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ABSTRACT 
 

The Development of a Sensitive Method to Study Volatile Organic Compounds 

in Gaseous Emissions of Lung Cancer Cell Lines. (May 2005) 

Anupam Maroly, B.S., Bangalore University 

Co-Chairs of Advisory Committee: Dr. John W. Bevan  
             Dr. Gerard L. Coté 

 

 

The ultimate objective of this research was to develop a low cost, reliable system that 

would lead to early detection of lung cancer. Tests involved the quantitation of gaseous 

metabolic emissions from immortalized lung cancer cell lines in order to correlate the 

chemical markers to be of cancerous origin. The specific aims of the project were the 

study of gas emissions in selected cancer cell lines and identification of volatile organic 

compounds (VOCs) in them.  

 

Disadvantages of earlier studies were that the measurements were not real time or state 

specific so that molecular identification was often inconclusive. Furthermore the methods 

of study used in the past were not quantitative, which limited their practicality for 

medical applications. We felt the need to prove or disprove these earlier results using a 

new technique. 

 

The method we proposed is different and unique when compared to previous methods 

because cell lines have not been studied extensively for cancer markers. We have studied 

cancer cell lines which are adherent, immortalized cultures originating from primary 

tumors obtained from patients with no prior treatment for lung cancer.  

 

We have used an alternative method for the spectrometric analysis and quantitation of the 

selected chemical markers.  The pre-concentration method involved a Purge and Trap 

unit with a thermal desorber where the vapor concentration was enhanced. The 

concentrated head space gases were analyzed using a Gas Chromatograph – Mass 

Spectrometer setup. This setup eliminated the bulky apparatus used in earlier studies. It is 
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simpler in design and more comprehensive so that external factors such as patient’s diet, 

habitat and lifestyle do not contribute to our study of recognition of cancer markers. 

Based on the results obtained in the above experiments, a more comprehensive, 

inexpensive study of lung cancer related markers could be made. 

 

The first section, after giving an introduction to lung cancer, goes on to explain the 

background work done by other researchers on cancer. The third section gives a detailed 

explanation of the experimental setup. This is followed by all the tests conducted with 

corresponding results. The final section deals with the conclusions drawn from all 

experiments. 
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INTRODUCTION 

In the United States, more deaths are attributed to lung cancer than breast, prostate, and 

colon cancers combined. It is estimated that 169,400 new cases were diagnosed in 2002 

and 154,900 deaths were attributed to lung cancer [1] [2]. According to studies by World 

Health Organization lung cancer is the most common cancer and the rate is increasing 

0.5 % every year. More than 35 million Americans are living with chronic lung disease. 

It is the largest single cause of cancer deaths in the US. 28% of cancer deaths are due to 

lung cancer.  

 

Structure of the lung 

The lungs are in the chest, on either side of the heart. The right lung has 3 compartments 

or lobes and the left lung has 2 lobes. Air is inhaled through the nose and throat and 

flows past the voice box (larynx) into the windpipe (trachea). The windpipe divides into 

2 tubes, the left and right bronchi, which supply air to each lung. Within the lung, the 

tubes get smaller and smaller (bronchioles) until they reach air sacs (alveoli). The 

alveoli’s job is to add oxygen to the blood and to take waste gases out. The waste gas is 

removed from the body as we exhale. A slender barrier separates air in the alveoli of the 

lung from the blood in the capillaries. The volatile organic compounds (VOCs) in 

expired breath may give us information about general metabolic conditions in particular 

of the lung. 

 

Lung cancer 

Lung cancer is one of the more common forms of cancer in which the majority of these 

cancers arise in the bronchial epithelial cells. These cells can be cultured in vitro for a 

certain period before replication ceases.  

___________________ 
This thesis follows the style of the Journal of Chromatography A. 
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Cancer occurs when normal cells undergo a transformation that causes them to grow and 

multiply without normal control. They form a mass or tumor that differs from the 

surrounding tissues from which it arises. Tumors are dangerous because they take 

oxygen, nutrients, and space from healthy cells and completely destroy them before 

spreading on to new tissue.  

 

Types of lung cancer 

Lung cancers are usually divided into 2 groups that account for about 95% of all cases. 

The division is based on the type of cells that make up the cancer. These two types are 

small-cell lung cancer (SCLC) and non–small-cell lung cancer (NSCLC), which 

includes several types of tumors. NSCLC consists of squamous cell carcinoma, 

adenocarcinoma and large cell carcinoma (Fig 1). 

 

 

  

 

 

 

 

 

 

 

 

Fig. 1. Types of lung cancer 
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Adenocarcinoma of the lung is the most common histologic type of lung cancer [3, 4] 

and makes up 30-35%. Squamous cell carcinoma is the second most common type, 

making up about 30% of all lung cancers. SCLCs are less common, but they grow more 

quickly than NSCLCs and are more likely to metastasize. Often, they have already 

spread to other parts of the body when the disease is diagnosed. Large-cell cancer makes 

up 10% of all cases. SCLC makes up 20% of all cases.  

 

Risk factors 

These include active smoking (90%), radon (10%), exposure to carcinogens (9-15%), 

pollution (1-2%). Lung cancer causes 31% of deaths due to cigarette smoking [5]. Other 

causes of lung cancer include passive smoking, air pollution from motor vehicles, 

asbestos exposure. Among cancers that are associated with occupational exposures, 

cancer of the lung is the common [6]. Workers exposed to tar and soot (which contains 

benzo[a]pyrene), such as coke oven workers, [7, 8] in concentrations exceeding those 

present in urban air are at increased risk of lung cancer. Occupational exposures to a 

number of metals, including arsenic [9, 10] chromium, [11] and nickel [12] are 

carcinogenic [13].  
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BACKGROUND 

Breath analysis 

Extensive research of breath analysis has been carried out [14] in lung cancer studies 

since it requires minimum medical intervention and control and samples are easier to 

obtain than serum or urine [15, 16]. 

 

Normal human breath was analyzed using gas chromatography (GC), whereby several 

hundred VOCs in exhaled air were found [17]. Exhaled air from patients with lung 

cancer and 28 breath biomarkers including alkanes and benzene derivatives were found 

[18, 19]. A correlation between VOCs and lung cancer was made [17, 20]. VOCs from 

human breath have been studied as markers of oxidative stress with the investigation of 

alkanes and methylated alkanes since alkanes are known to be oxidized to alcohols by 

the enzyme which has shown to be active in case of lung cancer [18, 21]. Breath vapor 

from normal subjects was studied in order to understand its constitution using Gas-liquid 

partition chromatography [22] and Gas chromatography-Mass spectroscopy (GC-MS) 

[23] to provide a baseline for future studies. 

 

GC–MS combined with some sample collection and concentration techniques such as 

cold trapping and adsorptive binding was developed for analysis of breath gas [17, 19, 

20, 24, 25, 26]. A portable breath-collecting apparatus was developed and applied to 

determination of volatile markers [21, 27]. To determine whether the VOC is produced 

by external factors such as environment, food habits or internally in the body, 

researchers introduced the concept of alveolar gradient (AG). A positive AG shows 

higher concentration in the breath [26, 28]. 

 

Other studies 

Non volatile markers such as proteins from breath of individuals with respiratory tract 

disorders have been studied which enabled the demonstration of their origin [29]. A 
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genetic alteration is seen in bronchial mucosa and plasma DNA of patients with the risk 

of lung cancer [30]. Most polar and non-volatile compounds are excreted and therefore 

all compounds in breath were concluded to be non polar [31].  

 

Blood analysis 

Blood was used to investigate VOCs studied including styrene, benzene, acetone, 

toluene [32]. VOCs have also been studied in blood samples spiked with analytes using 

headspace gas and capillary GC and ion trap detection [33, 34]. Since blood was an 

invasive technique, it has been considered an unsuitable approach by some researchers 

as there was a possibility of exposure of the analyst to infectious agents through accident 

spills [35].  

 

Both head space analysis and purge and trap (P&T) concentration method have been 

used in blood analysis, but P&T was found capable of analyzing larger amounts of low 

concentration VOCs for analysis [36]. Blood analysis has been used to study styrene in 

urine and blood [37]. 

 

Techniques used 

Many different detection and concentration techniques apart from P&T or GC-MS have 

used in lung cancer studies. Each has their own advantages and disadvantages. Some of 

the more frequently used have been cited. 

 

SIFT-MS - Single ion flow tube mass spectroscopy 

It involves introduction of ions of trace gases in to the sample before detection [38]. This 

method was initially developed for the non-invasive real time breath analysis of workers 

for toxic solvents [39, 40]. It was also used to study acetaldehyde; acetone and ethanol in 

headspace of lung cancer cells [41] and to analyze trace gases in the breath for diabetes 

[42].  
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SPME – Single phase micro extraction- concentration technique 

The simple and solvent-free technique of SPME has demonstrated a great deal of 

potential in the study of breath volatiles [43, 44]. Breath was studied to identify aliphatic 

and aromatic hydrocarbons as markers in non small cell lung cancer using SPME 

[45].An array of non selective gas sensors made of quartz microbalance (QMB) was 

used to detect alkanes and aromatics in breath [46]. SPME was used to concentrate 

VOCs in blood alkanes, ketones, halogens and thioethers in order to study their origin 

[47]. Volatile biomarkers in lung cancer blood were studied using SPME and capillary 

GC-MS [48].  

 

Collection of samples 

Breath has most commonly been analyzed by collection in teflon bags, concentrated 

using traps packed with carbon molecular sieves [17, 19, 21, 49] and detected using GC–

MS. Canisters have been used for breath collection instead of bags and trapping using 

cryogenic beads have been carried out [50, 51]. Breath has been simulated and studied in 

the nanomolar range with the use of SPME and carbon coated macrofibres [52].  

 

Elutants studied in the past 

1-pent-3-yne and 2, 5 di-ethyl furan occurred in high frequency in the breath of smokers 

but were absent from non smokers breaths [53]. Ethanol was studied extensively in 

breath using GC [25]. This was traced to antibiotics in food or acetaldehyde in metabolic 

pathways. Oxidative stress increases with age and so also does alkane production in the 

breath [54]. Isoprene was found to be the most abundant VOC in breath by some 

researchers [55]. Acetaldehyde was studied in breath by freezing VOC in liquid nitrogen 

[56]. Iso-propyl alcohol was studied by on column concentration which eliminated the 

need for pre concentration [57]. O-toluidine was detected in the breath of lung cancer 

patients [24]. 
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Styrene seen in exhaled breath might have originated from smoking, so also benzene 

[58]. Proton transfer mass spectrometry enabled online detection of breath at parts per 

trillion levels [59], the study of propanol [60] and isoprene with respect to blood 

cholesterol levels [61], and the origin of isoprene and o-toluidine [62] in breath.  

 

Having studied all the research that has been done for so far, we have designed a method 

to prove or disprove some of the results that have been reported. We have done this by 

designing a unique system to collect VOCs and analyze them. This method of collection 

has never been attempted on lung cancer cell lines before. 
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EXPERIMENTAL SETUP 
 

Cell line study 

Researchers found an excellent concordance between lung cancer tumor cell line and 

tissue morphology (100%) [63]. It was found that NSCLS cell lines of large majority of 

instances retain the property of their parental tumors for lengthy culture periods. These 

cell lines appear have shown to be representative of the lung cancer tumor from which 

they have been derived and thus provide suitable model systems for biomedical studies 

for this important neoplasm. 

 

The cells are grown in a liquid media; their concentration is kept between low (too few 

cells for them to divide comfortably) and a high (too many cells, using up the media 

nutrients and beginning to die). The growth medium consists of tissue culture media, 

however a few additives are necessary since some components cannot be added by the 

company. Among these components are the fetal bovine serum (FBS), L–glutamine and 

gentamycin(antibiotic) ( All supplied by Invitrogen Corporation, CA).  

 

The standard media varies for different cell lines but all essentially contain many of the 

necessary nutrients such as inorganic salts, vitamins, amino acids and a pH indicator. 

The cells are grown for a period of 4-5 days and once dense growth has taken place; they 

have to be sub-cultured or analyzed. This procedure is essentially same for the cell lines 

used.  

 

Cell culture 

Cells are frozen in liquid nitrogen at -60°C when sold. The vial is thawed in a water bath 

at 37°C for two minutes. It is then decontaminated with 70% ethanol solution. The vial 

contents are transferred to 25 cm2 tissue culture flasks and diluted with recommended 

media. The flasks are placed in an incubator (VWR Scientific, PA) (model 2310) for 

growth. The cells grow for a period of five days by adhering to the base of the culture 
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flask (Nunclon delta polystyrene) flasks. During the process, they come in contact with 

the neighboring cells and multiply in number. At all times the cells have to be contact 

with the media for growth.  

 

During cell growth, due to oxidation and the formation of new cells there is a build up of 

acids leading to a change in pH. This is seen in the change of the color of the media from 

bright red to pale yellow. The phenyl red present in the media enables this color change 

with the change in pH. A distinct color change is sometimes seen in the media even with 

out the cells. According to distributes for cell cultures and their media, ATCC, when the 

temperature of the medium that is incubated increases, the equilibrium of the buffers 

shifts. This causes a slight decrease in the pH of the medium. This temperature change 

may cause media component to breakdown since the buffers included in the medium 

formulation are temperature sensitive.  

 

This can be further explained with the CO2 – bicarbonate system. In the headspace of a 

closed system initial CO2 is used by the cells and gradually there is a build up of this in 

the flask over 5 days. Since there is no escape for the CO2, there is an increase in weakly 

dissociated NaHCO3 producing excess H+ ions in the medium and therefore a fall in pH. 

This is seen as a color change. 
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When the confluence has reached 90% the cells are ready to be sub-cultured (Fig 2).  
 

 

50 % cells in
media

Thawed Cells + 
Media 

Cells + media
(100%)

To the incubator
(370 C)

After 5 days

50 % cells in
media

SUB CULTURE

Thawed cells in a vial

 
 

Fig. 2. Block diagram of cell culture process 

 
 

Cell sub culture  

Cell media solution is drained using a vacuum system to remove any dead suspended 

cells since the living cells adhere to the base. The flask is washed with 5 mL Dulbeccos 

phospate buffer saline (DPBS) solution twice. 1 mL of Trypsin EDTA is added in order 

to free the cells for the base. The process takes 10 - 15 minutes. Once the cells can be 

seen freely floating in the media as observed on a microscope, 10mL of the media is 

added and then this is split in to two batches of 5mL in to two new clean sterile T-25 

flasks (Fig 3).  
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Fig. 3. Block diagram of the cell sub culture process 

 

Purge and trap 

Purge and trap gas chromatography (P&T–GC) first described by Swinnerton  

and Linnenbom[64] and developed by Bellar and Lichtenberg [57], has become a  

valuable and widely accepted method for the analysis of VOCs in aqueous samples  

[65, 66].  

 P&T is the method of choice for extracting and concentrating VOCs from almost any 

matrix. It is particularly useful for concentrating VOCs that are insoluble or poorly 

soluble in water, have boiling points below 200°C, and having a higher octanol / water 

partition coefficient. The purge-and-trap system was a Model 4560 (O.I. Analytical, 

College Station).  
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Theory 

The traps used in P&T (Fig 1) are generally packed with multiple beds of various 

sorbent materials so that a broad range of high and low molecular weight compounds, 

polar and nonpolar, can be trapped in a single tube. We selected a trap made up of Tenax 

(O.I. Analytical, College Station) (Fig 4), because of it’s of capacity for reduced 

adsorption of water. 

 

The procedure involves bubbling an inert gas such as helium, through an aqueous or 

gaseous sample at ambient temperature so that volatiles are transferred from the matrix 

to the vapor phase. The volatiles are then swept through a sorbent column where they are 

trapped. The column is heated and backflushed with helium to desorb the compounds 

which are transferred to the GC.  

 

 
 

 

Fig. 4. Purge and trap unit  

 

 

The working of the concentrator involves three phases- Purge, Desorption and Bake 

cycles. 
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Purge 

During the purge phase of sampling, helium gas is pumped through the sample so that 

VOCs from the sample are released. The lower molecular weight compounds pass 

through the initial adsorbent beds, but are trapped by succeeding beds. Each bed protects 

the next, by preventing compounds from being held too strongly so that can be desorbed 

quickly without decomposition.  

 

Desorption 

The purge volatiles are now adsorbed on to the trap of the P&T with the help of the 

carrier gas. The adsorbent trap is rapidly heated to the desorb temperature and the valve 

is switched to align the carrier gas flow in-line with the trap. The trap is then held at the 

desorb temperature for an optimal time to thermally desorb the analytes into the carrier 

gas. The carrier gas passes through the trap in the reverse direction of purge flow, so that 

higher molecular weight compounds never come in contact with the stronger (innermost) 

sorbents. 

 

Bake 

The adsorbed VOCs are now baked off the trap at high temperatures and transferred to 

the GC. An adsorbent material that traps and then releases a group of compounds 

efficiently will help provide high recoveries, sharp peaks, and good resolution, allowing 

accurate quantification of the analytes. The absence of interferences from contaminants 

or water vapor is also essential for accurate quantification. Similar to extraction 

efficiency, desorption performance is dependent on the rate at which the trap is heated; 

the final trap temperature, and the total desorption flow (i.e., the amount of gas that is 

passed through the trap). The different temperatures and times of each cycle are 

tabulated in Table 1. 
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Table 1 

Temperature and time settings for each cycle in P&T 

 

 

Cycle 

 

Temperature (in °C) 

 

Time (in min) 
Purge 20  11  

Desorb 180 0.5 

Bake 180 10 

 

 

The flow-rate of carrier gas, helium is 40 mL/min and the system pressure is between 6 

and 11 psi.  

 

Water management 

In the process of purging the volatile target analytes from the water matrix (in our case 

cell culture media), some of the water will inevitably be carried along with the inert gas 

and onto the trap. This is minimized by heating the transfer tubing between P&T and GC 

to 100°C. 

 

Head space analysis 

This involves the study of the VOCs collected above the sample over a fixed period of 

time. The advantage of the dynamic headspace method is its capability to isolate 

volatiles in their natural form. Head space analysis is done by two methods. 

1) Sparge vessel method - Here the sample has to be manually injected in to the sparge 

vessel of the P&T using a gastight syringe. The disadvantages are limited volume, more 

chance for human error. 
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2) Air tube method - Here an air tube is used to trap VOCs off the head space of the 

sample flask. The trapped VOCs are then transferred to the second trap in the P&T using 

an air tube desorber. The principle of working is as described below. 

 

Air tube 

There are number of adsorbents that can be used as packing material in air tubes (Fig 2). 

Tenax (2,6 diphenylene oxide) air tubes (OI Analytical, College Station) were chosen 

since it can retain a specific or a group of analytes for a specified sample volume. It has 

been designed for trapping volatiles and semi volatiles from liquid and solid matrices. It 

is a low bleeding material with low level of impurities. Due to its low affinity for water 

it is useful for purging of volatiles with high moisture. It is used to detect C5- C26 

compounds, and compounds with low affinity for water. Compounds which are to be 

detected by this method are non polar organics having boiling points in the range 80- 

200°C. 

 

 

 
 

Fig. 5. Air tube placement in the P&T unit 

 

 

Once fixed on the air desorber unit (Fig 5) the sample concentrator pre-purges the air-

tube at ambient temperature to remove oxygen and moisture accumulated during sample 
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collection. The analytes migrate through the adsorbent bed where at some point in time 

some of the analytes breakthrough whereas some are retained by the adsorbent. 

 

The tube is heated causing adsorbed materials to release from the trapping material. 

Purge flow sweeps the tube transferring desorbed compounds to the sample 

concentrator’s trap. Thermal desorption of the P&T trap releases the analytes on the 

GC/MS system for detection. The sample transfers as a discrete plug to the analytical 

column for separation and analysis.  

 

The advantages of this method are 

1) The errors in extracting the sample such as loss of gases to the atmosphere while 

handling the syringe are minimized. 

2) Back pressure created by the needle of the syringe is avoided. 

3) Transfer of water vapor from the sample is minimized due to the properties of 

Tenax. 

 
Gas chromatography 

Gas chromatography (GC) is an analytical technique for separating compounds based 

primarily on their volatilities. It provides both qualitative and quantitative information 

for individual compounds present in a sample. In this technique, a sample is converted to 

the vapor state and a flowing stream of carrier gas (helium) sweeps the sample into a 

column. 
 

The compounds partition between a stationary phase, which can be either solid or 

liquid, and a mobile phase (gas). The differential partitioning into the stationary phase 

allows the compounds to be separated in time and space. The carrier gas serves as the 

mobile phase that moves the sample through the column.  
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The injector is the point where the sample is introduced in to the column from the P&T 

unit. It contains a heated chamber containing a glass liner into which the sample is 

injected through the septum. The sample vaporizes to form a mixture of carrier gas, 

vaporized solvent and vaporized solutes. When the sample is introduced into the GC unit  

from the P&T, it takes the form of a narrow band. The rate at which the sample passes 

through the column depends on the size of the particle and how well it is adsorbed onto 

the column (attraction of the particle for the column material). 

 

The GC column is the heart of the system. It is coated with a stationary phase which 

greatly influences the separation of the compounds. The structure of the stationary phase 

affects the amount of time the compounds take to move through the column. Typical 

stationary phases are large molecular weight polysiloxane, polyethylene glycol, or 

polyester polymers of 0.1 to 2.5 µm film thickness.  

 

The column is placed in an oven where the temperature can be controlled very 

accurately over a wide range of temperatures. Typically, GC oven temperatures range 

from room temperature to 250°C. As the sample mixture moves through the column, 

sample components that interact strongly with the stationary phase spend more time in 

the stationary phase vs. the moving gas phase and thus require more time to move 

through the column.  

 

 

 
 

Fig. 6. GC-MS unit 
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The gas chromatograph was a Hewlett-Packard 5890 (Palo Alto, CA), equipped with an 

electron ionization detector (EID) for quantification (Fig 6). 

 

Temperature program for GC 

A DB-Wax capillary column (50 m×0.32 mm I.D., 0.52 m film thickness) (Agilent 

Technology, CA) was used for GC analysis. The carrier gas was helium (99.999%) at 

flow-rates of 1.20 mL/min. The oven temperature was held at 30°C for 5 min, and then 

increased at 20°C/min to 200°C, where it was held for 3 min; the injection temperature 

was 250°C and the detector temperature was 280°C. The mass spectra were obtained at 

an ionization voltage of 70 eV and were recorded in the total ion scan mode from 20 to 

250 amu. 

 

Once the molecules leave the column, they are monitored by a detector. The compound 

and detector interact to generate a signal. The size of the signal corresponds to the 

amount the compound present in the sample. The type of detector used depends on the 

compounds to be analyzed. These detectors can measure from 10-15 to 10-6 grams of a 

single component. 

 

Chromatograms  

Analytes enter the detector and generate an electronic signal called response. This 

response is displayed as a graph where the x axis is the retention time and the y axis is a 

measure of the intensity of the response. In chromatography, this graph is called a 

chromatogram. When the run begins, there are no analytes in the detector; the response 

line produced on the chromatogram is called the baseline. The size of the peak is 

proportional to the concentration of the analyte. The concentration of the analyte is 

measured by calculation the area of the peak. 

 

While polarity is usually the major factor governing separation, the boiling points of 

components of the sample also play a role in determining retention time. The retention 
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time, is qualitatively indicative of the type of compound. Components with higher 

volatility (lower boiling points) tend to spend less time in the moving gas phase and 

therefore tend to have shorter retention times.  

 

Mass spectrometry 

Mass spectrometry is an instrumental approach that allows for the mass measurement of 

molecules.  

 

 

 

 

 

 
 

 

Fig. 5. Structure of Mass Spectrometer 

 

    

  

   Fig. 7. Structure of mass spectrometer 

 

 

The five basic parts of any mass spectrometer are: a vacuum system; a sample 

introduction device; an ionization source; a mass analyzer; and an ion detector (Fig 7). 

Combining these parts a mass spectrometer determines the molecular weight of chemical 

compounds by ionizing, separating, and measuring molecular ions according to their 

mass-to-charge ratio (m/z). The ions are generated in the ionization source by inducing 

either the loss or the gain of a charge (e.g. electron ejection, protonation, or 

deprotonation).  

 

               

 Sample      
Inlet           Source  Analyzer       Detector

Electron               Electron         
Ionization       Multipler 
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Once the ions are formed in the gas phase they can be electrostatically directed into a 

mass analyzer and then on to the ion detector. The detector allows a mass spectrometer 

to generate a signal current from incident ions by generating secondary electrons, which 

are further amplified, separated according to mass and finally detected. The result of 

ionization, ion separation, and detection is a mass spectrum that can provide molecular 

weight and structural information of the samples being analyzed (Fig 8). 
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Selected
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Fig. 8. Block diagram of the working of a mass spectrometer 

 

Electron ionization plays an important role in the routine analysis of small molecules. 

Databases combined with current computer storage capacity and searching algorithms, 

allow for rapid comparison with known mass spectra, thus facilitating the structural 

determination of small molecules.  
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The lab setup is as shown in Fig 9. 

 

 
 

Fig. 9. Equipment setup 
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 EXPERIMENTS AND RESULTS 
 
Various VOCs have been studied and reported as lung cancer markers viz. toluene, 

styrene, dodecane, benzene, decane, cyclohexane, ethyl benzene, acetaldehyde [17, 19, 

24, 41, 52]. Our project was to study some of these ‘markers’ and check for the validity 

of these reports. 

 

Initial studies 

Three compounds were short listed to be studied initially. They were analine, tetrahydro 

furan (THF) and methyl ethyl ketone (MEK) since they had good detection efficiency on 

GC-MS equipment. The detection efficiency of these compounds on P&T was analyzed 

by running standard solutions 100, 200, 500 and 1000 ppb for each of the selected 

compounds (Figs 10, 11, 12) on a P&T-GC-MS unit. These experiments were carried 

out in an off campus lab at O.I. Analytical Instruments, College Station.  

 

In all the spectra generated from the P&T equipment the initial peak seen is CO2 and 

according to the suppliers of the equipment, O.I. Analytical, this is generated from the 

equipment and not the sample. This peak is seen in all spectra reported in this report. 
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Fig. 10. Spectrum of THF at 200 ppb 
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Fig. 11. Spectrum of MEK at 200 ppb 
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Fig. 12. Spectrum of aniline at 200 ppb 
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The limits of detection were determined by running standards of known concentration 

and the results were as tabulated (Table 2). 

 
 
 Table 2 
 
 Observations of early VOCs studied  
 

VOC Retention 
time 

Observations 

Aniline 8.67 min not detected at 50ppb or 100 ppb, poor repeatability at 
500 ppb 

MEK 2.7 min Excellent sensitivity and repeatability at 500 and 1000ppb
THF 3.27 min excellent sensitivity and repeatability at 500 ppb and 

1000ppb 
 
 
 

Cell line studies 

Initial tests were followed by working with actual cell lines. First the cell lines to be 

studied were short listed and then ordered from American Tissue Culture Company 

(ATCC). We used Dr. Lori Bernstein’s laboratory at the department of Pathology, 

TAMU for the growth and study of the cells.  Table 3 lists the different cell lines and 

their corresponding media. 
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Table 3 

Type of cell lines and their propagation media 

 

Cell line Type Media and additives 

HTB 59 Squamous cell 

carcinoma 

Leibovitz L-15 medium (Invitrogen, CA) with 2mM L-

glutamine- 90% FBS- 10% 

HTB 58 Squamous cell 

carcinoma 

Eagle’s essential medium with Earle’s BSS 

(Invitrogen, CA) and 2mM L-glutamine - 90%.   FBS-

10% 

CRL 

5810 

Adenocarcinoma ATCC medium: RPMI 1640 medium (Invitrogen, CA) 

- 90%, FBS-10% 

 

 

The media and additives used to grow the cells is a complex mixture of inorganic salts, amino 

acids and hormones ( Table 4).  
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Table 4 

Components of media and additives 

 

 
 
 
 
 
 
HTB-59 

 
 
 
 
 
 
Leibovitz  
L- 15 medium  
 

Inorganic Salts 
CaCl2, MgCl2, MgSO4, KCl, KH2PO4, NaCl , Na2HPO4 
Amino Acids 
L-Alanine, L-Arginine, L-Asparagine, L-Cysteine, L-
Glutamine, Glycine, L-Histidine, L-Isoleucine, L-Leucine , L-
Lysine, L-Methionine, L-Phenylalanine, L-Serine , L-
Threonine, L-Tryptophan, L-Tyrosine, L-Valine 
Vitamins 
Choline Chloride, Riboflavin, Folic Acid, myo-Inositol, 
Nicotinamide, D-Pantothenic Acid, Pyridoxine, Thiamine 
Other 
D-Galactose , Phenol Red, Sodium Salt , Sodium Pyruvate 
 

 
Fetal bovine 

Serum 
 

Albumin, Glucose, Alkaline Phosphatase, Iron, Magnesium, 
bicarbonate, Bilirubin, Phosporous, Potassium, Blood urea 
nitrogen, Protein, Calcium, Chloride, sodium, Cholesterol, 
Triglycerides, Creatinine, Globulin, uric acid. 
Hormones 
Insulin, Progesterone, Thyroxine, Estradiol, testosterone. 
 

 
DPBS 

 

Potassium chloride, Potassium phosphate, sodium chloride, 
sodium phosphate 
 

 
 
 
 
 
 
 
Additives 
for all 
media 
used  

Trypsin  
 
 

 

Inorganic salts 
EDTA, potassium chloride, potassium phosphate, sodium 
bicarbonate, sodium chloride, sodium phosphate 
Other 
Dextrose anhydrous, phenol red, trypsin porcine 

 
 
 
HTB- 58 

 
Eagle’s 
essential 

medium with 
Earle’s BSS 

 

 
L-glutamine, sodium bicarbonate, non-essential amino acids, 
sodium pyruvate 
 

CRL- 
5810 

 
RPMI 1640 

 

L-glutamine, sodium bicarbonate, glucose, HEPES, sodium 
pyruvate 

 

 

On introducing cell media (without the cells) in to the P&T-GC unit there was excessive 

foaming of the media liquid which posed a threat to the functioning of the equipment 

[67]. 
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Ideally VOCs of these lung cancer cell lines should have been compared to similar tissue 

from a healthy samples, therefore two cell lines were considered viz. CCL- 95.1 and 

CRL 2078. However due to the very complex nature of their growth media the cell lines 

from a normal epithelial tissue were not used. For e.g. CRL -2078 required keratinocyte 

serum free media, cholera toxin, bovine pituitary extract, and recombinant human 

epidermal growth factor which our lab was not certified to handle. Therefore, as a 

control, it was decided to study the media without any cells. 

 

Analysis of VOCs 

Before the setup of our lab on campus, initial experiments on cell medium were 

conducted in O.I. Analytical. 1cc of the medium was introduced in to the P&T-GC-MS 

system using 10 cc syringes (SGE). This was done for the media of cell lines HTB-59 

and CRL-5810, both with and without the cells for comparison (Figs 13, 14, 15, 16, 17, 

18). 
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Fig. 13. Spectrum of media without cells (CRL-5810) 
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Fig. 14. Spectrum of media with cells (CRL-5810) 
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Fig. 15. Spectrum of media without cells (HTB-59) 
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Fig. 16. Spectrum of media with cells (HTB-59)  
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As seen from Figs 13, 14, 15, 16 for both cell lines CRL 5810 and HTB-59 the spectra 

did not have much reproducibility and there was mot much difference seen between the 

media with and without cells. 

 

Using an antifoam 

The media of HTB-59 and CRL-5810 cell lines caused intense foaming in the sparge 

vessel of the P&T equipment. This proved extremely harmful for the equipment and 

damaged certain internal circuits. Therefore 0.5cc of anti foam (O/I Analytical, College 

Station) was added to the medium and analyzed in subsequent tests. Antifoam consists 

of a silicone emulsion, hydro-carbons, alcohols and polymers designed to control 

foaming. These agents inhibit the build up of foam by causing the bubbles to burst, thus 

releasing the air.  

 

 

 
 

Fig. 17. Spectrum of media with cells (without antifoam) 
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The peaks seen in the spectra are as numbered 

1- Tri methyl pentane   2- Dimethyl hexane  3- Toluene 

4- Dimethyl hexane   5- Dimethyl heptane   6- Tri siloxane 

7- Dimethyl heptene   8- Ethyl benzene  9- Dimethyl benzene 

10- Styrene    11- Tri siloxane  12- Octane 

13- Ethyl hexanol   14- Decyl hydroxylamine 
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Fig. 18. Spectrum of media with cells (with antifoam) 
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Fig. 19. Spectrum of media without cells (with antifoam) 

 

 

The use of antifoam reduces the foam (Figs 18, 19) but also wipes out most of the VOC 

spectra seen in Fig 17. All the peaks seen in tests using antifoam originate from the 

tetra 
siloxane 
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components of the antifoam and not from the sample. Therefore the use of antifoam was 

discontinued in our tests. 

 

Once our lab was setup at Dr. Marian Hyman’s lab at analytical chemistry all further 

experiments were carried out there. We continued tests with cell media by injecting 1cc 

of the media with and without cells in to the sparge vessel of the P&T equipment. 

 

The media which is known to consist of amino acids and minerals offered complicated 

spectra of peaks which were not reproducible. Though some of the previously studied 

markers such as Aniline [17, 18, 19] were seen, the spectra were not reproducible.  

 

 

 
 

Fig. 20. Spectrum of media without cells 
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The peaks seen in the spectra are as numbered 

1- Methyl butanal  2- Toluene  3- Dimethyl sulfonium 

4- Benzaldehyde   5- Acetic acid  6- Styrene 

7- Bezaldehyde   8- Fluro acetamide  9- Aniline 

10- Acetamide   11- Tri siloxane  12- Phenol 

13- Methyl phenol   14- Penta siloxane 15- Pyranone 

16- Siloxanes 

 

 

 
 

Fig. 21. Spectrum of media with cells 

 

 

The peaks seen in the spectra are as numbered 

1- methyl butanal   2- methyl bezenediamine 3- benzaldehyde 

4- acetic acid   5- acetic acid   6- styrene 

7-formic acid   8- tri methyl furan  9- benzaldehyde 

10-fluro acetamide  11-methyl butanoic acid 12-analine 

13-oxime    14-bromo butane  15- siloxanes 

16- phenol    17- methyl phenol  18- siloxanes  
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Comparing the spectra between Figs 20 & 21 we see there most peaks are common. 

Aniline is seen both in the media with and without the cells. 

 

Head space analysis 

The switch was made to analysis of headspace (HS) above the cells. This involved using 

a 10mL gas tight syringe (SGE, Austin) to extract 30cc of head space gases above the 

cells and injecting the headspace gases directly in to the P&T sparge vessel. Initially HS 

was studied in plastic flasks but the flask itself gave off some of the VOCs of interest 

such styrene, toluene, decane (Figs 22, 23). 

  

 
 

Fig. 22. Spectrum of HS of media with cells in plastic flask- trial 1 
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Fig. 23. Spectrum of HS of media with cells in plastic flask- trial 2 

 

 

Next a comparison was made between HS of an empty plastic flask and HS of cells in 

plastic. 
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Fig. 24. Spectrum of HS of an empty plastic flask 

 

 

 
 

Fig. 25. Spectrum of HS of cells in media in a plastic flask 

 

Comparing Figs 24 & 25 we see that all the peaks are being contributed by the plastic 

ware itself. Therefore it was decided to discontinue analysis in plastic and continue only 

with glass. 
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Glass flasks 

40 mL glass vials (Fisher brand economical EPA) made of borosilicate glass were 

adapted to grow cells. Glass unlike plastic does not have a layer of protein coating that 

enables adherence of the cells to the base. This coating for the cells to adhere to had to 

therefore be made artificially. The sample bottles were coated with poly lysine (VWR 

Scientific) for 7 minutes and air dried overnight in a sterile environment. Glass since 

reusable had to autoclaved before every use and before coating. There is a general 

exchange of O2 and CO2 between the cells and the air in the incubator. But it is found 

that in glass vials this exchange did not take place. The media was analyzed before and 

after sub-culturing to study the differences. The headspace of the cells in media was 

tested both before and after sub culturing of the cells (Figs 26, 27).  

 

 

 
 

Fig. 26. Spectrum of HS of cells in media in a glass flask before subculture 
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Fig. 27. Spectrum of HS of cells in media in a glass flask after subculture 

 

 

It was seen there is much difference between the HS of media and HS of cells both 

before and after sub culturing. Moreover, since glass wasn’t the natural medium for the 

cells to grow, the cell survival rate was very low. Due to the complex nature of the cell 

media there were no major peaks seen. Glass was disastrous for the cell line CRL 5810 

since cells could not adhere to the base and therefore did not survive. Since it was 

decided to continue with glass as the material for growing the cells, this cell line was 

discontinued in our studies. 

 

Styrene was seen in head space of glass vials when the samples of cells were heated in 

an incubator for 60°C for 30 min (Fig 28).  

siloxane compounds 
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Fig. 28. Spectrum of HS of cells in media in a glass flask after heating 

 

 

 

 

Fig. 29. Spectrum of HS of cells in media in a glass flask  
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Figs 26 & 29 clearly show the inconsistency in the results since both represent the HS of 

media with cells in the glass flask. Acetaldehyde and toluene were seen in some results 

but not in others. We further developed this method in to the next technique. 

 

Lysing of cells 

We wanted to investigate the possibility of splitting the cells to release the VOCs if any 

inside the cells. This was done using a French press. It essentially works like a pestle and 

mortar. The cells are transferred to a test tube which is immersed in a bucket of ice. The 

pestle consists of a long steel rod which is used to mechanically pound the cells in media 

5 times. The results obtained were a number of peaks with poor repeatability as seen 

earlier (Figs 30, 31). We also heated the sample for 30 min at 60°C but there didn’t see 

any improvement in results. Styrene which was seen earlier when glass was heated 

wasn’t seen in this case possibly since the VOCs might have escaped while handling. 

 

 

 

 

Fig. 30. Spectrum of HS of lysed cells in media in a glass flask  
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Fig. 31. Spectrum of HS of lysed cells in media in a glass flask after heating 

 

 

Scale up process 

We felt that we were not able to see the VOCs of interest due to insufficient number of 

cells in the sample and therefore decided to increase the number of cells using scale up 

methods. 

 

Glass beads 

As a part of scale up process glass beads were used for scale up by suspending media 

with cells in a plastic and glass containers containing the coated beads. Glass beads from 

the Chemistry department stock room were used to increase the surface area in both 

plastic and glass cases. 100 beads were coated with poly lysine for 7 minutes and dried 

overnight.  

 

The cells however did not survive, which was due to the effect of gravity which pulled 

the cells to the bottom of the flask and prevented them from adhering to the curved 

methyl phenol 
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surface of the glass beads. This was confirmed by the fact that there was no color change 

seen in the media. This method proves that cells adhered to a flat surface only. No 

growth was seen either in plastic or glass.  

 

 

 
 

Fig. 32. Spectrum of HS of media in a glass flask with glass beads 

 

 

 
 

Fig. 33. Spectrum of HS of cells in media in a glass flask with glass beads 
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Figs 32, 33 shows there is no difference between the media with and media without the 

cells since most the cells died. Therefore this technique of scale up was abandoned. 

 

Triple Flasks 

Another known method for scale up was using triple flasks (Nunclon delta -175 cm2) to 

scale up the number of cells. Cells were grown for 7 days in these flasks and transferred 

to an 800mL glass bottle (VWR, PA) before being analyzed. There was an 11 times 

scale up in plastic and 9 times scale up in glass as seen in Table 5. 

 

 

Table 5 

Statistics of scale up experiment 

15 million173 sq cm100mL 800mLGlass -big

1.5 million38.7 sq cm10mL40mLGlass -small

40 million435.48 sq cm100mL600mLPlastic-T 175

2 million38.7 sq cm5mL25mLPlastic-T 25

Number of 
cells

Area of cell growthMedia 
volume

Total 
volume

Type of culture flask

 
 

Counting of the cells was done using a cell cytometer designed by Dr.Bernstein’s group. 

A drop of media is observed on a cover slip slide under the microscope. Cells in a 1 X 1 

sq. cm area are counted and the number is multiplied by 104 /mL.  
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Fig. 34. Spectrum of HS of media with cells in a large plastic flask  

 

 

 
 

Fig. 35. Spectrum of HS of media in a large glass flask  

 

 

tri siloxane 

tetra  
siloxane 

penta 
 siloxane hexa 

siloxane 

di-
methyl 
pthalate pyridine 

toluene 

styrene 

decane 
dodecane ethyl 

benzene 

di-
methyl 
pthalate 



 51

 
 

Fig. 36. Spectrum of HS of media with cells in a large glass flask – trial 1 

 

 

 
 

Fig. 37. Spectrum of HS of media with cells in a large glass flask – trial 2 

 

On analyzing the HS the components of the plastic were seen as expected (Fig 34). In 

HS of glass both without cells (Fig 35) and with cells (Figs 36, 37) not many VOCs were 

seen apart from silicanes and components of plastic. There was inconsistency when the 

HS of glass was tested in consecutive trials. Whether HS of the small or big bottle was 

done, acetone, toluene and sometimes ethanol was seen. For the next trials the media 

with cells was heated for 60 minutes and tested. On comparison of this spectrum to 
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media that wasn’t heated the only visible VOC seen was styrene (Figs 35, 38). This was 

due to plastic cap of the glass flask and rubber lining. 

 

 

 
 

Fig. 38. Spectrum of HS of media with cells in a large glass flask after heating 

 

 

Calibration of results 

Calibration of VOCs was carried out by running of known standards in the P&T- GC-

MS and calculation of the area under the spectrum. The plot of the area vs. the 

concentration yields a calibration curve. This enables the detection of the concentration 

of any unknown if the area of the spectrum is known. It also gives a measure of the 

sensitivity of the method as the lowest detectable concentration can be determined. 

Using the calibration curves for acetone and toluene (Figs 39, 40) with the sparge vessel 

method the concentration of acetone was found to be between 200 -300 ppb and in the 

concentration of toluene was found to be 50 – 200 ppb in the sparge vessel method. 
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Fig. 39. Calibration curve for acetone using sparge vessel method 
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Fig. 40. Calibration curve for toluene using sparge vessel method 
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The sparge vessel injection method also had its disadvantages. It involved manually 

retrieving samples from the culture flasks using gas tight syringes which would some 

times lead to dead space volume, pressure differences and inability to monitor flow rate. 

A large amount of water vapor from a sparger carried by the purge gas condensed onto 

the cold surface could create chromatographic interference. Key issues to address when 

setting up HS analysis systems include minimizing system dead volume, maintaining 

inert sample flow path and achieving efficient sample transfer. 

 

It was decided to change the cell line to HTB- 58 (ATCC, VA), a cell line studied in the 

past [42]. It is an epithelial squamous cell carcinoma type cell line. Initial tests consisted 

of checking the HS in both the small 40mL bottle and 800mL bottle (Fig 41, 42). 

 

 

 
 

Fig. 41. Spectrum of HS of media with cells in small glass flask (HTB- 58) 
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Fig. 42. Spectrum of HS of media with cells in large glass flask (HTB- 58) 

 

 

The results of HTB-58 cell line were consistent with earlier results for other cell lines 

and did not give us any new results. Next, we designed a new method that has never 

been attempted viz. adsorption of VOCs using airtubes. 
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Air tube desorption 

We realized we needed a more sensitive method to overcome all the above mentioned 

disadvantages of earlier methods used for the collection of the VOCs. For this we used 

the Air tube method of detection. This method has never been attempted before in the 

study of lung cancer. We basically were using the principle of the P&T equipment but 

were pre concentrating the VOCs on an air tube before even introducing the sample in to 

the concentrator. Essentially concentration of the VOCs was taking place twice. 

 

This is the second method of HS analysis apart from the manual sparge vessel method 

described earlier. It involved using nitrogen gas at a flow rate of 20mL/min and pressure 

of 10 psi to drive the head space gases from the glass bottle on to an air tube packed with 

Tenax (Fig 43).  
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Fig. 43. Block diagram for the design for the airtube experiment 
 
 
 

Nitrogen is used as the carrier gas since it is purer than compressed air. If compressed air 

was used, the adsorbents would have concentrated the slightest contaminants. Also 

moisture is present in air. The carrier gas drives the HS gases from the glass to an air 

tube packed with Tenax. The flow rate was monitored using a 65mm flow meter (Cole 

Parmer, IL). The experimental setup with the air tube both outside and inside the 

incubator is as illustrated in Figs 44 & 45 respectively. 
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Fig. 44. Setup of air tube experiment in our lab (outside incubator) 

 
 
 

 
 
 

Fig. 45. Setup with air tube (inside the incubator) 
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All compounds have a breakthrough volume after which they are no longer retained by 

adsorbent. According to Supelco company, the manufacturers of Tenax for an airtube 

packed with143 mg of Tenax, at 10 psi the breakthrough volumes of acetone was 1.4L 

and toluene 63L.  This showed the excellent adsorption of these VOCs with Tenax.     

    

We no longer manually introduced samples as done in the previous method. Therefore 

the errors in extracting the sample such as loss of gases to the atmosphere while handling 

the syringe, back pressure created by the needle of the syringe, transfer  of water vapor 

from the sample were avoided. Advantages of this method as compared to the sparge 

vessel method are minimum human error, less unknowns and much greater volume of 

sample. 

 

In the air tube experiments HS of the cells in plastic and glass were analyzed. At the rate 

of 20mL/min for 60 minutes, 1.2 L of the HS gases was adsorbed on to the air tube. This 

air tube was then attached to the air desorber unit of the P&T unit. Pre concentration by 

heating of the air tube drives the VOCs in to the trap of the P&T for further 

concentration. 

 

Fig 46 shows the VOCs given off by the glass flask. Acetone and ethyl alcohol were 

seen above the cell lines in the air tube method and an enhancement was seen in the 

media with cells as compared to the media without the cells (Figs 47, 48, 49, 50). The 

abundance of acetone is shown on the y-axis it is clearly increased in the media with 

cells; this enhancement was seen because the cells themselves were contributing some 

acetone.  
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Fig. 46. Spectrum of HS of glass flask using air tube method 
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Fig. 47. Spectrum of HS of media using air tube method- trial 1 

 

 

 
 

Fig. 48. Spectrum of HS of media with cells using air tube method- trial 1 
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Fig. 49. Spectrum of HS of media using air tube method- trial 2 

 

 

 
 

Fig. 50. Spectrum of HS of media with cells using air tube method- trial 2 
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Calibration curves in AT method 
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Fig. 51. Calibration curve for toluene using air tube method 
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Fig. 52. Calibration curve for acetone using air tube method 
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Fig. 53. Calibration curve for ethyl benzene using air tube method 

 

 

The calibration curves were plotted for acetone, toluene and ethyl benzene (Figs 51, 52, 

53). Ethyl benzene and toluene both of which have excellent detection efficiency with 

Tenax air tube were detectible at the ppb and parts per trillion (ppt) respectively proving 

the sensitivity of this method with non polar volatiles. The enhancement seen in acetone 

concentration in the media with and without the cells is tabulated in Table 6. 

 
Table 6 

Concentration enhancement seen in acetone by air tube method 

 
 

Trial Culture flask Concentration in media (in 
ppb) 

Concentration in cells + media 
(in ppb) 

1 40mL bottle 
(10mL) 

2.6  74  

1 800mL bottle 
(100mL) 

191  408  

2 800mL bottle 141 219 
3 800mL bottle 174 263 
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From the tabulated values it is seen for the smaller glass bottle there is the concentration 

of the acetone with the cells is increased 28 times whereas with the larger 800mL bottle 

there is average of 1.6 times increase. This could be due to the smaller HS area in the 

smaller bottle, this could lead to the fact there is a larger concentration of VOCs at the 

end of 5 days in the smaller area. The larger bottles have a larger HS and therefore there 

is a possible dilution and spreading out of VOCs. 

 

The average concentration of acetone in the media is 168 ppm with an average %error of 

16.32%. With the cells, the average concentration of acetone is 296 ppm and the % error 

is 24%. 
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CONCLUSIONS  

 
Cell lines are extremely complicated and many factors influence their successful growth.  

Many factors influence the analysis of these cell lines, such as optimum temperature, 

pressure and a sterile environment. These reasons are probably why not many 

investigators have chosen it to study lung cancer. In order to develop a sensitive system 

for VOC analysis in lung cancer cell lines we have tried and tested numerous methods 

for a period of 3 years ranging from media to headspace analysis both on campus and off 

campus labs for various cell lines using various techniques like centrifugation, lysis, and 

heating of cells. 

 

Acetaldehyde, which has reportedly been seen in the headspace of the same cell line 

[42], was seen only at very high concentrations of 500 ppb in the air tube method. This 

can be attributed to the fact that acetaldehyde is an extremely volatile compound, very 

polar, very soluble in water; therefore its purge efficiency is extremely low even when 

heated according to the manufacturers of Tenax -O/I Analytical. Tenax on the other hand 

is suitable for non polar compounds with high boiling point.  

 

The air tube method of collection of VOCs was designed in our lab and has proved 

extremely sensitive system for non polar compounds in cell lines with minimum human 

error. The fact that it is able to detect up to 10 ppt of toluene questions earlier claims 

made that toluene listed as a cancer marker [17, 18, 19, 20] since we were never able to 

see any reproducibility in all methods used to study cancer cell line emissions. Hence it 

is safe to conclude that the air tube setup can be used further to build a prototypical 

instrument for cell line or breath analysis in the future. 
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