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ABSTRACT 
 
 

Acquisition of Cocaine and Heroin Self-administration in  
 

Rats Developmentally Exposed to Lead.  (May 2005) 
 

Angelica Rocha, B.A. California State University San Marcos 
 

Chairs of Advisory Committee: Dr. Jack R. Nation 
                                                  Dr. Paul Wellman 

 
 

          Rationale:  The rate of acquisition of drug self-administration may serve as a predictor 

of later drug-taking behavior, possibly influencing vulnerability to initiate drug use.  

Objectives:  The present study examined the effects of perinatal (gestation/lactation) lead 

exposure on adult rates of acquisition of intravenous (i.v.) heroin self-administration and 

cocaine self-administration using an automated procedure that included both Pavlovian 

and operant components.  Methods:  For Experiment 1, female rats were gavaged daily 

with 0 or 16 mg lead for 30 days prior to breeding with nonexposed males.  Metal 

administration continued through pregnancy and lactation and was discontinued at 

weaning (postnatal day [PND] 21).  Animals born to control or lead-exposed dams 

received indwelling jugular catheters as adults and subsequently were tested daily in a 

preparation where sessions included an initial 3-hr autoshaping period followed by a 3-

hr self-administration period.  During autoshaping, heroin (.018 mg/kg) infusions were 

paired with the extension and retraction of a lever when a lever press was not made for 

15 sec, while infusions occurred during self-administration only when a lever press was 

executed (FR-1).  The criterion for acquisition was a 2-day period during which a mean 

of 10 infusions/session occurred during self-administration.  Animals were given 35 



iv 

days to reach criterion.  Results:  Findings from Experiment 1 showed the proportion of 

rats meeting the lever-press response criterion for heroin when tested as adults was lower 

among lead-exposed animals.  In Experiment 2, cocaine (.20 mg/kg) was presented to 

animals that underwent the same metal-exposure regimen, surgical procedures and 

methods with variations only in the number of infusions that were automatically 

administered during the Pavlovian component.  Criterion for cocaine acquisition was a 

mean of 50 infusions over a two-day. In Experiment 2, a greater proportion of lead-

exposed animals reached the criterion for cocaine acquisition.  Conclusions:  

Developmentally lead-exposed animals showed a decrease in vulnerability to initiate 

drug-taking behavior when presented with heroin in the adult phase, relative to controls.  

In contrast, developmentally lead-exposed animals showed an enhanced vulnerability to 

reach the criterion for cocaine self-administration.  Clinical relevance of developmental 

exposure to lead and the attendant vulnerability to self-administer drugs of abuse is 

discussed.    
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INTRODUCTION 

 Environmental lead emissions plummeted following the phasing-out of leaded 

paint in 1978, and lead-based gasoline in the early 1980’s (Hubbs-Tait, 2005).  However, 

lead continues to be one of the major toxicants in North America producing widespread 

health risks to those who come into contact with the heavy metal.  According to the 

National Health and Nutrition Examination Survey (NHANES) III study (1991-1994) 

there were approximately 900,000 children with blood lead levels that are equal to or 

exceed the level considered “safe” by the Centers for Disease Control and Prevention, 

i.e. 10 µg/dL, compared to about 14 million children in 1978 (Pirkle et al., 1998).   

 A social reality is that economically disadvantaged individuals who lack 

resources to move out of substandard housing in the inner city are at increased risk for 

lead toxicity.  A recent account estimates that 70% of children in inner cities are exposed 

to lead at much higher levels than the general population (Mielke, 1999).  Older homes 

are more likely to contain lead-based alloys and pipes that pollute the water supply and 

increase vulnerability to the adverse side effects produced by lead (Ensminger et al., 

1997).  Soil and dust in impoverished areas, in particular, areas in close proximity to 

highways and deconstruction of old buildings (Manuel, 2003), also contain higher 

concentrations of past emissions from lead-based gasoline and particles from lead-based 

paint that are readily airborne (Lanphear et al., 2002).   

______ 

This thesis follows the style of Psychopharmacology. 
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 In extreme situations, lead poisoning can take the form of encephalopathy, 

characterized by seizures, coma, and death (Rosen and Mushak, 2001).  Over the past 15 

to 20 years, severe acute cases of lead poisoning have declined due to stringent 

governmental regulations (Pirkle et al., 1998).  However, despite this decline, research  

suggests that even present low-level, chronic lead exposure (<10 µg/dL) can produce 

neurophysiological and neurobehavioral deficits (Canfield et al., 2003; Needleman et al., 

1990, 2002; Tong et al., 1998), even in children as young as 3-5 years of age (Canfield et 

al., 2003).  Paradoxically, recent evidence suggests that blood lead levels in children 

may be negatively correlated with IQ scores and ability tests, implying that higher 

concentrations of lead in blood may initiate neuroprotective cellular mechanisms that are 

not activated in the presence of lower blood lead levels [<10 µg/dL] (Bellinger and 

Needleman, 2003).    

 Lead is stored in bone for up to three decades and can be mobilized and released 

into blood plasma during periods of stress and high calcium demands, such as during 

pregnancy (Barltrop, 1968; Gulson et al., 1997; Horiguchi et al., 1959; Roelfzema et al., 

1987) and lactation (Silbergeld, 1991).  Maternal blood lead levels reach a peak during 

the second trimester, at which point the metal is readily transferred to the fetus.  Because 

approximately 45-70% of lead in the blood of reproductive age women originates from 

long-term tissue stores (Gulson et al., 1995), and lead easily crosses the placental barrier 

(Angell and Lavery, 1982; Barltrop, 1968; Weizsaecker, 2003), women exposed to high 

levels of lead prior to more stringent CDC regulations will give birth to children who 

have correspondingly elevated blood lead levels.   
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Absorption and Excretion 

 The deleterious effects of lead appear to begin in utero.  Lead is a particular 

threat to the fetus due to the ease with which it is absorbed by the placenta, crosses the 

underdeveloped blood brain barrier, and penetrates the soft bone structure (Weizaecker, 

2003).  Consequently, children born to lead-exposed mothers may be predisposed in the 

fetal stage and through lactation to develop lead-induced impairments.  Even in older 

children there is increased brain lead absorption and decreased lead excretion, relative to 

adults (Godwin, 2001).  Whereas children absorb up to 50% of ingested lead, adults 

absorb only 10-20% into their bloodstream (Weizaecker, 2003).   

 The primary routes for lead exposure are ingestion and inhalation.  In children 

ingestion occurs primarily via consumption of lead-based paint chips, or contaminated 

soil.  Approximately 5-15% of ingested lead is absorbed by the body and not excreted.  

Of this amount, 95% is concentrated in bone and teeth (Gardella, 2001).  When ingested, 

or absorbed through the skin, lead can be carried in blood plasma and bound to 

hemoglobin.  Lead in blood may have a biological half-life approximating one month, a 

substantially shorter half-life than that of lead in bone [i.e. 20-30 years] (Weizaecker, 

2003).  

 Lead that is inhaled is more easily absorbed than ingested lead.  If inhaled 20% 

to 40% will be absorbed and of that amount, 10%-60% of particles smaller than 5 µg are 

deposited in the lower respiratory tract where they are absorbed by the lung.  Smaller 

lead particles are more likely to be sequestered by kidney where they later can be 

released into the bloodstream.  Larger particles are expelled by the respiratory tract or 
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trapped in mucus secretions and transported by ciliary action to the larynx where lead-

containing particles are ultimately swallowed for more efficient excretion (Barltrop, 

1979).  Thus, residual lead from decades ago may continue to produce exceedingly 

deleterious health deficits that appear to be persistent and irreversible (Canfield et al., 

2003).       

Neurodevelopmental Toxicity  

 There are two general ways in which lead exerts its neurotoxicant effects.  First, 

lead may alter neuropharmacological mechanisms by interfering with chemical 

neurotransmission (Lidsky and Schneider, 2003; Silbergeld, 1992).  Secondly, lead may 

act as a neurodevelopmental toxicant by producing changes in the hardwiring of the 

brain in utero (Moreira et al., 2001; Silbergeld, 1992).  The latter suggestion will be a 

focus in this section.  

 Mechanisms of Action 

 Lead acts as a neurotoxicant by interfering with cellular proliferation, 

differentiation, and synaptogenesis in the fetus and neonate.  Synaptogenesis is a period 

in development characterized by a growth spurt of nerve cells in the developing brain.  

For humans, this period spans the sixth month of gestation through the first few years of 

birth.  In rats, synaptogenesis begins one day prior to birth and terminates on postnatal 

day 14 (Moreira et al., 2001).  During synaptogenesis, lead as well as other non-

competitive and competitive N-methyl-D-aspartate (NMDA) antagonists may prevent 

cells from becoming integrated into a neural network.  If this occurs, inhibitory 

neurotransmitter systems that are late to develop can be prematurely deleted as 
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unnecessary by apoptosis, a process whereby nerve cells are genetically programmed to 

destruct (Moreira et al., 2001).  Learning impairments, attention deficits, and adult onset 

of psychiatric disorders are possible results of lead-induced apoptosis in the developing 

organism.  The consequences may be similar to those of other NMDA receptor 

antagonists such as alcohol, ketamine and phencyclidine (PCP) that disrupt inhibitory 

neurons in the cerebral cortex of the fetus following maternal consumption (Farber and 

Olney, 2003). 

 In addition to cellular changes in utero, lead continues to disrupt cellular activity 

postnatally.  The heme biosynthetic pathway is one of the major sites of lead toxicity.  

By disrupting this pathway, lead impairs the production of hemoglobin, cytochromes, 

catalases, and peroxidases (Warren et al., 1998).  One of two variants of �-

aminolevulinic acid dehydratase (ALAD) is genetically present in the human body.  

ALAD-1 is the most common, and ALAD-2 is the least common of the two variants.  

When lead binds to either variant, zinc is displaced and heme biosynthesis is inhibited 

(Warren et al., 1998).  In severe cases, insufficient amounts of hemoglobin may produce 

iron-deficient anemia.  Perhaps related, the same individuals who suffer from 

malnutrition also experience the heaviest lead burdens.     

 ALAD-2, one of the variants of ALAD, may modify the tissue distribution of 

lead in the body by sequestering lead in soft tissue where it is less accessible to the 

central nervous system (CNS).  Thus, ALAD-2 may protect against ultimate toxicity of 

the central nervous system where cognitive impairments are most profound, but enhance 

toxicity of organs, such as kidney (e.g., renal effects), due to the distribution of lead.   
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 Genetics determine which variant of the allele will be expressed.  ALAD-2 

appears to be differentially expressed in ethnic groups, with approximately 11%-20% of 

Caucasians (Benkman et al., 1983) and virtually no African-Americans examined 

expressing this allele.  This is of importance as adolescents carrying ALAD-2 performed 

better on a battery of neuropsychological tests compared to those homozygous for the 

more common variant of ALAD, ALAD-1 (Bellinger et al., 1994).   

 Lead also can interfere with heme biosynthesis by accumulating in and damaging 

mitochondria (Anderson et al., 1996), therein preventing the metabolism of sufficient 

cellular energy, leading to oxidative stress in the cell.  This effect is substantiated by in 

vitro studies of brain capillary endothelial cells showing that lead accumulates in the 

same areas of mitochondria as calcium (Silbergeld et al., 1980).  Lead disruptions of 

mitochondria can also produce excitotoxicity in otherwise normal glutamate 

transmission (Lidsky and Schneider, 2003). 

 As with ALAD-2, glial cells also may serve to protect the CNS against the toxic 

effects of lead.  By sequestering lead, glial cells prevent depletion of oxygen from the 

blood supply via lead-induced oxidative stress (Tiffany-Castigliani, 1989).  Along these 

lines, younger astroglia, rather than older, are more efficient at clearing the blood supply 

of lead.  However, after chronic or elevated blood lead burdens, astroglia may become 

saturated and will gradually release sequestered lead into the brain, further contributing 

to the extended duration of lead effects (Holtzman et al., 1987).   

 

 



 7 

 Dietary Deficiency 

 Dietary intake mediates lead absorption and excretion.  Calcium, an essential 

nutrient in the human diet, is a cation that is implicated in the modulation of most 

cellular neurotransmission occurring in the central nervous system.  Lead is a non-

essential cation that mimics calcium-mediated functions; readily substituting for calcium 

when concentrations of calcium are low, or lead is present at high concentrations 

(Hubbs-Tait, 2005). 

 On a molecular level, calcium activates a chain of essential mechanisms involved 

in imperative stages of cellular development, such as proliferation and differentiation.  

These stages of cellular development are mediated by calcium-activated protein kinase C 

[PKC] (Bressler and Goldstein, 1991).  Intracellularly, calcium activates calmodulin 

which stimulates several protein kinases, cyclic-Amp, and phophodiesterases, thus 

affecting potassium channels (Bressler et al., 1999).  Long-term potentiation (LTP), a 

form of neural plasticity believed to be important in learning and memory (Nihei and 

Guilarte, 2001), is also mediated in part by calcium ions acting as second messengers.  

In any of these actions, lead can take the place of calcium and enter an excitable cell that 

ordinarily would allow for the influx of calcium.  Lead also can enter a cell via voltage-

sensitive calcium channels (Kerper and Hinkle, 1997).  The substitution of lead ions for 

calcium ions impedes the natural cascade of calcium-dependent cellular mechanisms, 

and therein, alters neurotransmitter function.  

Calcium, iron, zinc or protein deficiencies that are more frequently encountered 

in economically disadvantaged individuals increase lead absorption (Hubbs-Tait, 2005; 
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Lidsky and Schneider, 2003).  This is a particular concern for women who are pregnant 

or lactating and require additional nutritional supplements for the developing fetus.  

During pregnancy and lactation, in the absence of sufficient micronutrients, lead is more 

readily mobilized from maternal long-term bone stores and directly transferred to the 

fetus.  By increasing lead levels in the fetus, maternal dietary deficiencies predispose 

future generations to lead-induced deficits.  Multiple studies have found that adequate 

nutrient-intake during these periods decreases maternal to fetal transfer of lead via blood 

plasma (Gulson et al., 1997; Johnson, 2001; Tellez-Rojo et al., 2004).   

 Clearly, the need for nutritional intervention remains at a high level.  Low iron 

levels and elevated blood lead levels both are common in minority and economically 

disadvantaged populations.  Anemia that develops from severe or chronic iron 

deficiency is present in a higher percentage of children from low- (29%) rather than 

higher-income (5%) families (Mahaffey, 1995).  Dietary deficiencies suffered during 

crucial developmental years disrupt normal synaptic neurotransmission and exert effects 

that are of long duration.      

Chemical Neurotransmission 

 In addition to lead-induced neurodevelopmental toxicant effects, lead can 

produce neuropharmacological disruptions.  Through childhood and far into adulthood, 

lead continues to be mobilized from bone to blood plasma where it is most active and 

can exert its most deleterious effects.  Lead interferes with normal chemical 

neurotransmission in the brain and many of these effects are irreversible, even at low-
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level chronic doses (Canfield et al., 2003).  This section will focus on 

neuropharmacologically-induced lead effects.   

 Glutamatergic Systems 

 Lead is an antagonist at the glutamate receptor.  It binds noncompetitively at one 

of the four known subunits of glutamate, N-methyl-D-aspartate (NMDA).  In addition to 

NMDA, AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainate 

(ionotropic), and g-protein coupled (metabotropic) receptors are known to compose the 

glutamate ion channel.  Lead allows glycine, a coagonist of glutamate, to bind to the 

NMDA receptor, but after depolarization when the magnesium (mg++) block is lifted, 

lead blocks the channel, inhibiting the influx of calcium that would normally 

hyperpolarize the cell (Lasley et al., 2001).  As noted, calcium ions are necessary for a 

multitude of neurodevelopmental processes to occur, particularly in the immature brain.   

 MK-801, a noncompetitive NMDA receptor antagonist, has been used to assess 

the receptor status of NMDA receptors in animals developmentally exposed to lead and 

tested as adults.  Whereas Guilarte et al. (1993) reported a 31% increase in forebrain 

NMDA receptors in lead-exposed rats, Ma et al. (1997) found 15-41% increases in 

NMDA receptors throughout the hippocampus and cortex.  In contrast, 15-30% 

decreases in NMDA receptors in multiple brain regions have been found following 

postweaning lead-exposure (Cory-Slechta et al., 1997).  Lead-induced changes in the 

sensitivity, number of receptors and brain regions affected vary depending on the length 

and time of lead exposure (Lasley et al., 2001).    
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 In adults, lead exposure reduces glutamatergic receptor binding in the frontal 

cortex, basal ganglia and hippocampus.  Dopamine receptor binding and dopamine 

transporter sites also have been reported in these regions (Cory-Slechta, 1995).  By 

reducing glutamatergic activity, lead impairs LTP, perhaps accounting for lead-induced 

cognitive impairments, including spatial memory deficits and lower IQ scores.  Opiates 

such as methadone and morphine exert some effects by acting at the noncompetitive site 

of the NMDA receptor.  Further, correlations have been found between the activation of 

NMDA receptors and resistance to opiates and the development of tolerance (Gies et al., 

1997).  Disturbances of the gamma-amino-butyric-acid (GABA)ergic system in the 

striatum and the hippocampus also have been found (Guilarte et al., 2003). 

 Dopaminergic Systems 

 Dopamine (DA) is the neurotransmitter that is, perhaps, most strongly implicated 

in the reward potency of drugs of abuse, particularly in the mesolimbic pathway system 

that originates in the ventral tegmental area (VTA) and projects to the nucleus 

accumbens (NAcc) and prefrontal cortex.  D1- and D2-like dopamine receptors are the 

most common targets for extracellular dopamine release.  Administering antagonists for  

these receptors alters drug self-administration in rats, typically producing a pattern of 

increasing behavior in a fixed ratio (FR) task, but decreasing behavior during a 

progressive ratio task when the same drug dose is presented (Hubner and Moreton, 

1991).  This pattern of behavior suggests a decrease in the rewarding potency of the 

drug.  Whereas in an FR task animals will emit additional lever presses to obtain 

maximal euphoria when the cost is low (i.e., FR1), in a progressive ratio task where an 
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exponentially greater amount of lever-presses is required for each subsequent infusion of 

drug, lead-exposed animals more readily stop responding.  

 Disruption of dopaminergic functioning that is normally involved in not only 

motor control but also attention, memory and executive functioning can produce a 

multitude of behavioral problems, including attention deficit hyperactivity disorder and 

cognitive impairments (Moll et al., 2001). 

 Studies on alterations to dopaminergic systems following lead-exposure continue 

to yield inconsistent findings.  Chronic, post-weaning exposure to lead has been shown 

to significantly decrease binding of [125] sulpride to D2 receptors in cortical areas, but 

not in the caudate putamen, thalamus, or nucleus accumbens (Ma et al., 1999).  

Conversely, by another account, D2 receptor activity was decreased in the nucleus 

accumbens following postweaning lead exposure with no significant changes observed 

in D1, D2, or dopamine transporter (DAT) changes in the striatum (Pokora et al., 1996).  

One hypothesis suggests that lead depletes dopamine availability, thus, an upregulation 

of D2 receptors would be expected.  However, another hypothesis is that lead stimulates 

an overflow of dopamine into the nucleus accumbens, thus, a down-regulation or 

subsensitivity of D2 receptors would be expected.  The time and length of lead exposure, 

dose of the dopamine agonist used, and dosing-measurement intervals may all contribute 

to differing findings in this area.  What remains clear is that chronic lead exposure 

appears to interact with dopamine neuromechanisms greatly implicated in drug-taking 

behavior.     
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 Cocaine exerts its neurophysiological effects by blocking the dopamine 

transporter and to a lesser extent norepinephrine and serotonin transporters (Rocha et al., 

1998a).  Blockade of the dopamine transporter markedly increases the levels of 

dopamine within the synaptic cleft and the time the neurotransmitter can act on target 

receptors.  This observation is well documented in animal experiments (Self, 2004) and 

supported in human studies (Schlaepfer, 1997).  

 Serotonergic Systems 

 Dopaminergic systems have been of primary focus in the study of drug-induced 

reward potency and dependence for many years.  However, other transmitter systems, 

such as serotonin (5-HT), also are believed to be of importance in drug-seeking/drug-

taking behavior.  There are at least 15 receptor subtypes for 5-HT, each with at least 

three different effector mechanisms, via adenylyl cyclase, phospholipase C, and ion 

channels (Saxena, 1995).   

 In general, serotonin has been found to be sufficient in initiating self-

administration behavior in genetically altered, dopamine-transporter-deficient mice 

(Rocha et al., 1998a).  In a study using 5-HT1B receptor knock-out mice, the absence of 

serotonin 5-HT1B receptors increased the reinforcing effects of cocaine during 

maintenance (Rocha et al., 1998b).  However, Tran-Nguyen et al., (2001) reported that 

5-HT lesions by 5,7 dihydrohytryptamine in cocaine-trained animals attenuated cocaine 

drug-seeking during extinction and attenuated cocaine-induced reinstatement, possibly 

via an increase in 5-HT2C receptors.  These studies suggest serotonin may play different 

roles in cocaine reward depending on the phase of cocaine self-administration.        
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 5HT2c receptors also have been found to inhibit VTA dopaminergic cell body 

firing, likely through an enhancement of GABA function (Di Matteo et al., 1999).  In 

accordance, the 5-HT2c agonist, Ro 60-0175 produced a reduction of extracellular 

dopamine levels in the NAcc and frontal cortex (Millan et al., 1998).  Conversely, the 

selective 5-HT2 antagonist SB 242, 084 increases VTA cell firing and 

accumbens/frontal cortical DA release (Kennett et al., 1997) [see Grottick, 2000].   

 Serotonin 5-HT2  receptors do not exert consistently similar effects on 

neurotransmitter function.  Fluoxetine, a selective serotonin reuptake inhibitor, has been 

found to act through an antagonism of 5-HT2c receptors in addition to blockade of 5-HT 

reuptake, suggesting contrasting actions at these two serotonin receptor subtypes may 

result in an increase of serotonin in the synaptic cleft (Ni and Miledi, 1997).  At this 

juncture, the role of 5-HT as it relates to other drugs has yet to be determined, though a 

decrease in the functioning of the serotonin transporter has been found to mediate 

neuronal changes in chronic cocaine and alcohol users (Little, 1998).    

 Endorphin Systems 

 Opiate receptors in the [VTA] (Van Ree et al., 2000) and possibly the (NAcc) 

play a role in the reinforcing effects of opiates (Xi and Stein, 2002).  The opiate system 

modulates electrical brain-stimulation reward, sexual motivation, and potentiates the 

reinforcing effects of other drugs such as cocaine (Van Ree et al., 2000).  Various 

subtypes of opiate receptors are known to exist.  Mu-opioid receptors are attributed with 

the reinforcing effects of opiates, whereas kappa-opioid receptors may modulate drug-

taking behavior.  A kappa-opioid receptor agonist, U50,488H produced a leftward shift  
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in both morphine and cocaine dose-effect curves, suggesting kappa-opioid agonists may 

increase sensitivity to the rewarding properties of various drugs of abuse (Kuzmin et al., 

1997).   

 The dopaminergic fibers projecting from the VTA to the NAcc are the fibers that 

have been strongly implicated in opiate self-administration (Vezina et al., 1987).  The 

VTA also is the site of many gamma-amino-butyric acid (GABA) neurons, which are 

linked to the dopamine cells in the VTA.  In the absence of substantial VTA mu-opioid 

receptor activation, GABA interneurons modulate glutamate-stimulated dopaminergic 

activity, ultimately constraining the basal firing rate of dopamine projection neurons 

(Koob, 1992).  With the application of morphine, however, there is an inhibitory effect 

of GABA interneurons, resulting in greater glutamate involvement in the region of the 

VTA and a dopamine increase in the NAcc (Kalivas and Duffy, 1995). 

 In addition to GABA, glutamate may be involved in the reinforcing properties of 

opiates.  NMDA glutamate receptors and opiate receptors are co-localized on neurons 

throughout the CNS, suggesting interactions between the two are profound inasmuch as 

depolarization of a single cell may simultaneously excite both receptors (Wang et al., 

1999).  Several cellular models for possible interactions between NMDA and opiate 

receptors have been proposed based on biochemical and physiological evidence.  It is 

generally suggested that mu-opioid receptors modulate subsequent NMDA receptor 

functions through phosphorylation and other second messenger systems (Trujillo, 2003).   

 MK-801 and other NMDA receptor antagonists have been found to block the 

ability of opiates to establish a conditioned place preference [CPP] (Tzsentke et al., 
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1995) and may inhibit the acquisition of morphine self-administration (Semenova et al., 

1999).  These findings are consistent with studies examining lead/opiate interactions, 

inasmuch as they suggest NMDA receptor antagonists, such as lead, modify the 

reinforcing properties of opiates, and thus, vulnerability/susceptibility to use drugs of 

abuse.  

Lead and Behavior  

 Lead exerts neurochemical disturbances that implicate glutamatergic (Lasley et 

al., 2001), dopaminergic (Hu and White, 1994), and GABA systems (McFarland and 

Kalivas, 2001) that are known to modulate drug sensitivity (Cory-Slechta, 1995) and 

may play a role in the neurobehavioral deficits exhibited in developmentally lead-

exposed children.  These deficits are consistent with studies correlating impairments in 

academic achievement with developmental lead exposure.  Deficits in abstract thinking, 

attention span, conceptual reasoning, and visuospatial perception in children with 

moderate to high blood lead levels have been documented (Rosen and Mushak, 2001).  

Disturbingly, children with levels of blood lead below those considered safe exhibit 

increased distractibility, hyperactivity, inability to inhibit inappropriate responding, 

preservation of incorrect responses, poor judgment and impulse control (Brockel and 

Cory-Slechta, 1997; Rice, 1993), and delinquent behavior (Needleman et al., 1996). 

 These problems appear to involve a similar mechanism at the frontal cortex 

(Volkow et al., 2002).  Disruptions to this area produced by developmental lead-induced 

impairments may explain deficits in self-monitoring behavior and inhibitory functioning 

of higher order thinking.  With a decrease in activity of the frontal cortex, cognitive 
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operations that mediate appropriate judgment of behavior is replaced with automatic, 

non-directed, sensory-driven behaviors, such as is seen in drug addiction.   

 One theory is that hypodopaminergic effects impair functioning of  the 

orbitofrontal cortex (OFC) and anterior cingulate gyrus (CG) contributing to compulsive 

behavior and impaired inhibition.  This is particularly a problem for children as the 

frontal cortex is late in developing.  It is of further concern in lead-exposed children who 

have additional developmental delays and hypodopaminergic activity at brain sites 

imperative for self-monitoring behavior (Cory-Slechta, 1997).   

 In addition to direct neurochemical changes in lead-exposed mothers, alterations 

in maternal care have been observed.  In experimental settings, nonexposed and lead-

exposed mothers have shown idiosyncratic quantitative and qualitative differences in 

anal-licking and grooming of respective control and lead-exposed pups.  These 

differences may have an impact on behavioral endpoints that persist into adulthood such 

as drug self-administration patterns (Cuomo et al., 1996).  In experimental work, this 

problem is controlled by using only one pup from each litter to avoid confounds that are 

sometimes evident in studies involving toxic exposure (Holson and Pearce, 1992).  An 

additional concern with maternal lead-exposure is related to stress induced by toxic 

metal exposure.  Studies on maternal stress have shown increased pathologic behaviors 

in pups, such as sensitization to drugs of abuse and delinquent behavior (Cuomo et al., 

1996).  
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Lead/Drug Interactions   

 Time Course of Lead Exposure 

 Cocaine and opiates show contrasting effects of drug potency in animals 

exposed to lead at different developmental stages.  Specifically, animals exposed to lead 

throughout gestation and lactation (perinatally) appear to have an almost uniform 

potentiation for the rewarding efficacy of cocaine when administered chronically.  In 

contrast, animals exposed to lead during adulthood show an almost uniform attenuation 

for the rewarding efficacy of cocaine when administered chronically.  By comparison, 

when opiates, rather than cocaine, are presented repeatedly to animals perinatally 

exposed to lead, or exposed to lead as adults, reinforcement potency is attenuated.  

 Perinatal Lead Exposure 

 In experiments where opiates have been presented repeatedly to animals 

perinatally exposed to lead, a decrease in sensitivity to the drug often is observed.  For 

example, in an intravenous (i.v.) self-administration study rats responded fewer times for 

a heroin reinforcer, at least at intermediate doses (Rocha et al., 2004).  Parallel results 

were obtained when perinatally-exposed animals were tested on a progressive-ratio task, 

i.e., lead-exposed animals ceased lever pressing for heroin reinforcements at lower ratios 

than their control counterparts (Rocha et al., 2004).  In agreement with these findings, 

animals exposed perinatally to lead failed to show a morphine-induced conditioned place 

preference, suggesting a decreased rewarding sensitivity to the opiate (Valles et al., 

2003).  Additionally, in a drug-discrimination study using the kappa-opioid agonist 

U69,539 that attenuates cocaine reinforcement, cocaine discrimination was shown to be 
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impaired in control, but not lead exposed animals (Miller et al., 2001).  Findings further 

suggest developmental lead exposure disrupts the opiate system to a point where the 

reinforcing efficacy of the drug is significantly reduced when animals are tested as 

adults.  

 In contrast to lead/opiate interactions, developmental lead exposure seems to 

potentiate the behavioral effects of cocaine.  That is, perinatal lead exposure increases 

the stimulatory properties of cocaine when animals are tested in a locomotor chamber at 

either postnatal day (PND) 30 or PND 90 (Nation et al., 2000).  Elsewhere, when tested 

in a self-administration paradigm, lead-exposed rats maintained responding at cocaine 

doses too low to sustain responding in untreated controls (Nation et al., 2004).  Also 

employing an i.v. self-administration model, Nation et al., (2003) found that adult rats 

born to dams exposed to lead throughout gestation and lactation exhibited a greater 

inclination to return to drug-seeking at lower doses of a cocaine priming injection.  That 

is, after an extinction period where saline infusions replaced cocaine infusions as the 

reinforcement outcome for lever responding, lead-exposed animals were more likely 

than nonexposed controls to return to self-administration behavior (lever responding) 

following intraperitoneal (i.p.) injections of very low doses of cocaine. 

 The studies noted above suggest the reinforcer potency of heroin is decreased by 

developmental lead exposure and the same metal exposure regime increases the 

reinforcer potency of cocaine.  However, in order to obtain a more complete 

understanding of lead-relate vulnerability to use drugs of abuse, it is necessary to 

examine the drug acquisition phase.   
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 Adult Lead Exposure 

 In the case of cocaine, patterns of drug sensitivity differ depending on whether 

animals are exposed to lead perinatally or during the adult phase.  When animals are 

exposed to low-levels of lead in adulthood, the locomotor-stimulating properties of 

cocaine are attenuated (Nation et al., 1986) and the impact of cocaine on schedule-

controlled operant responding (Burkey et al., 1997) is reduced.  These patterns are 

directionally opposite from those observed in animals exposed to low-levels of lead 

perinatally.   

 Opiate patterns of drug sensitivity differ upon time of lead exposure and task 

examined.  Rats exposed to lead as adults show a reduced behavioral response to 

morphine in a locomotor activity task, relative to control.  However, rats 

developmentally exposed to lead show an enhanced response in the same task (Miller, 

2001).  This pattern of behavior is opposite that observed in self-administration studies 

where an attenuation, not enhancement, of drug responsiveness results with 

developmental lead exposure.  Directionally opposite effects may be due to experimenter 

administered injections, as opposed to i.v. self-administration by the rat, and length of 

drug exposure.   

Vulnerability to Drug Acquisition 

 According to a Substance Abuse and Mental Health Services Administration 

national survey, approximately 25.2 percent of the people who used cocaine in 2002 

were reported to have become dependent on or had become abusers of the drug, whereas 

53 percent of those who used heroin were reported to have become dependent on or 
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abusers of heroin.  Still, as with humans, not all animals that are presented with the 

opportunity to administer drugs of abuse do so.   

 The list of factors that inhibit/expedite acquisition include the following: sex 

differences, appetitive manipulations, impoverished/enriched environment, stress, and 

genetics.  In addition, individual differences such as high levels of locomotor activity in 

a novel environment and greater impulsivity have been shown to be correlated with an 

enhanced vulnerability to initiate drug self-administration (Jentsch et al., 2000). 

 Sex Differences 

 Sex differences have been found to result in differential sensitivity to drugs of 

abuse.  Specifically, female rats exhibited a higher rate of cocaine (.20 mg/kg) and 

heroin (.015 mg/kg) acquisition, as compared to males.  In the case of cocaine, a greater 

percentage of female rats reached the criterion set for acquisition and self-administered 

more drug after acquisition was met (Lynch and Carroll, 1999).  Additionally, a higher 

percentage of females, but not males, bred for high saccharin preference reached 

criterion for cocaine (.20 mg/kg), but not heroin (.015 mg/kg) acquisition (Lynch and 

Carroll, 1999).  Also, females that show preference for high levels of saccharin showed a 

faster rate of cocaine, but not heroin acquisition.  Phenotypical differences were not seen 

with male rats (Carroll et al., 2002), but additional differences in groups that varied by 

sex and/or saccharin preference may have been uncovered if doses on the ascending, 

rather than descending, limb of the dose-effect curve were examined.  
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 Appetitive Manipulations 

 Non-food reinforcers such as running-wheels made available concurrently with 

cocaine also have been shown to impede drug self-administration in females to the point 

where wheel-running substituted for cocaine as a reinforcer.  Varying doses may have 

uncovered differences in male rats (Cosgrove et al., 2002).  A reasonable conclusion is 

that hormonal factors are important in modulating drug self-administration, perhaps as a 

function of estrus cycle in female animals (Lynch et al., 2001, 2002). 

 Restricted access to food also has been shown to facilitate cocaine acquisition in 

an animal model of drug self-administration (Bollweg et al., 1995; Campbell and 

Carroll, 2001).  Further studies showed that food deprivation was a factor in learning, 

not differences in performance such as response speed or reactivity (Bollweg et al., 

1995).  Moreover, food deprivation increases the association between lever pressing and 

a drug reward stimulus.  The increase in learning may be due to food deprivation-

induced increases in plasma corticosterone in rats and cortisol in humans that 

accumulate in the hippocampus, a structure greatly implicated in learning and memory.  

Conversely, blocking the effects of corticosterone with TMT (trimethyltin), a limbic 

forebrain neurotoxin, has been shown to interfere with acquisition of autoshaped lever 

responding during a progressive fixed ratio task.  Further, it was shown that depriving 

the animal to 75% body weight reversed the decline in acquisition rates following TMT 

treatment.  Endogenous glucocorticoids, vasopressin, and catecholamines also may be 

related to the learning enhancement seen following food deprivation (Bollweg et al., 

1995).       
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 Environment 

 The modulating influence of the environment on lead neurotoxicity was 

underscored in a recent study using laboratory rats (Schneider, 2001).  Immediately after 

weaning, rat pups were put in either impoverished or enriched environments.  Half of the 

animals in each environment were exposed to lead via drinking water.  Although by the 

end of testing lead was no longer detectable in the blood and brain of the lead-exposed 

group, lead-exposed rats reared in impoverished environments showed learning deficits.  

Conversely, lead-exposed rats raised in enriched environments performed similarly to 

their unexposed counterparts.  The clinical implications of this study are great, 

suggesting that even when lead burdens on the body are identical and diet remains the 

same, environmental changes are enough to ameliorate lead-induced learning deficits 

(Schneider et al., 2001). 

 Schneider (2001) suggests that environmental factors may modulate the response 

of the brain to a neurotoxin such as lead in the impoverished condition via a decrease in 

neurotrophic factor gene expression in the hippocampus.  Using high-density 

oligonucleotide microarrays, gene expression in young adult mice raised in enriched or 

impoverished environments were analyzed (Rampon et al., 2000).  Neural structure 

during growth and development, synapse formation, synaptic transmission, neuronal 

plasticity, cell survival and neurogenesis (particularly in hippocampal neurons) were 

significantly protected in the group that experienced the enriched environment 

(Kempermann et al., 1997).  



 23 

 Guilarte et al. (2003) also found lead-induced deficits could be reversed by an 

enriched environment.  Animals that were raised in a social and novelty-enriched 

environment, rather than in isolation, showed neuroprotective properties against 

glutamate-mediated disruption of spatial learning and sparing of deficits in glutamate 

subunit, NMDA receptor gene expression (Hubbs-Tait, 2005).   

 Stress 

 Stress has been an environmental factor of much discussion in the vulnerability 

of drug abuse.  Stress induction appears to be directly linked to the activation of the 

hypothalamic pituitary adrenal (HPA) axis (Goeders, 2002a; Goeders, 2002b; Goeders, 

2003).  It is hypothesized that glucocorticoid hormones function in the long-term 

maintenance of the sensitized state, whereas suppression of stress-induced corticosterone 

secretion abolishes the enhanced behavioral responsiveness to amphetamine and 

morphine produced by different stressors (Koob and Le Moal., 1997). 

 Being exposed to high levels of stress in utero may also potentiate the effects of 

lead and produce a susceptibility to use drugs.  Cory-Slechta et al. (2004) exposed dams 

to lead for 2 months prior to breeding them with nonexposed males.  The females were 

either restrained or not on gestation days 16 and 17, days crucial to the development of 

brain structures, such as hypothalamic nuclei, hippocampus, striatum, and frontal cortex 

(Weinstock et al., 1998).  Restraint was conducted for 45 minutes three times on each of 

two days.  Sex differences were found implicating the interaction of sex hormones with 

lead-induced behavioral effects.  Specifically, male offspring born to dams exposed to 

lead and no stress, and females born to lead-exposed dams that experienced stress 
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showed permanently elevated corticosterone levels in offspring.  Paradoxically, males 

born to dams that were exposed to lead and received stress showed slightly decreased 

corticosterone levels.   

 Sex differences are known to mediate stress response.  However, the mechanisms 

by which sex and stress interact remain unclear and outcome measures vary depending 

on factors such as type and duration of the stressor (Faraday, 2002).  Overall, stress-

induced deficits may be produced by elevated corticosterone levels mediating changes in 

mesocorticolimbic function, particularly in the nucleus accumbens and prefrontal cortex.  

Further, this study suggests lead may interact with corticosterone to indirectly enhance 

susceptibility to stress-induced disorders, brain dysfunctions and cognitive deficits 

(Cory-Slechta et al., 2004).       

 Genetics  

 In addition to the environment, genetics also modulate drug self-administration.  

Rats that are genetically bred to exhibit a high (vs. low) response upon presentation of a 

novel environment may also exhibit an increased sensitivity to the rewarding effects of 

hedonic drugs (Hooks et al., 1994; Piazza et al., 1991).  The greater sensitivity in high-

responders may be correlated with a prolonged secretion of corticosterone in the 

hypothalamus-pitutiary-adrenal (HPA) axis in response to stress.  This effect also may 

be mediated by higher sensitivity to the behavioral and dopamine-activating effects of 

glucocorticoids (Koob and Le Moal, 2000). 

 Genetics also may play a role in drug self-administration as seen in studies using 

the cocaine and dopamine reuptake inhibitor, GBR 12909.  GBR 12909 reduced wheel 
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running in hyperactive rats, but not controls (Rhodes et al., 2001).  Compulsivity 

(Werme, 2003), impulsivity (Poulos et al., 1995), and novelty-seeking (Bardo et al., 

1996) also may have a genetic basis that leads to an increase in drug-seeking/drug-taking 

behavior.  

Autoshaping Procedure 

 Most investigations on drug self-administration in animals focus on phases of 

drug use following the initial transition from presentation of the drug to subsequent high 

and stable responding.  Drug maintenance, extinction, and relapse (i.e. varying drug 

doses, organismic and pharmacological manipulations) are all phases of drug-taking that 

are more commonly studied in animal models of drug use/abuse.  In these studies, the 

environment is manipulated in order to accelerate acquisition of the lever-pressing 

response in order to permit detailed assessments of parameters related to drug-selection 

and use.  Techniques such as shaping, a day or more of total food and/or water 

deprivation, priming, etc., are commonly used to accelerate acquisition, therein 

permitting lengthier periods for evaluation of other, relevant issues.     

 In order to examine group differences in vulnerability to initiate drug use, a 

systematic procedure is needed whereby all animals receive the same training to make a 

lever-press response.  The autoshaping procedure serves this purpose, allowing for the 

monitoring of vulnerability to self-administer drugs in control and treated animals in a 

context where shaping methods are uniform and systematic both between and within 

groups.    
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 The autoshaping procedure consists of a combination of Pavlovian and operant 

components wherein animals are first trained that the pairing of an automated retractable 

lever and light cue (conditioned stimuli) and drug infusion (unconditioned stimulus) 

[Pavlovian conditioning] consistently leads to euphorigenic effects.  Subsequent to 

Pavlovian training, rats must learn to press the correct lever (response) in order to 

receive the drug reinforcement (stimulus) [operant conditioning].  This procedure was 

originally developed to train animals to acquire food-reinforced behavior (Brown and 

Jenkins, 1968).  However, more recently, this procedure has been used to study the 

acquisition of drug self-administration in a completely automated procedure, devoid of 

experimenter manipulations that would otherwise vary unsystematically between and 

within groups (Campbell and Carroll, 2000; Carroll and Lac, 1993; Carroll et al., 2002; 

Kakade and Dayan, 2002; Roth and Carroll, 2004).  With autoshaping, the presentation 

of drug and the stimuli associated with the drug infusions during the Pavlovian 

conditioning session is consistent and invariable for all animals (Carroll and Lac, 1993).   

Design and Hypothesis    

 Accordingly, the purpose of the present project was to examine relative 

acquisition rates of psychoactive drug self-administration for offspring (rats) born to 

dams exposed to 0 mg or 16 mg lead (a concentration of lead that is considered to be low 

and clinically relevant) prior to breeding, and throughout gestation and lactation.  In 

Experiment 1, adult control and lead-exposed animals were tested during daily sessions 

that involved an initial 3-hr autoshaping component wherein .018 mg/kg heroin 

infusions were paired with the extension and retraction of a lever (a Pavlovian 
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procedure).  During a subsequent 3-hr self-administration component of each daily 

session, .018 mg/kg heroin infusions were delivered only when a single lever press (FR-

1) was executed (an operant procedure).  In Experiment 2, cocaine (.20 mg/kg) was used 

as the reinforcement outcome.  The methods, apparatus, metal exposure regimen, 

surgical procedures, behavioral endpoints, and all other aspects of the research 

conducted for Experiment 2 will be precisely as described for Experiment 1.  Only the 

number of conditioned drug presentations during the Pavlovian session changed to 

account for differential usage patterns of opiates versus cocaine.  That is, the number of 

infusions self-administered at a dose of .018 heroin (Rocha et al., 2004) are manifold 

lower than those self-administered at a dose of .20 cocaine (Nation et al., 2003); though, 

both doses are on the descending limb of the dose-effect curve for each respective drug.  

Predictions 

 Experiment 1: Heroin 

 Body weights.  Based on previous studies, the analysis of body weights during 

the period of acquisition is not expected to show significant group differences.  Weekly 

fluctuations are expected to occur, but the pattern of change is expected to remain 

constant across groups.  Though the litter size is not expected to be different between 

Group 0-mg and Group 16-mg animals, initial individual pup weights are expected to be 

higher for control versus lead-exposed animals.  However, no differences are expected 

between groups by the beginning of testing.   

 Lead concentrations in tissue.  The mean (SEM) blood lead residue values for 

non-exposed (Group 0-mg) and metal-exposed (Group 16-mg) dams at breeding, 
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parturition, and weaning will be assessed.  Blood lead concentrations for littermates at 

PND 1 and PND 21, as well as for test animals at the termination of the experiment will 

also be determined.  In accordance with previous studies (Nation et al., 2000; 2003; 

2004; Rocha, 2004) for both groups, blood lead levels are expected to fall below 

detectable limits by Day 35 of acquisition testing.  In terms of the analyses that will be 

performed on tissue samples taken from test animals, with the exception of bone (tibia) 

samples for the lead group, tissue concentrations are expected to be the same for both 

exposure conditions.  It is anticipated that lead levels in bone will remain elevated in 

lead-exposed animals due to the extended half-life of lead in bone (Weizaecker, 2003). 

Acquisition of self-administration.  Based on previous literature that suggests a 

pattern of attenuation to the rewarding effects of heroin in rats developmentally exposed 

to lead (Nation et al., 2000; 2003; 2004), a trend should be evident over the 35-day 

testing period for Group 16-mg animals to be less likely to reach the criterion for 

acquisition of heroin self-administration than their control counterparts.  

 A survival analysis is expected to show that Group 16-mg animals acquire at a 

slower rate than control rats.  Proportion tests also will be performed on successive 5-

session blocks and are expected to show a smaller percentage of Group 16-mg animals 

will meet the conditions for acquisition, overall, than Group 0-mg animals.  

 The strength of the differences in group self-administration responding after 

meeting the criterion of 10 infusions/session for 2 consecutive days is expected to be 

reflected in the results from a one-tailed t-test.  If these findings are observed, they will 

suggest perinatal (gestation and lactation) lead exposure results in lower percentages of 
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animals reaching the heroin self-administration acquisition criterion, and that of the 

animals that do acquire, lead-exposed animals will reach criterion at a slower rate. 

 Experiment 2: Cocaine 

 Body weights.  Because animals from Experiment 2 are littermates of Experiment 

1, the analysis of body weights is expected to be the same across studies.  During the 

period of acquisition, weekly fluctuations are expected to occur but the pattern of change 

is expected to remain uniform across groups.  Also, as with Experiment 1, the litter size 

of animals in Experiment 2 should be comparable between Group 0-mg and Group 16-

mg animals.  Though initial individual pup weights are expected to be higher for control 

versus lead-exposed animals, no differences are expected between groups by the 

beginning of testing.   

 Lead concentrations in tissue.  Because animals used Experiment 2 are 

littermates of animals used in Experiment 1, the predictions are the same for Experiment 

2 as they were in Experiment 1.  

Acquisition of cocaine self-administration.  Based on the pattern of potentiation 

to the rewarding effects of cocaine in rats developmentally exposed to lead, a trend 

should be evident over the 35-day testing period for Group 16-mg animals to be more 

likely to meet the requirements for acquisition of cocaine self-administration than their 

control counterparts.  

 As in Experiment 1, survival analysis and a proportion test will be performed to 

assess differences between groups in rate of acquisition and percentage of animals to 

reach acquisition criterion across 5-session blocks.  In contrast to Experiment 1 where 
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heroin will be used, results from Experiment 2 where developmentally lead-exposed 

animals will be presented with cocaine, Group 16-mg animals are expected to reach the 

criterion for cocaine acquisition at a faster rate than control rats.  Proportion tests 

performed on successive 5-session blocks are expected to show that a greater percentage 

of Group 16-mg animals will meet the conditions for acquisition than Group 0-mg 

animals.  

 In Experiment 2 where cocaine will be used, Group 16-mg animals are expected 

to make substantially greater number of active lever responses (receive more infusions) 

than Group 0-mg animals, across the 35-day testing period.  The strength of the 

differences in group self-administration responding after meeting the criterion of 50 

infusions/session for 2 consecutive days is expected to be reflected in the results from a 

one-tailed t-test.  If these findings are observed, they will suggest that perinatal lead 

exposure results in greater percentages of animals reaching the cocaine self-

administration acquisition criterion, and that of the animals that do acquire, lead-exposed 

animals will reach criterion at a faster rate. 

 The results from Experiments 1 and 2 are expected to agree with previous 

findings that suggest developmental exposure to inorganic lead is associated with a 

decreased sensitivity to the reinforcing properties of opiates (Miller et al., 2000, 2001) 

and, conversely, with an increase in sensitivity to the reinforcing properties of cocaine 

(Nation et al., 2000; 2003; 2004).  These effects are expected to translate into similar 

patterns of drug-taking behavior when assessing vulnerability to initiate high and stable 

levels of responding for cocaine or heroin.   
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MATERIALS AND METHODS 

Experiment 1: Heroin 

 Animals 

 All aspects of the research reported here were approved by the Texas A&M 

University Laboratory Animal Care Committee.  For 30 days, adult female Sprague-

Dawley rats (Harlan; Houston, TX) were exposed to 0 (sodium acetate)  or 16 mg lead 

(as lead acetate) daily using a 16 ga gavage needle (Source, Location) to administer the 

respective solutions in a volume of 1.0 ml deionized water.  This procedure has been 

used in previous developmental lead studies to ensure stable blood/tissue levels (cf. 

Nation et al., 2000; 2003; 2004; Rocha et al., 2004).  The present lead concentration was 

selected based on previous studies that found it produces differential behavioral effects 

while not altering dam weights or the locomotor ability of pups (see Miller et al., 2000).  

Following this 30-day toxicant exposure period, females were bred with nonexposed 

males.  Once females tested positive for copulatory plugs the males were removed from 

the home cage.  Females continued to receive their daily doses of the control solution or 

lead acetate solution throughout the gestation and lactation periods.  Standard rat chow 

(Teklad, Madison, WI) and tap water were available ad libitum for dams in the home 

cage.  Litters were culled to eight pups on postnatal day (PND) 1, and only one pup from 

each litter was used in the experiment in order to avoid confounds that are sometimes 

evident in studies involving toxic exposure (Holson and Pearce, 1992). 

 For control and lead-exposed dams, 100-150 µl of tail-blood was drawn at 

breeding, parturition (PND 1), and weaning (PND 21).  In addition, at the point of 
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termination of the experiment, brain, kidney, liver and bone (tibia) were harvested from 

test animals for lead concentration analyses.  Littermates of test animals were sacrificed 

on PND 1 and PND 21, and blood samples were collected for subsequent analyses. 

 The rate of pregnancy was not different between groups.  On PND 21, pups used 

for testing were weaned and housed individually.  All animals were maintained on a 12-

hour light/dark cycle.  Testing commenced at approximately 10:00 hrs, two hrs into the 

12-hr light cycle.      

 Surgical Procedures 

 Surgery was performed at PND 60, which is a point demonstrated to be well 

within the adult timeframe of behavioral change produced by developmental lead 

exposure (Miller et al., 2000; 2001; Nation et al., 2003; 2004).  Using a backplate 

technique, implantation of chronic indwelling jugular catheters was performed using 

sterile techniques.  Rats were anesthetized with separate injections of 50 mg/kg ketamine 

and 50 mg/kg sodium pentobarbital administered intraperioneally (i.p.).  A .01 interior 

diameter (ID) Silastic tubing [Dow Corning, Midland, MI] catheter was inserted into the 

right jugular vein and sutured to muscle tissue in the area of the vein.  Using an 11 ga 

stainless steel tube as a guide, the catheter was passed subcutaneously through the body 

of the animal exiting the back between the scapulae.  A backplate consisting of two 

stainless steel ovals separated by propylene mesh (Ethicon, Inc; Somerville, NJ) 

provided an anchor for a spring leash, through which the catheter was threaded.  

Connecting to the backplate at one end, the other end of the leash was connected to a 

single channel fluid swivel [22 ga] (Instech Labs, Plymouth Meeting, PA).  The swivel 
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design permitted an interlock with separate connecting arms located in the home cage 

and operant test chambers.  The hinged arm allowed for a range of movement in either 

the home cage or test chamber.  A .02 ID catheter continued from the top of the swivel 

to an infusion pump (Razel Scientific Instruments; Stamford, CT) that controlled the 

solution delivery.  Animals were allowed 5 days to recover from surgery before 

commencing heroin self-administration testing.  During this recovery period, each rat 

received in the home cage hourly intravenous (i.v.) infusions (200 µl) of a sterile saline 

solution containing heparin (1.25 U/ml), penicillin g potassium (250,000 U/ml), and 

streptokinase (8,000 U/ml).  Following recovery, animals received automated hourly 

infusions (213 µl) over an 8.00 sec time frame of heparinized saline in the home cage for 

the duration of the study.  

 All animals received free access to food and water for 5 days while recovering 

from surgery.  Subsequently, daily food allotment was restricted to 18 g of standard rat 

chow in order to maintain animals at approximately 85% of the mean body weight of 

non-food-deprived littermates (not participating in the study).  Moderate food restriction 

has consistently been shown to accelerate cocaine acquisition and the procedure is 

recommended for autoshaping acquisition studies (Campbell and Carroll, 2001). 

Uncontaminated water was available ad libitum throughout the study.  Animals were 

weighed daily prior to testing.  Although initial individual pup body weights were higher 

for control versus lead-exposed animals, no group differences in body weight were 

evident at the commencement of testing operations.  Food was placed in home cages 

following the end of each daily testing session.   
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 Apparatus 

 Twelve operant conditioning chambers (Model E10-10, Coulbourn, Allentown, 

PA) in sound attenuating cubicles served as the test apparatus.  Each chamber had two 

levers (left, right) and a stimulus light located above each lever.  Infusion pumps (Razel 

Scientific Instruments; Stamford, CT) controlled drug delivery to each of the boxes.  A 

20-ml syringe delivered i.v. infusions (160 µl) over a 6.00 sec time frame.  The system 

was interfaced with 2 IBM computers, each controlling drug delivery and recording data 

from 6 chambers.  Seven control and 10 lead-exposed animals were run in two squads, 

and subject assignment to chambers and squad was counterbalanced by group. 

 Procedure 

 Autoshaping component.  Each of the 6-hr experimental sessions consisted of 

two parts, an autoshaping and a self-administration component.  Testing was carried out 

seven days per week.  For the first 3 hrs of Experiment 1, during the autoshaping 

component, testing commenced with the retractable lever drawn outside the reach or 

vision of the animal.  After a 480-sec time-out period, the retractable lever extended into 

the operant chamber at which point the animal received a .018 mg/kg heroin infusion if 

it pressed the lever or after 15-sec, whichever occurred first.  Once again, a 480-sec 

time-out period was instituted.  As before, the active lever was then extended into the 

chamber and the animal was given 15-sec to press the lever for an immediate infusion of 

.018 mg/kg heroin, or, if no response occurred, the animal received a noncontingent 

heroin infusion of .018 mg/kg heroin at the end of the 15-sec period.  This cycle repeated 

for the first 20 min of each of the first three hours wherein 5 heroin infusions were 
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administered for a total of 15 heroin infusions over the three hours of autoshaping each 

day of testing. 

 With the chamber house-light off, the stimulus light above the active (right) 

lever was lit for the 6-s duration of the infusion and terminated immediately after.  The 

inactive (left) lever remained extended inside the chamber throughout the study.  

Responses on the inactive lever, as well as responses during an infusion, were recorded 

but had no programmed consequences.  As indicated, a .018 mg/kg heroin infusion (160 

µl) was delivered to the animal following each lever retraction regardless of whether the 

delivery was contingent or noncontingent.  After the first 20 min of each hour, following 

the 5 heroin infusions, all stimulus lights were extinguished and the active lever 

remained retracted for a 40 min time-out session, until testing recommenced at the 

beginning of the next hr.         

 Self-administration component.  For the second 3-hr component of the 

experiment, the retractable lever remained extended and .018 mg/kg heroin infusions 

were contingent upon lever pressing under an FR-1 schedule.  As before, responses on 

the left lever and responses during an infusion delivery were recorded, but had no 

programmed consequences.  At the end of the 3-hr self-administration period, testing 

was concluded for the day.     

 The criterion for acquisition of heroin self-administration was a 2-day period 

during which a mean of 10 infusions/session occurred during the 3-hour operant phase.  

This criterion followed that set by previous studies in the area of acquisition using a 

comparable dose of heroin (Carroll et al., 2002; Lynch and Carroll, 1999).  The heroin 
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dose (.018 mg/kg) was chosen based on data from previous studies that show this dose is 

highly reinforcing, and will produce high and stable rates of responding (Rocha et al., 

2004).      

 In order to confirm patency during acquisition training, catheters were flushed 

twice daily with .20 mls of a heparinized saline solution; once prior to and once 

following each daily testing session.  Catheters of questionable patency were flushed 

with .05 mls of pentobarbital (7.50 mg/ml) followed by .20 mls of heparinized saline, 

and these animals were checked for immediate onset of brief anesthesia.  At the end of 

the study, each animal in both exposure conditions received an i.v. infusion of 7.50 

mg/kg sodium pentobarbital.  Again, catheter patency was verified by rapid onset of 

brief anesthesia. Each of the animals included in this report tested positive for open 

lines.  

 Drugs 

The Research Technology Branch of the National Institute of Drug Abuse 

generously supplied the heroin (diacetylmorphine).  Heparinized saline served as the 

heroin vehicle.  Lead acetate and sodium acetate were obtained from Sigma Aldrich 

Chemical Company (St. Louis, MO).   

 Tissue Collection and Analyses  

 After animals recovered from patency verification, control (Group 0-mg) and 

lead-exposed (Group 16-mg) test animals were anesthetized with sodium pentobarbital 

(50.00 mg/kg, i.p.).  Following blood collection via cardiac puncture, brain was rapidly 

harvested along with kidney, liver, and bone (tibia).  Following collection of blood and 
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tissue samples, lead residues were measured via atomic absorption spectrophotometry as 

described in a detailed report from our laboratory (Dearth et al., 2003). 

 Statistical Procedures  

 The comparative rates of acquisition of cocaine self-administration were 

assessed using the Kaplan-Meier survival analysis, Breslow statistic (Lee, 1992).  This 

analytical procedure is ideally suited for determining differences in rate with respect to 

animals reaching a set criterion (SPSS; Chicago, Il).  Comparative percentages of 

animals reaching criterion between groups was assessed using a proportion analysis 

(Bruning and Kintz, 1997).  In addition, an Analysis of Variance (ANOVA) test was 

performed on the mean number of active lever responses (infusions) and inactive lever 

responses for each group across the course of self-administration testing. 
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RESULTS 

Body Weights 

 The analysis of body weights during the period of acquisition did not show 

significant group differences; F(1,14)= .10, p> .05 (mean body weight = 329.64 g + and  

326.92 g + for Groups 0-mg and 16-mg, respectively).  Weekly fluctuations did occur 

but the pattern of change was uniform across groups.  Though the litter size was not 

different between Group 0-mg and Group 16-mg animals (means = 13.5 and 12.3, 

respectively; p> .05), initial individual pup weights were higher for control versus lead-

exposed animals (t(21)= 3.14, p< .05).  However, as indicated, no differences were seen 

between groups by the beginning of testing.        

Acquisition of Heroin Self-administration 

 Figure 1 illustrates the cumulative percentage of rats in each exposure condition 

meeting criterion for the acquisition of heroin self-administration.  It is visually apparent 

that over the 35-day testing period Group 16-mg animals were less likely to meet the 

requirements for acquisition of heroin self-administration than their control counterparts. 

Although during the first two weeks of testing both groups appeared to have little 

separation, by the third week of testing the separation was evident.  All of Group 16-mg 

animals that would acquire did so before the second week of testing was complete.  

Group 0-mg animals continued to escalate in their rate of acquisition until day 28 of 

testing.   

 Though a survival analysis failed to show differences between groups in rate of 

acquisition (p> .05), proportion tests (Bruning and Kintz, 1997) performed on each of 5-
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session blocks, showed that the percentage of rats that met the lever-press response 

criterion when tested as adults was lower among lead-exposed animals (62.5%; Group 

16-mg), than in controls (87.5%; Group 0-mg), by the end of testing (35 days) [Z� 2.13, 

df=1, p< .05)].  Whereas 5 of 8 lead-exposed animals reached criterion for acquisition of 

heroin (10 infusions within the 3-hr instrumental session), 7 of 8 control animals reached 

criterion.   

 Figure 2 profiles the mean number of lever presses for each group across 

successive 5-trial blocks of acquisition training.  Although the group main effect 

(F(1,14)= .003, p> .05) and interaction effect (F(1,14)= .59, p>.05) failed to reach an 

acceptable level for statistical significance, there was an unexpected trend toward higher 

responses from lead-exposed animals.  It is apparent that both groups responded more 

frequently on the active (heroin) lever than the inactive lever that had no programmed 

consequences.  Further, it is clear that both groups had reached asymptote and exhibited 

stable self-administration patterns over the last 10 days of acquisition.    
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Figure 1.  Cumulative percentage (%) of nonexposed (Group 0-mg/N=8) and 
lead-exposed (Group 16-mg/N=8) rats meeting the criterion for the 
acquisition of heroin (.018 mg/kg/infusion) self-administration within the 35-
day limit.  Open symbols and closed symbols represent the nonexposed and 
exposed conditions, respectively.    
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Figure 2.  Mean active and inactive lever responses for heroin (.018 
mg/kg/infusion) in all animals in Group 0-mg lead (N=8) and Group 16-mg lead 
(N=8), across successive 5-session blocks (Experiment 1).  Open symbols and 
closed symbols represent the nonexposed and exposed conditions, respectively.    
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Lead Concentrations in Tissue 

 Table 1 presents the mean (SEM) blood lead residue values for nonexposed 

(Group 0-mg) and metal-exposed (Group 16-mg) dams at breeding, parturition, and 

weaning.  Blood lead concentrations are shown for littermates at PND 1 and PND 21, as 

well as for test animals at the termination of the experiment.  As can be seen, for both 

groups, blood lead levels had fallen below detectable limits by Day 35 of acquisition 

testing (< .5 µg/dl), and in terms of the analyses performed on tissue samples taken from 

test animals, with the exception of tibia samples for the lead group, tissue concentrations 

were the same for both exposure conditions. 
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Table 1.  Mean (SEM) blood and tissue lead concentration values for dams, littermates 
and test animals in Experiment 1. 

Blood Lead Concentration (�g/dl) 
  

  Group 0 mg Group 16 mg 
 

Dams 

Breeding 1.7 (.2) 37.1 (.6) * 

  
Parturition (PND 1) 1.1 (.1) 58.8 (.3) * 

 
Weaning (PND 21) 2.3 (.003) 38.9 (.3) * 

 
 
Littermates 

 
PND 1  1.8 (.03) 83.2 (.2) * 

 
PND 21  1.2 (.01) 13.9 (.03) * 

 
 
Test Animals 

 
Termination  < .5 < .5 
 

Tissue Concentrations of Test Animals at Termination (�g/g)  

  Group Lead-0 Group Lead-16 
 
Brain  .003 (.001) .006 (.002) 

 
Kidney  .010 (.002) .034 (.003) 

 
Liver  .004 (.001) .006 (.001) 

 
Tibia  .035 (.002)  2.023 (.317) * 

 

The symbol � indicates that control and lead-exposed animals were significantly 

different (p< .05).
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MATERIALS AND METHODS  

Experiment 2: Cocaine 

The purpose of the second experiment was to examine the relative acquisition 

rates, independent of major intrusions, of drug (cocaine) self-administration for offspring 

(rats) born to dams exposed to 0 mg or 16 mg lead prior to breeding, and throughout 

gestation and lactation.  Because opiates and cocaine typically exert differentially 

opposite effects, it was hypothesized that cocaine would produced an increase in 

vulnerability to reach criterion for cocaine acquisition.   

As in Experiment 1, adult control and lead-exposed animals were tested during 

daily sessions that involved an initial 3-hr autoshaping component wherein .20 mg/kg 

cocaine infusions were paired with the extension and retraction of a lever (a Pavlovian 

procedure).  During a subsequent 3-hr self-administration component of each daily 

session, .20 cocaine infusions were delivered only when a single lever press (FR-1) was 

executed (an operant procedure).   

Animals 

All aspects of the research reported here were approved by the Texas A&M 

University Laboratory Animal Care Committee.  Metal exposure regimen, surgical 

procedures, apparatus, tissue collection/analyses and statistical analyses were identical to 

those of Experiment 1 with only the procedure varying slightly to account for differential 

patterns of drug self-administration between opiates and cocaine.   
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Procedure 

Autoshaping component.  Each of the 6-hr experimental sessions consisted of 

two parts, an autoshaping and a self-administration component.  Testing was carried out 

seven days per week.  For the first 3 hrs of Experiment 1, during the autoshaping 

component, testing commenced with the retractable lever drawn outside the reach or 

vision of the animal.  After a 90-sec time-out period, the retractable lever extended into 

the operant chamber at which point the animal received a .20 mg/kg cocaine infusion if 

it pressed the lever or after 15-sec, whichever occurred first.  Once again, a 90-sec time-

out period was instituted.  As before, the active lever was then extended into the 

chamber and the animal was given 15-sec to press the lever for an immediate infusion of 

.20 mg/kg cocaine, or, if no response occurred the animal received a noncontingent 

heroin infusion of .20 mg/kg cocaine at the end of the 15-sec period.  This cycle repeated 

for the first 20 min of each hr for 3 hrs (30 total cocaine infusions). 

With the chamber house-light off, the stimulus light above the active (right) lever 

was lit for the 6-s duration of the infusion and terminated immediately after.  The 

inactive (left) lever remained extended inside the chamber throughout the study.  

Responses on the inactive lever, as well as responses during an infusion, were recorded 

but had no programmed consequences.  As indicated, a .20 mg/kg cocaine HCl infusion 

(160 µl) was delivered to the animal following each lever retraction regardless of 

whether the action was contingent or noncontingent.  After the first 20 min of each of the 

three hours, following the 10 cocaine infusions, all stimulus lights were extinguished and 
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the active lever remained retracted for a 40 min time-out session, until testing 

recommenced at the beginning of the next hr.         

Self-administration component.  For the second 3-hr component of the 

experiment, the retractable lever remained extended and .20 mg/kg cocaine HCl 

infusions were contingent upon lever pressing under an FR-1 schedule.  As before, 

responses on the left lever and responses during an infusion delivery were recorded, but 

had no programmed consequences.  At the end of the 3-hr self-administration period, 

testing was concluded for the day.  

The criterion for acquisition of cocaine self-administration was a mean of 50 

 infusions per day over 2 consecutive daily self-administration sessions.  This value is 

half of what has been set previously in studies that used twice the duration of testing 

time [i.e., 6-hr autoshaping and 6-hr self-administration] (Carroll and Lac, 1997; Carroll 

and Lac, 1998).  The cocaine dose (.20 mg/kg) was chosen based on data from previous 

studies that show this dose is marginally reinforcing and does not produce satiation or 

motoric impairments (Campbell and Carroll, 2001).      

In order to confirm patency during acquisition training, catheters were flushed 

twice daily with .20 mls of a heparinized saline solution; once prior to and once 

following each daily testing session.  Catheters of questionable patency were flushed 

with .05 mls of pentobarbital (7.50 mg/ml) followed by .20 mls of heparinized saline, 

and these animals were checked for immediate onset of brief anesthesia.  At the end of 

the study, each animal in both exposure conditions received an i.v. infusion of 7.50 

mg/kg sodium pentobarbital.  Again, catheter patency was verified by rapid onset of 
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brief anesthesia (50.00 mg/kg sodium pentobarbital).  Each of the animals included in 

this report tested positive for open lines. 

Drugs 

The Research Technology Branch of the National Institute of Drug Abuse 

generously supplied the cocaine HCl.  Heparinized saline served as the cocaine vehicle.  

Lead acetate and sodium acetate were obtained from Sigma Aldrich Chemical Company 

(St. Louis, MO).   
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RESULTS 

Body Weights 

 The analysis of body weights during the period of acquisition did not show 

significant group differences; F(1,15)= .06, p> .05 (mean body weight = 284.09 g + and  

285.85 g + for Groups 0-mg and 16-mg, respectively).  Weekly fluctuations did occur 

but the pattern of change was uniform across groups.  Animals used in Experiment 1 

were littermates in Experiment 2.  Accordingly, data on litter size is the same as in 

Experiment 1.  Litter size was not different between Group 0-mg and Group 16-mg 

animals (means = 13.5 and 12.3, respectively; p> .05), initial individual pup weights 

were higher for control versus lead-exposed animals (t(21)= 3.14, p< .05).  However, as 

indicated, no differences were seen between groups by the beginning of testing.       

Acquisition of Cocaine Self-administration    

 Figure 3 illustrates the cumulative percentage of non-metal (0-mg lead) and 

metal-exposed (16-mg lead) rats meeting criterion (50 lever presses).  Note, the increase 

in the infusion requirement to meet criterion in Experiment 2 corresponds to the greater 

number of lever responses made at a dose of .20 mg/kg in a cocaine dose-effect curve 

(Nation et al., 2003), compared to the lever responses made at a dose of .018 mg/kg in a 

heroin dose-effect curve (Rocha et al., 2004).   

 It is visually apparent that over the 35-day testing period Group 16-mg animals 

were more likely to meet the requirements for acquisition of cocaine self-administration 

than their control counterparts.  Indeed, even by the fifth day of acquisition training, a 

greater number of lead-exposed animals (20%; Group 16-mg) reached criterion than 
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non-exposed animals (0%; Group 0-mg), and this pattern persisted throughout testing. 

This is especially evident at day 17, approximately mid-way through the 35 day testing 

period, where 60% of Group 16-mg animals had reached the acquisition criterion, but 

only 14.29% of Group 0-mg animals had reached criterion.   

 By the end of testing, neither Group 0-mg (42%) [3 of 7] nor Group 16-mg 

(80%) [8 of 10] reached 100% percentages with respect to acquisition criterion.  As 

assessed by survival analysis, lead-exposed animals reached criterion at a faster rate 

across the 35-day testing period than controls [Kaplan-Meier, Breslow statistic (X��� 

3.89, df=1, p< .05)].  In addition, there was evidence that lead-exposed animals acquired 

at significantly faster rates than controls.  

 In addition to survival analyses, proportion test were performed.  Proportion 

tests showed a significantly greater percentage of Group 16-mg animals reached 

acquisition criterion than Group 0-mg animals during all but the first 5-day block (block 

2, z = 3.03; block 3, z = 4.20; block 4, z = 3.78; block 5, z = 3.78; block 6, z = 3.09; 

block 7, z = 3.09; ps< .05).   

 Figure 4 profiles the mean number of active (infusions) and inactive lever 

responses per five-session blocks for all animals in both exposure conditions.  A 2 

Groups (0-mg, 16-mg) X 2 Levers (active, inactive) X 7 Blocks of 5 Sessions (1-7) 

repeated measures ANOVA was performed on these data, with Levers and Blocks of 5 

Sessions serving as within factors.  Overall, the findings from this analysis revealed that 

lead-exposed rats self-administered cocaine at greater rates than controls.  In addition to 

significant main effects for Levers (F(1,15) =14.95, p<.05) and Blocks of 5 Sessions  
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(F(6,90) = 7.54, p< .05).  Further, it is apparent from Figure 4 that both groups 

maintained stable response rates at the end of the experiment.  

 In addition to a greater percentage of lead-exposed animals reached criterion for 

cocaine acquisition and doing so at faster rates, lead-exposed animals also made 

substantially greater number of lever responses (received more infusions) across the 

remaining sessions than Group 0-mg animals.  The largest separation in the number of 

lever responses and, consequently, drug infusions administered, was seen during the 

fourth 5-day block between Day 16 and Day 20 of acquisition.  During the fourth 5-day 

block, Group 0-mg animals administered less drug (mean= 19.03 infusions) than Group 

16-mg animals (mean= 62.22 infusions) per 3-hour self-administration session.  Animals 

that reached criterion pressed for a comparable number of drug infusions during the last 

5 days of testing, regardless of group (p> .05), with control animals maintaining a trend 

toward fewer responses.   

 The strength of the differences in group self-administration responding after 

meeting the criterion of a mean of 50 infusions/session for 2 consecutive days is 

reflected in the results from the one-tailed t test performed on the data shown in Figure 

4, t(9)=2.22, p< .05).  Thus, not only does perinatal lead exposure result in greater 

percentages of animals reaching the cocaine acquisition criterion and at faster rates, but 

after criterion is reached lead-exposed animals self-administer at greater frequencies 

than non-exposed animals for the duration of testing.     
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Lead Concentrations in Tissue 

The dam and littermate blood data for animals tested in Experiment 2 are 

presented in Table 1 (littermates were used as test animals for Experiment 2).  As is 

presented in Table 2, the only substantial group differences with respect to lead 

accumulation in tissue of test animals was in the analysis of tibia, where greater lead 

residues were evident in Group 16-mg relative to Group 0-mg; p< .05.  As in Experiment 

1, at termination of testing blood lead concentrations in both exposure conditions were  

< .5 µg/dl, i.e., below the limits of detection.  Thus, all differences were observed even 

though lead had cleared blood in lead-exposed animals by the end of testing.    
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Table 2.  Mean (SEM) tissue lead concentration values for test animals in Experiment 2. 

Tissue Concentrations of Test Animals at Termination (�g/g)  

 
  Group Lead-0 Group Lead-16 
 
Brain  .004 (.001) .006 (.002) 

 
Kidney  .008 (.001) .031 (.002) 

 
Liver  .004 (.001) .006 (.001) 

 
Tibia  .029 (.003)  1.950 (.338) * 

 

The symbol � indicates that control and lead-exposed animals were significantly 
different (p< .05). 
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 Figure 3.  Cumulative percentage (%) of nonexposed (Group 0-mg/N=7) and 
lead-exposed (Group 16-mg/N=10) rats meeting the criterion for the acquisition 
of cocaine (.20 mg/kg/infusion) self-administration within the 35-day limit.  
Open symbols and closed symbols represent the nonexposed and exposed 
conditions, respectively.    
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 Figure 4.  Mean active and inactive lever responses for cocaine (.20 
mg/kg/infusion) in all animals in Group 0-mg lead (N=7) and Group 16-mg 
lead (N=10), across successive 5-session blocks (Experiment 1).  Open 
symbols and closed symbols represent the nonexposed and exposed 
conditions, respectively.    
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DISCUSSION, SUMMARY AND CONCLUSIONS 

 Employing .018 mg/kg heroin intravenous (i.v.) as the reinforcement outcome in 

a drug self-administration paradigm, the findings from Experiment 1 revealed that 

perinatal exposure to clinically relevant, low-levels of lead resulted in a smaller 

percentage of rats reaching the criterion for heroin acquisition (10 infusions within the 3-

hour instrumental session) during a 35-day training regimen, relative to nonexposed 

controls.  When cocaine (.20 mg/kg) was substituted as the reinforcer in the self-

administration model (Experiment 2) a greater percentage of the developmentally lead-

exposed animals reached criterion for acquisition as compared to control animals.  

Additionally, lead-exposed animals made a greater number of lever responses (self-

administered more cocaine) than nonexposed animals.  Whereas lead exposure appears 

to decrease the rewarding potency of heroin at relatively low doses, there is evidence 

that when animals are presented with cocaine, lead exposure increases the rewarding 

potency of cocaine.    

It is important to note that in the studies where drugs and perinatally (gestation 

and lactation) lead-exposed animals were used, lead had gained clearance from blood, 

brain, liver, kidney and bone (tibia) by the end of testing, yet the altered behavioral 

effects persisted (Nation et al., 2003; 2004; Rocha et al., 2004).  These data suggest 

relatively permanent neuronal alterations in cocaine/dopamine related circuitries occur 

during a critical period of developmental lead exposure.   

Interpretive issues arise from the fact that developmental lead exposure resulted 

in a smaller percentage of animals acquiring heroin self-administration in Experiment 1, 
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but a greater percentage of animals acquiring cocaine self-administration in Experiment 

2.  In the case of heroin, it is possible that the pattern of group separation may derive 

from lead-induced decreases in the reinforcing properties of the drug, and therein, the 

metal functionally decreases the heroin dose.  Conversely, in the case of cocaine, the 

metal functionally increases the cocaine dose.  

This line of reasoning agrees with a recent literature on perinatal lead/heroin 

interactions where it has been shown that developmental lead exposure results in 

decreased sensitivity to the behavioral effects of heroin; whereas under the same testing 

conditions, lead/cocaine interactions are expressed as an increased sensitivity to the 

behavioral effects of cocaine.  Previously, it was mentioned that developmental lead 

exposure produces a downward shift in the heroin dose-effect curve (Rocha et al., 2004) 

and decreases breaking points in a heroin-reinforced progressive ratio paradigm (Rocha 

et al., 2004).  Combined with drug substitution studies (Miller et al., 2001), the available 

data suggest a decreased responsivity, or subsensitivity, to the rewarding potency of 

opiates.  In contrast, an increase in responsivity, or supersensitivity, is evidenced in the 

rewarding potency of cocaine when animals are developmentally exposed to lead.  

Specifically, lead exposure produces a leftward shift in the cocaine dose-effect curve 

(Nation et al., 2004), reinstatement of drug seeking at low doses of a priming injection of 

cocaine occurs at levels that are too low to affect controls (Nation et al., 2003) and 

heightened locomotor activation by cocaine is evident (Nation et al., 2000).  In each of 

these cases, then, animals developmentally exposed to lead expressed an attenuated 
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response to heroin and, conversely, an amplified response to cocaine, relative to 

controls. 

It is reasonable to expect that the changes in the reinforcing and stimulating 

properties of heroin and cocaine engendered by early lead exposure may be associated 

with direct changes in neural pathways associated with drug reward.  Areas that are 

integral in modulating the rewarding effects of drugs with abuse liability also are sites 

for the accumulation and possible negative effects of lead toxicity (Cory-Slechta et al., 

1997).  Gene and protein expression of specific glutamate subunits in the 

morphologically immature brain is known to be impaired by developmental lead 

exposure (Guilarte, 1998; Guilarte and McGlothan, 2003; Guilarte and Miceli, 1992; 

Guilarte et al., 2003).  Perhaps alterations in glutamatergic function contribute to long-

lasting changes of heroin and cocaine effects observed elsewhere and presently in 

Experiment 1 and Experiment 2.  Of course, numerous other transmitter systems, e.g., 

cholinergic processes (Reddy et al., 2003), may concurrently interact to produce a 

manifold change in neural mechanisms in the immature rat brain that produces relatively 

permanent modifications to the sensitivity of drug reward. 

The contrasting effects observed in the rewarding potency of heroin and cocaine 

following developmental lead exposure may be due in part to the differences in 

neurochemical actions of each type of drug.  Lead is known to target the mesolimbic 

dopamine system, most conspicuously projection neurons from the ventral tegmental 

area to the nucleus accumbens (Cory-Slechta, 1995; Tavakoli-Nezhad et al., 2001).  

Because dopamine activity along this circuit is critically involved in mediating cocaine 
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responsiveness (Ranaldi and Wise, 2001; Wise and Bozarth, 1987), disruptions in 

mesolimbic dopamine functioning resulting from the presence of lead may translate into 

an enduring increased sensitivity to cocaine.   

 In the case of heroin, dopamine in the VTA also may mediate opiate reward.  

However, opiates also may be self-administered directly into the NAcc (Smith et al., 

1987) and opiate antagonists administered into the NAcc attenuate i.v. heroin self-

administration (Vaccarino et al., 1985).  In addition, systemic or intra-NAcc 

administration of DA antagonists does not alter i.v. heroin self-administration (Ettenberg 

et al., 1982).  Likewise, destruction of presynaptic DA terminals in the NAcc, using the 

neurotoxic compound 6-OHDA, selectively attenuates cocaine but not heroin self-

administration (Pettit et al., 1984).  These data suggest a dopamine-independent 

mechanism in the NAcc for opiates.   

 Morphological evidence demonstrates that the majority of NAcc neurons are 

GABAergic and comprise the final common-output neurons in the NAcc (Chang and 

Kitai, 1985; Kita et al., 1985).  These medium, spiny GABAergic neurons receive 

multiple inputs including dopamine from the VTA, glutamate from the PFC, and 

enkephalin from local interneurons that all project primarily to the ventral pallidum 

(Sesack and Pickel, 1982).  Opiate reinforcement is also mediated by an indirect 

disinhibition of dopamine neurons in the VTA and a direct inhibition of GABAergic 

output neurons in the NAcc (Bardo, 1998).   

 Glutamate (Glu) system functions also may account for the directionally opposite 

effects observed in heroin and cocaine sensitivity.  Glutamate (Glu) seems to be more 
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greatly implicated in heroin self-administration than cocaine self-administration.  N-

methyl-D-aspartate (NMDA) is a Glu subtype and distinct genes encode NMDA 

receptor properties essential to calcium channel activity modulating drug reward.  

Moreover, lesions of the NAcc core, but not the shell, slightly reduce maintenance of 

heroin self-administration and impair acquisition of heroin responding (Hutcheson et al., 

2001).  The shell mediates the rewarding effects of cocaine, ostensibly via DA pathways.  

Conversely, the core of the NAcc that is essential for the acquisition of heroin self-

administration, but not that of cocaine, mediates changes in NMDA function.  In 

addition, though dopamine in the NAcc is not critical for heroin self-administration, 

intra-Nacc infusions of opiate receptor antagonists reduces heroin reward, eventually 

eliminated heroin self-administration (Vaccarino et al., 1985; 2001).  In view of these 

and other similar findings, it must be considered that distinctive neuroadaptations in 

these regions resulting from perinatal lead exposure may account for the contrasting 

differences in lead-induced heroin or cocaine self-administration.   

 Other more indirect determinants that affect drug sensitivity produced by 

perinatal lead exposure also should be considered.  Because lead-exposed pups initially 

exhibited lower body weights than controls, early malnutrition may have produced 

adverse neuroadaptations that affected later self-administration of drugs.  In addition, 

disturbances in metabolic conversion and drug distribution/absorption may persist for 

lengthy periods following early lead exposure.  Further, it must be considered that 

elevated response rates exhibited by lead-exposed animals may derive from the   

aforementioned increase in activity that is consistently observed with animals exposed to 
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the same regimen employed here (Nation et al., 2000).  However, elevated locomotion in 

lead-exposed animals does not appear to explain the patterns of self-administration 

observed by Nation et al. (2004), where rats emitted fewer responses for the lowest and 

highest doses of cocaine, but pressed more for the intermediate doses.  Pressing for the 

lower doses of drug was decreased suggesting drug self-administration was consistent 

with drug potency and not a confounding effect of locomotor stimulation.     

 Whatever the neurobiological array of events that ultimately results in increased 

acquisition of intravenous cocaine self-administration among animals perinatally 

exposed to lead and tested during the adult cycle, the risk implications are clear.  As 

noted by Carroll and Lac (1997), animal models of acquisition permit an assessment of 

variables that may increase vulnerability to initiate drug-taking.  In these studies, 

developmental lead exposure modulates the likelihood that an animal will self-

administer a drug (heroin or cocaine) at a low dose under conditions where there is no 

prompting to take the drug.  These data may have predictive validity regarding possible 

vulnerability to drug abuse in humans.  Insofar as an environmental event, such as 

chronic low-level lead exposure, increases the choice to use a hedonic drug, abuse 

potential necessarily increases.   

Because early lead exposure consistently has increased the reinforcement 

efficacy of cocaine (present data; Nation et al., 2003; 2004), there may be legitimate 

concerns that lead poisoning elevates the chances for transition from casual drug use to 

compulsive drug-seeking.  In the case of heroin, antagonism of the potency of the drug 

by lead exposure is of concern because it represents a form of functional tolerance that 
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may occasion increased intake at higher doses of the drug.  Previous studies (Campbell 

et al., 1998; Carroll and Lac, 1993) suggest that as dose increases, the likelihood to self-

administer a drug also increases.  Thus, even though self-administration of heroin 

decreased in lead-exposed animals, at higher doses, the susceptibility to administer the 

drug may increase for lead-exposed animals.  The implications are clear; although lead-

induced changes in drug potency may decrease self-administration at the dose of heroin 

tested, in real world situations, individuals exposed to lead during development may 

seek out higher, thus, more dangerous doses of heroin in order to reach an optimal effect 

of the drug (Corrigall and Coen, 1991; Woolverton, 1986).   

Lead may be producing a burden in the organism, affecting drug sensitivity or 

intake via altered molecular mechanisms in a time-dependent manner (Tran-Nguyen et 

al., 1998).  Interaction effects with lead and opiates/cocaine in various behavioral 

measures further suggest that the lead burdens that occur during various periods of 

development are crucial in mediating the resulting behavioral patterns (Miller et al., 

2000; 2001; Nation et al., 2003; 2004; Rocha et al., 2004; Valles et al., 2003).  

Accordingly, data on developmental exposure to lead indicates a more dynamic and 

sometimes directionally opposite pattern of effects in animals exposed perinatally to the 

metal versus later on in adulthood.   

A confounding variable may be that children exposed to lead are more likely to 

live in lower-income communities where the incidence of low maternal IQ, poor diet, 

delinquency and exposure to multiple environmental toxicants are high.  Socioeconomic 

factors that are highly correlated with populations in enriched/impoverished areas are 
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concerns that must be taken into account in the interpretation of epidemiologic findings 

(Hubbs-Tait et al., 2005).   

An expanding literature shows that urban, minority children from low-income 

families are targeted for lead exposure and exhibit unsafe levels of metal-residue (Brody 

et al., 1994).  Inasmuch as the urban sub-population also is presented with increased 

challenges associated with drug use and abuse, the health industry should be especially 

vigilant to potential links between environmental pollution and drug-abuse liability 

(Ensminger et al., 1997).  

Ultimately, drug initiation such as that monitored here in Experiment 1 and 

Experiment 2, may or may not lead to high, stable responding for a given drug, even in 

the presence of environmental pollution.  Genetic predisposition, experiential history, 

psychosocial unrest, and innumerable societal factors are major determinants of this 

complicated health problem.  What the present acquisition findings from Experiment 1 

and Experiment 2 suggest is that the scientific community and health-care providers 

should not ignore the growing literature that shows exposure to lead during development 

may alter drug sensitivity.  This information not only increases our understanding of 

factors that enhance drug intake, but also it enhances our awareness of how 

environmental vectors in drug abuse may suggest preemptive strategies for decreasing 

vulnerability to drug addiction.    
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APPENDIX 
 

FIGURE CAPTIONS 
 

Figure 1. Cumulative percentage (%) of nonexposed (Group 0-mg/N=8) and lead-

exposed (Group 16-mg/N=8) rats meeting the criterion for the acquisition of 

heroin (.018 mg/kg/infusion) self-administration within the 35-day limit. Open 

symbols and closed symbols represent the nonexposed and exposed conditions, 

respectively.    

Figure 2. Mean active and inactive lever responses for heroin (.018 mg/kg/infusion) in 

all animals in Group 0-mg lead (N=8) and Group 16-mg lead (N=8), across 

successive 5-session blocks (Experiment 1).  Open symbols and closed symbols 

represent the nonexposed and exposed conditions, respectively.    

Figure 3. Cumulative percentage (%) of nonexposed (Group 0-mg/N=7) and lead-

exposed (Group 16-mg/N=10) rats meeting the criterion for the acquisition of 

cocaine (.20 mg/kg/infusion) self-administration within the 35-day limit. Open 

symbols and closed symbols represent the nonexposed and exposed conditions, 

respectively.    

Figure 4. Mean active and inactive lever responses for cocaine (.20 mg/kg/infusion) in 

all animals in Group 0-mg lead (N=7) and Group 16-mg lead (N=10), across 

successive 5-session blocks (Experiment 1).  Open symbols and closed symbols 

represent the nonexposed and exposed conditions, respectively.    
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