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ABSTRACT 
 
 

A Preliminary Investigation of the Effects of Environmentally Assisted Cracking on 

Natural Gas Transmission Pipelines.  (May 2005) 

Jason Wayne Curbo, B.S., University of Arkansas 

Chair of Advisory Committee: Dr. Richard Griffin 

 
 Concepts for the development of a model to predict natural gas transmission 

pipeline lifetime in a corrosive environment are constructed.  Primarily, the effects of 

environmentally assisted cracking (EAC) are explored.  Tensile test specimens from a 

sample of API 5L X-52 pipeline were tested in a simulated groundwater solution and 

subsequently analyzed.  The results suggested that the simulated environment ultimately 

reduced the ductility of the test specimens; however, no evidence of “classical” stress 

corrosion crack morphology was discovered.  However, corrosion pits up to 0.75 mm 

(0.03 in) were revealed during metallographic analysis.  A Marin factor analogy and an 

energy method concept are suggested and explored.  Ultimately, the test data set was too 

small for the results to be of any directly applicable significance.      
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INTRODUCTION     
 
 

Corrosion related deterioration of wall thickness in natural gas transmission 

pipelines (NGTP) is a major cause of pipeline damage and overall lifetime reduction.  In 

the period beginning January 1, 1991 and ending December 31, 2002 incidents attributed 

to corrosion damage resulted in 12 fatalities and expenses totaling $45,278,020.1  Such 

safety hazards and expenses are often unnecessary since corrosion related damage, if 

detected, can typically be repaired during routine inspections and maintenance.   

In general, pipeline maintenance is performed using isochronal (hours of 

operation), periodic (calendar intervals), as discovered, or alert schedule bases.  As such, 

the area receiving attention may or may not actually need service.  For instance, the 

Office of Pipeline Safety issued an alert notice that all operators with pre-1970 electric 

resistance welded (ERW) pipe should review, examine, survey, and consider hydrostatic 

testing.2  Certainly, 100% of this type of pipe was not in need of this level of inspection 

and testing, however, the uncertainty in existing conditions and the lack of an accurate, 

robust lifetime prediction model necessitated that a general alert be distributed.  If the 

existing condition of NGTP’s can be characterized and combined with a comprehensive 

lifetime prediction model, then the need for such “blanket” recommendations could be 

reduced.  Such a model would be instrumental in shifting the current maintenance 

paradigm into a more economically efficient program. 

Corrosion is by general definition the destructive result of an electro-chemical 

reaction between a metal and its environment.  Existing in numerous forms, corrosion 

                                                 
  This thesis follows the style and format of Corrosion Science. 
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and its kinetics cannot currently be accurately described by any one single model.  Past 

approaches in pipeline lifetime prediction in the Department of Mechanical Engineering 

at Texas A&M University include the development of a uniform corrosion growth rate 

model.  A deterministic approach was adapted from procedures developed by the 

Electric Power Research Institute and used to evaluate the remaining strength of a 

corroded pipeline.  Ultimately, three levels of increasing complexity were used to assess 

the remaining lifetime of the equipment.3  Continuing in the same spirit, the focus of this 

thesis is the initial development of a model describing the lifetime of a NGTP subject to 

environmentally assisted cracking (EAC). 
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FUNDAMENTALS OF ENVIRONMENTALLY ASSISTED CRACKING 
 
 

EAC is a general term for brittle mechanical failures resulting from a synergism 

between tensile stress and a corrosive environment.  In the absence of the tensile stress, 

the specific corrosive environment will typically produce a very slow corrosion growth 

rate.4  However, the combination of a susceptible material, tensile stress, and 

environment is capable of resulting in EAC.   

Essentially, EAC is a spectrum of various forms of corrosion including stress 

corrosion cracking (SCC), corrosion fatigue cracking (CFC), and hydrogen 

embrittlement or hydrogen induced cracking (HIC).5 

The stress may be applied, residual, or a combination of both.  The effects of 

residual stresses can result in the failure of a pipeline even when applied stresses are well 

below the specified minimum yield strength (SMYS) of the pipe material.  Recent 

research also suggests that pressure fluctuations may be required for crack initiation and 

growth.6 

The resultant cracking may be intergranular (between grains), transgranular 

(across grains), or both; however, the crack path is always normal to the tensile 

component of stress.  Transgranular failures are less common and typically propagate 

across grains on specific crystal planes, e.g., {100}, {110}, and {210}.5  The mode of 

failure also appears brittle in nature, even when the base material is normally ductile.  

Failures of this type can be particularly insidious because there is usually no 

manifestation of a problem before cracking appears.4  Complicating matters further, 

magnetic flux leakage inspections are incapable of locating these cracks.7   
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Stress Corrosion Cracking 

Stress corrosion cracking (SCC) is the brittle failure of a material exposed to a 

corrosive environment and a constant tensile stress – the corrosion system depicted in 

Figure 1.  Typically, temperature, pressure, solute species, solute concentration, pH, and 

electrochemical potential are the variables used to describe the environment.  Often, 

specific ions that are present in the environment are the cause of cracking.  For instance, 

carbonate / bicarbonate environments have been shown to produce SCC in carbon 

steels.5  In most cases, the species affecting one system will not have any effect on 

materials of a different type, e.g., a carbonate / bicarbonate environment may effect 

carbon steels but may have no SCC effect on aluminum alloys.  In addition, the species 

responsible for SCC is typically not required to be present in large quantities or in high 

concentrations.  Environments causing SCC in specific alloys are well documented and 

can be used as a design tool to predict whether or not cracking will occur for that 

particular alloy.  However, environments as simple as pure water and dry hydrogen have 

been known to contribute to SCC.  

 

 

 

 

 

 

Figure 1.  Illustration depicting a corrosion system. 

Material 

Environment Stress 
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Frequently, SCC producing substances are present at levels normally considered 

harmless, either as components or as impurities in the environment.  However, some 

service conditions can cause locally high concentrations of substances to develop.  In the 

case of a warm buried pipeline, evaporation of ground water allows impurities to 

concentrate on the pipe surface thereby contributing to SCC.  Pre-service conditions are 

also capable of resulting in SCC failure.  For instance, fabrication processes can leave 

behind residues, shipped or stored pipe may not be protected from a corrosive 

atmosphere, and piping may be exposed to potentially damaging environments during 

installation, e.g., welding flux, lubricants, etc. 

The conditions for SCC involve service stresses, but often the primary cause can 

be attributed to manufacturing or installation processes, e.g., welding, thermal 

processing, surface finishing, and assembly.  High levels of residual stresses are capable 

of being produced by each process. Various other sources resulting in stress 

concentrations often contribute to mechanical-environmental failures as well.  Such 

sources include accidental third party damage, inclusions, inadequate heat treatment 

procedures, thermal expansion, and deficiencies in welding. 

Research suggests the existence of a threshold stress level.  The threshold stress 

being defined as a stress level below which the probability of SCC occurrence is very 

low.  This stress level depends primarily on the composition of the environment, 

metallurgical structure of the alloy, and temperature.  In the laboratory, it has been 

shown that cracking may occur at an applied stress as low as 10% of the yield strength; 

for other metal-environment combinations, the threshold stress is approximately 70% of 
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yield strength.8  Accordingly, there also exists a corresponding threshold stress intensity 

factor KISCC. As seen in Figure 2, the crack propagation velocity (V) of SCC systems is 

often depicted as a function of the applied stress intensity (KI).8  

Figure 2.  Propagation rate versus the crack tip stress intensity. 

 
 

The curve in Figure 2 consists of three characteristic stages.  In stage 1 the crack 

growth rate increases rapidly with stress intensity above the threshold, KISCC.  A plateau 

where the velocity is independent of stress intensity characterizes stage 2.  Similar to 

stage 1, the velocity increases rapidly with increasing KI in stage 3. 

Of particular interest is the regime where the crack propagation velocity is 

independent of the driving force.  This plateau velocity is a function of the particular 

alloy-environment system and may be greatly affected by alloy composition, heat 
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treatment, pH, and electrochemical potential.  Independence of the driving force 

indicates that the crack growth rate must be controlled by the rate of a chemical reaction 

or some other nonmechanical factor.8 

SCC is capable of occurring in most metals under certain conditions.  

Susceptibility of a given metal to SCC in a specific environment depends on its bulk and 

local chemical composition as well as its metallurgical structure.  Significant aspects 

include phase distribution, grain size and shape, grain boundary precipitation, grain 

boundary segregation, cold work, and inclusion type and distribution.  In general, metals 

with smaller grain sizes are more resistant to SCC than the same metals having larger 

grain sizes, regardless of whether or not the cracking is transgranular or intergranular.8 

Local differences in metal composition, thickness of the passive film, 

concentration of species, and stress concentration may determine the site of SCC 

initiation.  For instance, thinning of the passive surface layer may result in pitting or 

grain boundary corrosion.  The pit or trench may then act as a stress riser and thus serve 

as a site for the initiation of SCC.  SCC may also be triggered by a preexisting 

mechanical crack, surface defect, fabrication flaw, or other surface discontinuity.  

 Electrochemical potential also has a critical effect on stress corrosion cracking, 

as seen in Figure 3.  A passive film is apparently a prerequisite for SCC, but the two 

zones of susceptibility occur at the potentials where the passive film is less stable.  In 

zone 1, SCC and pitting may occur simultaneously.  Pits may result in stress 

intensification; however, they are not necessarily a prerequisite for the formation of 

SCC.  In zone 2 pitting does not necessarily occur, although SCC may still develop from 
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the weakness of the passive film at the specific potential range.5  Zone 2 SCC is typified 

by carbon steel in carbonate / bicarbonate solutions. 

 

 Figure 3.  Potential versus the log of current density.  

 
 

Intergranular SCC has been detected on the external surfaces of buried carbon 

steel linepipe used to transport natural gas.  Carbonate and bicarbonate at 75°C (167°F) 

tends to be the critical environment.5  These anions can be found in mill scale, holidays 

in protective coatings, as well as beneath the coatings in the presence of cathodic 

protection  

Corrosion Fatigue Cracking 

 Corrosion fatigue cracking (CFC) is the brittle failure of a material caused by a 

fluctuating stress in a corrosive environment.  Accelerated crack initiation and 
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propagation typically result where neither the environment nor the stress acting alone 

would be capable of producing a crack.  Both alloys and pure metals are susceptible and 

no specific environment is required.  Corrosion products often accumulate during the 

discontinuous propagation of the crack front.5 

 The frequency of cyclic stress also plays a significant role.  Only minor 

variations in loading are required to accelerate the onset of CFC.  Lower frequencies 

generate larger crack propagation per cycle while very high frequencies may eliminate 

the effects of the corrosive environment.5  Failures originally thought to be purely SCC 

may actually be the result of a high tensile stress combined with a low amplitude and / or 

low frequency cyclic stress.  For example, some EAC of NGTP’s has been traced to 

vibrations near compressor stations.9   

Increasing the R value, R being the ratio of minimum to maximum stress, 

generally decreases corrosion fatigue resistance.5  At higher temperatures when creep is 

possible, R can also have an effect.  In noncorrosive environments at ambient 

temperature the effect of R is much lower and may have no effect on fatigue. (1) 5  In a 

fatigue loading situation corrosion reduces the stress amplitude, shortens the time to 

failure, and eventually eliminates the endurance limit.  

Notches, surface roughness, and other stress raisers are known to increase 

susceptibility to corrosion fatigue.  Surface damage resulting from pre-exposure to a 

corrosive environment is also capable of degrading subsequent fatigue life.  Often, in 

                                                 
1 Ambient meaning a room temperature of approximately 24°C (75.2°F) and no applied voltage. 
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carbon steels, cracks originate at hemispherical corrosion pits serving as stress raisers.8  

Surface pitting, however, is not necessarily required for CFC of carbon steel. 

   CFC is similar to SCC in that a brittle fracture occurs in a material that would 

normally be ductile in the absence of a corrosive environment.  Obviously the term 

fatigue in CFC implies some form of cyclic rather than static stress as typically found in 

SCC, however, each mode must have at least a partial tensile component.  CFC cracks 

also propagate in a direction perpendicular to the principal tensile stress, as in SCC.  

Unlike SCC, CFC does not require the presence of a specific corrosion system, i.e., a 

specific alloy - environment combination.  Exposure to any type of corrosive solution 

will accelerate fatigue failures of both pure metals and alloys.  Corrosion products are 

also more likely to be present in cracks produced by CFC as the cracks typically form 

more slowly.  In the case of SCC, corrosion products are usually absent if the material 

has not been exposed for a great length of time after crack formation.  In contrast to high 

pH SCC, CFC fractures are often transgranular with a slight amount of branching, 

similar to fatigue failures.5   

Hydrogen Induced Cracking 

 Hydrogen induced cracking (HIC) is defined as a brittle mechanical fracture 

initiated by the penetration and subsequent diffusion of hydrogen into the crystal 

structure of a material, particularly highly stressed areas associated with notches.  

Exposure to hydrogen may occur prior to manufacturing or from hydrogen present in the 

environment.  For example, the reduction of water or acid yield hydrogen in the 

following reactions: 
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H2O + e- → H + OH- (1) 

H+ + e- → H (2) 

 HIC effects are often reversible prior to the formation of an actual crack.  The 

original properties may be restored through low temperature baking treatments that 

allow dissolved hydrogen to escape.5   

Slowly applied static stresses are more likely to allow the hydrogen to diffuse to 

the potential crack planes.  In this regard, HIC has also been referred to as static fatigue, 

sustained-load cracking, or hydrogen-delayed fracture. 

 Occurring most often in high-strength steels, HIC can also appear in softer steels 

that have been heavily cold worked.  The hardness, stress level, duration of the sustained 

load, and the concentration of hydrogen all influence the likelihood of cracking.  HIC is 

most prevalent at lower temperatures and is all but eliminated in steels exposed to 

temperatures above 200°C (392°F).8 

 HIC typically initiates below the root of a notch.  The initiation of HIC may also 

be advanced by tensile residual stresses.  The crack path is often intergranular, however, 

transgranular morphology may be present.    

For a specific alloy there is a stress-intensity value, KI, below which HIC does 

not typically occur.  Experimental in nature, this threshold crack tip stress-intensity 

factor depends on the nominal strength of the unembrittled material, the amount of 

hydrogen present in the steel, the location of the hydrogen in the microstructure, and the 

presence of other embrittling elements or microstructural phases.8 
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 Similarities to SCC include a brittle fracture occurring in a corrosive 

environment in the presence of a constant tensile stress.  Cathodic polarization, however, 

is known to enhance HIC but may suppress SCC.  HIC cracks are typically unbranched 

while SCC cracks normally follow a branched pattern.  HIC may be produced in a 

susceptible alloy if hydrogen is liberated on the surface in the presence of a corrosive 

environment.  Alternatively, SCC generation requires a specific alloy-environment 

combination.  The occurrence of HIC in pure metals has been observed more often than 

that of SCC, however alloys are still generally more susceptible.  
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STRESS CORROSION CRACKING MECHANISM 
 
 
 A number of mechanisms have been proposed to account for crack propagation 

of stress corrosion cracks.  The primary focus will be on the slip dissolution or film 

rupture model.  

Slip Dissolution / Film Rupture Model  

A simple mechanism, the slip dissolution/film rupture model has been 

successfully applied to predict stress corrosion cracking behavior in a number of alloy-

environment systems including pipeline steels in underground environments.10  The 

model sets forth two conditions for the subcritical advance of a crack.11  The first 

criterion being that the sides of the crack must be protected from excessive corrosion.  If 

this criterion is not fulfilled, environmental attack will typically give way to pitting or 

general corrosion rather than cracking.  For this reason, the environments in which this 

model applies must be passivating, i.e., a protective film is stable inside of the crack.  

However, this condition may be offset under fatigue conditions when the mechanical 

crack propagation rate ensures that the total penetration rate exceeds the oxidation rate of 

the sides.11 

The second criterion is the accumulation of strain at the crack tip and the 

subsequent rupture of the oxide film.  Specifically, slip dissolution refers to the 

emergence of dislocations at the crack tip surface and the resulting rupture of the passive 

film.10  Film rupture, on the other hand, refers to the process where strain at the crack tip 

causes the relatively brittle passive film to rupture.  The increase in crack tip strain 

occurs either because of an increasing stress, or because of constant stress creep 
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processes.  After the film has ruptured, the advance of the crack tip is controlled by 

oxidation of the fresh surface as illustrated in Figure 4. 

Figure 4.  Schematic of an SCC mechanism. 

 

 

For a given crack tip environment, potential, and material condition, the 

propagation rate will ultimately be controlled by both the oxidation rate and the 

frequency of oxide rupture events.  Therefore, using Faraday’s law and assuming no film 

rupture, the maximum environmentally controlled crack propagation rate (Vctmax) is 

related to the anodic current density (ia) by Equation 3:10 

Vctmax = (ia M)/(z F ρ)   (3) 

where M is the atomic weight of the metal, ρ is the density of the crack tip metal, F is 

Faraday’s constant, and z is the number of electrons involved in the overall oxidation of 

an atom of metal.  For potent cracking environments, crack growth rates of the order of 
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10-6 mm/s are typical for common engineering alloys.10  The development and rupture of 

passive films, however, usually result in much lower penetration rates than those 

predicted by the maximum Faradaic rate.  Ford discusses a model that attempts to 

account for these developments as described in Equation 4:11 

 Vct = (M Qf εct) / (z ρ F εf)           (4) 

where Qf is the oxidation charge per film rupture event, εct is the crack tip strain rate, and 

εf is the fracture strain of the passive film. 

 The validity of this relationship is limited, however, when crack tip strain rates 

are either very high or low.  At low crack tip strain rates, the tip propagation rate 

approaches the oxidation rate of the crack sides thereby leading to a blunt geometry and 

the eventual arrest of the crack.  When the crack tip strain rate is high, ductile fracture 

may outpace dissolution of the bare surface.12  For ideal SCC conditions, deformation 

should occur at a faster rate than active area film growth, but not so fast as to outpace the 

dissolution process.  Figure 5 illustrates that above a critical strain rate, film formation 

cannot keep up with mechanical plastic strain and ductile failure will occur.  At strain 

rates below the critical value, film formation is rapid enough for film ruptures to heal 

before corrosive events occur again resulting in ductile failure.  Figure 5 also illustrates 

that at low strain rates hydrogen may penetrate into the lattice and reduce ductility.5 
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Figure 5.  Schematic effect of strain rate on ductility. 

 
 

As long as K is somewhere between KISCC and KIC the cracking should be controlled by 

the slip dissolution/film rupture process.  The possible steps that can effect crack 

propagation by the film-rupture model include: the mechanical properties of the film, the 

rate of repassivation of the film, the creep rate of the metal at the crack tip, and the 

kinetics of the corrosion reactions.10   

 For constant or increasing load conditions, the SCC propagation rate may be 

defined by Equation 4.  However, when cyclic loading conditions are present the crack is 

also advancing by cyclic plastic deformation.  These two propagation mechanisms, 

oxidation and fatigue, are considered to occur independently of one another and are 

therefore additive.11 

Stable Oxide Film and Crack Initiation 

 Several questions arise from the film rupture model, of significant importance is 

the formation and properties the oxide film.  The passive film by definition is a thin 

surface film developed under oxidizing conditions with high anodic polarization.5  
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Figure 6 indicates that the oxides Fe2O3 (hematite or ferric oxide) and Fe3O4 (magnetite) 

are stable over various portions of the Pourbaix diagram for iron.5   

 

 
 

Figure 6.  Pourbaix diagram for iron.  

 
 
 

The thin, brittle nature of the film impedes its accurate examination, however, 

thicknesses on the order of 1 to 10 nm and fracture strains of 0.003 have been 

measured.13  In a system consisting of an underground pipeline and its surrounding soil, 

the oxide films are composed primarily of Fe3O4 and FeCO3.12  Their formation is the 

direct result of electrochemical reactions shown in Figure 7.  If the amount of O2 is 

limited, then magnetite (Fe3O4) can be formed and if carbonate ions (CO3
2-) are present 

in the groundwater they can combine with the iron ions (Fe2+) to form ferrous carbonate 

(FeCO3).  These oxide films, in effect, act as barriers to corrosion, thereby reducing the 

anodic dissolution rate.  Ultimately, Figures 6 and 7 illustrate that a chemical reaction 
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generating a stable oxide film is capable of occurring on the surface of an iron-based 

pipeline in an underground environment.  The stable oxide film is considered one of the 

necessities for the development of SCC. 

 

Figure 7.  Illustration of the corrosion of iron. 

 
 
 

The initiation of SCC may be rooted in local differences in metal composition as 

well as the thickness of the oxide film.  Grain boundary segregation or precipitation can 

cause the passive layer to be thinned locally allowing a form of grain boundary attack to 

occur.8  It is possible for this corrosion pit as well as pre-existing flaws to act as stress 

raisers and serve as an initiation site for SCC.  Once initiated, the formation of oxide 

films inside of the crack indicate that a cathodic region is formed along the crack walls 

and that an anodic region develops at the bare crack tip after the localized strain results 

in rupture of the film.  After rupture of the film the process begins again; the bared metal 

dissolves and forms another passive layer.  The developing crack may become dormant, 
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coalesce with another crack, or continue to propagate to the point of component failure.  

Failure ultimately depends on the specific load, geometry, and material of interest. 
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PIPELINE MATERIAL 

 
 Although pipelines are manufactured from materials conforming to any number 

of different specifications, the focus of this thesis are those pipes produced under API 

Specification 5L “Specification for Line Pipe.”  The specification covers seamless and 

welded steel piping that may include plain-end, threaded-end, belled-end, through-the-

flow-line, and pipe with ends prepared for special couplings.  Ultimately the purpose of 

the standards is to provide pipe for use in conveying gas, water, and oil in both the oil 

and natural gas industries. 

 Specifically, the pipeline material considered is a section of 168.30 mm (6.63 in) 

diameter, API 5L X52 PSL-2 electric resistance welded pipe with a wall thickness of 

7.10 mm (0.28 in) manufactured by the Tex-Tube Company in Houston, Texas.  The 

chemical analysis in wt% is as shown in Table 1: 

 

TABLE 1   

Manufacturer’s Chemical Analysis 

C Mn P S Ni Cr Cu 

0.071 0.700 0.008 0.007 0.011 0.014 0.022 

 
       

Mo Si Al V Nb B Ca 

0.006 0.134 0.028 0.001 0.017 0.0002 0.0030 

 

 

The complete chemical analysis for the material can be found in Appendix A. 
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 Base material for the pipe is generally steel strip, sheet, or plate in coil form that 

is either rimmed or killed.  Surface condition upon arrival to the pipe mill may be 

pickled, grit blasted, or as milled.  All piping produced at this specific mill is continuous 

cast steel produced using the basic oxygen or electric arc furnace processes and typically 

finished to an ASTM grain size between 8 and 9.  Ultimately, the transformation of the 

flat strip into welded pipe is the result of a series of processes including slitting, metal 

forming, welding, sizing, cutting, finishing, testing, and inspection.  Immediately after 

welding and flash removal, the seam is normalized to a minimum temperature of 871°C 

(1600°F).  In effect, the heat treatment relieves residual stress and softens or removes the 

martensitic area associated with the heat-affected zone of the weld line thereby 

providing a controlled microstructure.   

API 5L X52 requires that the material’s mechanical properties conform to the 
values shown in Table 2. 

 
 
 

TABLE 2   

API 5L X52 Mechanical Specifications 

Yield Strength , 
Minimum            

(MPa / ksi) 

Yield Strength, 
Maximum           
(MPa / ksi) 

Ult. Tensile 
Strength, Minimum 

(MPa / ksi) 

Ultimate Tensile Strength, 
Maximum                     
(MPa / ksi) 

359 / 52 531 / 77 455 / 66 758 / 110 

 

 

According to the data supplied by the manufacturer, the yield strength of the pipe sample 

was 424.7 MPa (61.6 ksi), the ultimate strength was 477.8 (69.3 ksi), the % elongation 

was 33%, and the Rockwell B hardness was 87. 
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ENVIRONMENTAL CONSIDERATIONS 
 
 

For the purposes of this thesis, the environment consists of the external 

surrounding soil; internal product composition is not considered relevant to the 

development of external SCC colonies.  To a certain extent, the temperature of the pipe's 

internal product is part of the environment in as much as it effects the temperature of the 

solution at the pipe to soil interface. 

Possibly the most important problem in the avoidance of failures by SCC is 

predicting the environmental conditions that actually initiate this type of failure. 

The susceptibility of a material depends not only on the electrolyte composition, 

temperature, and system potential, but also on the properties of the metal.  Therefore, 

environmental requirements to initiate cracking will vary from alloy to alloy.  For 

example, materials that are more reactive, such as carbon steels, require the environment 

to be conducive to the development of a passive film, hence the cracking of steels in 

carbonates.  On the other hand, titanium alloys that easily form protective oxide films 

crack most easily in the presence of halide ions.14  

Carbonate / Bicarbonate 

 It was once believed that only solutions containing nitrates and hydroxides were 

capable of producing cracks in ferritic steels. However, nitrate induced SCC has only 

been observed to occur at potentials more positive than approximately -0.4 V (SCE) 

while field failures have historically occurred at potentials considerably more negative.15  

Cracking from hydroxide solutions, on the other hand, occurs in a potential range of -0.9 

to -1.1 V (SCE) with the necessary concentration of hydroxide ions in the solution 
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resulting in an electrolyte pH of approximately 14.15  Concentrations of hydroxides 

necessary to result in a pH that high typically result in considerable disbonding of the 

pipeline's protective coating, including: coal tar, asphalt, and polyethylene tapes; 

however, there is no evidence of such massive disbonding in SCC areas.15 

 Research suggested the existence of other ion species capable of producing SCC 

in buried pipelines.  Liquid samples taken between coatings and the pipeline surfaces 

near SCC failures yielded negligible or near negligible traces of nitrates and 

hydroxides.16  The samples were, rather, carbonate / bicarbonate solutions.  Crystals of 

sodium bicarbonate were also found near SCC failures, suggesting that heat transfer 

from the internal product may be necessary to concentrate the solution and obtain the pH 

measured at failure, approximately 9 to 10.16  Subsequent, laboratory tests revealed that 

concentrated solutions simulating those found in the field near SCC failures were 

capable of generating SCC in pipeline steels, powerful evidence that the critical 

environment for SCC is a carbonate / bicarbonate solution.15    

 How does this cracking environment develop?  There is very little doubt that 

mild coating deterioration from third party damage will allow the pipe surface to come 

into contact with groundwater.  It is also highly possible that the groundwater will 

contain some level of carbon dioxide as the result of decaying organic matter in the 

surrounding soil.  For clarification of the relevance of these facts, consider that as the 

corrosion process proceeds, hydrogen ions will be consumed in the reduction reaction 

(hydroxyl ions also appear in the solution as the hydrogen ion concentration falls) and 

the solution pH will increase.  Experimentation in simulated groundwater saturated with 
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carbon dioxide indicates a resistance to this pH increase until a value of approximately 

6.5 is reached, at which point the pH will increase sharply until reaching an approximate 

value of 9.5 and again meeting a resistance.  These resistances are attributed to the 

existence of "side" activities in which the dissolved carbon dioxide is converted to 

bicarbonate ions at a pH of 6.5 and bicarbonate is converted to carbonate at a pH of 

approximately 9.5.15  Equations 5 through 7 illustrate these reactions. 

CO2 + H2O ←→ H2CO3    (5) 

H2CO3 ←→ H+ + HCO3
-    (6) 

HCO3
- ←→ H+ + CO3

2-    (7) 

Further experimentation suggests that hydroxide ions can also be produced when 

cathodic current from a protection system reaches the surface of a pipeline.  Ultimately, 

the pH of the surrounding medium is increased to a value dependent upon the amount of 

dissolved carbon dioxide.  If the amount is too low, then the pH will increase to 

approximately 11 or 12 and SCC typically will not occur.  However, if the dissolved 

carbon dioxide content is appropriate then the pH will remain around 9.5 and the 

solution will be buffered by the equilibrium between the carbonate and bicarbonate.15  

At this point, it has been demonstrated that a carbonate / bicarbonate environment with a 

pH of approximately 9.5 is capable of being generated at the surface of a buried pipeline.  

In the interest of being thorough, it should also be noted that the temperature of the 

buried pipeline plays a role in the concentration of the electrolyte.  If the water is 

allowed to evaporate, then the carbonate / bicarbonate solutions can reach saturation 

resulting in the precipitation of carbonate / bicarbonate crystals.  Parkins' research also 
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suggests that at a given temperature, the potential required for cracking will become less 

negative as solution pH is decreased and that crack velocity is directly proportional to 

temperature.15   

The critical potential for SCC has been determined using polarization curves 

(current density vs. potential) for pipeline steel in carbonate / bicarbonate solutions.  

Such curves indicate a peak in current density at a potential of approximately -0.65 V 

(SCE).15  The peak is followed by current decay suggesting the formation of a film after 

high levels of anodic activity, both of which are activities necessary to apply the slip 

dissolution / film rupture model for SCC.  Open-circuit potentials for a buried pipeline 

are typically in the range of or less negative than -0.3 to -0.2 V (SCE).15  This 

observation along with other studies by Parkins imply that cathodic protection working 

in concert with various surface conditions place the pipeline into the appropriate 

cracking potential.     

When the bulk environment is known to promote SCC, the potential for failure is 

obvious. If the corrosive solution is created by a service-induced reaction such as a high 

local concentration caused by heat transfer and geometric irregularities, determination of 

SCC initiation becomes more difficult. 

As such, the characteristics of the bulk and local environments become important 

considerations.  If the correct composition is used to simulate the bulk environment then 

it becomes necessary to determine whether or not it remains constant at the metal-

solution interface, as well as the crack tip region.17 
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 As described previously, gas transmission lines are capable of generating a 

carbonate / bicarbonate solution at their surface, typically the result of a disbonded 

coating combined with carbon dioxide dissolved in the soil.12  However, it is still 

necessary to consider the possibility of local concentration changes within the cracks 

themselves.  The determination of the occurrence of composition and potential changes 

within cracks is surrounded with difficulty.  If there is a small or restricted volume of 

liquid then the chemistry of the local solution may change drastically from that of the 

bulk.  In certain instances local acidity may even develop due to a hydrolysis reaction 

within the crack walls.14  Additionally, the potential in a crevice may move in and out of 

the range believed to generate SCC depending on the development of both the internal 

passive film and hydrogen gas bubbles, the later causing an increase in potential from 

the cathodically protected value.15 

Complicating matters further, laboratory stress corrosion studies are typically 

carried out over a period of days, when in reality SCC may develop over a period of 

months or years.  According to research, the pH in a carbon steel crevice is strongly a 

function of time as well as wet / dry cycling.18  As such, short-term laboratory tests may 

not accurately reproduce the long-term nature of the field environment.  
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EXPERIMENTATION 
 
 
Theory 
   

The development of a purely mechanistic model requires a complete 

understanding of the underlying SCC mechanisms as well as its relation to engineering 

parameters.  Although the slip dissolution / film rupture process is generally believed to 

be responsible for SCC, the actual mechanism is not exactly understood.  Therefore, a 

purely mechanistic approach based on current understanding does not provide a 

comprehensive foundation for model development. On the other hand, a purely 

empirical approach requires the availability of an enormous amount of data covering all 

significant variables; some having complex nonlinear synergistic effects.19  The lack of 

comprehensive data, therefore, makes an effective empirical model difficult to develop.  

As an option, a semi-empirical approach based on currently accepted SCC mechanisms 

combined with data extracted from experiments might provide useful information for the 

development of a new growth rate model. 

In certain instances, a critical crack depth can be determined from fracture 

mechanics principles, i.e., through a comparison of the stress intensity factor KI with the 

fracture toughness of the material KIC.  This critical crack depth could possibly be 

combined with the time to failure to provide an average rate for crack growth.  However, 

in this study, the crack initiation time cannot be accurately separated from the overall 

time-to-failure.  Complicating matters further, the crack geometry cannot be known prior 

to initiation; hence KI must be based on an assumed geometry that may or may not 

reflect that of the actual crack.  Further, SCC typically forms in colonies - clusters of 
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cracks that initiate, propagate, coalesce, and possibly hibernate at different rates.  A 

model that predicts the behavior of one single crack initiating and developing to the 

point such that it is capable of causing failure without interaction from adjacent cracks 

therefore lacks credibility. 

Measurable quantities considered in this thesis are time, load, extension, pH, 

temperature, and potential.  The challenge then is to utilize these measurements in the 

development of a pipeline lifetime prediction model.  Considering the uncertainties 

associated with crack initiation time, geometry, and the effects of coalescence, the 

development of a "reduction factor" method of characterizing the critical EIC systems is 

attractive - the critical systems broadly being the environment, the material, and the 

loading.  For instance, an average pipeline lifetime could be adjusted based on factors 

for material, environment, and load.  As an analogy, consider the use of Marin factors 

when determining the endurance limit of a component subjected to a cyclical load:  

Se = ka kb kc kd ke Se'  (8) 

Where Se is the endurance limit of the part, ka through ke are factors that adjust for 

surface, size, load, temperature, and miscellaneous effects, and Se' is the endurance limit 

of the test specimen. 

 To further elaborate, consider the following equation: 

LC = C1  C2 ... Cn LA (9) 

Where LC is the predicted lifetime of the pipeline, C1 through Cn are specific corrosion 

mode reduction factors (uniform corrosion, EAC, etc.), and LA is the lifetime of a test 

specimen.  More specific to the current interests: 
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LC = C1 LA         (10) 

Where C1 is the reduction factor for EAC and consists of subfactor reflecting the 

dependency on environment (DE), load (DL), and material (DM), see Equation 11. 

C1 = DM DE DL   (11) 

The subfactor may subsequently be broken down to any level at which the effects of 

various influences are known with some degree of certainty: ultimate strength, surface 

condition, pH, soil resistivity, temperature, internal pressure, load frequency, etc.  Table 

3 shows a partial example of the hierarchy. 

 

TABLE 3   

Subfactor Hierarchy 

 C1  

DM DE DL 

F1 - Pipeline Grade (API) G1 - Temperature H1 - Internal Pressure 

F2 - Age G2 - pH H2 - Frequency of Loading 

F3 - Surface Condition G3 - Potential H3 - Intensification Factors 

F4 - Other G4 - Other H4 - Other 

 

 

The difficulty arises in the determination of the relationship between each one of 

these quantities and its associated sub-factor and ultimately the lifetime itself.  Clearly it 

is outside the scope of this thesis to fully explore and develop relationships for all of the 

pertinent variables.  The focus, rather, will be on the data made available through 

constant extension rate testing (CERT). 
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For a given extension rate, the time-to-failure for a specimen in a corrosive 

environment should be less than that of a specimen in ambient conditions.  Since all 

other factors are equal, i.e., the only difference in the two tests is the corrosive 

environment, the reduced time-to-failure is presumed to be exclusively attributable to the 

effects of the corrosive environment. The ambient specimen should fail in a predictable 

ductile manner, while the specimen in the corrosive environment should exhibit a failure 

that is considerably more brittle if EAC is, in fact, present.   

Experimental Description 

The overall experiment consists of 6 constant extension rate tests of the X52 

pipeline steel; 3 in ambient conditions and 3 in conditions simulating the external surface 

of an underground pipeline.  The ambient tests are intended to generate a baseline for the 

comparison of the behavior observed in the corrosion tests.  Each of the three ambient 

tests will be performed at a unique extension rate ranging from 2.54x10-4 mm/s to 

5.08x10-5 mm/s (1x10-5 in/s to 2x10-6 in/s) in accordance with the recommendations 

provided in ASTM Standard G 129.  The corrosion tests will then be performed at the 

same extension rates as their ambient counterparts.  Ultimately, data extracted from the 

corrosion tests will be compared to the baseline data to examine the effects of the 

corrosive environment.  

Due to the complex nature of varying soil compositions, specific soil samples are 

not included in this analysis.  Rather, the environment is reproduced using a groundwater 

simulation solution replicating environmental parameters known to produce cracking 

conditions: 0.11 g/L of potassium chloride, 0.49 g/L of sodium bicarbonate, 0.18 g/L of 
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hydrated calcium chloride, and 0.13 g/L of hydrated magnesium sulfate.20  Test 

conditions consisted of a temperature of 75°C (167°F), pH of approximately 9, and a 

potential of -0.65 V SCE.15 

Equipment and Setup 

The experimental setup for both environments consisted of a Cortest constant 

extension rate test machine controlled by a Cortest SC 12 controller.  Time, load, and 

crosshead extension data were acquired using a Soltec 1243 strip chart recorder.  The 

pipeline simulation tests included the addition of a Cortest 316 stainless steel and glass 

environmental chamber, Cortest model HT-10 temperature controller, an Orion model 

SA520 pH meter, and an AIS Model PEC-1 potentiostat with a graphite counter 

electrode, and a Fisher Scientific 13-620-258 saturated calomel electrode (SCE) for 

reference.  See Figure 8 for an illustration of the experimental setup. 

 
Figure 8.  Schematic of the experimental setup. 
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The control scheme for the CERT was such that the jack screw motor drive rpm 

was the only operator input.  As such, it was necessary to determine the relationship 

between motor rpm and crosshead extension rate (calibration data can be found in 

appendix B).  Ultimately, the goal was to achieve the same crosshead extension rate for 

tests 1 and 4, 2 and 5, and 3 and 6. 

Test Specimens  

As shown in Figure 9 the test specimens were machined to dimensions that 

would not exceed the capacity of the CERT machine. 

 

Figure 9.  Diagram of the CERT specimen. 

All dimensions are in mm. 
 

 

Since the major thread diameter of the specimen is limited by the wall thickness 

of the available pipe section, the geometry does not conform to any known standard.  

The unique nature of the specimen also required the machining of two new adapters to 

allow installation into the CERT machine.  In order to conduct CERT’s on this material 

the pipe sections were machined into specimens with geometry appropriate for use in the 
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Cortest load frame.  The specimens were cut from longitudinal sections of the pipe wall - 

the available pipe diameter and thickness were much too small to allow specimens to be 

cut from lateral sections.  The sections were then turned on a lathe to achieve the desired 

dimensions. In both the ambient and corrosion tests the specimens were installed as-

machined, i.e., they were not polished or ground, the as-machined dimensions are listed 

in Table 4.  A 25.4 mm (1.0 in) gauge length was marked on each specimen and 

ultimately used to determine the % elongation. 

 

TABLE 4   

Initial Dimensions of the Test Specimens 

Specimen Initial Gauge 
Length (mm/in) 

Initial Gauge 
Diameter (mm/in) 

Initial Area 
(mm2/in2) 

1 25.40 / 1.00 5.08 / 0.20 20.27 / 0.03 

2 25.04 / 0.99 5.08 / 0.20 20.27 / 0.03 

3 25.17 / 0.99 5.08 / 0.20  20.27 / 0.03 

4 25.17 / 0.99 5.05 / 0.20 20.03 / 0.03 

5 25.17 / 0.99 5.08 / 0.20 20.27 / 0.03 

6 26.09 / 0.99 5.08 / 0.20 20.27 / 0.03 
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EXPERIMENTAL RESULTS AND DISCUSSION 
 
 
CERT Test Results 

At the conclusion of each test, the overall extension of the crosshead and the test 

duration were used to determine the average extension rate as shown in Table 5.  From 

the difference in the fracture stresses shown in Table 6 it appears that the corrosive 

environment did have an effect on some of the mechanical behaviors of the specimens.  

Of particular note were the differences in reduction of area between samples 1 and 4 and 

3 and 6.  This drop in the reduction of cross sectional area is indicative of a loss in 

ductility - an observation associated with EAC.  Curiously, the drop in reduction of area 

between specimens 2 and 5 was much less pronounced. 

 

TABLE 5   

CERT Data 

Test Duration 
(hr) Extension Rate (mm/s) Final Gauge 

Length (mm / in) 

Final 
Gauge 

Diameter 
(mm / in) 

Final Area 
(mm2 / in2) 

1 Ambient 12.10 0.23x10-03 / 9.20x10-06 34.49 / 1.36 2.57 / 0.10 5.17 / 0.01 

2 Ambient 16.58 0.11x10-03 / 4.40x10-06 31.06 / 1.22 2.59 / 0.10 5.27 / 0.01 

3 Ambient 42.48 0.06x10-03 / 2.20x10-06 31.14 / 1.23 2.62 / 0.10 5.38 / 0.01 

4 Corrosive 8.20 0.22x10-03 / 8.80x10-06 30.81 / 1.21 2.95 / 0.12 6.82 / 0.01 

5 Corrosive 17.38 0.11x10-03 / 4.40x10-06 30.63 / 1.21 2.69 / 0.11 5.69 / 0.01 

6 Corrosive 36.05 0.06x10-03 / 2.20x10-06 32.46 / 1.28 3.05 / 0.12 7.30 / 0.01 
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TABLE 6   

CERT Mechanical Results 

Test Load, Ult. 
(N/lb) 

Load, 
Frac. 
(N/lb) 

Ultimate 
Stress 

(MPa/ksi) 

Fracture 
Stress 

(MPa/ksi) 

% 
Reduction 

in Area 

% 
Elongation 

Total 
Extension 
(mm/in) 

1 9998 / 
2248 

5553 / 
1248  493 / 72 1074 / 156 74.50 35.80 10.15 / 0.40 

2 9678 / 
2176 

5522 / 
1241 478 / 69 1048 / 152 73.99 24.04 6.73 / 0.26 

3 9802 / 
2204 

5513 / 
1239 484 / 70 1026 / 149 73.48 23.71 8.58 / 0.33 

4 9691 / 
2179 

5469 / 
1229 483 / 70 802 / 116 66.02 22.40 6.60 / 0.26 

5 9295 / 
2090 

5006 / 
1125 459 / 67 879 / 127 71.91 21.70 6.92 / 0.27 

6 9158 / 
2059 

5246 / 
1179 452 / 66 719 / 104 64.00 24.44 7.26 / 0.29 

 
 
 
         
 The durations for tests 1 through 3 were as expected, with test 1 having the 

shortest and test 3 the longest.  Tests 4 through 6 indicated a similar pattern.  The key 

observation, however, lies in the fact that test 4 terminated 32% sooner than test 1.  

Similarly, test 6 reached failure 15% sooner than test three.  Both observations suggest 

that the environment was indeed having an effect on the test specimens.  Again, tests 2 

and 5 differ from the norm; test 5 actually took 5% longer to fail than test 2.  As a whole, 

the values in Table 6, excluding % elongation for test 6, were lower for the corrosive 

tests than the ambient tests.  In some cases the differences are minor, e.g., the differences 

in ultimate load between tests 1 and 4.  Lowered values of ultimate stress for the 

corrosive tests were a direct result of the small differences in ultimate load.  The 

differences in fracture loads themselves were small, but when divided by the final area 

of the corrosive test specimens the differences resulted in appreciable distinction 
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between fracture stresses of the ambient and corrosive tests.  Ultimately, fracture stress 

and % reduction in area appear to have been affected most by the environment.   

An examination of Figure 10 suggests that the specimens tested in the corrosive 

environment had a lower modulus of toughness, however the general shapes of the 

curves are still those of a ductile material. 

 

 

Figure 10.  Load / extension curves for each specimen. 

 

Table 7 indicates the % differences for the CERT data determined in the ambient 

tests and the corresponding corrosive tests.  Each of these differences was determined by 

12000 / 2698 

10000 / 2248 

8000 / 1798 

6000 / 1349 

4000 / 900 

2000 / 450 

0 

Extension (in) 
   0        0.08              0.16             0.24               0.31              0.39               0.47 

L
oa

d 
(N

/lb
) 

1 
2 
3 
4 
5 
6 
 

   0           2                   4                    6                   8                  10                 12 
Extension (mm) 



 37 

dividing the difference between the ambient and corrosive test value by the value for the 

ambient test and multiplying by 100.  Positive values indicate that the ambient test had a 

greater magnitude.  The larger percent differences between fracture stresses tend to 

indicate that the corrosive environment in this study most directly affected this behavior. 

 

TABLE 7   

% Changes in CERT Data 

Test Ultimate 
Load  

Fracture 
Load 

Ultimate 
Stress 

Fracture 
Stress 

% Reduction 
in Area 

% 
Elongation 

Time to 
Failure 

1 & 4 3.07% 1.52% 2.09% 25.34% 11.38% 37.43% 32.23% 

2 & 5 3.95% 9.34% 3.95% 16.05% 2.81% 9.74% -4.83% 

3 & 6 6.58% 4.84% 6.58% 29.89% 12.90% -3.06% 15.13% 

 

 

  Since the elongation of the specimen does not occur uniformly through the 

gauge length, percent elongation is not typically a quality indicator for a loss of ductility.  

There is, however, still an observation to be made.  In general, results indicated that the 

differences in percent elongation between ambient specimens and specimens in the 

groundwater simulation solution increased with increasing extension rate, suggesting 

further that the environment was affecting the behavior of the specimens.  Figures 11 

through 13 graphically summarize the remaining information from Tables 3 and 4.   
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Figure 11.  Graph depicting % elongation and % reduction in area. 
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Figure 12.  Graph depicting fracture and ultimate loads. 
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Figure 13.  Graph depicting the fracture, ultimate, and breaking stresses. 

 
  
 
Visual Inspection 

Images from the stereomicroscopic inspection of specimen 1 illustrate fracture of 

the material along the planes of maximum shear stress; the so-called "cup and cone" 

failure common for a ductile material as shown in Figure 14(a).  The specimen exhibits 

no visible form of corrosion or cracking, however, tool marks from the machining 

processes are readily apparent in Figure 14(b).  Note that the specimen dimensions 

exceeded the depth of field for this particular device, as such, only portions of the 

specimen appear in focus. 
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(a)       (b) 

Figure 14.  Visual inspection of test specimen 1. 

(a) Fracture surface of specimen and (b) tool marks visible on specimen 1 (arrow). 
 
 
 
 
 
 
 
 

 
 

 
 
 

                 (a)           (b) 

Figure 15.  Visual inspection of test specimens 2 and 3.   

(a) Specimen 2 fracture surface with corrosion (arrow) and (b) specimen 3 fracture surface. 

 

 



 42 

Portions of specimens 2 and 3 are depicted in Figure 15.  Similar to specimen 1, 

the "dull" appearance of a typical ductile fracture is clearly visible.  Small portions of 

reddish, brown corrosion product are discernible on both specimens.  These particular 

areas of corrosion developed after testing as a result of exposure to the atmosphere.  As 

was the case with specimen 1, no cracking was apparent on either specimen 2 or 3.     

Specimen 4, the first to be tested in the corrosive environment, exhibited regions 

strikingly different from those of the previous three tests.  Each of the fragments from 

test 4 was covered with reddish-brown and black surface corrosion, an observation 

consistent with the formation of hematite and magnetite films.  Of significant interest is 

the fracture surface on one of the components.  Figure 16 reveals a fracture surface with 

a ductile central area surrounded in part by a smooth, shiny plateau - the smooth, shiny 

features being typically indicative of cleavage fractures. 

 
 
 

 
Figure 16.  Visual inspection of test specimen 4. 

 
 



 43 

 
Figure 17.  Visible “cracks” on test specimen 4. 

 
 
 

Specimen 4 also developed cracks aligned in directions generally perpendicular 

to the applied tensile load as shown in Figure 17.  The orientation of the cracks also 

suggested that the pre-existing tool marks could have served as initiation sites. 

 
 
 

 
Figure 18.  Visual inspection of test specimen 5 – fracture surfaces. 

 
 
 

Specimen 5 developed the same reddish-brown and black coating as specimen 4.  

Although the extension rate for test 5 was between that of tests 4 and 6, both of which 

Flat, brittle area 
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had surface cracks, specimen 5 had no indication of any cracking even though the 

presence of tool marks was observed.  The fracture surface also appeared to have areas 

where failure was of a brittle nature, as shown in Figures 18 and 19. 

 
 
 

  
Figure 19.  Visual inspection of test specimen 5 – side views. 

 
 
 

Specimen 6 formed a reddish-brown and black surface coating, partially visible 

in Figure 20, similar to specimens 4 and 5.  Figure 21 also indicates the presence of 

surface cracks similar in geometry to those of specimen 4.  The specimen 6 fracture 

surfaces contained the same jagged edge topography as found in specimens 4 and 5.  

Rather than having the traditional cup-and-cone appearance, it looked as though the 

circumferential fracture lines followed the pre-existing tool marks or the cracks that may 

have initiated at those locations.  

 

Corrosion product 
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Figure 20.  Visual inspection of test specimen 6 – fracture surfaces. 

 
 
 
 

 
Figure 21.  Visual inspection of test specimen 6 – side view. 

 

 
 
 Typically if SCC is present, areas of darkened corrosion product will be visible 

on the fracture surfaces.  No such areas were observed on any specimen evaluated in this 

study.   
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Scanning Electron Microscopy 

 After stereomicroscopy, the samples were analyzed utilizing an environmental 

scanning electron microscope (SEM).  Figures 22 through 24 present side-by-side 

images of central portions of the fracture surfaces for each set of tests: 1 and 4, 2 and 5, 

and 3 and 6.  Each image is at 400x and all micron markers represent 50 µm. 

 
 
 

        
           (a)                  (b) 

Figure 22.  SEM images of test specimens 1 and 4. 

 (a) Test specimen 1 with no corrosion and (b) test specimen 4 with corrosion product. 

 
 
 

Corrosion product 
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          (a)                  (b)  

Figure 23.  SEM images of test specimens 2 and 5. 

 (a) Specimen 2 and (b) specimen 5. 

 
 
 
 

        
         (a)                    (b) 

Figure 24.  SEM images of test specimens 3 and 6.  

(a) Specimen 3 and (b) specimen 6. 
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It is readily apparent from the dimples in Figures 22(a) and 24(a) that micro-void 

coalescence (MVC) occurred and that the failures in these areas were of a ductile nature.  

As shown in Figure 23(a), specimen 2 appeared to have areas of MVC and small 

portions of areas that failed in a brittle manner. The images of specimens 4 and 5, 

Figures 22(b) and 23(b), indicate a small amount of corrosion product on the fracture 

surfaces.  Specimen 6 had little corrosion, if any at all.  Figure 25 shows the fracture 

surface of specimen 5 after ultrasonic cleaning in demineralized water, the presence of 

MVC is still pronounced indicating that failure was still primarily ductile. 

 
 
 

 
 

Figure 25.  SEM image of test specimen 5 after cleaning. 
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Figures 26 through 28 are images of the apex of the free surface and the inside 

surface of the shear lip for each of the specimens.  The voids in this area are somewhat 

parabolic in shape, indicative of the presence of shear.  Corrosion product is visible 

filling in the dimples on all of the specimens tested in the corrosive environment. 

 
 
 

        
         (a)                    (b) 

Figure 26.  SEM images of test specimens 1 and 4 – shear lip.  

(a) Specimen 1 and (b) specimen 4. 
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(a)      (b) 

Figure 27.  SEM images of test specimens 2 and 5 – shear lip. 

(a) Specimen 2 and (b) specimen 5. 

 
 
 
 

        
(a)      (b) 

Figure 28.  SEM images of test specimens 3 and 6 – shear lip. 

 (a) Specimen 3 and (b) specimen 6. 
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Figure 29.  SEM images of test specimen 4. 

 
 
 

Figure 29 depicts images of the free surface near the plane of fracture of 

specimen 4.  The images reveal the presence of crack-like formations around the entire 

circumference of the specimen.  It is unclear whether or not the formations penetrate into 

the substrate material and whether they are the result of tool marks or the environment.    

Further investigation of the fracture surface of specimen 4 uncovered the 

presence of smooth areas lacking MVC, indicative of brittle fractures, as shown in 

Figures 30 and 31.  These surfaces do not have the typical “rock-candy” appearance of 

intergranular fracture and appear to be transgranular in nature.   
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Figure 30.  SEM image of the fracture surface of test specimen 4. 
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Figure 31.  Image of an embrittled portion of test specimen 4 fracture surface. 

Free surface 

Brittle fracture surface  
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Figure 32.  SEM images of test specimen 5. 

 
 
 

 
 

Figure 33.  SEM image of test specimen 6. 

 
 
 

The surfaces of the remaining specimens were clearly attacked by the 

environment, however, the presence of crack-like formations was not observed as shown 

in Figures 32 and 33.   
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All corrosion test specimen failures appeared to have initiated with MVC in the 

central portion of the specimen.  Fast fracture occurred after the MVC area expanded 

and grew into a critical region that appears to have possibly been embrittled by the 

corrosive environment - an observation consistent with the stereomicroscopic analysis. 

Energy Dispersive Spectroscopy 

 Energy dispersive spectroscopy (EDS) was also conducted on the fracture 

surfaces of the test specimens.  EDS analysis was used to qualitatively determine the 

elements present on the surfaces.  Spectra from the EDS testing and the location of the 

tests are shown in Figures 34 through 38.  Images from the central portion of the fracture 

surfaces showed similar results: high iron and carbon peaks, as shown in Figures 34, 35, 

and 38.  As shown in Figure 36, analysis of the surface of test specimen 2 revealed a 

significant presence of aluminum and cobalt, neither of which should be present in this 

particular type of steel.  Aluminum is typically used as a deoxygenizing agent when the 

steel is killed, possibly the presence of the aluminum is a result of this process.  As a 

whole, the presence of these other elements in significant levels is the result of poor 

quality.  Figure 37 indicates the presence of iron and oxygen peaks, consistent with iron 

oxide corrosion product.  Other elements present are elements in the steel or possibly the 

result of the environmental components.     
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Figure 34.  EDS analysis of test specimen 1. 
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Figure 35.  EDS analysis of test specimen 2. 
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Figure 36.  EDS analysis of test specimen 2 anomaly.  



 59 

 

 
 

Figure 37.  EDS analysis of test specimen 4 – corrosion product. 
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Figure 38.  EDS analysis of test specimen 4 – near surface. 
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Metallograpic Analysis 

Metallographic analysis of numerous samples revealed a ferrite matrix with 

pearlite interspersed with what appears to be a great number of inclusions sized at 

roughly 0.10 mm in diameter.  The composition of the particles was inconclusive, as the 

EDS analysis did not detect the presence of any elements other than iron and carbon in 

any significant level, excluding specimen 2.  The orientation of the particles also did not 

suggest any type of directionality, as shown in Figure 39.  

Pitting was evident rather than the classical "riverbranch" form of SCC.  There 

was at least some evidence of decohesion at the surfaces between the particle and matrix 

interfaces – locations that possibly served as initiation sites for the larger pits ranging in 

depth from 0.75 to 2.00 mm.  Some secondary cracking was also observed branching 

from the pit walls, as shown in Figure 40.   

 
 
 

   
  (a)   (b)      

Figure 39.  Micrographs from test specimens 1 and 2. 

(a) Parallel to axis of pipe in specimen 1, and (b) perpendicular to axis of pipe in specimen 2. 
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(a) 

 

   
(b) 

 

(c) 

Figure 40.  Images of pits in the test specimens. 

(a) Test specimen 4, (b) test specimen 5, and (c) test specimen 6. 
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 The micrographs of the samples tested do not have the typical appearance for the 

structure of API 5L X-52 as shown in Figure 41.  The test specimens’ ultimate tensile 

strength, however, was appropriate when compared to the values listed in API 5L for X-

52 as shown in Table 8.  

 

 

 

Figure 41.  Lateral section of X-52 pipeline steel (x100). 

 
 
 

TABLE 8   

API 5L Strength Requirements 

Ultimate Strength 
Minimum (MPa / ksi) 

Ultimate Strength 
Maximum (MPa / ksi) 

455 / 66 758 / 110 
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Marin Factor Analogy 

Table 9 lists the ratios of the corrosive and ambient results for corresponding 

tests, i.e., 1 and 4, 2 and 5, 3 and 6.  Each ratio was multiplied by the baseline time-to-

failure for its corresponding control test, that is test 1, 2, or 3, to predict the lifetime of 

the specimen in the corroded environment as shown in Table 10.  Table 11 then lists the 

root mean square variance between the predicted lifetime and the actual corrosive 

lifetimes.  The root mean square was used to determine which set of ratios provided the 

least variation between predicted and actual values. 

 
 

TABLE 9   

Ratio of Corrosive Results and Ambient Results 

Test Ultimate 
Load  

Fracture 
Load 

Ultimate 
Stress 

Fracture 
Stress 

% Reduction 
in Area 

% 
Elongation 

1 & 4 0.97 0.98 0.98 0.75 0.89 0.63 

2 & 5 0.96 0.91 0.96 0.84 0.97 0.90 

3 & 6 0.93 0.95 0.93 0.70 0.87 1.03 

 

 

TABLE 10   

Test Specimen Lifetime Prediction from Ratios 

Test Ultimate 
Load  

Fracture 
Load 

Ultimate 
Stress 

Fracture 
Stress 

% Reduction 
in Area 

% 
Elongation 

1 & 4 11.73 11.92 11.85 9.03 10.72 7.57 

2 & 5 15.93 15.03 15.93 13.92 16.11 14.97 

3 & 6 39.69 40.42 39.69 29.78 37.00 43.78 
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TABLE 11  

 Root Mean Square Variance 

Ultimate 
Load  

Fracture 
Load 

Ultimate 
Stress 

Fracture 
Stress 

% Reduction 
in Area % Elongation 

3.04 3.58 3.09 4.16 1.72 4.69 

 
 
 
 It is apparent from Table 11 that the least variance occurs when the ratio of  % 

reduction in area is used to predict the lifetime of a specimen in the corrosive 

environment.  Figure 42 graphically depicts the results of the prediction.  

 

      
 

 

 

Figure 42.  Prediction of specimen lifetime from reduction in area. 
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The fact remains, however, that numerous tests must be conducted in order to 

obtain the necessary ratios required to predict a lifetime.  It would be much more useful 

if data from one set of tests could be used to predict lifetimes at other extension rates, 

e.g., if a ratio obtained from tests 1 and 4 could be used to predict the lifetimes of tests 2 

and 5, and 3 and 6. 

Currently, there are three ratios for % reduction of area, 0.89, 0.97, and 0.87 for 

tests 1 and 4, 2 and 5, and 3 and 6 respectively.  Table 12 is obtained by multiplying 

each ratio by the three measured ambient lifetimes 12.10, 16.58, and 42.48 hr. 

 

TABLE 12  

 Lifetime Prediction Matrix 

Ratio   Lifetime  

  12.10 (Test 1) 16.58 (Test 2) 42.48 (Test 3) 

0.89 (Test 1&4)  10.769 14.7562 37.8072 

0.97 (Test 2&5)  11.737 16.0826 41.2056 

0.87 (Test 3&6)  10.527 14.4246 36.9576 

 

 

TABLE 13   

Root Mean Square Variance of the Lifetime Predictions 

Ratio RMS 

  

0.89 (Test 1&4) 2.35 

0.97 (Test 2&5) 3.69 

0.87 (Test 3&6) 2.23 
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Table 13 indicates that the ratio for % reduction of area during tests 3 and 6 has 

the least variance.  It is suggested that this ratio could be used in Equation 10, repeated 

here for convenience: 

   LC = C1 LA            (10) 

In this case, rather, the lifetime is for the test specimen in the corrosive environment and 

LA is the measured ambient lifetime at the extension rate of interest.  Figure 43 depicts 

the lifetimes for multiple specimens utilizing 0.87, the ratio from tests 3 and 6.  

 

 

 

 

Figure 43.  Graph of the generalized ratio prediction. 
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Although the generalized ratio prediction is in general agreement with the actual 

values, there is not enough information to determine the values of any subfactors, that is, 

the specific effects of the environment, the material, and the load.  The fact remains that 

this could and most likely is an isolated phenomenon.  Simply put, the sample size is too 

small for this ratio to be of any practical significance.  The idea, however, of a Marin 

factor analogy could still be plausible.  Further experimentation is needed to determine if 

there exists a ratio or set of ratios suitable for general use.  If indeed there is a ratio, then 

future research could focus on the development of shape, size, and load factors to bridge 

the gap between test specimen and pipeline geometries - ultimately providing a tool to 

predict the lifetimes of damaged pipelines.  

Strain Energy Concept 

EAC is an inherently complicated phenomenon.  The material or component may 

react in numerous ways to its environment and state of stress.  Individual cracks may 

initiate, propagate, coalesce with adjacent cracks, or become dormant.   Rather than 

trying to model each individual possibility, it may prove to be more practical to approach 

the development of a model from a cumulative perspective.  For instance, an 

examination of the load / extension curves for the test specimens reveals a marked 

reduction in the area under the curves for the specimens tested in the corrosive 

environment - the area under the curve being the elastic strain energy and the plastic 

work.   

Neglecting any elastic deformation of the test rig, the only energy input into the 

ambient tests occurs from the load acting through the specimen extension.  Given that 
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the specimen geometries are identical, the effects of the corrosive environment are 

represented by the differences in areas between the ambient and corrosive curves as 

shown in Figures 44 through 46. 

 

   
 

Figure 44.  Graphic of the difference in energy for tests 1 and 4. 
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Figure 45.  Graphic of the difference in energy for tests 2 and 5. 
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Figure 46.  Graphic for the difference in energy for tests 3 and 6. 
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environment is known, i.e., the difference in area under the curves.  The amount of time 
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Knowing the energy and time establishes the rate at which energy must be dissipated 

from the system. 

 In reality the test specimens experience plastic deformation and the principles of 

linear elastic fracture mechanics are probably not the most suitable for describing their 

behavior.  The J-integral might prove to be more appropriate for modeling the actual test 

specimen behavior.  In the pursuit of simplicity, it can be assumed that there is small 
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energy release rate given by dU/dA, where U is energy and A is the crack area.  

Considering average values then the following relationship exists: 

∆U/∆t = (∆U/∆A) (∆A/∆t)            (12) 

If ∆U/∆t is known and a crack geometry is assumed then ∆U/∆A is established.  

Knowing ∆U/∆t and ∆U/∆A then allows the determination of ∆A/∆t – the crack growth 

rate.   In essence, this is a model that represents the cumulative effects of the corrosive 

environment as a crack with the same average energetic properties.  From this model we 

can extract a growth rate ∆A/∆t which can be manipulated to provide a penetration rate. 

A problem arises, however, because the strain energy release rate increases as the crack  

grows, therefore an average value for G will most likely not give an accurate depiction 

of the penetration of the crack.  In this case it is necessary to know G at each instant of 

crack propagation.   

From the data collected in the CERT experiments there is no way to determine 

how the strain energy released during crack propagation might be distributed.  For 

instance, the total energy to be dissipated is known and the difference in energy between 

tests 1 and 4 can be expressed as a function of extension rate, but this function has no 

meaning when applied in the model which only exists for the duration of test 4.  The 

difference in energies occurring after the end of test 4 must be redistributed according to 

some currently unknown function.  Although the concept is somewhat under developed, 

it does suggest that future research based on the energy method may provide a 

cumulative means of quantifying the effects of EAC. 
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APPLICATION TO PIPELINE LIFETIME AND FUTURE RESEARCH 

 
When corrosion is found in a pipeline there is a need for a method of determining 

the remaining strength and lifetime of the corroded areas.  Therefore one of the needs of 

industry has been a method that will assist operators in determining whether a section of 

pipeline should be repaired or replaced.  A considerable hurdle has been the extensive 

testing and research necessary to develop the knowledge base required for the 

development of accurate and safe models.  Currently, ASME B31G “Manual for 

Determining the Remaining Strength of Corroded Pipelines” is only suitable for use with 

defects having smooth contours, i.e., pits and not any form of cracking.  The research 

and ideas expressed in this thesis represent an effort to assist in the development of 

knowledge necessary in the determination of the remaining lifetime of pipelines subject 

to EAC.   

A primary limitation of this study has been the small data set; three sets of tests 

simply do not produce enough results to be industrially practical.  The small amount of 

data can in no way be directly applied to any field situations.   In order for the ideas to be 

developed further more tests must be conducted.  The tests should include a broader 

range of extension rates as well as other environments, i.e., different concentrations of 

species, temperatures, and solution pH values.  In the future, test specimens may also 

need to be polished to reduce the influence of the fabrication process.  It would be 

beneficial to conduct tests on various grades of pipeline steel and in turn similar steels of 

various qualities.  As such, future research will need to include pre-test chemical 

analysis and metallography to verify the specific type of material and its quality.  The 
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results from a significant number of tests could be used to further develop the model 

based on the Marin factor analogy.  In the interest of saving time and resources it may 

also be more efficient to use test specimen geometries that have been used by larger 

commercial research enterprises so that information can be exchanged.   

The leap from test specimen to pipeline is of significant importance.  A 

correlation between the two will have to be developed.  The American Gas Association 

(AGA) and the Pipeline Research Committee International (PRCI) have constructed a 

database with information from over 250 pipeline burst tests.  This information could 

prove beneficial in the development of size and shape factors in the Marin analogy.  The 

size factor should account for the fact that ERW pipe is formed from flat strip into a 

circular cylinder and as such pipes of smaller diameter will experience a greater level of 

strain during the rolling process.  

At current, the energy method is nothing more than a concept.  The energy 

method model needs further development to be used as a predictive tool and applied to 

pipelines in the field.  Future research could possibly include more fracture mechanics 

oriented test specimens to increase the scope of the data available for the model.  It may 

be of particular interest to perform J-integral testing with precracked specimens.  Battelle 

also has finite element analysis (FEA) software entitled PCORR that may assist in 

expanding the energy method concept.  As a matter of convenience, test specimen 

geometries should be such that conditions of plain strain or plane stress exist.  As 

mentioned previously, relationships between different environments, materials, 

extension rates, sizes, and shapes will need to be determined as well.   
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CONCLUSION 
 
 

Results from the constant extension rate tests indicated that the simulated 

groundwater solution and applied potential decreased the ductility of each of the test 

specimens.  An inspection of the load / extension curves for the corroded specimens 

revealed that the modulus of toughness was generally lower than that of the ambient 

specimens.  Fracture stress for the corroded specimens was also reduced by 16% - 30%.  

Stereomicroscopic analysis of the corroded test specimens revealed fracture 

surfaces consistent with failures of a primarily ductile nature.  The presence of flat, shiny 

plateaus around some of the fracture surfaces suggested that the corrosive environment 

affected the metal near the free surface exposed to the groundwater simulation solution.  

SEM analysis further confirmed the existence of areas appearing to have failed in a 

brittle manner.  Subsequent metallographic analysis revealed the presence of corrosion 

pits rather than “river branch” cracks typically observed with SCC.  

Separation between the ferrite and what appeared to be numerous inclusions was also 

visible near the surfaces and could have served as initiation sites for the corrosion pits.  

No evidence of classical SCC morphology was discovered although the pits did have 

some traces of secondary cracking. 

 The concept of a Marin factor analysis was explored and the ratio of % reduction 

in area was used to predict the lifetime of samples tested at various extension rates.  An 

energy method model was then suggested through comparison of the load / extension 

curves for each set of tests.  In essence, this concept suggests that a geometric crack 

could be used to model the cumulative effects of the corrosive environment. 
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 The number of samples tested was too small to generate any immediately 

applicable models.  Future research will need to focus on the generation and collection 

of a great deal of additional data.  Subsequent testing should focus on the effects of 

multiple environments, materials, and loading conditions.  In addition, size and shape 

factors need to be determined in order to achieve the transition from test specimen 

geometry to a pipeline geometry. 
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APPENDIX A 
 

PIPELINE CHEMICAL AND MECHANICAL INFORMATION 
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Figure 47.  Material chemistry data 
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Figure 48.  Material mechanical data.  
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APPENDIX B 
 
 

TEST MACHINE CALIBRATION DATA 
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Extension Rate Calibration
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Figure 49.  Graph of calibration data. 

 

The trendline was used to set the crosshead speeds for all tests.  Note that the 

dimensions for this particular figure are English. 
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