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ABSTRACT

Bayesian Regression Analysis with Longitudinal Measurements. (May 2005)

Duchwan Ryu, B.S., Korea University;

M.S., Korea University

Co–Chairs of Advisory Committee: Dr. Bani K. Mallick
Dr. Raymond J. Carroll

Bayesian approaches to the regression analysis for longitudinal measurements are

considered. The history of measurements from a subject may convey characteristics

of the subject. Hence, in a regression analysis with longitudinal measurements, the

characteristics of each subject can be served as covariates, in addition to possible other

covariates. Also, the longitudinal measurements may lead to complicated covariance

structures within each subject and they should be modeled properly.

When covariates are some unobservable characteristics of each subject, Bayesian

parametric and nonparametric regressions have been considered. Although covariates

are not observable directly, by virtue of longitudinal measurements, the covariates

can be estimated. In this case, the measurement error problem is inevitable. Hence,

a classical measurement error model is established. In the Bayesian framework, the

regression function as well as all the unobservable covariates and nuisance parameters

are estimated. As multiple covariates are involved, a generalized additive model is

adopted, and the Bayesian backfitting algorithm is utilized for each component of the

additive model. For the binary response, the logistic regression has been proposed,

where the link function is estimated by the Bayesian parametric and nonparametric

regressions. For the link function, introduction of latent variables make the computing

fast.

In the next part, each subject is assumed to be observed not at the prespecified
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time-points. Furthermore, the time of next measurement from a subject is supposed to

be dependent on the previous measurement history of the subject. For this outcome-

dependent follow-up times, various modeling options and the associated analyses

have been examined to investigate how outcome-dependent follow-up times affect

the estimation, within the frameworks of Bayesian parametric and nonparametric

regressions. Correlation structures of outcomes are based on different correlation

coefficients for different subjects. First, by assuming a Poisson process for the follow-

up times, regression models have been constructed. To interpret the subject-specific

random effects, more flexible models are considered by introducing a latent variable

for the subject-specific random effect and a survival distribution for the follow-up

times. The performance of each model has been evaluated by utilizing Bayesian

model assessments.
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CHAPTER I

INTRODUCTION

This dissertation has utilized Bayesian approaches to perform flexible modeling with

longitudinal data. Longitudinal measurements often show interesting features. Some-

times they may contribute a measurement error to the primary model. As the char-

acteristics of each individual can be estimated by the longitudinal measurements, a

regression analysis with those characteristics can be considered. In this case, although

the characteristics serve as covariates in the primary model, usually they are not ob-

servable. Hence, a regression with those characteristics involves a measurement error

problem. The motivation of this measurement error problem stems from a study on

the adulthood obesity. Whitaker et al. (1997) were interested in the extent to which

childhood growth data can predict the likelihood of obesity in adulthood. From these

longitudinal measurements of childhood growth, a simple linear regression of child-

hood BMI’s with its monitoring ages provides the information of the initial childhood

BMIs and the slope of the childhood BMIs. These random regression coefficients

served as covariates to predict the likelihood of adulthood obesity of the correspond-

ing individual. Although these regression coefficients could not be observed, they

could be estimated them with some errors. Because the regression coefficient are

unknown, the classical measurement error model is inevitable in this case.

For both continuous and binary responses, Bayesian parametric regression analy-

ses have been performed. As the linear relationship is not appropriate, Bayesian non-

parametric regressions have been considered. For a Bayesian nonparametric regres-

sion, a Bayesian natural cubic spline has been considered with a partially improper

The journal model is Journal of the American Statistical Association.
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Gaussian prior. The multiple covariates have been included into the primary model

by a generalized additive model, and dealt with the Bayesian backfitting algorithm.

The measurement error problems in those regression analyses have been successfully

handled in Bayesian framework.

Another interesting feature of longitudinal measurements based on an outcome-

dependent follow-up times has been considered. In this case, individuals may not be

observed at prespecified time-points. Furthermore, the time of next measurement for

each individual may depend on the individual’s history of previous measurements.

For example, in the cardiotoxic effects of doxorubicin chemotherapy for the treat-

ment of acute lymphoblastic leukemia in childhood (Lipsitz et al., 2002; Fitzmaurice

et al., 2003), the design points are not pre-defined but determined by the preceding

response. This outcome-dependent feature of measurements makes biased estimation

of regression line. As noticed by Lipsitz et al. (2002); Fitzmaurice et al. (2003), even

the least square estimates will be biased, which does not require the distributional

assumption of response error.

For this problem, Bayesian parametric as well as nonparametric regressions have

been applied by allowing different correlation coefficients for each individual. We

introduce a novel models by utilizing a latent variable for the subject-specific random

effect as well as relaxing the distribution of the follow-up times. For this flexible

model, both Bayesian parametric and nonparametric regression have been explored.

All these models have been assessed under Bayesian model choice criterion. For this

model assessment, conditional predictive ordinate (CPO) has been customized and

utilized. Each chapter can be outlined as follows.
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1.1. Parametric regressions with measurement errors

The measurement error problem in parametric regression has been reviewed in Fuller

(1987) for linear regression and in Carroll et al. (1995) for nonlinear regression. There

are many and extensive studies involving the measurement error problem (Carroll

et al., 1984; Pierce et al., 1992; Prentice, 1992; Rocke and Durbin, 2001; Black et al.,

2003). Studies of childhood growth data also show interesting measurement error

structure because the measurement error has not only additive structure but also

multiplicative term.

For this problem, Bayesian parametric regressions have been considered, which

can be classified as a structural method for the measurement error problem. The

Bayesian parametric regression is extended to Bayesian nonparametric regressions in

subsequent two chapters under a generalized linear model.

1.2. Bayesian nonparametric regression on continuous response with measurement

errors

As a more flexible regression analysis, a nonparametric curve fitting to the childhood

growth data can be considered. Traditional nonparametric regression has been re-

viewed in Eubank (1999), and the generalized additive model along with the Bayesian

smoothing spline has been described in Hastie and Tibshirani (1990). There are

also many other studies of the Bayesian nonparametric regression analysis including

Wecker and Ansley (1983); Carter and Kohn (1994); Denison et al. (1997); Hastie

and Tibshirani (1998).

Under the generalized additive model, by applying the Bayesian backfitting algo-

rithm to the Bayesian nonparametric regression studied by Berry et al. (2002), their

nonparametric regression has been extended to a two-dimensional covariates space,
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where covariates have measurement errors.

1.3. Bayesian nonparametric regression on binary response with measurement errors

Nonparametric regression on binary response has been studied by Diaconis and Freed-

man (1993); Albert and Chib (1993); Neal (1997); Wood and Kohn (1998); Shively

et al. (1999); Qian et al. (2000). As the extension of the parametric logistic regres-

sion studied by Wang et al. (1999) and the nonparametric regression on the single

covariate space, the nonparametric version of logistic regression on a two-dimensional

covariate space with measurement error has been established.

For two covariates, a generalized additive model has been considered. In addi-

tion, latent variables for each component of the additive logit link function has been

proposed with the idea of Holmes and Mallick (2003), to relieve the computational

burden.

1.4. Bayesian nonparametric regression of outcome-dependent follow-up times

In distinction from the previous case, longitudinal measurements may have features

of the covariate. For example, follow-up times may depend on the previous measure-

ments. As Lipsitz et al. (2002); Fitzmaurice et al. (2003) have studied, the design

points of longitudinal measurements may depend on the response of preceding mea-

surement in each individual.

In this case, the correct specification of correlation structure is very important

in the estimation of the marginal effect of covariates over individuals. By allowing

different correlation coefficients for each subject in the covariance structure, Bayesian

parametric as well as nonparametric regressions have been performed. This model is

denoted Model-0.
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1.5. Bayesian nonparametric regression under flexible model of outcome-dependent

follow-up times

As a more general idea, say Model-1, in outcome-dependent follow-up, a more flexible

model has been considered for the follow-up times. Although Model-0 in section 1.4

assumes distribution of follow-up times, there is no direct association between the

follow-up times and the regression function. By utilizing a subject-specific random

effect, the regression model is associated with the follow-up times, under Model-1.

1.6. Overview

There can be various types of longitudinal measurements. Among them, this disser-

tation has dealt with two cases. The first case occurs when the longitudinal measure-

ments bring measurement errors into the primary model, and hence it leads to the

measurement error problems. In the second case, the longitudinal measurements do

not lead to measurement errors, but it makes the estimation of the primary model

very dependent on the correlation structure of response.
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CHAPTER II

PARAMETRIC REGRESSION ANALYSIS WHEN COVARIATES ARE

SUBJECT-SPECIFIC PARAMETERS IN A RANDOM EFFECTS MODEL FOR

LONGITUDINAL MEASUREMENTS

2.1. Introduction

The regression model often associates the response variable with longitudinal mea-

surements of certain variables. A common way is to use the subject-specific long-term

averages of longitudinal measurements as covariates. However in several applications

we have to use rate (or other measurements) over time rather than the average as

the major risk factor. In this problem, the covariates considered are not observable

so the estimated covariate will lead to measurement error problems.

The motivation for this work is a study on an adult obesity (Whitaker et al.,

1997). In the health study, child growth is monitored by recording heights and weights

over time, among other measurements. The main interest in the study is the extent to

which longitudinal growth data from childhood can predict the likelihood of obesity

in adulthood. At a given age, the growth data of each child consists of body mass in-

dex (BMI) defined by weight/height2 (kg/m2). The usual way to examine the data is

to obtain summary information from longitudinal BMI measurements over time and

further use the information to investigate the association with adult obesity. Wang

and Pepe (2000) used the long term average of BMI over a period of childhood. Wang

et al. (1999) considered a more general approach to extract the summary information

as regression coefficients based on longitudinal childhood growth data. Then they

used multiple linear logistic regression on adulthood obesity with the previously ob-

tained regression coefficients as covariates. They showed that “naive” implementation
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of this model by substituting subject-specific ordinary least squares estimates of the

random effects in the primary generalized linear model yields biased inferences on its

parameters. Thus viewing it as a measurement error problem, they considered regres-

sion calibration (Carroll et al., 1995), where the random effects are replaced in the

primary model by estimated best linear unbiased predictors from the fit of the mixed

model, which reduces but does not completely eliminate bias. Wang et al. (1999)

proposed a pseudo-expected estimating equation (EEE) approach, which requires nu-

merical integration to compute the conditional expectations and they developed an

approximate-EEE to circumvent this problem.

All of these approaches have two components: the first one contains repeated

observed measurements, which are assumed to follow a linear random effects model.

The second component is the primary regression where the random coefficients of

the random effects model are covariate variables. Because the random coefficients are

not observable, the measurement error is inevitable. We consider Bayesian parametric

logistic regression model as the second component. All of these approaches depend on

the assumption that the relationship in the primary regression between the response

and the covariates under transformation by a link function is linear.

In the parametric logistic regression, the measurement error brings an attenua-

tion problem (Carroll et al., 1995). The added strengths of the Bayesian approach in

this problem are (i) a unified hierarchical model to accommodate all the uncertainties

and (ii) automatic adjustment of bias due to measurement error.

This chapter is the motivation to consider Bayesian nonparametric regressions.

Section 2.2 describes a measurement error model and a primary model. Bayesian

frameworks are explained in section 2.3. Section 2.4 presents a simple example of the

application of the Bayesian parametric regression.
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2.2. Model

Let Yi be the outcome variable for the ith subject, i = 1, . . . , n, and W i = (Wi1, . . .

, Wimi
)T are the longitudinal measurements of a continuous variable at times ti1, . . .

, timi
. In the first stage W i follows a random effect model as

W i = DiX i + U i

where Di is a full rank (mi × q) design matrix; and U i = (Ui1, . . . , Uimi
)T are within-

subject errors reflecting uncertainty in measuring W i, independently and identically

with mean zero and variance σ2
u, i.e., U i ∼ N(0, σ2

uImi
), where I l is the identity ma-

trix of dimension l× l, independent of X i. X i are (q×1) random effects representing

unobserved subject-specific features of the longitudinal profiles. A typical example

is that the jth row of Di is (1, tij) with q = 2 and X i = (Xi1, Xi2)
T yields a linear

random coefficient model for the longitudinal data representing the subject specific

initial exposure level (intercept) and the rate of change (slope).

In the next stage, the primary regression model is a parametric regression. We

consider two kinds of responses: (i) continuous and (ii) binary. Let regression function

ηi = XT
i β. For the continuous response, the data is assumed to be Gaussian, so

the conditional distribution of Yi given X i follows normal distribution with mean

ηi and variance σ2
z . For the binary response, we consider logistic regression, so the

conditional distribution of Yi given X i follows Bernoulli distribution with success

probability pi and logit(pi) = ηi, where logit(v) = {1 + exp(−v)}−1. All variables are

independent across i. It is further stipulated that W i is a surrogate for X i such that

the distribution of (Yi|W i, X i) is that of (Yi|X i) independent of W i.

For non-Gaussian data, it is well known that conjugate priors do not exist for

the regression coefficients. The computations are then potentially much harder par-
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ticularly with measurement error. This difficulty is due to a possibly strong posterior

correlation between the parameters. We explore the use of a random residual compo-

nent with small variance σ2
z within the model as in Holmes and Mallick (2003). We

extend the model by introducing latent variables as

Yi
ind∼ B(pi), logit(pi) = Zi, i = 1, . . . , n,

Zi = ηi + ǫi, ǫi
iid∼ N(0, σ2

z), i = 1, . . . , n,

where ηi = β0 + β1Xi1 + β2Xi2 and logit(v) = {1 + exp(−v)}−1. We assume Xil are

independent of each other, and have means, µxl
and variances, σ2

xl
, l = 1, 2.

2.3. Bayesian regression

A. Regression for continuous response

We consider multiple regression for the continuous response. Let Y = (Y1, . . . , Yn)
T ,

β = (β0, β1, β2)
T , Xj = (X1j , . . . , Xnj)

T , j = 1, 2, and X = (1, X1, X2). For

nuisance parameters we assume conjugate priors such that σ2
z ∼ IG(Az, Bz), µ2

xl
∼

N(Aml
, Bml

), σ2
xl
∼ IG(Axl

, Bxl
), l = 1, 2, and σ2

u ∼ IG(Au, Bu). Assuming uniform

prior for β, the joint conditional of (Y , β, X) are proportional to the following.

[Y , β, X|·] ∝ (σ2
z)

n exp

{
− 1

2σ2
z

(Y − Xβ)T (Y − Xβ)

}

× exp

{
− 1

2σ2
x1

n∑

i=1

(Xi1 − µx1)
2 − 1

2σ2
x2

n∑

i=1

(Xi2 − µx2)
2

}

× exp

{
− 1

2σ2
u

n∑

i=1

mi∑

k=1

(Wik − Xi1 − Xi2tik)
2

}

We can generate β from the following full conditional.

[β|Y , ·] ∼ N
[
(XT X)−1XT Y , (XT X)−1σ2

z

]
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We can utilize Gibbs procedure (Geman and Geman, 1984) to generate β and other

nuisance parameters. From the joint distribution, we can also derive the full condi-

tional for X1 and X2 by the square completion such that

[Xi1|Xi2, ·] ind∼ N

(
Ai1

Bi1

,
1

Bi1

)
, i = 1, . . . , n,

[Xi2|Xi1, ·] ind∼ N

(
Ai2

Bi2
,

1

Bi2

)
, i = 1, . . . , n,

where Aij and Bij, i = 1, . . . , n; j = 1, 2, can be summarized as follows. For i =

1, . . . , n,

Ai1 =
β2

1

σ2
z

+
1

σ2
x1

+
mi

σ2
u

,

Bi1 =
β1

σ2
z

(Yi − β0 − β2Xi2) +
µ1

σ2
x1

+
1

σ2
u

mi∑

k=1

(Wik − Xi2tik),

Ai1 =
β2

2

σ2
z

+
1

σ2
x2

+
1

σ2
u

mi∑

k=1

t2ik,

Bi2 =
β2

σ2
z

(Yi − β0 − β1Xi1) +
µ2

σ2
x2

+
1

σ2
u

mi∑

k=1

tik(Wik − Xi1).

B. Regression for binary response

For the ith response Yi, i = 1, . . . , n, we adopt Zi as a latent variable. Let β = (β0, β1,

β2)
T , Xj = (X1j , . . . , Xnj)

T , j = 1, 2, X = (1, X1, X2), and Z = (Z1, . . . , Zn)T .

We assume the same conjugate priors for nuisance parameters, σ2
z , µ2

xl
, σ2

xl
, l = 1, 2,

and σ2
u, and uniform prior for β, as continuous response. Then the joint conditional
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of (Z, β, X) given nuisance parameters are proportional to the following:

[Z, β, X|·] ∝
n∏

i=1

{
pYi

i (1 − pi)
1−Yi

}
exp

{
− 1

2σ2
z

(Z − Xβ)T (Z − Xβ)

}

× exp

{
− 1

2σ2
x1

n∑

i=1

(Xi1 − µx1)
2 − 1

2σ2
x2

n∑

i=1

(Xi2 − µx2)
2

}

× exp

{
− 1

2σ2
u

n∑

i=1

mi∑

k=1

(Wik − Xi1 − Xi2tik)
2

}

By customizing the idea of Holmes and Held (2005) to the our parametric regression,

we can generate Z and β jointly from their joint full conditional as with the continuous

response. Let H = X(XT X)−1XT . Then the conditional of β and the marginal

conditional of Z integrated over β can be described as follows:

[β|Z, ·] ∼ N
[
(XT X)−1XT Z, (XT X)−1σ2

z

]

[Z|·] ∝
n∏

i=1

{
pYi

i (1 − pi)
1−Yi

}
exp

{
− 1

2σ2
z

ZT (I − H)Z

}

Because the full conditional of Z follows n-dimensional multivariate normal distribu-

tion, it is hard to generate random numbers of Z. To cope with the high dimensional

problem, we use the Gibbs sampling intensively. Let hij be the (i, j)th element of

I − H . Then the ith element of Z can be generated by the Metropolis-Hasting’s

algorithm based on the distribution proportional to the following:

[Zi|Z−i, ·] ∝ pYi

i (1 − pi)
1−YiN

(
Zi −

∑n
j=1 hijZj

hii

,
σ2

z

hii

)

From the joint distribution, we can also derive the full conditional for X1 and X2 by

the square completion such that

[Xi1|Xi2, ·] ind∼ N

(
Ai1

Bi1

,
1

Bi1

)
, i = 1, . . . , n,

[Xi2|Xi1, ·] ind∼ N

(
Ai2

Bi2
,

1

Bi2

)
, i = 1, . . . , n,
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where Aij and Bij, i = 1, . . . , n; j = 1, 2, can be summarized as follows. For i =

1, . . . , n,

Ai1 =
β2

1

σ2
z

+
1

σ2
x1

+
mi

σ2
u

,

Bi1 =
β1

σ2
z

(Zi − β0 − β2Xi2) +
µ1

σ2
x1

+
1

σ2
u

mi∑

k=1

(Wik − Xi2tik),

Ai1 =
β2

2

σ2
z

+
1

σ2
x2

+
1

σ2
u

mi∑

k=1

t2ik,

Bi2 =
β2

σ2
z

(Zi − β0 − β1Xi1) +
µ2

σ2
x2

+
1

σ2
u

mi∑

k=1

tik(Wik − Xi1).

We can utilize Gibbs procedure to generate β, Z, and other parameters similar to

the continuous response case.

2.4. Parametric regression analysis on cardiotoxic data

We applied our method (when q = 2) to the childhood growth data, which is also used

by Wang et al. (1999) and Whitaker et al. (1997). The data was collected from 330

subjects who had at least three measurements of BMI z-score (BMI-z) between ages

2.75 and 5.25. The adulthood BMI is calculated by taking average BMI over ages 21

through 29. We assess the extent to which the initial BMI-z value and the rate of

change of the BMI-z value are predictive of adulthood BMI value (or obesity). The

initial value and the rate of change are, respectively, the intercept and the slope of

the simple linear regression on the childhood BMI-z with the monitoring age, which

are not observable covariates of our linear model. We have the actual continuous

data which is the observed adulthood BMI response for each subject. We also have

the binary data where the adulthood BMI is dichotomized as obese or not using the

critical values: 27.8 for male and 27.3 for female. Twenty samples of childhood BMIs

are shown in Figure 1.
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Fig. 1. Samples of childhood BMIs. Each cell shows longitudinal measurement of BMIs

from a child. The intercept and the slope of line are used as covariates of the

corresponding individual, in the naive method.
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First for the continuous response, we considered regression on the adulthood

BMI with the intercept and the slope of childhood BMI-z as covariates. We tried

Bayesian linear regression. We also compared the results with the naive method

using linear models. We performed traditional multiple linear regression using re-

gression calibration method. In regression calibration, we imputed the conditional

expectations of unknown covariates given response and the error-prone observations,

E(Xil|Wi1, . . . , Wimi
, ti1, . . . , timi

, Yi), in place of the unobserved covariate Xil, for

i = 1, . . . , n; l = 1, 2. Following Wang et al. (1999) the unknown parameters in

the conditional distribution were estimated by the method of moment estimator

and the regression parameters were estimated using the maximum likelihood ap-

proach. To check the performance, the mean residual sum of squares was considered,

RSS= 1
n

∑n

i=1{Yi−f̂1(Xi1)−f̂2(Xi2)}2. As shown in Table I, Bayesian linear regression

outperformed all other methods.

Next we analyze the binary data using a logistic regression model and have

observed very similar results. Table II shows Bayesian logistic regression performs

better than all other competitors in terms of DIC. In summary for both the situations

(continuous and binary), Bayesian parametric regression works better than others.

In the subsequent two chapters, the above parametric regressions are extended to

nonparametric regressions: Chapter III for continuous response and Chapter IV for

non-continuous response.
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Table I. Adulthood BMI: Performance of various parametric regression methods with

continuous response.

Method RSS β̂0 β̂1 β̂2

Regression Calibration 18.81 24.23 2.30 6.04

Naive Method 18.79 24.31 2.28 4.22

Bayes Method 17.36 24.22 2.22 5.95

NOTE: Bayes method outperformed the naive method and the regression calibration

method RSS.

Table II. Adulthood obesity: Performance of various regression methods with binary

response.

Method DIC β̂0 β̂1 β̂2

Regression Calibration 241.22 -2.04 1.05 4.49

Naive Method 248.20 -2.04 0.99 2.58

Bayes Method 240.33 -2.46 1.21 5.32

NOTE: The Bayesian nonparametric regression shows the best performance in DIC

and the largest values of estimated coefficients.
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CHAPTER III

NONPARAMETRIC REGRESSION ANALYSIS FOR CONTINUOUS

RESPONSE WHEN COVARIATES ARE SUBJECT-SPECIFIC PARAMETERS

IN A RANDOM EFFECTS MODEL FOR LONGITUDINAL MEASUREMENTS

3.1. Introduction

When the response is a continuous variable, we construct nonparametric regression

model to associate the response variable with risk factors from longitudinal measure-

ments. We consider an application to use rate (or other measurements) over time,

as well as the average as the major risk factors. The multi-dimensional covariate

space can make the nonparametric regression difficult. Further, the covariates con-

sidered are not observable so the estimated covariate will lead to measurement error

problems.

In the health study of body mass index (BMI) defined by weight/height2 (Whitaker

et al., 1997), adulthood BMI is used to determine adulthood obesity. From BMI over

a period of childhood, as Wang et al. (1999) did, we consider linear regression on BMI

with age when it is monitored. Then, the regression coefficients will serve to extract

the childhood summary information of each individual. We utilize those random co-

efficients as covariates to predict the adulthood BMI nonparametically. Because true

regression coefficients are not observable, the measurement errors are involved in the

regression. Hence, the primary model becomes nonparametric regression model with

error-prone covariates. The presence of several covariates makes this nonparametric

model more complex. Recently, advances in computer power have allowed statisticians

to consider richer classes of models that were previously computationally prohibitive.

We propose a Bayesian model based on smoothing spline (Eubank, 1999) to handle
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the nonlinearity. The two components of the modeling procedure, the measurement

error model and the primary model, fit within a hierarchical Bayes model in a unified

way. Under multi-covariate situation, the extension can be achieved by the backfit-

ting algorithm which enables us to utilize the regressions in one dimension to yield

the regression in the multidimensional covariate space. A Bayesian smoothing spline

is used to estimate the unknown functions and explore MCMC algorithms to generate

the fitted curves in multi-dimensional covariate space.

The nonparametric regression problem here is much more complicated than the

usual additive model regression because the covariates under consideration are not di-

rectly observable. For example, in the childhood growth data, covariates are estimated

by regression coefficients from the simple linear regression of childhood BMI with age.

In the parametric logistic regression, as mentioned in Chapter II, measurement error

creates an attenuation problem (Carroll et al., 1995). Berry et al. (2002) developed

nonparametric regression using smoothing splines for a single covariate with mea-

surement error. We propose a nonparametric regression for Gaussian response with

multiple covariates measured with error. As mentioned earlier, A Bayesian smoothing

spline approach has been examined to estimate the unknown functions. The advan-

tage of the Bayesian approach in this problem are (i) a unified hierarchical model to

accommodate all the uncertainties, (ii) an automatic adjustment of bias due to mea-

surement error, and (iii) an automatic selection of the smoothing parameters in the

additive model. Measurement error has large effects on both bias and variance and

a smoothing parameter that is optimal for correctly measured covariate may be far

from optimal in the presence of measurement error. An optimal choice of a smooth-

ing parameter is hard in a measurement error problem and could be even harder

in an additive model framework. The Bayesian approach automatically chooses the

smoothing parameters for each covariate.
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Subsequent section reminds a measurement error model and shows primary model

of a Bayesian nonparametric regression (Section 3.2). The next sections explains a

Bayesian nonparametric regression (Section 3.3). Last two sections demonstrate a

Bayesian nonparametric regression with simulated data and the BMI data (Sections

3.4 and 3.5).

3.2. Model

The measurement error model is same as the parametric regression, but the primary

regression model is based on natural cubic smoothing splines. For the ith subject, i =

1, . . . , n, supposed longitudinal measurements W i = (Wi1, . . . , Wimi
)T are observed

at ti = (ti1, . . . , timi
)T . Denoting a full rank design matrix Di = (1mi

, ti), where

1mi
is a mi × 1 vector of ones. Then, the measurement error model for covariates

X i = (Xi1, Xi2)
T is described by

W i = DiX i + U i,

where U i = (Ui1, . . . , Uimi
)T are normal random errors with mean zero and variance

σ2
uImi

and Imi
is a mi × mi identity matrix. Note that, just for the simplicity,

we assume independent identical variance of measurement errors over longitudinal

measurements and over all subjects. Further, because we suppose non-differential

measurement error, X i and U i are supposed to be independent of each other.

The primary model is a generalized additive model of two natural cubic splines

(NCSs). Let Yi be the ith response and fl be the smoothing spline for the previous

covariates Xil, l = 1, 2. Then the primary model will be expressed by

Yi = f1(Xi1) + f2(Xi2) + ǫi, i = 1, . . . , n,
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where ǫi are independent Gaussian errors with zero mean and a constant variance of

σ2
z .

3.3. Bayesian smoothing spline with measurement error

We consider the Bayesian natural cubic smoothing spline (NCS) to model the un-

known functions (Hastie and Tibshirani, 1990; Berry et al., 2002). For the sake of

simplicity, we first explain the NCS for a single fl, the function corresponding to the

lth covariate.

A. Smoothing spline

If the covariate (Xil, l = 1, 2; i = 1, . . . , n) is observable and response (Yi, i =

1, . . . , n) is continuous then NCS defines the spline basis functions with a knot at

each distinctive value of the covariate Xl. The estimate of fl minimizes the following

penalized sum of squares over all possible NCS:

n∑

i=1

{Yi − fl(Xil)}2 + αl

∫ max(Xil)

min(Xil)

{
f

′′

l (t)
}2

dt,

where f
′′

l (·) is the second derivative of fl(·) and positive valued αl is the smoothing

parameter. Note that the NCS is a cubic smoothing spline with the boundary con-

dition such that f ′
l (·) = 0 and f ′′

l (·) = 0. Let Ni(·) be the ith NCS basis function

with knots {X1l, . . . , Xnl}, and N = {Nj(Xil)}i,j=1,...,n
be an n × n nonsingular nat-

ural splines basis matrix, and Ω =
[∫ {

N
′′

i (t)N
′′

j (t)
}2

dt
]

i,j=1,...,n
. Since the NCS can

be described by fl(Xil) =
∑n

j=1 cjNj(Xil) with coefficients cj, j = 1, . . . , n, we can

rewrite the above penalized sum of squares as

(Y − Nc)T (Y − Nc) + αlc
T
Ωc,
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where Y = (Y1, . . . , Yn)
T and c = (c1, . . . , cn)T . Hence, if the smoothing parameter

is given, the NCS is similar to the ridge regression with the hat matrix N(NT N +

αlΩ)−1NT . The choice of a smoothing parameter is critical to determining the rough-

ness of the estimated curve and can be achieved by the generalized cross validation

or predictive risk estimator. Detailed procedures for the NCS can be found in Eu-

bank (1999); Hastie and Tibshirani (1990). In our Bayesian hierarchical model we

assume the smoothing parameter as an unknown and treat the uncertainty of the

model through a prior distribution on the smoothing parameter. Model uncertainty

relates to the fact that many different NCS models may offer nearly equally plausi-

ble representation of the data. Rather than using a single plug in estimation of the

smoothing parameter, we will perform model mixing with respect to the smoothing

parameter.

In the Bayesian approach, the function fl is also treated as a random variable

and assigned a prior density proportional to the partially improper Gaussian process

(Raghavan and Cox, 1998; Hastie and Tibshirani, 2000) which is proportional to the

following:

τ
n−2

2
l exp

{
−τl

2
fT

l K lf l

}
,

where τl = αl

σ2
z

and σ2
z is the variance of responses. Kl is defined as satisfying fT

l Klfl =
∫ {

f
′′

l (t)
}2

dt. Eubank (1999, p. 244) explained a method to construct the matrix K l

for the NCS. Another covariance structure for the Bayesian nonparametric curve,

such as the state space model, can be found at Carter and Kohn (1994) and Wecker

and Ansley (1983).

In a generalized additive model, we consider q NCSs associated with q covariates.

For each NCS, a partially improper prior with a corresponding τl and Kl, l = 1, . . . , q

is assigned independently. Under the linear model representation of each fl, we can
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calculate the full conditional distributions of fls in the Gibbs sampling framework.

This is equivalent to a backfitting algorithm and known as a Bayesian back-fitting

procedure (Hastie and Tibshirani, 2000). For additive models, problem arises from the

identifiability of the mean levels of the unknown functions. To ensure identifiability,

the functions fl are constrained to have zero means, i.e. {range(xl)}−1
∫

fl(xl)dxl = 0.

This can be incorporated into estimation via MCMC by centering the function fl

about the mean of fj in every iteration of the sampler. To ensure the posterior not

being changed, the subtracted means are added to the intercept. Next we will develop

a unified Bayesian hierarchical model combining the NCS model with measurement

errors.

B. Bayesian hierarchical model

To develop the Bayesian hierarchical model, we need to assign prior distributions for

all the unknowns. For a convenience of notation, let A and B with subscripts be

known constants. There is no conjugate prior for X l = (X1l, . . . , Xnl)
T , l = 1, . . . , q,

which could ease the computational burden. As mentioned earlier, we assume X l

follows a normal distribution with mean µxl
and variance σ2

xl
, l = 1, . . . , q and are

independent of each other. Further we assume conjugate priors for µxl
and σ2

xl
as µxl

∼

N(Aml
, Bml

), σ2
xl

∼ IG(Axl
, Bxl

), l = 1, . . . , q. We may assign more complicated

distributions like the mixture of normals (Carroll et al., 1999) but as X l continually

changes throughout the MCMC algorithm, updating this mixture at every iteration

can make the algorithm very slow. We also assume a conjugate prior for the variance

of the Gaussian response Y =(Y1, . . . , Yn)T as σ2
z ∼ IG(Az, Bz), and for the variance

of measurement errors σ2
u ∼ IG(Au, Bu). The prior for τl is a Gamma distribution

τl ∼ G(Atl , Btl) where τl is defined by αl

σ2
z
. The relationship between parameters is

described in the DAG (directed acyclic graph) in Figure 2 for q = 2.
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Fig. 2. Directed acyclic graph for hierarchical Bayesian model with continuous re-

sponse. Variables in the rectangles are observable or given, but variables in the

circles are not observable. The information of X1 and X2 is given by the com-

bination of W and t. Each covariate is associated with separate nonparametric

curve f j, j = 1, 2.
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Using the model and prior distributions, we can obtain the joint posterior distri-

bution of the unknowns, which is proportional to

∝
(
σ2

z

)−n
2 exp



− 1

2σ2
z

n∑

i=1

{
Yi −

q∑

l=1

fl(Xil)

}2




×
q∏

l=1

[
τ

n−2
2

l exp
{
−τl

2
fT

l K lf l

}
τ

Atl
−1

l exp

{
− τl

Btl

}

×
(
σ2

xl

)−n
2 exp

{
− 1

2σ2
xl

n∑

i=1

(Xil − µxl
)2

}

×
(
σ2

xl

)−(Axl
+1)

exp

{
− 1

σ2
xl

Bxl

}

× B
− 1

2
ml exp

{
− 1

2Bml

(µxl
− Aml

)2

}

×
(
σ2

z

)−(Az+1)
exp

{
− 1

σ2
zBz

}]

×
(
σ2

u

)− 1
2

Pn
i=1 mi exp

{
− 1

2σ2
u

n∑

i=1

(W i − DiX i)
T (W i − DiX i)

}

×
(
σ2

u

)−(Au+1)
exp

{
− 1

σ2
uBu

}
,

where f l = [fl(X1l), . . . , fl(Xnl)]
T .

Let Al(αl) = (I + αlK l)
−1, for l = 1, . . . , q, and Rfl

denotes the residual of

additive model by excluding function f l. Further let residual sums of squares for

each variable be RSSy =
∑n

i=1{Yi −
∑q

l=1 fl(Xil)}2, RSSxl
=
∑n

i=1(Xil − µxl
)2,

l = 1, . . . , q, and residual sum of squares for each element be such that RSSwi
=

(W i−DiX i)
T (W i−DiX i), RSSyi

= {Yi−
∑q

l=1 fl(Xil)}2, and RSSxil
= (Xil−µxil

)2,

l = 1, . . . , q; i = 1, . . . , n.

To execute Gibbs sampling, we need all the full conditional distributions which
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are given below:

f l|·
ind∼ N

[
Al(αl)Rfl

, Al(αl)σ
2
z

]
,

τl|· ind∼ G

[
n − 2

2
+ Atl ,

(
fT

l K lf l

2
+

1

Btl

)−1
]

,

σ2
z |·

ind∼ IG

[
n

2
+ Az,

(
RSSy

2
+

1

Bz

)−1
]

,

σ2
xl
|· ind∼ IG

[
n

2
+ Axl

,

(
RSSxl

2
+

1

Bxl

)−1
]

,

µxl
|· ind∼ N

[(∑n

i=1 Xil

σ2
xl

+
Aml

Bml

)(
n

σ2
xl

+
1

Bml

)−1

,

(
n

σ2
xl

+
1

Bml

)−1
]

,

σ2
u|· ∼ IG

[∑n

i=1 mi

2
+ Au,

(∑n

i=1 RSSwi

2
+

1

Bu

)−1
]

,

for l = 1, . . . , q, where G[A, B] denotes gamma distribution with the mean AB, and

IG[A, B] indicates inverse gamma distribution with mean {(A − 1)B}−1. The full

conditionals of Xil, i = 1, . . . , n; l = 1, . . . , q, are not of standard forms and their

densities are proportional to the following:

[Xil|·]
ind∝ exp

{
−RSSzil

2σ2
z

− RSSxil

2σx2
l

− RSSwi

2σ2
u

}
, i = 1, . . . , n; l = 1, . . . , q.

From the full conditionals, we can see that the covariates are involved almost

everywhere. Hence, the measurement error will seriously affect the estimation of

link functions, as well as other parameters. In the naive approach, we replace the

unobserved X by the least squares estimator for each subject. That will create a

biased estimate for the unknown functions, and we will compare the results of a full

Bayes approach to this naive approach.

Based on the full conditional distributions, Gibbs sampler (Gelfand and Smith,

1990) can generate each parameter from the joint posterior distribution. As the

conditional distributions of the covariates, Xil, i = 1, . . . , n, l = 1, . . . , q are not of
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standard forms so they are generated via Metropolis-Hasting’s algorithm within the

Gibbs sampling. The full conditions of f l are from multivariate normal distributions;

hence the regular generation method requires inverses of big covariance matrices. For

an efficient computation, we utilize Cholesky’s decomposition with the backward and

the forward substitutions. Details are provided in Appendix B.

We draw samples of functions from their joint posterior distribution and use the

pointwise mean curves as the natural estimate of the regression functions. A sampling

based method provides us the flexibility to calculate pointwise median, credible inter-

vals, or any other functionals of these regression functions. In our method, we allow a

separate smoothness parameter for each different regression function in the additive

model setup, so we have the flexibility to estimate curves with different degrees of

smoothness (complexity) with all the uncertainty measures. Though we are mainly

concerned with estimation of the functions, inferences (posterior mean and credible

intervals) can be done for mismeasured Xs, easily using the corresponding MCMC

samples.

3.4. Simulation study

The comparison between the Bayesian method with the naive estimator was per-

formed by a series of simulations with a continuous response. The gold standard is

the estimated Bayesian nonparametric curve with true covariate values (mentioned

as the “no error” case in the tables). For simulations, we tried 200 cases and 400

cases (n = 200 and n = 400) of longitudinal data along with continuous responses.

In each case, covariates and measurement error structure followed the simulation

scheme of Wang et al. (1999) with slightly more correlations between covariates. We

first generated unobservable covariates from normal distributions such that X i =
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Xi1

Xi2
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iid∼ N

�
0,

�
1 −.1

−.1 .25

��
, i = 1, . . . , n. Each case was assumed to have four replicates

(mi = 4) of Wij , which were simulated from the model Wij = Xi1 +Xi2tij +Uij , where

tij
ind∼ N(j−1, 0.12), j = 1, . . . , 4; i = 1, . . . , 200. We considered the bivariate additive

model. As a complicated function, f1(x) was taken from the sine family, which is a

slight modification of Berry et al. (2002), and as a simple function, f2(x) was taken

from the quadratic family such that

f1(x) =
5 sin(πx/2)

1 + 2x2{sign(x) + 1} + 2,

f2(x) = −2x2 + 1.

Finally, the responses were generated using additive errors generated from the normal

distribution such that ǫi
iid∼ N(0, 0.32), i = 1, . . . , n.

For the Bayesian model, we assigned flexible hyper priors such as σ2
u ∼ IG(1, 1),

τ ∼ G(3, 1/100), µx1 = µx2 ∼ N(0, 102), and σ2
x1

= σ2
x2

∼ IG(1, 1). For the variance

of the response we also assigned flexible prior as σ2
z ∼ IG(1, 1).

To evaluate the performance of each estimator, we calculated mean squared error

(MSE) from the evaluated values of the estimated functions, evaluated at 101 grid

points in the interval [-2,2] for f1 and [-1,1] for f2.

We generated twenty simulated data sets with different measurement error vari-

ances. In each simulation, we collected 10000 Markov Chain Monte Carlo (MCMC)

samples after 50000 burning iterations. We examined the effect of increased variance

of measurement error (σ2
u) and the increased sample size (n) on the performance of the

estimator. Usually for fixed sample size, larger σ2 (more measurement error) worsens

the performance of the estimator (increase the MSE). The results are presented in

Table III, which shows that the Bayesian method performed distinctly better than

the naive method and close to the regression with true covariate values for all the
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Table III. Table for simulated continuous data: Average MSE from 20 simulated data

for each situation.

Situation Link Criterion NoErr Naive Bayes

n = 200

σ2
u = 0.49

f1

MSE 0.0090 1.4253 0.1818

Bias2 0.0007 1.3371 0.0393

Var 0.0083 0.0883 0.1424

f2

MSE 0.0054 0.1716 0.0391

Bias2 0.0001 0.1083 0.0067

Var 0.0053 0.0633 0.0325

n = 200

σ2
u = 1.0

f1

MSE 0.0090 2.3403 0.6226

Bias2 0.0007 2.1988 0.1334

Var 0.0083 0.1414 0.4891

f2

MSE 0.0054 0.3424 0.0904

Bias2 0.0001 0.2761 0.0231

Var 0.0053 0.0663 0.0673

n = 400

σ2
u = 1.0

f1

MSE 0.0056 2.2024 0.8297

Bias2 0.0004 2.1295 0.1325

Var 0.0052 0.0729 0.6972

f2

MSE 0.0033 0.3570 0.0671

Bias2 0.0001 0.3094 0.0243

Var 0.0032 0.0475 0.0428

NOTE: The Bayesian method shows much better performance than the naive method

in terms of MSE for all the situations. Its performance is almost as good as knowing

the true covariate values.
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cases.

For the example with continuous response, we plotted the true curve, the pos-

terior mean curve, and 95% pointwise credible intervals obtained from the MCMC

samples in Figure 3. For both of the functions, the Bayes estimate is pretty close to

the true one. We also overlay the naive estimate on the Bayes estimate. The Bayes

estimate is distinctly better than the naive estimate.

3.5. Childhood growth data analysis for adulthood BMI

We applied nonparametric regression (when q = 2) to the childhood growth data,

which is used in Chapter II. As with the continuous response, we considered re-

gression on adulthood BMI with the intercept and slope of childhood BMI-z as

unobservable covariates. We tried Bayesian nonparametric regression in a two di-

mensional covariate space. We also compared the results with the naive method

using nonparametric models. In regression calibration, we substituted the condi-

tional expectations of unknown covariates given response and the error-prone ob-

servations, E(Xil|Wi1, . . . , Wimi
, ti1, . . . , timi

, Yi), in place of the unobserved covariate

Xil, for i = 1, . . . , n; l = 1, 2. Following Wang et al. (1999) the unknown parameters

in the conditional distribution were estimated by the method of moment estimator

and the regression parameters were estimated using the maximum likelihood ap-

proach. To check the performance, the mean residual sum of squares was considered,

RSS= 1
n

∑n

i=1{Yi − f̂1(Xi1)− f̂2(Xi2)}2. In Bayesian NCS, the Bayes method outper-

formed the naive estimator in RSS (17.20 vs. 1.56), although both of methods have

less RSS than the best of the parametric regression methods (Bayes method, 17.36).

Accordingly, in Figure 4, it is clear that both of the functions are not at all linear.

Hence, in terms of exploring the nonlinear curves as well as to improve the fitting sig-



29

nificantly, the nonparametric method is useful. In summary, the initial BMI-z value

and the rate of change have significant nonlinear effects on adulthood BMI.
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Fig. 3. Average fitted values (95% credible intervals) for 20 simulations when σ2
u = 1.0

and n = 200 with continuous response. The Bayesian method almost perfectly

detects the true curves, but the naive method fails to detect the true curves,

and shows an almost linear pattern.
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Fig. 4. Continuous regression for adulthood BMI. The estimated nonparametric curves

(95% credible intervals) for the average adulthood BMI show big difference in

f2, where the curve from the naive method slopes gently, but the curve from

the Bayes method has a steep slope.
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CHAPTER IV

NONPARAMETRIC REGRESSION ANALYSIS FOR BINARY RESPONSE

WHEN COVARIATES ARE SUBJECT-SPECIFIC PARAMETERS IN A

RANDOM EFFECTS MODEL FOR LONGITUDINAL MEASUREMENTS

4.1. Introduction

Because the linear link function in logistic regression is often unrealistic, nonpara-

metric logistic regression is considered with regard to the binary response, while the

measurement error model is assumed to be same as in Chapter III.

With childhood growth data, Wang et al. (1999) tried multiple linear logistic

regression on adulthood obesity with the random regression coefficients accomplished

by the simple linear regression of childhood BMI, as mentioned before. They pro-

posed a pseudo-EEE and developed approximate-EEE to circumvent measurement

error problem. For the binary response, we apply a Bayesian framework to the mea-

surement error problem, and extend the parametric primary regression model to the

nonparametric primary regression model. The binary response, in the presence of

several covariates and the involved measurement errors, make the nonparametric re-

gression hard. However, the recent advanced computer power makes it possible.

As mentioned in Chapter III, the nonparametric regression problem here is much

more complicated than usual additive model regression as the covariates under con-

sideration are not directly observable. For non-Gaussian data, it is well known that

the conjugate priors do not exist for the regression coefficients. The computations

are then much harder and with the presence of measurement error it could be worse.

By virtue of latent variables, we add a random residual component to the model in

the spirit of Holmes and Mallick (2003).
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By combining ideas from Wang et al. (1999), Berry et al. (2002), and Holmes and

Mallick (2003), we propose nonparametric logistic regression with multiple covariates

measured with error, through a Bayesian smoothing spline approach to estimate the

unknown functions. The Bayesian approach in this problem enables us to deal with

non-continuous response, in addition to the advantages of Chapter III.

For a binary response, Section 4.2 has quick summary of measurement error

model and primary model. Section 4.3 explains Bayesian nonparametric regression for

binary response. Sections 4.4 and 4.5 examine the Bayesian nonparametric regression

with simulated data and the BMI data.

4.2. Model

We assume the same measurement error model and same notations as previous chap-

ters such that

W i = DiX i + U i, i = 1, . . . , n,

where U i
ind∼ N(0, σ2

uImi
), X i is a vector of subject-specific random effects, Di is a

full rank design matrix, and W i is a vector of error-prone longitudinal measurements.

Whereas, the primary regression model is supposed to be a generalized linear

model (GLM), specifically a logistic regression model, so the conditional distribution

of Yi given X i is a general exponential family of distributions such as

p(Yi|Xi, β, φ) = exp

{
Yiηi − b(ηi)

a(φ)
+ c(Yi, φ)

}
= Exp(ηi),

where ηi is a canonical parameter (a function of X i), φ is a dispersion parameter, and

a(·), b(·) and c(·) are known functions. In logistic regression, ηi = logit(pi), a(φ) = 1,

b(ηi) = − log(1 − pi), and c(Yi, φ) = 0. All variables considered are independent
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across i. Further W i is supposed to be a surrogate for X i, that is, the distribution

of (Yi|W i, X i) is that of (Yi|X i) which is independent of W i.

For non-Gaussian data, it is well known that conjugate priors do not exist for

the regression coefficients. The computations are then potentially much harder, par-

ticularly with measurement error. This is due to possibly strong posterior correlation

between the parameters. Although a Metropolis-Hastings algorithm has been com-

monly used in GLM, the construction of good proposals for the GLM is not trivial.

A random residual component is utilized within the model as in Holmes and Mallick

(2003). By introducing latent variables Zil the model can be extended such as

Yi
ind∼ Exp(ηi), ηi =

q∑

l=1

Zil, i = 1, . . . , n,

Zil = fl(Xil) + ǫil, ǫil
iid∼ N(0, σ2

zl
), i = 1, . . . , n, l = 1, . . . , q.

Suppose Xil to be independently from N(µxl
, σ2

xl
), l = 1, . . . , q, and identically dis-

tributed across i. Further, assume that Xil is independent of Zils, then ηi has mean

of
∑q

l=1 fl(Xil) and variance of
∑q

l=1 σ2
zl
.

4.3. Bayesian smoothing spline with measurement error

We consider additive q Bayesian natural cubic smoothing splines (NCSs) as the link

function in the primary model. As in Chapter III, a partially improper Gaussian

process (singular normal) is assigned as the prior such that

τ
n−2

2
l exp

{
−τl

2
fT

l K lf l

}
, l = 1, . . . , q,

where τl = αl

σ2
zl

, for a smoothing parameter α and var(Zil) = σ2
zl, and Kl is a matrix

satisfying fT
l K lfl =

∫ {
f

′′

l (t)
}2

dt.

To construct the Bayes hierarchical model, we assign same priors for covariates
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X l = (X1l, . . . , Xnl)
T and other necessary parameters such that for l = 1, . . . , q,

X l
ind∼ N(µxl

, σ2
xl

), µxl
∼ N(Aml

, Bml
), σ2

xl
∼ IG(Axl

, Bxl
), and σ2

u ∼ IG(Au, Bu). By

introducing q latent variables Z l = (Z1l, . . . , Znl)
T , we also assume a conjugate prior

for the variance of each latent variable as σ2
zl
∼ IG(Azl

, Bzl
) and τl as τl ∼ G(Atl, Btl),

l = 1, . . . , q. Note that each nonparametric curve induced by one covariate has its

own latent variable. The relationship between parameters is described in the DAG

(directed acyclic graph) in Figure 5 for q = 2.

From the model and prior distributions, the joint posterior distribution of the

unknowns is established to be proportional to

∝
n∏

i=1

p(Yi|ηi) ×
q∏

l=1

[
(
σ2

zl

)−n
2 exp

{
− 1

2σ2
zl

n∑

i=1

(Zil − fl(Xil))
2

}

× τ
n−2

2
l exp

{
−τl

2
fT

l K lf l

}
τ

Atl
−1

l exp

{
− τl

Btl

}

×
(
σ2

xl

)−n
2 exp

{
− 1

2σ2
xl

n∑

i=1

(Xil − µxl
)2

}

×
(
σ2

xl

)−(Axl
+1)

exp

{
− 1

σ2
xl

Bxl

}
× B

− 1
2

ml
exp

{
− 1

2Bml

(µxl
− Aml

)2

}

×
(
σ2

zl

)−(Azl
+1)

exp

{
− 1

σ2
zl
Bzl

}]

×
(
σ2

u

)− 1
2

Pn
i=1 mi exp

{
− 1

2σ2
u

n∑

i=1

(W i − DiX i)
T (W i − DiX i)

}

×
(
σ2

u

)−(Au+1)
exp

{
− 1

σ2
uBu

}
,

where p(·) is a density of the general exponential family, particularly Bernoulli density

with a success probability pi.

Let’s use the same notations with Chapter III for Al(αl), f l, and Y , in addition

to the latent variable Z l = [Z1l, . . . , Znl]
T . For the residual sums of squares, let RSSxl

,

RSSwi
and RSSxil

stand for the same things in Chapter III. The residual sums of
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Fig. 5. Directed acyclic graph for hierarchical Bayesian model with binary response.

Variables in the rectangles are observable or given, but variables in the circles

are not observable. The information of X1 and X2 is given by the combination

of W and t. Each covariate is associated with the separate nonparametric curve

f j, j = 1, 2. Each curve has its own latent variable.
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squares induced by a latent variable Z l are defined by RSSzl
=
∑n

i=1{Zil − fl(Xil)}2

and RSSzil
= {Zil − fl(Xil)}2, l = 1, . . . , q; i = 1, . . . , n.

After performing simple algebra, all the full conditional distributions are achieved

by:

f l|·
ind∼ N

[
Al(αl)Z l, Al(αl)σ

2
zl

]
,

τl|· ind∼ G

[
n − 2

2
+ Atl ,

(
fT

l K lf l

2
+

1

Btl

)−1
]

,

σ2
zl
|· ind∼ IG

[
n

2
+ Azl

,

(
RSSzl

2
+

1

Bzl

)−1
]

,

σ2
xl
|· ind∼ IG

[
n

2
+ Axl

,

(
RSSxl

2
+

1

Bxl

)−1
]

,

µxl
|· ind∼ N

[(∑n

i=1 Xil

σ2
xl

+
Aml

Bml

)(
n

σ2
xl

+
1

Bml

)−1

,

(
n

σ2
xl

+
1

Bml

)−1
]

,

σ2
u|· ∼ IG

[∑n

i=1 mi

2
+ Au,

(∑n

i=1 RSSwi

2
+

1

Bu

)−1
]

,

for l = 1, . . . , q, where G[a, b] stands for a gamma distribution with mean ab, and

IG[a, b] indicates an inverse gamma distribution with mean {(a−1)b}−1. In addition

to the full conditionals of Xil, the full conditionals of Zil, i = 1, . . . , n; l = 1, . . . , q

are not of standard forms but proportional to the following:

[Xil|·]
ind∝ exp

{
−RSSzil

2σ2
zl

− RSSxil

2σx2
l

− RSSwi

2σ2
u

}
,

[Zil|·]
ind∝ p(Yi|ηi)N

[
fl(Xil), σ

2
zl

]
, i = 1, . . . , n; l = 1, . . . , q.

From this conditional distribution, it is clear that by adopting Gaussian residual

effects Zl, l = 1, . . . , q, many of the conditional distributions for the model parameters

are now of standard form, which greatly aids in the computations. To be specific,

conditioning on Z l, the model for f l is independent of Y and can be written as a
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standard Bayes linear regression of Z l on the basis space defined by NCS. Hence, an

efficient sampling of p(f l|Z l, Y ) is possible.

Even with the binary response, we can find that the covariates have roles at

almost every full conditional distribution except for the variances of the latent vari-

ables. Accordingly, the measurement error will affect the estimation of link functions,

as well as other parameters. In the naive approach, we replace the unobserved X

by the least squares estimator for each subject, as in Chapter III. That will create a

biased estimate for the unknown functions. The results from the naive approach are

going to be compared with those from full Bayes approach.

To generate each parameter from the joint posterior distribution, we use Gibbs

sampler (Gelfand and Smith, 1990). Within the Gibbs procedure, the covariates Xil

and the latent variables Zil, i = 1, . . . , n, l = 1, . . . , q can be generated through

Metropolis-Hasting’s algorithm, because they do not follow standard forms. Cus-

tomizing the idea of Holmes and Held (2005) used in Chapter II, we can generate

Zil, i = 1, . . . , n; l = 1, . . . , q, from the conditional distribution marginalized over

f l, l = 1, . . . , q. Detailed calculations are provided in Appendix C. As explained in

Chapter III, the fitted curves f l from multivariate normal distributions are generated

by Cholesky’s decomposition with the backward and the forward substitutions.

We draw samples of functions from their joint posterior distribution and use

the pointwise mean curves as the natural estimate of the regression functions. The

sampling based method provides us with the flexibility to calculate pointwise median,

credible intervals, or any other functional values of these regression functions. In our

method, we allow a separate smoothness parameter for different regression functions

in the additive model setup, as in Chapter III. Hence, the estimated curves have

flexibility with different degrees of smoothness (complexity) with all the uncertainty

measures. In addition to the estimation of the functions, inferences (posterior mean
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and credible intervals) can be done for mismeasured Xs easily using the corresponding

MCMC samples even with a binary response.

4.4. Simulation study

For this simulation study, the same data set with Chapter III was used, except for

the response. The binary responses were generated from a Bernoulli distribution with

success probability pi = [1 + exp{−f1(Xi1) − f2(Xi2)}]−1.

The Bayesian hierarchical model was established by assigning same flexible hyper

priors for σ2
u, τ , µx1, µx2, and σ2

x1
. Because different variances are assumed for each

latent variable, the priors for the variances of two latent variables are given by σ2
z1

=

σ2
z2

∼ IG(3, 3).

The performance of each estimator was evaluated by MSE at 101 grid points in

the interval [-2,2] for f1 and [-1,1] for f2. In addition, we also examined the deviance

information criterion (DIC) explained at Appendix A. Detail theory and procedure

for DIC calculation can be found in Spiegelhalter et al. (2002); Mallick et al. (2002).

We examined twenty simulated data sets with different measurement error vari-

ance by collecting 10000 Markov Chain Monte Carlo (MCMC) samples after 50000

burning iterations, to check the effect of increased variance of measurement error

(σ2
u) and the increased sample size (n) on the performance of the estimator. For fixed

sample size, in general, larger σ2 (more measurement error) worsens the performance

of the estimator (increase the MSE). The simulation results are reported in Table

IV. The Bayes method outperformed the naive method in each situation. Although

the overall performance of the Bayes method has been deteriorated compared to the

continuous case, the Bayes method still has a better performance than the naive

method. This bad performance is from the binary response, not from the estimation
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Table IV. Table for simulated binary data: Average MSE and average DIC from 20

simulated data for each situation.

Situation Link Criterion NoErr Naive Bayes

n = 200

σ2
u = 0.49

f1

MSE 0.4825 1.5835 0.9806

Bias2 0.1442 1.4030 0.7180

Var 0.3383 0.1804 0.2626

f2

MSE 0.1695 0.2710 0.2649

Bias2 0.0346 0.1737 0.1061

Var 0.1350 0.0973 0.1588

DIC 115.17 181.61 175.63

n = 200

σ2
u = 1.0

f1

MSE 0.4825 2.2095 1.4062

Bias2 0.1442 2.0737 0.9474

Var 0.3383 0.1359 0.4588

f2

MSE 0.1695 0.4651 0.3395

Bias2 0.0346 0.3545 0.1373

Var 0.1350 0.1106 0.2022

DIC 115.17 201.26 189.16

n = 400

σ2
u = 1.0

f1

MSE 0.2633 2.5814 1.2636

Bias2 0.0965 2.4919 1.1279

Var 0.1668 0.0895 0.1356

f2

MSE 0.1450 0.3501 0.2968

Bias2 0.0541 0.3050 0.1531

Var 0.0909 0.0451 0.1436

DIC 248.89 418.20 411.66

NOTE: Bayes method performed better than the naive method in all the situations

in terms of MSE as well as DIC.
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of unknown covariates, because the estimated curve performs the worst even with

true covariate values.

In Figure 6, we plotted the true curve, the posterior mean curve and 95% point-

wise credible intervals obtained from the MCMC samples for the nonparametric re-

gression with binary data. Though the Bayes method did not work as well as the

continuous example, still it outperformed the naive method completely. In summary,

even in the simulation with the binary response the Bayes method showed a superior

performance to the naive estimates.

4.5. Childhood growth data analysis for adulthood obesity

We applied nonparametric logistic regression (when q = 2) to the childhood growth

data which is used in Chapter II. Adulthood obesity has been considered as a binary

response in two dimensional covariate space, where covariates are not observable

intercepts and slopes of childhood BMIs. The analysis results of adulthood obesity

were very similar to adulthood BMI. The Bayesian nonparametric logistic regression

performs better than the naive method in terms of DIC (237.56 vs. 233.09), which is

also better than the results of parametric logistic regression. Again, from Figure 7, we

can realize that the non-linear effects of the initial BMI-z at age three and the rate of

change of BMI-z on the response. Hence, to explore them, nonparametric regression

is inevitable here. In summary for both of the situations (continuous and binary),

the initial BMI-z value and the rate of change have significant nonlinear effects on

adulthood BMI (or obesity).
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Fig. 6. Average fitted values (95% credible intervals) for twenty simulations when

σ2
u = 1.0 and n = 200 with binary response. The naive method fails to detect

the true curve and shows an almost linear pattern. However, the Bayesian

method detects the pattern of the true curve. In f1, the Bayesian method

captures the valley and the mountain of the true curve, and in f 2, it has a

concave shape.
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Fig. 7. Binary regression for the real data. Estimated nonlinear functions (95% cred-

ible intervals) under the nonparametric model with BMI obesity data.
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CHAPTER V

BAYESIAN NONPARAMETRIC REGRESSION OF OUTCOME-DEPENDENT

FOLLOW-UP TIMES

5.1. Introduction

In many observational longitudinal studies, individuals are not measured at pre-

specified regular intervals. We consider studies where the time-points of measure-

ments are unequally spaced and time of a follow-up measurement can depend on

the history of past clinic visits and of previous outcomes of that individual, often

called ‘outcome-dependent follow-up.’ This situation can arise when an individual

with a poor disease history requires more care and hence more frequent visits to a

doctor. For example, Lipsitz et al. (2002) investigated the cardiotoxic effects of dox-

orubicin chemotherapy for the treatment of acute lymphoblastic leukemia in child-

hood. Although doxorubicin has proven to be successful in curing leukemia, it can

cause progressive abnormalities of the heart in long-term survivors. The primary

longitudinal outcome variable of the study was the patient’s heart-wall thickness,

which was measured via echocardiogram during every clinic visit of the child. The

time of the next follow-up visit was based on the physician’s judgement about the

child’s history of disease and condition of health at the current clinic visit. When

previous echocardiograms had shown a history of abnormalities of the heart, the next

echocardiogram was expected to be scheduled sooner than what is typical for a nor-

mal patient. Consequently, the times of observation were unequally spaced and varied

from child to child. Our interest lies in estimating the regression parameters for the

longitudinal outcome, as well as the prediction of future outcomes for an individual,

using Bayesian techniques. Further, we are also interested in applying Bayesian tech-
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niques when the interval between two echocardiograms might also depend on other

(unobserved) health factors beyond what was captured directly via the past history

of echocardiogram.

There has been a recent surge of interest in techniques to analyze studies with

outcome-dependent follow-up. Parametric regression methods have been proposed

in Liang and Zeger (1986); Lipsitz et al. (2002); Fitzmaurice et al. (2003); Chen

(2003), and nonparametric regression methods have been proposed by Wang (1998);

Opsomer et al. (2001). In a parametric likelihood framework, as Lipsitz et al. (2002)

pointed out, misspecification of the correlation structure among longitudinal mea-

surements result in biased estimation of regression parameters. In nonparametric

regression, outcome-dependent follow-up leads to undersmoothing behavior of the

cross-validation fit (Opsomer et al., 2001). However, Bayesian methods to analyze

such data have not been proposed.

In this chapter and the next, Bayesian approaches with both parametric and

nonparametric regression models has been considered. For the parametric regression,

noninformative priors for regression parameters are applied. For the nonparametric

regression, Bayesian natural cubic smoothing splines with partially improper Gaussian

prior (Berry et al., 2002) are considered. Lipsitz et al. (2002) assumed a common

variance and correlation structures based on a common correlation coefficient over

all individuals, and constructed a parametric regression model. Hence, when the

exchangeable (compound symmetry) correlation structure is assumed, their model

will have a common subject-specific covariance over all individuals. In addition, they

did not provide a direct association between the outcome process and the follow-up

time process, so that their model is only affected by a type of correlation structure

not by a specific follow-up time process. In this chapter, Bayesian approaches using

a model very similar to Lipsitz et al. (2002) have been explored and then, in the
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next chapter, it has been extended by introducing a subject-specific latent variable.

Furthermore, the correlation structure of errors of the regression model has also been

extended by allowing different correlations for different individuals. These models

considered in this chapter and the next are more general than the model of Lipsitz

et al. (2002) in that they allow more a much bigger class of models of association

among the responses at different time-points and also more general modelling of the

intervals between measurement times.

In section 5.2, we describe parametric and nonparametric regression models, and

in section 5.3, we present priors and induced posteriors for parametric and nonpara-

metric regression. To explore the effect of misspecification of the type of correlation

structure, section 5.4 customizes a Bayesian model diagnostic and section 5.5 pro-

vides a simple simulation for some types of correlation structure. Finally, in section

5.6 we illustrate the proposed methods using data from the longitudinal study of the

cardiotoxic effects of doxorubicin chemotherapy discussed earlier.

5.2. Model

For the individual i = 1, · · · , n, the unequally spaced observed follow-up times are

denoted by {ti1 < . . . < timi
}. Let Yij = Yi(tij) be the response from the individual

i at the follow-up time tij. Following Lipsitz et al. (2002); Fitzmaurice et al. (2003),

the first follow-up time ti1 is considered fixed by design and is treated as a part of the

covariates. In cardiotoxicity data (Lipsitz et al., 2002), ti1 is the time of first clinic

visit since the end of chemotherapy of individual i and cardiologists consider ti1 as a

key measure in predicting future course of heart function. Given the first follow-up

time ti1, the subsequent follow-up times can be modeled by a process of follow-up
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times Ni(t). We model the time elapsed between follow-up times

Uik = ti,k − ti,k−1, k = 2, . . . , mi; i = 1, . . . , n.

The time interval Uik of individual i is expected to be dependent on the history

of previous measurements Yik = (Yi1, · · · , Yi,k−1) and history of follow-up times

Uik = (ti1, · · · , Uik,k−1). We begin with Model-0, studied by Lipsitz et al. (2002);

Fitzmaurice et al. (2003), where follow-up times depend only on the observed history

Yik of longitudinal measurements. This modeling assumption is given by

[Uik|Yik, Uik] = [Uik|Yik] and [Yik|Uik, Yik, Uik] = [Yik|Uik, Yik] .

Under this assumption of Model-0, the conditional density of Uik can remain unspec-

ified, because follow-up time process (Ui2, . . . , Uimi
) do not make any direct contri-

bution to the estimation of the parameters associated with the longitudinal response

variable Y , where [Yik|Uik, Yik, Uik] and [Uik|Yik] do not share any common parame-

ter. For details of the direct impact of the follow-up times to the regression in this

model, we refer to Lipsitz et al. (2002); Fitzmaurice et al. (2003).

Under Model-0, the outcome process is given by

Y (t) = µ(t) + ǫt,

where µ(t) is a regression function of covariates at time t and ǫt is a Gaussian process

with zero mean. We use ǫij = ǫtij , to simplify the notation. The error processes ǫit are

assumed to be independent among individuals, but dependent within each individual.

Assume common variance V ar(ǫit) = σ2 and covariance Cov(ǫit, ǫis) = σ2ρits with a

subject-specific correlation function −1 < ρits < 1. Hence the covariance of errors

at observed follow-up times, cov{ǫ11, . . . , ǫnmn
}, can be described a blocked diagonal
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matrix

Σ = σ2
Σe = σ2




Σ1 0 · · · 0

0 Σ2 · · · 0

...
...

. . .
...

0 0 · · · Σn




,

where Σi, i = 1, . . . , n, is the mi × mi correlation matrix of outcome measures from

individual i. We may consider a correlation structure which depends on the time

elapsed between follow-up times in each individual. For example, we can consider

the correlation function ρits = ρ
|t−s|
i , which implies that the (k, j)th element of Σi,

i = 1, . . . , n, is given by

corr(Yik, Yij) =






ρ
|tik−tij |
i , if k 6= j,

1, if k = j.

For the regression function µ(t), we consider an additive model with follow-up times

and other covariates. The regression function can be described as

µi(t) = f(t) + X i(t)β, i = 1, . . . , n,

where f(t) is a function for follow-up time t, X i(t) is a 1 × (q + 1) row vector of a

constant 1 and other q covariates at t, and β is a q + 1 dimensional column vector

of regression coefficients. For the parametric regression model, f(t) can be assumed

to be, say, a known order polynomial function of t with unknown coefficients. As

an alternative, we can use a natural cubic smoothing spline for the nonparametric

regression model of f(t). To avoid the identifiability problem, we set
∑

ij f(tij) = 0

for nonparametric regression model and set the intercept term in f(t) to be zero for

parametric regression model.
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5.3. Bayesian regressions

Bayesian hierarchical models have been considered for analysis using Model-0. Un-

known parameters of models considered in section 5.2 are supposed to follow flexible

priors, and posterior quantities of interest are achieved by utilizing the Gibbs sampling

(Geman and Geman, 1984). Arguments begin with Bayesian parametric regression

(B-P), and then proceed to Bayesian nonparametric regression (B-NP).

A. Parametric regression

For the function f(t), suppose a polynomial function of known order p:

f(t) = θ1t + · · ·+ θpt
p ,

where θ = (θ1, . . . , θp)
T is the unknown parameter vector. Assume uniform priors

for θ and the regression parameters of covariates so that their posterior means are

comparable to the maximum likelihood estimates. In addition, consider uniform

priors for correlations such that ρi ∼ U(−1, 1), i = 1, . . . , n, and σ2 ∼ IG(As, Bs)

with known As and Bs for the common variance of ǫit.

Let N =
∑n

i=1 mi. Then, for individual i, we have mi × 1 vector of response Y i,

mi × 1 vector of follow-up times ti, and mi × q matrix of other covariates X i. Let

Zi = (ti, 1mi
, X i), where 1mi

is mi × 1 vector of ones, and Ryi
= (Y i −ZiΘ), where

Θ = (θT , βT )T is a (p + q + 1) × 1 vector of regression coefficients θ from follow-up

times and β from constant term and other covariates, i = 1, . . . , n. Further denote

Y , t, X, Z and R as the stacked versions of the corresponding vectors or matrices

over all individuals. Then, the joint density given follow-up times is proportional to
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the following:

∝
(
σ2
)−N

2

n∏

i=1

|Σi|−
1
2 exp

{
− 1

2σ2
RT

i Σ
−1
i Ri

}

× (σ2)−(As+1) exp

{
− 1

σ2Bs

}
,

where Σi are ith diagonal element of the error correlation matrix Σe. The prior

densities of nuisance parameters do not need to be considered in the calculation of

the joint p.d.f. because nuisance parameters are only involved in the follow-up time

process and there is no direct association between the follow-up time process and the

outcome process.

From the joint density, full conditionals for Θ and other parameters σ2 and ρi,

i = 1, . . . , n, are driven by

Θ|· ∼ N
[(

ZT
Σ

−1
e Z

)−1
ZT

Σ
−1
e Y ,

(
ZT

Σ
−1
e Z

)−1
σ2
]

σ2|· ∼ IG

[
N

2
+ As,

(
1

2
RT

y Σ
−1
e Ry +

1

Bs

)−1
]

,

ρi|·
ind∝ |Σi|−

1
2 exp

{
− 1

2σ2
RT

yi
Σ

−1
i Ryi

}
, i = 1, . . . , n.

Since the posterior of ρi does not have a standard distribution, Metropolis-

Hasting’s algorithm needs to be utilized to generate samples from the density. The

de-constraint transformation (Chen et al., 2000) has been applied to sample ρi such

that ρi = exp(ξi)
1+exp(ξi)

, and generate ρi via ξi which has a density such that

π(ξi|·) = π(ρi|·)
exp(ξi)

{1 + exp(ξi)}2 , i = 1, . . . , n,

where π(·) indicates the density function of the corresponding arguments. For the

Metropolis-Hastings algorithm, a normal proposal density N(ξ̂i, σ̂2
ξi
) has been consid-

ered, where ξ̂i can be achieved by Nelder-Mead algorithm and σ̂2
ξi

can be achieved by
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the inverse of the numerically approximated information number of ξi, evaluated at

ξ̂i. Details of the procedure can be found at Chen et al. (2000, pg. 25).

B. Nonparametric regression

For a Bayesian nonparametric regression (B-NP), the f(t) is estimated by Bayesian

natural cubic smoothing spline (NCS), and the effects of other covariates are modeled

by linear function. Let f i = [f(ti1), . . . , f(timi
)]T , i = 1, . . . , n, for the individual

i, and let f = [fT
1 , . . . , fT

n ]T and N =
∑n

i=1 mi. For functional values f of all

individuals, suppose a partially improper prior which is often used whenever response

errors are assumed independent (Berry et al., 2002; Ryu and Mallick, 2004) such that

f ∼ Singular Normal[0, α−1σ2K−],

where α is a smoothing parameter for the NCS, and K is N × N matrix with rank

N−2 satisfying fT Kf =
∫
{f ′′

(t)}2dt. The matrix K can be achieved by the method

described at Eubank (1999, p. 244). Note that K in Eubank (1999) is based on the

sorted t. Without loss of generality, a conjugate prior is assigned to τ = α
σ2 instead of

α such that τ ∼ G(At, Bt). For the nuisance parameters σ2 and ρi, i = 1, . . . , n, same

priors are assigned as in the Bayesian parametric regression (B-P). In Model-0, the

distribution of follow-up times needs not to be explicit. The directed acyclic graph of

the Bayesian nonparametric regression under Model-0 is shown in Figure 8. Not being

confused with Bayesian parametric regression, let Ry = (Y − f − Xβ) and Ryi
be

the component of Ry corresponding to the individual i. Utilizing the same notations

with parametric regression, the joint density given follow-up times is proportional to
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Fig. 8. Directed acyclic graph for Bayesian nonparametric regression under Model-0.
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the following:

∝
(
σ2
)−N

2

n∏

i=1

|Σi|−
1
2 exp

{
− 1

2σ2
RT

yi
Σ

−1
i Ryi

}

× τ
N−2

2 exp
{
−τ

2
fT Kf

}

× τAt−1 exp

{
− τ

Bt

}

× (σ2)−(As+1) exp

{
− 1

σ2Bs

}
,

where we restrict
∑

ij f(tij) = 0 to prevent the identifiability problem in the additive

model. From the joint density, full conditionals for f , τ , and other nuisance para-

meters are achieved. Let A(α) = (Σ−1
e + αK)−1. Then the full conditionals can be

summaries as the following:

f |· ∼ N
[
A(α){Σ−1

e (Y − Xβ)}, A(α)σ2
]

τ |· ∼ G

[
N − 2

2
+ At,

(
fT Kf

2
+

1

Bt

)−1
]

,

β|· ∼ N
[(

XT
Σ

−1
e X

)−1
XT{Σ−1

e (Y − f)},
(
XT

Σ
−1
e X

)−1
σ2
]

σ2|· ∼ IG

[
N

2
+ As,

(
1

2
RT

y Σ
−1
e Ry +

1

Bs

)−1
]

,

ρi|· ∝ |Σi|−
1
2 exp

{
− 1

2σ2
RT

yi
Σ

−1
i Ryi

}
, i = 1, . . . , n,

where Σi is the ith diagonal element of the blocked diagonal matrix Σe. As in the

parametric regression, ρi, i = 1, . . . , n, is generated via Nelder-Mead algorithm. For

samplings from non-standard full conditionals including ρi, Gibbs sampling is utilized.

5.4. Model diagnostics

The conditional predictive ordinate (CPO) statistics introduced by Gelfand et al.

(1992) is a useful model assessment tool using the marginal posterior predictive den-
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sity of each response given data from rest of the observations. Let ξ be all parameters

in the model, D be the data from all subjects, and D(i) be the data not from the

subject i. Further let Y i be the response from subject i. Then, the CPO statistic for

the subject i is defined as

CPOi = f(Y i|D(i)) =

∫

ξ

f(Y i|ξ)π(ξ|D(i))dξ

=

{
Eξ|D

(
1

f(Y i|ξ)

)}−1

.

First consider Model-0 with follow-up times U i = (ti1, Ui2, . . . , Uimi
)T of the subject

i. For Model-0, the distribution of U i is ignorable for the predictive distribution of

Y i, hence for given U i, the CPO for Y i can be computed as

CPOi0 =

[
Eξ|D

{
1

f(Y i|U i, ξ)

}]−1

,

where ξ = (θ, β,Σ). Although the integration for the calculations of CPO is not

trivial, we can utilize the MCMC samples of parameters and subject-specific random

effects. Let the superscripts (q), q = 1, . . . , Q, be the qth MCMC samples for cor-

responding parameters or subject-specific random effect. Then, under Model-0, the

CPO of the subject i can be estimated by

ĈPOi0 =

[
1

Q

Q∑

q=1

{
Ψ

(
µ(q), σ2(q)

Σ
(q)
i

)}−1
]−1

,

where Ψ(a, b) is a normal density with mean a and variance b. As a summary statistic

of CPO over all subjects, the logarithm of the pseudomarginal likelihood (LPML) has

been considered. The LPML (Ibrahim et al., 2001) is defined by

LPML =
1

n

n∑

i=1

log(CPOi).

Hence, larger value of LPML indicates better fit of the regression model.
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5.5. Simulation study

Leaving extra-covariates out of the consideration, only follow-up times were con-

sidered as covariates in our simulations. Bayesian parametric regression (B-P) and

Bayesian nonparametric regression (B-NP) were compared to each other, under Model-

0, by assuming three types of correlation structures of the outcome process:

AR1 : corr(Yik, Yij) =






ρ
|tik−tij |
i , if k 6= j

1, if k = j

,

IND : corr(Yik, Yij) =






0, if k 6= j

1, if k = j

,

EXCH : corr(Yik, Yij) =






ρi, if k 6= j

1, if k = j

,

where ρi indicates the correlation coefficient of the subject i. The simulation results

of the maximum likelihood estimation (MLE) from SAS PROC MIXED which Lipsitz

et al. (2002) used were also compared to B-P and B-NP.

By assuming AR1 correlation structure, five simulation data sets were generated

for 50 subjects (n = 50). For given follow-up time t, responses of the subject i were

generated from:

Yi(t) = µ(t) + η log Wi + ǫi(t),

µ(t) = sin

(
(t + 2)/3

t3/1000 + 1

)
− 1

10
,

where the response errors ǫi(t) were from (ǫ11, . . . , ǫnmn
)T ∼ N(0, σ2

Σe), σ2 = 0.1, and

Wi is a subject-specific random effect with the contribution coefficient η. In the follow-

up times of the subject i, the entering time ti1 were generated from Exp(2), where
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Exp(a) is the exponential distribution with mean a. The subsequent follow-up times

were generated by the intervals between consecutive follow-ups U i = (Ui2, . . . , Uimi
).

Denoting the history of outcomes from the subject i before the kth follow-up time as

Yik, Uik were generated from an extreme value distribution:

f(Uik|Yik, Wi) = h0(Uik)Wi exp{γYi,k−1 − H0(Uik)Wie
γYi,k−1}, k = 2, . . . , mi,

where h0(t) and H0(t) are the baseline hazard and the corresponding cumulative

hazard, respectively. True values of parameters and latent variable in the model

of outcome process were assumed such that η = −1 and log Wi ∼ N(0, κ), where

κ = 0.1. The correlation coefficients ρi of the subject i in the correlation structures

were generated from U(0.4, 0.6). For the follow-up times, true parameter values were

also assigned by λ = 0.1 with γ = −1 or 1. In addition, when γ = −1, ρi were

also generated from U(0.01, 0.99), and named the case as ‘wide ρi’. Furthermore,

the censoring time for the subject i was considered as the 75th percentile of the

distribution of U i to keep it same with the simulation in Lipsitz et al. (2002). At

most 20 follow-ups were allowed while their values are less than 20 (mi < 20, tij < 20,

where j = 1, . . . , mi and i = 1, . . . , 50). This simulation data set will be re-visited in

section 6.4 under more complex model (Model-1).

To explore the effects of different types of assumed correlation structures and the

performances of Bayesian parametric and nonparametric regression under Model-0,

MSE and CPO have been evaluated for each case. In B-P, conjugate vague priors have

been assigned for σ2 and κ such that IG(1, 1), where IG(a, b) indicates inverse-gamma

with mean {(a−1)b}−1. Another conjugate prior were assigned for λ such that G(1, 1),

where G(a, b) is a gamma distribution with mean ab. For other parameters, non-

informative uniform priors have been assumed. In addition, for the nonparametric

regression, the prior of smoothing parameter was set to be τ ∼ G(3, 10). After 500
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burning time, we took posterior mean of 1000 iterations as the estimates of parameters

and regression function.

As shown in Table V, the correct specification of correlation structure (AR1)

is indispensable for good fit. Among regression method, B-NP has shown the best

performance in MSE. Figure 9 shows similar estimated curves by different types of

correlation structures under Model-0, while AR1 performs slightly better. Utilizing

Bayesian model assessment discussed in section 5.4, for the Bayesian parametric and

nonparametric regressions, Table VI confirms the results of MSE with respect to

CPO. In Table VI, larger value of summary statistic LPML=
∑n

i=1 log CPOi indicates

a better fit of the model. For every value of γ, the Bayesian parametric regression (B-

P) yields a smaller CPO statistic relative to the Bayesian nonparametric regression

(B-NP), indicating a better fit for the Bayesian nonparametric regression. In LPML,

the difference by three types of correlation structures and regression method are more

distinguishable. Figure 9 also shows better fitting by assuming AR1 under Model-0.

5.6. Longitudinal study of cardiotoxicity

The effective treatment of chemotherapy doxorubicin of acute lymphoblastic leukemia

in children has late cardiotoxic effects. To study cardiotoxic effects, the wall thick-

ness of the heart was measured by examining echocardiograms. Data used in analysis

were collected from 111 patients who had been completed chemotherapy. The con-

sidered covariates are cumulative doses of doxorubicin/m2 of body surface (Dose,

dichotomized at 350mg; 1 = 350 mg or more, 0 = less than 350 mg), age when the

last treatment is taken (Age, ranging from 1.4 to 20.1 years), gender (Sex, 1 = fe-

male, 0 = male), and follow-up times since the end of chemotherapy (t, ranging from

0.1 to 13.86 years). Among the patients, 91 were measured more than once. For
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Fig. 9. Bayesian nonparametric fit under Model-0 when γ = 1. At the beginning IND

has a big bias and at the end EXCH has a big bias, while AR1 (true correlation

structure) constantly shows a good estimation.
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those patients, the time to perform echocardiogram is not pre-specified but depends

on previous outcomes. From all patients including twenty single visit patients, 329

measurement outputs were available. Figure 10 shows some samples of longitudinal

measurements of heart wall thickness from ten patients.

According to Lipsitz et al. (2002), preliminary analysis of the data suggested

the following regression function for the mean wall thickness of the heart at the

measurement time tij from the individual i such that

µ(tij) = γ0 + γ1tij + γ2t
2
ij + β1agei + β2genderi + β3dosei + β4(genderi × dosei).

As in section 5.5, with three correlation structures (AR1, IND, and EXCH), three

regression methods (MLE, B-P, and B-NP) were explored, under Model-0.

As shown in Table VII, in most of cases, the estimated parameters are similar

to each other, under the assumption of correlation structure as EXCH, the estimated

regression coefficients for follow-up times (tij), Age, and Dose are slightly higher than

under other correlation structures (IND and EXCH). The residual sum of squares

(RSS) is given by

RSS =
1

N

n∑

i

mi∑

j=1

{Yij − µ̂(tij)}2 ,

where N =
∑n

i=1. The RSS are not distinguishable under Model-0. Furthermore,

outcomes from an individual may not be independent. Hence, the RSS may not

assess model properly (Neter et al., 1990, pg. 484).

Since RSS only considers the fitted values based on entire data, alternatively,

condition probability ordinate (CPO) has been considered as a better assessment tool

to evaluate the effects of each model on the prediction at each data point. Table VIII

describes summary statistic LPML of CPO. According to the table, AR1 and EXCH
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Fig. 10. Samples of longitudinal measurements of heart wall thicknesses. Each line

shows longitudinal measurements from one patient.
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bring better performance than IND, while EXCH possesses slightly more preferable

results than AR1. On the other hand, the improvement of the performance by B-NP

are negligible.

Figure 11 indicates that B-NP with EXCH correlation type leads to the most

slope of the fitted curve, which is evaluated as the best fit with respect to LPML.

Under Model-0, B-NP and B-P show very similar trend to each other (Figure 12),

especially at the beginning and the ending of the curve. Hence, assuming Model-0,

above results indicate that the type of correlation structure works more critically to

the better fit than the regression method.
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Table V. Mean Square Error (MSE) of Model-0: Five simulation data sets of 50 sub-

jects.

Condition Method
Correlation Structure

AR1 IND EXCH

γ = 1

ρi ∼ U(0.4, 0.6)

MLE 0.0634 0.0707 0.0692

B-P 0.0654 0.0705 0.0697

B-NP 0.0162 0.0255 0.0214

γ = −1

ρi ∼ U(0.4, 0.6)

MLE 0.1104 0.1311 0.1090

B-P 0.1086 0.1298 0.1083

B-NP 0.0301 0.0502 0.0303

γ = −1

ρi ∼ U(0.01, 0.99)

MLE 0.1082 0.1344 0.1086

B-P 0.1067 0.1342 0.1079

B-NP 0.0251 0.0521 0.0245

Note: In most of all cases, AR1 shows smaller MSE. In some other cases, AR1 and

EXCH have similar MSEs which is less than that from IND. Comparing the regression

method, while B-P and MLE have similar performance to each other, B-NP has much

better performance.
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Table VI. Logarithm of the Pseudomarginal Likelihood (LPML) of Model-0 for simu-

lated data.

Condition Method
Correlation Structure

AR1 IND EXCH

γ = 1

ρi ∼ U(0.4, 0.6)

B-P -77.11 -108.85 -85.95

B-NP -65.22 -90.92 -70.85

γ = −1

ρi ∼ U(0.4, 0.6)

B-P -95.85 -112.13 -104.06

B-NP -75.51 -88.41 -80.07

γ = −1

ρi ∼ U(0.01, 0.99)

B-P -70.65 -99.88 -82.43

B-NP -56.53 -73.36 -58.61

Table VII. Estimated regression parameters in cardiotoxic data under Model-0.

Method CORR tij t2ij Age Sex Dose S*D RSS

MLE

AR1 -0.1877 0.0062 0.0092 0.6148 0.5069 -1.0453 3.0604

IND -0.1845 0.0059 -0.0105 0.6212 0.5177 -1.0567 3.0379

EXCH -0.1464 0.0028 0.0117 0.7010 0.7089 -1.4141 3.0774

B-P

AR1 -0.1712 0.0054 0.0103 0.5892 0.5501 -1.2444 3.0709

IND -0.1835 0.0058 -0.0107 0.6158 0.5107 -1.0392 3.0379

EXCH -0.1517 0.0030 0.0128 0.7365 0.7258 -1.4405 3.0792

B-NP

AR1 0.0099 0.6275 0.6063 -1.2998 3.0639

IND -0.0116 0.6156 0.5433 -1.0574 3.0286

EXCH 0.0101 0.6945 0.7405 -1.4162 3.0726
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Table VIII. LPML under Model-0: Cardiotoxic data with 111 subjects.

Method
Correlation Structure

AR1 IND EXCH

B-P -639.43 -663.44 -633.47

B-NP -636.50 -662.51 -633.88

Note: Summary statistic LPML=
∑n

i=1 log CPOi indicates better fit with larger value.

In types of correlation structures, IND obtains the worst fit with all of the regressions

(B-P and B-NP). While EXCH takes slight improvement of fit, AR1 and EXCH lead

to similar results. Although B-NP has slightly better performance than B-P, the

improvement is negligible.
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Fig. 11. Bayesian nonparametric fit for cardiotoxic data under Model-0. While all

three structures show similar trends, fitted curved from IND ends more slowly

than others.
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Fig. 12. Bayesian parametric and nonparametric fit for cardiotoxic data under Mod-

el-0. Curves are estimated by the correlation type EXCH, under Model-0.

B-P and B-NP produce very similar curves to each other.



67

CHAPTER VI

BAYESIAN NONPARAMETRIC REGRESSION UNDER FLEXIBLE MODEL

OF OUTCOME-DEPENDENT FOLLOW-UP TIMES

The same longitudinal measurement study with Chapter V has been considered, where

the association among individual measurement times is assumed to be completely ex-

plained by observed history of longitudinal measurements. In this chapter, unobserv-

able subject-specific random effects are considered in the outcome process for more

flexible modeling.

Same notations of Chapter V have been utilized in this chapter. In section

6.1, parametric and nonparametric regression models are described, and in section

6.2, priors and induced posteriors for parametric and nonparametric regression are

developed. To evaluate the performance of regression models and relaxed model

assumption, section 6.3 customizes Bayesian method of model assessment and section

6.4 provides a simple simulation. Section 6.5 summaries the longitudinal study of the

cardiotoxic effects of doxorubicin chemotherapy under more flexible modeling.

6.1. Model

As an alternative to Model-0 in Chapter V, a more complex model, called Model-1, has

been considered. This new Model-1, addresses the modeling of the joint distribution

of follow-up times U i = (Ui2, · · · , Uimi
) for individual i via a latent frailty variable Wi,

reflecting the subject-specific random effect. As in Model-0, let µi(t) be the regression

function, and ǫit be the Gaussian error process with zero mean and covariance process
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σ2ρits. We describe outcome process as following model.

Yi(t) = µi(t) + η log Wi + ǫit,

log(Wi) ∼ N(0, κ), j = 1, . . . , mi, i = 1, . . . , n,

where κ is a variance of the random subject-specific frailty effect Wi and η is the

coefficient of the random frailty effect to the response Yi(t). In this model, follow-

up time process contributes to the estimation of longitudinal response process Yi(t)

through the shared frailty Wi. When a subject has only one observation (mi = 1),

we do not have follow-up process. However, when a subject has more than one

observation (mi ≥ 2), we assume Uik, k = 2, · · · , mi, given the frailty Wi and the

observed history (Uik, Yik) follow the survival distribution with the hazard rate

hik(u|Uik, Yik, Wi) = h0(u)Wi exp(γYi,k−1), j = 2, . . . , mi,

where h0(u) is a baseline hazard rate function and γ is a coefficient of autoregressive

model. We also assume that Wi are independent of the response errors ǫit. Please

note that when η = 0, the model reduces essentially to Model-0 and distribution of

observed follow-up times does not contribute to the estimation of parameters of the

longitudinal response process Y (t). This follow-up times model can also include a

term involving a regression coefficient for the covariate vector X i(t), however, for the

data examples considered here, we omit this term from Model-1. Please note that

model for follow-up times considered in Model-1 is similar to the log-normal frailty

model for multivariate survival data considered by Hougaard (2000).

Let H0(u) =
∫ u

0
h0(v)dv be the cumulative baseline hazard function. Then,

equivalently, we can write the density function of Uik, for k = 2, . . . , mi; i = 1, . . . , n,
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as

fik(u|Yik, Uik, Wi) = h0(u)Wi exp
{
γYi,k−1 − H0(u)Wie

γYi,k−1
}

, k = 2, . . . , mi.

For the sake of the simplicity, we assume h0(t) = λ. More information about the

estimation of baseline hazard function can be found at Fan et al. (1997); Horowitz

and Lee (2004); Klein and Moeschberger (1997).

6.2. Bayesian regressions

As in chapter V, Bayesian hierarchical models have been considered for Bayesian para-

metric and nonparametric regressions under Model-1. Modeling starts with Bayesian

parametric regression (B-P) and then proceed to Bayesian nonparametric regression

(B-NP).

A. Parametric regression

The follow-up time U i is modeled by utilizing a survival distribution with baseline

hazard λ and the subject-specific random effect Wi is supposed to be from log-normal

distribution with mean zero and variance κ as mentioned in section 6.1. Consider

the same priors with Model-0 for the regression parameters and nuisance parameters

introduced in Model-0. Additionally, suppose priors for parameters related to follow-

up times such that λ ∼ G(Al, Bl) and κ ∼ IG(A0, B0). For other parameters, suppose

non-informative uniform priors. The vectors Y , t, X, Z, and Θ denote same values

as before. Let R∗
yi

= (Y i−Z iΘ−η log Wi1), i = 1, . . . , n, and R∗
y = (RT

y1
, . . . , RT

yn
)T .



70

Then the joint p.d.f can be summarized by

∝
(
σ2
)−N

2

n∏

i=1

|Σi|−
1
2 exp

{
− 1

2σ2
R∗T

yi
Σ

−1
i R∗

yi

}

×
n∏

i=1

(
κ

1
2 Wi

)−1

exp

{
−1

κ
(log Wi)

2

}

×
n∏

i=1

mi∏

j=2

λWi exp
(
γYi,j−1 − λUijWie

γYi,j−1
)

× (σ2)−(As+1) exp

{
− 1

σ2Bs

}
λAl−1 exp

(
− λ

B l

)
κ−(Ak+1) exp

(
− 1

Bkκ

)
,

where the conditional density for Uik is exponential with hazard λWi exp(γYi,k−1).

From the joint density, full conditionals for parameters and latent variable are calcu-

lated as the following:

Θ|· ∼ N
[(

ZT
Σ

−1
e Z

)−1
ZT

Σ
−1
e (Y − η log W ),

(
ZT

Σ
−1
e Z

)−1
σ2
]

σ2|· ∼ IG

[
N

2
+ As,

(
1

2
R∗T

y Σ
−1
e R∗

y +
1

Bs

)−1
]

,

ρi|·
ind∝ |Σi|−

1
2 exp

{
− 1

2σ2
R∗T

yi
Σ

−1
i R∗

yi

}
, i = 1, . . . , n,

Wi|·
ind∝ G



mi,

(
λ

mi∑

j=2

Uije
γYi,j−1

)−1


 lognormal

[
Dwi

Cwi

,
1

Cwi

]
, i = 1, . . . , n,

η|· ∼ N

(
Dη

Cη

,
σ2

Cη

)
,

λ|· ∼ G
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UijWie
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1
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γ|· ∝ exp

{
γ
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Yi,j−1 − λ
n∑

i=1

mi∑

j=2

WiUije
γYi,j−1

}
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2
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1
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where W = (W11
T
m1

, . . . , Wn1
T
mn

)T and 1s is a s × 1 vector of ones. Note that, for

any subject with mi = 1, the conditional of Wi is log-normal and conditional density

of ρi is not required. The normalizing constants in the full conditional of Wi are

Cwi
= η2

σ2 1
T
Σ

−1
i 1 + 1

κ
, Dwi

= η

σ2 1
T
Σ

−1
i (Y i − ZiΘ), i = 1, . . . , n, respectively, and

the constants in the full conditional of η are Cη =
∑n

i=1(log Wi)
2(1T

mi
Σ

−1
i 1mi

), and

Dη =
∑n

i=1 log Wi{1T
mi

Σ
−1
i (Y i − ZiΘ)} . The full conditional of Wi does not follow

any standard density when mi ≥ 2, but it has a form similar to a product of extreme

value densities.

By utilizing the Gibbs sampling, samples from the posterior distributions of the

parameters establish the samples from the joint p.d.f. Although ρi, Wi, and γ do

not follow any known standard density, Metropolis-Hastings algorithm enables to

generate them. As in chapter V, Nelder-Mead algorithm is applied to generate ρi.

B. Nonparametric regression

In Model-1, the priors for the follow-up times need to be specified explicitly. As in the

parametric regression, let U i = (Ui2, . . . , Uimi
) be the elapsed times and Wi be the

subject-specific random effect from the individual i, i = 1, . . . , n. Same distributions

of U i and Wi as in the parametric regression are assumed. In addition, the same

priors for λ, η, κ, and γ as in the parametric regression are also assumed. Without

ambiguity with parametric regression, we re-define the vector of residual such that

R∗
yi

= (Y i−f i−X iβ−η log Wi1mi
), i = 1, . . . , n, and R∗

y be the stacked version over

all individuals. Then, the modified joint density for the nonparametric regression can
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be described by the following:

∝
(
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where f is restricted to be
∑

ij f(tij) = 0 to prevent the identifiability problem in the

additive model. The directed acyclic graph for Bayesian nonparametric regression

under Model-1 can be described by Figure 13. After all, the joint distribution is a

combination of the Bayesian parametric regression under Model-1 and the Bayesian

nonparametric regression under Model-0. Followings are full conditionals which are

different from Model-0 in nonparametric regression:

f |· ∼ N
[
A(α)Σ−1

e (Y − Xβ − η log W ), A(α)σ2
]

β|· ∼ N
[(

XT
Σ

−1
e X

)−1
XT

Σ
−1
e (Y − f − η log W ) ,

(
XT

Σ
−1
e X

)−1
σ2
]

σ2|· ∼ IG

[
N

2
+ As,

(
1

2
R∗T

y Σ
−1
e R∗

y +
1
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)−1
]

,

ρi|· ∝ |Σi|−
1
2 exp
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2σ2
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yi
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σ2

Cη

)
,
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Fig. 13. Directed acyclic graph for Bayesian nonparametric regression under Model-1.
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where Σi, Σe, and W are defined same as before. The constants in denominators of

the full conditionals of Wi and η remain same as in the parametric regression, but the

constants in the numerators need minor modifications such that D∗
wi

= η

σ2 1
T
Σ

−1
i (Y i−

f i−X iβ), and D∗
η =

∑n

i=1 log Wi{1T
mi

Σ
−1
i (Y i−f i−X iβ)}. Other parameters have

same full conditionals as in the parametric regression under Model-1; [λ|·] follows

Gamma, [γ|·] is proportional to the product of generalized extreme value distributions,

and [κ|·] follows inverse Gamma. The full conditional of the smoothing parameter is

also same as in the nonparametric regression under Model-0 such that [τ |·] follows

Gamma.

Through the Gibbs sampling, samples for all parameters and latent variables

are generated from the joint p.d.f. For non-standard full conditionals, Metropolis-

Hasting’s algorithm is utilized. Especially for ρi, Nelder-Mead algorithm is also ap-

plied, as in the parametric regression under Model-1.

6.3. Model diagnostics

For Model-1, W = (W1, . . . , Wn)T is the vector of subject-specific random effects

of all subjects. The distribution of U i is associated with distribution of Y i via the

frailty Wi. The commonly used CPO defined by Gelfand et al. (1992) leading up to

CPOi1 =
∫

f(Y i, U i|ξ)π(ξ|D(i))dWdξ is not comparable to CPOi0 of Model-0, which

is based only on the predictive distribution of Y i|D(i). To remedy this problem of

comparing CPOi0 based on Y i|D(i) versus CPOi1 based on Y i, U i|D(i), we introduce

a novel idea of Conditional CPO (CCPO) for Model-1 based on Y i, U i|D(i). For
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Model-1, given U i, CCPO of the subject i is

CCPOi =

∫
f(Y i|U i, W , ξ)f(W , ξ|D(i))dW dξ

=
EWi,ξ|D

(
1

f(Ui|Wi,ξ)

)

EWi,ξ|D

(
1

f(Y i,Ui|Wi,ξ)

)

The above equation shows that CCPO can be computed using samples from full

posterior π(ξ|D). Details for the calculation of CCPO can be found at the Appendix.

The integration for the calculations of CCPO is not trivial. However, the MCMC

samples of parameters and subject-specific random effects can be utilized to obtain

CCPO. Under Model-1, to calculate CCPO, we need values of the density of U i and

the joint density of (Y i, U i) given (Wi, ξ). From the joint density in section 6.2, we

can drive the following density functions:

f(Y i, U i|Wi, ξ) ∝ Ψ[µ(ti) + η log Wi, σ
2
Σi]

×
mi∏

j=2

λWi exp
(
γYi,j−1 − λUijWie

γYi,j−1
)
,

f(U i|Wi, ξ) =
f(Y i, U i|Wi, ξ)

f(Y i|U i, Wi, ξ)

∝
mi∏

j=2

{
λWi exp

(
γYi,j−1 − λUijWie

γYi,j−1
)}

,

where Ψ(a, b) is a normal density with mean a and variance b. Hence, with MCMC

samples, CCPO can be achieved by

ĈCPOi1 =

1
Q

∑Q
q=1

(
1

f(Ui|W
(q)
i ,ξ(q))

)

1
Q

∑Q
q=1

(
1

f(Y i,Ui|W
(q)
i ,ξ(q))

)
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As a summary statistic of CCPO, the LPML in section 5.4 is utilized.

LPML =
1

n

n∑

i=1

log(CCPOi).

6.4. Simulation study

The five simulated data sets in section 5.5 have been re-used. Hence, simulated

data includes three cases: γ = 1, γ = −1, and wide ρ. Under Model-1, three

types of correlation structures (AR1, IND, and EXCH) defined in section 5.5 have

been assessed with Bayesian parametric regression (B-P) and Bayesian nonparametric

regression (B-NP). In addition to the priors in section 5.5, a non-informative uniform

prior were assigned to the contribution coefficient η, and flexible conjugate priors were

assigned to the variances of the outcome process and the subject-specific random effect

such that λ ∼ G(1, 1) and κ ∼ IG(1, 1).

For the model assessment, as in section 5.5, MSE and customized CPO statistic

have been utilized. Tables IX and X show that B-NP outperforms B-P. In Table

X, larger value of summary statistic LPML=
∑n

i=1 log CCPOi indicates a better fit

of the model. For every value of γ, the Bayesian parametric regression (B-P) yields

a smaller CPO statistic relative to the Bayesian nonparametric regression (B-NP),

indicating a better fit for the Bayesian nonparametric regression. For the comparison

of two models by MSE (Table V versus Table IX) and by LPML (Table VI versus

Table X), Model-1 gives better fits than Model-0 for all conditions and correlation

structures (AR1, IND, EXCH). In addition, Model-1 brings less variation in CPO

statistics than those of Model-0 when we vary the assumed correlation structure.

This indicates the robust behavior of Model-1 relative to Model-0 with respect to

any assumed correlation structure. Apparently, the correct specification of the type

of correlation structure also bring a better fit than other, as Lipsitz et al. (2002)
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Table IX. Mean Square Error (MSE) of Model-1: Five simulation data sets of 50

subjects.

Condition Method
Correlation Structure

AR1 IND EXCH

γ = 1

ρi ∼ U(0.4, 0.6)

B-P 0.0676 0.0704 0.0695

B-NP 0.0159 0.0225 0.0220

γ = −1

ρi ∼ U(0.4, 0.6)

B-P 0.1078 0.1089 0.1076

B-NP 0.0288 0.0291 0.0306

γ = −1

ρi ∼ U(0.01, 0.99)

B-P 0.1069 0.1061 0.1081

B-NP 0.0224 0.0261 0.0239

Note: In every case, B-NP has much smaller MSE than B-P. Comparing to Table V,

MSE of Model-1 has been less affected by the type of the correlation structure.

Table X. Logarithm of the Pseudomarginal Likelihood (LPML) of Model-1 for simu-

lated data.

Condition Method
Correlation Structure

AR1 IND EXCH

γ = 1

ρi ∼ U(0.4, 0.6)

B-P -74.54 -85.15 -85.58

B-NP -53.00 -58.01 -59.53

γ = −1

ρi ∼ U(0.4, 0.6)

B-P -77.25 -91.79 -90.76

B-NP -55.61 -57.34 -68.21

γ = −1

ρi ∼ U(0.01, 0.99)

B-P -67.82 -80.71 -81.67

B-NP -49.98 -53.50 -66.28
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have studied. Hence, the best performance is achieved by B-NP and AR1 under

Model-1. Figure 14 shows fitted curves by B-NP with different types of correlation

structure. Figures 15 and 16 compare the performance of B-NP, which shows the

best performance under each model. Even in this comparison, Model-1 produces

better performance. In addition, Figure 17 indicates that the true value of ρi is not

estimated perfectly but estimated well by assuming different ρi on each subject.

6.5. Longitudinal study of cardiotoxicity

Under Model-1, the same cardiotoxic data in section 5.6 have been analyzed. With the

same regression function µ(t), three types of correlation structures (AR1, IND, and

EXCH) have been applied to Bayesian parametric and nonparametric regressions (B-P

and B-NP), which have been performed under Model-0 in section 5.6. However, under

Model-1, the subject-specific random effect (Wi, i = 1, . . . , n) and the parameters in

the distribution of follow-up times are required to be estimated.

Table XI summarizes the estimated parameters and residual sum of squares. The

estimated parameters, under Model-1, takes similar values to section 5.6. Estimating

parameters (µ(tij), η, Wi) with its corresponding posterior means of MCMC iterations

(µ̂(tij), η̂, Ŵi), for the subject i, the residual sum of squares (RSS) is given by

RSS =
1

N

n∑

i

mi∑

j=1

{
Yij − µ̂(tij) − η̂ log Ŵi

}2

,

where N =
∑n

i=1. Although RSS showed similar performance in B-NP and B-P, for

given correlation structure, with the same reason of section 5.6, LPML is preferred to

RSS. In LPML, B-NP with EXCH has produced the best performance (Table XII).

The estimated curves in Figures 18 and 19 also show similar patterns by different types

of correlation structures and different regression methods. In addition, as shown in
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Fig. 14. Bayesian nonparametric fit under Model-1 when γ = 1. At the beginning

three correlation structures show a similar result, but at the end AR1 leads

to the best estimation. The correct specification of correlation structure is

important to estimate the true curve under Model-1.
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Fig. 15. Bayesian nonparametric fit under Model-0 and Model-1. When the coefficient

of autoregression γ = −1, we assumed true AR1 correlation structure in

the fitting, under Model-0 and Model-1. Two models produce similar lines,

but Model-1 shows slightly better performance. Because Model-1 reflects the

effect of outcome-dependency, it improves the performance of nonparametric

fitting.
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Fig. 16. Comparison CPOs from Model-1 to Model-0 for simulated data. While Mod-

el-1 and Model-0 produce similar CPO, 60% of log CPO ratios for Model-1

versus Model-0 are positive. That is, Model-1 explains data better than Mod-

el-0.
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Fig. 17. Estimated correlation coefficient of each subject. For the case of wide ρ,

Model-1 has been performed under AR1. Because ρi is defined only when

mi > 1, plot indicates ρ̂ for the corresponding individuals. Especially, when

mi > 3, ρ̂i is denoted by ⊗ to indicate individuals with more information of

follow-up times. In most cases, the true ρi is relatively well estimated. In

addition, more information of follow-ups results in better estimation of ρi.
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Figure 20, each individual shows a different subject-specific random effect. Hence,

Model-1 is expected to bring more reliable results.

Comparing the results from Model-0 and Model-1 by RSS (Table VII versus Table

XI), Model-1 has slightly less RSS in each type of correlation structure. With respect

to LPML (Table VIII versus Table XII), Model-1 also shows slight improvement of

the performance.

In summary, the correct specification of the type of correlation structure is critical

to get better performance of fit. In addition, the application of B-NP and Model-1

instead of B-P and Model-0 results in better fit of the regression model with the

outcome-dependent follow-up data.
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Fig. 19. Bayesian parametric and nonparametric fit for cardiotoxic data under Mod-

el-0. Curves are estimated by the correlation type EXCH, under Model-0.

B-P and B-NP produce very similar curves to each other.
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Fig. 20. Estimated subject-specific random effects for cardiotoxic data. From Bayesian

nonparametric regression with EXCH correlation type, subject-specific ran-

dom effects show different values for each subject, where of η̂ is estimated by

0.3276.
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Table XI. Estimated regression parameters in cardiotoxic data under Model-1.

Method CORR tij t2ij Age Sex Dose S*D RSS

B-P

AR1 -0.1882 0.0061 0.0104 0.5610 0.6364 -1.1945 2.5310

IND -0.2025 0.0062 0.0004 0.5475 0.6246 -0.9721 2.0384

EXCH -0.1453 0.0026 0.0091 0.6358 0.7354 -1.3170 2.9402

B-NP

AR1 0.0120 0.5812 0.6325 -1.1745 2.5612

IND -0.0013 0.5409 0.6308 -0.9368 2.0099

EXCH 0.0099 0.6912 0.8019 -1.3904 2.9489

Table XII. LPML under Model-1: Cardiotoxic data with 111 subjects.

Method
Correlation Structure

AR1 IND EXCH

B-P -638.72 -663.43 -631.98

B-NP -633.97 -660.54 -629.79

Note: Summary statistic LPML=
∑n

i=1 log CPOi indicates better fit with larger value.

As in Table VIII, AR1 and EXCH accomplish better fit and B-NP appears to be

slightly advantageous, while all values are slightly better than that.
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APPENDIX A

DEVIANCE INFORMATION CRITERION (DIC)

In the logistic regression, we can use the deviance information criterion (DIC) to

evaluate the performance of the model. Let Yi
ind∼ B(1, pi) and logit(pi) = f(Xi) for

i = 1, . . . , n. Suppose p̂i is a estimate of pi then, the deviance of the model defined

as follows.

D = −2
n∑

i=1

{Yi log p̂i + (1 − Yi) log(1 − p̂i)} .

In MCMC iterations, let f̂
(j)
i be the value of the generated link function from the jth it-

eration evaluated at Xi. Then the corresponding estimated p̂
(j)
i = {1+exp(−f̂

(j)
i )}−1.

Similarly, the estimated average probability is p̂mean
i is the Monte Carlo averages of

these p̂
(j)
i . Let Dj be the deviance from the jth iteration and Dmean be the deviance

from the posterior mean. Then the DIC can be defined as follow:

DIC = D + pD,

D =
1

L

L∑

j=1

Dj,

pD = D − Dmean,

where L is the number of MCMC samples used.
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APPENDIX B

COMPUTATIONAL NOTES

1. Duplicated values of covariate

We assumed distinctive values of covariates for different subjects. However, in

the real world with childhood growth data, we may have the same value of

covariates because of the truncation errors in the recording. These duplicated

values of the covariates made almost no problem in the generations of parame-

ters and latent variables, except for the NCS during Gibbs procedure. Hence,

for the NCS, we rounded off the average value of the latent variable when the

corresponding values of the covariate are the same.

2. Calculation of covariance matrix of the full conditional distribution of Bayesian

NCS

Under Model I in section 3.3, to generate the Bayesian NCS, f 1, from its full

conditional distribution, N
[
A1(α1)Z1, A1(α1)σ

2
z1

]
, we could use Cholesky’s de-

composition of A1(α1), because A1(α1) is symmetric positive definite. Assum-

ing an upper triangular matrix L and Cholesky’s decomposition of L⊤L =

A1(α1), we could generate f1 by generating V from N(0, σ2
z1

I) and taking

A1(α1)Z1 + L⊤V . However, this method requires the matrix inversion of

I + α1K1, which takes more computing time and leads to truncation errors.

Without the matrix inversion of I+α1K1, we utilized Cholesky’s decomposition

of L∗⊤L∗ = I +α1K1, where L∗ is an upper triangular matrix. We first solved

L∗⊤v = Z1 for v by forward substitution, and then solved L∗u = v for u by
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backward substitution instead of the direct calculation of A1(α1)Z1. With V

from N(0, σ2
z1

I), we solved L∗w = V for w by backward substitution rather

than L⊤V .

When I+α1K1 is ill conditioned, that is, badly scaled and close to non-negative

definite, Cholesky’s decomposition is not possible. Because our estimated or

generated covariate Xi1 in Model I is unequally spaced, it can produce badly

scaled I +α1K1. Sometimes a small value for the generated smoothing parame-

ter α can lead to a badly scaled matrix. When the matrix inversion of I +α1K1

is possible with high condition number, we used eigenvalue decomposition of

UDU⊤ = A1(α1), where U is an orthogonal matrix and D is a diagonal ma-

trix, and then constructed diagonal matrix D∗ with non-negative elements of

D and zeros for the negative elements of D. Then, with the generated normal

random vector V , we produced f 1 such that f 1 = A1(α1)Z1+U
√

D∗V , where
√

D∗ consists of the square roots of elements of D∗.
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APPENDIX C

GENERATION LATENT VARIABLE FROM JOINT POSTERIOR

In Gibbs sampling scheme of Section 4.3, rather than drawing Z l and f l from

the full conditional distributions, we decided to draw from the joint distribution as

[f l, Zl|Y , αl, σ
2
zl
] = [Z|Y , αl, σ

2
zl
][f l|Zl, αl, σ

2
zl
]. In the first expression, Z l has been

drawn from the conditional distribution, marginalized over f l, which will reduce the

autocorrelation and improve mixing in the Markov Chain. In the second expres-

sion, the distribution of f l is conditionally independent of Y . We can obtain these

distributions as

[f l, Zl|Y , αl, σ
2
zl
] ∝

{
n∏

i=1

p(Yi|ηi)

}

× exp

{
− 1

2σ2
zl

(Z l − f l)
T (Zl − f l) −

αl

2σ2
zl

fT
l K lf l

}

∝
{

n∏

i=1

p(Yi|ηi)

}
exp

[
− 1

2σ2
zl

ZT {I − Al(αl)}Z l

]

× exp

[
− 1

2σ2
zl

{f l − Al(αl)Zl}T
Al(αl)

−1 {f l − Al(αl)Z l}
]

= [Z l|Y , αl, σ
2
zl
][f l|Z l, αl, σ

2
zl
],

where p(·) is a density of the general exponential family with the response Yi, ηi =
∑q

l=1 Zil, i = 1, . . . , n, and Al(αl) = (I + αlK l)
−1. Let Bl(αl) = I − Al(αl). By

the matrix notation Ql and Rl from Eubank (1999) such that K l = QlR
−1
l QT

l ,

Bl(αl) = Ql(
1
αl

Rl + QT
l Ql)

−1QT
l , which is a n × n matrix with rank n − 2. Then,

in the above factorization, the full conditional of f l is same as before, while the full

conditional of Z l is a marginal integrated over f l such that

[Z l|Y , ·] ∝
{

n∏

i=1

p(Yi|ηi)

}
N
[
0, Bl(αl)

−
]
,
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where Bl(αl)
− indicates the generalized inverse of Bl(αl). To generate Z l from its

full conditional distribution, we can use the Gibbs samples for each element of Z l. Let

Zil be the ith element of Z l, Z−il be Z l without ith element, and bij be the element

of ith row and jth column of Bl(αl), then full conditional of Zil can be expressed as

the following:

[Zil|Z−il, Y , ·] ∝ p(Yi|ηi) exp

[
− 1

2σ2
zl

{
biiZ

2
il + 2Zil

(
n∑

j=1

bijZjl − biiZil

)}]

∝ p(Yi|ηi)N

[
biiZil −

∑n

j=1 bijZjl

bii

,
σ2

zl

bii

]
.
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APPENDIX D

COMPUTATION OF CPO

For the data from the ith subject, let Yij = Yi(tij), Y i = (Yi1, . . . , Yimi
)T , U i =

(ti1, Ui2, . . . , Uimi
)T , Di = (Y T

i , UT
i )T , D = (DT

1 , . . . , DT
n )T , and let subscript (i)

indicate vector without ith case. As a usual case, suppose U i is a covariate which

does not depend on response. Then, the CPO statistic is defined as

CPOi = f(Y i|D(i)) =

∫

ξ

f(Y i|ξ)π(ξ|D(i))dξ

=

∫

ξ

f(Y i|ξ)
f(D(i)|ξ)π(ξ)∫

ξ
f(D(i)|ξ)π(ξ)dξ

dξ

=
f(D)∫

ξ
1

f(Y i|ξ)
f(D|ξ)π(ξ)dξ

=
1∫

ξ
1

f(Y i|ξ)
π(ξ|D)dξ

=

{
Eξ|D

(
1

f(Y i|ξ)

)}−1

.

Under Model-0, let ξ be all parameters in the model except for γ which is related

only on follow-up times U . Then, for given U i, CPOi0 is defined by

CPOi0 = P (Y i|D(i)) =

∫
f(Y i|U i, γ, ξ)π(γ, ξ|D(i))dγdξ.

Note that Y i does not depend on γ, U i does not depend on ξ, and π(γ, ξ) = π(γ)π(ξ),
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that is γ and ξ are separable. Hence, for given U i, CPOi0 can be re-written by

CPOi0 =

∫
f(Y i|U i, ξ)π(ξ|D(i))dξ

=

∫
f(Y i|U i, ξ)f(Y (i)|U (i), ξ)f(U (i), ξ)∫

f(D(i)|γ, ξ)π(γ, ξ)dγdξ
dξ

=

∫
1

f(Ui)
f(Y , U , ξ)dξ

∫
f(Y (i)|U (i), ξ)f(U (i)|γ)π(γ)π(ξ)dξdγ

=

1
f(Ui)

f(Y , U)

f(U (i))
∫

f(Y (i)|U (i), ξ)π(ξ)dξ

=

{
f(U)

∫
1

f(Y i|U i, ξ)

f(Y |U , ξ)π(ξ)

f(Y , U)
dξ

}−1

=

{∫
1

f(Y i|U i, ξ)
π(ξ|Y , U)dξ

}−1

=

[
Eξ|D

{
1

f(Y i|U i, ξ)

}]−1

Under Model-1, let W = (W1, . . . , Wn)T , ξ be a vector of all parameters, and other

notations be the same as before. Then, for given U i, CCPOi1 is defined by

CCPOi1 =

∫
f(Y i|U i, W , ξ)f(W , ξ|D(i))dW dξ

=

∫
f(Y i|U i, W , ξ)f(Y (i)|U (i), W , ξ)f(U (i), W , ξ)∫

f(D(i)|W , ξ)f(W , ξ)dWdξ
dWdξ

=

∫
1

f(Ui|Wi,ξ)
f(Y , U , Wi, ξ)dWidξ

∫
1

f(Y i,Ui|Wi,ξ)
f(Y , U , Wi, ξ)dWidξ

=

∫
1

f(Ui|Wi,ξ)
f(Wi, ξ|D)f(D)dWidξ

∫
1

f(Y i,Ui|Wi,ξ)
f(Wi, ξ|D)f(D)dWidξ

=
EWi,ξ|D

(
1

f(Ui|Wi,ξ)

)

EWi,ξ|D

(
1

f(Y i,Ui|Wi,ξ)

)
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