is suppressed by a factor of γ32/

|εd|2

4h̄2

Γd
3

2
,

which is much less than unity in the EIT regime.

If the driving field is absorbed from state 2, a condition can be derived for lasing

to be possible. Neglecting all losses of the probe field except for those due to ESA
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and assuming the most favorable case ρ11 = 0, one finds that in order to achieve

amplification the expression in square brackets in Eq.(4.35) has to be positive, being

equivalent to:

σSE > σESA
Γd

2

Γd
2 + Γd

3

(
1 +

|εd|2

4h̄2

Γd
2

2
/γ21

)
. (4.36)

The temporal amplification coefficient is then given by the expression:

αgain =
cN

n2
p

 σSE

1 + |εd|2

4h̄2

Γd
2

2
/γ21

− σESA
Γd

2

Γd
2 + Γd

3

 . (4.37)

Even if it is positive, there has to be enough time for generation to develop before

the upper operating state is depleted by ionization due to ESA of the driving field.

In other words, in order for laser oscillation to build up gain has to exceed the rate

at which population is pumped out of state 2 into the continuum:

αgain >
|εd|2

4h̄2

Γd
2

2
.

It yields the following requirement for the inversion density:

N >
n2

p
|εd|2

2h̄2

Γd
2

2

c
(
σSE/(1 + |εd|2

4h̄2

Γd
2

2
/γ21)− σESA

Γd
2

Γd
2+Γd

3

) . (4.38)

This requirement is a consequence of the fact that the temporal gain is proportional to

the density of inverted atoms while the photoionization rate is independent of density

and is determined only by the driving field intensity and photoionization efficiency.

Thus, the higher the density the more likely laser generation is to develop before the

inversion is pumped out by the driving field.

B. Discussion

In the present section we discuss how the proposed method of ESA reduction can

be applied to realize UV lasing in rare-earth ion doped crystals. Typically in these
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materials ESA transitions terminate in the CB of a host, so we mostly focus on this

situation.

Let us turn to estimates for required driving field intensities for typical param-

eters of rare-earths, assuming that the driving field does not cause photoionization

from level 2.

In the previous section it was shown that ESA is suppressed if the driving field

intensity exceeds a threshold value, necessary for EIT to be established:

|εd|2

4h̄2

Γd
3

2
� γ32. (4.39)

The ionization rate Γd
3 for the driving field from level 3 can be expressed in terms of

ionization cross-section as σd
3 = 2πωdΓ

d
3/h̄c, while the field amplitude can be written

as |εd|2 = 8πId/c in terms of intensity. The condition (4.39) can then be rewritten as

Idσd
3λd

4πh̄c
� γ32,

leading to the threshold intensity

Id � Id
th = γ32

4πh̄c

σd
3λd

= γ32
2h̄ωd

σd
3

. (4.40)

The physical meaning of the condition (4.40) is that the driving field intensity should

be greater than the threshold corresponding to at least one or two photons per the

ESA cross-section for the driving field during the decay time of the two-photon co-

herence σ32. As follows from Eq.(4.40), the threshold intensity is proportional to the

Raman transition coherence decay rate γ32 (here γ32 has actually to be replaced by

an inhomogeneous width W inh
32 ) and inversely proportional to the driving field wave-

length and ionization cross-section from level 3. Thus, to achieve a lower threshold

intensity a Raman transition width as narrow as possible, a driving field wavelength

as long as possible, and an ionization cross-section from state 3 into the CB as large
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as possible are required.

We consider two different configurations when level 2 is either of 4fn or 4fn−15d

type. In the first case the operating laser transition 2 ↔ 1 is of intraconfigurational

4fn ↔ 4fn, while in the latter case it is of interconfigurational 4fn−15d ↔ 4fn type.

The auxiliary level 3 should be of the same type as the upper operating level 2,

so that the driving field can couple it to the same continuum as to which level 2

is coupled by the probe field. In other words, this is the requirement for existence

of a Λ-system which involves driving and probe fields, two discrete states 2 and 3,

and the same continuum. It means that the Raman transition 2 ↔ 3 should be of

intraconfigurational 4fn ↔ 4fn or 4fn−15d ↔ 4fn−15d type.

The widths of 4fn ↔ 4fn transitions can vary from tens of MHz [112, 113]

in the best case to hundreds of GHz in the worst case. However, in good quality

crystals most linewidths of such transitions lie in the range 1 − 10 GHz. Typical

photoionization cross-sections from 4fn states are σESA ∼ 10−18 cm2. Assuming the

wavelength of the driving field to lie in the range λd ∼ 0.3 − 1 µm, we obtain the

following estimate for the threshold intensity:

Id
th ∼ (1÷ 100)

GW

cm2
.

The situation is more complicated if the emitting state 2 is of 4fn−15d type.

The driving field intensity estimate depends on how narrow the transition 2 ↔ 3

between the two 4fn−15d states can be made. There is no direct experimental data on

these transition widths, so for an estimate we make the rather reasonable assumption

that this width is of the same order as a typical linewidth of a 4fn ↔ 4fn−15d

transition. We should stress that this is the upper limit for the 4fn−15d ↔ 4fn−15d

linewidth; it actually might be narrower. It is known that at room temperature

4fn−15d → 4fn emission and absorption form wide bands with a total bandwidth of
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several tens or even hundreds of nm. However, this width originates from phonon

sidebands of absorption/emission spectra. The lifetime of phonon states is very short

(typically, in the picosecond range) compared to the metastable laser state lifetime;

thus, the states with excited phonons cannot give rise to ESA. Where ESA trully

originates is the pure electronic excited state of a dopant. The widths of these states

can be very narrow compared to the total bandwidth of a transition. This fact is

confirmed by low-temperature absorption and fluorescence measurements in crystals

doped with rare-earths, where pure electronic transitions (so called zero phonon line

(ZPL)) widths as narrow as 1 cm−1 and even smaller were observed. For example,

in cerium-doped CaF2 crystal the width of the ZPL was found to be 0.64 cm−1 at

low temperature (6 K) [114]. A ZPL of the same width (1.6 cm−1) was observed

for the 4f 135d ↔ 4f 14 transition in Yb2+ doped into MgF2 [104]. Generally, at low

temperatures linewidths of the order of 10 − 100 GHz can be obtained. Taking into

account the fact that photoionization cross-sections from 4fn−15d states in lantanides

are σESA ∼ 10−17− 10−18 cm2 and assuming the same driving field wavelength range

as in the above estimate, we arrive at approximately the same value for the driving

field intensity as in the case of an intraconfigurational operating transition:

Id
th ∼ (10÷ 100)

GW

cm2
.

However, data about ZPL widths of interconfigurational transitions are scarce, so in

each particular case the possibility of reducing ESA from a 4fn−15d state should be

carefully studied experimentally.

Such intensities are achievable in a pulsed regime. For example, for a 1 ns pulse,

focused to a spot of 100 µm diameter, required energies of the driving laser pulse are

0.1 − 10 mJ. It is necessary though that this intensity be smaller than the damage

threshold intensity of a crystal.
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The distinction between inter- and intraconfigurational operating transitions is

crucial with respect to potential laser tunability. Typically, for 4fn ↔ 4fn transitions

phonon sidebands in both emission and absorption are very weak, so that laser action

can be realized only at a fixed frequency. Tunability in this case is restricted by

the width of the electronic transition and cannot go beyond ∼ 10 GHz. On the

other hand, for 4fn−15d ↔ 4fn transitions phonon-assisted emission, red-shifted with

respect to the ZPL, can be very broad (tens of nanometers). By applying a driving

field of a certain frequency, one can reduce ESA losses for some particular wavelength

within the phonon sideband of 4fn−15d ↔ 4fn fluorescence. Thus, the desired laser

wavelength can be chosen by tuning the frequency of the driving field.

As an example we consider a Pr3+:LiLuF4 crystal, which is a promising material

for a UV laser [100, 115], since 4f5d states of Pr3+ ion can be efficiently populated by

two-step upconversion pumping via intermediate metastable 4f 2 levels. This pumping

scheme helps to avoid color center formation due to ESA of UV pump photons into

the CB. There was an attempt to achieve amplification on 4f5d(1) →3 H4 transition

at λ = 255 nm [116] under such upconversion pumping, but instead of gain 65%

absorption of the probe beam was detected. As the authors point out, it was not

successful due to ESA of probe photons from the 4f5d(1) emitting state into the CB.

This problem can be overcome by the method, proposed in the project. Namely, an

additional driving laser beam can be applied at another 4f5d → CB transition in the

way shown in Fig.26.

Room temperature emission from the lowest 4f5d(1) state occurs between 220

and 280 nm (35710−45450 cm−1), and the transition to 3H4 level has a wavelength of

222 nm [117]. The emitted photons are therefore absorbed in the CB at a wavenumber

range of ∼ (82000−92000) cm−1. The third 4f5d(3) band in the excitation spectrum

is at ∼ 62000 cm−1 (161 nm) and the driving field can be applied to the 4f5d(3) →
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Fig. 26. Energy level scheme of Pr3+ ion in LiLuF4.

CB transition. The required wavelength of the driving field is in the range 500 −

330 nm, which corresponds to the difference in energy 20000 − 30000 cm−1 between

4f5d(3) and the terminal state of ESA. If a two-step pumping scheme is used via

the 3P0 intermediate level, the second step pump field can simultaneously serve as

the driving field, since pumping into 4f5d(1) from 3P0 requires wavelengths in the

range 330 − 400 nm. By tuning the pump (and, simultaneously, driving) field, UV

gain in the wavelength range of 220− 240 nm can be expected. A driving field of the

wavelength 330− 400 nm will not be absorbed from the ground 3H4 state and it will

be only weakly absorbed from the emitting 4f5d(1) state into the high-energy edge

of the 4f5d(3) band at 70000 − 75000 cm−1 due to the parity-forbidden character

of 5d ↔ 5d transitions. The intensity of the drive field, required to establish EIT

and suppress ESA, given by Eq.(4.40), cannot be estimated because the decay rate

of 4f5d(1) ↔ 4f5d(3) coherence is not known. Zero-phonon lines were observed in

Pr3+:LiYF4 at low temperature (8 K) only for the first 4f5d(1) band [118], so it is

not clear what is the rate of coherence decay between the two 4f5d states, connected
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by driving and probe fields. In Pr3+:LiYF4 it was found that the ESA cross-section

from the first 4f5d(1) band into the CB is comparable with the emission cross-section

(σEM = (2.0±0.2)×10−18 cm2, σESA = (2.6±0.5)×10−18 cm2 at room temperature)

[105], so ESA needs to be suppressed only by a small amount in order to achieve

positive gain.

ESA to the CB becomes important when the frequency of generated light is larger

than ωBG/2, where ωBG is the frequency of the onset of absorption from the ground

state of an ion into the CB. It is certainly feasible to make the generated frequency as

close as possible to ωBG. However, it requires shorter wavelegths of the driving field.

The requirement that the driving field is not absorbed from the emitting level into

the CB means that ωd < ωBG− ωEM . On the other hand, the driving field frequency

obviously satisfies the condition ωd > 2ωEM − ωBG, which is the consequence of the

fact that state 3 lies in the bandgap of the crystal. These two conditions set a limit

on the generated wavelength of a solid-state laser with suppressed ESA:

ωEM < 2ωBG/3 (4.41)

In wide bandgap fluoride crystals, such as LiYF4, LiLuF4, YF3, and LaF3, the

energy difference between the ground state of a dopant ion and the CB does not

exceed ∼ 80000 cm−1; then, according to Eq.(4.41), the generated field wavelength is

limited from below by λEM > 190 nm.

Apart from the discussion on rare-earth ion doped materials as potential candi-

dates for solid-state UV lasing, we would like to mention that the same technique of

ESA reduction can be implemented to realize visible and infrared lasing in crystals

doped with transition metal ions. Of course, many laser crystals for this range already

exist, but far more crystals do not lase due to ESA into either a charge transfer band

or into a higher-lying electronic state. Examples of crystals in which the proposed



87

technique can be helpful to achieve lasing, are V3+:LiAlO2, LiGaO2 (luminescence at

1400−1800 nm) [119], Cr4+:LiAlO2, LiGaO2 (luminescence at 1200−1600 nm) [120],

Ni2+:MgAl2O4 (luminescence at 1100 − 1300 nm) [121], and some others. For these

materials the driving field wavelength lies in the visible or near infrared range.

As an example of how the ESA suppression technique can be applied in the

visible region we consider a Ti3+:YAlO3 crystal (Ti:YAP). This crystal has as good

mechanical and thermal characteristics as the well-known Ti3+:Al2O3 (Ti:Sapphire)

laser crystal. Its emission band extends from 540 nm to 800 nm with the maximum

at 610 nm, thus it covers the whole range of frequencies where dye lasers are used.

So this crystal can be a solid-state equivalent for dye lasers. Having so promising

characteristics, this crystal is not an efficient laser material since laser action is difficult

to obtain [122]. The problem with this crystal is ESA at a pump wavelength [123].

The ground-state absorption band of Ti:YAP extends from 400 nm up to 550 nm

and ESA affects the range of frequencies 350 − 550 nm with the ESA cross-section

being about two orders of magnitude larger than the ground-state absorption one

[123, 124]. For this crystal ESA suppression at the pump wavelength can be realized

using the scheme of Fig.27. Doubly degenerate ground and excited states (Kramers

doublets) of the lasing transition can be split by an external magnetic field. Varying

the magnetic field amplitude the splitting is scanned across the two-photon resonance

with the pump laser adjacent modes. At the point of the two-photon resonance ESA

of the pump is supposed to be suppressed while ground-state absorption, responsible

for creation of inversion, will not be affected, since the splitting in the ground state is

different from that in the excited state and does not satisfy the two-photon resonance

condition with the pump modes. In this configuration the coherent pump beam will

not be absorbed from the populated excited electronic state and at the same time

will produce inversion.
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Fig. 27. Energy level diagram of Ti3+:YAlO3 including crystal field, spin-orbit inter-

actions and Jahn-Teller effect. Arrows indicate a multimode coherent pump,

and the scheme of its excited-state absorption suppression.

C. Nonlinear regime of short probe pulse propagation in a resonant amplifier with

excited-state absorption

Estimates of the control field intensity, necessary for efficient ESA suppression, made

for rare-earth ion activated crystals, show that required intensities are rather high

(of the order of 10− 100 GW/cm2) and obviously confine this technique to a pulsed

regime, in which crystals can sustain such high peak intensity if the pulse duration

is within the subnanosecond range [125]. It is necessary therefore to investigate how

the method works in a pulsed regime. To that end, a theoretical and numerical

analysis of dynamics of propagation and amplification of a probe pulse in a resonant

amplifier with ESA is carried out in two different cases. First we analyze a two-

level amplifying medium with ESA when the ESA cross-section σESA is less than

the stimulated emission cross-section σSE so that amplification is not inhibited. A
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solitary probe wave of a dissipative soliton type forms in this case resembling the π-

pulse encountered in resonant amplifiers with linear losses [126]. In the second part of

the section we consider the case with the reversed relation between the cross-sections

when either a cw or pulsed control field is applied to suppress ESA. A solitary wave

solution, which forms in the case of a cw control field, is a pair of complimentary

pulses similar to adiabatons [127] and at the same time bears similarity with the π-

pulse in the sense that the area of the pulse is close to π and the asymmetric shape of

the pulse is determined by the medium parameters rather than by initial conditions.

At the same time, the solitary wave velocity and amplitude are governed by the initial

amplitude of the control field.

1. Two-level amplifier with ESA

Consider a two-level amplifying medium with ESA into the higher-lying one-dimensional

structureless continuum (see Fig.22b), by which CB states of a crystal are modelled.

In this subsection we study the case when the ESA cross section is less than the

stimulated emission one so that ESA does not prevent amplification. A probe field

is described by a plane electromagnetic wave E = (εp/2)e−iωpt+ikpz + c.c., which is

resonant to the initially inverted transition 2 ↔ 1. It is well-known [126] that in an

amplifier with linear non-resonant losses a steady-state solution exists of a form of

a hyperbolic-secant π pulse traveling with the speed of light. In our system losses

are nonlinear, depending on the population of the state 2, and thus a steady-state

wave differs from the π pulse. As will be shown below, its area is less than π and it

propagates with a velocity smaller than c.

Dynamic equations for the amplitude σ21 of the non-diagonal density matrix

element ρ21 = σ21e
−iωpt+ikpz and populations ρ11, ρ22 of discrete levels after adiabatic
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elimination of continuum states read as [108]

∂σ21

∂t
= −σ21∆21 + iΩp(ρ11 − ρ22), (4.42)

∂ρ11

∂t
= iσ21Ω

∗
p − iσ∗21Ωp − ρ11∆11, (4.43)

∂ρ22

∂t
= iσ∗21Ωp − iσ21Ω

∗
p − ρ22∆22. (4.44)

The slowly varying amplitude of the wave electric field component is goverened by

the wave equation:

np

c

∂εp

∂t
+

∂εp

∂z
=

4πiNωp

cnp

(
µ12σ21 + ρ22

εp

2h̄
(P p

2 + iΓp
2/2)

)
. (4.45)

In the above expressions µ21 is the dipole moment matrix element of the 2 ↔ 1 tran-

sition, and np is the refractive index of the host medium at the probe field frequaency.

We also introduced the Rabi frequency of the field Ωp = µ21εp/2h̄ and complex dressed

decay rates:

∆21 =
|εp|2

4h̄2

Γp
2

2
+ i

(
ω21 − ωp −

|εp|2

4h̄2 P p
2

)
+ γ21,

∆11 = Γ1,

∆22 =
|εp|2

4h̄2 Γp
2 + Γ2,

where ω21 is the amplifying transition frequency; γ21, Γ1,2 are the coherence and the

population decay rates due to processes other that ESA (inhomogeneous broadening

is neglected) and P p
2 and Γp

2/2 are real and imaginary parts of the following integral:

P p
2 + iΓp

2/2 = lim
η→+0

∫ |µc2|2 dEc

(Ec − E2)/h̄− ωp − iη
= (4.46)

= P
∫ |µc2|2 dEc

(Ec − E2)/h̄− ωp

+ iπh̄ |µc2|2Ec=E2+h̄ωp
.

Expression (4.46) shows that P p
2 describes the dynamic Stark shift of the upper level

energy E2 due to field induced coupling to the continuum states |c > with energies
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Ec; µc2 is the dipole moment of the corresponding transition |2 >↔ |c >, and Γp
2 is

related to the ionization rate from the upper level to the continuum.

In the theoretical analysis we assume for simplicity that P p
2 = 0 (flat continuum)

and ωp = ω21, so that the pulse carrier frequency is in resonance with the central

frequency of the amplifying transition. We also restrict ourselves to short pulses,

when no coherence as well as population relaxation is taken into account except for

the one due to ESA. In the following we will be looking for a shape-invariant wave

solution moving with constant velocity V .

Having neglected relaxations, we went over to the zero amplifying transition

linewidth limit, which greatly simplifies the analysis. In this limit σ21 = −i
√

ρ11ρ22 is

pure imaginary and εp is real. The dynamics of the system can therefore be described

in terms of state amplitudes since there is no coherence or population decay not related

to the action of the coherent optical field. Thus, we set ρ11 = a2
1, ρ22 = a2

2 (with

σ21 = −ia2a1). In a retarded frame the equations for the state and field amplitudes

of a steady-state wave solution can be written in the following dimensionless way:

da1

dτ
= ua2, (4.47)

da2

dτ
= −ua1 − u2a2, (4.48)

du

dτ
= −α2(a1a2 − ua2

2), (4.49)

where retarded frame coordinates τ = T − Z/v, ξ = Z are expressed in terms of the

dimensionless time and distance T = 2µ2
21t/Γ

p
2, Z = 2µ2

21znp/Γ
p
2c with v = V np/c

being the frame dimensionless velocity and ∂
∂ξ

= 0 is set in order to obtain a steady-

state solution. Normalized field amplitude is defined as u = εpΓ
p
2/4h̄µ21; g = 1/v−1 =

c/npV − 1;

ν =
πNωp

h̄

(Γp
2)

2

2µ2
21n

2
p
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is an amplification coefficient, and dimensionless parameter α is expressed as α =√
ν/g.

This set of equations has an integral

u2/α2 + a2
2 + 2a2

1 = 1, (4.50)

which reflects the fact that the energy is conserved, i.e. that the energy initially

stored in the inverted medium goes either into the field or into ionization. The form

of this integral suggests that the system evolves on a surface of an ellipsoid with axes

(a1,a2,u). It is natural then to describe the evolution in terms of polar and azimuthal

angles introduced on the ellipsoid surface:

u = α cos Θ, a1 =
1√
2

sin Θ cos φ, a2 = sin Θ sin φ. (4.51)

In terms of the angles and the modified time τ ′ = τα the evolution is governed by

the system:

dΘ

dτ ′
= sin Θ sin φ

(
cos φ√

2
− α cos Θ sin φ

)
, (4.52)

dφ

dτ ′
= cos Θ

(
cos φ

[
cos φ√

2
− α cos Θ sin φ

]
−
√

2

)
. (4.53)

It is convenient to analyze this system using the phase-plane formalism [128].

First of all, it is clear that there is a periodicity in both φ and Θ, so that only

the range 0 ≤ Θ ≤ π, −π ≤ φ ≤ π needs to be considered. Let us turn now to

stationary points of the system. Three regimes are possible depending on the value of

α, describing different dynamics of the system. In the first one α < 2, the stationary

points are Θ = π/2, φ = πn/2 with n being an integer. Even values of n correspond

to saddles while the odd ones correspond to unstable focuses. The corresponding

phase space structure is depicted in Fig.28. There is a separatrix connecting the

two stationary points, which escapes from the focus at τ ′ → −∞ and enters the
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saddle at τ ′ → ∞. Since for both stationary points Θ = π/2, the amplitude of

the optical field vanishes at τ ′ → ±∞, which means that the separatrix represents

a soliton propagating in the medium. Its amplitude grows and oscillates on the

leading edge while the trailing one decays without oscillations. At the leading edge

ρ22 = 1 and ρ11 = 0, at the trailing edge ρ22 = 0 and ρ11 = 1/2. Other trajectories

on the plane correspond to front-type stationary waves for which u2 → α2 and no

population is left in the system as τ ′ →∞, so that the incoming optical wave ionizes

the medium completely. These solutions are of the same type as the solitary wave

found in Ref.[129] where a two-level system with the upper state replaced by the

continuum was considered. The continuum-coupled solutions found here are different

in that the leading edge amplitude of the wave oscillates which is possible because of

initial population inversion leading to amplification of small fluctuations of the field.

The reason the solutions demonstrate oscillatory behavior is that the ionization rate

is slow enough so that the system undergoes a number of Rabi flops at the optical

transition. The number of oscillations can be estimated by linearizing the set of

equations (4.52)-(4.53) in the vicinity of the focus stationary point. The eigenvalues

of the corresponding linear set of equations for small deviations from the focus are

λf
± =

(
α± i

√
4− α2

)
/2. They show that smaller α gives more oscillations and, since

v = 1/ (1 + ν/α2), smaller α corresponds to slower velocity of the soliton.

As for the saddle point, the eigenvalues of the linearized set of equations are

λs
± = ±1/

√
2 with the corresponding eigenvectors (Θ − π/2, φ) ∼ (±1,±1) and ∼

(±1,∓1). It results in the following asymptotic behavior of the system as τ ′ → ∞:

(1/2− ρ11) ∼ 2 exp (−τ ′
√

2), ρ22 ∼ exp (−τ ′
√

2), and u ∼ α exp (−τ ′/
√

2).

The situation is more complicated for α > 2 because of several additional sta-

tionary points (see Fig.29). New saddles at Θ = π, φ = nπ + φ2 and at Θ = 0,

φ = nπ − φ2 appear accompanied by additional stable nodes corresponding to each
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Fig. 28. The phase space spanning solutions of the set of equations (4.52)-(4.53) for

α < 2 (for this particular plot α = 0.7). Trajectories marked bold are separa-

trixes.

additional saddle: (Θ = π, φ = nπ + φ1) and (Θ = 0, φ = nπ − φ1). The angles φ1

and φ2 are given by the expression:

φ1,2 = tan−1 α∓
√

α2 − 4

2
√

2
. (4.54)

As can be seen from Fig.29 there are no trajectories experiencing oscillatory

behavior for α > 2. The separatrix connecting the unstable node and saddle points

at Θ = π/2 represents a soliton as in the case α < 2. Its behavior near the saddle

point is the same, although the evolution at τ ′ → −∞ as it leaves the node is different.

It can be analyzed in the similar way, i.e. by linearizing equations (4.52)-(4.53) in

the vicinity of the equilibrium point and subsequent evaluation of the eigenvalues and

eigenvectors of the linearized set of equations. The eigenvalues for the node are:

λ± =
α±

√
α2 − 4

2
, (4.55)



95

Fig. 29. The phase space structure describing solutions of the set of equations

(4.52)-(4.53) in the case α > 2 (for this particular plot α = 3.0).

with the corresponding eigenvectors

(Θ− π/2, φ− π/2) ∼ ±
(
1,
√

2λ∓
)
. (4.56)

It is easy to find how populations of the two levels and the optical field intensity

behave at the leading edge of the soliton. Substituting the expressions (4.55)-(4.56)

into (4.51), one obtains populations and the field intensity for the two eigenmodes:

ρ±11 → λ2
∓ exp (2λ±τ ′) , (4.57)

ρ±22 − 1 → −
(
1 + 2λ2

∓

)
exp (2λ±τ ′) , (4.58)

(
u±
)2
→ α2

(
2λ2

∓ − 1
)

exp (2λ±τ ′) . (4.59)

Obviously, the solution corresponding to λ+ builds up faster than the one correspond-

ing to λ−, but on the other hand it uses population inversion inefficiently. It is clear

that the optical field is amplified only if some population is transferred from level 2 to

level 1 and is absorbed only if some population from level 2 goes into the continuum.
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For the “± ”-solutions we obtain the following ratio of the amplification rate to the

total depletion rate of the upper-state population:

R±
eff =

λ2
∓

1 + 2λ2
∓

. (4.60)

This ratio reflects the efficiency of usage of initial population inversion in the process

of field amplification. The higher the λ is, the more economically the population inver-

sion is being used. Thus, we see that the solution corresponding to the λ− eigenvalue

leads to more efficient amplification of the field compared to the one corresponding

to λ+, since R−
eff > R+

eff . Therefore, “-”-eigenmode corresponds to the soliton while

“+”-eigenmode represents a front-type solution, which cannot support itself without

continuous external energy supply from the trailing edge of the pulse.

It is evident that without continuous external pumping only the soliton-type

solution, corresponding to the separatrix connecting the unstable node and the saddle,

can propagate without changing its shape. From the above discussion we also see that

on the one hand many solitons corresponding to different α’s and, thus, travelling with

different velocities can exist. On the other hand, only one can survive in the medium

since it uses up initial population inversion completely. The question arises: which

particular soliton survives if one starts with arbitrary initial conditions? For the

soliton the rate at which it exponentially builds up is λ−, which is larger for smaller

α and, therefore, for slower solitons. On the other hand, from the expression for R−
eff

we see that the slower the soliton propagates the smaller R−
eff is and, consequently,

the lower the efficiency of amplification. It means that the growth rate competes

with the effectiveness of inversion usage. Numerical simulations show that the soliton

corresponding to α = 2 is realized, so that the fast growing solution with the smallest

velocity survives. The case α = 2 corresponds to the bifurcation situation when the

two stationary points at Θ = π, φ = φ1 and Θ = π, φ = φ2 merge forming a saddle-
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Fig. 30. The phase space structure of the set of equations (4.52)-(4.53) in bifurcation

case α = 2.

node. The latter behaves as a saddle if approached from one side of the attractive

separatrix and as a stable node if approached from another side. At the same time,

the unstable focus at Θ = π/2, φ = π/2 transforms into the unstable node. The

corresponding phase diagram is shown in Fig.30.

The soliton moves slower than the speed of light. From the condition α =√
ν/(c/npV − 1) = 2 the inverse pulse velocity is:

1

V
=

np

c

(
1 +

ν

4

)
=

np

c

(
1 +

πNωp

h̄n2
p

(Γp
2)

2

8µ2
21

)
. (4.61)

It is interesting to note that this velocity can be obtained from the well-known ex-

pression for the velocity of the 2π pulse in an absorbing medium in the limit when

the pulse is shorter than the inhomogeneous broadening time of the transition [126]:

1

V
=

np

c

(
1 +

2πNωpµ
2
21

h̄n2
p

t2p

)
, (4.62)

where tp is the pulse width. In our case the pulse width is τ ′p ∼ 1 or tp ∼ Γp
2/4µ

2
21.
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Substitution of this pulse width into (4.62) gives exactly the velocity of the steady-

state pulse Eq.(4.61). The dimensionless pulse intensity, obtained from numerical

calculation, is u2
max ≈ 3.06, the pulse full width at half maximum (FWHM) is τ ′p ≈

1.927, and the pulse area obtained by numerically integrating the separatrix solution

over time is given by the following expression (see Fig.32):

Σ =
∫ ∞

−∞

εpµ21

h̄
dt =

∫ ∞

−∞
udτ ′ ≈ 2.66. (4.63)

In Fig.31 results of a numerical solution of Eqs.(4.42)-(4.45) in the retarded

frame are shown. The initial pulse of a small amplitude enters the medium at the left

boundary ξ = 0 at τ = 0. As is seen from Fig.31 for small ξ′s, the pulse first evolves as

the non-stationary π-pulse, its amplitude increases and its width decreases inversely

proportionally to the amplitude, and it moves faster than c/np. The oscillating tail is

also typical of the non-stationary π-pulse. As amplitude grows, the pulse eventually

slows down and starts to transform into the steady-state dissipative soliton, described

above, whose velocity is less than c/np and the area, shown in Fig.32, in the limit

τ →∞ agrees well with the value 2.66 obtained above by integrating the separatrix

solution.

So far, due to a short duration of pulses we consider, we have neglected relaxation

processes leading to decay of optical coherence, which is mathematically equivalent

to the limit of infinitely narrow amplifying optical transitions. Although this ap-

proximation allows one to obtain analytical results, it is interesting to study finite

width effects since in real media each electronic transition is broadened. In Fig.33

and Fig.32 the results of numerical solution of Eqs.(4.42)-(4.45), taking into account

optical coherence relaxation, are shown. Only the final solution shape is shown to

illustrate how it differs from the relaxation-free case. The main differences are: 1) the

steady-state wave forms only if σSE > σESA, which is rather obvious, 2) the formation
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Fig. 31. Numerical solution of the system Eqs.(4.42)-(4.45) in the retarded frame in

terms of dimensionless variables u, τ and ξ after various propagation distances:

a) u(τ, ξ); b) ρ11(τ, ξ); c) ρ22(τ, ξ); parameter Ω0 = 2µ2
21/Γ

p
2 defines the pulse

width. Initial pulse is Gaussian: u(τ, ξ = 0) = 0.1 exp (−(2.5τ)2). In the

calculation all relaxation processes except for ESA were neglected and P p
2 = 0,

ν = 1 were taken. Here and in subsequent figures the pulse propagates to the

left in a laboratory frame.
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Fig. 32. Numerically calculated area Σ =
∞∫
−∞

εpµ21

h̄
dt of the steady-state pulse shown

in Fig.31 (solid line) and in Fig.33 (dashed line).
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Fig. 33. Numerical solution of the system Eqs.(4.42)-(4.45) in the retarded frame for u

(black curve), ρ11 (red curve) and ρ22 (green curve) in terms of dimensionless

parameters τ and ξ = 320, taking into account optical coherence relaxation.

All parameters are as in Fig.(31) except that γ = σSE/σESA = 4 was assumed.

length of the pulse becomes shorter compared to the relaxation-free case, and 3) the

population of the excited state ρ22 is not depleted completely and ρ11 < 1/2 in the

steady-state regime. The reason is that the coherence ”dies” faster than
√

ρ11ρ22,

and as soon as the coherence vanishes, the field is no longer generated. So it does

not ”use” all population of the excited state, some is left when the pulse passes. The

corresponding pulse area, given in Fig.32, is the same as in the relaxation-free case.

To simplify our analysis of the system with coherence relaxation we restrict

ourselves to the situation in which the linewidth γ21 originates from the spontaneous

decay of level 1 at a rate γ21 = Γ1/2. This is a rather typical situation in the doped

crystals where the amplifying transition terminates in the excited phonon states of
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the ground electronic state, the former ones having extremely short lifetime. If no

other dephasing mechanisms are present, one can still use state amplitudes as good

variables. The set of equations (4.47)-(4.49) modifies as follows:

da1

dτ
= ua2 − γa1, (4.64)

da2

dτ
= −ua1 − u2a2, (4.65)

du

dτ
= −α(a1a2 − ua2

2). (4.66)

Here γ is a normalized decay rate of the lower state population γ = Γ1Γ
p
2/4µ

2
21.

There is no conservation integral in this case, therefore, one has to work in a 3-

dimensional phase space instead of a 2-dimensional one. The stationary point of the

set of equations (4.64)-(4.66) corresponding to our initial and final conditions (zero

filed) is u = 0, a1 = 0, and a2 = A. In the vicinity of the stationary point the

linearized version of Eqs.(4.64)-(4.66) includes only equations for a1 and u since a2

changes only in the second order. The corresponding two eigenvalues read as

λ± =
1

2

(
−γ + A2α2 ±

√
(γ + A2α2)2 − 4A2α2

)
. (4.67)

Initial conditions correspond to A = 1. The same phase space analysis can

be carried out as in the relaxation-free case. In analogy we look for the regime

when the stationary point is an unstable node. This happens if γ < α2 and γ < 1,

the last inequality being nothing but σSE/σESA > 1, i.e. the standard condition

of amplification. Following the same reasoning used in the non-decaying case, one

finds that the optimal growth combined with economical usage of initial population

inversion is achieved when γ = 2α − α2. This condition gives the velocity of the
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soliton:

V =
c

np

(
1 + ν

2−γ+2
√

1−γ

) . (4.68)

As for population inversion remaining in the medium after the soliton passes

through, it can be found by analyzing the expression (4.67) assuming some nonzero

A. For A0 < A2 < 1, where A0 = γ/
(
2− γ + 2

√
1− γ

)
, the corresponding stationary

point is an unstable focus (however, it is an unstable node at A2 = 1). The focus

becomes stable for A2
0 < A2 < A0. Finally, for A2 < A2

0 the stable focus turnes

into a stable node. It can be shown that the optimal combination of amplification

efficiency and economicity of population inversion consumption is achieved if A = A0,

so that the population left in the upper level is ρ22 = A2
0 = γ2/ (2− γ)2. These

analytical predictions for the pulse amplitude and population dymanics are confirmed

by numerical simulations (see Fig.33).

Finally, in Fig.34 results of numerical modelling of the situation, when dispersive

properties of the ESA transition are taken account of, are presented. Typically, the

dynamic Stark shift due to the resonant interaction with the continuum is of the

same order as the ionization rate [130], namely, P p
2 ∼ Γp

2/2. This shift leads to the

deviation of the phase difference between the field and the optical coherence σ21 from

π/2, optimal for amplification. This, in turn, results in smaller amplitude and larger

width of the pulse as the simulation results demonstrate.

2. Two-level amplifier with ESA suppresed by an additional control field

In this subsection we consider the case σSE < σESA, when amplification cannot take

place unless ESA from the upper level of an amplifying transition is suppressed using

an additional control field applied in the way, shown in Fig.25. We analyze the

dynamics of amplification and propagation of a probe pulse in the presence of an
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Fig. 34. Numerical solution of the system Eqs.(4.42)-(4.45) in the retarded frame, tak-

ing into account dispersion associated with the ESA transition, in terms of

dimensionless variables τ , and ξ = 400. Field amplitude |u|, and populations

ρ11, ρ22 are shown as black, red and green curves. In the analysis P p
2 = Γp

2/2

was taken, the rest is as in Fig.31.
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additional either cw or pulsed control field and study the evolution and interaction

of the fields.

The system of dynamic equations for the amplitudes σml of density matrix el-

ements ρml, determined by the standard expressions: σ21 = ρ21e
−iωpt+ikpz, σ32 =

ρ32e
−i(ωp−ωc)t+i(kp−kc)z, σ31 = ρ31e

−i(2ωp−ωc)t+i(2kp−kc)z, and populations of discrete lev-

els ρ11, ρ22 and ρ33 after adiabatically eliminating continuum variables is as follows

(Ref.[108]):

∂σ21

∂t
= −σ21∆21 + iΩp(ρ11 − ρ22) + i

ε∗pεc

4h̄2 σ31 (Πc
23 + iGc

23/2) , (4.69)

∂σ32

∂t
= −σ32∆32 − iΩ∗

pσ31 + i
εpε

∗
c

4h̄2 (ρ22 (Πp
32 + iGp

32/2)− ρ33 ((Πc
23)

∗ − i (Gc
23)

∗ /2)) ,

(4.70)

∂σ31

∂t
= −σ31∆31 − iΩpσ32 + i

εpε
∗
c

4h̄2 σ21 (Πp
32 + iGp

32/2) , (4.71)

∂ρ11

∂t
= iσ21Ω

∗
p − iσ∗21Ωp −∆11ρ11, (4.72)

∂ρ22

∂t
= iσ∗21Ωp − iσ21Ω

∗
p − ρ22∆22 + i

ε∗pεc

4h̄2 σ32 (Πc
32 + iGc

32/2)−

i
εpε

∗
c

4h̄2 σ∗32 ((Πc
23)

∗ − i (Gc
23)

∗ /2) , (4.73)

∂ρ33

∂t
= −ρ33∆33 + i

εpε
∗
c

4h̄2 σ∗32 (Πp
32 + iGp

32/2)− i
ε∗pεc

4h̄2 σ32

(
(Πp

23)
∗ − i (Gp

23)
∗ /2

)
. (4.74)

Here the complex dressed decay rates

∆21 = γ21 +
|εp|2

4h̄2

Γp
2

2
+
|εc|2

4h̄2

Γc
2

2
+ i

(
E2 − E1

h̄
− ωp −

|εp|2

4h̄2 P p
2 −

|εc|2

4h̄2 P c
2

)
,

∆32 = γ32 +
|εp|2

4h̄2

Γp
2 + Γp

3

2
+
|εc|2

4h̄2

Γc
2 + Γc

3

2
+

+i

(
E3 − E2

h̄
− ωp + ωc −

|εp|2

4h̄2 (P p
3 − P p

2 )− |εc|2

4h̄2 (P c
3 − P c

2 )

)
,

∆31 = γ31 +
|εp|2

4h̄2

Γp
3

2
+
|εc|2

4h̄2

Γc
3

2
+ i

(
E3 − E1

h̄
− 2ωp + ωc −

|εp|2

4h̄2 P p
3 −

|εc|2

4h̄2 P c
3

)
,
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∆11 = Γ1,

∆22 = Γ2 +
|εp|2

4h̄2 Γp
2,

∆33 = Γ3 +
|εp|2

4h̄2 Γp
3 +

|εc|2

4h̄2 Γc
3

include dynamic Stark shifts, transition broadening due to photoionization as well as

phenomenological coherence and population decay rates γij, Γi.

Wave equations for the slowly varying amplitudes of the probe and control fields

are:

∂εp

∂z
+

np

c

∂εp

∂t
=

4πiNωp

npc

(
σ21µ12 + ρ22

εp

2h̄
(P p

2 + iΓp
2/2) + ρ33

εp

2h̄
(P p

3 + iΓp
3/2) +

+
εc

2h̄
σ32 (Πc

32 + iGc
32/2)

)
, (4.75)

∂εc

∂z
+

nc

c

∂εc

∂t
=

4πiNωc

ncc

(
ρ22

εc

2h̄
(P c

2 + iΓc
2/2) + ρ33

εc

2h̄
(P c

3 + iΓc
3/2) +

+
εp

2h̄
σ∗32 (Πp

32 + iGp
32/2)

)
, (4.76)

where nc is the refractive index of the host medium at the control field frequency.

In the same way as in the previous section we neglect all coherence and population

relaxation terms to simplify the theoretical analysis, assuming that pulses are suffi-

ciently short. Other assumptions are: 1) P l
m = 0 and Πl

sq = 0, which is similar to the

assumption of the flat continuum; 2) ωp = (E2 − E1)/h̄ and ωp − ωc = (E3 − E2)/h̄

so that the probe field is in one-photon resonance with the 1 ↔ 2 transition and the

control and probe fields are in a two-photon resonance with the transition 3 ↔ 2; 3)

Γc
2 = 0 and Γp

3 = 0 which means that the control (probe) field is not absorbed from

the level 2 (3) into the continuum. From Eqs.(4.69)-(4.74) it follows that σ21,31 are

pure imaginary and σ32, εp,c are real. Hence we can use state amplitude description

setting ρ11 = a2
1, ρ22 = a2

2, ρ33 = a2
3 and σ21 = −ia1a2, σ32 = a2a3, σ31 = −ia1a3.
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Introducing dimensionless time T = 2tµ2
21/
√

Γp
2Γ

c
3, coordinate Z = 2zµ2

21/c
√

Γp
2Γ

c
3,

field amplitudes

u1 = εp

√
Γp

2Γ
c
3

4h̄µ21

,

u2 = εc

√
Γp

2Γ
c
3

4h̄µ21

,

taking into account that on resonance Gc
23/
√

Γp
2Γ

c
3 = 1, Gp

32/
√

Γp
2Γ

c
3 = 1, and going

over to a retarded frame defined by coordinates τ = T −Z/v, ξ = Z with v = V nc/c,

we rewrite Eqs.(4.69)-(4.74), (4.75)-(4.76) in the following way:

da1

dτ
= u1a2, (4.77)

da2

dτ
= −u1a1 − u2

1a2q − u1u2a3, (4.78)

da3

dτ
= −a3u

2
2

q
− u1a2a3, (4.79)

du1

dτ
= −α2

1

(
a1a2 − qu1a

2
2 − u2a2a3

)
, (4.80)

du2

dτ
= α2

2

(
u2a

2
3

q
+ u1a2a3

)
, (4.81)

where dimensionless parameters q =
√

Γp
2/Γ

c
3, α1 =

√
ν1/g1 and α2 =

√
ν2/g2 with

g1,2 = c/np,cV − 1 and ν1,2 = πNωp,cΓ
p
2Γ

c
3/2h̄n2

p,cµ
2
21 were introduced and ∂

∂ξ
= 0 was

set in order to find a steady-state solution.

This system has two conservation integrals: one is the energy conservation inte-

gral similar to Eq.(4.50)

u2
1

α2
1

+ a2
2 + 2a2

1 = 1, (4.82)

and another one is:

u2
2

α2
2

+ a2
3 =

(u0
2)

2

α2
2

. (4.83)

The last integral is typically encountered in the case of a stationary wave propagating



108

in a two-level medium with the upper level replaced by the continuum. The inte-

grals correspond to the initial conditions (before the probe pulse enters the medium):

ρ11(τ → −∞) = ρ33(τ → −∞) = 0, ρ22(τ → −∞) = 1, and u2(τ → −∞) = u0
2,

u1(τ → −∞) = 0. The initial conditions describe the case of a cw control field.

Having the integrals, we can reduce the system (4.77)-(4.81) to three equations.

It is convenient to use new variables:

a = a1, (4.84)

b = a2

√
1− 2a2

1 − a2
2, (4.85)

c = a3, (4.86)

and a new time τ ′ = τα1, so that the system (4.77)-(4.81) can be rewritten as:

da

dτ ′
= b, (4.87)

db

dτ ′
= −a(1− 2a2) + 2

√(
1

2
− a2

)2

− b2

(
αb + c

√
β2 − α2

2c
2

)
, (4.88)

dc

dτ ′
= −

√
β2 − α2

2c
2

α

(
c
√

β2 − α2
2c

2 + αb
)

. (4.89)

The system (4.87)-(4.89) can be analyzed along the same lines as in the previous

subsection using the phase space technique. The stationary point of the system

corresponding to our initial conditions is: a = 0, b = 0, c = 0. Linearizing the

system in the vicinity of the stationary point we arrive at the following characteristic

equation for eigenvalues:

λ3 + λ2

(
β2

α
− α

)
+ λ +

β2

α
= 0, (4.90)

where parameters α = qα1 and β = u0
2 were introduced.

In analogy with the previous subsection we conclude that the continuum-coupled
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soliton is realized when the stationary point is of an unstable node type. Coeffi-

cients of Eq.(4.90) allow only one such solution: one eigenvalue is negative, two other

eigenvalues are positive - so-called saddle-node point. Again, one positive eigenvalue

describes fast growing solution, the other one represents the solution which uses pop-

ulation inversion efficiently. It is necessary to look for the case, when the faster

solution has minimum growth rate, corresponding to the minimum ionization rate

and the most effective usage of inversion. Repeating the procedure of the previous

subsection we analyze the situation, when the characteristic equation has two equal

positive eigenvalues. These are given by the expression:

λ1,2 =
α1

32/3

((
9β2/α +

√
81(β2/α)2 − 3)

)1/3

+
(
9β2/α−

√
81(β2/α)2 − 3)

)1/3
)

,

(4.91)

and it is easy to show that λ1,2 are always real. The negative eigenvalue in this case

is:

λ3 =
α1

3

(
(α− β2/α)− 2

√
(α− β2/α)2 − 3

)
. (4.92)

There is an additional relation between λ1,2 and λ3: λ2
1,2 + 2λ1,2λ3 − 1 = 0, which

allows one to obtain the relation between α and β and thus to obtain the velocity of

the steady-state pulse. The relation between α and β2/α is depicted in Fig.35. For

β → 0 we see that α → 2, as expected from the two-level case. For sufficiently large

β (β2/α � 1), the relation is α = 3.5+1.09β2/α, which means that α ≈ β. This last

relation gives the steady-state solution velocity as:

1

V
=

np

c
+

πNωp(Γ
p
2)

2

2ch̄npµ2
21 (u0

2)
2 , (4.93)

which is exactly the group velocity of the pulse in the EIT regime [131], if one recalls

that for large intensity of the control field the width of the EIT resonance is: ΓEIT ≈
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Fig. 35. Relation between α and β2/α, determined from the relation between roots λ1

and λ3.

|εc|2Γ3
c/8h̄

2 = 2 (u0
2)

2
µ2

21/Γ
p
2, so that

1

VEIT

=
np

c
+

πNωpΓ
p
2

ch̄np

1

ΓEIT

=
np

c
+

NσESA

2ΓEIT

. (4.94)

Changing the amplitude of the control field one can either accelerate or slow

down the soliton. When the control field intensity is close to the ESA suppression

threshold for the probe field, the wave has the lowest velocity. This happens when

|εc|2Γc
3/8h̄

2 ∼ γ32 (σESA − σSE) /σSE. The situation is similar to the one typically

observed in slow-light experiments [132].

For β � 1, we obtained that α ≈ β, meaning that α−1, β−1 are small parameters.

This suggests that there are two different regimes of system evolution, adiabatic and

non-adiabatic, and a small parameter µ = 1/β � 1 characterizes the non-adiabaticity

of the interaction of the fields and the medium [133]. The system (4.87)-(4.89) can

be cast as:

da

dτ ′
= b, (4.95)
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µ
db

dτ ′
= −aµ

(
1− 2a2

)
+ 2

√(
1

2
− a2

)2

− b2

b + c

√√√√1− α2
2c

2

β2

 , (4.96)

µ
dc

dτ ′
= −

√√√√1− α2
2c

2

β2

b + c

√√√√1− α2
2c

2

β2

 . (4.97)

In order to analyze adiabatic evolution we let µ → 0. The derivatives in the left hand

sides are of the order of unity and, multiplied by µ, can be neglected. Then we get

the adiabatic evolution condition:

b + c

√√√√1− α2
2c

2

β2
= 0, (4.98)

which is the same as a2εp

√
Γp

2 +a3εc

√
Γc

3 = 0. This expression means that the system

is in the ”dark” or decoupled superposition of the states |2 > and |3 >, non-interacting

with the fields. As follows from Eqs.(4.95)-(4.96) the adiabatic evolution is governed

by the system of equations:

da

dτ ′
= b, (4.99)

db

dτ ′
= −2a

(
1

2
− a2

)
, (4.100)

having the following solution:

a = ± 1√
2

tanh(τ ′/
√

2), (4.101)

b = ±1

2

1

cosh2(τ ′/
√

2)
, (4.102)

and from Eq.(4.98):

c =

√√√√√ β2

2α2
2

1−

√√√√1− α2
2

β2

1

cosh4(τ ′/
√

2)

. (4.103)

In fact, the system never reaches the ”dark” state because of the constant per-

turbation due to amplificaton of the probe field, although it approaches it in the limit
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τ ′ → ∞. So Eqs.(4.101)-(4.103) correctly describe only the trailing edge amplitude

behavior, when the system evolves into another stationary point a = ±1/
√

2, b = 0,

c = 0. The asymptotic behavior is then 1/2−ρ11 ∼ 2 exp (−τ ′
√

2), ρ22 ∼ exp (−
√

2τ ′),

ρ33 ∼ exp (−2
√

2τ ′), u1 ∼ α1 exp (−τ ′/
√

2), and u2 → u0
2.

The leading edge of the pulse rises during the time τ ′ ∼ 1/β, which is equivalent

to t ∼ 8h̄2/|εc|2Γc
3 and it is nothing but the inverse time γ−1

pump of optical pumping by

the control field via the continuum. At this non-adiabatic stage, during which the

probe field main growth takes place, the populations of states 2 and 3 are redistributed

by the probe and control fields so that the ”bright” state becomes empty. After that

the populations are in the ”dark” state and no further growth of the probe pulse

occurs, as was shown above its amplitude eventually decreases to zero on the time

scale τ ′ ∼ 1 or t ∼
√

Γp
2

Γc
3

2h̄
|εc|µ21

.

In Fig.36 results of a numerical solution of Eqs.(4.69)-(4.74), (4.75)-(4.76) are

presented, showing the formation of the steady-state solitary wave. Interaction of the

probe and control pulses when their intensities become comparable leads to the forma-

tion of a propagating pair of complimentary pulses, similar to adiabatons. Numerical

analysis shows that the amplitude and velocity of the probe pulse depend on the

initial control field amplitude and for β � 1 grow respectively linearly and quadrati-

cally with the amplitude. The dip in the control beam intensity profile moves at the

group velocity of the probe pulse, while the bump travels with the control field group

velocity. The same behavior was observed already in the first experiment studying

propagation dynamics of a probe pulse in the EIT regime (Ref.[134]). In Ref.[133]

it was shown that in a three-level atomic system a pair of adiabatons rapidly decays

after some propagation distance if the upper state decay rate exceeds the effective

fields Rabi frequency. In our case the decay rate of the coherences at ESA transitions

significantly exceeds all other decay rates and Rabi frequencies. In spite of this, a
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shape-invariant pair of pulses forms. The reason is that although losses to the con-

tinuum are present, amplification at the 2 ↔ 1 transition allows the probe field to

adjust to the changes of the states 2 and 3 populations, so that the system stays in

the ”dark” state.

In a more realistic situation it is necessary to take into account probe absorption

from state 3, since it will inevitably take place unless some special probe beam polar-

ization is chosen. In Fig.37 results of a numerical solution of the system Eqs.(4.69)-

(4.74), (4.75)-(4.76), taking into account probe absorption from the state 3 are pre-

sented. The main difference is that the control field does not return to the value

it had before the probe pulse had arrived, since depletion of the state 3 population

by the probe into the continuum destroys the ”dark” state, which, in turn, leads to

additional losses for both the probe and the control field.

The above analysis assuming cw control field allowed us to obtain some analytical

results and find how the steady-state probe pulse parameters depend on the control

field amplitude. As was shown in Ref.[108] intensities of the control field required

to suppress ESA are close to a damage threshold of many crystals, so this technique

is feasible only in a pulsed regime. We analyzed numerically the case of a pulsed

control field taking into account probe absorption from state 3 and optical coherence

relaxation. In Fig.38 the results of calculations are presented. A strong control pulse

and a weak probe pulse, both of Gaussian shape, are sent into the medium such

that at τ = 0 the maximal amplitude part of the control pulse enters the medium’s

boundary ξ = 0 and the probe pulse is shifted to the leading edge of the control pulse.

The probe pulse first is amplified because ESA is suppressed by the strong control

field. As its amplitude grows the probe field starts to transform into the steady-state

pulse descibed above (note the step it produces in the control pulse profile, similar

to that of Fig.37). The transformation into the steady-state soliton is accompanied
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Fig. 36. Numerical solution of Eqs.(4.69)-(4.74), (4.75)-(4.76) in the retarded

frame with a cw control field, neglecting probe absorption from state

3. Probe pulse is defined at the entrance to the medium as:

u1(τ, ξ = 0) = 0.0003 exp (−16(τ + 27)2); other parameters are: β = 1.43,

Γp
2 = Γc

3, ν1 = 1, ν2 = 3, np = nc = 1, parameter Ω0 = 2µ2
21/
√

Γp
2Γ

c
3 describes

inverse pulse width.
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Fig. 37. Numerical solution of Eqs.(4.69)-(4.74), (4.75)-(4.76) with a cw control field,

taking into account probe absorption from state 3. Normalized propagation

distance is ξ = 36.75; Γp
2 = Γc

3 = Γp
3. Probe and control fields are shown as

black and blue curves, populations ρ11, ρ22, and ρ33 are given by red, green

and violet curves, respectively. Other parameters are as in Fig.36.
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by deceleration of the probe pulse, which leads to its lagging behind the control

pulse, which moves with its group velocity. As the probe pulse shifts towards the

trailing edge of the control pulse, where the conditions for ESA suppression are not

met because of an insufficient control field amplitude, it gets absorbed and eventually

vanishes. This calculation shows that for optimal amplification it is necessary that

the probe pulse leaves the medium before this absorption starts.

Let us make estimates of the parameters of the control and probe pulse for

rare-earth and transition metal ion doped crystals. First, we consider the soliton

described in Sec.C. For an estimate the velocity of the soliton, given by Eq.(4.61),

can be rewritten in the following way:

V =
c

np

(
1 + Nc(σESA)2

4σSEγ21

) ,

where σESA = 2πωpΓ
p
2/2cnph̄, σSE = 2πωpµ

2
21/γ21cnph̄ are the ESA and stimulated

emission cross-sections and γ21 is the width of the amplifying transition. Typical

values of the parameters determining the velocity are: ESA cross-section from a

metastable state of an ion (3d, 4f or 5d) into the conduction band is σESA ∼ 10−19−

10−17 cm2, ion density N ∼ 1019 cm−3, and homogeneous linewidth of an amplifying

optical transition at liquid helium temperature γ21 ∼ 10− 100 GHz. In this estimate

we assume that the homogeneous linewidth is greater than the inhomogeneous one

and that σESA ∼ σSE. The velocity estimate gives a value of the order of several

tens percent of c. At the early stage of pulse propagation, when it evolves as the

nonstationary π pulse, the amplitude of the pulse grows linearly with distance as

u ∼ Zν. It begins to transform into the steady-state solution when u ∼ 1, so

the characteristic distance of soliton formation is Zch ∼ 1/ν, which is equivalent to

z ∼ (σESAN)−1 and for the parameters cited above it gives a reasonable value of
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Fig. 38. Numerical solution of the system Eqs.(4.69)-(4.74), (4.75)-(4.76) in the

retarded frame with pulsed control field, taking into account probe

absorption from state 3 and both optical and two-photon coherence

relaxations. Fields are given at the entrance to the medium as:

u1 = 0.0003 exp (−(t + 55γ−1
21 )2/(0.5γ−1

21 )2), u2 = 2.14 exp (−t2/(50γ−1
21 )2). Pa-

rameters are: σESA/σSE = 2, γ32 = 0.01γ21, γ31 = γ21, ν1 = 1, ν2 = 3,

np = nc = 1 and Z = zγ21/c.
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z ∼ 0.1−1 cm. The peak intensity of the soliton can be estimated from the condition

that the peak Rabi frequency is Ωp ∼ 1/tp, giving

I ∼ ch̄2µ2
21

π(Γ2
p)

2
=

σSE

σESA

h̄ωpγ21

2npσESA

.

Assuming again σSE ∼ σESA and h̄ωp ∼ 2 eV, we arrive at the peak intensity I ∼ 100

GW/cm2, for a pulse duration of several ps and a beam diameter of the order of 1

mm it would result in a pulse energy ∼ 1 mJ.

Finally we consider the three-level case with the control field suppressing ESA.

As the numerical analysis shows the optimal probe amplification happens if the con-

trol field duration is ∼ 100γ−1
21 . Taking γ21 ∼ 10 − 100 GHz we obtain the control

pulse duration of the order of 0.1 − 1 ns. The peak intensity of the control pulse

has to exceed a threshold value Ith = 4πγ32h̄c/σESAλc (Ref.[108]) and for intercon-

figurational 4fn−15d → 4fn transitions with parameters σESA ∼ 10−17 − 10−18 cm2,

γ32 ∼ γ21 ∼ 10 − 100 GHz and control field wavelength λc ∼ 0.3 − 1 µm it gives

Ith ∼ 10 − 100 GW/cm2. It gives an estimate of the required fluence of the control

field of 1 − 10 J/cm2, which is close for the damage threshold of the crystals, but

is still tolerable [125]. As can be seen from Fig.38 the length of the crystal opti-

mal for probe amplification is given by the dimensionless value of Z ∼ 30, which

gives the reasonable crystal length of z ∼ 1 − 10 cm. The resulting amplitude of

the steady-state probe pulse is of the order of the control pulse amplitude, so the

peak intensity of the probe pulse in the best case will be comparable to that of the

control pulse. As was shown in Section A3 the linear gain is given by the expression

αgain = (σSE − σESA/(Ic/Ith + 1)) N , if the ESA cross-section is reduced such that

the expression in brackets is of the order of σSE ∼ 10−19 − 10−18 cm2, at the density

of dopant ions N ∼ 1018 − 1019 cm−3 the linear gain is high: αgain ∼ 1 − 10 cm−1.

The duration of the pulse is short, in terms of dimensionless time it is expressed as
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τ ′ ∼ 1/β, which is equivalent to tp ∼ γ−1
21 (σESA/σSEβ2). Taking into account that

β2 ≥ β2
th = γ32σESA/γ21σSE we have that tp ≤ γ−1

32 , so that pulse duration will be

tp ∼ 1 − 10 ps. It gives an upper estimate of the probe field fluence ∼ 0.01 − 1

J/cm2 and the energy ∼ 0.1− 10 mJ for a 1 mm beam diameter. As follows from the

numerical analysis the control pulse is not depleted during the probe amplification,

it changes only slightly (see the small step on the control pulse profile in Fig.38).

Thus, if a cavity is used, the same control pulse can pass trough a crystal periodi-

cally, producing a train of amplified pulses at a desired wavelength. The efficiency

of the scheme proposed is, therefore, determined by the efficiency of the use of an

incoherent pump and can be comparable to that of typical solid-state lasers.

D. Conclusions

It was theoretically demonstrated that excited state absorption, which prevents the

realization of UV or VUV lasers in rare-earth and transition metal ion doped crystals,

can be greatly reduced by applying an additional driving laser field. The approach

is based on the effect of electromagnetically induced transparency. Estimates for

typical parameters of laser crystals show that requirements for the driving field are

experimentally feasible. An additional advantage of the proposed technique is that

it allows one to tune the laser wavelength by tuning the driving field wavelength

due to selective reduction of the lasing threshold in a narrow spectral region in the

vicinity of a two-photon resonance with the driving field. Due to high intensities

of the driving field required for efficient ESA suppression, the technique will most

probably be confined to a pulsed regime. Propagation and amplification dynamics of

a probe pulse in a resonant amplifying medium with excited-state absorption from

an upper level are analyzed analytically and numerically. Continuum-coupled soliton
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solutions are found. Namely, it is shown that a steady-state solution of a dissipative

soliton type forms in the system if the stimulated emission cross-section exceeds the

excited-state absorption cross-section. If this condition is not fulfilled naturally, the

ESA cross-section can be decreased by applying an additional control laser beam to

some transition, adjacent to the ESA transition. The continuum-coupled solitons are

formed in the presence of a cw control field, on the one hand the control and probe

fields form in this case a complimentary pair of pulses closely resembling adiabatons,

on the other hand the probe pulse is very similar to the π pulse encountered in

resonant amplifiers with linear losses. In a more realistic situation of a pulsed control

field amplification of the probe pulse is transient and for optimal amplification it

is necessary that the medium has some specific length. Estimates of parameters of

the pulses for rare-earth and transition metal ion doped crystals predict generation

of pulses of picosecond duration and several tens gigawatt per cm2 peak intensity,

corresponding to mJ energy.



121

CHAPTER V

COMPRESSION OF MÖSSBAUER RADIATION INTO ULTRASHORT PULSES

A. Overview of the Mössbauer effect and coherent transient phenomena observed in

Mössbauer experiments

The Mössbauer effect is recoilless gamma-ray emission and absorption by radioactive

nuclei in solids [135]. For a free nucleus emission and absorption of a photon is always

accompanied by recoil. If a nucleus decays from state |e > to state |g > emitting

a photon of energy Eγ, momentum conservation requires that the momentum of the

photon and of the nucleus be equal and opposite. The nucleus, therefore, experiences

recoil and receives an energy Erecoil = E2
γ/2Mc2, where M is the mass of the nucleus,

c is the speed of light. Energy conservation gives the energy of the emitted photon:

Eeg = Eγ + Erecoil, with Eeg being the nuclear transition energy. It means that the

energy of the photon is red-shifted with respect to the nuclear transition energy. The

same reasoning shows that in order for the photon to be absorbed its energy has to

be blue-shifted with respect to the transition energy. So emission and absorption

profiles are separated by twice the recoil energy. For gamma-rays this separation

is typically much greater than the natural linewidth of nuclear transitions and the

profiles do not overlap. In a gas due to thermal motion of atoms all transitions are

Doppler broadened but the recoil energy for gamma-ray transitions is comparable to

or exceeds the Doppler width, thus making experiments with resonance absorption

or fluorescence extremely difficult. The Mossbauer effect eliminates both recoil and

Doppler broadening and leads to unbroadened nuclear transitions. The origin of

the effect is that if a nucleus is imbedded in a solid it can with a finite probability

emit a gamma-quantum without recoil. To be precise, the recoil is taken up by
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the solid as a whole. The recoil energy given to the entire solid is approximately

Esolid
recoil = ErecoilMatom/Msolid, where Matom and Msolid are the atom and the solid host

masses, respectively. Compared to the free atom the recoil energy is reduced by the

ratio Matom/Msolid. This extremely small energy goes into motion of the entire solid

and can be neglected. The transition energy is thus shared between the gamma ray

and the phonons. A Mössbauer transition occurs if the state of the lattice remains

unchanged, and the gamma ray gets the entire transition energy. In an idealized case

when the Debye model is used to describe host lattice vibrations, the probability of

recoilless emission/absorption is given by the expression:

f = exp

−3Erecoil

2kBΘD

1 + 4
(

T

ΘD

)2
ΘD/T∫
0

xdx

ex − 1


 , (5.1)

where T is the temperature and ΘD is the Debye temperature of the host, kB is the

Boltzmann constant. This probability can be quite high even at room temperature,

for many 57Fe containing materials it can reach values close to unity. Since the atom

does not leave its lattice site it cannot acquire translational motion, so there is no

Doppler broadening, transitions are extremely narrow, with widths close to natural

(typically in the kHz to tens MHz range).

The possibility to experimentally observe narrow resonances in nuclear emis-

sion/absorption provides a basis for a fine spectroscopic technique, called Mössbauer

spectroscopy [136]. In materials research Mössbauer spectroscopy is commonly used

to study hyperfine interactions in energy (frequency) domain. In a standard Mössbauer

experiment the source is mechanically shifted back and forth relative to the position

of a stationary resonant absorber. This leads to a linear Doppler shift in the spon-

taneously emitted gamma-ray energy. As a result, a spectroscopical scan can be

performed in a narrow energy range that is usually still large enough for observing
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the hyperfine split resonance lines in various materials. This Doppler scan is typi-

cally performed at small maximum velocities (of the order of 10 mm/s for 57Fe) and

at relatively modest frequencies (several Hz). The hyperfine structure becomes thus

directly mapped by the Doppler velocity.

A dramatic change is observed when the Doppler scanning period is shortened so

much that the scanning frequency starts to be comparable with the linewidth of the

transition (inverse of the lifetime of the excited state of the emitting nucleus). In this

so-called transient regime the lifetime enters the analysis and gives a timescale for the

effects to be observed. Coherent transient effects such as dynamical beats [54, 137],

quantum beats [46, 138], Mössbauer transients [139]-[143], gamma-echo [51, 144] are

intensively studied since late 1970’s using frequency modulated Mössbauer radiation.

These effects proved to be useful spectroscopic tools for determination of hyperfine

interaction parameters such as isomer shifts, recoiless fractions, quadrupole splittings

etc. Both synchrotron [141]-[143] and conventional Mössbauer sources are used in

experiments where transient effects are observed. In the latter case the technique

is as follows: radiation of a source achieves time-dependent phase modulation, ei-

ther sinusoidal or stepwise, usually via mechanical displacement [51],[137]-[139] or

by application of radiofrequency magnetic field which leads to mechanical vibrations

through magnitostriction as well as to time-varying splitting of levels [140, 145]. The

phase-modulated radiation emitted by the source passes through a resonant absorber

and gets some amplitude modulation which is detected in time-domain transmission

measurments. In the case of sinusoidal phase modulation three regimes are possible

depending on the frequency of modulation: if the frequency is much less than the

linewidth of an absorber resonance, we have conventional Mössbauer measurements,

if the frequency of modulation becomes of the order of the linewidth the regime is

called Mössbauer transients, and if the frequency greatly exceeds the linewidth of the
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resonance, the resulting transients are ”quantum-beats of recoiless gamma radiation”

[137]. Stepwise phase modulation of the source radiation gives rise to gamma-echo

phenomenon [51]. Mössbauer transients observed in [139] were used to calibrate me-

chanical displacements of a source and to determine linewidths and recoilless fractions

of both the source and the absorber; in experiments with alternating magnetic fields

transients allowed to determine the gyromagnetic ratio of an excited state of the 67Zn

nucleus [145].

In the research project a method of manipulation of Mössbauer radiation (pro-

duced either by a radioactive Mossbauer source or by coherent nuclear scattering of

synchrotron radiation in a Mossbauer absorber) is suggested, which would result in

generation of a train of short pulses of coherent gamma radiation with pulse duration

much shorter than the nucleus excited state lifetime [146]. The idea of the method has

similarities on the one hand with the well known in optics Chirped Pulse Compres-

sion technique [147] and on the other hand with a technique, used to study coherent

transient effects in Mössbauer experiments. Namely, gamma radiation emitted by a

Mössbauer source becomes frequency modulated (chirped) by mechanical vibration

of the source due to the Doppler effect, and afterwards it is propagated through a

compressor, providing group velocity dispersion. At the exit of the system the fre-

quency modulated radiation gets temporarily compressed into a sequence of short

pulses. The compressor can be either a far-detuned resonant Mössbauer absorber

of appropriate thickness or a system of Bragg scattering crystals, used as diffraction

gratings.
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B. Intensity of frequency modulated Mössbauer radiation

Let a Mössbauer source vibrate at some frequency δ along z axis, then emitted ra-

diation will be frequency modulated due to the Doppler effect. We assume that the

source thickness is much less than the corresponding acoustic wavelengh therefore all

parts of the source move in phase. Otherwise it is nessesary to average over ampli-

tude and phase distributions as in [148]. In the ideal case of a thin source, which we

consider, the position of the source depends on time as:

zs = z0 sin(δt + ϕ),

where z0 is the amplitude of vibration.

Mössbauer radiation consists of well-separated, mutually incoherent gamma-

quanta of spontaneous emission (though each individual gamma-quantum is highly

coherent) and thus differs significantly from a ”classical” field emitted by a laser.

However the results of transient Mössbauer experiments can be very successfully

explained both qualitatively and quantitatively using classical electrodynamics of a

damped harmonic oscillator [149]. In the optical spectral region comparison of classi-

cal and quantum electrodynamical theories [150] has shown that former ones can not

correctly account for higher order correlation properties of light. For Mössbauer ra-

diation a similar problem was revealed in measurement of, for example, the intensity

correlation function < |E(t)|2|E(t′)|2 > of the radiation, where E(t) is the total field

from all individual source nuclei. Fortunatly, the classical model gives the same first

order correlation function of the field associated with a spontaneously emitted photon,

< E(t)E+(t′) >, as a quantum electrodynamical theory [151]. These results explain

why there were no descripancies in classical interpretation of experiments, where only

the transmitted or scattered intensity (first order correlation) was measured.
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So we will treat the radiation emitted by a single line source classically. Let us

assume that the electric field component of the radiation of the source is:

Es ∼ e−Γs(t−t0)/2−iwstθ(t− t0) + c.c.

At some distance z from the source and at a moment t the electric field of radiation

will be equivalent to the field at some earlier moment t′:

Es(z, t) = Es(z = zs(t
′), t′),

where t′ is determined by the condition:

c(t− t′) = z − zs(t
′) = z − z0 sin(δt′ + ϕ).

If we take into account the condition z0δ/c << 1, i.e. that the maximum vibrational

velocity is much less than the speed of light, we obtain in the zeroth order that

t′ = t− z/c.

Then in the first order

t′ = t− z/c + z0/c sin(δ(t− z/c) + ϕ).

So the field associated with a gamma photon emitted by a nucleus in the source is

described by

Es(z, t) ∼ e−Γs(t′−t0)/2−iwst′θ(t′ − t0) + c.c. = (5.2)

= e−Γs[t−t0−z/c+z0/c sin(δ(t−z/c)+ϕ)]/2−iwst+iksz−iksz0 sin(δ(t−z/c)+ϕ)×

×θ [t− t0 − z/c + z0/c sin(δ(t− z/c) + ϕ)] + c.c.

Here we assume that radiation propagates in the positive z direction, ks is the wave

number of the radiation, Γs is the inverse lifetime of an excited state of a nucleus, c
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is the speed of light, θ(t) is the unit step function, t0 is the moment when the excited

nucleus is formed. In the following we neglect modulation of decay in comparison

with modulation of phase since ws >> Γs, so finally

Es(z, t) ∼ e−Γs(t−t0−z/c)/2−iwst+iksz−iksz0 sin(δ(t−z/c)+ϕ)θ(t− t0 − z/c) + c.c. (5.3)

Following the lines of [152] let us rewrite Eq.(5.3) as a sum over all acoustic

sidebands generated via vibration of the source:

Es(t, z) ∼
∑
n

Jn(a)e−iwnt+iknz−Γs(t−t0−z/c)/2−inϕθ(t− t0 − z/c) + c.c. = (5.4)

=
∑
n

Jn(a)e−iwnt0−inϕ

− 1

2πi

∞∫
−∞

cn(w, t0)e
−iw(t−z/c)dw

+ c.c.,

where

cn(w, t0) =
eiwt0

w − wn + iΓs/2
, t > t0 + z/c,

wn = ws + nδ and kn = ks + nδ/c are the frequency and the wavenumber of n′th

acoustic sideband, a = ksz0 is the modulation index (number of acoustic sidebands

generated).

C. Resonant Mössbauer absorber used as a compressor

A common feature of all previous Mössbauer transient experiments is that they were

carried out at a condition of resonance between incident radiation and an absorber.

It led to considerable resonant absorption and as a consequence to a small amplitude

of intensity variation with time. Our idea is the following: if we detune the central

frequency of the source radiation far off resonance with an absorber such that the

whole spectrum of the radiation ”lies” on the tail of the resonance dispersion curve, we

get rid of resonance absorption having at the same time some dispersion of refractive
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Fig. 39. Schematic diagram of the generation of short gamma-ray pulses with a reso-

nant Mossbauer absorber used as a dispersive element.

index. Though dispersion decays as ∼ 1/(w − ws), absorption decays even faster

as ∼ 1/(w − ws)
2, so it is possible to neglect absorption while having considerable

dispersion.

We assume that the absorber consists of two-level nuclei, as shown in Fig.39, and

use density-matrix approach to describe them. The coherence ρ21 is then goverened

by the equation:

dρ21

dt
= −iwaρ21 + in12

µ21E

h̄
− γaρ21, (5.5)

where wa is the frequency of 2 ↔ 1 transition, n12 = ρ11−ρ22 is the population differ-

ence between ground and excited states, µ21 is the dipole moment matrix element, γa

is the coherence relaxation rate. Crystal structure of the absorber is not taken into

account.

In a steady state the Fourier transform σ21(w, t0, z) of the amplitude of the off-

diagonal element ρ21 =
∞∫
−∞

σ21(w, t0, z)e−iw(t−z/c)dw follows from Eq.(5.5):

σ21(w, t0, z) = −n12µ21E(w, t0, z)/h̄

w − wa + iγa

,

where E(w, t0, z) is the Fourier transform of the slowly varying amplitude of the

electric field component of the radiation.
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For a steady regime, which we consider (Fourier transforms do not depend on

time), the propagation equation for the field has the form:

∂E(w, t0, z)

∂z
+ γE(w, t0, z) =

2πiµ21Nfaw

c
(σ21(w, t0, z) + σ12(w, t0, z)) ≈

≈ 2πiµ21Nfaw

c
σ21(w, t0, z),

where N is the number density of resonant nuclei in the absorber, fa is the absorber’s

recoilless fraction, γ describes non-resonant absorption losses. We neglect the term

σ12(w, t0, z) = σ∗21(−w, t0, z) due to rotating wave approximation since we restrict

ourselves to the case when the width of the generated spectrum 2aδ << wa. Finally

for the absorber situated between plates z = zabs and z = zabs + L we obtain the

result:

Es(w, t0, zabs + L) = exp

[
−
(
γL +

ib

w − wa + iγa

)]
Es(w, t0, zabs),

where

b = 2πn12µ
2
21wNfaL/h̄c ≈ 2πµ2

21ksNfaL/h̄, (5.6)

since the field is weak so that n12 ≈ 1.

The coefficients cn after radiation passes through the absorber transform as cn →

c′n, where

c′n = cn exp

[
−
(
γL +

ib

w − wa + iγa

)]
,

and the field changes as

Es(t, z) ∼
∑
n

Jn(a)e−iwnt0−γL−inϕ

− 1

2πi

∞∫
−∞

e−ib/(w−wa+iγa)−iw(t−t0−z/c)

w − wn + iΓs/2
dw

×
×θ(t− t0 − z/c) + c.c. (5.7)

In the integrand of Eq.(5.7) a(w) = e−ib/(w−wa+iγa) is the absorber response, the
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inverse Fourier transform of which is a(t) = δ(t)− be−iwat−γatσ(bt)θ(t), where σ(x) =

J1(2
√

x)/
√

x. The inverse Fourier transform of cn(w, t0) is

cn(t, t0) = −ie−iwn(t−t0)−Γs(t−t0)/2θ(t− t0).

So the integral in Eq.(5.7) can be rewritten as

− 1

2πi

∞∫
−∞

cn(w, t0)a(w)e−iw(t−z/c)dw = − 1

2πi
2π

∞∫
−∞

cn(t− z/c− t′, t0)a(t′)dt′ =

=

∞∫
−∞

[
δ(t′)− be−iwat′−γat′σ(bt′)θ(t′)

]
e−iwn(t−t0−z/c−t′)−Γs(t−t0−z/c−t′)/2θ(t−t0−z/c−t′)dt′ =

= e−iwn(t−t0−z/c)−Γs(t−t0−z/c)/2θ(t−t0−z/c)

1− b

t−t0−z/c∫
0

e−i(wa−wn)t′−(γa−Γs/2)t′σ(bt′)dt′

 .

It leads to the following expression for the field:

Es(t, z) ∼
∑
n

Jn(a)e−iwnt+iknz−γL−Γs(t−t0−z/c)/2−inϕθ(t− t0 − z/c)× (5.8)

×

1− b

t−t0−z/c∫
0

e−i(wa−wn)t′−(γa−Γs/2)t′σ(bt′)dt′

+ c.c. =

= e−iwst+iksL−γL−Γs(t−t0−z/c)/2−ia sin(δ(t−z/c)+ϕ)θ(t− t0 − z/c)×

×

1− beia sin(δ(t−z/c)+ϕ)

t−t0−z/c∫
0

ei∆wt′+ia sin(δ(t′−t+z/c−ϕ)−(γa−Γs/2)t′σ(bt′)dt′

+ c.c.,

where ∆w = ws − wa is the detuning of the center frequency of incident radiation

from the absorber resonant frequency.

Finally we arrive at the expression for the resulting time-dependence of intensity

of a gamma photon emitted at time t0:

I(t, t0, z) ∼ e−2γL−Γs(t−t0−z/c)θ(t− t0 − z/c)× (5.9)
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×

∣∣∣∣∣∣∣1− beia sin(δ(t−z/c)+ϕ)

t−t0−z/c∫
0

ei∆wt′+ia sin(δ(t′−t+z/c−ϕ))−(γa−Γs/2)t′σ(bt′)dt′

∣∣∣∣∣∣∣
2

.

In order to elucidate the way the transmitted signal becomes compressed, we rewrite

Eq.(5.8) in a different way. The integral in Eq.(5.7) can be calculated by a contour

integration in the complex w plane [149], giving the result

Es(t, z) ∼
∑
n

Jn(a)e−iwnt+iknz−γL−Γs(t−t0−z/c)/2−inϕθ(t− t0 − z/c)×

×
{
e−ib/(wn−wa+i(γa−Γs/2)) − e−(γa−Γs/2+i(wa−wn))(t−t0−z/c)×

×
∞∑

k=1

(
−ib

wn − wa + i(γa − Γs/2)

)k Jk(2
√

b(t− t0 − z/c))

(b(t− t0 − z/c))k/2

+ c.c. (5.10)

The second term in figure brackets converges rapidly if the following condition

is fulfilled:

b

[(∆w + nδ)2 + (γa − Γs/2)2]1/2

1

[b(t− t0 − z/c)]1/2
< 1 (5.11)

In our case the detuning from resonance is large (∆w >> γa), so (5.11) is satisfied

for t > t0 + z/c + b
(∆w)2

, then the second term in (5.10) can be neglected. As is clear

then from Eq.(5.10) the field at the exit of the absorber is just a sum of incident

acoustic sidebands with each sideband having absorption coefficient and refractive

index determined by its frequency due to resonant nature of interaction with the

absorber’s nuclei:

Es(t, z) ∼
∑
n

Jn(a)e−iwnt+iknz−γL−Γs(t−t0−z/c)/2−inϕe−ib/(wn−wa+i(γa−Γs/2))×

×θ(t− t0 − z/c) + c.c. (5.12)

The phase shift for n’th sideband comes from the term e−ib/(wn−wa+i(γa−Γs/2)) which,

if we neglect absorption, becomes e−ib/(∆w+nδ) ≈ e−(ib/∆w)[1−nδ/∆w+(nδ/∆)2] for nδ <<

∆w. The quadratic term in Taylor expansion provides group velocity dispersion,



132

as a result different sidebands propagate through the absorber with different group

velocities. The length of the absorber at which signal compression is optimal can

be estimated by the requirement that ”red-shifted” sidebands reach the exit of the

absorber at the same time as ”blue-shifted” sidebands. It gives the condition:

∣∣∣1/V red
g − 1/V blue

g

∣∣∣L = 2π/δ

or ∣∣∣dVg

dw
(w = ws)

∣∣∣ δw
V 2

g (w = ws)
L =

∣∣∣∣∣ d2k

dw2
(w = ws)

∣∣∣∣∣ δw · L = 2π/δ,

where δw is the spectral width of the vibrationally generated spectrum and

k(w) = ks −Re(
b/L

w − wa + iγa

) = ks −
b

L

w − wa

(w − wa)2 + γ2
a

.

So under our assumptions d2k
dw2

∣∣∣
w=ws

= 2b∆w
L

3γ2
a−(∆w)2

((∆w)2+γ2
a)3
≈ − 2b

L(∆w)3
and we get the

condition

b =
π |∆w|3

2aδ2
, (5.13)

from which the length of the absorber can be extracted. Fig.40 gives the time-

dependence of the transmitted radiation intensity, calculated according to the general

expression Eq.(5.9), which gives the same result as the simplified formula Eq.(5.12).

As can be seen, instead of the familiar monotonically decaying exponential it

is a sequence of pulses with maximum amplitude decaying exponentially within a

characteristic time equal to the lifetime of the excited state of an emitting nucleus.

This time dependence can be observed using the coincidence technique [51]. In the

coincidence technique a 57Fe nucleus in the excited state is formed as a result of a

cascade decay of a parent nucleus 57Co, in the last cascade process a gamma quantum

of 122 keV is emitted. This photon serves as a precursor, giving the time of the

excited state formation. A detector is switched on at this moment and waits for
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Fig. 40. Time-dependence of the intensity of a ”compressed” single photon.

the 14.4 keV gamma quantum. Once it is detected, the detector is switched off,

and the procedure is repeated. In this way the time distribution between the two

gamma photons is measured resulting in the decay profile of the excited state of

the nucleus. This technique has to be modified, though, in order to observe the

decay curve shown in Fig.40. The reason is that this decay process can be measured

only if the excited nuclei emit photons in the same phase of the source’s vibration.

Since the spontaneous emission time is not correlated with the source movement, the

photons can be emitted at any phase of vibration. To obtain the decay shown in

Fig.40 it is necessary, therefore, to tie the time of excited state formation to some

particular phase. It can be done by subtracting for every decay event from the time

between the precursor and 14.4 keV photon detection the time difference between the

actual decay time and the next nearest moment the phase goes through the reference

value. Another type of experiment can be envisaged in which the time of excited



134

state formation is not known, so the intensity has to be averaged over t0. In this

case the measurement time is not synchronized with formation of the excited state

of a nucleus, but with the phase of source motion, as in conventional Doppler-scan

Mössbauer measurements.

If we take into account both recoilless and recoiled parts of emitted radiation,

the intensity is given by the following expression:

I(t, L) = I0

(
1− 2fsb ·Re

[
e−ia sin(δ(t−z/c)+φ)

∞∫
0

e−i∆wt′−(γa+Γs/2)t′+ia sin(δ(t−t′−z/c)+φ)σ(bt′)dt′



+2fsb
2 ·Re

 ∞∫
0

dt′ei∆wt′−ia sin(δ(t−t′−z/c+ϕ)+(Γs/2−γa)t′σ(bt′)

∞∫
t′

dt′′e−i∆wt′′+ia sin(δ(t−t′′−z/c)+ϕ)−(Γs/2+γa)t′′σ(bt′′)

 , (5.14)

where I0 is the off-resonance intensity. Typical intensity time-dependence, calculated

using (5.14), is shown in Fig.41.

Now let us make numerical estimates of the optimal length of the absorber and

the duration of a single pulse achievable with this technique. As an example we

consider 57Fe resonance assuming both the absorber and the source be single-line.

From Eq.(5.6) b = 2πµ2
21ksN faL/h̄ = 3πN faLΓs/2k

2
s(1+α), where α is the internal

conversion coefficient. The optimal b is given by Eq.(5.13), the optimal lenght is then:

Lopt =
|∆w|3 k2

s(1 + α)

3aδ2N faΓs

=
|∆w|3 (∆Eres)2(1 + α)

3aδ2N faΓs(ch̄)2

For the 57Fe resonance ∆Eres = 14.4 keV, the density of resonant atoms can be as

high as N = 1022 cm−3, fa ≈ 1 up to room temperature, α ≈ 9, Γs = 1.1 MHz. If

we detune far off-resonance such as ∆w = 100Γs, and take the modulation frequency
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Fig. 41. Intensity of gamma radiation after averaging over t0 - formation time of the

excited state of a nucleus in a source.

be rather high as in experiments with ”quantum beats of recoilles gamma radiation”

[137] δ = 10Γs, so that a = 10 sidebands are generated, then the optimal length

Lopt ∼ 1 mm. At this length the pulse duration would be Tpulse ∼ 1/2aδ ≈ 0.7 ns

which is two orders of magnitude shorter than the decay time of the excited state of

the 57Fe nucleus (100 ns).

Nonresonant losses become significant for an absorber of such thickness. For

energies corresponding to Mössbauer transitions (10 − 100 keV) they will be almost

entirely due to electric dipole contribution to photoelectric absorption. For example,

for stainless steel fully enriched in 57Fe the electronic absorption coefficient γ ≈ 0.05

µm−1 [143], which leads to intensity attenuation by a factor of exp(−50) for 1 mm

thickness. As a result no radiation would penetrate through the absorber. The

attenuation coefficient although can be reduced by as much as two orders of magnitude

if one makes use of the Borrmann effect [153]. This effect takes place in the so-called
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Laue geometry, when the Bragg condition is satisfied for transmitted waves. Namely,

two waves with wave vectors difference matching to some reciprocal lattice vector

will be strongly reflected one into the other. Two linear combinations of the waves

constitute then two eigenmodes which propagate through the crystal. The wave field

of these modes consists of traveling waves along the direction of propagation (given

by the sum wave vector of the two initial waves) and standing waves perpendicular

to that direction. One of the eigenmodes (the Borrmann mode) has nodes of its

electric field coincide with the equilibrium positions of atoms in the crystal. This

has the effect of producing a gamma-ray waveguide such that gamma-rays can be

transmitted through ”thick” crystals with very little attunuation due to reduction

of photoabsorption. At the same time the Borrmann mode will strongly couple to

Mössbauer nuclei with magnetic dipole transitions since in this mode each nucleus

lies in a region of strong magnetic field. This mode will couple to higher-multipole

transitions as well since the electric field gradient and higher derivatives of the field

are also large at nuclear sites. The other eigenmode has anti-nodes of its electric

field at atoms equilibrium positions, thus it propagates with enchanced absorption.

Radiation in the Borrman mode will penetrate much further in a good crystal than

radiation in a non-Borrmann mode. In [154] the case of 2 mm thick 56FeTi absorber is

theoretically considered. Its electronic absorption lenght is γ = 27.9 µm and for L = 2

mm the intensity attenuation would be ≈ exp(−71.68). It was predicted though that

in a two-beam Borrmann mode 6% of the radiation still will be transmitted through

such a crystal. Another possibility is to use materials with low nonresonant losses,

where the host is made of light elements, examples are FeCl2 · (2 − 4)H2O crystals,

in which the Mössbauer effect was detectable with the sample thickness of 0.35 mm

[155] and of 1 mm [156].
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D. Compressor made of Bragg scattering crystals

Another possible way of compressing Mössbauer radiation into short pulses is to use a

system of diffracting gratings in which photons of different energies traverse different

path length in analogy to optics [157]. For gamma-rays Bragg scattering crystals such

as Si, Al2O3, BeO, Be, noncubic polytypes of SiC can be utilized as gratings. Bragg

reflection angular dispersion can be used to spatially separate energy sidebands and

make them travel different paths. Dispertion relation is easily calculated from the

angular and energy dependence of Bragg reflection intensity [158]. Let us assume

that for some wavelength k the Bragg condition is fulfilled: 2kd sin θ = 2π, where

d is the corresponding interplanar distance. If the wavenumber slightly differs from

resonant, k + dk, the diffraction angle will be θ + δθ, where

dθ

dk
= − 2

k cot θ
(5.15)

In order to maximize the angular spread between adjacent sidebands large Bragg

angles are preferred. Schematic of the proposed crystal system is shown in Fig.42a,

which is almost analogous to the scheme used in [159] to construct an ultra high

resolution monohromator. Here we propose to use four high-order asymmetric reflec-

tions with large asymmetry angles. First and second crystals basically do the main

job, namely, they impose different phase changes on sidebands. The third crystal

is a mirror reflection of the second one and together with the fourth crystal serves

the purpose of reducing the beam cross-section to its original size. For the first,

second and fourth crystals asymmetry angles are negative, for the third - positive.

High asymmetry of the first reflection allows to achieve large angular acceptance to

match the angular spread of incident radiation. Asymmetry factor of the first crystal

b1 = sin(θ + α1)/ sin(θ − α1) is less than unity so that angular divergence of the
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Fig. 42. Diagram illustrating the compression scheme based on a system made of four

Bragg-scattering crystals and the way of making ”red” and ”blue” sidebands

accumulate necessary for optimal compression phase difference.

reflection can be made smaller than the angular spread between adjacent energy side-

bands resulting from angular dispersion of the reflection. It is well known [160] that

for example in silicon crystals high order reflections at large Bragg angles have small

Darwin widths on the order of a few µrad at 10 keV and they are futher reduced

as energy increases. The asymmetry angle of the third crystal α3 = −α2, so that

angular acceptance of the third reflection matches angular divergence of the second

reflection. Angular divergence of the third reflection will be large, but sidebands are

already spatially separated and almost phase shifted when they arrive at the third

crystal. The fourth crystal has negative asymmetry angle, and angular acceptance of

the fourth reflection can be adjusted to match angular divergence of the third reflec-

tion. Due to resulting small angular divergence of the fourth reflection the beam will

be collimated at the exit.
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As can be seen from Fig.42b the total optical path difference between ”blue” and

”red” sidebands is:

∆z = zblue − zred = 2 ·
(

h′
sin θ

− h

sin(θ + δθ)
+ ∆

)
,

where

h′ = h + L cos(π/2 + α2) = h− L sin α2,

D =
h′

tan θ
− h

tan(θ + δθ)
= L sin(π/2 + α2) = L cos α2,

which gives

L =

(
h′

tan θ
− h

tan(θ + δθ)

)
/ cos α2,

h′ = h− tan α2

(
h′

tan θ
− h

tan(θ + δθ)

)
,

so that

h′ = h
tan(θ + δθ) + tan α2

tan θ + tan α2

tan θ

tan(θ + δθ)

and up to the first order in δθ:

h′ ' h

(
1− sin α2δθ

sin θ sin(θ + α2)

)
,

∆ = L cos(2(π/2− θ) + θ + α2) =

= −cos(θ − α2)

cos α2

(
h′

tan θ
− h

tan(θ + δθ)

)
= −h

cos(θ − α2)δθ

sin θ sin(θ + α2)
.

Finally

∆z = − 4h sin α2δθ

sin(θ + α2)
=

8h tan θ sin α2δk

k sin(θ + α2)
=

8h sin θ sin α2δw

w cos θ sin(θ + α2)
,

where we used dispersion relation Eq.(5.15).

The field at the entrance to the crystal system is given by Eq.(5.4), at the exit
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of the system it becomes:

Es(t, z) ∼
∞∑

n=−∞
Jn(a)e−iwnt+ikn(z+∆zn)−Γs(t−t0−z/c)/2θ(t− t0 − z/c) + c.c.,

where the path difference between n’th and central sideband is

∆zn = − 8h sin α2 sin θ dwn

ws sin(θ + α2) cos θ
= − 8h sin α2 sin θ nδ

ws sin(θ + α2) cos θ
.

It leads to the following expression for the field:

Es(t, z) ∼ e−iwst+iksz−Γs(t−t0−z/c)/2θ(t− t0 − z/c)×

×
∞∑

n=−∞
Jn(a)e

−inδ(t−z/c+
8h sin α2 sin θ

c sin(θ+α2) cos θ
)−i(nδ)2

8h sin α2 sin θ

wsc sin(θ+α2) cos θ + c.c.

Applying the same requirement for optimal compression that a ”red” sideband, which

reaches the first crystal with a delay π/δ compared to a ”blue” sideband, leaves the

system of crystals simultaneously with the ”blue” one, we get the condition:

zblue − zred =
8h |sin α2| sin θ 2aδ

ws sin(θ + α2) cos θ
= c

π

δ
.

It determines the characteristic size of the crystal system:

h =
πcws

16δ2a

sin(θ + α2) cos θ

|sin α2| sin θ
, (5.16)

L =
πc

4δ |sin α2| sin θ
. (5.17)

The intensity of recoilless radiation after it leaves the crystal system is given by the

expression:

Irecoilless(t, z) ∼
∣∣∣∣∣

∞∑
n=−∞

Jn(a)e
−inδ(t−z/c+

8h sin α2 sin θ

c sin(θ+α3) cos θ
)−i(nδ)2

8h sin α2 sin θ

wsc sin(θ+α2) cos θ

∣∣∣∣∣
2

.

Now let us again consider the 57Fe example. For numerical estimates we assume

that the maximal vibrational velocity of the source is Vmax ∼ 1 m/s, which was
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achieved for LiNbO3 single crystal transducer [161], and the vibrational frequency

is δ ∼ 1 GHz. Single crystal transducers cannot provide such high frequency of

vibration, but it can be easily achieved in acoustic superlattices made of LiNbO3 [162].

We also assume the following parameters of the compression system: θ = π/2−∆θ,

θ + α2 ≈ ∆θ, where ∆θ � 1, so that the incident radiation is almost backscattered.

The asymmetry angle of the first crystal need not be as large as of the second one, the

only requirement is that angular divergence of the first reflection should be less than

the angular spread between adjacent sidebands. From (5.15) δθadj = 2δ/(ws cot θ)

and if we assume ∆θ ∼ 1 mrad, we get δθadj ≈ 0.6 µrad. Any α1 which would give

narrower angular divergence will suffice. The characteristic size of the system for

these parameters is according to Eqs.(5.16), (5.17):

h ≈ πc2(∆θ)2

16δVmax

,

L ≈ πc

4δ
.

The higher the modulation frequency δ, the smaller the size of the crystal system.

For δ = 1 GHz, the length of the second crystal is L = 3.75 cm, and the separation

between the first and the second crystals is h ≈ 3 m. In this case a = 12 sidebands

will be generated and the pulse duration will be Tpulse ∼ 1/2aδ ∼ 7 ps.

The numerically calculated time dependence of compressed Mossbauer radiation

at the exit of the crystal system for 57Fe is shown in Fig.43. The pulse duration is 30

ps, the size of the crystal system required for optimal compression is h ≈ 1 m. The

difference in the theoretically predicted and numerically calculated size h required

for optimal compression is most probably due to the sinusoidal modulation of the

frequency. The expression (5.16) for the optimal size was calculated assuming linear

frequency chirp since the compression system with linear group velocity dispersion
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Fig. 43. Time dependence of recoilless radiation passed through the crystal system,

depicted in Fig.4.
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provides optimal compression for signals with linear frequency chirp.

E. Discussion

Coherent radiation in the hard X-ray and gamma range due to its extremely short

wavelength (less than 1 Å) may have a lot of applications. It could establish new

records in all areas where high precision and high spatial resolution is required: spec-

troscopy, crystallography, microscopy, lithography, holography, optical tomography,

etc. If this radiation is delivered in the form of coherent short pulses, this may allow

one to perform time-resolved measurements of structure dynamics at a single atom

level with temporal resolution determined by the duration of a pulse.

Recently developed ultrashort pulse X-ray sources [163, 164] are used in a num-

ber of fields to study material properties, chemical and biological reactions on time

scales up to picoseconds [165]. Novel sources based on generation of harmonics of

femtosecond laser radiation in gases are limited in wavelength from below by 10 nm.

Synchrotrons and laser synchrotron radiation sources [164, 166] are able to pro-

duce high flux and high brightness ultrashort X-ray pulses with broad spectral width,

typically ∆E/E ∼ 1 ÷ 10%, but it is not coherent. Coherent radiation can be ob-

tained from a synchrotron using frequency filters or forward scattering by a Mössbauer

absorber, but not in the form of ultra-short pulses.

The method that is proposed in the project would provide a compact, laboratory-

scale, near-monochromatic (with neV spectral width), low-cost, source of short (sub-

nanosecond scale) pulses of gamma radiation. In comparison with synchrotron ra-

diation the advantage of the proposed technique is a better control over the phase

of coherent pulses. Ideally, pulses can be transform-limited. It is also worth noting

that due to discrete nature of Mössbauer radiation the proposed technique offers a
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fascinating possibility of manipulation of spectral properties of a single gamma pho-

ton. Namely, a photon can be temporarily compressed into a sequence of short pulses

whose amplitude decays exponentially within a Mössbauer transition excited state

lifetime.
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CHAPTER VI

SUMMARY

The main goal of the work was to extend atomic and molecular interference phenom-

ena most intensively studied in alkali vapors to new media, such as rare-earth and

transition metal ion doped crystals and plasma, and to find new applications. The

main results of this work are the following:

1. We proposed to apply the coherent population trapping effect to measure

magnetic fields in a plasma, medium which is less used and studied in EIT/CPT

experiments in comparison with alkali vapors. A theoretical analysis and a demon-

stration experiment performed in a neon discharge show the ability of the proposed

technique to measure both the strength and the orientation of the field. The technique

might be applicable to both cold and hot plasma configurations.

2. We extended the theory of atomic and molecular interference and coherence

phenomena from gaseous to solid materials and analyzed the behavior of the EIT

resonance (its width and contrast), as well as the achievable group velocity of light and

efficiency of non-linear interactions in solid media with a long-lived spin coherence.

Estimates of the parameters of the resonance and required driving field intensity are

given for a particular class of materials, namely, rare-earth and transition metal ion

doped crystals, known to have narrow both optical and spin transitions. For these

materials required driving field intensities are in the range 1− 103 W/cm2 compared

to 1− 100 mW/cm2 in gaseous media, but due to high density of ions the efficiency

of EIT/CPT based non-linear interactions can be as high as in gases.

3. We proposed a technique of suppression of excited-state absorption in laser

crystals, using the electromagnetically induced transparency effect. The technique

may be useful for obtaining tunable laser action in ultraviolet range in rare-earth
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ion doped crystals. Estimates of the control field intensity required for efficient ESA

suppression were made for these crystals, showing that the technique is feasible in a

pulsed regime. Numerical and analytical analysis of the weak probe pulse amplifica-

tion in a crystal with ESA, suppressed by a pulsed strong control field, shows that

pulses of picosecond duration with peak intensity of several tens gigawatts per cm2

can be obtained at the length of the crystal of several cm.

4. We analyzed theoretically the possibility to extend the chirped pulse compres-

sion technique from the visible to gamma range of frequencies which may be used for

production of ultrashort pulses of Mössbauer radiation. In a compressor, providing

necessary group velocity dispersion, made of a far-detuned resonant Mössbauer ab-

sorber, pulses of sub-nanosecond duration can be obtained. With a system of Bragg

scattering crystals used to provide the dispersion pulses of several tens picoseconds

are feasible.
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APPENDIX A

The mechanisms of inhomogeneous broadening at optical and spin transitions in

solids, caused by dipole-dipole and spin-spin interactions, respectively, are essentially

different from each other. In particular, inhomogeneous broadening of spin transi-

tions typically is smaller than that of optical transitions, which is very favorable for

the appearance of atomic interference effects. One has to average the susceptibility

of a Λ system over the frequency distributions of one- and two-photon transitions

independently:

χ =
∫

d(ωab)f(ωab)
∫

d(ωcb)f(ωcb)η
{

ρab

α

}
, (A.1)

where ωab, ωcb are the frequencies of the a → b and c → b transitions, f(ωab(cb)) is

the normalized frequency distribution function, ρab is the coherence of the a → b

transition induced by radiation fields, and η = Nµ2
ab/2h̄. The Rabi frequency of the

probe field with frequency ν is defined by α = µabEp/2h̄. The matrix element of the

dipole moment between levels a and b is µab, E is the probe field amplitude, and N

is the atomic density.

For simplicity we model the frequency distribution with a Lorentzian function

with full width at half maximu (FWHM) 2W ab(cb) such that

f(ωab(cb)) =
W ab(cb)/π

(∆ωab(cb))2 + (W ab(cb))2
. (A.2)

The susceptibility (A.1) can now be evaluated by two contour integrations in

the complex plane. Let us first integrate over ∆ωab. We choose the lower half plane,



164

which contains two poles:

∆ωab = −iW ab, −iy = −i

√
γ2 +

Ω2γ(1 + 3wcb/wab)

2wcb

.

So χ = χ1 + χ2, where χi are the contributions from the two poles. For the pole

∆ωab = −iW ab we have

χ1 =
iη

2

(γcb + i∆ + i∆ωcb)(γ
2 + γΩ2

wcb
+ (iW ab + ∆ωcb)

2)− Ω2(W ab + γ − i∆ωcb)

[(W ab + γ + i∆)(γcb + i∆ + i∆ωcb) + Ω2] [y2 + (iW ab + ∆ωcb)2]
.

The second pole ∆ωab = ∆ωcb − iy yields

χ2 = −iη

2

W ab
[
Ω2(y + γ)− (γcb + i∆ + i∆ωcb)(γ

2 − y2 + γΩ2

wcb
)
]

y [(W ab)2 + (∆ωcb − iy)2] [(y + γ + i(∆ + ∆ωcb))(γcb + i∆ + i∆ωcb) + Ω2]
.

Now we carry on an integration over ∆ωcb, choosing again the lower half plane, since

it contains fewer poles.

The χ1 term contains the following poles in the lower half plane: ∆ωcb = −iW cb,

−i(W ab + y) and ∆ωcb = −i(W ab − y). The last one lies in the lower plane only if

y < W ab. So there will be either two or three poles, depending on the value of y.

The χ2 term, multiplied by Eq.(A2) corresponding to the c → b transition,

contains the poles: ∆ωcb = −iW cb and ∆ωcb = −i(W ab − y). Again, there are

either two or one pole(s) in the lower half-plane depending on whether y is greater

or less then W ab. It turns out that the contributions to χ1 and χ2 from the pole

∆ωcb = −i(W ab − y) when y < W ab exactly cancel each other, so we are left with

only three terms, χ11 and χ12 stemming from the integration of χ1, and χ21 resulting

from the integration of χ2, where

χ11 = − iη

2AZ11

(B11 −∆2 − i∆W ab)(C11 − i∆D11),

A = y2 − (W ab −W cb)2 ≈ y2 − (W ab)2,
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Z11 =
[
(γ + W ab)(γcb + W cb) + Ω2 −∆2

]2
+ ∆2

[
γ + γcb + W ab + W cb

]2
≈

≈
[
W abW cb + Ω2 −∆2

]2
+ ∆2(W ab)2,

B11 = (γ + W ab)(γcb + W cb) + Ω2 ≈ W abW cb + Ω2,

C11 = Ω2(γ + W ab −W cb) + (γcb + W cb)

(
(W ab −W cb)2 − γ2 − γΩ2

wcb

)
≈

≈ Ω2W ab + W cb(W ab)2 − γΩ2

wcb

W cb,

D11 = γ2 +
γΩ2

wcb

− (W ab −W cb)2 ≈ γΩ2

wcb

− (W ab)2.

Here the following assumptions were used: W ab >> γ, W cb; W cb >> γcb and wab >>

wcb. All of these inequalities typically hold for EIT experiments in solids.

The second term is

χ12 = − iηW cb

2y(y + W ab)2Z12

(B12 −∆2 − i∆(2W ab + y))(C12 − i∆D12),

where

Z12 =
[
(γ + W ab)(y + γcb + W ab) + Ω2 −∆2

]2
+ ∆2

[
γ + γcb + y + 2W ab

]2
≈

≈
[
W ab(y + W ab) + Ω2 −∆2

]2
+ ∆2

[
y + 2W ab

]2
,

B12 = (γ + W ab)(y + γcb + W ab) + Ω2 ≈ W ab(y + W ab) + Ω2,

C12 = Ω2(γ − y)− γΩ2

2wcb

(1− 3wcb

wab

)(γcb + y + W ab) ≈ Ω2(γ − y)− γΩ2

2wcb

(y + W ab),

D12 =
γΩ2

2wcb

(1− 3wcb

wab

) ≈ γΩ2

2wcb

.

Finally,

χ21 = − iηW ab

2y [(W ab)2 − (y + W cb)2] Z21

(B21−∆2−i∆(2W cb+γcb+γ+y))(C21−i∆D21),
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where

Z21 =
[
(γ + y + W cb)(γcb + W cb) + Ω2 −∆2

]2
+ ∆2

[
γ + γcb + y + 2W cb

]2
≈

≈
[
(γ + y + W cb)W cb + Ω2 −∆2

]2
+ ∆2

[
γ + y + 2W cb

]2
,

B21 = (γ + y + W cb)(γcb + W cb) + Ω2 ≈ (γ + y + W cb)W cb + Ω2,

C21 = Ω2(γ + y)− γΩ2

2wcb

(1− 3wcb

wab

)(γcb + W cb) ≈ Ω2(γ + y)− γΩ2

2wcb

W cb,

D21 =
γΩ2

2wcb

(1− 3wcb

wab

) ≈ γΩ2

2wcb

.
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