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ABSTRACT

Cooperative Control of Autonomous

Underwater Vehicles. (May 2003)

Elizabeth Savage, M.E., Sheffield University, UK

Chair of Advisory Committee: Dr. John E. Hurtado

The proposed project is the simulation of a system to search for air vehicles

which have splashed down in the ocean. The system comprises a group of 10+

autonomous underwater vehicles, which cooperate in order to locate the aircraft.

The search algorithm used in this system is based on a quadratic Newton method

and was developed at Sandia National Laboratories. The method has already been

successfully applied to several two dimensional problems at Sandia.

The original 2D algorithm was converted to 3D and tested for robustness in the

presence of sensor error, position error and navigational error. Treating the robots as

point masses, the system was found to be robust for all such errors.

Several real life adaptations were necessary. A round robin communication strat-

egy was implemented on the system to properly simulate the dissemination of infor-

mation throughout the group. Time to convergence is delayed but the system still

functioned adequately.

Once simulations for the point masses had been exhausted, the dynamics of the

robots were included. The robot equations of motion were described using Kane’s

equations. Path-planning was investigated using optimal control methods. The Vari-

ational Calculus approach was attempted using a line search tool ”fsolve” found in

Matlab and a Genetic Algorithm. A dynamic programming technique was also inves-

tigated using a method recently developed by Sandia National Laboratories. The Dy-
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namic Programming with Interior Points (DPIP) method was a very efficient method

for path planning and performed well in the presence of system constraints.

Finally all components of the system were integrated. The motion of the robot

exactly matched the motion of the particles, even when subjected to the same robust-

ness tests carried out on the point masses. This thesis provides exciting developments

for all types of cooperative projects.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

A. Background to Cooperative Systems

Robots and small remote controlled vehicles have been with us since the seventies,

however, over the last decade we have seen an increase in the intelligence and au-

tonomy of such systems. At the same time, it has become increasingly obvious that

systems would be more robust and cost-effective if the desired task was performed by

a group of small, simple robots rather than one large, complex robot. Cooperative

systems have already been proposed for a variety of applications from space experi-

ments [1] to detecting the sources of water pollution [2], and from manufacturing to

managing radioactive waste.

To the author’s knowledge, underwater cooperative systems have not received

as much attention as space, land and air applications. Research is continuing at the

Naval military college; Naomi Leonard at the University of Princeton has covered

a wide range of features associated with Unmanned Underwater Vehicles (UUV’s)

[3] and the University of Hawaii are also investigating the interaction of multiple

robots and the stability of such systems. Underwater groups around the world have

generally focused on large, individual unmanned underwater vehicles (UUV’s). These

systems tend to be multi-functional, capable of both search and retrieval. Moreover,

most current cooperative systems use less than five robots, regardless of the medium

through which, or on which, they travel. This project has used ten and is currently

pushing the envelope in the field of cooperative robotics. The project is headed up

by SANDIA National Labs and the UUV’s are provided by Nekton Research, NC.

The journal model is IEEE Transactions on Automatic Control.
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B. An Underwater Search Strategy

The rationale for this project is to locate aircraft that have splashed-down in the

ocean. Given the cost of today’s military aircraft, and public concern surrounding

the safety of commercial airlines, salvage operations are necessary in the wake of

all aircraft crashes. Impact sites can be pinpointed using GPS technology, but the

tracking device does not work well underwater. The aircraft can move a large distance

from the initial impact area due to the momentum of the aircraft as it hits the water,

the submarine dynamics of the vehicle and underwater currents. Aircraft are located

via onboard pingers, which give off periodic sound signals once the vehicle hits the

water. These typically last up to 30 days and can have a range of up to 1km. Most of

the ocean floor lies between 2km and 6km depth, with the deepest trenches reaching

some 10km. This means that the search must be performed underwater in order to

detect the pinger signals. Most search and rescue operations today are performed by

tethered unmanned vehicles. The robots relay visual and sound information back up

to the surface via the cable. The ship at the surface uses this information to navigate

through the search area.

Since the ship will perform an exhaustive search, this method can be rather time

consuming. To minimize the search time, we propose to to use a team of UUV’s,

able to communicate amongst themselves any signals received from the pinger and to

collaboratively locate the aircraft without aid or interference from the mother ship.

The underwater robot positions may be mapped using floating a positioning device

and transmitted to a screen on board the ship. When the robots have converged, the

robots will float to the surface and a retrieval vessel can begin operation.

The cooperative algorithm will be presented in chapter II, followed by the adap-

tations that were necessary to apply it to this system (chapter III). Much of the
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work done on the Hurtado algorithm involved point masses; we wanted to extend

the simulations to include the dynamics of the UUV. Nekton’s “Ranger” UUV’s are

fully capable of navigation, but are protected via a patent. It was therefore necessary

to investigate strategies ourselves. Chapter IV presents the equations of motion for

the UUV and chapters V through VII examine two main methods of path planning:

optimal control, using variational calculus methods and dynamic programming. A

summary of the work covered and conclusions will be drawn in chapter VIII.
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CHAPTER II

A COOPERATIVE ALGORITHM

This chapter will present the optimization method used by the robots to locate the

aircraft. The cooperative algorithm was developed by John E. Hurtado et al. [4]

at Sandia National Laboratories for a two dimensional system. It is based on a

quasi-Newtonian method, however the cooperative algorithm ensures all individuals

converge on the target, whereas the quasi-Newtonian method uses only one individual

[5]. The cooperative algorithm was extended to three dimensions for the aircraft

search problem and was tested for robustness to several types of error pertinent to

this application: noise in the pinger readings, uncertainty in position updates given

to the robots, and navigational error. The latter would occur if the robots had the

tendency to veer one way or another due to a hardware flaw or because of underwater

currents. The results will be summarized at the end of the chapter.

A. The 2D Algorithm

The robots are initially scattered randomly over the search space. Each robot then

takes a reading of the function to be optimized (e.g. heat, light or sound), and

measures its position relative to the other robots in the group. In order to determine

the position update for robot ‘i ’, a quadratic function is formed thus:

f(xi, yi) = a1 + a2(xi − x) + a3(yi − y) + a4
1

2
(xi − x)2

+a5(xi − x)(yi − y) + a6
1

2
(yi − y)2 (2.1)

where (x, y) is the position of the robot of interest, (xi, yi) is the positions of robot

(i), f(xi, yi) is the sensor readings of robot (i) and ai are unknown constants.
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Expanding equation (2.1)




1 (x1 − xi) (y1 − yi)
1
2
(x1 − xi)

2 (x1 − xi)(y1 − yi)
1
2
(y1 − yi)

2

1 (x2 − xi) (y2 − yi)
1
2
(x2 − xi)

2 (x2 − xi)(y2 − yi)
1
2
(y2 − yi)

2

1 (x3 − xi) (y3 − yi)
1
2
(x3 − xi)

2 (x3 − xi)(y3 − yi)
1
2
(y3 − yi)

2

1 (x4 − xi) (y4 − yi)
1
2
(x4 − xi)

2 (x4 − xi)(y4 − yi)
1
2
(y4 − yi)

2

1 (x5 − xi) (y5 − yi)
1
2
(x5 − xi)

2 (x5 − xi)(y5 − yi)
1
2
(y5 − yi)

2

1 (x6 − xi) (y6 − yi)
1
2
(x6 − xi)

2 (x6 − xi)(y6 − yi)
1
2
(y6 − yi)

2)







a1

a2

a3

a4

a5

a6




=




f(x1, y1, z1)

f(x2, y2, z2)

f(x3, y3, z3)

f(x4, y4, z4)

f(x5, y5, z5)

f(x6, y6, z6)




(2.2)

This time (xi, yi, zi) describes the position of the robot which we want to move. We

can write equation 2.2 more compactly as:

[D]{a} = {f} (2.3)

Since the positions of all the robots and their sensor readings are known, we need to

solve for the unknown coefficients ai.

{a} = [D]−1{f} (2.4)

There are 6 unknown coefficients for the quadratic function, so we require a

minimum of 6 robots in the system. If there are more than 6 robots, the least squares

algorithm is applied, see (2.5a) below:
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[D]{a} = {f} (2.5a)

([D]T [D]){a} = [D]T{f} (2.5b)

{a} = ([D]T [D])−1[D]T{f}. (2.5c)

The robot computes his new position using the following update rule:

{xk+1} = {xk} − [H ]−1{g} (2.6)

where {xk+1} is a vector of the new position,

{xk} is a vector of the current position,

[H ] =




a4 a5

a5 a6


 is the Hessian of the quadratic approximation and

{g} =




a2

a3


 is the gradient of the quadratic approximation.

Now if the Hessian is positive definite, the position update is guaranteed to be in

the direction of negative gradient. This is a highly desirable characteristic if we want

to reach the minimum of the quadratic function. Equally, if the Hessian is negative

definite, the position update is guaranteed to be in the direction of positive gradi-

ent. Thus we are guaranteed to reach any maximum. Problems arise if the Hessian

is indefinite or singular, since the position update requires an infinitely large step.

A simple solution to this problem is to force the Hessian to be positive definite by

reversing the sign of any non-positive eigenvalues. The Hessian is then reconstructed

using spectral decomposition. This is shown in the pseudo code below.
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tol = 0.01;

ifmin(eig(H)) < tol

[v, d] = eig(H);

H = v ∗ abs(d) ∗ v;

end

Since we are interested in the minimum of the function, this reconstruction guar-

antees we find the solution. Once H has been corrected accordingly, we move robot

’i’ and go through the same procedure with the next robot.

B. Converting To 3D

When considering 3D systems we need to expand (2.1) thus:

f(xi, yi, zi) = a1 + a2(x− xi) + a3(y − yi) + a4(z − zi) + a5
1

2
(x− xi)

2 +

a6(x− xi)(y − yi) + a7(x− xi)(z − zi) + a8
1

2
(y − yi)

2 +

a9(y − yi)(z − zi) + a10
1

2
(z − zi)

2. (2.7)

Note this time we have 10 unknown coefficients so we require a system of at least 10

robots in order to solve for them.

{a} = [D]−1{f}

[D] is an nx10 matrix, a is a 10x1 vector, F is nx1. The position update is again

calculated using the update rule:

{xk+1} = {xk} − [H ]−1{g}
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But this time [H ] =




a5 a6 a7

a6 a8 a9

a7 a9 a10




{g} =




a2

a3

a4




We apply the same technique as before to maintain a positive definite Hessian

matrix.

C. System Robustness

A number of studies were undertaken to examine the robustness of the system to

noise. Three main sources of error were identified:

• Noise in the sensor reading - distorts readings and therefore the approximation

of the objective function.

• Error in the position updates - A robot may think it is at position x but is

in fact at x + ∆x. One position error will affect the update positions of all

the robots since the readings will be misplaced, which in turn, will distort the

quadratic approximation of the objective function.

• Navigational/heading error - Due to hardware fault or underwater currents, the

robot may not arrive at the update position exactly. If the system can identify

the position of each robot exactly, the heading error is harmless. The robot will

be correctly located at the next update.

As will be seen, the algorithm is robust to all the errors. Position error is the

most disruptive of the three.

All simulations were performed in a pool 50×50×8 with a team of 10 robots. Each

of the simulations was run for 50s starting in a ring of radius 15m around the source.

The light source is assumed to be a fake plume i.e. the light dissipates according to
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the relation 1/r2. Two starting configurations were considered. First, the robots were

all placed in random positions up to a meter around the point (25, 25, 6) as shown

in Fig. 1. This will be called the “corner” configuration. Secondly, the robots were

placed in a ring 15m radius from the source, see Fig. 2, which will be named the

”surround” configuration. For both configurations, the effect of each error will be

considered individually followed by the effect of different combinations of errors.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15
Overhead View, Robot movement is x to o

x

y

−15 −10 −5 0 5 10 15
0

1

2

3

4

5

6

7
Side View, Robot movement is x to o

y

z

Fig. 1. Surround configuration

1. Corner Configuration

The corner configuration simulates a clustered initial configuration. The robots can-

not move more than 1m at each update and the simulation terminates when all 12

robots are within 5m radius of the light source, which is placed at (0, 0,−6). For each

case presented below, 20 simulations were run and the average number of iterations
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x
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Fig. 2. Corner configuration

recorded. This value will be used to determine the performance of the system.

a. Single Errors

Table I and Fig. 3 show the effects of sensor noise; Table II and Fig. 4 show the effects

of navigational error, Table III and Fig. 5 show the effects of position error.
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Table I. Effects of sensor noise for corner configuration

Sensor Noise Average No.

updates

±1% 47

±3% 50

±5% 52

±10% 59

Table II. Effects of heading error for corner configuration

Heading Error Average No.

updates

5◦ 42

10◦ 43

15◦ 45

20◦ 49

25◦ 53

30◦ 56
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Fig. 3. 10% sensor noise

Table III. Effects of position error for corner configuration

Position Error Average No.

updates

±0.2m 47

±0.6m 52

±1.0m 56

±1.5m 73

±2.0m 129
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Fig. 4. 30om heading error
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Fig. 5. Effects of position error
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With all three errors, the number of updates needed for convergence increased as

the error increased. The position error caused the longest delay, especially as the error

exceeded the maximum update length (1m). If we consider 1m to be the maximum

position error, all three cases produce similar results.

b. Combining 2 Errors

It is unlikely that there will be just one error present. Table IV investigates effects

of different combinations of sensor noise and heading error, Table V presents combi-

nations of position and heading error and Table VI presents combinations of sensor

noise and position error.

Table IV. Effects of combined sensor noise and heading error

Sensor Noise ±1% ±3% ±5% ±10%

Heading Error

10◦ 52 54 55 65

20◦ 57 57 61 66

30◦ 63 65 69 75

As a rule, the greater the total error, the slower the convergence. It appears that

the combination of sensor noise with any other disturbance causes the greatest delay.

This is most clearly seen in Table VI. The sensor noise also causes a large variation

about the mean number of updates. This is also noticeable in the noise/position error

Table VI, particularly when the position error is larger than the maximum step i.e.

for errors above 1m.
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Table V. Effects of combined heading and position error

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Heading Error

10◦ 43 46 46 52 53

20◦ 48 48 51 59 63

30◦ 55 58 59 64 67

Table VI. Effects of combined sensor noise and position error

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Sensor noise

±1% 46 52 60 75 142

±3% 50 55 59 79 112

±5% 51 57 62 79 147

±10% 60 59 65 77 138
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c. Combining All Errors

Finally all the errors were combined to create the worst-case scenario. For this sec-

tion, I have added the standard deviations from the mean number of iterations-to-

convergence in order to demonstrate how noise error introduces uncertainty in time

to convergence. The tables show position error vs heading error for different amounts

of noise in the sensor readings.

Table VII. Effects of all errors: 1% sensor noise

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Heading Error mean std mean std mean std mean std mean std

10◦ 47 5.3 48 5.3 49 2.8 49 6.3 48 5.7

20◦ 54 7.6 53 6.0 54 7.1 54 6.1 56 5.8

30◦ 60 4.1 59 7.2 63 8.1 63 9.2 61 6.1

Table VIII. Effects of all errors: 3% sensor noise

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Heading Error mean std mean std mean std mean std mean std

10◦ 53 5.3 53 6.9 52 3.4 51 7.8 54 8.9

20◦ 58 11.7 58 8.2 60 9.2 60 8.0 54 6.7

30◦ 66 8.6 64 7.9 64 7.1 64 10.4 61 6.8

As we scan Tables VII through X, we note that there is no correlation between

the increase in position error and the number of updates. The result is surprising
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Table IX. Effects of all errors: 5% sensor noise

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Heading Error mean std mean std mean std mean std mean std

10◦ 57 12.9 55 9.6 56 8.9 55 9.1 54 11.6

20◦ 60 7.9 58 7.6 62 10.4 61 8.1 59 6.9

30◦ 61 7.8 66 14.4 64 10.5 69 12.3 65 8.8

Table X. Effects of all errors: 10% sensor noise

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Heading Error mean std mean std mean std mean std mean std

10◦ 63 12.1 61 10.6 64 16 64 17.5 62 10.1

20◦ 72 11.6 64 9.7 71 17 68 10.9 64 11.5

30◦ 73 13 76 19.7 66 10.3 68 10.7 77 14.6
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even though the relationship between heading and position error was weaker than the

other two combinations. Even with maximum sensor noise see Table X, the mean

number of updates is significantly lower than previously seen with just sensor noise

and position error. The mean number of updates increases both with heading error

and with sensor noise.

The standard deviation does indeed increase as the sensor noise goes up, however,

there is no correlation with either the position error or the heading error.

2. Surround Configuration

The surround configuration simulates a more scattered initial configuration. Conver-

gence is generally faster using this set-up and the system is more robust to noise.

This is because the robots can capture more of the objective function and so produce

a more accurate approximation. As before, the robots cannot move more than 1m at

each update and the simulation terminates when all 12 robots are within 5m radius

of the light source. The light source is placed at (0, 0,−6). For each case presented

below, 20 simulations were run and the average number of iterations recorded. This

value will be used to determine the performance of the system.

a. Single Errors

The effect of each error was considered separately. Tables XI to XIII show that the

average number of updates is significantly lower for the surround configuration than

for the corner configuration. In each case, an increase in error still causes an increase

in the number of required updates, but it is much less noticeable than in the previous

simulations.
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Table XI. Effects of sensor noise for corner configuration

Sensor Noise Average

No.updates

±1% 19

±3% 21

±5% 23

±10% 23

Table XII. Effects of position error for corner configuration

Position Error Average

No.updates

±0.2m 18

±0.6m 21

±1.0m 25

±1.5m 35

±2.0m 84



21

Table XIII. Effects of heading error for corner configuration

Heading Error Average

No.updates

5◦ 16

10◦ 16

15◦ 17

20◦ 17

25◦ 18

30◦ 18

The heading error has very little effect on the system. The robots generally

converge faster than with the other two errors and there is little variation in number

of updates as the error is increased. The position error, again, has a more pronounced

effect than the heading error and the sensor noise for single errors.

b. Two Errors Combined

The errors were combined in the same way as before. Table XIV demonstrates the

effects of heading and position error, Table XV the effects of sensor noise and heading

error and Table XVI the effects sensor noise and heading error.

The relationship between the error and the mean number of updates is very

weak for the cases involving heading error. This is extremely surprising in the case of

heading and positioning error as it would seem that the position error would aggravate

the effects of the drift. As with the corner configuration, the position and sensor noise

combination produced the most dramatic effects.
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Table XIV. Effects of combined heading and position error

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Heading Error

10◦ 17 17 17 17 17

20◦ 18 17 18 17 18

30◦ 19 18 18 18 19

Table XV. Effects of combined sensor noise and heading error

Sensor Noise ±1% ±3% ±5% ±10%

Heading Error

10◦ 18 19 20 21

20◦ 18 19 21 23

30◦ 21 21 22 23

Table XVI. Effects of combined sensor noise and position error

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Sensor noise

±1% 17 21 26 36 82

±3% 18 20 25 35 104

±5% 20 22 25 36 115

±10% 21 22 27 39 110
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c. Combining All Errors

Again, all the errors were combined to create the worst-case scenario. Fig.s XVII

through XVIII show the effects of position and heading error for a certain amount of

noise. The standard deviations from the mean number of iterations-to-convergence

features in order to show the noise introducing uncertainty in time to convergence.

Table XVII. Effects of all errors: 1% sensor noise

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Heading Error mean std mean std mean std mean std mean std

10◦ 19 2.8 18 2.8 17 1.7 18 2.6 18 2.6

20◦ 19 2.1 18 2.3 18 3.1 19 2.4 18 2.4

30◦ 20 2.9 20 2.6 20 2.8 19 2.6 19 2.8

Table XVIII. Effects of all errors: 3% sensor noise

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Heading Error mean std mean std mean std mean std mean std

10◦ 19 2.5 19 2.8 19 2.7 20 2.7 19 2.7

20◦ 19 2.5 20 2.9 18 2.7 19 2.6 20 3.2

30◦ 21 2.8 22 2.7 20 2.8 20 2.6 21 3.2

The effects of the combined system on the surround configuration are similar to

that on the corner configuration. They are generally less noticeable due to the wide

spread of the robots in this configuration and the rapid convergence characteristics
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Table XIX. Effects of all errors: 5% sensor noise

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Heading Error mean std mean std mean std mean std mean std

10◦ 20 3.3 20 3.8 19 2.7 19 3.4 21 2.7

20◦ 19 3.2 20 2.3 21 3.2 20 3.1 21 2.4

30◦ 21 2.8 21 2.0 21 3.0 21 3.0 21 3.0

Table XX. Effects of all errors: 10% sensor noise

Position Error ±0.2m ±0.6m ±1.0m ±1.5m ±2.0m

Heading Error mean std mean std mean std mean std mean std

10◦ 22 5.1 23 4.0 21 2.9 23 3.9 21 3.8

20◦ 22 3.5 23 6.5 22 4.4 21 4.3 21 4.4

30◦ 23 3.3 24 4.4 23 3.5 23 3.2 23 3.4
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which arise from it. To summarize:

• The mean update is dependent on the sensor noise and heading error but not

position noise.

• The mean update is kept below 25. A significant improvement on the combi-

nation of sensor noise and position error.

• The variation about the mean increases as the sensor noise increases.

Generally, the corner configuration is more robust than the surround configura-

tion. The larger disparity between readings taken by each robot means that gradient

information is less likely to be perturbed by noise and/or errors. It also means the

robots can quickly find the local minimum. It is therefore recommendable to spread

the robot cluster as wide as is feasible within constraints imposed by the search area

and the communications system.
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CHAPTER III

THE REAL SYSTEM

A. The Robots

The UUV’s used to test the system were Nekton’s Ranger/UMAP UUV’s, shown in

Fig. 6. The robots weigh 3.5 Kg, (1kg in the water) and have dimensions: 91 cm

long, 9 cm diameter. The robot moves by spinning the propeller at the back of the

vehicle. The propeller is shielded from the metal casing seen at the back of the UUV.

The sensors are built into the nose of the robot, and are protected by the wire cage

shown.

B. Locating the Source

To test the algorithm, a light source was used. All light dissipates according to

the relation L ∝ 1
r2 however the cooperative algorithm models the light using a

quadratic approximation; this discrepancy produces singularities. To accommodate

the algorithm, the inverse quadratic function is inverted before updating the robot

positions.

G(x, y, z) =
1

r2
(3.1a)

F (x, y, z) = − 1

G
. (3.1b)

Both functions have a minimum at zero, so the robots will still converge at the correct

location.
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Fig. 6. Nekton’s Ranger/Underwater Multi-Agent Platform (UMAP)

C. Sensor Issues

As we have seen, the light emitted by the light source decreases at a rate of 1
r2 ,

however, as Fig. 7 shows, the light seen by the robot is actually

F =
| sin γ|

r2
(3.2)

γ = arctan

√
x2 + y2

z
(3.3)

Fortunately, for small distances from the light source, small angle approximations can

be employed to justify using 1
r2 . The algorithm works well for distances up to 40m.

The measured light also depends on the pitch of the robot relative to the light

source. Consider robots 1 and 2 in Fig. 8. Although both robots are in the vicinity

of the light source, robot 2 will record a much stronger signal than robot 1. This

will make it much harder for the robots to find the source. It was assumed that the

robots would travel at a constant depth in order to negate these effects.
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D. Exhaustive Search

In the introduction, it was mentioned that the pinger is limited to a 1 km range [6].

While this covers a large area, it is likely that the robots will not hear it initially (see

Fig. 9)

1 km 
radius Light source

Fig. 9. The robot is out of range and so cannot locate the pinger or use the cooperative

algorithm

The search therefore requires two stages. The first involves a simple exhaustive

search as depicted in Fig. 10. Once one or more of the robots have a reading, the

robots switch to the cooperative algorithm. The manner in which the cooperative

algorithm is used is slightly different to the way explained before because the robots

do not have real time information about the readings of the other robots or their

locations. The next section will explain it more fully.
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1 km

radius

Fig. 10. Exhaustive search configuration. The Rangers are dropped to a suitable depth

and then made to swim in straight lines until they locate the pinger
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E. Communications

The communications strategy is based on a seven second round robin method. The

protocol is shown graphically in Fig. 11

Robot 1 Robot 4Robot 2 Robot 3 Robot 6Robot 5

2s 5s

Position  updates

Broadcasting Robots

2s 2s2s2s 2s5s5s5s5s 5s

Fig. 11. Round robin communications for AUV team

During the first 2 seconds all the robots receive their own current positions from

an external positioning device. For the next 5 seconds, the robots each collect light

readings at 5Hz frequency. Any positive data readings are stored in memory along

with the position at which the data was found. The position is calculated using dead-

reckoning (assuming travel is in a straight line at constant speed). At the end of the

7 second cycle, one of the robots broadcasts any useful information to the rest of the

robots. The other robots check incoming data for positive light data and store it in

memory if it appears.

Each of the robots can broadcast, but only in turn. Once the last robot has

broadcast his information, robot 1 is allowed to broadcast again. This means that

any robot can only broadcast every 7 N seconds, for an N robot system. This method

is certainly the simplest and most robust form of communication, however it does
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incur considerable delays. A looser protocol may be implemented to give the system

a faster response time, but this is beyond the scope of the project.

With the system implemented, broadcasting robots are restricted to sending 4

pieces of data. These are typically the 4 best sensor readings in memory. Each

robot runs the cooperative algorithm on board. However, instead of obtaining its

information from the 10 robots in real time, it uses 10 data points stored in memory.

These maybe all from the same robot provided the readings are sufficiently different

for the cooperative algorithm to solve the simultaneous equations. Thus, a robot

swimming straight through the light source can pick up 10 readings in 2 seconds and

switch from exhaustive search to cooperative search immediately. The robots that do

not pass through the light source or that pass through the periphery of the source

rely on information communicated by the other robots in order to obtain the 10+

data points needed to run the algorithm. Since any robot can only broadcast 4 pieces

of information at a time, the fewer robots passing through the light source, the longer

it takes before the other robots can start to converge on the target area.

Fig. 12 through Fig. 14 show the group in action.
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Fig. 12. No robot has detected a signal
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Fig. 13. Robots 4,5 and 6 have each detected sufficient information to switch to coop-

erative search. The other robots have neither detected nor received data
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Fig. 14. All robots are converging on target. Robots 4, 5 and 6 use their own data to

perform the cooperative search, the others use received data
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1. Memory

For simplicity of use, the memory was divided into 3 areas:

• Mylightdata (4x4) - stores best light readings and their positions for broadcast-

ing

• Optdata (20x4) - stores data for cooperative algorithm

• Scratch (4x4) - stores incoming data before sorting occurs

Each memory has ’r’ rows of information, which each contain one sensor reading

and the (x,y,z) co-ordinates where the reading was taken. During exhaustive search,

the robot places any positive light readings in the next available row in Optdata. If

there are 10 or more filled rows in Optdata, the robot switches from exhaustive search

to cooperative search and uses the update provided by the quadratic method to move.

Optdata may hold more than 10 readings, the algorithm increases in effectiveness as

the number of points used increases. This has to be weighed against computational

time. Once Optdata is full, it will only accept data that improves on data already

stored there.

The best 4 light readings taken by the robot are kept in Mylightdata ready for

broadcast. When broadcasting, the data in Mylightdata is moved to the Scratch and

broadcast to the rest of the robots. All data in Mylightdata is then wiped to avoid

broadcasting the same data twice. The receiving robots check the Scratch for positive

readings and paste these into the next available row in Optdata. Optdata will not

accept any repeat readings.
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F. Summary

• In converting the 3D cooperative algorithm to better simulate the robot system,

there are issues concerning the type of source used and the positioning of the

light sensor on the UUV.

• The Nekton Ranger UUV has been introduced; its equations of motion will be

presented in the next section.

• I have explained the need for a two search strategies: first an exhaustive search

in order to locate the light or noise and then the cooperative search to locate

the source of the light/the pinger.

• Finally, the communications set-up has been laid out and discussed.
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CHAPTER IV

EQUATIONS OF MOTION

Inertial frame

2b−

3b

1b

Body frame

1n̂

3n̂

2n̂ Thrust

Fig. 15. Robot with inertial and body axes

Consider the robot in Fig. 15. It is described using the states:

q = {x, y, z, α, β}T (4.1)

x,y and z are the positions of the robot in the body frame. α is the heading or yaw

angle (positive left) and β is the pitch angle (positive up). The robot is bottom heavy

and therefore cannot roll. The total velocity of the vehicle in the inertial axis is

vcm = ẋ n̂1 + ẏ n̂2 + ẋ n̂3 (4.2)
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The cosine matrix which converts between the inertial and body frames is formed

by a 3-2 Euler transformation in equation 4.3

{b} =




cos β 0 − sin β

0 1 0

sin β 0 cos β







cos α sin α 0

− sin α cos α 0

0 0 1



{n} (4.3)

{b} =




cos β cos α cos β sin α − sin β

− sin α cos α 0

sin β cos α sin β sin α cos β



{n} (4.4)

{n} =




cos β cos α − sin α sin β cos α

cos β sin α cos α sin β sin α

− sin β 0 cos β



{b} (4.5)

Using (4.5) the velocity in the inertial frame is

vcm = ẋ [(cos β cos α) b̂1 − (sin α) b̂2 + (sin β cos α) b̂3]

+ ẏ [(cos β sin α )b̂1 + (cos α) b̂2 + (sin β sin α) b̂3] (4.6)

+ ż [(− sin β) b̂1 + (cos β) b̂3]

Collecting terms

vcm = (ẋ cos β cos α + ẏ cos β sin α− ż sin β) b̂1

+ (−ẋ sin α + ẏ cos α) b̂2 (4.7)

+ (ẋ sin β cos α + ẏ sin β sin α + ż cos β) b̂3
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A. Constraints

The position of the propeller at the tail of the UAV means that all motion will be

through the nose, i.e. along the b̂1 axis. All motion in the other axes is zero. We

therefore have nonholonomic constraints:

0 = −ẋ sin α + ẏ cos α (4.8a)

0 = ẋ sin β cos α + ẏ sin β sin α + ż cos β (4.8b)

Nonholonomic constraints are constraints expressed in terms of velocities (Pfaffian

form), which cannot be integrated to give configuration constraints [7]. Holonomic

constraints can be written as both configuration and velocity constraints.

B. Generalized Speeds

When writing equations of motion we choose some generalized coordinates which

will express the system in the simplest form. For instance, expressing a pendulum

in terms of its length L and rotation angle θ give cleaner expressions than if (x, y)

coordinates were used. Generalized velocities are formed by differentiating generalized

co-ordinates with respect to time. It is always possible to get back the generalized

coordinates by integrating the generalized velocities.

Generalized speeds are formed from non-generalized coordinates. In a conven-

tional (x, y, z) inertial coordinate system they are often angular velocity components

or combinations of generalized velocities (e.g. total velocity). Because they do not

have a corresponding generalized coordinate, generalized speeds are similar to non-

holonomic constraints. In both cases we only have meaningful expressions at the

velocity level.
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u1

α&

β&

Fig. 16. Partial velocities for AUV

We define 3 generalized speeds for the AUV. These are shown in Fig. 16

u1 = α̇ (4.9a)

u2 = β̇ (4.9b)

u3 = ẋ cos β cos α + ẏ cos β sin α− ż sin β (4.9c)

Next,we define some partial velocities. These can be viewed as new velocity unit

vectors positioned in direction of the generalized speeds

∂vcm

∂u1

= 0 (4.10a)

∂vcm

∂u2

= 0 (4.10b)

∂vcm

∂u1

= b̂3 (4.10c)

The angular velocity of the vehicle is obtained from Fig. 17 and Fig. 18 obtaining

ω = −α̇ sin β b̂1 + β̇ b̂2 + α̇ cos β b̂3 (4.11)

ω = −u1 sin β b̂1 + u2 b̂2 + u1 cos β b̂3 (4.12)
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1n̂

2n̂

3n̂

1̂e
2ê

3ê

α

α&

Fig. 17. 3 rotation

β

1ê

2ê

3ê

1̂b

2b̂

3̂bβ& )cos( βα&

)cos( βα&−

Fig. 18. 2 rotation

And the partial angular velocities. Again, these can be viewed as the directions of

the unit vectors in the direction of the generalized speeds.

∂ω

∂u1

= − sin β b̂1 + cos βb̂3 (4.13a)

∂ω

∂u2

= b̂2 (4.13b)

∂ω

∂u3

= 0 (4.13c)

The thrust force can be broken down into 3 body axis components

F = f1 b̂1 + f2 b̂2 + f3 b̂3 (4.14)

where F is the total force and fi are the force components

The moment about the center of mass is given by

M = −L b̂1 × F

= −L b̂1 ×
(
f1 b̂1 + f2 b̂2 + f3 b̂3

)
(4.15)

= −f2L b̂3 + f3L b̂1
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To get the forces and moments in the directions denoted by the partial velocities, we

take the dot product of the vectors, thus:

∂vcm

∂ui

· F +
∂ω

∂ui

·M (4.16)

so

∂vcm

∂u1

· F +
∂ω

∂u1

·M = 0 · F − f2L cos β (4.17a)

∂vcm

∂u2

· F +
∂ω

∂u2

·M = 0 · F + f3L (4.17b)

∂vcm

∂u3

· F +
∂ω

∂u3

·M = f1 + 0 ·M (4.17c)

Finally, we want to balance the forces with the kinetics of the robot. From the

transport theorem

acm = v̇cm

= u̇3b̂1 + ω × u3b̂1

= u̇3b̂1 + u1u3 cos βb̂2 − u2u3b̂3 (4.18)

The angular momentum of the system is

Hcm =




Ia 0 0

0 It 0

0 0 It







ω1

ω2

ω3




(4.19)

Applying the transport theorem again

Ḣcm = Iω̇ + ω × Iω (4.20)
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Ḣcm =




Ia(−u̇1 sin β − u1u2 cos β)

Itu̇2

It(u̇1 cos β − u1u2 sin β)




+




0

(Ia − It)(−u2
1 sin β cos β)

(It − Ia)(−u1u2 sin β)




(4.21)

=




Ia(−u̇1 sin β − u1u2 cos β)

Itu̇2 + (Ia − It)(−u2
1 sin β cos β)

It(u̇1 cos β − u1u2 sin β) + (It − Ia)(−u1u2 sin β)




(4.22)

Express the left hand side of the kinetic equations of motion in the correct unit

directions

LHS =
∂vcm

∂ui

·macm +
∂ω

∂ui

· Ḣcm (4.23)

Expanding

LHS1 = 0 ·macm +

(
− sin β 0 cos β

)
·




Ḣ1

Ḣ2

Ḣ3




= sin β Ia(−u̇1 sin β − u1u2 cos β)

+ cos β It(u̇1 cos β − u1u2 sin β)

+ cos β (It − Ia)(−u1u2 sin β)

= u̇1 (Ia sin2 β + It cos2 β)

+2 sin β cos β u1 u2 (Ia − It) (4.24)
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LHS2 = 0 ·macm + b̂2 ·




Ḣ1

Ḣ2

Ḣ3




= Itu̇2 + (Ia − It)(−u2
1) sin β cos β (4.25)

LHS3 = b̂1 ·macm + 0 · Ḣcm

= mu̇3 (4.26)

Combining equation 4.22 with equation 4.24 through equation 4.26 we obtain kinetic

equations of motion for the UUV

−f2L cos β = u̇1 (Ia sin2 β + It cos2 β)

+2 sin β cos β u1 u2 (Ia − It) (4.27a)

f3L = Itu̇2 + (Ia − It)(−u2
1) sin β cos β (4.27b)

f1 = mu̇3 (4.27c)

OR

f1 = mu̇3 (4.28a)

f2 =
−u̇1(Ia sin2 β + It cos2 β) + 2 sin β cos β u1 u2 (Ia − It)

L cos β

f3 =
Itu̇2 + (Ia − It)(−u2

1) sin β cos β

L
(4.28b)

The actual controls: Thrust, vertical deflection, ψ and horizontal deflection φ can be

obtained by manipulating the force components (see Fig. 19).
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Inertial frame

Body frame

1n̂

3n̂

2n̂ Thrust

2̂f−

1̂f

3̂f

φ

ψ φ

Force frame

ψ

1̂b

2b̂−

3̂b

Fig. 19. Converting from body axis to force axis

Note that

f1 = Th cos φ cos ψ (4.29a)

f2 = Th sin φ cos ψ (4.29b)

f3 = −Th sin ψ (4.29c)

Thus

ψ = arctan

(
f2

f1

)
(4.30a)

Th =
−f3

sin ψ
(4.30b)

φ = arccos

(
f2

f3

)
(4.30c)
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CHAPTER V

OPTIMAL CONTROL

A. Introduction

This chapter gives a detailed introduction to optimal control and its application to

the robots used in the cooperative system. Section A deals with the basic principles

underlying all optimal control methods. Section B looks at variational methods and

the infamous two point boundary value problem. For those familiar with these con-

cepts, the author suggests turning to section C where the techniques mentioned in

the first two sections are applied to the robot.

Optimal control is the search for a control input sequence which will deliver

the best performance given certain system constraints. The three main measures of

performance are:

• control - minimize the fuel consumption or actuator effort

• time - minimize the time needed to perform the task

• states - maximize the distance travelled in a given time

Taking the position updates of the robots as an example. The cooperative al-

gorithm gives us the current and desired positions of each robot. We would like the

robots to move between these points minimizing the control effort so as to maximize

the search time. For search efficiency, the position update must occur within a certain

time, and to avoid too many collisions, we would prefer to use the shortest path.

There are two main types of optimal control: Variational Control, which is based

on the calculus of variations, and Dynamic Programming, which discretizes the search

area in order to find the most effective path. I applied two search methods to the Vari-
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ational Control problem and then used Dynamic Programming with Interior Points

(DPIP), a method recently developed by Dohrmann and Robinett [8] at Sandia Na-

tional Laboratories. The methods will be compared and contrasted in the conclusions.

The first step in any optimization problem is to form the performance index, a

scalar formed from an expression containing the variables we would like to minimize.

To simplify matters, we require all the variables to be greater than zero. An obvious

solution to this problem is to square all the variables so that they form quadratic

functions. A typical performance index is shown below:

J =
1

2
x(tf )

T Sx(tf ) +
1

2

∫ tf

t0

[
x(t)T Q x(t) + u(t)T R u(t)

]
dt. (5.1)

where x(t) ∈ Rn is a vector of the states, x(tf ) ∈ Rn is a vector of the final states,

u(t) ∈ Rm is a vector of the control inputs, S and Q are square, positive semi-definite

matrices and R is a square, positive definite matrix. J is a functional, that is to say,

a function of a function.

Usually we define a general cost function L(x(t),u(t)), which simplifies the per-

formance index

L(x(t), u(t)) =
[
x(t)T Qx(t) + u(t)T Ru(t)

]
dt (5.2)

J =
1

2

∫ tf

t0

L(x(t), u(t))dt (5.3)

L(x(t), u(t)) is problem dependent and so will change according to the criteria

for optimal performance. For minimum time problems,

L = tf (5.4)

for minimum fuel problems

L = |uk| (5.5)
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and for minimum energy problems, we return to the more familiar

L(x(t), u(t)) =
[
x(t)T Qx(t) + u(t)T Ru(t)

]
dt (5.6)

In one dimensional optimization, we locate the local extrema by taking the deriva-

tive of the function and finding the point where it goes to zero. Recall, the derivative

is the slope of the function and that at extrema the slope is zero. More informa-

tion on the type of extremum can be found by taking the second derivative. If

∂2J∂x2 > 0 extremum is minimum

< 0 extremum is maximum

≥ 0 or ≤ 0 extremum is a saddle-point

indefinite we require further derivatives

to be able to conclude anything.

In the same way, we can determine the minimum of a functional by taking variations

of J with respect to each variable and setting it to zero. The calculus of variations

will be discussed in the next section.

The problem constraints may be included in the minimization procedure by aug-

menting the performance index.

Ja = Φ(x(tf ), tf ) +
1

2

∫ tf

t0

(
L(x(t), u(t)) + λT [f(x(t), u(t), t)− ẋ(t)]

)
dt. (5.7)

where f(x(t), u(t), t) represents the time-varying system constraints (typically

the system equations of motion) and λ is a vector of Lagrange multipliers. We apply

one Lagrange multiplier to each constraint. These allow us to decouple the states

and the controls, unfortunately since the Lagrange multipliers are unknown, they

add complication. Φ represents states we want minimized at the final time.
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A useful tool in optimal control is the Hamiltonian function.

H = L(x(t), u(t)) + λT f(x(t), u(t)) (5.8)

Note it is similar to the integral term in equation (5.7) but there are no derivative

terms (ẋ). Putting this back in to the equation for the performance index, we arrive

at

Ja = Φ(x(tf ), tf ) +
1

2

∫ tf

t0

(
H(x(t), u(t))− λT ẋ(t)

)
dt. (5.9)

B. Variational Control

In the last section, we showed that the first derivative of a function would indicate

the presence of local extrema. We would like to apply the same method to the

performance index. Now, J = J(x(t), u(t), t) and x(t), u(t) are continuous functions

of t, thus dx and dt are not independent. In mathematics, we define a variation

tf

t

x

x0

δx

Fig. 20. An optimal path, shown as a thick black line, with an instantaneous variation

δx, shown as a dotted line.
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tf

t

x

x0

δx dx(tf)

� f dttx )(&

tf + dt

dt

Fig. 21. An optimal path, shown with a time varying variation

which describes a small, instantaneous change in x(t). This is seen in Fig. 20. Fig. 21

demonstrates the more general case. Again, the thick black line is the optimal path

and the dotted line is a path deviating from it. Noting that the last section may be

approximated by the slope at tf ,

dxf = δx(t∗f ) + ẋ(tf )dtf + O(2) (5.10a)

dxf = δx(t∗f ) +
[
ẋ(t∗f ) + δẋ(tf )

]
dtf + O(2) (5.10b)

dxf = δx(t∗f ) + ẋ(t∗f )dtf + O(2) (5.10c)

This is a very useful result, as we will see later.

Now for the most general problem, we need to impose constraints at the final

time. These constraints (ψ(x(tf ), tf )) may constitute a certain point, area or tra-

jectory, on which the system must terminate. Like their time-varying counterparts,

each of these constraints also has a Lagrange multiplier associated with it. These final

time constraints should not be confused with the final weighting function Φ(x(tf ), tf ).

ψ(x(tf ), tf ) must be set to zero and is therefore a hard constraint, whereas Φ, on the
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other hand, need only be minimized.

Consider the case of a space vehicle visiting Mars, the hard constraint is that it

arrives on the Martian surface; a soft constraint may be that it land near a particular

canyon. The distance from the canyon is something we would like to minimize, but

it is not of great importance to the overall success of the trip. On the other hand,

if the spacecraft misses the planet altogether, the mission will have been a complete

waste of time.

All the constraints considered so far have been equality constraints. Inequality

constraints may also be included by expressing them as less than zero

x ≥ 2 becomes 0 ≥ 2− x

u < 3x + 6 becomes 0 > u− 3x− 6

The inequality constraints are then appended to the performance index with

their own set of Lagrange multipliers.

Ja = Φ(x(tf ), tf ) + νT
EψE(x(tf ), tf ) + νT

I ψI(x(tf ), tf ) (5.11)

+
1

2

∫ tf

t0

(
H(x(t), u(t))− λT ẋ(t)

)
dt. (5.12)

In order to take the variation of the performance index, we will need Leibniz’s

rule for functionals. For a given functional

J(x) =

∫ tf

t0

h(x(t), t)dt (5.13)

dJ = h(x(tf ), tf )dtf − h(x(t0), t0)dt0 +

∫ tf

t0

[
hT

x (x(t), t) δx
]
dt (5.14)

we define hx = ∂h
∂x

. Thus, applying Liebniz’s rule to the performance index and using
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the same short hand notation

dJ = (Φx + ψT
x ν)T dx|tf + (Φt + ψT

tf
ν)dt|tf

+ ψtf |T dν + (H − λT ẋ)dt|tf − (H − λT ẋ)dt|t0
+

∫ tf

t0

[
HT

x δx + HT
u δu− λT δẋ + (Hλ − ẋ)T δλ

]
dt (5.15)

To get rid of the variation of ẋ, we integrate by parts

∫ tf

t0

−λT δẋ = −λT δx|tf + λT δx|t0 +

∫ tf

t0

λ̇T δx dt (5.16)

From 5.10c

λT δx(tf ) = λT dx|tf − λT ẋ(tf )dt|tf (5.17a)

λT δx(t0) = λT dx|t0 − λT ẋ(tf )dt|t0 (5.17b)

Substitute (5.16) and (5.17b) into (5.15)

dJ = (Φx + ψT
x ν − λ)T dx|tf + (Φt + ψT

t ν + H − λT ẋ + λT ẋ) dt|tf
+ ψT |tf dν + (H − λT ẋ + λT ẋ) dt|t0 + λT dx|t0 − (H − λT ẋ) dt|t0
+

∫ tf

t0

[
(HT

x + λ̇)δx + HT
u δu + (Hλ − ẋ)T δλ

]
dt (5.18)

At the critical point dJ = 0, therefore all terms must either cancel each other out or

be set to zero. Consider the terms within the integral, the variations δx, δu, δλ are

all arbitrary so the necessary conditions at the critical point are:

ẋ = ∂H
∂λ

= f(x(t), u(t)) ≥ t0 State Equation

λ̇ = ∂H
∂x

=
(

∂f
∂x

)T
λ + ∂L

∂x
t ≤ tf Costate Equation

0 = ∂H
∂u(t)

=
(

∂f
∂u

)T
λ + ∂L

∂u
Stationarity Condition

The state equation simply returns the equations of motion. The Costate equation

allows us to calculate the Lagrange multipliers. The state and costate equations are
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coupled differential equations. From the boundary conditions we have an initial value

for our states, thus x(t) can be determined from the initial conditions. On the other

hand, λ(tf ) can be found from the boundary conditions at the final time, so the costate

equation is a backwards integration. These equations are difficult to solve because

of the need to integrate in different directions. This is the two point boundary value

problem. The third equation is known as the optimality or stationarity condition. It

allows us to determine the control at the critical point.

The boundary conditions result from setting the boundary terms to zero.

From (5.18) (ignoring the inequality constraints)

x(t0) specified (5.19a)

(φx + ψT
x ν − λ)T )|tf dx(tf ) + (φt + ψT

t ν + H)|tf dtf = 0 (5.19b)

The initial time and states are already known so dt(0) = dx(t0) = 0. Since the final

states and final time are arbitrary, the terms in the brackets must go to zero.

φx + ψT
x ν − λ = 0 (5.20a)

φt + ψT
t ν + H = 0 (5.20b)

However for fixed final states, dx(tf ) = 0 and the boundary conditions reduce to

(φt + ψT
t ν + H)|tf dtf = 0 (5.21)

Likewise, if the final time is fixed, dtf = 0 and the boundary conditions become

(φx + ψT
x ν − λ)T )|tf dx(tf ) = 0 (5.22)

With these equations in hand, it is now possible to tackle the path planning problem

for the UUV’s.
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C. Robot Path Planning

To set up the problem, we require the equations of motion, the performance index

and the system boundary conditions.

1. Time-varying Constraints

We will use the Gibbs-Appell equations of motion presented in the last chapter to

simulate the system. The system is under-actuated; there are eight equations and

only three control inputs: Thrust, φ and ψ. The kinetic equations u̇1 = α̈, u̇2 = β̈,

u̇3 can be obtained by differentiating the kinematic equations. We therefore concern

ourselves with the kinematic equations.

α̇ = u1 (5.23a)

β̇ = u2 (5.23b)

ẋ = u3 cos α cos β (5.23c)

ẏ = u3 sin α cos β (5.23d)

ż = −u3 sin β (5.23e)

This reduces the problem to five equations and three inputs. The five kinematic

equations form the time varying constraints and have five Lagrange multipliers asso-

ciated with them.The force components F1, F2, F3 can be computed from the kinetic

equations and in turn can be manipulated to give the actual input. Therefore, for

the purposes of the optimal control problem, the generalized speeds u1, u2, u3 may be

considered as the inputs to the system.



55

2. Cost Function

Fuel is limited, since the robots are autonomous, however the energy of the states is

not a great concern with this system. Thus, the cost is represented by:

L(u) = u(t)T Ru(t) (5.24)

where u is a (3x1) vector of the generalized speeds and R is a (3x3) weighting matrix.

Combining the cost function with the right hand side of the equations of motion gives

the Hamiltonian function.

H(x, u, λ) = u(t)T Ru(t) + λT f(x, u) (5.25)

x represents the states, u the controls and a the kinematic equations.

3. Boundary Conditions

At each iteration, the cooperative algorithm gives new update positions; we also

specify the time taken for each step since the robots travel at 1m/s. Thus dx(tf ) =

dtf = 0 so the boundary conditions do not appear in the performance index.

4. Performance Index

The performance index is built combining equations (5.22) through (5.25)

J =

∫ tf

t0

H(x, u, λ)− λT ẋdt (5.26)

Taking variations in J and applying Leibniz’s rule

dJ = (H − λT ẋ) dt|tf − (H − λT ẋ) dt|t0
+

∫ tf

t0

[
HT

x δx + HT
u δu− λT δẋ + (Hλ − ẋ) δλ

]
dt (5.27)
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Integrate by parts to remove variation in ẋ

dJ = λ dx|t0 − λ dx|tf + H dt|tf −H dt|t0
+

∫ tf

t0

[
(Hx + λ̇)T δx + HT

u δu + (Hλ − ẋ) δλ
]
dt (5.28)

From the integral term, we have three necessary conditions. These are not generally

affected by changes in the performance index.

ẋ = ∂H
∂λ

= f(x(t), u(t)) ≥ t0 State Equation

λ̇ = ∂H
∂x

=
(

∂f
∂x

)T
λ + ∂L

∂x
t ≤ tf Costate Equation

0 = ∂H
∂u

=
(

∂f
∂u

)T
λ + ∂L

∂u
Stationarity Condition

5. Lagrange Multipliers

The Lagrange multipliers show how changing a constraint will change the performance

index. Consider the Hamiltonian:

H(x, u, λ) = L(x, u, λ) + λT f(x, u) (5.29a)

dH = Hx dx + Hu du + Hλ dλ (5.29b)

=
(
Lx + λT fx

)
dx +

(
Lu + λT fu

)
du + f(x, u) dλ (5.29c)

where L is the cost function, λ is the Lagrange multiplier and f is the system con-

straint. At the critical point, the Hamiltonian is zero, which means that for arbitrary

changes in x, u and λ, all the other terms must go to zero. From the first term,

λT = −LT
x f−1

x (5.30)

OR

λT = −∂L

∂f
(5.31)

All Lagrange multipliers are constants so λ’s with large magnitudes indicate
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that small increases in the constraint will produce large changes in the cost function:

L(x, u) = u2 in our case. On the other hand, a small λ will mean that large increases

will only produce small changes in the cost function. Therefore, constraints with large

Lagrange multipliers are important to the performance of the system and constraints

with small Lagrange multipliers are not so important. Moreover, the sign of the

Lagrange multiplier determines whether the cost function increases or decreases.

The time-varying constraints are the equations of motion, as seen previously.

The Lagrange multipliers will therefore be good indicators of the velocities (and sub-

sequently the types of controls) required to perform a maneuver.

D. Line Search Using ’fsolve’

Fsolve is a Matlab function, which solves nonlinear algebraic equations. The necessary

conditions are applied to find the differential equations for the states and the costates.

Given the initial states and a guess of the Lagrange multipliers, Fsolve will integrate

these equations. The function compares the final value of the states it computed with

the desired final position. If there is an error, Matlab will change the values of the

λi and run the program again. The Line search technique used to find the costates

is rather simple. Fsolve will take a 2D slice of the objective function and find the

minimum. It will then choose another slice in another direction, say perpendicular

to the original slice and perform the same linear search again. The algorithm is

deterministic and converges quickly to a solution for simple problems.

The syntax used is:

[p, fval, exitflag] = fsolve(@robotopt, p, options, xf, x0) (5.32)

where robotopt is the function we are evaluating,
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p is a vector of Lagrange multipliers, i.e. the input to robotopt,

options gives the user options for integration like step size, number of function eval-

uations

xf, x0 are parameters that are passed to robotopt.

robotopt in turn integrates a third function robotodes using the Matlab tool ode45.

robotodes are the Hamiltonian System.

The Hamilton System is the coupled state and costate equations using the opti-

mal control, which is obtained from the stationarity condition. From the necessary

conditions, the stationarity condition gives

∂H

∂u
= Ru + λT ∂f

∂u
(5.33a)

u∗ = R−1λT ∂f

∂u
(5.33b)

u∗ = R ·
(

λα λβ λx λy λz

)
·




1 0 0

0 1 0

0 0 cos β cos α

0 0 cos β sin α

0 0 − sin β




(5.33c)




u∗1

u∗2

u∗3




=




λα

λβ

λx cos β cos α + λy cos β sin α− λz sin β




(5.33d)
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The state equations are:

α̇ = u∗1 (5.34a)

β̇ = u∗2 (5.34b)

ẋ = u∗3 cos α cos β (5.34c)

ẏ = u∗3 sin α cos β (5.34d)

ż = −u∗3 sin β (5.34e)

The costate equations are λ̇ = −(∂f
∂x

)T λ




∂f
∂x1

∂f
∂x2

∂f
∂x3

∂f
∂x4

∂f
∂x5




=




0 0 0 0 0

0 0 0 0 0

−u∗3 sin α cos β −u∗3 cos α sin β 0 0 0

u∗3 cos α cos β −u∗3 sin α sin β 0 0 0

0 −u∗3 cos β 0 0 0




(5.35)




λ̇1

λ̇2

λ̇3

λ̇4

λ̇5




=




λ3u3 cos β sin α− λ4u3 cos β cos α

λ3u3 sin β cos α + λ4u3 sin β sin α + λ5u3 cos β

0

0

0




(5.36)

The maximum step taken by a robot is 1m, and the robots travel at 1m/s therefore

the equations are integrated over a period of 1s. The final states produced by the inte-

gration are compared to the desired positions and the error is minimized by changing

the Lagrange multipliers. The process is iterated until either a solution is found, the

algorithm exceeds the maximum function evaluations or fsolve fails to find a solution.
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These three conditions are identified by the exitflag and a message is printed to the

screen.

1. Straight Lines

The simplest case is a position update in a straight line along one of the axes. Results

of motion along each axis are shown in Tables XXI and XXII.

There are two important things to note

• the number of iterations needed is highly dependent on the initial conditions

and

• the final Lagrange multiplier in the direction of motion is always near one

whereas the others are much smaller terms. In fact, as Table 2 shows, the

following rule provides very good initial guesses for the Lagrange multipliers.

Convergence requires very few iterations.

delx = x(tf )− x(t0) (5.37)

2. Simple Turns

Equation 5.37 is also a good estimate for the next type of maneuver: a simple turn.

In this case, the robot is given a final position that requires change along two axes

and an angle change so that the nose remains pointed in the direction of motion. For

example, from an initial position (0, 0, 0) with no heading or pitch angle, the desired

final position is (0.3, 0.3, 0) with a final heading angle α = −π/2. Optimal trajectories

are found consistently within 70 iterations when using the difference rule, whereas

the random initial conditions could take anything between 60 and 800 iterations.
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Table XXI. Motion along the x-axis using random choices for initial Lagrange multi-

pliers

initial pos desired pos initial guess final lambdas No. iterations

[0, 0, 0, 0, 0] [0, 0, 1, 0, 0]




0.4186

0.8462

0.5252

0.2026

0.6721







0.0030

−0.0198

0.9996

−0.0069

0.0459




403

[0, 0, 0, 0, 0] [0, 0, 1, 0, 0]




0.5028

0.7095

0.4289

0.3046

0.1897







−0.0001

−0.0002

1.0001

−0.0002

0.0004




169

[0, 0, 0, 0, 0] [0, 0, 1, 0, 0]




0.7271

0.3093

0.8385

0.5681

0.3704







0.0199

−0.0030

1.0002

0.0462

0.0073




61
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Table XXII. Motion along the y-axis using random choices for initial Lagrange multi-

pliers

initial pos desired pos initial guess final lambdas No. iterations

[−pi/2, 0, 0, 0, 0] [0, 0, 0, 1, 0]




0.7948

0.9568

0.5226

0.8801

0.1730







−0.0011

−0.0001

0.0025

1.0000

0.0003




61

[−pi/2, 0, 0, 0, 0] [0, 0, 0, 1, 0]




0.9797

0.2714

0.2523

0.8757

0.7373







−0.0011

−0.0131

0.0021

1.0007

0.0305




175

[−pi/2, 0, 0, 0, 0] [0, 0, 0, 1, 0]




0.6614

0.2844

0.4692

0.0648

0.9883







−0.0117

−0.0085

0.0277

1.0003

0.0193




127
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Table XXIII. Straight line path planning for robots using intelligent first guess for λ’s.

The final λ’s are exactly the same as the initial guess

motion initial desired final Number of

pos pos λ’s iterations

x [0, 0, 0, 0, 0] [0, 0, 1, 0, 0] [0,0,1,0,0] 7

x [0, 0, 0, 0, 0] [0, 0, 0.75, 0, 0] [0,0,0.75,0,0] 7

x [0, 0, 0, 0, 0] [0, 0, 0.5, 0, 0] [0,0,0.5,0,0] 7

x [0, 0, 0, 0, 0] [0, 0, 0.25, 0, 0] [0,0,0.25,0,0] 7

y [−π/2, 0, 0, 0, 0] [−π/2, 0, 0, 1, 0] [0,0,0,1,0] 7

y [−π/2, 0, 0, 0, 0] [−π/2, 0, 0, 0.75, 0] [0,0,0,0.75,0] 7

y [−π/2, 0, 0, 0, 0] [−π/2, 0, 0, 0.5, 0] [0,0,0,0.5,0] 7

y [−π/2, 0, 0, 0, 0] [−π/2, 0, 0, 0.25, 0] [0,0,0,0.25,0] 7

-y [π/2, 0, 0, 0, 0] [π/2, 0, 0,−1, 0] [0,0,0,-1,0] 7

-y [π/2, 0, 0, 0, 0] [π/2, 0, 0,−0.75, 0] [0,0,0,-0.75,0] 7

-y [π/2, 0, 0, 0, 0] [π/2, 0, 0,−0.5, 0] [0,0,0,-0.5,0] 7

-y [π/2, 0, 0, 0, 0] [π/2, 0, 0,−0.25, 0] [0,0,0,-0.25,0] 7

z [0, π/2, 0, 0, 0] [0, π/2, 0, 0, 1] [0,0,0,0,1] 7

z [0, π/2, 0, 0, 0] [0, π/2, 0, 0, 0.75] [0,0,0,0,0.75] 7

z [0, π/2, 0, 0, 0] [0, π/2, 0, 0, 0.5] [0,0,0,0,0.5] 7

z [0, π/2, 0, 0, 0] [0, π/2, 0, 0, 0.25] [0,0,0,0,0.25] 7



64

3. Multiple Turn Maneuvers

Once we start to combine turns the coupled nature of the equations soon becomes

noticeable. Consider Table XXIV. It depicts a robot performing a 90◦ turn left

and a 90◦ pitch so that it ends up on its nose. The robot initially moves 0.3m

in each direction. The Lagrange multipliers needed to perform this maneuver are

shown in the final column. The final positions are varied along each axis separately

to investigate which λ’s should be varied for each maneuver so as to minimize the

number of iterations needed. To generalize the results, random initial values for each

λ were generated in the range [0..1]. Each case was run several times to ensure the

Lagrange multipliers obtained were reliable.

As before, delx = xf − x0 is a more appropriate initial guess for the Lagrange

multipliers. The number of iterations was smaller than with random initial conditions

4. Varying the Update Step

Update steps of up to 7m were investigated and the previous method for choosing

the initial Lagrange multipliers failed in several areas. The following adaptation was

successful for all types of position updates

for i = 1 : 5

if delx > 0, lam(i) = 1

delx = 0, lam(i) = 0

delx < 0, lam(i) = −1

end %if

end % for

The number of iterations increased slightly, but the method was more robust.
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Table XXIV. Combined turn

initial pos desired pos change final λ’s

[α, β, x, y, z] [α, β, x, y, z] [λα, λβ, λx, λy, λz]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.3,−0.3] [2.0, 1.2, -0.1, 2.1, 0.4]

[0, 0, 0, 0, 0] [π/2, π/2, 0.4, 0.3,−0.3] x [2.0, 1.2, 0.3, 1.7, 0.4]

[0, 0, 0, 0, 0] [π/2, π/2, 0.5, 0.3,−0.3] x [1.9, 1.2, 0.8, 1.3, 0.3]

[0, 0, 0, 0, 0] [π/2, π/2, 0.6, 0.3,−0.3] x [1.8, 1.15,1.2, 0.9, 0.3]

[0, 0, 0, 0, 0] [π/2, π/2, 0.7, 0.3,−0.3] x [1.5, 1.1, 1.6, 0.5, 0.3]

[0, 0, 0, 0, 0] [π/2, π/2, 0.8, 0.3,−0.3] x [1.3, 1.0, 1.9, 0.2, 0.3]

[0, 0, 0, 0, 0] [π/2, π/2, 0.9, 0.3,−0.3] x [1.1, 0.9, 2.2,-0.1, 0.3]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.4,−0.3] y [2.2, 1.0, -0.5, 2.9, 0.8]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.5,−0.3] y [2.3, 0.9, -0.8, 3.2, 1.0]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.6,−0.3] y [2.4, 0.8, -1.0, 3.4, 1.2]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.7,−0.3] y [2.5, 0.7, -1.2, 3.5, 1.3]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.8,−0.3] y [2.6, 0.6, -1.3, 3.5, 1.4]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.9,−0.3] y [2.7, 0.5, -1.4, 3.6, 1.4]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.3,−0.4] z [1.90, 1.37, 0.06, 1.70, -0.03]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.3,−0.5] z [1.81, 1.51, -0.04, 1.29, -0.44]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.3,−0.6] z [1.75, 1.62, -0.06, 0.95, -0.80]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.3,−0.7] z [1.67, 1.76, -0.07, 0.57, -1.14]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.3,−0.8] z [1.63, 1.88, -0.12, 0.24, -1.42]

[0, 0, 0, 0, 0] [π/2, π/2, 0.3, 0.3,−0.9] z [1.59, 1.97, -0.18, -0.01, -1.66]
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E. Conclusions

Fsolve solves the optimal control problem by solving a set of algebraic equations. The

number of iterations taken to find the solution depend on the initial conditions. Some

rules of thumb can be used to find a solution with fewer iterations. This is desirable

in robotics where onboard computation is often limited.

Fsolve cannot implement inequality constraints. Simulations are therefore not

smooth and sometimes show the robot moving backwards. Backwards motion can

be achieved by reversing the propeller, however, many of the more complicated ma-

neuvers require switching between forwards and reverse motion. This is not the most

efficient use of the propeller.

The constraints on thrust angles φ and ψ have not been imposed either. Thus,

many of the optimal paths chosen may not be feasible.
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CHAPTER VI

GENETIC ALGORITHM

A. Why Genetic Algorithms?

Genetic algorithms attempt to solve optimization problems using the basic theories

behind genetics. These types of search methods have proved superior for some classes

of problems when compared to traditional search and optimization methods due to

their random nature. Genetic algorithms are also parallel in nature, which typically

makes them more effective as a search tool. They have excelled at solving problems

where traditional methods break down, particularly

• Multi-modal problems (i.e. when there is more than one extremum). Most

traditional methods can identify an extremum, but will not be able to verify

if it is a global extremum or a local one. The stochastic nature of genetic

algorithms ensures the whole search space is covered and thereby guarantees

that the final solution is indeed the global maximum or minimum.

• Pareto-optimal systems where an optimal solution is required in the presence

of several, conflicting constraints. For example, a car has to be built according

to the designer’s taste, with certain safety features, having suitable creature

comforts and all to budget!

In the UUV path planning problem, we are looking to find 5 Lagrange multipli-

ers in order to achieve the optimal performance for our system. Since the problem

is extremely sensitive to initial conditions, I was interested to see if a genetic algo-

rithm would help in the search process. One of the most striking aspects of genetic

algorithms is the number of variations available. Each problem requires a different

approach in order to obtain the optimal solution. I have therefore presented a number
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of techniques. Much of the material comes from a well referenced set of lecture notes

and features with permission of the author [9].

B. Background

Most people are familiar with Charles Darwin and his controversial book The Origin

of the Species (abbr. title). In it he proposed that within each species there was

variation and that this variation was brought about through reproduction. From

every day life we know that every child will inherit characteristics from his parents but

these will not be the same as those inherited by his siblings. Darwin also noted that

while an animal species will produce many offspring, very few survive to adulthood.

He described this as natural selection - the survival of those who were best suited

to their environment. As the environment changes, so do the criteria needed for

an individual to survive. Later Hugo de Varis noted that plants would occasionally

throw up completely new variants whose characteristics had no resemblance to the

parent plants. This phenomenon was named mutation and is due to a random or

unexplained replacement of one gene with another. The effects of mutation can

be dramatic or unnoticeable depending on the importance of the gene. A certain

characteristic, say eye color, may be dependent on one single gene. A mutation in

this case would cause dramatic effects. The length of a person’s arm, however, is

dependent on many genes so a mutation in the cell of a fingernail is unlikely to

cause a noticeable change. Work on genetic algorithms and its affiliates: evolutionary

algorithms and evolutionary programming began in the late 50’s. The first attempts

to use genetic algorithms focused on mutation to produce the variation at each new

generation, however the rate of variation was far too slow to effectively find a solution.

In 1975, John Holland at the University of Michigan successfully modelled the mixing
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of chromosomes, which occur in Nature during mating and went on to create the first

functioning genetic algorithm.

C. A Simple Genetic Algorithm

The basic genetic algorithm has 6 steps:

1. Representing problem and constructing objective function

2. Forming an initial population

3. Evaluating the fitness of each individual in the population

4. Selecting the individuals for mating

5. Mating/Recombination to produce offspring

6. Reinsertion (forming a new population)

Steps 3 to 6 are iterated until a satisfactory solution has been found.

1. Representing the Problem

First, produce a number of possible solutions to the problem. These are called indi-

viduals and together the individuals form the population. The size of the population

depends on the problem. Secondly, encode the individuals in a form that resemble

genes. In the natural world, genetic information is held in chromosomes, which are

strings of genes. The closest analogy is to use binary encoding. This means converting

the individuals to a string of ones and zeros.
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Example 1:

We want to find the solution of y = x2. The initial population has 4 individuals

at 1, -2, 4, -6. Fig. 22 shows the individuals in binary format.

10000000

01000001

01100001

00101000

1

-2

4

-6 

Fig. 22. Binary representation of individuals 1, -2, 4 and -6 respectively

Here the first bit is used to represent the sign of the integer. ’1’ represents a

negative sign, ’0’ a positive sign.

For multiple parameter problems, each parameter is encoded in the same way

and then concatenated to form a longer chromosome.

Other forms of encoding are:

• Gray scale

• Integer labels (good for discrete problems like the travelling salesman)

• Real - valued genes. This type of encoding is said to be much more computa-

tionally efficient.

2. Initializing the Population

Populations of 30 - 100 are typical. The more individuals used to search the objective

function, the faster the solution is likely to be found. On the other hand, large
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populations require a greater amount of computation since there are more children

produced. Micro populations of 10 or so have also been investigated. Initializing the

individuals is best achieved using a random number generator at the gene level. For

a population of 10 individuals with chromosomes 8 bits long, we create 80 bits (0 or

1). This means the designer has no control over the initial population, which ensures

a more even spread of the population over the search space.

3. Evaluating the Fitness of the Individuals

First we need a criterion to judge how near to the solution each individual is. This is

known as the raw fitness of an individual. Sometimes, the designer knows what the

solution should be, but doesn’t know how to achieve it. In this case, it is simply a

matter of comparing the desired solution to that of the individual. The individuals

with the least error have the highest fitness.

Example 3:

Going back to Example 1, the objective function is: y = x2. It has a solution at

x=0. The fitness of the initial population can be summarized in Table XXV.

Table XXV. Evaluate the fitnesses of individuals from Example 1

Individual Initial Value Absolute Error Relative Fitness

1 1 1 1

2 -2 2 2

3 4 4 3

4 -6 6 4
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x

y

Global Minimum

Fig. 23. Multi-modal graph showing local and global minima

Usually the objective is to minimize a quantity. In this case, the raw fitness of

an individual will be determined relative to the other individuals, which increases

the chances of finding the global minimum. In Fig. 23 there are 5 minima. Most

gradient search methods will locate the minimum nearest to their initial position,

but this is not usually the best solution. By comparing the fitnesses of individuals

randomly scattered over the whole search space, the GA can successfully locate the

global minimum.

The raw fitness of each individual is not quite in the form we would like. First,

for minimization problems, we would like to have the individual with the smallest

solution to have the highest fitness. Secondly, we would like to be able to accurately

assess the fitness of each individual regardless of the sign of the raw fitness. We

achieve this through a fitness function. There exist a number of methods to achieve a

suitable fitness function. Proportional fitness assigns a fitness value to each individual
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by comparing its raw fitness value to the sum of the others in the population.

F (xi) =
f(xi)∑No.Ind

i=1 f(xi)
(6.1)

For minimization problems, we can use the following conversion to achiever the

correct raw fitness:

Let r = objmax − objmin be the range for the current generation

f(xi) = 1.001− obji − objmin

r
(6.2)

Proportional fitness is a popular method but does not account for the negative ob-

jective function values. We can, instead use the absolute values of the raw fitness.

An alternative method is the power scaling function.

F (xi) = f(xi)
k (6.3)

where k is a varying function allowing the range of fitness to expand or contract,

as the user wishes. Typically k is a decaying exponential function. The advantage

of letting k vary is that we can avoid premature convergence or unnecessarily long

searches.

4. Selecting the Individuals for Mating

How do we choose a mate? It is generally true that animals with the right attracting

characteristics will be more likely to mate, however, as most of us will agree that

courting (even if we have the right characteristics) has an uncertain outcome. Indeed,

male spiders need to be particularly careful else they may end up as the female’s

lunch! To summarize, we want selection procedure that is biased towards the most

fit individuals, but has a degree of uncertainty built in.
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Fig. 24. Roulette wheel used for Stochastic Sampling Replacement (SSR) selection

method

Most selection techniques use some form of the roulette wheel, shown in Fig. 24.

Here, each individual is assigned a slice of the wheel according to his fitness. The

wheel is spun and the individual chosen by the arrow is selected for mating. Its pair

and indeed all the mating pairs are chosen in a similar fashion. (A pair obviously must

consist of two different individuals.) This technique is also known as the stochastic

sampling replacement (SSR) method.

The random nature of the SSR method means that one individual could poten-

tially be represented in all the pairs, even though its fitness is fairly small. Equally,

an individual with a relatively large fitness may not be chosen for mating at all. This

leads to a narrowing of the gene pool and thereby early convergence at an undesir-

able location. Many solutions have been presented to overcome this problem, but the

simplest and most popular, is the stochastic universal sampling (SUS) method.

The SUS is very similar to the SSR method, except it uses ’2N’ equally spaced

pointers to obtain the individuals for mating. (N is the number of pairs required for

the next generation). Fig. 25 shows the roulette wheel needed for four pairs.
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Fig. 25. Stochastic Universal Sampling (SUS) Method

The population is initially shuffled and the individuals selected. The SUS has

many advantages:

• fitnesses are accurately represented,

• gene pool remains sufficiently varied,

• roulette wheel needs only one spin in order to collect all the individuals for

mating.

The latter can reduce computational time.

5. Mating/Recombination and Mutation

a. Recombination

In nature children are produced when genetic material is swapped between the par-

ents. Crossover uses the same basic principle to create new individuals for the genetic
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algorithm. The method is best illustrated by an example.

Example 4: Simple or Single-point Crossover

Consider Fig. 26.

10111111

01100100

10100100

01111111

Parent 1:

Parent 2:

Child 1:

Child 2:

Crossover Point

Fig. 26. Single-point crossover

Comments:

The crossover point is picked using a random number generator from the range

[1..L-1], where L is the length of the chromosome.

• Child 1 consists of genes from parent 1 lying to the left of the crossover point

and the genes of parent 2 lying to the right of the crossover point.

• Child 2, on the other hand, is made from the genes of parent 1 lying to the right

of the crossover point and the genes of parent 2 lying to the left of the crossover

point.

• A criticism of single-point crossover is that it is not disruptive enough and

therefore does not encourage a particularly wide search of the objective function.

If the crossover point does not fall in the most appropriate place, the children
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will not be very different from the parents. This defeats the object of mating in

the first place! Let us convert the chromosomes of Example 4 back to integer

values:

Parent 1: -125, Parent 2: 38, Child 1: -126, Child 2: 37

If instead, the crossover point had been chosen after the 3rd bit, the children

would be a better mix of the two parents:

Parent 1: -125, Parent 2: 38, Child 1: -102, Child 2: 61

There are several variations of simple crossover, which all attempt to overcome this

problem. One of the variations available is the multi-point crossover, a direct ex-

tension of the single-point crossover method. In Multi-point crossover, p points are

chosen in the range [1.. L-1] using a random number generator, ensuring each point

is different. Leaving the first section of each parent where it is, successive sections

between the following crossover points are exchanged between the two chromosomes

to produce the children. Again, this is best seen with an example.

Example 5: Multi-point Crossover

Consider again the chromosomes of Example 4 this time with crossover points

after bits 1, 3, and 5 (as shown in Fig. 27). Converting back to integer values, we

have:

Parent 1: -125, Parent 2: 38, Child 1: -64, Child 2: 101 Now consider the

crossover points 2, 4, 7. The chromosomes now have the values

Parent 1: -125, Parent 2: 38, Child 1: -108, Child 2: 45 The two methods both

have advantages, the multi-point crossover operator ensures a more thorough search,

but will delay the time to convergence. Its disruptive nature may also cause good

genetic material to be lost. The designer must choose which is most appropriate to
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10111111

01100100

10100110

Parent 1:

Parent 2:

Child 1:

Child 2:

Crossover Points

11111101

Fig. 27. Multi-point crossover

the problem at hand.

Example 6: Arithmetic Crossover [10]

In this method a constant ‘f’ is randomly chosen in the range [0,1]. New indi-

viduals are formed by linearly combining the two parents in the following way:

P1 = [x1, x2, x3, ..., xN ]

P2 = [y1, y2, y3, ..., yN ]

C1 = [f · x1 + (1− f) · y1, f · x2 + (1− f) · y2, f · x3 + (1− f) · y3, ...

C2 = [f · y1 + (1− f) · x1, f · y2 + (1− f) · x2, f · y3 + (1− f) · x3, ...

(6.4)

where Pi are the parents and Ci are the children.

Clearly, this method can only be used with non-binary numbers, however most

problems deal with real numbers or integers, so arithmetic crossover may be applied
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once the individuals have been reconverted back into their original form.

b. Mutation

As we have seen previously, mutation is the random replacement of one gene with

another. It does not occur very frequently in nature, or its effects would have been

discovered much earlier. Programming mutation in genetic algorithms is very easy,

particularly when the binary representation has been used. Simply use a random

number generator in the range [1..L] and flip the bit so that 1 −→ 0 and 0 −→ 1.

The mutation operator is applied with very low probability, usually in the range

0.1%− 1%. [9]. Higher mutation rates increase the disruptive nature of the process.

6. Reinsertion

Once the new generation has been produced, it has to be integrated into the current

population. The algorithm calculates the fitness of all the individuals - current and

new. It is then up to the designer to decide how to use this information to update the

population. The Elitist strategy states only the fittest individuals will survive to the

next generation, however it is often the weaker individuals who provide the genetic

material to cover the whole search space, see Fig.28.

Point 1 is the fittest individual, but points 6 and 7 are closer to the global

optimum. In this case, the fittest individual does not represent the best genetic

information. The Elitist strategy would at best hinder the search and at worst cause

the GA to converge to a local maximum. It also means that the GA is unnecessarily

dependent on initial conditions.

Fogarty [9] performed several studies into reinsertion techniques and asserts that

the best scheme is not a replacement of the least fit individuals, but of the oldest

individuals. As in nature, even the fittest individuals will grow weak and die, so in
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Fig. 28. Solutions produced by new generation

the genetic algorithm, the earlier estimates become less useful as the search progresses.

D. Termination of the Genetic Algorithm

The designer can specify the algorithm to run for a number of generations and then

compare the performance of the GA to his/her desired performance OR can simply

state a certain target for the GA to obtain. The advantage with the first technique

is that if the GA is obviously going in the wrong direction, or has converged on some

non-optimal solution, the designer can stop the program and start again with a new

set of initial conditions. The disadvantage is that it requires more user-intervention.

E. Using GA’s to Find the Lagrange Multipliers

1. Representing problem and constructing objective function

Each individual represents a solution to the problem. The problem at hand

is to find the initial 5 Lagrange multipliers that will solve the optimal control

problem and move the robot to the desired location. The Lagrange multipliers

are initially real valued and are converted to a 21 bit binary representation of
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each number. This allows for a range [-4, 4] to an accuracy of 4 decimal places.

2. Forming an initial population

Populations of 10, 30, 40 and 60 were investigated.

3. Evaluating the fitness of each individual in the population

This was done by using each set of Lagrange multipliers as an initial guess to

the costate equations. The state and costate equations were then integrated

for one second and the computed final position was compared to the desired

final position. The total error was computed by summing the absolute errors

for each state α, β, x, y, z. This was the raw fitness and is proportional to the

error. The actual fitness of each individual should be inversely proportional, as

mentioned previously. I therefore used the following equation

f(xi) = 1.001− obji − objmin

objmax − objmin

labeleqn : 6.5 (6.5)

4. Selecting the individuals for mating

Only two children were produced at each new generation, regardless of the size of

the population. Larger numbers of children tended to cause early convergence.

The Stochastic Universal Sampling (SUS) method was used to choose the par-

ents. Since the GA only uses two parents, this method does not have much

advantage over the simpler Stochastic Sampling replacement method (SSR).

5. Recombination and Mutation

Recombination was achieved using multiple crossover technique. Initially 5

points were chosen because there are 5 Lagrange multipliers.

Mutation was applied every 10 iterations. Each individual was assigned a ran-

dom number ‘mut’ in the range [0,1]. If ‘mut’ exceeded 0.99, one gene from
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every Lagrange multiplier was flipped. This is a very drastic mutation, almost

as disruptive, if not more than recombination. It was vital in this scheme to

help avoid early convergence.

6. Reinsertion (forming a new population)

Initially the oldest individuals were thrown away, but this strategy tended to

eliminate the better individuals and caused convergence at a suboptimal point.

An elitist strategy was therefore applied, but as the literature indicates, this

increased the likelihood of genetic dominance by one or two individuals. Large

mutation rates were applied to prevent early convergence. Certainly, the per-

formance of the GA was significantly better with the Elitist strategy than with

the ”new generation” strategy.

7. Termination

The GA was left to run its course. Correct termination occurred if a solution

had been found with a combined error of 0.1. Suboptimal convergence occurred

if all the individuals converged on a point before reaching the desired error. For

steps of 1m, this is already a very loose constraint on the final position.

F. Results

1. Comparing population sizes: Population sizes of 10,20,30 and 40 were investi-

gated and compared. Three trajectories were considered: Motion in a straight

line, left turn and right turn. All trajectories remained in the x-y plane. Micro-

populations ran and terminated extremely quickly, but the results obtained

were very poor. The quality of results increased as the population got larger

but the time to run each case increased exponentially. The smaller populations
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were subject to less mutation since convergence occurred within fewer itera-

tions. This was still true if the probability was raised. The results are shown

Table XXVI. Effect of population size on GA performance

Population Straight Line Turn Left Turn Right

size error time error time error time

10 0.8860 25.6 1.7799 33 1.6904 29

20 0.3690 87 1.3479 70 1.1353 96

30 0.1973 117 1.1784 146 1.0925 148

40 0.1697 231 1.000 194 1.1740 239

in table XXVI. Because of the computational restrictions, a population of 20

individuals was considered the best option for further study.

2. Comparing numbers of Crossover points: If a population does not converge,

it seems intuitive to introduce more crossover points and thus increase the

randomness in the system in order to carry out a wider search. In fact, having

too many crossover points can destroy the good material that is already there.

The fewer crossover points there are, the greater the probability that good

material will remain in the population. Single-point crossover is a generally

a very popular tool. In this case, it was not enough given the length of the

individual. An investigation was carried out with a population of 20 individuals.

Results of this investigation are shown in table XXVII. Five crossover points

produced the best performance. This constitutes roughly 1 crossover point per

λ. It also had the longest average convergence time. For a population of 20

individuals, none of the test cases gave a satisfactory result.
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Table XXVII. Effect of number of crossover points on GA performance

Crossover Time to Convergence Final Error

Points mean std mean std

1 58.9 10.2 0.4786 0.2248

3 76.9 20.2 0.3529 0.1412

5 102.8 25 0.2628 0.0659

7 97.1 16.4 0.2759 0.1293

10 85 19.3 0.2923 0.1300

15 82.2 20.6 0.3817 0.2015
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G. Conclusions

GA’s are not a good tool for real time path planning. Owing to their random nature,

convergence requires many iterations and there was no guarantee of actually finding a

solution. For a ”good” solution, they are computationally expensive, however, Mat-

lab is much slower than C or Fortran so it is more useful to compare iterations. The

amount of initial programming needed is much higher than with the fsolve method.

Even using a toolbox, there are so many random variables contributing to the per-

formance of the genetic algorithm, it almost requires a genetic algorithm to train a

genetic algorithm!
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CHAPTER VII

DYNAMIC PROGRAMMING

A. Introduction

The Two Point Boundary Value problem is extremely difficult to solve for nonlinear

systems. It has a number of disadvantages

• 2 point BVP is dependent on having good initial guesses for the costates (λi).

• Most real systems have constraints, which tend to make it harder to find a

solution

• Finding the solution, even with good guesses, is very time consuming

There are a number of modifications to 2 point BVP, which can aid solution. One is

the multiple-shooting method, in which the search space is divided up into sections

and the 2 point BVP is solved for each section. This is advantageous if the quantities

you wish to minimize are large, however this is not the case for the Ranger UUV.

Another method is Pontryagin’s minimum principle, which gives some guidelines for

optimizing controls in the presence of constraints. Even with these modifications,

variational control is still an awkward tool to use and many people prefer to use

dynamic programming methods.

Dynamic Programming was invented in 1953 by Richard E. Bellman. He subse-

quently published several papers on the subject in the late 50’s and early 60’s. This

discrete method is well suited to implementation on digital computer and has also

proved to be more computationally efficient than the traditional variational approach

to optimal control because constraints make the problem easier and not harder to

solve [11].
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This chapter will begin with a general review of dynamic programming. Section C

will present dynamic programming with Interior Points (DPIP). The DPIP method

was implemented using a toolbox developed at Texas A&M and Sandia National

Laboratories [12], which is described in section D. The results of the simulations can

be found in section E.

B. Review of Dynamic Programming

u = 5

u = 4

u = 10

u = 4

u = 2

u = 7
u = 7

u = 12
Jmin = 4

Jmin = 14

Jmin = 11

Jmin = 9

Jmin = 2

J = 0

T=0 T=3T=2T=1

Fig. 29. Method of dynamic programming (the optimal path is highlighted in grey)

Dynamic Programming is applied backwards in time. First, the states and con-

trols are given a range of discrete, finite values (also known as admissible values).

Then we define the cost function J, a function of the variables we want to minimize

J =
1

2
x(T )2 +

1

2

∫ tf

t0

u(t)2dt (7.1)

where x(T ) is the state at the final time and u(t) is a scalar control input. Consider
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Fig. 29. The cost of the system at the final time (T=3) is calculated using equation 7.1

and applying all the admissible controls, we work backwards to find the previous

admissible states (T=2). Here we calculate the path, which will give us the minimum

cost to/from the final state or set of states i.e. the optimal path. The cost at node

(T=2) is calculated using the control applied over the optimal path and the final

position x(T=3). We then apply the admissible controls again to get the states

(T=1). The whole process is iterated until the initial states, the total (minimum)

cost and therefore the optimal path are obtained.

Dynamic Programming is very simple and can be implemented using the steps

overpage. To illustrate the method I have applied it to a linear system. The example

is based on one given by Lewis and Syrmos [11]. It features with kind permission of

the authors. This method can also be applied successfully to nonlinear systems.

1. State system equations, e.g. for a linear system

ẋ = A x + B u (7.2)

2. Form the performance index. For a minimum control effort problem subject to

final state constraints,

J(0) =
1

2
x2(T ) +

1

2

∫ T

0

u2(t) dt (7.3)

where J(0) is the cost from the initial time to the final time.

3. Define the state and control constraints, e.g.

0 ≤ x(t) ≤ 2 |u(t)| ≤ 1

4. Discretize the system equations and the performance index

xk+1 = Ak xk + Bk uk (7.4)
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where Ak = eAτ , Bk =
∫ τ

0
eAτ B dt, τ is the sample in seconds. Thus, for

a scalar system, if a = 1, τ = 0.5 and b = 1

xk+1 = e0.5 xk + (e0.5 − 1) uk (7.5)

= c xk + (c− 1) uk (7.6)

where c = e0.5 = 1.645. The performance index is

J0 =
1

2
x2

N +
1

2

N−1∑

k=0

((c− 1)uk)
2 (7.7)

where N = T/τ , T is the final time and τ is the sampling period.

5. Form a set of discrete admissible controls within the bounds previously stated.

e.g. -1,0,1. This is a perfectly reasonable set of controls, particularly for bang-

off-bang control systems.

6. Form a set of discrete admissible states, see Fig. 30. This is also a reasonable

assumption if each admissible state can be obtained with at least one of the

admissible controls. For discrete problems, like the travelling salesman, the

discrete states will already be defined by the problem. For continuous problems,

the more admissible states we have, the closer the model resembles the true

system and therefore the better the final control. As always, the finer the mesh,

the more computational effort needed.

7. Calculate the performance index at the final states. With k = N = 2,

J0 =
1

2
x2

N (7.8)
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x1 = 0
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Initial
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Final
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Fig. 30. Grid of admissible states

Thus

J2(x2 = 2) =
22

2
= 2 (7.9)

J2(x2 = 1) =
12

2
= 0.5 (7.10)

J2(x2 = 0) =
02

2
= 0 (7.11)

8. Move left to the set of previous admissible states at x1 and apply each of the

admissible controls. These are shown in Fig. 31. Note that only the controls

which end in the range of the admissible states are used. In fact, if a control

results in a state lying between two admissible states it is still feasible, but it is

not defined. It is therefore necessary to interpolate between the two states to

find the cost of reaching this point. The cost of using each control is calculated



91

using a simplified form of the performance index.

Jk = Jk+1 +
(c− 1)2

2
uk (7.12)

This equation is key, forming the basis for most extensions to dynamic program-

ming. The optimal path between any state at k=1 and a state at k=2 is the

one with the minimum cost. The cost of that state is therefore solely dependent

on the cost of the state we came from and the control needed to move between

the states. These numbers are shown in Fig. 31. The cost of each path is shown

above each line with the control at the end of the line. The minimum cost of

each state at k=1 is shown above it.

9. Jump back a state again and repeat procedure to find minimum cost for each

state. The results are shown in Fig. 32. Since J0 is the set of initial states, the

iterative process ends here. The cost for each of the initial states represents

the total cost of reaching one of the final states. The optimal state trajectory

is found by using the optimal controls. The optimal trajectory from x0 = 2 is

shown as a thick grey line in Fig. 32. When using this control weighting, all the

optimal state trajectories tend towards zero. If instead, the performance index

was

J0 =
1

2
xk + 5

N−1∑

k=0

u2
k (7.13)

The rate of decay would be significantly slower. This effect represents using less

control effort in the actual system. The process may seem tedious for two steps

but the numerical efficiency quickly becomes apparent as the steps increase.

On average, the number of computations needed for dynamic programming is

of the order

No.states(n)×No.controls(m)×N (7.14)
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x2 = 0
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x2 = 1

Fig. 31. Dynamic Programming: Computing the cost of states at k = 1.

All numbers are computes to 2 decimal places
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Fig. 32. Dynamic Programming: Total cost of moving between states 0 and 2.

All numbers are computed to 2 decimal places
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Where N is the number of discrete time steps taken.

Methods which require all possible paths to be calculated have much larger

computational demands of the order

N∑

k=1

(n×m)k (7.15)

.

C. Dynamic Programming with Interior Points

The interior-point method is used to cope with inequality constraints. Dohrmann

and Robinett [8] combined this technique with sequential quadratic programming to

tackle optimal control problems for constrained, nonlinear systems. The interior

points method has been applied to the reorienting of spacecraft in another paper by

Hurtado, Eisler, Dohrmann and Robinett [13], where it was compared with other

dynamic programming techniques. The DPIP method found all solutions within a

very few number of iterations compared with the other methods.

Consider a system with known initial states and quantized controls

ẋ(t) = f(x(t), u(t)), x(t1) = x1 (7.16)

u(t) = ui ti ≤ t ≤ ti+1 (7.17)

This time we work forwards rather than backwards since we know the initial states,

not the final states. At each time step ‘i’, the next states are calculated using 7.18

xi+1 = gi(xi, ui) (7.18)
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The augmented performance index is given by

Γ =
N−1∑
i=1

[Γi(xi, ui) + ciE(xi, ui)
T λiE + ciI(xi, ui)

T λiI (7.19)

+ΓN(xN) + cT
NEλNE + cNIT λNI (7.20)

where Γi(xi, ui) is the performance index and the equality and inequality constraints

have been appended to the performance index by use of Lagrange multipliers λiE,

λiI , λNE and λNI .

This form is called the Lagrangian function and is denoted P1. A similar problem

P2 approximates P1, using a second order Taylor Series expansion. P2 is expressed

as a set of nominal values (steady state conditions) with perturbed values of state,

controls and Lagrange multipliers. The state update equations, and constraints are

linearized about the nominal values. P2 is generally easier to solve than P1. The

discrepancy between the solutions of P1 and P2 is evaluated and based upon the

error, P2 is updated to produce a new approximation. This procedure is iterated until

the solution to the original nonlinear problem is found. The procedure is illustrated

in Fig. 33. This type of technique is known as Sequential Quadratic Programming.
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Approximations
True Problem (P1)

u

J

Fig. 33. Quadratic approximations converging on solution to real problem
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D. DPIP Toolbox

The DPIP toolbox was developed for Matlab implementation by Robinett, Dohrmann

and Hurtado [12]. It requires 5 files to run.

1. STATE EQUATIONS, which will be integrated numerically using a Runge-

Kutta method. I used the kinematic equations for the AUV and treated the

generalized speeds as the controls.

2. COST FUNCTION calculates the performance index J and returns the first and

second partial derivatives of the performance index with respect to the controls

and the states.

3. INEQUALITY CONSTRAINTS returns the constraints, the first and second

partial derivatives of the inequality constraints with respect to the controls and

the states. The only inequality imposed was that the motion must be forwards

i.e. u3 ≥ 0.01

4. EQUALITY CONSTRAINTS returns the constraints, the first and second par-

tial derivatives of the equality constraints with respect to the controls and the

states. The equality constraints for the AUV are the state equations and the

final position/pitch of the robot. The heading was not constrained.

5. MAIN FUNCTION, which calls all the above files. Here we initialize the nec-

essary parameters:

• the number of states (5)

• the number of controls (3)

• the number of nodes used to quantize the parameters (21).
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• the initial and final states

• initial and final times (tspan = [0..1] second)

• initial guesses for Lagrange multipliers (zeros)

• initial guesses for control history

– if turning left u1 = 1, u2 = 0 , u3 = 1 ∀t

– if turning right u1 = −1, u2 = 0 , u3 = 1 ∀t

6. ITERATE. Each iteration uses sequential quadratic programming to solve that

particular problem. The number of subproblems used depends on the initial

guesses for the Lagrange multipliers and controls.

E. Results

All simulations were performed with the robot center of mass at the origin (0,0,0). The

robot has zero initial heading and pitch angles α = 0, β = 0. All final positions were

1m magnitude from the origin. This was determined by the cooperative algorithm,

which has a maximum step size of 1m. The final pitch angle was set to be zero

because we want to ensure the robot maximizes its chances of detecting a signal from

the source; the heading angle, on the other hand, does not have any prescribed final

value.

With such a small step size, all maneuvers investigated were attainable within

30 iterations. Larger step sizes prove more difficult. The most difficult maneuvers for

the robot are those with the final position located behind the robot i.e. (−∆x) and

maneuvers requiring a change in z (±∆z).

Table XXVIII shows the results for changes in positions along one axis. They can

be seen in Fig.34 through Fig.36 The first row (+∆x) is simply straight line motion,
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row 2 is a 180◦ maneuver and rows 3 and 4 necessitate a 135◦ turn. The last two rows

(±∆z) require a complicated S-shaped maneuver. In row two, the integration time

was extended to allow the robot more time to get into position. For all 3 figures, the

initial and final positions of the robot are shown in black. For all times in between,

the robot body is in light grey and the propeller is shown as dark grey line.

Table XXVIII. Position changes along one axis

Final Number Integration Number of Error

Position of Nodes Time (sec) iterations

[0, 0, 1, 0, 0] 25 1 3 0

[0, 0,−1, 0, 0] 25 3 5 0.01

[0, 0, 0, 1, 0] 25 1 4 0

[0, 0, 0,−1, 0] 25 1 4 0.04

[0, 0, 0, 0, 1] 25 1 13 0.02

[0, 0, 0, 0,−1] 25 1 13 0.02



100

-0.5 0 0.5 1 1.5
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x

y

Fig. 34. Robot performing +1m ∆x maneuver.
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Fig. 35. Robot performing +1m ∆y maneuver.
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Fig. 36. Robot performing +1m ∆z maneuver.
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Table XXIX shows the robot performing maneuvers with position changes pre-

scribed along 2 axes. I have only presented one combination of the two axes in most

cases, since turning left produced the same number of iterations as turning right. As

in table XXVIII, final positions located behind the robot prolonged the integration

time and so I have also presented these. Turns demanding changes in the z-axis re-

quired the greatest number of iterations. When both −∆x and ∆z were combined,

it became necessary to change the number of nodes in order to find an optimal path.

Table XXIX. Position changes in two axes

Final Number Integration Number of Error

Position of Nodes Time (sec) iterations

[0, 0, 0.7, 0.7, 0] 25 1 5 0.03

[0, 0, 0.7, 0, 0.7] 25 1 5 0.02

[0, 0, 0, 0.7,−0.7] 25 1 30 0.05

[0, 0,−0.7, 0, 0.7] 10 4 17 0.04

[0, 0,−0.7, 0.7, 0] 25 3 9 0.04

Finally, table XXX gives the position updates prescribing changes in all three

axes. As before, the updates lying behind the initial position of the robot required

changes in the number of nodes used.
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Table XXX. Position changes in three axes

Final Number Integration Number of Error

Position of Nodes Time (sec) iterations

[0, 0, 0.57, 0.57, 0.57] 25 1 7 0.04

[0, 0, 0.57,−0.57, 0.57] 25 1 6 0.03

[0, 0, 0.57, 0.57,−0.57] 25 1 7 0.04

[0, 0, 0.57,−0.57,−0.57] 25 1 10 0.01

[0, 0,−0.57, 0.57, 0.57] 10 4 21 0.01

[0, 0,−0.57,−0.57, 0.57] 10 4 21 0.01

[0, 0,−0.57,−0.57,−0.57] 10 4 21 0.01
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Fig. 37. Grid of integration times needed for each maneuver. Light grey represents 1

second, medium grey represents 2 seconds and dark grey represents 3 seconds

Different maneuvers take different lengths of time. In order to implement this

path planning scheme onto the robot, we need to automate the choice for the tf , the

integration time. To simplify matters, we will assume the Ranger will only move in

2 dimensions: x and y. Fig. 37 shows a map of all the possible final positions within

a 1m radius of the center of mass. The colors represent the integration times needed

to reach them. Everything forward of the center of mass only requires 1 second. The

other two regions can be described using parabolas. x = −y2 approximately bounds

the light grey zone (2s integration time). x = −3y2 approximately bounds the dark

grey zone (3s integration time). These bounds guarantee very fast convergence for

the DPIP algorithm. All points can be reached within 6 iterations! This is incredibly

fast compared to the variational methods.
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F. Conclusions

DPIP apparently requires fewer iterations than fsolve or the genetic algorithm, how-

ever, this does not account for the subproblems computed by the interior points. fsolve

gives the fastest overall solution, particularly if we use intelligent first guesses. On

the other hand, fsolve was not able to impose the necessary constraints and many of

the optimal paths involved switching between forwards and reverse motion. In DPIP

all motion is forward, as seen from the body frame axis, which is a more efficient use

of the propeller and is more realistic.

The DPIP code is written in Matlab; if implemented in Fortran or C, DPIP

would be comparable to the fsolve method and almost certainly has the capacity to

work in real time on the robots.
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CHAPTER VIII

COOPERATIVE CONTROL WITH ROBOTS

To complete the system, DPIP was integrated into the cooperative/exhaustive search

algorithm as a means of performing path planning. The results performed in the

previous chapter were first extended to perform a series of maneuvers. Simulations

of the complete system will convince the reader that the system performs extremely

well.

A. The Importance of Heading Angle α

The positions of the robots are expressed in an inertial frame. The most lengthy

maneuvers lie in a region behind the robot, therefore it is important to know where

the next position is with respect to the tail. More importantly, the direction of turn

is determined by where the next position lies. If the direction of turn is not correctly

identified, the algorithm may not converge. First, it was important to convert the

regions where integration-time transition occurred. A body-fixed reference frame was

attached to the center of mass. The regions remain constant with respect to the body

frame. A 3-rotation cosine matrix is used to convert all points in the body frame to

the inertial frame.

{b} =




cos α sin α 0

− sin α cos α 0

0 0 1



{n} (8.1)

First define the change in position for the center of mass: ∆x = xfinal − xcurrent

and ∆y = yfinal−ycurrent. When the robot center of mass is at (0,0) the region ∆xb =

−(∆yb)
2 approximately bounds the 2s integration time zone. Using equation 8.1 the
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area for maneuvers requiring 2s integration is defined as

(cos α∆xN + sin α∆yN) ≤ −(− sin α∆xN + cos α∆yN) (8.2)

Likewise, when the robot center of mass is at (0,0) the region ∆xb = −3(∆yb)
2

approximately bounds the 3s integration time. So the area for maneuvers requiring

3s is defined as:

(cos α∆xN + sin α∆yN) ≤ −3(sin α∆xN − cos α∆yN). (8.3)

B. Simulations with the Robots

Since all code is currently written in Matlab, simulations were only performed with

one robot to reduce computational time. This was superimposed on the original

particle cooperative method (see Fig. 38). The algorithm was allowed to run ten

times to check for consistency. Simulations were repeated starting in each corner of

the search area to ensure the heading algorithm worked ( Fig. 39. through Fig. 42.).

The initial heading angle did not affect the performance of the system. In every case,

the robot followed the trajectory traced out by the particle mass.
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Fig. 38. Motion of robot as it swims in to the source
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Fig. 39. Motion of robot from top right corner superimposed on the trajectories of the

10 particles.
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Fig. 40. Motion of robot from top left corner superimposed on the trajectories of the

10 particles.
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Fig. 41. Motion of robot from bottom right corner superimposed on the trajectories

of the 10 particles.
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Fig. 42. Motion of robot from bottom left corner superimposed on the trajectories of

the 10 particles.
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C. Robustness Simulations

The effects of navigational error, position error and sensor noise were investigated

in order to fully test the capacities of the DPIP method. For these simulations, the

robots were placed in a surround configuration 8 meters from the origin.

Heading error caused no problems to the system. Even with a heading error of

30◦, the robot follows his trajectory perfectly. This is clearly seen in Fig. 43.
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y

Fig. 43. Full system with 30◦ heading error applied

Position error of ±0.1m was applied in the x and y directions. The robot again

followed his trajectory perfectly. Even though the maximum step in the cooperative

algorithm remained at 1m, DPIP still managed to reach the desired position at each

update. A simulation can be seen in Fig. 44.
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Fig. 44. Full system with ±0.1m position error applied in x and y directions
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10% sensor noise was introduced into the system. The errors mainly occurred

along the z axis, as shown in Fig. 45 and Fig. 46 Again, the paths coincide exactly,
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Fig. 45. Full system with ±10% noise (top view)

even with the maximum errors in each case. Further experimentation was not deemed

necessary since this will replicate the particle experiments.

D. Conclusions

Dynamic Programming with Interior Points is an excellent path planning method and

integrates well with the cooperative algorithm. Test simulations confirm the robot

would be able to follow the paths of the particle masses both for an ideal system and

in the presence of system errors. The robustness tests also confirm the validity of the
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Fig. 46. Full system with ±10% noise (side view)

particle simulations, presented in chapter II. The system shows a lot of promise and

is an exciting development for cooperative groups.
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CHAPTER IX

SUMMARY

A. Results

1. Particle simulations

• The 2D cooperative algorithm has been converted to 3D and is proven

robust to all the errors in the underwater system.

• A number of alterations were made to adapt the 3D algorithm to the robots

and the light sensor.

• The communications strategy was simulated and works effectively, al-

though it does significantly extend the time to convergence.

2. Robot simulations and path planning

• The equations of motion were developed using Kane’s equations.

• Optimal control was introduced and 3 methods proposed in order to achieve

the path planning. These were fsolve and Genetic Algorithms, (which both

used variational control to perform the path planning) and Dynamic Pro-

gramming with Interior Points or DPIP. Each method was required to

move the robot to any point within a 1m sphere of the center of mass.

• fsolve performed well, and found solutions even with randomized initial

guesses for the costates. A more intelligent guess was proposed and this

dropped the number of iterations dramatically. This was the most efficient

method, but it has no way of imposing constraints and therefore could not

guarantee a realistic path.
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• The genetic algorithm provided very disappointing results. It is unsuited to

path planning using this method. (Other groups have successfully applied

different methods using genetic algorithms).

• DPIP converged with few iterations and had the advantage of being able

to cope with both equality and inequality constraints. A strategy was

applied to enable the robot to determine the integration time and therefore

the speed of the vehicle for each 2D maneuver. The effects of the heading

angle were also discussed.

• DPIP was subsequently incorporated into the cooperative algorithm and

exactly followed the paths traced out by the original particle simulations.

The full system was tested for robustness and again matched the particle

simulations.
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