
 

 

PERFORMANCE IMPROVEMENT OF PERMANENT MAGNET AC MOTORS  

 

 

 

A Dissertation  

by 

LEILA PARSA 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

 

 

 

May 2005 

 

 

 

Major Subject: Electrical Engineering 

 

 



PERFORMANCE IMPROVEMENT OF PERMANENT MAGNET AC MOTORS  

 

 

A Dissertation 

by 

LEILA PARSA  

 

Submitted to Texas A&M University 
in partial fulfillment of the requirements  

for the degree of 

DOCTOR OF PHILOSOPHY 

 

 Approved as to style and content by: 

 

              Hamid A. Toliyat 
           (Chair of Committee) 
 
 
 
                 Mehrdad Ehsani           Shankar P. Bhattacharyya 
                      (Member)            (Member) 
 
 
 
                   Reza Langari       Chanan Singh 

     (Member)                      (Head of Department) 
 

 
May 2005 

 
 

Major Subject: Electrical Engineering 



 iii

ABSTRACT 

 

Performance Improvement of Permanent Magnet AC Motors. (May 2005) 

Leila Parsa, B.S., Khaje Nasir Toosi University of Technology, Tehran, Iran; 

M.S., Iran University of Science and Technology, Tehran, Iran 

Chair of Advisory Committee: Dr. Hamid A. Toliyat 

 

       Multi-phase motors have several advantages over the traditional three-phase motors. 

In this study, the additional degrees of freedom available in five-phase permanent 

magnet motors have been used for three purposes: 1) enhancing the torque producing 

capability of the motor, 2) improving the reliability of the system, and 3) better adjusting 

of the torque and flux linkages of the five-phase direct torque controlled system. 

       1) Due to the fact that space and time harmonics of the same orders will contribute 

positively to output torque, a five-phase permanent magnet motor with quasi-rectangular 

back-EMF waveform is supplied with combined fundamental and third harmonic of 

currents. For modeling and analysis of the motor a 03311 qdqd  frame of reference is 

defined where 11qd  rotates at the synchronous speed and 33qd  rotates at the three times 

synchronous speed. Based on the mathematical model in the 03311 qdqd  frame of 

reference, it is shown that this system while having a higher torque density with respect 

to a conventional permanent magnet synchronous machine, is also compatible with 

vector control algorithm.  



 iv

       2) A resilient current control of the five-phase permanent motor with both sinusoidal 

and trapezoidal back-EMF waveforms under asymmetrical fault condition is proposed. 

In this scheme, the stator MMF is kept unchanged during healthy and faulty condition. 

Therefore, the five-phase permanent magnet motor operates continuously and steadily 

without additional hardware and just by modifying the control algorithm in case of loss 

of up to two phases. The feature is of major importance in some specific applications 

where high reliability is required. 

       3) High torque and flux ripple are the major drawbacks of a three-phase direct 

torque controlled system. The number of space voltage vectors directly influences the 

performance of DTC system. A five-phase drive, while benefiting from other advantages 

of high order phase drives, has inherently 32 space voltage vectors which permits better 

flexibility in selecting the switching states and finer adjustment of flux and torque. A 

sensorless direct torque control of five-phase permanent magnet motor is implemented. 

Speed information is obtained based on the position of stator flux linkages and load 

angle. 

       Experiments have been conducted on a 5kW five-phase surface mount permanent 

magnet motor and a 3kW five-phase interior permanent magnet motor by using 

TMS320C32 DSP. The results obtained are consistent with theoretical studies and 

simulation analysis, which further demonstrate the feasibility and practical significance 

of the five-phase permanent magnet motor drives.  
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CHAPTER I 

INTRODUCTION 

 

A. General 

The advent of modern permanent magnets (PM) with significant amount of energy 

density led to the evolution of dc machines with PM field excitation in the 1950s. 

Replacing electromagnets with PM eliminated the need of using windings and external 

energy source. Therefore, compact dc machines were introduced. PM excitation also 

replaced the dc field excitation of the synchronous machines. In late 1950s, the 

availability of switching power devices led to the development of inverters. This 

achievement enabled the replacement of the mechanical commutator with an electronic 

commutator. Therefore permanent magnet synchronous and brushless dc machines were 

developed. By removing the mechanical commutator, the armature of the dc machine 

can be on the stator side. This enables better cooling and higher voltages to be achieved. 

In this configuration, PM poles used as excitation field are in the rotor side. From 

structural point of view, permanent magnet machines are the inside out of dc machines 

with the field and armature interchanged from the stator to the rotor and rotor to stator 

respectively. 

 

 

This dissertation follows the style and format of IEEE Transactions on Industry Applications. 
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Permanent magnet machines present a unique set of opportunities to the drive 

designer. Combining high efficiency with high power density makes them widely 

appealing. Permanent magnet machines are synchronous machines without auxiliary 

rotor windings. Therefore accompanying power electronics drive is essential for their 

operation. These motors obtain life long field excitation from permanent magnets. The 

absence of rotor electrical circuit makes their analysis simple. Since there are no 

windings on the rotor, electrical losses in the rotor are minimal.  

 

B. Classification of Permanent Magnet Motors 

The permanent magnet (PM) synchronous machines can be widely classified based 

on the direction of field flux as Radial field, in which the flux direction is along the 

radius of the machine; and axial field, in which the flux direction is parallel to the rotor 

shaft. The radial-field PM machines are commonly used, however the axial filed 

machines are playing a significant role in a small number of applications because of their 

higher power density and acceleration.  

 The magnets are mounted either on the surface of the rotor, called surface mount 

permanent magnet motors or are placed insides the rotor, called interior permanent 

magnet motors (IPM). Interior permanent magnet motors have superior characteristics 

compared to surface mount permanent magnet motors. This is due to some of their 

inherent characteristics such as higher torque density and extended flux weakening 

region. These two advantages are because of their reluctance torque and ruggedness of 

the rotor structure. However, the IPM configuration produces considerable torque 
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pulsation.  

In other classification, permanent magnet motors are divided into interior rotor and 

exterior rotor structures. If rapid acceleration and deceleration of the load is needed in a 

specific application, as is the case for servo systems, then torque/inertia ratio of the 

motor should be as high as possible. Therefore, permanent magnet motors with interior 

rotor and high energy density magnets are good candidates for this application. Exterior 

rotor configuration is usually being used in application requiring constant speed such as 

fans and blowers. The spindle motor used in computers is of this category as well. The 

high inertia of the exterior rotor is an advantage in achieving uniform and constant 

speed.  

Based on the shape of back-EMF waveform, permanent magnet motors are classified 

into permanent magnet brushless dc motors (BLDC) and permanent magnet synchronous 

motors (PMSM) [1-3]. The stator winding of a BLDC motor is wound such that the 

induced back-EMF is quasi-rectangular and that of PMSM is wound such that the 

induced back-EMF is sinusoidal.  

 

C. Property of Permanent Magnet  

The property of permanent magnet and the selection of pertinent materials are crucial 

in the design of permanent magnet machine. Barium and strontium ferrites are broadly 

used as permanent magnets. Low cost and huge supply of raw material are two major 

advantages of ferrite. They can be easily produced and their process is adopted for high 
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volume as well as moderately high service temperature. The magnet has a practically 

linear demagnetization curve but has a low remnance. Therefore, the machine has a high 

volume as well as weight. The Cobalt-Samarium magnet is built of iron, Nickel, Cobalt, 

and rare-earth Samarium. High remnance, high energy density, and linear 

demagnetization characteristic are among its advantages. Although the material is quite 

expensive due to insufficient supply of Samarium, the service temperature can be as high 

as o300 C and the temperature stability is very satisfactory. The Neodymium-iron-boron 

(Nd-Fe-B) magnet has the highest energy density, highest remnance, and very good 

coercivity. The disadvantages are low service temperature, and susceptibility to 

oxidation if it is not protected by coating. In addition, the temperature stability is lower 

than that of a CoSm magnet. Although the material is expensive compared to ferrite, the 

machine weight is reduced due to its higher energy density magnets. Nowadays, Nd-Fe-

B magnets are being used in different applications.   

 

D. Multi-phase Machines 

Power electronic converters are being utilized for variable speed drives. The power 

rating of the converter should meet the required level for the machine and driven load. 

However, the converter ratings can not be increased over a certain range due to the 

limitation on the power rating of semiconductor devices. One solution to this problem is 

using multi-level inverter where switches of reduced rating are employed to develop 

high power level converters. The advent of inverter-fed motor drives also removed the 

limits of the number of motor phases. This fact made it possible to design machine with 
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more than three phases and brought about the increasing investigation and applications 

of multi-phase motor drives.  

Multi-phase machines can be used as an alternative to multi-level converters. In 

multi-phase machines, by dividing the required power between multiple phases, more 

than the conventional three, higher power levels can be obtained and power electronic 

converters with limited power range can be used to drive the multi-phase machine. 

However whether it is better to use multi-phase machines vs. multi-level converters 

is debatable and in fact it is extremely application dependent. Insulation level is one of 

the limiting factors that can prohibit the use of high voltage systems. Therefore, multi-

phase machines that employ converters operating at lower voltage level are preferred. 

Multi-phase motor drives posses many advantages over the traditional three-phase 

motor drives such as reducing the amplitude and increasing the frequency of torque 

pulsation, reducing the stator current per phase without increasing the voltage per phase 

and increasing the reliability and power density.  

 

E. Previous Research Work 

In this section previous research work on multi-phase machine will be reviewed. 

Most of the previous studies are on multi-phase, split phase and dual stator induction 

machines. However, recently multi-phase permanent magnet machines have gained 

increasing attention as well. The purpose of using such systems is mainly achieving 

higher power level, reducing torque pulsation, increasing the torque density and 
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improving the reliability.  

1. Multi-phase Induction Machines 

In the study reported in [4] various current source inverter (CSI) systems were 

investigated. They had a phase number of two or three and the same number of 

capacitors as the standard single phase or three-phase CSI. It was concluded that 

increasing the phase number in multiples of three offers advantages such as reduction of 

commutation capacitor size and peak commutating voltages. It was also observed that 

the torque pulsations would be reduced while the number of pulses increases. 

Application of inverters in ASD was investigated in [5]. It was shown that the 

number of phases is a free variable. One can change it based on specific application 

requirements. If number of phases is odd, the noise frequency of the dc link is in direct 

proportion to the number of phases. However, the noise amplitude and the torque 

harmonics are in inverse proportion to the number of phases. In this study the potential 

advantages in changing air-gap field spatial distribution were not factored in. Instead, 

harmonics in the supply, which are an essential part of rectangular field production, were 

considered undesirable. For the purpose of harmonic reduction, it was shown that 

windings connections should have the highest possible number of insulated star centers.  

The behavior of a five-phase induction motor was investigated in [6]. It was 

concluded that the amplitude of torque pulsation could be reduced by increasing number 

of phases. However, the improvement was obtained at the expense of introducing strong 

third and higher orders of harmonic currents into the supply lines. This could result in 

stator losses in the motor. 
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Three different configurations of six phase induction motors were demonstrated in 

[7]. The authors showed that the sixth harmonic of torque pulsation can be eliminated in 

a motor with 30 degrees of phase belt. However, in their approach the amplitude of 

stator currents were increased.  

The possibility of reducing torque pulsation in a six-phase induction motor was 

investigated in [8] and [9]. In this scheme, two sets of balanced three-phase windings, 

with a phase difference of 30 electrical degrees were used to form the six-phase motor. It 

was shown that the line-to-line voltage in the case of six-phase operation is almost half 

of that in the case of three-phase operation. For the 6-phase operation, the number of 

commutation transients on the line voltage is increased to 12 per cycle. The eddy current 

winding losses are reduced significantly as the torque pulsation reduces.  

The steady state torque-speed characteristics of three, six, and nine-phase induction 

motors with n and n-1 phase sinusoidal excitation were analyzed in [10] and [11]. 

Windings with different coil pitch and their effect on the harmonic spectrum of the stator 

current were discussed. Similar other investigations on multi-phase motors were reported 

in [12] and [13].  

In [14], it was suggested that the concentrated winding concept which was 

successfully applied to synchronous motors, might also be applicable to induction 

motors. It was shown that the losses of a nine phase induction motor can be reduced by 

almost 10% when operated near its rated condition. Induction motors with different 

numbers of phases were analyzed in [15]. It was concluded that for a given frame size, 

the torque of the six-phase motor can theoretically be increased by 17%. These two 
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studies showed the potential of improving the power density of multi-phase induction 

motors. 

In split phase electric machines, two similar stator windings share the same magnetic 

circuit. In this scheme, because the total power is shared between the two drives, the 

power range of inverter based drives will be extended [16-17]. A split phase machine 

can be built by equally dividing the phase belt of a conventional three-phase machine 

into two parts with spatial phase separation of 30 electrical degrees. Due to lower 

number of turns per phase compared to a three-phase machine, the inverter dc bus 

voltage can be reduced to almost half of the previous value and still maintain the same 

airgap flux. The requirement of having two or more inverters in this system is its major 

drawback. Using split phase machine will also provide the advantage of harmonic 

cancellation. It has been previously shown that the sixth harmonic torque pulsation can 

be cancelled [7] and [18]. In [19], the authors investigated the reduction of harmonic 

content of airgap flux created by fifth and seventh harmonics currents of a six-step 

converter fed system in the split phase drives. However, the improvement was achieved 

at the expense of increased converter harmonic current. The harmonic currents can be 

cancelled by using some PWM techniques during modulation process. This task depends 

on the power ratings of the devices. 

A split-wound induction motor was designed for improving the reliability of PWM 

inverter [20]. The machine has been designed such that it provides the inductor in series 

with two switches of the inverter leg and therefore providing fault tolerance to the drive. 

Dual stator machines have been used in the literature for similar reasons as of split-
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phase machines. In this topology, two independent stator windings share the same 

magnetic structure. However despite split phase machines, the two windings may have 

different number of poles, number of phases or ratings [16]. 

 An induction generator with two independent stator windings was suggested in [21] 

and [22]. One of the stator windings is used for electromechanical power conversion and 

the other one for excitation. In this scheme, load is connected to power winding and 

PWM converter is connected to excitation winding. As a result, the converter does not 

need to meet the requirement for full load power delivery. 

In [23], the authors applied the same concept for power factor correction of induction 

motor. In this approach, one set of windings is connected to the main power and is 

responsible for delivering active power, whereas the other set carries the reactive power. 

Sensorless control at low speeds can be improved if the number of poles in the two 

windings is different. Zero speed operation is achieved successfully by using 

combination of four poles and twelve poles three-phase windings.  

From the above discussion, it is understood that the concept of dual stator machine is 

similar to that of multi-level converters. Instead of using multi levels in a three-phase 

converter system, the number of inverter legs is increased. 

If third harmonic component is added to modulation signals of PWM inverters, the 

modulation index will reach beyond the unity without making the converter behavior 

nonlinear. Similar concept can be applied to electrical machines by considering the flux 

distribution. The flux level in a machine cannot be increased beyond a limit because the 

iron saturates. If a third harmonic component is added to the flux of the machine, the 
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resultant waveform for the airgap flux becomes flattened. Therefore the fundamental 

component can be increased without making the peak flux too high. Considering this 

fact, major contribution in design and performance improvement of five-phase machines 

was accomplished in [24]-[31]. A solution to harmonic problems of previous multi-

phase motor drives was suggested and new criteria for designing five-phase motors were 

established. The proposed multi-phase motor in these studies had two major differences 

compared to the other multi-phase motors. First, the concentrated windings, instead of 

the conventional sinusoidal windings, were adopted in its structure design. Second, the 

third harmonic currents are incorporated into the motor currents. Therefore, this kind of 

five-phase induction motors while benefiting from all advantages of the previous multi-

phase motors, make use of the third harmonic to alter the shape of the air-gap flux in the 

machine. As a result, better material utilization can be achieved and the torque producing 

capability of the machine can be significantly improved. The idea has been successfully 

implemented on five-phase induction and reluctance machines [32,33].  

In [34], the third harmonic of current was used to increase the torque density of six-

phase induction machine. In this scheme, the torque density improves due to two main 

reasons. In a six-phase machine, the third harmonic zero sequence components are in 

quadrature in each of the three-phase winding group. Therefore an additional rotating 

field is produced. Also, in this system the fundamental flux component is increased. 

In a vector controlled drive, flux, and torque of the AC machine are being adjusted 

independently by using only the two stator d-q axis components of current. Therefore, 

additional degrees of freedom exist in any AC machine which has a phase number 
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greater than three. These additional degrees of freedom can be utilized in different ways. 

In one approach, as discussed earlier, the torque production capability of the motor can 

be improved by injecting higher order harmonics of the stator current. These additional 

degrees of freedom were used to independently control other AC machines in a multi 

motor drive system [42]. In this scheme, it was required that the stator windings of all 

the multi-phase machines be connected in series. However, proper phase transposition 

should be considered while connecting the phases. Vector control can be separately 

applied to each machine. The total inverter phase current references were found to be the 

sum of individual machine phase current references. A single current controlled voltage 

source inverter (VSI) provided the required supply to the stator windings of multi motor 

system. 

2) Multi-phase Permanent Magnet Machines 

A theory for multi-phase motors which considers all the time and space harmonics of 

the magnetomotive force (MMF) was developed in [35]. The fundamental component of 

voltage in converter with rectangular voltage is 27% more than the one with sinusoidal 

voltage. Therefore, in order to achieve the best performance of nearly all types of 

converters (except resonant converters), the output voltages, and currents should be 

rectangular. On the other hand, if a multi-phase machine is supplied with rectangular 

waveforms, the resultant flux is 20- 25% greater than that of a similar three-phase 

machine which is supplied with sinusoidal current and has the same air-gap flux density. 

Therefore, it was concluded that in order to achieve a better performance, a full pitch or 

nearly full pitch winding is required for multi-phase motors. Such Configurations will 
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result in a nearly rectangular space distribution of the phase MMF.  

The design and performance evaluation of a polyphase brushless dc-machine direct 

drive system were investigated in [36]. The system was designed for applications where 

high performance and reliability are required such as in EV, HEV, and aerospace 

applications. The authors studied the design and analysis of this kind of drives and 

addressed the issues regarding the high level modeling including a transient model 

together with their corresponding experimental verification.  

In [37], the rectangular waveform permanent magnet motor for propulsion 

application which is controlled by PWM chopper was studied. Fourier transformation 

was used to study the effect of low frequency chopping on armature current. Simulation 

and experimental results were provided to validate the theory. It was proved that in order 

to reduce the torque pulsation of PM motor the chopping frequency and the number of 

phases should be increased. 

Electric motors are widely used for ship propulsion. Reference [38] discusses the 

advantages of PM propulsion system with respect to the dc motor propulsion system and 

suggests the high power multi-phase system for this application. 

In [39], the design, modeling, and simulation of a high torque low speed permanent 

magnet motor for in-wheel electric vehicle application were discussed. In order to better 

approximate the behavior of the actual system, mutual inductance and armature reaction 

effect were considered in the modeling. Therefore, the dynamic simulation results are in 

good agreement with the experimental results.  
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P-pair poles n-phase sine wave permanent magnet synchronous motors were 

mathematically modeled in both the abc static reference frame and d-q rotating reference 

frame [40]. An expression for defining the maximum transient short circuit current in 

case of n phases symmetrical short circuit of the motor was derived. The analysis of 

maximum short circuit current provided the fundamental theory to specify the operating 

point of permanent magnet motor which is an important factor during design process.  

In [41], the authors showed that by employing asymmetric distributed multi three-

phase BLDC motors, the converter system can be simplified and torque pulsation can be 

reduced at low speed. For analyzing the behavior of multi-phase BLDC motors a 

mathematical model was developed. It was concluded that the torque ripple of six-phase 

BLDC can be reduced by up to 50% with respect to a similar three-phase BLDC motor 

running with same phase current and rotor speed. It was shown that the most significant 

component of torque ripple is the twelfth order harmonic component of the fundamental 

frequency. The frequency of the salient torque pulsation in multi-phase BLDC motor 

which is caused by variable inductances is twice the harmonic of fundamental frequency. 

Due to the complex coupling of magnetic circuits, the salient torque ripple in a six-phase 

BLDC motor is increased. However, the amplitude of the pulsation is less than 5% of the 

total output electromagnetic torque. It was also demonstrated that in a six-phase BLDC 

motor, the motor can continue operating safely if one three -phase group is inoperative. 

3. Fault Tolerant Multi-phase Permanent Magnet Machines 

In several applications, the failure of a drive has a serious effect on the operation of 

the system. In some cases, the failure results in lost production whereas in some others it 



 14

is very dangerous to human safety. Therefore, in life dependent application it is of major 

importance to use a drive which continues operating safely under occurrence of any 

fault.  

The major faults which can occur within a machine or converter are considered as: 

winding open circuit, winding short circuit (phase-ground or within a phase), winding 

short circuit at the terminals, power device open circuit, power device short circuit and 

the DC link capacitor failure. In order to limit the short circuit current, the PM machine 

should have a sufficiently large phase inductance and in order to avoid loss of 

performance in healthy phases in faulty condition, mutual inductance between the phases 

should be small. These two points are required for the reliability of the system. 

A fault tolerant multi-phase PMSM was studied in [43]. In order to increase the 

reliability of the system, each phase of the machine was separately excited by its own H-

bridge voltage source inverter. The segmented structure made it possible to inject the 

defined current waveform correctly and achieve minimum torque ripple. For an n-phase 

non-sinusoidal surface mount permanent magnet synchronous motor an optimal current 

waveform was specified. Supplying the motor with the specified current allowed 

minimizing the copper losses in a constant torque under normal operating condition. In 

the presence of a fault, depending on the loss of the supply of one or more than one 

phase, an effective method to cancel torque pulsation, generated by faulty phases, was 

developed. For each faulty phase, the torque ripples were canceled by modifying the 

current waveform of one healthy phase. 

In [44- 46], A multi-phase drive was designed in which each phase was considered 
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as a single module. The effect of each module on the others was minimized. Therefore, 

in case one module fails, the rest of the system maintains continuous operation. In was 

pointed out that the electrical, magnetic, thermal and physical interaction between the 

phases should be minimized. Being electrically isolated is an essential requirement in the 

event of short circuit in the power device or phase winding. Otherwise, the star point in a 

star connected system may increase to the DC link voltage. In that case, there will be no 

net torque capability. One solution is to supply each phase from a single phase bridge. 

However, in this case the number of switches will be doubled. Physical separation was 

guaranteed by placing each winding round a single tooth. Also to meet the requirement 

for magnetic isolation, using surface mount permanent magnet topology as well as 

having one winding per slot was proposed. By placing single phase winding in stator 

slot, thermal interaction between phases is reduced as well.  

An optimal torque control strategy for five-phase fault-tolerant permanent magnet 

brushless ac drives was proposed in [47]. Both constant torque and constant power 

modes of operation were considered. By implementing the proposed optimal torque 

control strategy, the produced output torque is free from ripple and the copper losses will 

be minimized while maintaining the permissible current and voltage limit. The effect of 

the above mentioned optimal torque control on eddy current loss was investigated [48].  

In [49], by studying a six-phase PM motor it was shown that the undetected turn to 

turn faults will result in currents many times larger than the rated current flowing in the 

faulted winding. The fault might distribute rapidly if no action is taken. Monitoring the 

sampled current in each PWM cycle allows detecting a single shorted turn. The fault 
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current will be limited to rated value by shorting the phase.  

 

F.  Research Objectives 

In this research work, some unique properties of five-phase permanent magnet motor 

are studied.  

First objective of this research work is to develop a system that has the same torque 

density of BLDC motor while overcoming its disadvantages and is benefiting from the 

controllability of PMSM. A five-phase permanent magnet motor with concentrated 

winding is proposed. This motor is supplied with combined fundamental and third 

harmonics of currents which replicates a rectangular waveform. Therefore, the back-

EMF and current waveform of this motor is a good approximation of those in a BLDC 

drive. This motor is modeled in nqdqd 3311  reference frame. This motor while having the 

high torque density, is compatible with vector control algorithm, therefore the motor is 

easily controllable over a wide speed range. 

The second objective of this work is to improve the reliability of the five-phase 

system against open circuit fault. By modifying the control algorithm, the five-phase 

motor continues operating safely even if two phases are open circuited. For this purpose, 

it is important to keep the MMF produced by the stator unchanged in healthy and faulty 

conditions.  

The third objective of this work is to implement sensorless direct torque control 

algorithm on five phase permanent magnet motor. High torque and flux ripple are the 
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major drawback of a DTC scheme. The reason is that the inverter keeps the same 

switching state as long as the outputs of flux and torque hysteresis controllers remain 

unchanged. The number of space voltage vectors directly influences the performance of 

DTC control system. A five-phase system, while benefiting from other advantages of 

high order phase systems, has inherently 32 space voltage vectors which permits better 

flexibility in selecting the switching states and finer adjustment of flux and torque. 

Two five-phase permanent magnet motors were designed and built in the laboratory 

to obtain the experimental results.  

 

G.   Dissertation Organization 

Chapter I covered the background information on permanent magnet AC motors, 

indicated the most important features of multi-phase AC machines, and presented a 

literature survey on the work accomplished in this area. Also research objectives of this 

dissertation were pointed out. In the rest of the dissertation, additional degrees of 

freedom in five-phase permanent magnet motors are employed to improve the overall 

performance of the system. 

In chapter II, the additional degrees of freedom are used to supply the motor with 

combined fundamental and third harmonic of currents. Harmonic effect is studied in a 

five-phase machine with concentrated winding distribution. It is shown that the space 

and time harmonics of the same order will contribute positively to the output torque. The 

mathematical model of the machine supplied with quasi-rectangular current is derived in 
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nqdqd 3311  frame of reference. The improvement in output torque and compatibility of 

the proposed motor with vector control are shown using the mathematical model. 

Simulation results from the finite element method and Matlab/Simulink are given to 

support the validity of the theoretical findings. Experimental results are presented to 

validate the effectiveness of the proposed approach. 

In chapter III, a control scheme which provides fault tolerance to a five-phase 

permanent magnet motor under open phase condition will be presented. In this scheme, 

the five-phase PM motor continues operating safely under loss of up to two phases 

without any additional hardware and just by adjusting the current in the remaining 

healthy phases. Simulation and experimental results are provided to show the steady 

operation of the five-phase drive under open phase condition.  

In chapter IV, the direct torque control (DTC) of five-phase motor is presented. 

Having a five-leg inverter, there exists 32 space voltage vectors which provides great 

flexibility in selecting the inverter switching states. Therefore, the stator flux and torque 

can be more precisely adjusted. Position information and speed are being estimated 

based on the position of the stator flux linkages. The mathematical model of the five-

phase interior permanent magnet motor is first derived. Later, the speed sensorless direct 

torque control method of the five-phase IPM is introduced. Simulation and experimental 

results are provided to show that the DTC can be successfully implemented on the five-

phase permanent magnet motor. 

Chapter V concludes the work done in this dissertation and suggests some future 

research work in this area.  
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CHAPTER II 

FIVE PHASE PERMANENT MAGNET MOTOR DRIVE WITH HIGH 

SPECIFIC TORQUE* 

 

A. Introduction 

Due to the additional degrees of freedom, multi-phase permanent magnet motors 

present some unique characteristics. One of them is providing the ability of injecting 

higher order harmonics of current and enhancing the torque producing capability of the 

motor. This chapter investigates the advantages of supplying the five-phase permanent 

magnet motor with combined fundamental and third harmonics of currents. This motor 

benefits from the high toque density of BLDC motor and better controllability of 

PMSM. First, the main advantages and drawbacks of BLDC motor and PMSM will be 

discussed. Then, the harmonic analysis of the motors with non sinusoidal winding 

functions will be presented. Later in this chapter, the mathematical model of the five-

phase permanent magnet motor with quasi-rectangular back–EMF and supplied with 

fundamental and third harmonics of current is derived. Finally, the superior performance 

of the proposed motor will be validated through simulation and experiment. 

 

                                                 
* Copyright © 2004 IEEE, Reprinted, with permission, from “Multi-Phase Permanent Magnet Motor Drives” by L. 
Parsa and H. A. Toliyat, 2003, Conference record of IEEE-IAS Annual Meeting, vol. 1, Pages 401-408. This material 
is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE 
endorsement of any of the products or services of the Texas A & M University. Internal or personal use of this 
material is permitted.  However, permission to reprint/republish this material for advertising or promotional purposes 
or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws 
protecting it. 
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B. Background 

Based on the back-EMF waveform, permanent magnet AC motors are classified into 

permanent magnet brushless DC motors (BLDC) and permanent magnet synchronous 

motor. In BLDC motors, the stator windings is wound such that the produced back-EMF  

is trapezoidal. Therefore, supplying the motor with quasi rectangular current will 

produce almost constant torque. Figure 2-1 shows the back-EMF and current waveform 

of a three-phase BLDC motor. As it is seen from the figure only two phases are 

conducting at each instant of time and for the duration of 60 electrical degrees. 

Therefore, the exact position information is not needed in this kind of drive. The control 

of the motor is possible just by knowing the commutation instants. Low resolution 

position sensors such as hall sensors are capable of providing the information regarding 

the commutation instants.   

 

   E , i

π2 θ

 

 

Figure 2-1   Current waveforms and back-EMF  of a three-phase BLDC motor. 
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The stator voltage equation for a three-phase BLDC motor is given by, 
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Where R is the stator resistance per phase, L and M are the stator self and mutual 

inductances respectively, and ae , be , ce  are the induced EMFs  

The electromagnetic torque is defined as follows: 
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where rω  is the motor speed. 

The following equation determines how the motor speed builds up: 

r
r

Le B
dt

dJTT ωω
++=             (2-3)

   

BLDC operation above rated speed is being performed by the advance angle technique. 

In this scheme, turning on each phase earlier will allow the current to build up in the 

winding before the back-EMF reaches its maximum value. However, there are two 

major problems with this scheme. First, at a given speed, the advance angle to be applied 

is not exactly known. Second, at high speeds, the phase inductance increases and 

therefore the phase current deviate significantly from ideal, in a sense that it is not 

possible to control the current as rectangular waveform. Therefore, the torque production 

capability of the motor decreases. 

In PMSM, the stator is wound such that the produced back-Emf is sinusoidal and 
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therefore supplying the motor with sinusoidal currents will lead to producing constant 

torque. In this system, torque producing component and flux producing component of 

current has been decoupled and vector control is easily applicable to this kind of drive. 

This motor has better controllability over the whole speed range. 

The stator voltage equations in d-q rotating frame of reference are: 

dt
dsdi

dsLqsiqsLdsisrdsv +−= ω           (2-4) 

dt
qsdi

qsLmdsidsLqsisrqsv +++= )( ψω         (2-5) 

where sr  is the stator resistance, dsL  and qsL   are the d- and q-axes inductances, mψ  is 

the rotor permanent magnet flux, dsv  and qsv  are the d- and q-axes voltages, and dsi  

and qsi  are the d and q-axes currents. The electromagnetic torque is given by, 
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where P is the number of poles. The second term in (2-6) is the reluctance torque. If 

there is no rotor saliency, i.e., dsL  equals qsL , the reluctance torque would be zero and 

therefore the torque is just a function of q-axis current. The following equation 

determines how the motor speed builds up: 

r
r

Le B
dt

dJTT ωω
++=            (2-7) 

The input voltage and current of the motor are limited. Their maximum value is 

dictated by the upper limit of the available DC link voltage and the current rating of the 
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inverter. The voltage and current limits will affect the maximum speed attainable by the 

motor and also its torque producing capability. By imposing the upper limit of the 

current and voltage to the stator voltage and current equations and neglecting the ohmic 

drop the following equations will be obtained. 

22)(2)( ratedIqsidsi =+            (2-8) 

2)(2)(2)(
ω
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qsiqLdsidLm =++          (2-9) 

From the above equation, it is clear that the required dsi  can be calculated for the 

speeds above the rated. Therefore, field weakening operation and running the motor at 

speeds higher than the rated speed can be easily implemented in this kind of drive. 

Figure 2-2 shows the torque-speed curve of the motor which has two intervals of 

constant torque region for the speeds below the rated speed and constant power region 

for speeds higher than the rated speed. 
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Figure  2-2   Torque speed characteristic of PM motor. 
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C. Comparing BLDC Motor and PMSM 

It is known that permanent magnet brushless DC machines have higher torque 

density compared to permanent magnet synchronous machines [50]. The reason is that 

for the same peak values of flux, the rms value of the machine with trapezoidal back-

EMF is higher than the one with sinusoidal waveform. Considering the same copper 

losses the ratio of the produced torque of the two machines will be obtained.  

Assume peakpmsmI _  and peakbldcI _  are the peak values of the stator currents in the 

three-phase PMSM (supplied with sinusoidal current waveform) and BLDC (supplied 

with current pulses of 120 degrees) machines.  The rms values of these currents are: 

2
_

_
peakpmsm

rmspmsm

I
I =         (2-10) 

and 

3
2

__ peakbldcrmsbldc II =         (2-11) 

Equating the copper losses and substituting for the currents in terms of their peak 

currents results in: 

armsbldcarmspmsm RIRI 2
_

2
_ 33 =         (2-12) 

Therefore: 

peakpmsmpeakbldc II __ .
2
3

=         (2-13) 

The ratio of output torque is obtained as follows: 
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which shows that the BLDC motor is capable of producing 15% more torque compared 

to PMSM during the constant torque region. Therefore, it is useful to develop a motor 

which has almost the same torque density of BLDC and controllability of the PMSM.  

Based on the above, a five-phase permanent magnet motor is introduced. The stator 

of the motor is wound such that the induced back-EMF is almost trapezoidal. The stator 

is supplied by combined sinusoidal and third harmonics of current.  Figure 2-3 shows the 

back-EMF and current waveform of permanent magnet synchronous motor, permanent 

magnet brushless DC and the proposed motor, respectively. 
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Figure 2-3   Top to bottom: PMSM, BLDC and the proposed five-phase motor 
current and back-EMF waveforms. 
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D. Harmonic Spectrum of MMF in Machines with Non-sinusoidal Winding 

Distribution 

In this section, the effects of non-sinusoidal field spatial harmonics and current time 

harmonics on three-phase and five-phase permanent magnet motors are discussed. The 

motors have concentrated winding configuration and the study is based on the winding 

functions and Fourier analysis. 

The following assumptions are made: 

• Machines are considered to be operating at the steady state under no load 

conditions. 

• Saturation effects are not included. Therefore, superposition of magnetic fields is 

possible. 

• Skin effects in the stator conductors at the harmonic frequencies are neglected. 

1. Harmonic Spectrum of MMF in Three-Phase Machines with the Concentrated 

Winding Distribution 

Figure 2-4 shows the stator of a machine with two pole, 3-phase concentrated 

windings. The windings are 1200 apart in space. The Fourier series of phase “a” winding 

function shown in figure 2-5 is as follows: 
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where φ is the spatial angle, and n is the harmonic order. Due to symmetry of winding 

functions, even order space harmonics do not exist. The winding functions of other 
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phases are similar to phase “a” winding function with proper phase shift. 

In order to study a general case; we assume that this machine is being supplied from 

a current source inverter. Each coil carries current pulses of 1200 as shown in figure 2-6. 

The Fourier series of phase “a” current waveforms are given by,  
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where θ  is the rotor angle and is related to angular speed of ω  by, 

tωθ =           (2-17) 

The current waveforms of other phases are similar to phase “a” current waveform with 

proper phase displacement.Again, due to symmetry of current waveforms, it is clear that 

even harmonics cannot exist. 
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Figure 2-4   Two-pole, three-phase concentrated winding distribution. 
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Figure 2-5   Winding function of phase “a” for the two-pole, three-phase 
concentrated winding motor. 
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Figure 2-6   Phase “a” current waveform. 

 

The instantaneous phase currents determine the spatial MMF  pattern at any instant. 

Variation of these currents in time domain determines the rotational movement of the 

pattern. Let F be the total MMFs produced by coils a, b, c. Then 
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A pair of air-gap fields is defined in the above expression. The first component of the 

field is rotating forward and the second component is rotating backward. Table 2-1 

shows the existing MMFs in the air gap of a 3-phase concentrated winding machine. In 

this table, the “F” sign indicates the MMFs which are rotating forward, while the “B” 

sign represents those rotating backward. A negative sign indicates the 180o phase shift 

with respect to the fundamental harmonic. From the table it is understood that those 

MMFs, which are generated by the same order of space and time harmonics rotate 

forward at synchronous speed. Those generated by different order of time and space 

harmonic rotate at speeds equal to n/m times synchronous speed, some in the forward 

and some in the backward directions. 

 

Table 2-1  Relationship between field space harmonics and current time harmonics for a 
concentrated, full pitch three-phase winding. 

 
Space Harmonics 

Time    Harmonics 1 3 5 7 9 11 13 15 

1 F 
1.053

 B 
.211 

F 
-.15 

 B 
-.096

F 
.081 

 

3         

5 B 
-.211

 F 
-.042

B 
.03 

 F 
.019 

B 
-.016 

 

7 F 
-.15 

 B 
-.03 

F 
.021 

 B 
.014 

F 
-.012 

 

9         

11 B 
-.096

 F 
.019 

B 
-.014

 F 
-.009

B 
.007 

 

13 F 
.081 

 B 
.016 

F 
-.012

 B 
-.007

F 
.006 

 

15         

Multiply all entries by NI 
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 There are no multiples of third harmonic in the case of a three-phase Y connected 

without a neutral return. The effects of the higher harmonics are essentially to reduce the 

average torque. For instance, interaction of the fifth time harmonic with the fifth space 

harmonic produces a forward rotating MMF of 0.042 NI. However, the fifth harmonic in 

time combines with the first space harmonic will generate a backward rotating MMF 

with the amplitude of 0.211 NI. In addition, the fundamental time harmonic combines 

with the fifth space harmonic producing an additional backward rotating MMF with 

amplitude of 0.211 NI. 

2. Harmonic Spectrum of MMF in Five-Phase Machines with the Concentrated 

Winding Distribution 

Using the concepts developed in the previous section, the air-gap field for windings 

with different numbers of phases can be specified.  In this section, a 5-phase machine is 

examined. The machine is supplied from an inverter supply where the electrical pulses 

can be adjusted to values greater than 1200. The machine is assumed to be star connected 

with no neutral connection. Therefore the five currents should add up to zero. Figure 2-7 

shows a two pole five-phase concentrated winding machine. The phases are 720  

displaced with respect to each other and number of turns per phase is 53N . Winding 

function of phase “a” is shown in figure 2-8. The Fourier series of phase “a” winding 

function can be written as follows: 

∑
∞

=

=
1

)(cos
2

sin
10
34)(

n
a nnN

n
N φπ

π
φ        (2-19) 

The winding function of other phases is similar to that of phase “a” with proper phase 



 31

shift. 

The stator is supplied with 1440 pulses of current as shown in figure 2-9. Similar to 

the three-phase case the Fourier series of the phase “a” current waveform is: 

∑
∞
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)(sin
10
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ma mmI
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i θπ
π

θ         (2-20) 

The current waveforms of other phases are similar to phase “a” current waveform with 

proper phase displacement. 

Assume F be the total MMFs produced by coils a, b, c, d and e. Then, 
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Figure 2-7   Five-phase concentrated winding distribution. 
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Table 2-2 shows the existing MMF for the five-phase case. It is obvious that in this 

case third harmonic of time flowing in third harmonic of space will generate a forward 

rotating MMF. In a five phase system the fifth harmonic of MMF does not exist.   
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Figure 2-8   Winding function for phase “a” of five-phase motor. 
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Figure 2-9   Phase “a” current waveform. 

 

The operating region where the rotor rotates at synchronous speed is the useful 

region of PM machines. Therefore, only those fields rotating at synchronous speed will 

contribute positively to the output torque. Fields rotating at speeds higher than 
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synchronous speed will generate negligible torque, whereas those fields rotating at 

speeds lower than the synchronous speed, or those which are rotating backwards will 

have negative impact on the output torque. By increasing number of phases, the 

frequency of torque pulsation increases and its amplitude decreases. 

Phase numbers of the order 3, 6 with currents in 2-, or 4-phase at any instant are all 

equivalent in terms of their fundamental flux producing capability. That is, for the same 

copper losses and the same copper weight the peak fundamental air gap MMF is 1.053 

NI for all the three cases. However, for phase numbers of the order 5, 7, etc., 4-, 6-, etc. 

phases carry current at any instant.  In this case, the fundamental MMF produced by the 

five-phase winding exceeds the usual three-phase winding by a small amount (1.056 NI).  

In addition, a useful MMF is produced by the third harmonic MMF, which rotates 

synchronously with the fundamental component (0.072 NI). The existence of the third 

harmonic in the air-gap alters the shape of the total air-gap MMF, and hence permits an 

increase in the output torque of the five-phase BLDC motor. 

Therefore, instead of supplying the five-phase machine with 1440 pulses of current, it 

is excited with the fundamental plus third harmonics of the current. In this case, 

harmonics shown in the first two rows of Table 2-2 are present. When a seven-phase 

winding is used, the fundamental MMF component actually decreases to 1.045 NI while 

the third harmonic component increases to 0.093 NI.It is interesting to note that with this 

basis for comparison the five-phase machine has the optimum torque per rms ampere.  
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Table 2-2  Relationship between field space harmonics and current time harmonics for a 
concentrated, full pitch five-phase winding. 

 

Space Harmonics 
Time Harmonics 1 3 5 7 9 11 13 15 

1 F 
1.056 

   B 
.117 

F 
-.096 

  

3  F 
-.072 

 B 
-.031 

  F 
.017 

 

5         
7  B 

-.031 
 F 

.013 
  B 

-.007 
 

9 B 
-.117 

   F 
-.013 

B 
.011 

  

11 F 
-.096 

   B 
-.011 

F 
.009 

  

13  F 
.017 

 B 
.007 

  F 
-.004 

 

15         
 

Multiply all entries by NI 

 

 E.  Mathematical Model of the Five-Phase BPM 

In this section the mathematical model of the five-phase permanent magnet motor 

will be derived. The motor in this study has quasi-rectangular back-emf and is supplied 

with combined fundamental and third harmonic of current. The voltages, flux linkages 

and torque equations will be established in the 3311 qdqd  rotating frame of reference. It is 

shown the torque producing and flux producing component of current can be decoupled 

in the 3311 qdqd frame of reference and vector control can be easily implemented for this 

drive.  
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1. Stator Voltage and Flux Equations 

The stator voltage equations are given by, 

dt
dIRV s

sss
Λ

+=      (2-22)         

where the airgap flux linkages are presented by, 

msss Λ+Λ=Λ      (2-23) 

or 

mssss IL Λ+=Λ      (2-24) 

sR  is given by, 
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and  ssL  is the stator inductance matrix which contains the self and mutual inductances 

of the stator phases:  
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lsL  is the stator leakage inductance. 

sV , Λs  and Is  are the stator voltage, flux linkages and current matrices, respectively: 
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[ ]tesdscsbsass vvvvvV =        (2-27) 

[ ]tesdscsbsass λλλλλ=Λ         (2-28) 

[ ]tesdscsbsass IIIIII =        (2-29)       

mΛ  is the established flux linkage matrix due to the permanent magnets viewed from the 

stator phase windings. For simplifying the model, only the fundamental and third 

harmonic components of the permanent magnet flux linkage are taken into account. 

Considering the approximation  mΛ  can be written as follows: 
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1mλ  and 3mλ  are the amplitude of fundamental and third harmonics components of the 

permanent magnet flux linkages and θr is the rotor position. 

2. Inductance Matrix 

As previously mentioned, this motor has concentrated windings, and the air gap is 

assumed to be uniform. The self and mutual inductances of the stator are constant 

values. In order to simplify the modeling, only the fundamental and the third harmonic 

components of the winding function are taken into account. Therefore, the Fourier series 

of winding function for each phase can be written as follows: 



 37





 −= φφ

π
φ 3cos

3
1cos4)( ss

s
as NN

P
NN         (2-31) 





 −−−= )

5
2(3cos

3
1)

5
2cos(4)( πφπφ

π
φ ss

s
bs NN

P
NN       (2-32) 





 −−−= )

5
4(3cos

3
1)

5
4cos(4)( πφπφ

π
φ ss

s
cs NN

P
NN        (2-33) 





 +−+= )

5
4(3cos

3
1)

5
4cos(4)( πφπφ

π
φ ss

s
ds NN

P
NN       (2-34) 





 +−+= )

5
2(3cos

3
1)

5
2cos(4)( πφπφ

π
φ ss

s
es NN

P
NN       (2-35) 

where sN  is the total number of turns, P is the number of poles and φ is the spatial angle.  

The self and mutual inductances of the stator phases can be computed by using the 

corresponding winding functions. Self inductance is given by, 
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And the mutual inductance is as follows: 
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Considering: 
 

P
N sN

P
N sN

s

s

π

π
4

3
1

4

3

1

−=

=
              (2-38) 

 
The self inductance of phase a can be written as: 
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and the mutual inductance between phase a and b will be: 
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Similarly, the self and mutual inductances of other phases are given by, 

31csc msmsasasesesdsdssbsbs LLLLLLL +=====  

31 5
23cos

5
2cos msmsasbsasesdsescsdsbscs LLLLLLL ππ

+=====            (2-41) 

31 5
43cos

5
4cos msmsesbsdsascsesbsdsascs LLLLLLL ππ

+=====   

Therefore, the stator inductance matrix is written as: 
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  (2-42) 

 

3.  Transformation Matrix  

For simplifying the model, an arbitrary coordinate transformation is introduced, 

which transfers the variables of the five-phase motor into a reference frame rotating at an 

arbitrary angular velocity. Including the effect of third harmonic, a 1d - 1q - 3d - 3q -n 

transformation can be applied, where the 1d - 1q  coordinate is rotating at synchronous 

speed and the 3d - 3q  coordinate is rotating at three times the synchronous speed as 

shown in figure 2-10.  
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Figure 2-10   11qd  and 33qd  space. 

 

The transformation matrix for this system is considered as: 
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The inverse transformation matrix is defined by: 
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4. Stator Voltage and Flux Equations in the Rotating Frame of Reference 

By applying the above transformation to the stator voltages equations, the following 

will be obtained:  

dt
dTITRVT s

rsrssr
λθθθ )()()( +=        (2-45) 

Equation (2-45) can be rewritten as: 
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The stator voltage equation can be expressed as: 
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By applying the transformation matrix to stator flux linkages equations, the following 

will be obtained: 
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Therefore, the stator flux equations in the new frame of reference are as follows: 
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5. Electromagnetic Torque 

The electromagnetic torque is determined by: 
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where coW is the co-energy and rmθ is the mechanical rotor angle. Co-energy is defined as 

follows: 
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Taking the partial derivative with respect to rmθ   and considering that there is no 

saliency on the rotor yields: 
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The transformation matrix has the following pseudo-orthogonal property:  
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Therefore: 
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and finally: 
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Substituting from (2-56)-(2-59): 
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The electromagnetic torque can be written as: 
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where λds1, λqs1, λds3, λqs3 are the stator fluxes in d1, q1, d3, q3 axes, respectively. ids1, 

iqs1, ids3, iqs3 are the transformed stator currents in these rotating axes. The improvement 

in the developed torque due to the third harmonic can be noticed from (2-68). 

Mechanical motion equations are given by, 
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Equations (2-49) to (2-69) can be used to model the five-phase permanent magnet 

motor with the combined fundamental and third harmonic currents in the nqdqd 3311  

reference frame. As it can be understood from the equations, the so-called vector control 

is easily applicable to this kind of motor. 

The equivalent circuits of the five-phase PM motor are given in figure 2-11. In this 

figure, 1mi  and 3mi  are being used to represent the fundamental and third harmonic 

component of permanent magnet flux. Figure 2-12 shows the control block diagram of 

the proposed system where the difference between the reference speed and the actual 

speed determines the reference stator currents in the rotating reference frame. The 

reference stator voltages in the nqdqd 3311  reference frame are generated by the 

associated PI current regulator based on the difference between the commanded currents 

and the transformed sensed currents. Sinusoidal PWM technique has been used to drive 

the inverter. 
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Figure 2-11   Equivalent circuits of the five-phase permanent magnet motor in 
the arbitrary frame of reference. 
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Figure 2-12   Control block diagram. 
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F. Simulation Results 

Simulations have been performed using both finite element method and 

Matlab/Simulink to verify the superior performance of the proposed motor. A three-

phase 7.5 hp, 4-pole, 230 V, 20 A, 36 slots off-the-shelf induction motor is used for this 

study. The rotor of this motor has been replaced with a permanent magnet rotor shown in 

figure 2-13a.  In each pole, 12 pieces of magnets are used. Figure 2-13b illustrates the 

cross section of the PMSM motor which was built on the same stator frame as the 

induction motor, and is used as our reference motor.  

The magnets are Nd-Fe-Br of type 35EH with Br=1.21 Tesla.  The stator coil pitch is 

7/9, and the number of turns per coil is 30. The stator outer diameter, inner diameter, 

rotor outer diameter, shaft outer diameter and stack length are 228.6mm, 127mm, 

124mm, 40mm and 101.6mm, respectively. 

The induced back-EMF of coil A which is calculated from the flux linking coil A 

using the Ansoft finite element package is shown in figure 2-14. The package uses 

virtual work principles to compute the torque on an object: 







∂
∂

=
∂
∂

= ∫ ∫V

H

rmrm

co dVdHBWT
0

).(
θθ

     (2-70) 

This motor has sinusoidal back-EMF and is supplied with sinusoidal currents . The 

developed static torque obtained from the finite element package is shown in figure 2-

15. The average torque in this case is 42.62 N.m. The torque pulsations due to the slots 

openings are clear.  
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(a) 

 

(b) 

Figure 2-13   Three-phase PMSM motor, (a) permanent magnet rotor, (b) permanent 
magnet motor cross section. 

 
 

 

Figure 2-14   Back-EMF of 36-slot, three-phase PMSM motor. 
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Figure 2-15   Torque of the 36 slots PMSM motor. 

 

With a 12-slot stator, the back-EMF is quasi-rectangular and the motor can be 

supplied with current pulses of 120 degrees to produce almost constant torque. The 

developed torque using finite element is 46.9 Nm in this case. The torque is 10% higher 

than the 36-slot PMSM motor. The five-phase 20-slot, the 40-slot, single layer which is 

used for experimental verifications, and the 40-slot double layer motors have been 

designed using the same frame size as the original three-phase motor. The number of 

turns and slots width have been adjusted to maintain almost the same amount of copper 

and iron, and therefore almost equal copper and core losses are maintained. The 

performance of five-phase 20-slot, 40-slot single layer, and 40-slot double layer PM 

motors are compared. In this study, the motors with quasi rectangular back-EMF are 

supplied with both combined fundamental and third harmonics of current and current 

pulses of 144 degrees with 4 phases conducting at each instant of time. In this way, it 
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can be shown that both kind of excitation will generate almost the same output torque 

while those supplied with combined fundamental and third harmonic of current have 

better controllability due to vector control. 

The 40-slot double layer motor has been considered as the reference for comparing 

the five-phase conventional sinusoidally-fed PMSM with the motors supplied with 

fundamental and third harmonic of currents. Figure 2-16 shows the cross section and 

winding distribution of all the three motors. Figure 2-17 shows the back-EMF 

waveforms of these motors. The back-EMF of the 20-slot motor is trapezoidal. It 

progresses toward sinusoidal waveform as the number of stator slots increases to 40 

slots, and the number of layers changes from single to double layer. 

The developed torque of all the motors supplied with different current waveforms 

have been obtained using the finite element method. In each case, the peak values of the 

current has been adjusted so that the rms current for all the cases is kept the same as 

shown in figure 2-18. The amount of the the injected third harmonic of current is 15% of 

the fundamental frequency current.  From figure 2-18, it is clear that the 144 degree 

pulse of current has the lowest peak value among all the three types of currents. The 20-

slot and the 40-slot single layer motors with quasi-rectangular back-EMF have been 

supplied with both the 1440 current pulses, and the combined fundamental and third 

harmonic of currents.  The double layer 40-slot motor has been supplied with sinusoidal 

current. The static torque of the motors with different excitation currents under rated 

condition are shown in figure 2-19.   

 



 

 

52

 

(a) 

 

(b) 

 

(c) 

Figure 2-16   Cross section of five-phase,  (a) 20-slot, (b) 40-slot single layer, (c) 40-slot 
double layer. 
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Figure 2-17   Back-EMF of, (a) 20-slot, (b) 40-slot, single layer,  (c) 40-slot, double 
layer, five-phase machines. 
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Figure 2-18    (1) Sinusoidal, (2) combined sinusoidal and third harmonic, (3) 1440 
pulses of current with the same rms values. 



 

 

54

 
Figure 2-19   Torque of (a) 20 stator slots motor supplied as BLDC, (b) 20-slot motor 

supplied with combined sinusoidal and third harmonic, (c) 40-slot single layer motor 
supplied as BLDC, (d) 40 slots single layer motor supplied with combined fundamental 

and third harmonic, (e) 40-slot double layer motor supplied with sine currents. 
 

From figures 2-15 and 2-19, the developed torque by five-phase 20-slot and 40-slot 

single layer motors are higher than that of the three-phase 36-slot and five-phase double 

layer 40-slot PMSM motors. 

Figure 2-20 shows the torque-angle curve for 40-slot single layer motor when 

supplied with combined fundamental and third harmonic of rated and 50% of  the rated 

current.  Figure 2-21 presents the flux densities in the stator tooth and the stator back 

iron for the proposed 5-phase, 40-slot, single layer PM motor supplied with combined 

fundamental and third harmonic of currents.  The tooth and back iron flux densities of 

other motors have been calculated and presented in Table 2-3 together with the average 
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torque and torque ripple of all the motors.   

 

 

Figure 2-20   Torque versus load angle curves for rated and 50% of the rated currents. 

 

 

Figure   2-21    (a) Tooth flux density, and (b) back iron flux density of 40 slots motor 
supplied with combined fundamental plus third harmonic of currents. 
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The developed torque can be computed using d-q transformation as explained in 

Section II.  The results of digital computer simulations have been summerized in Table 

2-3 as well. As can be seen from the table, the five-phase 20-slot motor supplied with the 

combined fundamental plus third harmonic of currents produce about 17.3 % more 

torque with respect to the original three-phase PMSM motor. 

The proposed five-phase, 40-slot motor supplied with the fundamental plus third 

harmonic of currents produces about 14.5%  more torque than the original three-phase 

motor.  The proposed five-phase motor (supplied with combined fundamental plus third 

harmonic of currents) have 10%  more torque than the five-phase PMSM motor . The 

five-phase 20-slot and 40-slot single layer motors generate almost the same output 

torque when supplied with combined fundamental and third harmonic of current and 

current pulses of 144 degrees. However those supplied with combined fundamental and 

third harmonic of current have better controllability due to vector control. 

 Also, it is noted that the tooth and the back iron flux densities in the proposed motor 

are lower  than  the  PMSM counterpart. In  all cases, the flux densities in the tooth and 

back iron are within the acceptable range.  The table also shows the torque ripple for all 

the motors.  As expected, the torque ripple of the five-phase motors are lower than that 

of the three-phase and have higher frequencies. The last column of the table shows the 

torque computed using the d-q model.  From the table, it can be realized that the torque 

values agree well with those calculated using the finite element package. 

 It should be mentioned that the percentages of torque improvement of five-phase 20-

slot and 40-slot motor with respect to that of the three-phase 36-slot motor is in fact a 
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few percent lower than those numbers calculated above since the effect of end windings 

lengths has been neglected.  Considering the effect of end windings on the number of 

turns, the torque improvement of the proposed five-phase 40-slot motor with respect to 

the three-phase motor decreases from 14.5% to 12.4%.  It is expected that the torque 

improvement of the five-phase, 20-slot motor compared to the 36-slot motor which 

initially was calculated to be 17.3% should also drop by a few percent after considering 

the end windings effect. 

Figure 2-22 shows the result from dynamic simulation in Matlab/Simulink when the 

motor speeds up, reaches to steady states and slows down. Vector control in 1d - 1q - 3d -

3q -n frame of reference was applied to the motor. As it is clear from the figure, the 

proposed algorithm is implemented successfully. 

 

Table 2-3 Summary of simulation results 

Motor type Current 

type 

Ave. torque 

from FE 

Torque 

ripple 

Tooth flux 

density 

Back-iron 

flux density 

Ave. torque 

from d-q model 

3 phase 36 slots Sine 42.62 6.37% 1.54 1.57 43.31 

3. phase12 slots o120  pulses 46.9 8.5% 1.53 1.567 47.1 

5 phase 20 slots o144 pulses 49.6 4% 1.551 1.492 50.12 

5 phase 20 slots Sine+3rd h 50 3.86% 1.558 1.498 50.9 

5 phase 40 slots single layer o144 pulses 48 4.3% 1.545 1.484 48.7 

5 phase 40 slots single layer Sine+3rd h 48.8 3.72% 1.55 1.49 49.5 

5 phase 40 slot double layers Sine 44.2 3.4% 1.56 1.5070 44.6 
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Figure 2-22   From top to bottom, reference speed,  phase current, actual speed, output 
torque, 1qi  and 3qi . 

 

G.    Experimental Results 

The five-phase permanent magnet motor has been fabricated in the laboratory.  

Figure 2-23 shows the rotor made from small pieces of loaf magnets and the five-phase 

stator. The motor is 4-pole, 7.5 hp,  230 V, 20 A. The magnet type is Nd-Fe-Br of type 
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35EH with Br=1.21 Tesla. The stator has 40 slots. Five-leg IGBT-based inverter has also 

been fabricated in the laboratory. The TMS320C32 floating point digital signal 

processor (DSP) is used to implement the digital control. Phase currents are being sensed 

through four current sensors. An encoder provides the position information and a DC 

generator is being used as a load. Figure 2-24 shows the hardware diagram. The control 

algorithm is based on figure 2-12. 

 

 

Figure 2-23   Rotor and stator of the 5BPM during assembly. 
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Figure 2-24   Hardware diagram 

 

This motor is supplied with combined sinusoidal and third harmonic of currents. 

Figure. 2-25 shows the current waveform and the produced output torque of the motor. 

The rms value of the current in this case is 1.4 A, and the developed torque is 7 Nm. The 

torque obtained from the finite element package under the same condition is 6.84 Nm. 

Figure 2-26 shows the torque-angle curve of the motor under rated and 50% of the rated 

current. This figure is in good agreement with figure 2-20 which has been obtained from 

the finite element study. For the rated current, the peak torque from finite element is 50.6 

Nm and from experiment is 51.1 Nm. For 50% of the rated current, the peak torque from 

finite element is 25.1 Nm and from experiment is 25.4 Nm. The tooth flux density and 

the back iron flux densities have also been monitored and are shown in figure 2-27. It is 

clear from these figures that these two waveforms are in good agreement with those 

obtained from the finite element shown in Figures (2-21-a) and (2-21-b).  



 

 

61

 

Figure 2-25   From top to bottom: Stator phase current and output torque. 

 

Figure 2-26   Torque versus load angle curve. 
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Figure 2-27   Top to bottom: Back iron and tooth flux densities. 

 

To show the efficient performance of synchronous frame current regulators, frequent 

changing the command current from +5A to -5A has been considered. Switching interval 

from +5A to –5A is about 1sec. As shown in figures 2-28 to 2-31, all synchronous frame 

current components, 3311 ,,, qdqd IIII , can be regulated as ripple-free dc components in 

the steady state. 

Figures 2-32 to 2-37 show the performance of the motor under closed loop speed 

control during 2 seconds and while the motor is operating below the rated speed. The 

speed change is from 300 rpm to -300 rpm at 1 second. Figure 2-32 shows the reference 

speed and actual speed for forward and backward operations. Figures 2-33 to 2-37 show 

the reference values of  3311 ,,, qdqd IIII  which are the output of the speed controllers and 

their actual values. Figure 2-37 shows the phase a and phase b currents. 
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Figure 2-28   Reference and actual 1qi  when speed loop is open. 

 

Figure 2-29   Reference and actual 1di  when speed loop is open. 
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Figure 2-30   Reference and actual 3qi when speed loop is open. 

 

Figure 2-31   Reference and actual 3di  when speed loop is open. 
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Figure 2-32   Reference speed and actual speed. 
 

 
 

Figure 2-33   Reference and actual 1qi under closed speed loop control. 
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Figure 2-34   Reference and actual 1di  under closed speed loop control. 

 
 

 
Figure 2-35   Reference and actual 3qi  under closed speed loop control. 
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Figure 2-36   Reference and actual 3di  under closed speed loop control. 

 

 
Figure 2-37   Phase a and b currents. 
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H. Conclusion 

This chapter analyzed a new five-phase permanent magnet motor, which has near 

trapezoidal back-EMF and is supplied with the combined fundamental plus third 

harmonic of currents. The mathematical model of the motor has been derived in 

nqdqd 3311  frame of reference. From the mathematical model it was understood that 

vector control algorithm can be easily implemented and the output torque of the motor is 

increased. Through simulation, it was shown that this motor while having almost the 

same torque density of a BLDC motor, benefits from controllability of a PMSM due to 

its compatibility with vector control technique. Experimental results are provided to 

validate the theoretical findings.  
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CHAPTER III 

FAULT TOLERANT OPERATION OF PERMANENT MAGNET MOTOR 

DRIVES* 

 

A. Introduction 
 

Due to additional degrees of freedom, five-phase motors have better reliability 

compared to conventional three-phase motors. In this chapter, a control strategy that 

provides fault tolerance to five-phase permanent magnet motors is introduced. In this 

scheme, the five-phase permanent magnet (PM) motor continues operating safely under 

loss of up to two phases without any additional hardware connections and just by 

modifying the control algorithm. This feature is very important in traction and 

propulsion applications where high reliability is of major importance. The five-phase 

PM motors with sinusoidal and quasi-rectangular back-EMFs have been considered. To 

obtain the new set of phase currents to be applied to the motor during fault in stator 

phases or inverter legs, the produced MMF by the stator is kept constant under healthy 

and faulty conditions for both cases. Simulation and experimental results are provided to 

verify that the five-phase motor continues operating continuously and steadily under 

faulty conditions. It is worth mentioning that for a three-phase motor to continue 

                                                 
* Copyright  2004 IEEE. Reprinted, with permission, from “Fault-Tolerant Five-Phase Permanent Magnet Motor 
Drives” by L. Parsa and H. A. Toliyat, Conference record of IEEE-IAS Annual Meeting, 2004, pp. 1048 – 1054. This 
material is posted here with permission of the IEEE.  Such permission of the IEEE does not in any way imply IEEE 
endorsement of any of the products or services of the Texas A & M University.  Internal or personal use of this 
material is permitted.  However, permission to reprint/republish this material for advertising or promotional purposes 
or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws 
protecting it. 
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operating under loss of one phase, a divided dc bus and neutral connection are required. 

In other words, a zero sequence component is necessary to provide an undisturbed 

rotating MMF after one phase is lost. In five-phase motor drives, the zero-sequence 

current is no longer a necessary component under the fault conditions. From a reliability 

standpoint, the zero sequence currents have been shown to have detrimental effects on 

motor bearing failure, reduce the reliability and increase the maintenance cost of the 

motor. The developed current control strategy in this chapter eliminates the use of a 

neutral line and provides the same rotating MMF to ensure that the motor is running as 

smoothly as it was during the normal operations. Load adjustment is needed to avoid 

over currents especially in case of loss of two phases. Simulation and experimental 

results will be presented to support the validity of the proposed fault tolerant scheme.  

 

B.    Fault Tolerant Operation of Five-Phase PMSM  

In this part, fault tolerant operation of PM motor with sinusoidal winding distribution 

and sinusoidal phase currents is discussed. The space phasors of the five-phase currents 

in healthy condition is shown in figure 3-1. The stator phases MMFs are as follows: 
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Figure 3-1   Space vector of the currents in healthy condition. 

 

Ns is the total number of turns for each phase, φ  is the spatial angle and θ=ωt. Im is 

the amplitude of phase current.  The stator total MMF is the sum of MMFs of all the 

phases:  

),(),(),(),()(),( θφθφθφθφθφθφ edcbat MMFMMFMMFMMFMMFMMF +++++= (3-2) 

which is given as: 
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The above equation can be rewritten as: 
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The total MMF can be also written as: 
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Based on (3-4) and (3-5), the following can be obtained:  
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If phase “a” is open as a result of a device failure or a fault in the phase windings , a 

forward rotating field can be still obtained by setting ai  to zero in (3-6) and keeping the 

MMF unchanged. Assume: 

'''' ; ecdb iiii −=−=       (3-7) 

The currents in the remaining phases are found to be: 
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Figure 3-2 shows the phasor diagram of the desired currents.  
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Figure 3-2   Phasor diagram of the desired currents for the remaining four healthy phases 
when phase “A” is open. 
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In this case, the fundamental current amplitude of the healthy phases needs to be 

increased up to 1.382 time of the initial value when all the five phases are functional.   

Similar to the previous case, if both phase-a and phase-b are simultaneously lost, 

then considering that the sum of currents should be zero, the remaining three-phase 

currents are calculated as: 
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Figure 3-3 shows the phasor diagram of the desired currents. 

 MMF distributions in time and space for the healthy condition is shown in figure 3-

4a. Figure 3-4b shows the MMF distribution in time and space when phase “a” is lost 

and no current control has been performed, and figure 3-4c shows the MMF distribution 

when the newly obtained currents have been applied to the motor. It is clear from the 

figure 3-4c that the MMF distribution is exactly the same as the MMF in the healthy 

condition of Figure 3-4a. Figures 3-4d and 3-4e show the MMF distribution before and 

after applying the new set of currents when both phases “a” and “b” are lost. Again it is 

clear from the figure 3-4e that the MMF distribution is exactly the same as the MMF in 

the healthy condition of Figure 3-4a. Therefore, if one or two phases are open-circuited, 

fault-free control is possible. 
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Figure 3-3   Phasor diagram of the desired currents for the remaining three healthy 
phases when phase “A” and “B” are open. 

 

 

                      a                                               b                                          c 

 

                                                 d                                            e                                             

Figure 3-4   MMF distribution of, (a) healthy condition, (b) phase a is lost without 
current control, (c) phase a is lost with current control, (d) phase a and b are lost without 

current control, (e) phase a and b are lost with current control. 
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To have a fault tolerant drive, the control software should be adopted to implement 

the fault tolerant algorithm without adding any additional hardware. Open circuit fault of 

each phase can be detected through the associated current sensor then the control scheme 

should switch to fault tolerant control algorithm. Figure 3-5 shows the control block 

diagram of the fault tolerant five-phase motor.  Consider *
qsI  and *

dsI  correspond to 

torque and flux producing current commands. Now, if phase-a is open, the remaining 

current commands *
bsi , *

csi , *
dsi  and *

esi  are given by, 
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If phase-a and -b are both open, the remaining reference currents will be: 

))
5

2sin()
5

2cos((2361.2 *** πθπθ −+−= dsqscs IIi       (3-17) 

))
5

4sin()
5

4cos((618.3 *** πθπθ +++= dsqsds IIi      (3-18) 

)sincos(2361.2 *** θθ dsqses IIi +=        (3-19) 

Similar procedure should be followed when any other of phases are open. 
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Figure 3-5   Control block diagram of fault tolerant system. 

 

C.   Fault Tolerant Operation of Five-Phase Permanent Magnet Motor Supplied 

with Combined Fundamental Plus Third Harmonic of Currents  

As previously mentioned, this motor has concentrated windings. In order to simplify 

the modeling, only the fundamental and the third harmonic components of the winding 

function are taken into account. This motor is supplied with combined fundamental and 

third harmonic of the current. The phasor diagram of the phase currents in healthy 

condition is shown in figure 3-6. 

The MMFs in the five-phase permanent magnet motor supplied with the fundamental 

plus third harmonic of currents are as follows:  
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Ns is the total number of turns for each phase, φ  is the spatial angle and θ=ωt.  Im1 

and Im3 are the amplitudes of fundamental and third harmonic of current. The amplitude 

of third harmonic of current in this study is considered to be 15% of the fundamental 

component. 

 

Figure 3-6   Space vector diagram of the fundamental and the third harmonic 
currents. 



 

 

78

The stator total MMF will be: 

),(),(),(),()(),( θφθφθφθφθφθφ edcbat MMFMMFMMFMMFMMFMMF +++++= (3-25) 

and finally, 
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As it is clear from the equations, the total MMF is the result of fundamental 

component of time flowing in the fundamental component of space and third harmonic 

component of time flowing in the third harmonic component of space. The interaction of 

fundamental component of time flowing in the third harmonic component of space and 

vice versa does not appear in the total MMF when the motor is operating under healthy 

condition. It should be noted that in general, only same order harmonics of time and 

space contribute to torque production and space and time harmonics of different order 

produce pulsating torque. The total torque producing MMF can also be written as: 
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Based on (3-27) and (3-28), the following can be obtained:  
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Figure 3-7 shows the fundamental and third harmonic MMF distributions in time and 

space for the healthy condition. If phase “a” is open resulting from power electronic 

device failures or motor windings, a rotating field can still be obtained by setting 1ai  and 

3ai  equal to zero and keeping the torque producing MMF unchanged. Assuming: 
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The currents in the remaining phases are: 
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Figure 3-8 shows the phasor diagram of the desired currents.  

Figure 3-9a shows the MMF distribution in time and space when phase “a” is lost 

and no current control has been performed, and figure 3-9b shows the MMF distribution 

when the newly obtained currents have been applied to the motor. It is clear from the 

figure in the second case that the fudamental and third harmonic MMF distribution are 
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exactly the same as the fundamental and third harmonic MMF in the healthy condition 

of Figure 3-7. 

 

 

 

Figure 3-7   Fundamental and third harmonic of MMF in healthy condition. 
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Figure 3-8   Phasor diagram of the currents for the remaining four healthy phases when 
phase “A” is open. 

 

 

  Therefore, if in a five-phase permanent magnet motor, one phase is opened, the 

currents in the remaining four phases is still able to maintain an undisturbed torque 
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producing MMF, which can be used to control the electromagnetic torque of the motor. 

The fundamental and third harmonic current amplitudes of the healthy phases should be 

adjusted to 1.382 and 3.618 times of the initial values under healthy condition.  

Similar to the previous case, if both phase-a and phase-b are simultaneously lost, the 

remaining reference currents will be: 
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Phasor diagram of the desired currents are shown in figure 3-10. In this case, if we draw 

the MMF distribution before and after applying the new set of currents similar results 

will be observed. 
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a 

      

b 

Figure 3-9   Fundamental and third harmonic MMF when phase-a is lost, (a) without any 
current control, (b) with applying the obtained currents. 

 
 

 

Figure 3-10   Phasor diagram of the desired currents for the remaining three healthy 
phases when both phases "A" & "B" are open. 
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In this case, again the control software should switch to fault tolerant algorithm in 

case of failure.  The control process is similar to the one shown in Figure 3-5 but current 

calculator block should compute *
1qsI , *

1dsI , *
3qsI  and *

3dsI . Consider *
1qsI , *

3qsI  and *
1dsI , *

3dsI  

correspond to torque and flux producing current commands, now if phase-a is open, the 

remaining current commands *
bsi , *

csi , *
dsi  and *

esi  are given by, 
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In the case that both phase-a and phase-b are open, the reference currents, *
csi , *

dsi  and 

*
esi , are redefined as: 
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D.  Results   

Experiments were done on the five-phase permanent magnet motors fabricated in our 

laboratory and the TMS320C32 DSP was used to implement the digital control. Figures 

3-11 and 3-12 show the experimental results related to the five phase permanent magnet 
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motor which has sinusoidal back-EMF and is supplied with sinusoidal current. Figure 3-

11 shows the motor speed, phase-a, and phase-b and c currents when phase-a is open 

circuited. As it is clear from the figure, the speed remains unchanged. Figure 3-12 shows 

the motor speed, phase-b, and phase-c and d currents when both phase-a and phase-b are 

open circuited.  Like the previous case, the speed remains unchanged. It can be easily 

noticed that the amplitude of phase-d current is relatively high. Practically, it is 

impossible for the motor to run for a long time under such high current circumstances. 

Therefore, proper adjustment of the speed and load must be made so that the stator 

currents do not overtake the rated currents. However, in this experiment the motor is 

lightly loaded and therefore no adjustment of speed and load has been done. Figures 3-

13 and 3-14 show the experimental results related to a five-phase permanent magnet 

motor which has quasi-rectangular back-EMF and is supplied with combined sinusoidal 

and third harmonic of currents. Figure 3-13 shows the motor speed, phase-a, and phase-b 

and c currents when phase-a is open circuited. As it is clear from the figure, the speed 

remains unchanged. Figure 3-14 shows the motor speed, phase-b, and phase-d currents 

when both phase-a and phase-b are open circuited.  Like the previous case, the speed 

remains unchanged. It can easily be noticed that again the amplitude of phase-d current 

is relatively high.  
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Figure 3-11   Motor speed, phase-a and phase-b and c currents phase-a is opened after a 
while (3A/div). 

 

 

 

Figure 3-12   Motor speed, phase-b and phase-c  and d currents, phase-b is opened after a 
while (6A/div). 

 



 

 

86

 

Figure 3-13   Motor speed, phase-a and phase-b and c currents phase-a is opened after a 
while (5A/div). 

 

 

 

 

Figure 3-14    Motor speed, phase-b and phase-d  currents, phase-b is opened after a 
while (10A/div). 
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E.    Conclusion 

In this chapter, the fault tolerant operation of five-phase permanent magnet motors 

was studied. The permanent magnet motors in this study had either sinusoidal back-EMF 

and were supplied with sinusoidal current or had quasi-rectangular back-EMF and were 

supplied with combined fundamental and third harmonic of currents. The new sets of 

stator currents to keep the total MMF unchanged were introduced in case of loss of one 

or two phases. The proposed control scheme eliminates the need for a neutral line which 

is a requirement for fault tolerant operation of three-phase motors. It can be simply 

implemented by adjusting the control scheme through software modifications without 

any requirement for additional hardware when the faults occur. The motor speed and 

average torque are almost unaffected. In case that the two phases are open, the shaft 

speed and load need to be adjusted in order to reduce the stator currents to ensure that 

the stator currents do not exceed their rated values. Simulation and experimental results 

have been included to verify the possibility of the control scheme.  
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CHAPTER IV 

SPEED SENSORLESS DIRECT TORQUE CONTROL OF FIVE-PHASE 

INTERIOR PERMANENT MAGNET MOTOR* 

 

A.  Introduction 

Direct torque control scheme has been first proposed and implemented for induction 

machines [52, 53]. The same concept has been extended to synchronous machines. 

Direct torque control of three-phase permanent magnet motor, which has been developed 

in the recent decade [54-57], is a powerful control method for motor drives. Featuring 

direct control of the stator flux and torque instead of the conventional current control 

technique, it provides a systematic solution to improving operating characteristics of not 

only the motor but also the voltage source inverter. Basically, the DTC method is based 

on the instantaneous space vector theory. By optimal selection of the space voltage 

vectors in each sampling period, the DTC achieves effective control of the stator flux 

and torque.  

In this chapter, after pointing out the main advantages and drawbacks of DTC 

system, the mathematical model governing the five-phase interior permanent magnet 

motor will be introduced. Next, the speed sensorless direct torque control method of the 

five-phase interior permanent magnet motor and the associated switching vectors will be 

discussed. A five-phase interior permanent magnet motor and five-leg IGBT-based
                                                 
* Copyright  2004 IEEE. Reprinted with permission from “Sensorless Direct Torque Control of Five-Phase Interior 
Permanent Magnet Motor Drives” by L. Parsa and H. A. Toliyat, Conference record of IEEE-IAS Annual Meeting, 
2004, pp. 992 – 999. This material is posted here with permission of the IEEE.  Such permission of the IEEE does not 
in any way imply IEEE endorsement of any of the products or services of the Texas A & M University.  Internal or 
personal use of this material is permitted.  However, permission to reprint/republish this material for advertising or 
promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE 
by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the 
copyright laws protecting it. 
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inverter were designed and fabricated in the laboratory. The control method is 

implemented on a TMS320C32 digital signal processor board. Simulation and 

experimental results have been included to show the effectiveness of the five-phase DTC 

system. 

 

B. Advantages and Drawbacks of the DTC System  

DTC scheme has some potential advantages such as lesser parameter dependency 

and easier implementation of field weakening regime. The latter is because the stator 

flux linkages are being controlled directly in a DTC system.   

Another main feature of DTC scheme is that current controllers are not being 

employed to control the motor torque and fluxes. The absence of the d-q axes current 

controllers eliminates the need for coordinate transformation. Therefore using a position 

sensor in a DTC controlled drive is not crucial either. Whereas, in a vector controlled 

drive the position information is required in each instant of time. However, speed 

information is required in existence of a speed loop in the direct torque controlled drive.  

High torque and flux ripples are the major drawbacks of a DTC scheme. The reason 

is that the inverter keeps the same switching state as long as the outputs of flux and 

torque hysteresis controllers remain unchanged. Variable switching frequency is also 

another disadvantage. In a direct torque controlled drive, the switching frequency varies 

with speed, load torque, and bandwidth of flux and torque hysteresis controllers. The 

number of space voltage vectors and the switching frequency directly influence the 

performance of DTC control system. Recently, research has been done on reducing the 
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flux and torque ripple of DTC scheme by employing multi-level inverter which provides 

more voltage space vectors for controlling the flux and torque [58,59].  

A five-phase system, while benefiting from other advantages of high order phase 

systems, has inherently 32 space voltage vectors. Therefore, in a five-phase system the 

existence of 32 possible space voltage vectors; permits better flexibility in selecting the 

switching states and finer adjustment of flux and torque. Whereas, in a three-phase drive 

the control is being implemented by just 8 possible switching states.  

 

C. Mathematical Model of Five-Phase Interior Permanent Magnet Motor 

In this section, the mathematical model of the five-phase IPM in rotating (dq) and 

stationary (αβ) reference frames will be derived.   

1. Stator Voltages and Flux Linkages Equations 

The stator voltage equations are given by, 

dt
d sI sRsV s
Λ+=                      (4-1) 

where the airgap flux linkages are presented by, 

msss Λ+Λ=Λ      (4-2) 

or 

mI sLsss Λ+=Λ                                                   (4-3)

   

Rs, Is and Λs are the stator resistances, currents and flux linkages matrices, respectively. 
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mΛ  is the flux linking the stator due to the permanent magnet and considering sinusoidal 

distribution is defined by:  
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2. Stator Self and Mutual Inductances 
 

ssL  in (4-3) is the stator inductance matrix which contains the self and mutual 

inductances of the stator phases and varies with the rotor position due to the salient 

structure of the rotor.  

Using the winding functions method, windings inductance matrices can be obtained 

which are positions dependent. Considering sinusoidal distribution, winding functions of 

the five phases can be expressed as: 
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Figure 4-1 represents the generalized type of a two-pole, five-phase synchronous motor 

which has both permanent magnet and magnetic saliency in the rotor.  
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Figure 4-1   Generalized plan of a two-pole, five-phase IPM motor 

 

For the ideal model of a two-pole five-phase IPM motor with salient pole rotor, the 

inverse of air gap function is also shown in Figure 4-2. θ  is the rotor position.  
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Figure 4-2   Inverse air gap function. 



 

 

93

The Fourier's series of the inverse air gap function can be defined as:  
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where the constants are: 

)11(
2
1

1
ba gg

c +=       (4-11) 

 )11(2
2

ba gg
c −=

π
      (4-12) 

By employing the winding function method, phase "A" self inductance can be calculated 

as: 
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where 0µ  is the peameability of air, r  is the inner radius of stator, and l  is the stack 

length of rotor. Also: 

 2/Nna >=<    

where N  is the number of turns per coil.  

The five-phase self inductances are calculated  as: 
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Here, 
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Similarly, winding function is also employed to calculate the mutual inductances. 

Mutual inductance of phases "A" and "B" are calculated as: 
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Similarly, all the other mutual inductances are: 
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The self and mutual inductance matrix can be written as: 
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3. Stator Voltage and Flux Linkages in the Rotating Frame of Reference 

For simplifying the model, an arbitrary coordinate transformation is introduced, that 

transfers the variables of the five-phase motor into a reference frame rotating at an 

arbitrary angular velocity.  The transformation matrix for this system can be written as: 
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This transformation matrix has the following pseudo-orthogonal property:  

)(
2
5)(1 θθ tTT =−      (4-33) 

where T-1(θ) and Tt(θ) are the inverse and transpose matrices of T(θ), respectively.  

Therefore, the inverse transformation matrix is: 
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Figure 4-3 shows the coordinate systems used for this study.  (αβ) is the stationary 

two-phase reference frame. (dq) is the rotor flux reference frame and (xy) is the stator 

flux reference frame. Load angle δ is the angle between the stator and rotor flux 

linkages. During the steady states, δ  is constant for a specific load torque. During 

transients δ  varies and the rotational speed of the stator and rotor fluxes are different. 

By applying the above transformation to the stator inductance, voltages and flux linkages 

equations and torque, the following equations will be obtained in the synchronous 

rotating (q-d-z1-z2-z3) reference frame.   
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Figure 4-3   Stator and rotor flux linkages and different reference frames. 
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The stator inductance matrix is given by, 
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The stator flux linkages equations are given by, 

qsqqs iL=λ  

midsdLds λλ +=  

i szlsLsz 11 =λ      (4-36) 

i szlsLsz 22 =λ  
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The stator terminal voltage equations are, 
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4. Electromagnetic Torque 

The electromagnetic torque can be found using the well-known magnetic co-energy 

method as follows: 
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The above equation can be re-written as: 
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Based on the above two equations and the transformation matrix the electromagnetic 

torque can be obtained from, 
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where P is the number of poles and δ is the load angle. 

The stator voltage and torque equations of the five-phase IPM can also be obtained 

in the stationary reference frame and are as follows: 
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Therefore, the torque equation will be: 
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D. Speed Sensorless Direct Torque Control of Five-Phase IPM Motor Drives 

In this part speed sensorless direct torque control of five-phase IPM motor drives is 

discussed. As mentioned earlier, high torque and flux ripple are major drawbacks of 

DTC system. A five phase system has more space voltage vectors compared to a three-

phase system. Therefore better adjustment of flux and torque is possible. 

1. Switching States 

 
In the five-phase inverter shown in Figure 4-4, each leg switching function, that is 

called edcba SSSSS ,,,, , can take either 1 or 0 value based on the state of the upper or lower 

switch. If the upper switch is on then the switching function assumes a value of 1, else 0.   

Thirty-two switching combinations can be considered for a five-phase inverter with 

different amplitudes as shown in Table 4-1 and 4-2. They consist of two zero voltage 

vectors and thirty non-zero space voltage vectors as shown in figure 4-5. 

The 32 space voltage vectors are composed of three sets of different amplitude 

vectors, and divide the switching plane pattern into 10 sectors as shown in Figure 4-6.  

Each sector is 5π  radian. The ratio of the amplitudes of the voltage vectors is 



 

 

101

2618.1:618.1:1  from the smallest one to the largest one, respectively. However, it is clear 

that only one switching is needed from one vector to either of the two nearby vectors for 

the largest decagon, as shown in Figure 4-5. Therefore, for minimizing the switching 

loss it is better to use this decagon. The other two decagons are being used when finer 

adjustment of the stator flux and torque are needed. 

Position information of the stator flux linkages space vector is needed to define the 

required sector. The proper voltage vector should be applied based on the stator flux and 

torque errors with respect to their reference values. 
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Figure 4-4   Five-phase PWM inverter. 
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Table 4-1. Switching states 

 Se Sd Sc Sb Sa 

0 0 0 0 0 0 
1 0 0 0 0 1 
2 0 0 0 1 0 
3 0 0 0 1 1 
4 0 0 1 0 0 
5 0 0 1 0 1 
6 0 0 1 1 0 
7 0 0 1 1 1 
8 0 1 0 0 0 
9 0 1 0 0 1 

10 0 1 0 1 0 
11 0 1 0 1 1 
12 0 1 1 0 0 
13 0 1 1 0 1 
14 0 1 1 1 0 
15 0 1 1 1 1 
16 1 0 0 0 0 
17 1 0 0 0 1 
18 1 0 0 1 0 
19 1 0 0 1 1 
20 1 0 1 0 0 
21 1 0 1 0 1 
22 1 0 1 1 0 
23 1 0 1 1 1 
24 1 1 0 0 0 
25 1 1 0 0 1 
26 1 1 0 1 0 
27 1 1 0 1 1 
28 1 1 1 0 0 
29 1 1 1 0 1 
30 1 1 1 1 0 
31 1 1 1 1 1 
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Table 4-2. Voltage vectors 

 Ve Vd Vc Vb Va V 
0 0 0 0 0 0 0 
1 -1/5 -1/5 -1/5 -1/5 4/5 0.4 0∠  
2 -1/5 -1/5 -1/5 4/5 -1/5 0.4 5/2π∠  
3 -2/5 -2/5 -2/5 3/5 3/5 0.647 5/π∠  
4 -1/5 -1/5 4/5 -1/5 -1/5 0.4 5/4π∠  
5 -2/5 -2/5 3/5 -2/5 3/5 0.247 5/2π∠  
6 -2/5 -2/5 3/5 3/5 -2/5 0.647 5/3π∠  
7 -3/5 -3/5 2/5 2/5 2/5 0.647 5/2π∠  
8 -1/5 4/5 -1/5 -1/5 -1/5 0.4 5/4π−∠  
9 -2/5 3/5 -2/5 -2/5 3/5 0.247 5/2π−∠  

10 -2/5 3/5 -2/5 3/5 -2/5 0.247 5/4π∠  
11 -3/5 2/5 -3/5 2/5 2/5 0.247 5/π∠  
12 -2/5 3/5 3/5 -2/5 -2/5 0.647 π∠  
13 -3/5 2/5 2/5 -3/5 2/5 0.247 π∠  
14 -3/5 2/5 2/5 2/5 -3/5 0.647 5/4π∠  
15 -4/5 1/5 1/5 1/5 1/5 0.4 5/3π∠  
16 4/5 -1/5 -1/5 -1/5 -1/5 0.4 5/2π−∠  
17 3/5 -2/5 -2/5 -2/5 3/5 0.647 5/π−∠  
18 3/5 -2/5 -2/5 3/5 -2/5 0.247 0∠  
19 2/5 -3/5 -3/5 2/5 2/5 0.647 0∠  
20 3/5 -2/5 3/5 -2/5 -2/5 0.247 5/4π−∠  
21 2/5 -3/5 2/5 -3/5 2/5 0.247 5/π−∠  
22 2/5 -3/5 2/5 2/5 -3/5 0.247 5/3π∠  
23 1/5 -4/5 1/5 1/5 1/5 0.4 5/π∠  
24 3/5 3/5 -2/5 -2/5 -2/5 0.647 5/3π−∠  
25 2/5 2/5 -3/5 -3/5 2/5 0.647 5/2π−∠  
26 2/5 2/5 -3/5 2/5 -3/5 0.247 5/3π−∠  
27 1/5 1/5 -4/5 1/5 1/5 0.4 5/π−∠  
28 2/5 2/5 2/5 -3/5 -3/5 0.647 5/4π−∠  
29 1/5 1/5 1/5 -4/5 1/5 0.4 5/3π−∠  
30 1/5 1/5 1/5 1/5 -4/5 0.4 π∠  
31 1 1 1 1 1 0 
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Figure 4-5   Thirty non-zero switching states for the five-phase interior permanent 
magnet motor drive. 
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Figure 4-6   Thirty non-zero switching vectors and 10 sectors. 
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For example, suppose that the stator flux linkages vector is in the first sector (Figure 

4-6) and only the large decagon is considered. Now, if the flux has to be increased (FI) 

and the electromagnetic torque has to be positive (TP), then the switching voltage vector 

to be selected is V2. On the other hand, if the stator flux linkages have to be increased 

(FI) and the electromagnetic torque needs to be negative (TN), then vector V10 has to be 

selected. However, if the stator flux linkages has to be decreased (FD) and the 

electromagnetic torque needs to be positive (TP), vector V5 is going to be selected. 

Similarly, if the stator flux linkages has to be decreased (FD) and the electromagnetic 

torque has to be negative (TN), vector V7 is going to be applied. The voltage vectors 

located on the other two decagons have similar effects with respect to the larger 

decagon.  

Based on the above, the increased number of space voltage vectors allows the 

generation of a more elaborate switching vector table in which the selection of the 

voltage vectors is made according to real-time variation of the stator flux and torque. 

Moreover, the different amplitudes of voltage vectors provide increased possibility to 

minimize the ripple in the stator flux and torque. Table 4-3 shows the optimum 

switching voltage vector look-up table. In this table, dψ = 1 stands for FI, dψ = -1 for 

FD, dTe = 1 for TP, and dTe = -1 for TN.  

2. Calculating the Torque and Flux 

Direct torque control of the five-phase IPM motor is being achieved based on the 

phase currents and the dc bus voltage measurements. According to (4-44), the stator flux 

linkages in the stationary reference frame can be obtained as: 
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Table 4-3. Optimum active voltage vector look-up table.  
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dtirv s )( βββλ −= ∫      (4-48) 

where: 
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Stator flux linkage is defined by its magnitude and position as: 

sss λλλ p=   ,        (4-50) 

where 

22
βα λλλ +=s   ,  

α

β

λ
λ

λ 1tan−=sp      (4-51) 

The electromagnetic torque as derived in (4-46) is given by, 
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)(
22

5
αββα λλ iiPTem −=      (4-52) 

3. Speed and Position Estimations 

Using a position sensor to obtain speed and position information will cancel one of 

the main advantages of the DTC scheme which is eliminating the position sensor and 

increases the cost, reduces the reliability and increases the number of connection 

between the motor and control interface. Therefore, it is of great importance to have a 

DTC drive with soft position sensor. 

Techniques for sensorless control of IPM motors are based on five main categories: 

• inductance variations 

• flux estimators 

• high frequency injection 

• back-EMF detection 

• state observers 

Also, combinations of two different methods during low speed and high speed 

operations has been reported for IPM motor drives. Some of the methods indicated 

above, have been employed on three-phase permanent magnet motors DTC systems [60-

62].  It seems that calculating position information and speed through flux estimators is 

easier to implement and less parameter dependent. 

As mentioned earlier the electromagnetic torque can be also given by (4-42).  

Calculating the torque from (4-52), the load angle δ can be obtained from (4-42), and 

therefore the rotor position will be, 
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δλθ −= sp       (4-53) 

The rotor angular speed can be calculated as: 

dms
s

dt
d

dt
d

dt
d ωωδλθω −=−==      (4-54) 

where msω  is the speed of the stator flux linkages vector relative to the stator and dω  is 

its speed relative to the rotor. In steady state condition, dω  is equal to zero. If the rate of 

change of the torque is small, dω  will be negligible. The calculated speed based on (4-

54) should be filtered. 

Figure 4-7 shows the block diagram of the five-phase DTC system. This system 

consists of three basic functions. They are: the IPM model which estimates the actual 

torque, stator flux linkages and shaft speed, the two level hysteresis controllers in which 

the torque and flux references are compared with the actual quantities calculated in the 

motor model, and the optimal switching logic which translates the controller outputs into 

the appropriate commands for the power switching devices.   

 

E. Simulation and Experimental Results 

Simulations have been performed in Matlab/Simulink to verify the feasibility of 

speed sensorless direct torque control of five-phase interior permanent magnet motor. 

Simulation has been accomplished for various cases without and with a speed loop. 

Figure 4-8 shows the torque response of the IPM motor to the frequent step change of 

command torque. Figure 4-9 shows the torque response under no load condition and 

triangular reference speed.  
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Figure 4-7   Block diagram of five-phase DTC system. 

 

Figure 4-10 shows the simulation results, when the command speed ramps up, 

reaches steady state, slows down and reverses the direction under load and load removal. 

Figure 4-11 shows the stator flux in the stationary reference frame for this case. It is 

therefore understood that the five-phase DTC system provides fast torque response and 

fast speed reversing operation. As it is clear from the figure 4-11, the stator flux follows 

a predetermined path and as expected the trajectory of stator flux linkages in the 

stationary reference frame is a circle. Figure 4-12 shows the actual and estimated motor 

speed based on the stator flux position and load angle. From the figure, the actual and 

estimated speeds agree well with each other.   
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Figure 4-8   Command torque and actual torque. 

 

-500

0

500

W
re

f (
rp

m
)

-500

0

500

W
r (

rp
m

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-5

0

5

Te
 (N

m
)

Time(sec)
 

Figure 4-9   Command speed, estimated shaft speed and developed torque under no load 
condition. 

 



 

 

111

-500

0

500

W
re

f (
rp

m
)

-500

0

500

W
r (

rp
m

)

0

5

10

TL
 (N

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
5

10
15

Te
 (N

m
)

Time(sec)
 

Figure 4-10   From top to bottom: reference speed, shaft speed, load torque and the 
electromagnetic torque. 
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Figure 4-11   From top to bottom: α- and β-axes stator fluxes versus each other and 
versus time. 
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Figure 4-12   Shaft estimated and actual speed. 

 

A five-phase IPM motor and a five-leg IGBT-based inverter were designed and 

fabricated in the lab. Table 4-4 shows the motor parameters. Figure 4-13 shows the cross 

section of the five-phase IPM motor with 15 stator slots. There are 3 coils for each 

phase. The magnets are Nd-Fe-Br. Figure 4-14 shows the experimental setup. 

The control algorithm is being implemented on the TMS320C32 digital signal 

processor board. The dc bus voltage of the inverter and four phase currents are 

monitored through voltage isolator device and four current sensors and are fed to the 

analog-to-digital (ADC) channels for calculating the developed torque and stator flux. 

Figure 4-15 shows the calculated flux in the stationary reference frame. Figure 4-16 

shows the α -axis flux versus β -axis flux that is a circle. Figure 4-17 shows the 

estimated position and estimated speed during steady state and in the speed of 1200 rpm. 
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Figure 4-18 shows the estimated and actual speed as the motor speeds up and reaches its 

steady state value, as it is clear from the figure estimated speed and actual speed agree 

well with each other. 

                       

Table 4-4. Motor parameters. 

d-axis inductance 0.180 mH 

q-axis inductance 0.420 mH 

Stator resistance 0.7Ω  

Rated voltage 120V 

Rated power 3KW 

Number of poles 4 

    

 

 

Figure 4-13   Cross section of five-phase IPM motor. 
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Figure 4-14   Experimental set up. 

 

 

Figure 4-15   Stator flux linkages in the stationary frame. t:  5 ms/div ,  flux:  0.6 Wb/div 
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Figure 4-16   α -axis flux versus β -axis flux. flux: 0.3 Wb/div 

 

 

Figure 4-17   Estimated speed and position during steady state. t: 20ms/div, speed: 300 
rpm/div 
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Figure 4-18   Estimated speed and actual speed when the motor speeds up and reaches 
steady state. 

 

F. Conclusions  

In this chapter, the speed sensorless DTC was developed for a five-phase interior 

permanent magnet motor based on the phase currents and the dc bus voltage 

measurements. First, the mathematical models governing the operation of five-phase 

IPM motor in the rotating and stationary reference frames were given. Then, the direct 

torque control of the motor was developed. Position information and speed were 

estimated based on the stator flux position and the load angle. Therefore, the developed 

DTC system works based on the stator current and dc bus voltage measurements. Due to 

the better flexibility offered by the 32 voltage vectors, better control of the stator flux 

and torque is achievable. Simulation and experimental results were included to verify the 

feasibility of the five-phase DTC system for IPM motor.  
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CHAPTER V 

CONCLUSIONS AND FUTURE RESEARCH WORK 

 

A. Conclusions 

Five-phase motors are a viable alternative for three-phase motors. They have several 

advantages such as reducing the current per phase without increasing the voltage per 

phase, lowering the DC link harmonic, higher torque density, reducing the amplitude and 

increasing the frequency of torque pulsation and better reliability. Due to their additional 

degrees of freedom, these motors provide some other unique characteristics to the drive 

designer.  

BLDC motors are known to have higher toque density compared to PMSM at low 

and medium speeds. However, PMSM have better controllability over a wider speed 

range because of the compatibility with vector control. In Chapter II, additional degrees 

of freedom in multi-phase machine have been used to inject higher order harmonics of 

current and enhance the torque producing capability of the machine. Third harmonic of 

current have been injected in a five-phase permanent magnet machine with quasi-

rectangular back-EMF. From torque density point of view, the proposed drive 

approximates the behavior of a permanent magnet brushless DC machine. Harmonic 

effects on the three and five-phase motors were investigated based on the Fourier 

analysis of corresponding winding functions and excitation currents. It has been shown 

that time and space harmonics of the same order will contribute positively to the output 
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torque. For modeling and analysis of the motor a 03311 qdqd  frame of reference has been 

defined where 11qd  rotates at synchronous speed and 33qd  rotates at the three times 

synchronous speed. Fundamental and third harmonic components will be the DC values 

in this new frame of reference. Vector control is easily applicable to this motor. 

Therefore, the drive benefits from controllability of PMSM configuration while having 

the same torque density of the BLDC drives. Finite element analysis has been used to 

show the superior torque producing capability of the proposed motor over its three and 

five-phase PMSM counterparts. In this analysis, the number of turns and slots widths 

have been adjusted to maintain almost same copper and iron losses in all the 

configurations. The finite element analysis also showed that this motor has the same 

torque producing capability of a BLDC. Dynamic simulation results in Matlab/Simulink 

show the good performance of the vector control applied to this motor. A 7.5 hp surface 

mount permanent magnet motor with magnet type of Nd-Fe-Br and concentrated 

winding has been built in the laboratory. The produced back-EMF of the motor is quasi-

rectangular. Five-leg IGBT-based inverter is used to drive the motor. The control 

algorithm has been implemented on TMS320C32 digital signal processor. Experimental 

results are in good agreement with the results obtained from the finite element method. 

Also, from the experimental results, it is clear that the vector control can be efficiently 

implemented on this drive. 

For a three-phase motor to continue operating safely in case of loss of one phase a 

divided DC bus and a neutral connection is needed. However, multi-phase motors are 

inherently fault tolerant. In chapter III, considering that degraded performance is better 
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than no performance, a control strategy is introduced which allows the motor running if 

up to two phases are open. The algorithm is based on keeping the stator MMF 

unchanged at faulty condition. This is possible by adjusting the currents in remaining 

healthy phases. The motor will continue operating safely under loss of up to two phases 

without any additional hardware and just by modifying the control algorithm. Speed and 

load adjustment should be considered to avoid large currents flowing in the motor 

phases. This feature will increase the reliability of the five-phase permanent magnet 

motor and is of major importance in some applications such as electric/hybrid electric 

vehicles and ship propulsion.  

In chapter IV, the direct torque control (DTC) was implemented on the five phase 

interior permanent magnet motor. DTC scheme has some potential advantages such as 

lesser parameter dependency and easier implementation of field weakening regime. The 

latter is because the stator flux linkages are being controlled directly in a DTC system. 

By using the introduced technique fast torque response with low ripple in the stator flux 

and torque of the five-phase interior permanent magnet motor can be achieved. The five-

phase DTC system has thirty-two space voltage vectors containing thirty non-zero and 

two zero vectors. Theses vectors divide the plane into ten sectors. Due to more flexibility 

in selecting the inverter switching states, the stator flux and torque can better be 

adjusted. There is no need for a position speed sensor for the introduced DTC method. 

Position information and speed are being estimated based on the position of the stator 

flux linkages and load angle. The mathematical model of the five-phase interior 

permanent magnet motor was first derived. Later, the speed sensorless direct torque 
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control method of the five-phase IPM was discussed. A five-phase interior permanent 

magnet motor was designed and built in the laboratory. The control method was 

implemented on a TMS320C32 digital signal processor board. The feasibility and 

effectiveness of five-phase DTC system was verified through simulation and 

experiments. 

 

B. Suggestions for Further Research 

1.  Designing a five-phase permanent magnet motor against short circuit faults is 

proposed as the future research work to increase the reliability of the five-phase system. 

In this work, proper algorithms were proposed such that the motor continues operating 

safely in case of open phase condition. Another major fault that happens within a drive 

quite frequently is the short circuit within the machine windings or power device. 

Special design consideration should be taken into account in order for the motor to be 

protected against short circuit faults. Also, optimal control strategies will be needed to 

avoid excessive torque pulsations after one phase or power device is shorted.  

2. Estimating the position and speed information is suggested for the high torque 

density five-phase PM motor discussed in chapter II. This feature will provide fault 

tolerance to the drive against position sensor failure. On the other hand, using a position 

sensor increases the cost, reduces the reliability and increases the number of connection 

between the motor and control interface. By properly estimating the speed and position 

information of the five-phase system discussed in chapter II, position sensor can be 

eliminated. 
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3.  Since the stator flux linkages are being controlled directly in a DTC system, 

implementation of field weakening regime will be much easier. On the other hand, 

interior permanent magnet motors are good candidates for high speed operations due to 

their robust structure. Based on the above, field weakening and high speed operation of 

the direct torque controlled five-phase interior permanent magnet motor is suggested as 

the future work.    
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