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ABSTRACT 

Analytical Models to Evaluate System Performance Measures for Vehicle Based 

Material-Handling Systems under Various Dispatching Policies. (May 2005) 

Moonsu Lee, B.S., Hanyang University, Korea; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Guy L. Curry 
 

Queueing network-based approximation models were developed to evaluate 

the performance of fixed-route material-handling systems supporting a multiple 

workcenter manufacturing facility. In this research, we develop analytical models for 

fixed-route material-handling systems from two different perspectives: the 

workcenters’ point of view and the transporters’ point of view. The state-dependent 

nature of the transportation time is considered here for more accurate analytical 

approximation models for material-handling systems. Also, an analytical methodology 

is developed for analytical descriptions of the impact of several different vehicle-

dispatching policies for material-handling systems. Two different types of vehicle-

dispatching policies are considered. Those are workcenter-initiated vehicle 

dispatching rules and vehicle-initiated vehicle dispatching rules. For the workcenter-

initiated vehicle dispatching rule, the Closest Transporter Allocation Rule (CTAR) 

was used to assign empty transporters to jobs needing to be moved between various 

workcenters. On the other hand, four different vehicle-initiated vehicle dispatching 

rules, Shortest Distance Dispatching Rule (SDR), Time Limit/Shortest Distance 
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Dispatching Rule (TL/SDR), First-Come First-Serve Dispatching Rule (FCFSR), 

Longest Distance Dispatching Rule (LDR), are used to select job requests from 

workcenters when a transporter is available. From the models with a queue space limit 

of one at each workcenter and one transporter, two different types of extensions are 

considered. First, the queue space limit at each workcenter is increased from one to 

two while the number of transporters remains at one. Second, the number of 

transporters in the system is also increased from one to two while maintaining the 

queue space limit of one at each workcenter. Finally, using a simulation approach, we 

modified the Nearest Neighbor (NN) heuristic dispatching procedure for multi-load 

transporters proposed by Tanchoco and Co (1994) and tested for a fixed-route 

material-handling system. The effects of our modified NN and the original NN 

transporter dispatching procedures on the system performance measures, such as WIP 

or Cycle Time were investigated and we demonstrated that the modified NN heuristic 

dispatching procedure performs better than the original NN procedure in terms of 

these system performance measures.  
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CHAPTER I* 

INTRODUCTION 

 

 Analytical models of manufacturing system performance are generally based 

on queueing network approximations. Material handling of products for transportation 

between production workcenters has not been considered a critical aspect of the 

overall system performance and, subsequently, has for the most part been ignored in 

analytical modeling efforts. The few papers that address material handling with 

analytical techniques are quite limited in their applicability due to modeling or system 

configuration assumptions. Also, even though many researchers have studied different 

dispatching policies in material-handling system using discrete-event simulation 

methods, the analytical approaches are quite limited so far. In this research, we 

develop analytical models from two different points of view, both the workcenters’ 

point of view and the transporters’ point of view. 

 From the workcenters’ perspective, we develop a state-dependent 

transportation time analytical model for a fixed-route unidirectional material handling 

systems. For this model, we use a workcenter-initiated dispatching rule, the Closest 

Transporter Allocation Rule (CTAR) for transporter-job assignments. For models with 

the transporters’ perspective, four different types of vehicle-initiated dispatching rules 

are analyzed for the assignment of jobs to an empty transporter located in various 
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workcenters. These rules are: the Shortest Distance Rule (SDR), the Time 

Limit/Shortest Distance Rule (TL/SDR), the First-Come First-Serve Rule (FCFSR), 

and the Longest Distance Dispatching Rule (LDR). We develop, under these 

dispatching rules, analytical models of the distributions of the resulting transporter 

allocations as a function of the number and positions of jobs requesting service 

simultaneously in the system. 

 

1.1 Motivation of the Study 

 This research is motivated by the fact that, in many analytical modeling 

approaches for material-handling systems: (1) up to date, material-handling system 

analysis have mainly utilized simulation as the evaluation tool; (2) the state dependent 

nature of the service time is not considered so that highly inaccurate analytical models 

have been developed; (3) no attempts to describe analytically the impact of two 

different types of vehicle dispatching rules (workcenter-initiated rules and vehicle-

initiated rules) for material-handling systems have been made. Therefore, this study, 

specifically defined in the next chapters, is intended to improve on these current 

limitations.  

 The main goal for this research is to develop accurate analytical models for 

material-handling systems with various dispatching rules by considering the state 

dependency of the transportation time. To accomplish this goal, the following specific 

objectives will be considered: (1) design of the analytical model considering a state-

dependent nature of the service time; (2) incorporate various dispatching rules (an 
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workcenter-initiated rule and several vehicle-initiated rules) into the procedure for 

developing analytical models; (3) extend the limitations of analytical models and show 

the benefits and losses due to those extensions; (4) develop simulation models to 

verify the accuracy of the results of these analytical models. 

 The following contributions are expected this research: (1) provide a good 

methodology for developing and using analytical models for the evaluation of the 

performance of material-handling systems; (2) model and analyze the material-

handling systems supporting multiple workcenters manufacturing facilities more 

accurately by considering the state-dependent nature of the transportation times; (3) 

provide a methodology for analytical descriptions of the impact of several different 

vehicle dispatching policies for material-handling systems. 

 

1.2 Relation to Prior Work 

 Recently, facility design researchers have begun to explore alternative 

measures for layout performance, in particular using cycle time or work-in-process 

(WIP) inventory levels as a measure of the system efficiency. This work is typically 

based on a queueing model of the manufacturing system. Bozer and Kim (1996) 

develop a stochastic model, using M(b)/G/1 and M/G/c queues, that captures some of 

the operational characteristics of the manufacturing system. The model focuses on 

determining unit-load sizes based on the characteristics of the material-handling 

system and its response to unit-load transfer requests. They demonstrate that decreases 

in expected WIP are possible from the proper choice of these unit-load sizes.  
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 Fu and Kaku (1997) present a stochastic model to evaluate changes in the 

expected WIP in the system for different manufacturing system layouts. This model is 

based on a restrictive open queueing network. Benjaafar (2002) introduces a model 

that relaxes some of the conditions and assumptions used by Fu and Kaku (1997). 

This paper focuses on selecting among alternative layout designs to minimize the 

expected WIP in the system. The paper uses a general G/G/1 queueing model 

approach but only considers a single product type with single unit transfers. Castillo 

and Peters (2002) investigate the integration of unit-load sizing decisions in 

conjunction with the determination of the facility layout. A simplified material 

transport network is modeled and exponential based queueing approximations are 

used. These results demonstrate that it is important to consider operational issues.  

 The recent paper by Johnson (2001) studies a similar material-handling 

problem to the one studied in this paper. His empty transporter assignment distribution 

under the nearest vehicle assignment rule is mathematically equivalent to our resultant 

distribution. However, Johnson and other authors, such as Benjaafar (2002), used state 

independent service time approximations (the M/G/c models) that are highly 

inaccurate in the waiting time estimates for the dependent service time characteristics 

displayed by material-handling systems. The present dissertation provides the 

foundation for a more accurate modeling approach for the material-handling system, 

which is a key element of the manufacturing system.  

 Egbelu and Tanchoco (1984) classified vehicle dispatching rules into two 

categories, workcenter-initiated vehicle dispatching and vehicle-initiated vehicle 
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dispatching. When a new job arrives at a workcenter and there is a set of idle vehicles, 

the new job selects a vehicle according to the workcenter-initiated dispatching rule. 

On the other hand, when a vehicle becomes idle and there is a set of jobs waiting to be 

picked up, the idle vehicle selects a job according to a vehicle-initiated dispatching 

rule. They evaluated and compared the performance of several workcenter-initiated 

dispatching rules and vehicle-initiated dispatching rules. Then, they showed that, 

when material flow rate is high, the system performance is more affected by vehicle-

initiated dispatching rules than by workcenter-initiated dispatching rules. Egbelu 

(1987a) further classified vehicle-initiated dispatching rules into source-driven rules 

and demand-driven rules in a unit-load transportation-manufacturing system. Under a 

source-driven rule, an empty transporter chooses the job that has the highest priory in 

its workcenter queue. In the demand-driven rule, an empty transporter selects a job 

that has the highest demand from workcenters listed in its routing sequence. Egbelu 

compared the performance of demand driven dispatching rules with that of source 

driven dispatching rules and concluded that a demand-driven rule can out perform the 

best reported source driven dispatching rules from the literature.  

 Curry, Peters and Lee (2003) developed a state dependent analytical model for 

a fixed-route material-handling system with a fixed number of transporters based on 

the workcenter point of view. In their model, the closest transporter allocation scheme 

was used for vehicle dispatching. From workcenters’ perspective, a job arriving at a 

workcenter selects an empty transporter according to the closest transporter allocation 

scheme. Thus, this allocation scheme works like a workcenter-initiated vehicle 
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dispatching rule. They showed their model with state dependency is much more 

accurate than previous state independent analytical models in terms of the system 

performance measures, work-in-process (WIP) or cycle times.  

 

1.3 Outline of the Dissertation 

 In Chapter II, an analytical state-dependent queueing network model for a 

fixed-route transportation system with a fixed number of transporters is developed 

from workcenters’ point of view. The fixed-route assumption limits transporter 

flexibility on choosing the route through the facility connecting two workcenters. One-

way traffic flow and fixed-track transporter systems are examples. That is, once routes 

of transporters are determined, those are not changed during their transportations. By 

the Closest Transporter Allocation Rule (CTAR), a job arrival selects the closest 

empty transporter among candidates from its current location. As the number of free 

transporters increases, there is a greater chance of a transporter being located at the 

needed workcenter. Therefore, the transportation times are functions of the number of 

available transporters at the time that a transporter is allocated to the job. By defining 

system states as the number of empty transporters, we can develop the approximation 

scheme accounting for these dependencies within a Poisson-based model and then 

adjust for the inter-arrival and service time generalizations using an adjustment factor. 

Analytical computation results are compared with simulation results and yield results 

in the neighborhood of 0.5%.  
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 In Chapter III, we develop queueing approximation models of the same fixed-

route transportation system with a unit-load transporter from a transporter’s point of 

view. From a transporter’s perspective, when a transporter finishes the delivery of a 

job to its destination in the system (termed a service), it needs to select a job to be 

picked up from possibly several job requests in the system according to a vehicle-

initiated dispatching rule. Of course, if there is only one job request in the system, no 

alternatives are available and the transporter will be assigned to service that job. If 

there are no jobs waiting in the system when the transporter becomes empty, it waits 

at the current location until a request for a job movement occurs. In a transporter point 

of view model, the system status, i.e., the number of job requests in the system, can be 

checked only at the time of a job departure (service completion). If a job leaves the 

system empty of job movement requests, the system state remains zero until a new job 

movement request occurs (termed an arrival). The analytical model is based on 

transitions from one system state to another. From this model, we obtain steady-states 

probabilities and, hence, work-in-process in queue (WIPq), and compared those with 

simulation results. In this chapter, four different vehicle-initiated dispatching schemes 

are incorporated into the analytical modeling procedures. The impact of those 

different dispatching control schemes is examined.     

 Chapter IV develops two different types of extensions from the original model 

of Chapter III which has a queue space limit of one at each workcenter and one 

transporter in the system. First, the queue space limit at each workcenter is increased 

to two. Second, the number of transporters in the system is increased to two. If we 
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increase the queue space limit at each workcenter to two while the number of 

transporters remains at one, the system still uses a vehicle-initiated dispatching 

scheme because there is only one transporter in the system. However, if we add a 

second transporter to the system, it is now necessary to have both vehicle-initiated 

dispatching rules and workcenter-initiated dispatching rules components in the 

vehicle-job assignment control scheme. Because it is possible that a job arrival can see 

two empty transporters in the system and, thus, the job needs to select one of these 

transporters according to a workcenter-initiated dispatching rule. For both cases, 

simulation models are developed to verify the accuracy of our analytical models.  

 In Chapter V, we modified the Nearest Neighbor (NN) heuristic dispatching 

procedure for multi-load transporters proposed by Tanchoco and Co (1994) to 

dynamically reassign jobs to the available space of transporters. Using a simulation 

approach, the performance of the modified NN heuristic dispatching policy is 

compared with that of the original NN dispatching policy for two example problems. 

 Chapter VI summarizes conclusions of this research and discusses future work.  
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CHAPTER II 

ANALYTICAL MODEL FOR MATERIAL-HANDLING SYSTEMS FROM THE 

WORKCENTERS’ POINT OF VIEW  

 

2.1 Introduction 

 In this chapter, a probabilistic model of a fixed-route transportation system 

with a fixed number of transporters is discussed. The fixed-route assumption limits 

transporter flexibility on choosing the route through the facility connecting two 

workcenters. In this chapter, our examples are based on one-way traffic flow and 

fixed-track transporter systems. That is, transporters do not change their routes due to 

traffic and congestion on the route. Demands for transporters at each workcenter are 

based on the workcenter’s throughput rate by product type. The recipient workcenter 

for the job requesting transportation is a function of the product routing sequence. The 

transportation delay until the allocated transporter arrives to pick up the job is 

developed from the steady-state distributions of the number and locations of available 

transporters. The Closest Transporter Allocation Rule (CTAR) results in a separate 

allocated transporter location distribution for each possible number of free transporters 

and for each demand location. These location distributions and the travel distances 

between workcenters yield excellent approximations to the transporter service times 

                                                 

Part of this chapter is reprinted with permission from “Queueing Network Model for a Class of 
Material Handling Systems” by Guy L. Curry, Brett A. Peters and Moonsu Lee, 2003. International 
Journal of Production Research, 41(16), 3901-3920. Copyright 2003 by the Taylor & Francis Ltd. 
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by workcenter. These times become the service times for a queueing model to 

estimate the queueing delay until a job receives a transporter allocation. The state-

dependent nature of these service times leads to inaccuracies in the general 

distribution model approximations that are based on the standard Poisson model 

paradigm. We capture these dependencies of the state-dependent service times in the 

exponential queueing model and then adjust those for the general service distributions 

with the factor of the form: 

 

                                                           






 +
2

22
sa CC .                                                  (2.1) 

 

Thus, now, we develop a state-dependent multiple-server model using exponentially 

distributed service times for each state.  

 

2.2 Model with the Workcenter-Initiated Dispatching Rule 

An example of a fixed-track transportation system is illustrated in Figure 1. 

This circular transportation system is used to deliver jobs from a number of 

workcenters, N, to the various other workcenters in the plant. Flow is unidirectional 

along the circuit. Multiple transporters can be transversing each segment of the track 

simultaneously but they cannot pass except when a transporter has been offloaded to a 

workcenter docking site.  
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Figure 1. A fixed-route unidirectional material-handling system. 

 

Queueing delays can occur at these off-line docking sites due to the time needed to 

clear a site. Queueing delays can also occur at circuit intersections in the network. 

Each of these locations is allocated a position with a specified transporter clearance 

time and the restriction that only one transporter at a time can transverse these 

locations. These locations are treated as single server queueing models to approximate 

the steady-state queueing delay that transporters encounter due to traffic on the 

transportation system. Demands for transportation from each workcenter to specific 

other workcenters occur based on the production rate at the workcenter and the routing 

sequences for jobs. The routing demand information is incorporated into this model 

via a demand rate λij at workcenter i to be transported to workcenter j. Jobs that queue 

at the workcenters needing transportation are processed in first-come first-serve order. 

15
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 Under Closest Transporter Allocation Rule (CTAR) control, a job ready for 

transportation from a workcenter selects the closest empty transporter from its current 

location. If an empty transporter is already located at the workcenter, then this vehicle 

will be allocated to the job and no empty transporter travel time will occur. If multiple 

(unallocated) transporters are available at different locations, then the control system 

will allocate the closest vehicle based on the distance the vehicles would be required 

to travel to reach the calling workcenter. These distances are known for a fixed-route 

layout and the ‘closest’ vehicle will be assigned to pickup the designated job. At any 

given time that a job becomes available at this workcenter, the available transporter 

placements can vary. On average then a job will see a distribution of available 

transporter placements. This distribution varies with the number of available vehicles 

and the long-term demand for transportation between workcenters. Once we compute 

this distribution for each possible number of available vehicles up to the maximum 

number of vehicles, T, the empty and loaded transporter trip times for all routes can be 

obtained. Then we have the mean service times as a function of the numbers of servers 

available at the time of the request.  

 Now we need to develop the system states. State i here is the number of jobs in 

the transportation subsystem at the time of the vehicle assignment. As the number of 

jobs in the transportation subsystem decrease, that is, the number of free transporters 

increases, there is a greater chance of a transporter being located at the needed 

workcenter. Therefore, the transportation time is the function of these numbers. Since 

the service (transportation) times are depend on the number of available transporters at 
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the time that a transporter is allocated to the job, there are T service rate classes with 

mean rates denoted by µi, where the index i represents the number of jobs in the 

transportation subsystem, and thus, there are T – i free transporters available at the 

time of the vehicle assignment. When there is only one job in the transportation 

subsystem, this job can be on any one of the routes with mean rate µi, for i ∈ {1, 2, …, 

T}. These possibilities, however, do not occur with equal probability. With only one 

job being transported, it is more likely it has a high service rate index number. To 

illustrate, for this job to have a mean service rate of µ1 the job requested transportation 

when the transportation system was empty and, hence, was allocated the closest of T 

transporters. For a single job in the transportation system to have a mean service rate 

of µ2, there was one other job in the transportation system when this job was assigned 

a transporter. Hence, there would have been only T – 1 transporters available and the 

closest one would have been assigned. After this assignment, the other job being 

transported was delivered to its destination before this new job and the result is one 

job currently in the transportation system with a mean service rate of µ2. For a single 

job to have a mean service rate of µ3, this job had to be assigned a transporter when 

there were two other jobs already being transported and then these two jobs had to be 

delivered at their respective destinations before the job under consideration. And so 

forth until all single rate possibilities have been covered (µ1, µ2, µ3, …, µT). 

Conceptually, these states are increasingly unlikely due to the condition that all the 

other active jobs have to be delivered first. For transportation states with two-active 

jobs, these states are {12, 13, …, 1T, 22, …, 2T, …, TT}. These states have mean 
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service rates denoted by a pair of rates (µi, µj). That is, there are two independent 

transportation processes operating each with its own service rate. States with three 

jobs in transit are denoted by three numbers, ijk, and have an associated rate three-

tuple of the form (µi, µj, µk), etc. 

 To further illustrate the states and how the system transitions between them, 

consider a system with three transporters. There are only 14 distinct server 

configurations although there are an infinite number of states. The distinct transporter 

states are: empty (0), one busy transporter (1, 2, 3), two busy transporters (12, 13, 22, 

23, 33) and all three transporters busy (123, 133, 223, 233, 333). Note that the five 

distinct states where all transporters are busy are repeated for each possible number of 

jobs in the transportation queue (0, 1, 2, …), i.e., jobs waiting for a transporter 

assignment. Now, consider the system transitions between above states. To enter the 

empty state (0), the system can be in a single busy transporter state and the job gets 

delivered before any new transportation requests occur. To help with this discussion, 

diagrams of the state transitions are given below. The diagram notation is from state to 

state with an arrow indicating the direction of the transition and the type of transition 

(denoted by the service rate or an A for the arrival of a new job transportation request). 

Thus, the entry into the zero state has three possibilities: 

 

03,02,01:0 321 →→→ µµµState  
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For the states with one busy transporter: 

 

333,323,313:3
223,222,212:2

113,112,10:1

321

321

32

→→→

→→→

→→→

µµµ

µµµ

µµ

State
State
State A

 

 

For the states with two busy transporters: 

 

33333,33233,33133:33

23233,23223,23123:23

22223,222:22

13133,13123:13

12123,121:12

321

321

3

32

3

→→→

→→→

→→

→→

→→

µµµ

µµµ

µ

µµ

µ

State

State

State

State

State

A

A

 

 

And finally, for the states where all transporters are busy (states with Q appended 

indicate one job waiting in the queue for a transporter assignment): 

 

333333,333333,333233,33333:333

233233,233233,233223,23323:233

223223,22322:223

133133,133133,13313:133

123123,12312:123

321

321

3

32

3

→→→→

→→→→

→→

→→→

→→

µµµ

µµµ

µ

µµ

µ

QQQState

QQQState

QState

QQState

QState

A

A

A

A

A
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There are, of course, an infinite number of states of the form 123Q, 123QQ, 123QQQ, 

etc. that the system can take on. In fact, each of the five all-busy transporter states 

have these multiple forms. But the major transitions have been illustrated with these 

14 state-transition diagrams. 

To obtain the system performance measures for our example model, such as 

WIPq and WIPsys, we need to compute the steady-state probabilities, Pi’s, that there are 

exactly i-jobs in the system. Using the possible transition states with their associated 

transition rates, the steady-state flow-balance equations are written using rate matrix 

Q as PT⋅Q = 0T and PT⋅1 = 1. The transition rate matrix Q has the structure displayed 

in Figure 2.  

 

 P0 P1 P2 P3 P4 L Pn+1 Pn+2 L 

P0 B00 C01        

P1 A10 B11 C12       

P2  A21 B22 C23      

P3   A32 B33 C34     

M    O O O    

Pn     An,n-1 Bn,n Cn,n+1   

Pn+1      A B C  

M       O O O 
 

Figure 2. The structure of the transition rate matrix Q. 
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Now, the objective is to obtain the values for the steady-state probabilities 

denoted by P, where P is partitioned in the same fashion as Q. That is, P = 

(P0|P1|P2|L |Pn|L). The steady-state solution is obtained by solving the following 

steady-state balance equations in matrix form: 

 

PT Q = 0T. 

 

So, using the sub-matrices from partitioning, the following system of equations needs 

to be solved: 

 

P0 C01 + P1 B11 + P2 A21 = 0T 

P1 C12 + P2 B22 + P3 A32 = 0T 

P2 C23 + P3 B33 + P4 A43 = 0T 

M 

Pn-2 Cn-2,n-1 + Pn-1 Bn-1,n-1 + Pn An,n-1 = 0T 

 

and finally: 

 

                                    Pn C + Pn+1 B + Pn+2 A = 0T                        (2.2) 

Pn+1 C + Pn+2 B + Pn+3 A = 0T 

M 
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Among the various solution methods for the above set of homogenous-linear 

equations, a back-substitution method can be used to reduce the computational work 

involved in obtaining these steady-state probabilities. First, the characteristic root 

matrix R is formed. Since PT
k+1 = Pk

T R for all k ≥ n-1, equation (2.2) becomes Pn
T  

(C + R B + R R A) = 0T. And, since Pn ≠ 0, then C + R B + R2 A = 0T. This is 

equivalent to R = − (C + R2 A) B-1. Using an iterative substitution scheme, Rj+1 = − 

(C + R2
j A) B-1 starting with R0 = 0, the characteristic root matrix R is obtained. The 

initial conditions are solved by back substitution, yielding the set of equations: 

 

Pn-2 Cn-2,n-1 + Pn-1 Bn-1,n-1 + R Pn-1 An,n-1 = 0T. 

 

Solving for Pn-1, yields: 

 

Pn-1 = – Pn-2 Cn-2,n-1  (Bn-1,n-1 + R An,n-1)-1. 

 

Using Pn-3 Cn-3,n-2 + Pn-2 Bn-2,n-2 + Pn-1 An-1,n-2 = 0T and substituting the above result for 

Pn-1, then Pn-2 becomes: 

 

Pn-2 = – Pn-3 Cn-3,n-2 {Bn-2,n-2 – {Cn-2,n-1 (Bn-1,n-1 + R An,n-1)-1} An-1,n-2}-1. 

 

Continuing in this manner solving for Pn-3, Pn-4, L, P2 and then, finally: 
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P1 = – P0 C01 {B11 – L Cn-2,n-1 (Bn-1,n-1 + R An,n-1)-1} An-1,n-2}-1L)-1 A21}-1. 

 

If the value of P0 where known, the above scheme would yield a numerical solution 

for all the probabilities Pi’s. However, the proper value for P0 is not known. Thus, the 

approach is to first set P0 = 1 and evaluate all Pi’s and then, use the fact that their sum 

should be equal to 1 to set the correct value for P0. Then, all of the Pi’s are 

reevaluated yielding the proper values for these probabilities. 

 Now, to obtain the proper steady-state probabilities Pi’s, for all i = 1, 2, L, n-

1, it is necessary to normalize all the above probabilities Pi’s. From equation (2.2), by 

back substitution, where 1 is a vector of all ones, the sum of all the probabilities is: 

 

P01 + P0P1 1 + P0P2 1 + L + P0Pn-2 1+ P0Pn-1 [I + R + R2 + L] 1 = 1. 

 

Since I + R + R2 + L is a geometric series, this summation is (I − R)-1. So,  

 

P0{1 + P1 1 + P2 1 + L + Pn-2 1+ Pn-1 [(I − R)-1] 1} = 1, 

 

and 

 

P0 = {1 + P1 1 + P2 1 + L + Pn-2 1+Pn-1 [(I − R)-1] 1}-1. 
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By normalizing all the Pi’s that were previously obtained using P0 = 1, the final 

steady-state probabilities Pi’s are: 

 

P1 = P0P1, P2 = P0P2, L, Pn-2 = P0Pn-2, Pn-1 = P0Pn-1, 

and PT
k = Pk-1

T R for all k ≥ n. 

 

To calculate work-in-process in the system WIPsys, and the number of jobs in the 

queue for a transporter WIPq using the steady-state probabilities Pi’s, the formulas are: 

 

   WIPsys = 0P0 + 1P1 1 + 2P2 1 + L + (n-1)Pn-1 1 + nPn 1 + (n+1)Pn+1 1 + L 

       = 0P0 + 1P1 1 + 2P2 1 + L + Pn-1((n-1) + nR+ (n+1)RR + L) 1 

       = 0P0 + 1P1 1 + 2P2 1 + L + Pn-1 R-(n-2)((n-1)Rn-2 + nRn-1 + (n+1)Rn + L) 1 

       = 0P0 + 1P1 1 + 2P2 1 + L + Pn-1 R-(n-2){(I + 2R + 3R2 + L)  

        – (I + 2R + L + (n-2)Rn-3)} 1 

              = 0P0 + 1P1 1 + L + Pn-1 R-(n-2){(I – R)-2 – (I + 2R + L + (n-2)Rn-3)} 1, 

 

    WIPq = 1Pn+1 1 + 2Pn+2 1 + 3Pn+3 1 + L 

             = Pn+1(I + 2R + 3R2 + L) 1 

             = Pn-1 R2((I – R)-2) 1. 
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The work-in-process in the system (WIPsys) is calculated by using these 

steady-state probabilities Pi’s and, then by applying Little’s law (Little 1961), the 

cycle time can be computed as: 

 

λ
sys

sys

WIP
CT = , 

 

and the queue time in the system is given by: 

 

λ
q

q

WIP
CT = . 

 

Once the result of the analytical M/M/T state dependent queueing model is obtained, it 

can be converted to the general service time dependent queueing case using the 

adjustment factor equation (2.1).  

 

2.3 Example 

For illustration purposes, reconsider the previous example with 7 transporters 

and 4 workcenters. Using the matrix geometric technique for solving this queueing 

model (Neuts 1981), a system of 429 equations in 429 unknowns must be solved to 

get the characteristic root matrix R. In addition, 1001 equations must be solved to 

obtain the initial probabilities P1, …, Pn-1. For the seven-transporter case there are 

several sets of possible transition states. In the following these states are illustrated for 
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each value of the number of jobs in the system from 1 to 7. If only one transporter is 

available, then the total number of all the possible states is 7. These are: 

 

{1, 2, 3, 4, 5, 6, 7}. 

 

The associated probabilities are P1 = (P1,1, P1,2, …, P1,7).      

If two transporters are available, then the total number of all the possible states is 27.  

These are: 

 

{(1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (2,2), (2,3), (2,4), (2,5), (2,6), (2,7), (3,3), (3,4), 

(3,5), (3,6), (3,7), (4,4), (4,5), (4,6), (4,7), (5,5), (5,6), (5,7), (6,6), (6,7), (7,7)}. 

 

The associated probabilities are P2 = (P2,1, P2,2, …, P2,27). 

If three transporters are available, then the total number of all the possible states is 75.  

These are: 

 

{(1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,3,3), (1,3,4), (1,3,5), (1,3,6), (1,3,7), …,  

(5,5,5), (5,5,6), (5,5,7), (5,6,6), (5,6,7), (5,7,7), (6,6,6), (6,6,7), (6,7,7), (7,7,7)}. 

 

The associated probabilities are P3 = (P3,1, P3,2, …, P3,75). 

If four transporters are available, then the total number of all the possible states is 165.  

The states are of the form: 
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{(1,2,3,4), (1,2,3,5), (1,2,3,6), (1,2,3,7), (1,2,4,4), (1,2,4,5), (1,2,4,6), (1,2,4,7), … }. 

 

The associated probabilities are P4 = (P4,1, P4,2, …, P4,165). 

If five transporters are available, then the total number of all the possible states is 297.  

The states are of the form: 

 

{(1,2,3,4,5), (1,2,3,4,6), (1,2,3,4,7), (1,2,3,5,5), (1,2,3,5,6), (1,2,3,5,7), … }. 

 

The associated probabilities are P5 = (P5,1, P5,2, …, P5,297). 

If six transporters are available, then the total number of all the possible states is 429.  

The states are of the form: 

 

{(1,2,3,4,5,6), (1,2,3,4,5,7), (1,2,3,4,6,6), (1,2,3,4,6,7), (1,2,3,4,7,7), (1,2,3,5,5,6), … }. 

 

The associated probabilities are P6 = (P6,1, P6,2, …, P6,429). 

And, finally, if seven transporters are available, then the total number of all the 

possible states is 429. The states are of the form: 

 

{(1,2,3,4,5,6,7), (1,2,3,4,5,7,7), (1,2,3,4,6,6,7), (1,2,3,4,6,7,7), (1,2,3,4,7,7,7), … }. 

 

The associated probabilities are P7 = (P7,1, P7,2, …, P7,429). 
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For the 4-workcenters 7-transporters model, Table 1 lists the computational results for 

the mean service times as a function of the number of transporters available at the time 

that a job is assigned a transporter. The mean time between jobs requesting 

transportation is 1.5 time units. 

 

 Value 
Inter-arrival Time 1.500 

1 Transporter Available Service Time 8.712 
2 Transporters Available Service Time 7.506 
3 Transporters Available Service Time 6.793 
4 Transporters Available Service Time 6.327 
5 Transporters Available Service Time 5.949 
6 Transporters Available Service Time 5.698 
7 Transporters Available Service Time 5.492 

 

Table 1. The mean service times as a function of the numbers of servers available at 

the time of the request. 

 

From Table 1, the inter-arrival rate λ = 1/1.5 = 0.6667, and the service rates are the 

inverses of the mean transportation times listed in the table. The results from the 

analytical model are compared with those from a 1,000,000 time-unit simulation 

(written in ARENA (Pegden et al. 1995) with a statistical reset at 1,000 time units and 

25 replications) of this configuration. The analytical and simulation results of the 

M/M/T state-dependent queueing model are displayed in Table 2. 
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95% Confidence Interval Analytical Result Simulation Result 
Min Max 

WIPsys 6.9118 6.9069 6.8145 7.0430 
Queue Time 2.6853 2.6777 2.5503 2.8400 
Cycle Time 10.3678 10.3580 10.2260 10.5530 

 

Table 2. The analytical and simulation results comparisons of the M/M/T  

state-dependent queueing model. 

 

 The mean cycle time error is 0.0945%, and the total WIPsys error is 0.0709%. 

These are very acceptable results for an analytical model. From the above results, it is 

evident that the analytical M/M/T dependent queueing model is very accurate. Using 

this result and converting it to the state-dependent M/G/T model case using the 

adjustment factor equation (1), Cs
2 is analytically approximated to be 0.178% (Cs

2 of 

the simulation result is 0.179%), which yields the full system queue time of 1.584 (i.e. 

2.6853×(1.18/2) = 1.584). This time compares with the result of 1.603 from the 

simulation model (written in MOR/DS (Curry et al. 1989)) of the full M/G/T system. 

The percentage error is approximately 1.18%. Incidentally, the error introduced by 

making transportation time independent assumption is 42% for this example. 

 

2.4 Chapter Summary 

 In this chapter, we have developed the queueing network approximation model 

of a fixed-route material-handling system from the workcenters’ point of view and it 
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gives quite good results. The modeling methodology is appropriate for systems where 

the transporters take specific routes between various workcenters. This assumption 

covers circular-track systems such as the examples herein but is not limited to this 

particular structure. The approach is computationally tractable for small numbers of 

transporters, but the computational burden of the approach grows exponentially with 

the number of transporters supporting the system. The number of workcenters being 

serviced by the system does not have the same computational impact as the number of 

transporters. The two main analytical features of the overall model are the 

distributions of the location of an assigned transporter and the dependent service time 

model for the queueing delay waiting for a transporter assignment. The analytical 

model results are in excellent agreement with simulation results for the circular-track 

example system where the model had errors that are less than 1.2%. 
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CHAPTER III 

ANALYTICAL MODELS FOR MATERIAL HANDLING SYSTEMS FROM THE 

TRANSPORTER’S POINT OF VIEW 

 

3.1 Introduction 

 In Chapter II, it was shown that the results from state-dependent queueing 

approximation model from the workcenters’ point of view are very accurate 

comparing to the simulation results in terms of system WIP. Now, from the 

transporter’s point of view, we try to develop a queueing theory based analytical 

model of a fixed-route unidirectional material-handling system with a unit load 

transporter. From a transporter’s perspective, when a transporter finishes the delivery 

of a job to its destination in the system (termed a service), it needs to select a job to be 

picked up from possibly several job requests in the system according to a vehicle-

initiated dispatching rule. Of course, if there is only one job request in the system, no 

alternatives are available and the transporter will be assigned to service that job. If 

there are no jobs waiting in the system when the transporter becomes empty, it waits 

at the current location until a request for a job movement occurs. In this chapter, four 

different vehicle-initiated dispatching rules were considered and analytical models that 

can describe the impact of those dispatching polices to the system were developed and 

compared with simulation models. 
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3.2 Model with Vehicle-Initiated Dispatching Rules 

 In a transporter point of view model, the system status, i.e., the number of job 

requests in the system, can be checked only at the time of a job departure (service 

completion). If a job leaves the system empty of job movement requests, the system 

state remains zero until a new job movement request occurs (termed an arrival). The 

analytical model is based on transitions from one system state to another. Let i(t) 

represent the number of job movement requests in the system at time t. We are 

concerned with the long-term behavior (performance) of the system and consider only 

the steady-state behavior of the system. In steady-state, the time aspect of the system 

state is no longer a concern and, thus, we use i to denote the number of active job 

movement requests. So, based on the above argument, the transition probabilities for 

state i = 0 are exactly same as those for the state i = 1. Since the inter-request times for 

job movement and the transportation times are both exponentially distributed and 

imbedded times are the times of a service completion or a job request rather than the 

true steady-state system status, we can say that the imbedded process is Markovian 

(Gross and Harris 1998). This allows us to use Markov chain theory in the analysis of 

the system. 

 Since job requests at each workcenter are functions of the factory structure and 

job processing sequences, there exists a state-dependent nature of the service times 

relative to the number of job requesting locations. So, by considering these 

dependencies, we can develop a very accurate approximation model for the material-

handling system and routing-control being studied. Reconsider the fixed-route 
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unidirectional material-handling system layout shown in Figure 1 of the previous 

chapter. For a given configuration, we model the transportation requests at each 

workcenter by a random selection of the destination. A different destination 

distribution is allowed for each workcenter, thus, no restrictions are made on the job 

movement characteristics of the parts being manufactured in the facility. We do, 

however, limit the number transportations requests at a workcenter by not allowing 

job movement requests to queue at the workcenters. That is, each workcenter can be 

occupied by only one job at a time. Thus, we are essentially modeling a single-kanban 

control system for each workcenter. Since we are not actually modeling the 

workcenters themselves, we generate transportation requests at each workcenter based 

on an exponentially distributed time between requests (these rates are allowed to be 

workcenter dependent). Thus, if there is a job waiting for a transporter at a given 

workcenter when the next job movement request is generated for that workcenter, then 

that new job arrival will be discarded. Hence, a new job arrival at each workcenter is 

possible only if there is not a job already waiting at that workcenter. Whenever a 

transporter becomes available after a transportation service completion, the number 

and location of jobs waiting to be picked up can vary. This is where the different 

priority allocation schemes impact system performance.  
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3.3 Dispatching Rules 

3.3.1 Shortest Distance Rule (SDR) 

 Under the Shortest Distance Rule (SDR), an empty transporter will be assigned 

to the closest workcenter where a job is waiting to be picked up. If a transporter is 

freed at the workcenter where a job is already waiting, then the transporter selects that 

job and no empty transporter travel time results. If there are several jobs waiting for a  

transporter, then the control system will assign the empty transporter to the closest job 

 

From / To workcenter 1 workcenter 2 workcenter 3 workcenter 4 

workcenter 1 0 2 5 4 

workcenter 2 8 0 3 5 

workcenter 3 5 4 0 2 

workcenter 4 3 5 8 0 
 

Table 3. The example of distance matrix between workcenters. 

 

based on travel distances between the current empty transporter location and the job 

waiting locations. These distances are pre-specified for a fixed-route unidirectional 

layout system. To further illustrate the SDR, assume that we have the distances matrix 

shown in Table 3. Also, suppose that there are two jobs waiting for a transporter to be 

picked up (one each) at workcenter 3 and workcenter 4, and an empty transporter is 

located in workcenter 1. Then, since the distance (4 time units) from workcenter 1 to 
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workcenter 4 is less than the distance from workcenter 1 to workcenter 3 (5 time units), 

the empty transporter is assigned to the job at workcenter 4.  

 

3.3.2 Time Limit/Shortest Distance Rule (TL/SDR) 

 Under Time Limit with Shortest Distance Rule (TL/SDR), an empty 

transporter will be assigned to the workcenter which has a waiting job whose waiting 

time is greater than or equal to the pre-specified Time Limit. If there are two or more 

candidates that have passed the time limit, then the transporter will pick the job among 

these candidates only according to SDR. If there are no jobs beyond the time limit, 

then the SDR rule is used for all requests. To illustrate the TL/SDR allocation scheme, 

suppose that there are three jobs waiting for an empty transporter in the system and 

time limit is 0.5 minutes. Also assume that an empty transporter is freed at workcenter 

1 and the waiting times of each job at workcenters 1, 3 and 4 are 0.3, 0.9 and 0.4, 

respectively. Then, the empty transporter is allocated to workcenter 3, because the 

waiting time of job at workcenter 3 is the only one that exceeds the time limit. If the 

waiting times of two or more jobs exceed the time limit, then an empty transporter 

will pick up the closest job among these jobs. For example, if the waiting times of jobs 

at workcenter 3 and 4 are 0.9 and 0.7, respectively, then both of these jobs exceed the 

time limit. Thus, the empty transporter goes to workcenter 4 because workcenter 4 is 

closer than workcenter 3 from the transporter’s location at workcenter 1. 
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3.3.3 First-Come First-Serve Rule (FCFSR) 

 In the system with the First-Come First-Serve Rule (FCFSR), an empty 

transporter selects the workcenter whose job waiting time is the longest among 

candidates in the system. Therefore, under this dispatching policy, job arrivals will be 

served according to their arrival times. Since the FCFSR control scheme does not 

consider the jobs’ arrival location when it assign jobs to the transporter, from the 

transporter’s point of view, empty transporter travel times may be longer than in the 

SDR control case.  

 

3.3.4 Longest Distance Rule (LDR) 

 In the system with the Longest Distance Rule (LDR), an empty transporter 

selects the farthest workcenter where a job is waiting to be picked up from its current 

location. Since this dispatching policy tends to the have longer empty transporter 

travel times than either SDR or TL/SDR, it is not competitive with those two 

dispatching policies. Thus, it was analyzed only for the comparison purposes with the 

SDR and TL/SDR transporter allocation schemes. 

 

3.4 Examples  

3.4.1 Model with Shortest Distance Rule (SDR)  

 Now, reconsider the previous circuit network example problem in Figure 1. 

We assumed that all job arrivals at the four workcenters have known destination 

probabilities Pr{Rij}, i, j = 1, …, 4, and the throughput rates of all workcenters are the 
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same. Table 4 displays all 12 routes in sequential workcenters (nodes) visited. The 

first node and the last node denote the job generating workcenter and the job departure 

workcenter, respectively. New job arrivals at each job generating workcenter are 

independent of each other. 

 

route 
/steps 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 1 2 2 3 3 3 4 4 4 

2 5 5 5 3 3 3 6 6 6 1 1 1 

3 2 2 6 6  6 4 5 4  5 5 

4  3 4 4  4 1 2   2 2 

5    1        3 
 

Table 4. Routes generated for the fixed-route unidirectional material-handling 

problem of Figure 1 in Chapter II.  

 

Node times are all assumed to be 0.0125 minutes and the arc times in minutes are 

numbers in Figure 1 times 0.1. For this four-workcenters one-transporter example, if 

we identify all possible states of the system in terms of the number of job requests 

waiting at the workcenters, there are 64 possible transition states. Each state can be 

represented as numbers. The first four digits represent the location of job requests as a 

0 or 1 for each workcenter (0 being no request and one being a job waiting for 

transportation), and the fifth digit shows the transporter freed location. That is, if the 

third digit is 1, then this implies that there is a job request at workcenter 3. Thus, for 
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example, if we have (1100:3), then this state representation implies that there are two 

job requests from workcenters 1, 2 and the current location of the empty transporter is 

workcenter 3. In this manner, we can detail all 64 system states as follows.  

 

If there are no job requests in the system, then there are four such empty states. Note 

that the transporter can be located at any one of the four destinations. These possible 

states are:  

 

{(0000:1), (0000:2), (0000:3), (0000:4)}. 

 

If there is only one job request in the system, then the total number of all these 

possible states is 16. These states are:  

 

{(1000:1), (1000:2), (1000:3), (1000:4), (0100:1), (0100:2), (0100:3), (0100:4), 

   (0010:1), (0010:2), (0010:3), (0010:4), (0001:1), (0001:2), (0001:3), (0001:4)}. 

 

For two job requests in the system, there are 24 possible states:  

 

{(1100:1), (1100:2), (1100:3), (1100:4), (1010:1), (1010:2), (1010:3), (1010:4), 

 (1001:1), (1001:2), (1001:3), (1001:4), (0110:1), (0110:2), (0110:3), (0110:4), 

  (0101:1), (0101:2), (0101:3), (0101:4), (0011:1), (0011:2), (0011:3), (0011:4)}. 



 35

If there are three job requests in the system, this results in 16 possible states. These  

are:  

 

{(1110:1), (1110:2), (1110:3), (1110:4), (1101:1), (1101:2), (1101:3), (1101:4), 

   (1011:1), (1011:2), (1011:3), (1011:4), (0111:1), (0111:2), (0111:3), (0111:4)}. 

 

And finally, when there are four job requests in the system, the total number of 

possible states is 4. These states are:  

 

{(1111:1), (1111:2), (1111:3), (1111:4)}. 

 

In the SDR control case, an empty transporter will pick the job waiting at the 

closest workcenter from its current location. So, there is little chance that the 

transporter will to go to the second or third closest workcenter from the freed location. 

To illustrate this, suppose that a transporter is freed at workcenter 3. Then, the 

possible system states are:  

 

{(0000:3), (1000:3), (0100:3), (0010:3), (0001:3), (1100:3), (1010:3), (1001:3),  

 (0110:3), (0101:3), (0011:3), (1110:3), (1101:3), (1011:3), (0111:3), (1111:3)}. 

 

Suppose that these states occur in equal portions. Then, the probability that 

workcenter 3 (the closest workcenter from workcenter 3 is workcenter 3 itself) will be 
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chosen is 8/15 and the probabilities that workcenters 4, 2 and 1 will be chosen are 4/15, 

2/15 and 1/15, respectively. Note that these probabilities are proportional to the 

distances between job requesting workcenters and the empty transporter location. That 

is, the more distance between a job requesting workcenter and the empty transporter 

location the less probability that this workcenter will be chosen. Now, remember our 

assumption is that all jobs arriving at the four workcenters have their destinations in 

equal portion. That is, for example, the final destination of jobs arriving at workcenter 

1 can be workcenter 2, 3, or 4 with equal probability. Now, there are five possible 

cases due to the number of job arrivals at each of the four workcenters. During the 

transportation service time, there can be zero, one, two, three and four job arrivals to 

the system (a completed part at the workcenter requesting movement to another 

workcenter). Thus, if there are no new job arrivals during the transportation service 

period, then the number of job requesting workcenters is decreasing by one, because 

of the service completion. For example:  

 

One-step transition from state (1100:1) to (0100:2) or (0100:3) or (0100:4) 

→ Transporter picks up a job at workcenter 1 and there are no new job arrivals  

     to the system, 

One-step transition from state (1101:3) to (1100:1) or (1100:2) or (1100:3)  

→ Transporter picks up a job at workcenter 4 and there are no new job arrivals  

     to the system, 

One-step transition from state (1111:4) to (1110:1) or (1110:2) or (1110:3)  
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→ Transporter picks up a job at workcenter 4 and there are no new job arrivals  

     to the system. 

 

If there is exactly one job arrival during the service period, then the number of jobs 

requesting movement to other workcenters remains the same. However, the 

transporter will be at a different location and the arriving job location creates the 

different possible states. For example: 

 

One-step transition from state (1100:1) to (1100:2) or (1100:3) or (1100:4)  

→ Transporter picks up a job at workcenter 1 and there is a new job arrival to  

     workcenter 1, 

One-step transition from state (1100:1) to (0110:2) or (0110:3) or (0110:4)  

→ Transporter picks up a job at workcenter 1 and there is a new job arrival to  

     workcenter 3, 

One-step transition from state (1100:1) to (0101:2) or (0101:3) or (0101:4)  

→ Transporter picks up a job at workcenter 1 and there is a new job arrival to  

     workcenter 4. 

 

If there are two job arrivals at different workcenters during the service, then the 

number of job requesting transportation is increasing by one, because of one service 

completion and two new job arrivals. For example: 
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One-step transition from state (1100:1) to (1110:2) or (1110:3) or (1110:4)  

→ Transporter picks up a job at workcenter 1 and there are two job arrivals to  

     workcenters 1 and 3, 

One-step transition from state (1100:1) to (1101:2) or (1101:3) or (1101:4)  

→ Transporter picks up a job at workcenter 1 and there are two job arrivals to  

     workcenters 1 and 4, 

One-step transition from state (1100:1) to (0111:2) or (0111:3) or (0111:4)  

→ Transporter picks up a job at workcenter 1 and there are two job arrivals to  

     workcenters 3 and 4. 

 

If there are three job arrivals at each three different workcenters during the service, 

then the number of job requesting workcenters is increasing by two, because of one 

service completion and three new job arrivals. For example: 

 

One-step transition from state (1100:1) to (1111:2) or (1111:3) or (1111:4)  

→ Transporter picks up a job at workcenter 1 and three new jobs arrive to  

     workcenters 1, 3 and 4. 

 

If all four workcenters have new job arrivals during the service, then the number of 

job requesting workcenters is increasing by three, because of one service completion 

and four new job arrivals. For example: 
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One-step transition from state (1000:1) to (1111:2) or (1111:3) or (1111:4)  

→ Transporter picks up a job at workcenter 1 and four new jobs arrive at  

               workcenters 1, 2, 3 and 4. 

 

Now, we want to compute the average queue length, WIPq, of the system. The 

first thing we have to do is to obtain steady-state probabilities, Pi’s, that there are 

exactly i-job requests in the system. The steady-state equations relating the system 

states are of the formπ πT TP = . Figure 3 shows the general structure of the one-step 

transition-matrix P for a model with n workcenters and one transporter.  

 

 P0 P1 P2 P3 P4 L Pn 

P0 A00 A01 A02 A03 A04 L A0n 

P1 B10 B11 B12 B13 B14 L B1n 

P2  C21 C22 C23 C24 L C2n 

P3   D32 D33 D34 L D3n 

P4    E43 E44 L E4n 

M     O M M 

Pn      Enn-1 Enn 
 

Figure 3. The general structure of the one-step transition matrix P. 

 

The blanks within the matrix denote zero matrices and all Aij, Bij, Cij, Dij and Eij are 

sub-matrices of the matrix P whose elements are zeros and one-step transition 
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probabilities. For our example problem with four workcenters and one transporter, the 

steady-state flow-balance equations form a 64×64 generator P matrix with the 

structure shown in Figure 4.  

 

 Prob. P0 P1 P2 P3 P4 

Prob. States (0000:1) 
~ (0000:4) 

(1000:1) 
~ (0001:4) 

(1100:1) 
~ (0011:4) 

(1110:1) 
~ (0111:4) 

(1111:1) 
~ (1111:4) 

P0 
(0000:1) 

~ (0000:4) A00 (4×4) A01 (4×16) A02 (4×24) A03 (4×16) A04 (4×4) 

P1 
(1000:1) 

~ (0001:4) B10 (16×4) B11 (16×16) B12 (16×24) B13 (16×16) B14 (16×4) 

P2 
(1100:1) 

~ (0011:4)  C21 (24×16) C22 (24×24) C23 (24×16) C24 (24×4) 

P3 
(1110:1) 

~ (0111:4)   D32 (16×24) D33 (16×16) D34 (16×4) 

P4 
(1111:1) 

~ (1111:4)    E43 (4×16) E44 (4×4) 

 

Figure 4. The structure of the matrix P for our example problem. 

 

Suppose that mean inter-arrival rate at workcenter j, λj, follows a Poisson 

distribution and let the state dependent transporter service times for each route k be 

exponentially distributed with mean E[Sk]. The (departure point) steady-state 
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probability that there are exactly i-job requests in the system, Pi, i = 0, …, n, can be 

computed as follows: 

 

P0 = π (0000:1) + π (0000:2) + π (0000:3) + π (0000:4),  

P1 = π (1000:1) + π (1000:2) + π (1000:3) + π (1000:4) + π (0100:1) + π (0100:2) + π (0100:3)  

                + π (0100:4) + π (0010:1) + π (0010:2) + π (0010:3) + π (0010:4) + π (0001:1) + π (0001:2)  

                + π (0001:3) + π (0001:4),    

P2 = π (1100:1) + π (1100:2) + π (1100:3) + π (1100:4) + π (1010:1) + π (1010:2) + π (1010:3)  

                + π (1010:4) + π (1001:1) + π (1001:2) + π (1001:3) + π (1001:4) + π (0110:1) + π (0110:2)  

               + π (0110:3) + π (0110:4) + π (0101:1) + π (0101:2) + π (0101:3) + π (0101:4) + π (0011:1)  

               + π (0011:2) + π (0011:3) + π (0011:4), 

P3 = π (1110:1) + π (1110:2) + π (1110:3) + π (1110:4) + π (1101:1) + π (1101:2) + π (1101:3)  

                 + π (1101:4) + π (1011:1) + π (1011:2) + π (1011:3) + π (1011:4) + π (0111:1) + π (0111:2)  

                 + π (0111:3) + π (0111:4),   

P4 = π (1111:1) + π (1111:2) + π (1111:3) + π (1111:4),  

 

where the steady-state probabilities of state n, πn, can be obtained from the stationary 

equations π πT TP = and π⋅1 = 1. Now, to create the above P matrix, we need to 

compute the one-step transition probabilities between states. Since the mean inter-

arrival rate at each workcenter i, λi, follows a Poison distribution and job arrivals at 

different workcenters are independent of each other, we have: 
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Pr{3 job arrivals (at WC i, m, n) during service : route(k)}     

                                   = ( ) ( ) ( ) ( )][][][][ 111 kjknkmki SESESESE eeee ⋅−⋅−⋅−⋅− ⋅−⋅−⋅− λλλλ , 

 

Pr{4 job arrivals (at all WC’s) during service : route(k)}     

                                    = ( ) ( ) ( ) ( )][][][][ 4321 1111 kkkk SESESESE eeee ⋅−⋅−⋅−⋅− −⋅−⋅−⋅− λλλλ . 

 

For further illustration, we compute the one-step transition probabilities from (0001:1) 

to (1000:2) and from (1000:1) to (1100:3) in our example problem. Since the 

transition from (0001:1) to (1000:2) occurs when an empty transporter travels from 

workcenter 1 to workcenter 4 and delivers a job from workcenter 4 to workcenter 2 

and there is one job arrival at workcenter 1 with no job arrivals at the other 

workcenters during the service time of route 1→4→2, E[S142], we have: 
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( ) ( ) ( ) ( ) }Pr{1)}2:1000()1:0001Pr{( 12
][][][][ 1424142314221421 Reeee SESESESE ⋅⋅⋅⋅−=→ ⋅−⋅−⋅−⋅− λλλλ  

                                        ( ) ( ) }Pr{1 12
)]([][ 4321421421 Ree SESE ⋅⋅−= ++−⋅− λλλλ . 

 

Note that we multiplied the probability, Pr{R12}, that the destination of the job at 

workcenter 1 is workcenter 2, because of our assumption that all jobs arriving at the 

four workcenters have destination probabilities Pr{Rij}, i, j = 1, …, 4. The one-step 

transition probability from (1000:1) to (1100:3) can be obtained as follows. The 

transition from (1000:1) to (1100:3) occurs when a transporter delivers a job from 

workcenter 1 to workcenter 3 and there are two job arrivals during this delivery time 

at workcenters 1 and 2, and no job arrivals at workcenters 3 and 4 during the service 

time of route 1→3, E[S13]. In this case, no empty trip occurs because the job 

requesting location and the empty transporter location are the same. Thus, we have: 

 

( ) ( ) ( ) ( ) }Pr{11)}3:1100()1:1000Pr{( 13
][][][][ 134133132131 Reeee SESESESE ⋅⋅⋅−⋅−=→ ⋅−⋅−⋅−⋅− λλλλ               

                                           ( ) ( ) ( ) }Pr{11 13
)]([][][ 4313132131 Reee SESESE ⋅⋅−⋅−= +−⋅−⋅− λλλλ . 

 

From the steady-states probabilities of i-job requests in the system when a transporter 

is freed, Pi, i = 0, …, n, we obtain the average number of jobs waiting in the queue, 

WIPq as follows:  

 

43210 43210WIP PPPPPq ⋅+⋅+⋅+⋅+⋅= . 
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If we want to know the average number of jobs in the system, WIPsys, this information 

can be computed as:  

 

+= qsys WIPWIP  Transporter Utilization 43210 54320 PPPPP ⋅+⋅+⋅+⋅+⋅= . 

 

For the four workcenters and one transporter example, we have following inter-arrival 

rates as shown in Table 5.  

 

Inter-arrival rate λ1 λ2 λ3 λ4 

 0.3989 0.2382 0.1284 0.0957 
 

Table 5. Job inter-arrival rates at each workcenter. 

 

The analytical model result is compared with that from simulation model (written in 

ARENA (Pegden et al. 1995)) with a run length of 500,000 time units and a statistical 

reset at 30,000 time units. The analytical and simulation results are in Table 6. 

 

 Analytical Simulation 95%CI Min 95%CI Max % Error 

WIPq 0.8389 0.8412 0.8376 0.8448 0.3% 
 

Table 6. The comparison of analytical and simulation results of WIPq for the model  

with the SDR control. 
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The percentage error between the analytical and simulation results of WIPq is 0.3% 

and this is very acceptable result for an analytical model. 

 

3.4.2 Model with Time Limit/Shortest Distance Rule (TL/SDR)  

 If we have a pre-specified time limit before a waiting job becomes urgent, then 

we need to modify the previous P matrix to allow for the probabilities that the 

transporter goes to the workcenters that are not the shortest distance from the current 

transporter location. Similar to the SDR control case, if a transporter becomes 

available and there is only one job request in the system, then the transporter 

obviously goes to the workcenter where the job is located. When a transporter 

becomes available and there are two or more job requests in the system, then the 

selection logic is as follows: 

  

• Check the waiting time of each job and compare it with the given Time Limit. 

• If a single job’s waiting time is bigger than the given Time Limit, then priority 

is given to that job and the transporter goes to the workcenter where that job is 

located. 

• If the waiting times of two or more jobs are bigger than the given Time Limit, 

then selection among these jobs is made according to the SDR control scheme. 

 

For example, in SDR control, we may have the following portion of the P matrix: 
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From/To L (1000:2) (1000:3) (1000:4) L (0100:2) (0100:3) (0100:4) 

M     M    

(1100:1) L 0 0 0 L 0.2905 0.2425 0.2569 

(1100:4) L 0 0 0 L 0.2407 0.2009 0.2129 

 

Note that, under the SDR control scheme, the one-step state transition from (1100:1) 

to (1000:2) cannot occur because an empty transporter will pick up the job at 

workcenter 1. Thus, as we can see in the above table, those transition probabilities are 

all zeros. However, under the TL/SDR control scheme, some portion of entities that 

are located in workcenters which are never chosen in the SDR control scheme is 

picked up and that portion changes according to the time limit value. Therefore, those 

transition probabilities may not necessarily be zero. Thus, in the time limit model, the 

previous portion of the P matrix would become: 

 

From/To L (1000:2) (1000:3) (1000:4) L (0100:2) (0100:3) (0100:4) 

M     M    

(1100:1) L 0.0705 0.0125 0.0269 L 0.2123 0.2209 0.2076 

(1100:4) L 0.0407 0.0009 0.0129 L 0.2007 0.1751 0.1984 

 

To further illustrate the difference between the SDR control scheme and the TL/SDR 

control scheme, consider all possible one-step transition cases from (1100:3). These 

yield the following four possible cases: 
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 From (1100:3)  

• An empty transporter from workcenter 3 picks a job at workcenter 2 by the SDR 

control and follows a routing sequence according to the job type, i.e., route 4 

(workcenter 2 → 3 → 6 → 4 → 1) or route 5 (workcenter 2 → 3) or route 6 

(workcenter 2 → 3 → 6 → 4), and there are no arrivals during that service period. 

 

States (1000:1) (1000:3) (1000:4) (0100:2) (0100:3) (0100:4) 

Prob. 1-  1-  1-  1-  1-  1-  
 

For 1- : ( ) }Pr{}Pr{)}1:1000()3:1100Pr{( )3:1100(21
)]([ 4321321 SDRRe SE ⋅⋅=→ +++− λλλλ  

For 1- : ( ) }Pr{}Pr{)}3:1000()3:1100Pr{( )3:1100(23
)]([ 4321323 SDRRe SE ⋅⋅=→ +++− λλλλ  

For 1- : ( ) }Pr{}Pr{)}4:1000()3:1100Pr{( )3:1100{24
)]([ 4321324 SDRRe SE ⋅⋅=→ +++− λλλλ  

For 1- : ( ) }Pr{}Pr{)}2:0100()3:1100Pr{( )3:1100{12
)]([ 4321312 nonSDRRe SE ⋅⋅=→ +++− λλλλ  

For 1- :  

( ) }Pr{}Pr{)}3:0100()3:1100Pr{( )3:1100(13
)]([ 4321313 nonSDRRe SE ⋅⋅=→ +++− λλλλ  

For 1- : ( ) }Pr{}Pr{)}4:0100()3:1100Pr{( )3:1100(14
)]([ 4321314 nonSDRRe SE ⋅⋅=→ +++− λλλλ  

 

• An empty transporter from workcenter 3 picks up a job at workcenter 2 and 

follows a routing sequence according to the job type, i.e., route 4 or 5 or 6, and 

there is one job arrival during the service period. 
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States (1100:1) (1100:2) (1100:3) (1100:4) (1010:1) (1010:3) 

Prob. 2-  2-  2-  2-  2-  2-  

States (1010:4) (1001:1) (1001:3) (1001:4) (0110:2) (0110:3) 

Prob. 2-  2-  2-  2-  2-  2-  

States (0110:4) (0101:2) (0101:3) (0101:4)   

Prob. 2-  2-  2-  2-    
 

For 2- :  

( ) ( ) }Pr{}Pr{1)}1:1100()3:1100Pr{( )3:1100(21
)]([][ 4313213212 SDRRee SESE ⋅⋅⋅−=→ ++−⋅− λλλλ  

For 2- :  

( ) ( ) }Pr{}Pr{1)}3:1100()3:1100Pr{( )3:1100(23
)]([][ 4313233232 SDRRee SESE ⋅⋅⋅−=→ ++−⋅− λλλλ  

                              ( ) ( ) }Pr{}Pr{1 )3:1100(13
)]([][ 4323133131 nonSDRRee SESE ⋅⋅⋅−+ ++−⋅− λλλλ  

For 2- :  

( ) ( ) }Pr{}Pr{1)}4:1100()3:1100Pr{( )3:1100(24
)]([][ 4313243242 SDRRee SESE ⋅⋅⋅−=→ ++−⋅− λλλλ  

                             ( ) ( ) }Pr{}Pr{1 )3:1100(14
)]([][ 4323143141 nonSDRRee SESE ⋅⋅⋅−+ ++−⋅− λλλλ  

For 2- :  

( ) ( ) }Pr{}Pr{1)}1:1010()3:1100Pr{( )3:1100(21
)]([][ 4213213213 SDRRee SESE ⋅⋅⋅−=→ ++−⋅− λλλλ  

M 

For 2- :  

( ) ( ) }Pr{}Pr{1)}4:1001()3:1100Pr{( )3:1100(24
)]([][ 3213243244 SDRRee SESE ⋅⋅⋅−=→ ++−⋅− λλλλ  

For 2- :  
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( ) ( ) }Pr{}Pr{1)}2:1100()3:1100Pr{( )3:1100(12
)]([][ 4323123121 nonSDRRee SESE ⋅⋅⋅−=→ ++−⋅− λλλλ

 

M 

For 2- :  

( ) ( ) }Pr{}Pr{1)}4:0101()3:1100Pr{( )3:1100(14
)]([][ 3213143144 nonSDRRee SESE ⋅⋅⋅−=→ ++−⋅− λλλλ  

 

• An empty transporter from workcenter 3 picks up a job at workcenter 2 and 

follows a routing sequence according to the job type, i.e., route 4 or 5 or 6, and 

there are two job arrivals during the service period. 

 

States (1110:1) (1110:2) (1110:3) (1110:4) (1101:1) (1101:2) 

Prob. 3-  3-  3-  3-  3-  3-  

States (1101:3) (1101:4) (1011:1) (1011:3) (1011:4) (0111:2) 

Prob. 3-  3-  3-  3-  3-  2-  

States (0111:3) (0111:4)     

Prob. 2-  2-      
 

For 3- : )}1:1110()3:1100Pr{( →  

            ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(21
)]([][][ 4132132133212 SDRReee SESESE ⋅⋅⋅−⋅−= +−⋅−⋅− λλλλ  

For 3- : )}3:1110()3:1100Pr{( →  

         ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(23
)]([][][ 4132332333232 SDRReee SESESE ⋅⋅⋅−⋅−= +−⋅−⋅− λλλλ        

          ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(13
)]([][][ 4231331333131 nonSDRReee SESESE ⋅⋅⋅−⋅−+ +−⋅−⋅− λλλλ  
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For 3- : )}4:1110()3:1100Pr{( →  

               ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(24
)]([][][ 4132432433242 SDRReee SESESE ⋅⋅⋅−⋅−= +−⋅−⋅− λλλλ                                      

               ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(14
)]([][][ 4231431433141 nonSDRReee SESESE ⋅⋅⋅−⋅−+ +−⋅−⋅− λλλλ  

For 3- : )}1:1101()3:1100Pr{( →  

           ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(21
)]([][][ 3132132143212 SDRReee SESESE ⋅⋅⋅−⋅−= +−⋅−⋅− λλλλ  

For 3- : )}3:1101()3:1100Pr{( →       

          ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(23
)]([][][ 3132332343232 SDRReee SESESE ⋅⋅⋅−⋅−= +−⋅−⋅− λλλλ           

          ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(13
)]([][][ 3231331343131 nonSDRReee SESESE ⋅⋅⋅−⋅−+ +−⋅−⋅− λλλλ  

For 3- : )}4:1101()3:1100Pr{( →        

         ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(24
)]([][][ 3132432443242 SDRReee SESESE ⋅⋅⋅−⋅−= +−⋅−⋅− λλλλ                       

        ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(14
)]([][][ 3231431443141 nonSDRReee SESESE ⋅⋅⋅−⋅−+ +−⋅−⋅− λλλλ  

M 

For 3- : )}4:1011()3:1100Pr{( →  

         ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(24
)]([][][ 2132432443243 SDRReee SESESE ⋅⋅⋅−⋅−= +−⋅−⋅− λλλλ  

For 3- : )}2:1110()3:1100Pr{( →  

        ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(12
)]([][][ 4231231233121 nonSDRReee SESESE ⋅⋅⋅−⋅−= +−⋅−⋅− λλλλ  

M 

For 3- : )}4:0111()3:1100Pr{( →  

        ( ) ( ) ( ) }Pr{}Pr{11 )3:1100(14
)]([][][ 2131431443143 nonSDRReee SESESE ⋅⋅⋅−⋅−= +−⋅−⋅− λλλλ  
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• An empty transporter from workcenter 3 picks up a job at workcenter 2 and 

follows a routing sequence according to the job type, i.e., route 4 or 5 or 6, and 

there are three job arrivals during the service. 

 

States (1111:1) (1111:2) (1111:3) (1111:4) 

Prob. 4-  4-  4-  4-  
 

For 4- : )}1:1111()3:1100Pr{( →  

    ( ) ( ) ( ) ( ) }Pr{}Pr{111 )3:1100(21
][][][][ 3211321432133212 SDRReeee SESESESE ⋅⋅⋅−⋅−⋅−= ⋅−⋅−⋅−⋅− λλλλ  

For 4- : )}3:1111()3:1100Pr{( →               

    ( ) ( ) ( ) ( ) }Pr{}Pr{111 )3:1100(23
][][][][ 3231323432333232 SDRReeee SESESESE ⋅⋅⋅−⋅−⋅−= ⋅−⋅−⋅−⋅− λλλλ            

   ( ) ( ) ( ) ( ) }Pr{}Pr{111 )3:1100(13
][][][][ 3132313431333131 nonSDRReeee SESESESE ⋅⋅⋅−⋅−⋅−+ ⋅−⋅−⋅−⋅− λλλλ  

For 4- : )}4:1111()3:1100Pr{( →  

 ( ) ( ) ( ) ( ) }Pr{}Pr{111 )3:1100(24
][][][][ 3241324432433242 SDRReeee SESESESE ⋅⋅⋅−⋅−⋅−= ⋅−⋅−⋅−⋅− λλλλ  

( ) ( ) ( ) ( ) }Pr{}Pr{111 )3:1100(14
][][][][ 3142314431433141 nonSDRReeee SESESESE ⋅⋅⋅−⋅−⋅−+ ⋅−⋅−⋅−⋅− λλλλ  

For 4- : )}2:1111()3:1100Pr{( →  

 ( ) ( ) ( ) ( ) }Pr{}Pr{111 )3:1100(12
][][][][ 3122312431233121 nonSDRReeee SESESESE ⋅⋅⋅−⋅−⋅−= ⋅−⋅−⋅−⋅− λλλλ  

 

For this case, Pr{SDR(1100:3)} is the probability that an empty transporter goes to the 

workcenter 2 from workcenter 3 (SDR choice) and Pr{nonSDR(1100:3)} is the 
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probability that an empty transporter goes to the workcenter 1 from workcenter 3 

(non-SDR choice) where there are two job requests from workcenters 1 and 2 in the 

system. Under the SDR control scheme or the TL/SDR control scheme with a Time 

Limit of 0, we have Pr{SDR(1100:3)} = 1 and Pr{nonSDR(1100:3)} = 0 for all system 

states. Therefore, all one-step transition probabilities of numbers with black circles 

should be zeros. On the other hand, under the TL/SDR control with non-zero Time 

Limits, we have Pr{nonSDR(1100:3)} ≠ 0. Thus, those zero probabilities in SDR control 

cases do not remain zero and those will change according to the Time Limit. That is, if 

the Time Limit is not zero, then priority is given to the workcenter that has a job 

which has waited more than the Time Limit. Note that this workcenter may not be the 

closest one from an empty transporter. Thus, there exist cases where an empty 

transporter goes to a non-SDR choice and this implies that the one-step transition 

probabilities associated with those cases will not be zero. Thus, with different Time 

Limits, we may have different P matrices.  

To model the probabilities Pr{SDR} and Pr{nonSDR}, we first performed 

several preliminary simulation runs for a set of Time Limit points and obtained the 

solid-line curve in Figure 5. This curve represents the change of total portion of the 

non-SDR choices with-respect-to the Time Limit value when there were two or more 

job requests in the system. If the Time Limit is zero, then the model is the same as the 

SDR control model. Thus, the portion of the non-SDR choices will be zero. As the 

Time Limit value increases from zero, an empty transporter begins to be allocated to 

the workcenter that is not the closest one from its current location, thus the proportion 
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the curve is increasing. After the certain Time Limit point (the peak point), the total 

portion of non-SDR choices would start decreasing. That is, if the Time Limit 

becomes larger after the peak point, then the number of jobs whose waiting time is 

greater than the Time Limit will decrease. Thus, the number of non-SDR choices also 

decreasing to zero as we can see in curve from Figure 5. 
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Figure 5. Plots of the non-SDR choice portion for all decisions made during 

simulation runs as compared to a Gamma distribution estimate (best fit). 

 

As the Time Limit becomes very large, this total portion of the non-SDR choices 

again approaches zero, which implies that the model returns to the SDR control model. 
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From above Figure 5, the solid line is the simulation result and the dotted line is 

Gamma distribution best fit for the simulation curve which is specific to a particular 

configuration. From these Gamma distribution data, we can compute the sets of proper 

Pr{SDR}’s and Pr{nonSDR}’s for all possible Time Limit values. Thus, using the 

Gamma distribution approximation, it is possible to incorporate Time Limits into the 

transition probability matrix P.  

To check whether the shape of the non-SDR choice curve shown in Figure 5 is 

affected by the traffic intensity, we differentiated the traffic intensity by changing 

arrival rates to the system and obtained the simulation results of Figures 6 and 7.  

 

Non-SDR Choice Curves from Simulation
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Figure 6. Simulation of non-SDR choice curves for different traffic intensities. 
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Normalized Curves
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Figure 7. Simulation of non-SDR choice curves normalized with respect to their peak 

points for different traffic intensities.  

 

Figure 6 shows three non-SDR simulation choice curves with different traffic intensity 

cases. In Figure 7, we normalized those simulation curves at the peak point. As can be 

seen in Figure 7, even though these simulation curves are different with respect to the 

traffic intensities of the system, these curves are very similar in their shapes. The best 

fit distributions for the non-SDR choice simulations curves are Gamma distributions 

with resulting parameters, α and β, that are shown in Table 7.  
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 α β 

Utilization = 0.65 (Original) 2.490 0.355 

Utilization = 0.90 2.850 0.041 

Utilization = 0.85 3.000 0.039 
     

Table 7. Gamma distribution (best fit) parameters for different traffic intensity cases.  

 

Using the Gamma distribution modified P matrices for each Time Limit value, 

we compare analytical estimates from those obtained from simulation for various 

Time Limit values the following table. Simulation results using ARENA are for a run 

length of 500,000 time units with a statistical reset at 30,000 time units. As we can see 

from Table 8, the analytical WIPq errors are less than ±1.0% for the five different 

Time Limit values analyzed (note that when the Time Limit is set to 0, the policy is 

the SDR control scheme). 

 

Time 
Limit 

Analytical 
WIPq 

Simulation 
WIPq 

95%CI 
Min 

95%CI 
Max % Error 

0.0 0.8389 0.8412 0.8376 0.8448 −0.3 

0.5 0.8586 0.8546 0.8518 0.8574 +0.5 

1.5 0.8452 0.8447 0.8401 0.8493 +0.1 

2.5 0.8401 0.8465 0.8436 0.8495 −0.7 

3.0 0.8394 0.8434 0.8405 0.8463 −0.5 
 

Table 8. The comparison of analytical and simulation results of WIPq for the model 

with the TL/SDR control scheme. 
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3.4.2.1 Model with an Outlier of Length 1 

Now, consider the case that there is an outlier in the system. An outlier is a 

workcenter (node in the network) that is so far from every other workcenter that it is 

never the closest workcenter when more than one workcenter has jobs awaiting 

transportation. As we can see in Figure 8, workcenter 7 is an outlier connected to node 

4. In this model, a new job arrives at workcenter 7 and all assumptions remain the 

same as the previous non-outlier example. 

 

 

 

Figure 8. A fixed-route unidirectional material-handling system with an outlier 

(workcenter 7). 

 

Table 9 displays the 12 routes for this model. Note that only routes 10, 11 and 12 are 

different from previous model with no outlier. That is, route 10, 11 and 12 start at 

workcenter 7 instead of node 4.  
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route/ 
steps 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 1 2 2 3 3 3 7 7 7 

2 5 5 5 3 3 3 6 6 6 4 4 4 

3 2 2 6 6  6 4 5 4 1 1 1 

4  3 4 4  4 1 2   5 5 

5    1       2 2 

6            3 
 

Table 9. Routes generated for the example problem with an outlier of Figure 8.  

 

Due to the structure of this model, under the SDR control scheme, a new job 

arrival at workcenter 7 can be picked up only if there is no other job request in the 

system. Thus, if there are two or more job requests in the system when a transporter is 

available, then workcenter 7 would never be chosen under SDR control. However, 

under the TL/SDR control scheme, by changing the Time Limit, an empty transporter 

can be sent to workcenter 7 when there are two or more jobs in the system. For this 

outlier model, from eleven simulation runs with several Time Limit values, we obtain 

via simulation the dashed curve in Figure 9. Again the best fit for this simulation 

curve (dashed line) is a Gamma distribution (solid line). Thus, we can compute sets of 

proper Pr{SDR}’s and Pr{nonSDR}’s for all possible Time Limits from above 

Gamma distribution curve fit and, from those, new P matrices with all possible Time 

Limits for the outlier model can be obtained. 
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Figure 9. Plots of total non-SDR choice portion of all decisions made during 

simulation runs for an outlier model and Gamma distribution curve (best fit). 

 

Using the modified P matrix considering Time Limits, we have the following 

analytical WIPq’s according to Time Limit values as shown in Table 10. As the 

previous case, the simulation model is written in ARENA (Pegden et al. 1995) with 

the same configuration with analytical model and it has a run length of 500,000 time 

units and a statistical reset at 30,000 time units. Again, all percentage errors between 

analytical and simulation WIPq’s for different Time Limits are less than ±1%.  
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Time 
Limit 

Analytical 
WIPq 

Simulation 
WIPq 

95%CI 
Min 

95%CI  
Max % Error 

0.0 1.1105 1.1199 1.1151 1.1247 −0.8 

0.5 1.1142 1.1129 1.1065 1.1193 +0.1 

1.5 1.1155 1.1105 1.1037 1.1173 +0.4 

2.5 1.1118 1.1095 1.1033 1.1156 +0.2 

3.0 1.1110 1.1151 1.1102 1.1200 −0.4 
 

Table 10. The comparison of analytical and simulation results of WIPq for the outlier 

model (length 1). 

 

3.4.2.2 Model with an Outlier of Length 0.5 

At this time, suppose that, in Figure 8, the distance from workcenter 4 to 

workcenter 7 (outlier) is 0.5 instead of 1. Then, workcenter 7 is not an absolute outlier. 

That is, even in SDR control, an empty transporter would go to the workcenter 7 in 

some cases. For example in Figure 8, since the distance from workcenter 4 to 

workcenter 3 is bigger than the distance from workcenter 4 to workcenter 7, if an 

empty transporter is located at workcenter 4 and there are two job requests from 

workcenters 3 and 7, then an empty transporter will go to workcenter 7. For this small 

outlier model, from eleven simulation runs with different Time Limit values, we 

obtain the simulation curve (dashed line) of Figure 10. 
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Figure 10. Plots of total non-SDR choice portion of all decisions made during the 

simulation runs for a model with an outlier length 0.5 and Gamma distribution curve 

which is the best fit. 

 

Again, by finding the best fit for this simulation curve (dashed line) is a Gamma 

distribution (solid line). From Gamma distribution above, sets of proper Pr{SDR}’s 

and Pr{nonSDR}’s are available and the P matrices modified for all possible Time 

Limit values for an small outlier model can be obtained. Using the modified P matrix 

considering these Time Limits, a comparison between the analytical and simulation 

results are shown in Table 11. 
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Time 
Limit 

Analytical 
WIPq 

Simulation 
WIPq 

95%CI 
Min 

95%CI  
Max % Error 

0.0 1.0124 1.0056 1.0004 1.0108 +0.7 

0.5 1.0173 1.0008 0.9946 1.0070 +1.6 

1.5 1.0150 0.9991 0.9951 1.0031 +1.6 

2.5 1.0129 0.9993 0.9951 1.0035 +1.3 

3.0 1.0126 1.0007 0.9966 1.0048 +1.2 
 

Table 11. The comparison of analytical and simulation results of WIPq for the outlier 

(length 0.5) model. 

 

Again, the simulation model is written in ARENA (Pegden et al. 1995) and it has a 

run length of 500,000 time units with a statistical reset at 30,000 time units. Table 11 

shows that all percentage errors are less than ±2% between the analytical and 

simulation WIPq’s for different Time Limit values.  

 

3.4.3 Model with First-Come First-Serve Rule (FCFSR)  

 Now, assume a First-Come First-Serve Rule (FCFSR) for empty transporter 

allocations. In the FCFSR control scheme case, job selections depend only on the 

arrival sequence of the available jobs and not on the location of these jobs. That is, an 

empty transporter will give the highest priority to the job whose arrival time is earlier 

than any other candidates in the system no matter how far away the job’s location is 

from the current location of the empty transporter. Thus, jobs in the system will be 

served by an empty transporter in the FCFS manner. To obtain the steady-state 



 63

probabilities that there are n job requests in the system under the FCFSR control 

scheme, it is necessary to modify the P matrix from previous section to allow for the 

empty transporter to select job requests in the system according to their waiting times 

(or arrival order). Suppose that we have only two workcenters, i and j, in the system 

and the job arrival rate λi at workcenter i is greater than the job arrival rate λj at 

workcenter j ( λ λi j> ). Then, on average, it is likely that a job arrival at the 

workcenter i will wait longer for an empty transporter than a job arrival at workcenter 

j. Thus, the probability that an empty transporter will go to workcenter i is bigger than 

the probability that an empty transporter will go to workcenter j because the job 

selection only depends on the jobs’ waiting time. When there are two job requests 

from workcenters i and j in the system, we approximate the probability that an empty 

transporter will go to workcenter i by λi / (λi + λj). More generally, the probability, 

}Pr{ iWCℜ , that the empty transporter will select workcenter i among the set of job 

requesting workcenters, ℜ, can be approximated by:  

 

                                            
∑

ℜ∈

ℜ =

k
k

iiWC
λ
λ}Pr{    for i ∈ ℜ,                                     (3.1) 

 

where ℜ = set of all the locations of job requests when a transporter becomes 

available. Since this probability, }Pr{ iWCℜ , is only for the empty trip decision for the 

transporter that became available after the previous service, it is basically the same as 
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the probability of an empty trip to workcenter i which is given by Castillo and Peters 

(2002): 

 

                                                 
t

I
i

O
m

t
O

m
I

i
im U

U
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UUUq
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)(

)()( /
== ,                                     (3.2) 

 

where t
O

m
I

i UUU /)()(  is the rate of empty trips from workcenter i to workcenter m, )(O
mU  

represents the empty material-handling device requirement at workcenter m, )( I
iU  

denotes the arrival rate to workcenter i in unit loads per time unit and tU denotes the 

total arrival rate to the material-handling system in unit loads per time unit. Castillo 

and Peters used this probability to compute the expected empty trip time and its 

second moment. Note that the probability imq  in Equation (3.2) does not depend on 

workcenter m. Therefore, as we can see in above equations (3.1) and (3.2), }Pr{ iWCℜ  

and imq  are essentially the same probabilities. This approximation technique is 

referred to as factoring and we can estimate the rate of empty trips between 

workcenters from this approximation (Egbelu 1987b, Bakkalbasi and McGinnis 1988). 

To illustrate the usage of this probability, }Pr{ iWCℜ , consider the state example of 

(1100:3) case.  

 

If an empty transporter is freed at workcenter 3 and there are job requests from 

workcenters 1 and 2 in the system at that time, state (1100:3), then the transporter will 
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select the different workcenters with probabilities, }Pr{ iWCℜ ’s, as shown in Equation 

(3.1) for ℜ = set of all the locations of the job requests when a transporter becomes 

available and i ∈ ℜ, where: 

 

∑
ℜ∈

ℜ =

k
k

iiWC
λ
λ}Pr{

21 λλ
λ
+

= i  ,     for i ∈ ℜ = {1, 2}. 

 

For state (1100:3), we have ℜ = {1, 2} because there are only two job requests from 

workcenters 1 and 2 in the system when a transporter is freed at workcenter 3. If we 

consider the state case of (1100:3) and there are no job arrivals in the system during 

the service, then we have the following portion of all one-step transition cases from 

(1100:3). Note that, from state (1100:3), an empty transporter has two choices, 

workcenter 1 and 2, when it becomes available at workcenter 3. If the empty 

transporter chooses workcenter 2 with the probability, }Pr{ 2
}2,1{WC , then we have the 

cases ,  and  in the following table depending on the job type, i.e., either route 4 

(2 → 3 → 6 → 4 → 1) or route 5 (2 → 3) or route 6 (2 → 3 → 6 → 4). On the other 

hand, if the empty transporter selects workcenter 1 with the probability, }Pr{ 1
}2,1{WC , 

then we have the cases ,  and  in the following table depending on the job type, 

i.e., either route 1 (1 → 5 → 2) or route 2 (1 → 5 → 2 → 3) or route 3 (1 → 5 → 6 → 

4). Again, Pr{(1100:3) → (1000:3)} is the probability that an empty transporter from 

workcenter 3 will select the workcenter 2 to pick a job up and then finish its service at 
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workcenter 3 with no new job arrivals in the system and Pr{Rij} is the probability that 

the destination of the job at workcenter i is workcenter j, for i, j = 1, …, 4. 

 

States (1000:1) (1000:3) (1000:4) (0100:2) (0100:3) (0100:4) 

Prob.       

 

For : ( ) }Pr{}Pr{)}1:1000()3:1100Pr{( 2
}2,1{21

)]([ 4321321 WCRe SE ⋅⋅=→ +++− λλλλ  

For : ( ) }Pr{}Pr{)}3:1000()3:1100Pr{( 2
}2,1{23

)]([ 4321323 WCRe SE ⋅⋅=→ +++− λλλλ  

For : ( ) }Pr{}Pr{)}4:1000()3:1100Pr{( 2
}2,1{24

)]([ 4321324 WCRe SE ⋅⋅=→ +++− λλλλ  

For : ( ) }Pr{}Pr{)}2:0100()3:1100Pr{( 1
}2,1{12

)]([ 4321312 WCRe SE ⋅⋅=→ +++− λλλλ  

For : ( ) }Pr{}Pr{)}3:0100()3:1100Pr{( 1
}2,1{13

)]([ 4321313 WCRe SE ⋅⋅=→ +++− λλλλ  

For : ( ) }Pr{}Pr{)}4:0100()3:1100Pr{( 1
}2,1{14

)]([ 4321314 WCRe SE ⋅⋅=→ +++− λλλλ . 

 

 Once the generator matrix P has been obtained using the above probabilities, 

the steady-states probabilities and the work-in-process WIPq can be computed. For our 

example model described in Figure 1, we have the results of Table 12. Here, the 

analytical model result is compared with that from a simulation model using the same 

configuration with a run length of 500,000 time units and a statistical reset at 30,000 

time units.  
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 Analytical Simulation 95%CI Min 95%CI Max % Error 

WIPq 0.8829 0.8654 0.8611 0.8697 2.0 % 
 

Table 12. The comparison of analytical and simulation WIPq results for the example 

model using the FCFSR control scheme. 

 

Table 12 shows the excellent agreement between the analytical WIPq and the 

simulation WIPq. The percentage WIPq error of the analytical model is 2.0%.  

 

3.4.4 Model with Longest Distance Rule (LDR)  

 To develop another control scheme, assume that we have the Longest Distance 

Rule (LDR) for transporter allocations. In the LDR control case, an empty transporter 

will pick the job waiting at the farthest workcenter from its current location. That is, 

an empty transporter will give the highest priority to the farthest workcenter from its 

current location. Thus, contrary to the SDR control scheme, the probability that a 

certain workcenter will be selected by an empty transporter is positively related to the 

distance between job requesting workcenters and the empty transporter location. That 

is, the more distance there is between the job requesting workcenters and the empty 

transporter location the higher the probability that those workcenters will be chosen. 

To illustrate this, reconsider the previous case when a transporter is freed at 

workcenter 3. Then we have the following possible system states, and suppose that 

these states occur in equal portions:  
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{(0000:3), (1000:3), (0100:3), (0010:3), (0001:3), (1100:3), (1010:3), (1001:3),  

  (0110:3), (0101:3), (0011:3), (1110:3), (1101:3), (1011:3), (0111:3), (1111:3)}. 

 

In an equally likely scenario, the probability that workcenter 3 will be chosen is 1/15 

and the probabilities that workcenters 4, 2 and 1 will be chosen are 2/15, 4/15 and 

8/15, respectively. Now, to develop the proper generator P matrix for the LDR control 

case, we need to have a proper set of Pr{LDR}’s and Pr{nonLDR}’s; where Pr{LDR} 

is the probability that an empty transporter goes to the farthest workcenter from its 

freed workcenter and Pr{nonLDR} is the probability that an empty transporter goes to 

the a workcenter that is not the farthest workcenter from its freed workcenter. 

Therefore, under the LDR control scheme, we have Pr{LDR} = 1 and Pr{nonLDR} = 

0 for all system states. To illustrate this, reconsider the following portion of all one-

step transition cases from (1100:3): 

 

If an empty transporter is freed at workcenter 3 and there are two job requests from 

workcenters 1 and 2 in the system at that time, state (1100:3), then the transporter 

picks a job at workcenter 1 and follows a routing sequence according to the job type, 

i.e., either route 1 (1 → 5 → 2) or route 2 (1 → 5 → 2 → 3) or route 3 (1 → 5 → 6 → 

4). The following table shows all possible transition states from state (1100:3) when 

there is exactly one job arrival during the service time. For example, if the job picked 

up at workcenter 1 has its destination as workcenter 2 and there is one job arrival to 
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workcenter 1 during the service time, then Pr{(1100:3)→(1100:2)} is the transition 

probability for that case, i.e., case 2-  below. 

 

States (1100:1) (1100:2) (1100:3) (1100:4) (0110:2) (0110:3) 

Prob. 0 2-  2-  2-  2-  2-  

States (0110:4) (0101:2) (0101:3) (0101:4) (1010:1) (1010:3) 

Prob. 2-  2-  2-  2-  0 0 

States (1010:4) (1001:1) (1001:3) (1001:4)   

Prob. 0 0 0 0   
 

For 2- : ( ) ( ) 1}Pr{1)}2:1100()3:1100Pr{( 12
)]([][ 4323123121 ⋅⋅⋅−=→ ++−⋅− Ree SESE λλλλ  

For 2- : ( ) ( ) ]1}Pr{1[)}3:1100()3:1100Pr{( 13
)]([][ 4323133131 ⋅⋅⋅−=→ ++−⋅− Ree SESE λλλλ  

                                                          ( ) ( ) ]0}Pr{1[ 23
)]([][ 4313233232 ⋅⋅⋅−+ ++−⋅− Ree SESE λλλλ  

For 2- : ( ) ( ) ]1}Pr{1[)}4:1100()3:1100Pr{( 14
)]([][ 4323143141 ⋅⋅⋅−=→ ++−⋅− Ree SESE λλλλ  

                                                          ( ) ( ) ]0}Pr{1[ 24
)]([][ 4313243242 ⋅⋅⋅−+ ++−⋅− Ree SESE λλλλ  

For 2- : ( ) ( ) 1}Pr{1)}2:0110()3:1100Pr{( 12
)]([][ 4213123123 ⋅⋅⋅−=→ ++−⋅− Ree SESE λλλλ  

M 

For 2- : ( ) ( ) 1}Pr{1)}4:1001()3:1100Pr{( 14
)]([][ 3213143144 ⋅⋅⋅−=→ ++−⋅− Ree SESE λλλλ  

 

where Pr{Rij} is the probability that the destination of the job at workcenter i is 

workcenter j, for i, j = 1, …, 4. Note that the transition probability from (1100:3) to 

(1100:1) is zero, i.e., Pr{(1100:3) → (1100:1)} = 0, because the job picked up at 
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workcenter 1 cannot have its destination as workcenter 1. The transition probability, 

Pr{(1100:3) → (1010:1)}, also should be zero, because of the job waiting at 

workcenter 2.  

Once we have the proper generator matrix P, we can compute the steady-state 

probabilities and the work-in-process WIPq. For the four workcenters and one 

transporter example, we have the results of Table 13. Here the analytical model result 

is compared with that from a simulation model using the same configuration with a 

run length of 500,000 time units and a statistical reset at 30,000 time units.  

 

 Analytical Simulation 95%CI Min 95%CI Max % Error 

WIPq 0.9349 0.9158 0.9111 0.9205 +2.0 % 
 

Table 13. The comparison of analytical and simulation results of WIPq for the model 

with the LDR control scheme. 

 

As is clear from the results in Table 13, the analytical model yields a very acceptable 

percentage WIPq error of 2.0%. For the same problem, if we compare the analytical 

WIPq results from the SDR control scheme, the FCFSR control scheme, and the LDR 

control scheme, we see that the WIPq for the SDR control case is smaller than either 

the WIPq for the FCFSR control case or the WIPq for the LDR control case. From 

these results, we conclude that the SDR control scheme is the best one among these 
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three different dispatching policies, as one would expect. The results are shown in 

Table 14. 

 

 SDR control  FCFSR control  LDR control  
WIPq 0.8389 0.8829 0.9349 

 

Table 14. The analytical results comparison between the SDR control scheme WIPq, 

the FCFSR control scheme WIPq, and the LDR control scheme WIPq. 

 

From the analytical WIPq results from the TL/SDR control scheme in Table 8, all 

WIPq values lie between WIPq from the SDR control case (0.8389), and WIPq from 

the FCFSR control case (0.8829). Thus, we also can say that, among these four 

vehicle-dispatching rules for our example system, the SDR control scheme is the best 

one, the TL/SDR control scheme is the second best, the FCFSR control scheme is the 

third best, and the least efficient approach is the LDR control scheme in terms of the 

WIPq.  Now, we have the following theorem.  

 

Theorem: With the situations such that there is no locking phenomenon in the system, 

the best transporter dispatching rule in terms of WIPq for an M/G/1 model is SDR.    

 

Proof:  

The proof is shown in Appendix A.  
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3.5 Chapter Summary 

In this chapter, we developed a queueing approximation model for a fixed-

route unidirectional material-handling system from the transporter’s point of view and 

investigated the effects of different vehicle dispatching rules. The analyzed models 

incorporated four different dispatching rules: the Shortest Distance Rule (SDR), the 

Time Limit/Shortest Distance Rule (TL/SDR), the First-Come First-Serve Rule 

(FCFSR) and the Longest Distance Rule (LDR). Comparisons were made between 

these four control schemes for several example problems. The analytical model results 

are in excellent agreement with simulation results for all example systems studied 

with analytical model errors that were less than or equal to ± 2.0%. These results also 

show that, for our example models, the SDR control scheme is the best one, and the 

TL/SDR control scheme is the second best, the FCFSR control scheme is the third 

best, and the least efficient dispatching policy is the LDR control scheme in terms of 

the system performance measure WIPq. Although we don’t have a method at this time 

for predicting the parameter values of the Gamma distribution adjustments for the 

TL/SDR control scheme, the analytical models using these Gamma adjustments yield 

very good estimates for the system performance measures. 

The queueing approximation models developed in this chapter have queue 

space limits set at one for each workcenter and there is only one transporter in the 

system. With this system configuration, we have 64 system states. If we increase the 

queue space from one to two, three, and four, then number of states for the analytical 

models becomes 325, 1,025, and 2,341, respectively. On the other hand, if we increase 
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the number of transporters from one to two and three, then number of states for the 

analytical models becomes 186 and 420, respectively. Since a lot of the computational 

complexity arises from this rapid growth of the number of system states as the queue 

space length or number of transporters increase, future research is needed to develop 

efficient dependent service time queueing approximations for these systems. In the 

next chapter, we try to generalize our model by developing analytical models for two 

different situations. First, we will allow the queue space size at each workcenter of 

two. Second, we will increase the number of transporters in the system to two. 
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CHAPTER IV 

ANALYTICAL MODELS FOR MATERIAL-HANDLING SYSTEMS WITH TWO 

DIFFERENT KINDS OF EXTENSIONS 

 

4.1 Introduction 

 In this chapter, two different extended models of our previous basic models 

with the queue space limit of one at each workcenter and one transporter were 

developed. First, we develop an analytical model with the queue space limit of two at 

each workcenter. Second, we allow two transporters in the system. Thus, for the 

example problem studied, total system sizes can be up to nine and six jobs for the first 

model and the second model, respectively. In the model with queue space limit of two 

at each workcenter, when a job arrival occurs at a workcenter and there is already one 

waiting job at the workcenter, then that job joins the queue and additional job arrivals 

to the workcenter will be discarded due to the queue length limit of two. Since this 

model has a single transporter, only vehicle-initiated vehicle dispatching rules can be 

used. In the model with two transporters, however, both workcenter-initiated 

dispatching rules and vehicle-initiated dispatching rules are required for transporter-

job assignment decisions. That is, by the workcenter-initiated vehicle dispatching 

control scheme, a job arrival selects the transporter when there are two empty 

transporters available in the system and, by the vehicle-initiated vehicle dispatching 

control scheme, the empty transporter chooses the job requests when there are two or 

more job requests in the system.  
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4.2 Model with the Queue Space Limit of Two at Each Workcenter 

 Now, in this section, we develop a model for a fixed-route unidirectional 

material-handling system with the queue space limit of two at each workcenter. That 

is, we allow two queue spaces at each workcenter and, thus, for the example problem 

the total system size can be up to nine jobs including the job currently being serviced. 

When job arrival sees the system empty, then this job is assigned to an empty 

transporter. If a job arrival at a workcenter sees one job waiting in the queue of the 

workcenter, then that job joins the queue and since the queue length at the workcenter 

is now reached its maximum capacity, two, with this new arrival, no more jobs are 

allowed at the workcenter until the first job in that workcenter queue is assigned to an 

empty transporter. Reconsider the previous circuit network example problem in Figure 

1 in the previous chapter. All assumptions here are the same as the previous model 

except the allowed queue space size is now two at each workcenter. We have four 

workcenters and one transporter in the system. If we identify all possible states of the 

system in terms of the number of jobs in the system, there are a total of 325 possible 

system states. Each state can be represented as numbers. The first four digits represent 

the number of jobs waiting as 0, 1 or 2 for each workstation (0 being no job, one being 

a one job and two being two jobs waiting for transportation at that workcenter), and 

the fifth digit shows the arrival location of the job currently being serviced. That is, if 

the second digit is 2 and the fifth digit is 3, then this implies that there are two jobs 

waiting for an empty transporter at workcenter 2 and the job that is currently being 

serviced was picked up at workcenter 3. Thus, for example, if we have (1020:4), then 
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this state representation implies that there are three jobs waiting at the system queues 

(one is at workcenter 1 and two is at workcenter 3) and the pick-up location of the job 

that is currently being serviced was workcenter 4. In this manner, all 325 system states 

can be obtained as follows:  

 

If there are no jobs in the system, then we have only one state. This state is:  

 

{(0000:0)}. 

 

If there is only one job in the system, then there are four such system states. Note that 

the job currently being serviced can be picked up at any one of the four workcenters. 

These possible states are:  

 

{(0000:1), (0000:2), (0000:3), (0000:4)}. 

 

If there are two jobs (one is being serviced and one is being waiting for an empty 

transporter) in the system, then the total number of all these possible states is 16. 

These states are:  

 

{(1000:1), (1000:2), (1000:3), (1000:4), (0100:1), (0100:2), (0100:3), (0100:4), 

   (0010:1), (0010:2), (0010:3), (0010:4), (0001:1), (0001:2), (0001:3), (0001:4)}. 
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For thee jobs (one is being serviced and two are being waiting for an empty 

transporter) in the system, there are 40 possible states:  

 

{(2000:1), (2000:2), (2000:3), (2000:4), (0200:1), (0200:2), (0200:3), (0200:4), 

 (0020:1), (0020:2), (0020:3), (0020:4), (1100:1), (1100:2), (1100:3), (1100:4),  

(1010:1), (1010:2), (1010:3), (1010:4), (1001:1), (1001:2), (1001:3), (1001:4),  

(0110:1), (0110:2), (0110:3), (0110:4), (0101:1), (0101:2), (0101:3), (0101:4),  

(0011:1), (0011:2), (0011:3), (0011:4) (0002:1), (0002:2), (0002:3), (0002:4)}. 

 

If there are four jobs (one is being serviced and three are being waiting for an empty 

transporter) in the system, this results in 64 possible states. These are:  

 

{(2100:1), (2100:2), (2100:3), (2100:4), (2010:1), (2010:2), (2010:3), (2010:4), 

 (2001:1), (2001:2), (2001:3), (2001:4), (1200:1), (1200:2), (1200:3), (1200:4), 

 (1020:1), (1020:2), (1020:3), (1020:4), (1002:1), (1002:2), (1002:3), (1002:4), 

 (0210:1), (0210:2), (0210:3), (0210:4), (0201:1), (0201:2), (0201:3), (0201:4), 

 (0120:1), (0120:2), (0120:3), (0120:4), (0102:1), (0102:2), (0102:3), (0102:4), 

 (1110:1), (1110:2), (1110:3), (1110:4), (1101:1), (1101:2), (1101:3), (1101:4), 

 (1011:1), (1011:2), (1011:3), (1011:4), (0111:1), (0111:2), (0111:3), (0111:4), 

  (0021:1), (0021:2), (0021:3), (0021:4), (0012:1), (0012:2), (0012:3), (0012:4)}. 
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If there are five jobs (one is being serviced and four are being waiting for an empty 

transporter) in the system, this results in 76 possible states. These are:  

 

{(2200:1), (2200:2), (2200:3), (2200:4), (2020:1), (2020:2), (2020:3), (2020:4), 

 (2110:1), (2110:2), (2110:3), (2110:4), (2101:1), (2101:2), (2101:3), (2101:4), 

 (2011:1), (2011:2), (2011:3), (2011:4), (1210:1), (1210:2), (1210:3), (1210:4), 

 (1201:1), (1201:2), (1201:3), (1201:4), (1120:1), (1120:2), (1120:3), (1120:4), 

 (1102:1), (1102:2), (1102:3), (1102:4), (1021:1), (1021:2), (1021:3), (1021:4), 

 (1012:1), (1012:2), (1012:3), (1012:4), (2002:1), (2002:2), (2002:3), (2002:4), 

 (0220:1), (0220:2), (0220:3), (0220:4), (0211:1), (0211:2), (0211:3), (0211:4), 

 (0121:1), (0121:2), (0121:3), (0121:4), (0112:1), (0112:2), (0112:3), (0112:4), 

 (0202:1), (0202:2), (0202:3), (0202:4), (1111:1), (1111:2), (1111:3), (1111:4), 

        (0022:1), (0022:2), (0022:3), (0022:4)}. 

 

If there are six jobs (one is being serviced and five are being waiting for an empty 

transporter) in the system, this results in 64 possible states. These are:  

 

{(2210:1), (2210:2), (2210:3), (2210:4), (2201:1), (2201:2), (2201:3), (2201:4), 

 (2120:1), (2120:2), (2120:3), (2120:4), (2111:1), (2111:2), (2111:3), (2111:4), 

 (2102:1), (2102:2), (2102:3), (2102:4), (2021:1), (2021:2), (2021:3), (2021:4), 

 (2012:1), (2012:2), (2012:3), (2012:4), (1220:1), (1220:2), (1220:3), (1220:4), 

 (1211:1), (1211:2), (1211:3), (1211:4), (1202:1), (1202:2), (1202:3), (1202:4), 
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 (1121:1), (1121:2), (1121:3), (1121:4), (1112:1), (1112:2), (1112:3), (1112:4), 

 (1022:1), (1022:2), (1022:3), (1022:4), (0221:1), (0221:2), (0221:3), (0221:4), 

  (0212:1), (0212:2), (0212:3), (0212:4), (0122:1), (0122:2), (0122:3), (0122:4)}. 

 

For seven jobs (one is being serviced and six are being waiting for an empty 

transporter) in the system, there are 40 possible states:  

 

{(2220:1), (2220:2), (2220:3), (2220:4), (2211:1), (2211:2), (2211:3), (2211:4), 

  (2202:1), (2202:2), (2202:3), (2202:4), (2112:1), (2112:2), (2112:3), (2112:4), 

  (2022:1), (2022:2), (2022:3), (2022:4), (1122:1), (1122:2), (1122:3), (1122:4), 

  (1221:1), (1221:2), (1221:3), (1221:4), (2121:1), (2121:2), (2121:3), (2121:4), 

   (1212:1), (1212:2), (1212:3), (1212:4), (0222:1), (0222:2), (0222:3), (0222:4)}. 

  

For eight jobs (one is being serviced and seven are being waiting for an empty 

transporter) in the system, there are 16 possible states:  

 

{(2221:1), (2221:2), (2221:3), (2221:4), (2212:1), (2212:2), (2212:3), (2212:4), 

  (2122:1), (2122:2), (2122:3), (2122:4), (1222:1), (1222:2), (1222:3), (1222:4)}. 

 

And finally, when there are nine jobs in the system, the total number of possible states 

is 4. These states are:  
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{(2222:1), (2222:2), (2222:3), (2222:4)}. 

 

 Here, we assume the SDR control scheme for empty transporter dispatching. 

Then, an empty transporter will pick the job waiting at the closest workcenter from its 

current location. State transitions occur when there are new job arrivals or job service 

completions in the system. For illustration of the transitions between states, let’s 

consider the following example case of state (2111:4) shown in Figure 11. 

 

 

 

Figure 11. The diagram of all possible state transitions for state (2111:4). 

 

Note that the fraction, Pr{Rij}, is the probability that the job arrival at workcenter i has 

its destination as workcenter j. Thus, we have: 

(1111:1) (2011:2) (2101:3)

(2211:4) 

(2121:4)

(2112:4)

(2111:4)

(2112:1) 

(1111:4) (2011:4) (2101:4)

λ2 

Pr{R43}⋅µ433

λ3 

λ1 

λ2 

λ4 

Pr{R42}⋅µ422 
Pr{R41}⋅µ411 

Pr{R24}⋅µ244 

Pr{R34}⋅µ344 

Pr{R14}⋅µ144 

(2112:2) 

(2112:3) 

(2110:4) 

λ3 λ4 
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1}Pr{ =∑
ℑ∈j

ijR   for i = 1,2,3,4, and ℑ = {k | k ≠ i, k = 1,2,3,4}, 

where the service rate µijk is the reciprocal of the service time from workcenter i to 

workcenter k via workcenter j. That is:  

 

][
1

ijk
ijk SE
=µ   for i, j, k = 1,2,3,4. 

 

As we can see in above Figure 9, if there is a job arrival in the system state transition 

can occur to state (2111:4) from (1111:4), (2011:4), (2101:4), and (2110:4) with rates 

λ1, λ2, λ3, and λ4, respectively. With arrival rates λ2, λ3, and λ4, system states can go 

from (2111:4) to (2211:4), (2121:4), and (2112:4). Note that since the queue space 

limit is two at each workcenter, the state (3111:4) or (1301:4) cannot exist. If the 

service of the job picked up at workcenter 1 is finished, then the all possible locations 

for an empty transporter are workcenter 2, 3, and 4 with probabilities Pr{R12}, 

Pr{R13}, and Pr{R14}, respectively. Thus, the transition from state (2112:1) to 

(2111:4) will occur with rate Pr{R14} µ144 when a transporter finishes its job at 

workcenter 4 and picks a job up at that workstation due to the SDR control scheme. 

Similarly, we can have state transitions from states (2112:2) and (2112:3) to state 

(2111:4) with rates Pr{π24} µ244 and Pr{R34} µ344, respectively. The system state 

(2111:4) can be changed to state (1111:1) when the job currently being serviced (it 
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was picked up at workcenter 4) departs the system at workcenter 1 with the 

probability Pr{R41}, and the transporter picks a job up at that workcenter. In this case, 

since the transporter goes from workcenter 4 to workcenter 1 and then no empty 

transporter time is required, the rate will be µ411. Thus, the transition can occur from 

state (2111:4) to state (1111:1) with rate Pr{R41} µ411. Similarly, the state transitions 

from state (2111:4) to states (2011:2) and (2101:3) with rates Pr{R42} µ422 and 

Pr{R34} µ433, can occur. Now, suppose we want to compute the average queue length, 

WIPq, and the average system size, WIPsys. Then we need the steady-state 

probabilities, Pi’s, that there are exactly i-jobs in the system. To obtain those steady-

state probabilities, we develop the generator matrix Q. Then the steady-state equations  

 

 P0 P1 P2 P3 P4 L Pn 

P0 A00 A01      

P1 B10 B11 B12     

P2  C21 C22 C23    

P3   D32 D33 D34   

P4    E43 E44 O  

M     O O  

Pn      Znn-1 Znn 
  

Figure 12. The general structure of a generator matrix Q for n workcenters. 

 



 83

relating the system states are of the form TT 0QP =⋅ . The generator matrix Q for a 

model with n workcenters with one transporter has the general structure shown in 

Figure 12.  

 

  P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 

  (0000:0) 
(0000:1) 

~ 
(0000:4) 

(1000:1) 
~ 

(0001:4) 

(2000:1) 
~ 

(0002:4) 

(2100:1) 
~ 

(0012:4) 

(2200:1) 
~ 

(0022:4) 

(2210:1) 
~ 

(0122:4) 

(2220:1) 
~ 

(0222:4) 

(2221:1) 
~ 

(1222:4) 

(2222:1) 
~ 

(2222:4) 

P0 (0000:0) A00 
(1×1) 

B01 
(1×4) 

        

P1 
(0000:1) 

~ 
(0000:4) 

A10 
(4×1) 

B11 
(4×4) 

C12 
(4×16) 

       

P2 
(1000:1) 

~ 
(0001:4) 

 B21 
(16×4) 

C22 
(16×16) 

D23 
(16×40) 

      

P3 
(2000:1) 

~ 
(0002:4) 

  C32 
(40×16) 

D33 
(40×40) 

E34 
(40×64) 

     

P4 
(2100:1) 

~ 
(0012:4) 

   D43 
(64×40) 

E44 
(64×64) 

F45 
(64×76) 

    

P5 
(2200:1) 

~ 
(0022:4) 

    E54 
(76×64) 

F55 
(76×76) 

G56 
(76×64) 

   

P6 
(2210:1) 

~ 
(0122:4) 

     F65 
(64×76) 

G66 
(64×64) 

H67 
(64×40) 

  

P7 
(2220:1) 

~ 
(0222:4) 

      G76 
(40×64) 

H77 
(40×40) 

I78 
(40×16) 

 

P8 
(2221:1) 

~ 
(1222:4) 

       H87 
(16×40) 

I88 
(16×16) 

J89 
(16×4) 

P9 
(2222:1) 

~ 
(2222:4) 

        I98 
(4×16) 

J99 
(4×4) 

 

Figure 13. The structure of a generator matrix Q (325×325) for the example problem 

with a maximum queue length of two. 
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The blanks within the matrix denote zero matrices and all Aij, Bij, Cij, Dij, ..., Zij’s are 

sub-matrices of the matrix Q whose elements are zeros and the transition rates 

between states. For our example problem with one transporter and four workcenters 

whose queue space limits of two, the steady-state flow-balance equations have a 

325×325 generator Q matrix with the structure shown in Figure 13. Then, from the 

system TT 0QP =⋅ , we have the following system of equations to be solved:  

 

0000 =⋅+⋅ 101 AP TAP  

TTTP 0BPBPB 21211101 =⋅+⋅+⋅0 , 

TTTT 0CPCPCP 323222121 =⋅+⋅+⋅ , 

TTTT 0DPDPDP 434333232 =⋅+⋅+⋅ , 

TTTT 0EPEPEP 545444343 =⋅+⋅+⋅ , 

TTTT 0FPFPFP 656555454 =⋅+⋅+⋅ , 

TTTT 0GPGPGP 767666565 =⋅+⋅+⋅ , 

TTTT 0HPHPHP 878777676 =⋅+⋅+⋅ , 

TTTT 0IPIPIP 989888787 =⋅+⋅+⋅ , 

TTT 0JPJP 999898 =⋅+⋅ , 

and 

10 =⋅+⋅++⋅+⋅+⋅ ××××× 4191618161241111 1P1P1P1P1 TTTTP L . 
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Note that the last one of above equations is the norming equation and can be used to 

obtain P0. The first one of above equations is ignored because, for a finite irreducible 

Markov system, we always have one redundant equation (Feldman and Valdez-Flores 

1996). Using successive substitution, we obtain: 

 

1
21

1
2

1
43

1
4332322121101 ]B]C]D][E[DD[CC[BBP −−−− ⋅⋅⋅⋅−⋅−⋅−⋅⋅−= 3301 LPT , 

1
32

1
43

1
54

1
4544343323221212 ]C]D]E][F[EE[DD[CCPP −−−− ⋅⋅⋅⋅−⋅−⋅−⋅⋅−= L

TT , 

1
43

1
54

1
65

1
5655454434332323 ]D]E]F][G[FF[EE[DDPP −−−− ⋅⋅⋅⋅−⋅−⋅−⋅⋅−= L

TT , 

1
54

1
65

1
76

1
6766565545443434 ]E]F]G][H[GG[FF[EEPP −−−− ⋅⋅⋅⋅−⋅−⋅−⋅⋅−= L

TT , 

1
65

1
76

1
87

1
7877676656554545 ]F]G]H][I[HH[GG[FFPP −−−− ⋅⋅⋅⋅−⋅−⋅−⋅⋅−= L

TT , 

1
76

1
87

1
98

1
998988787767665656 ]G]H]I][JJ[II[HH[GGPP −−−− ⋅⋅⋅⋅−⋅−⋅−⋅⋅−= TT , 

1
87

1
98

1
99898878776767 ]H]I][JJ[II[HHPP −−− ⋅⋅⋅−⋅−⋅⋅−= TT , 

1
98

1
9989887878 ]I][IJ[IIPP −− ⋅⋅−⋅⋅−= TT  , 

1
998989 ][JJPP −⋅⋅−= TT . 

 

And, to get P0, the norming equation was used and we finally have the following: 

 

{ }1
9989

1
21

1
1101

1
21

1
1101 ][JJ]B][[BB]B][[BB −−−−− ⋅⋅⋅⋅⋅⋅−+⋅⋅⋅−

=
LLLL1

1
0P . 
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Once the steady-state probabilities are obtained from the above system of equations, 

using those steady-state probabilities of i jobs in the system, Pi, i = 0, …, 9, we can get 

the average number of jobs in the system, WIPsys, as follows:  

 

9876543210 9876543210WIP PPPPPPPPPPsys ⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅= . 

 

If we want to know the average number of jobs waiting in the system queue, WIPq, 

then it can be computed as follows:  

 

98765432 87654321WIP PPPPPPPPq ⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅= . 

 

For the four workstations and one transporter example with the queue limit of two at 

each workcenter, i.e., the total queue limit in the system of eight, the analytical model 

result is compared in Table 15 with that from a simulation model (written in ARENA 

(Pegden et al. 1995)) with a run length of 500,000 time units and a statistical reset at 

30,000 time units. As we can see, the percentage error between the analytical and 

simulation results of WIPsys is 1.9% and the percentage error between the analytical 

and simulation results of WIPq is 2.9%. These are very acceptable results for an 

analytical model. 
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 Analytical Simulation 95%CI Min 95%CI Max % Error

WIPq 0.9671 0.9387 0.9230 0.9474 2.9% 

WIPsys 1.7251 1.7580 1.7476 1.7684 1.9% 
 

Table 15. The comparison of analytical and simulation results of WIPq and WIPsys for 

the model with the SDR control scheme 

 

4.3 Lost Arrivals to the System Due to the Queue Space Limit  

As we have seen in the previous section, we can successfully develop 

analytical model for the system with the queue space limit of two at each workcenter. 

With a specific configuration in our example model, by increasing the queue space of 

all four workcenters by one, we can decrease the percentage of the total lost arrivals to 

the system due to the queue space limit to 6.84% from 21.46% in the case of the queue 

space limit of one. If we increase the limit of the queue space at each workcenter up to 

three, four, five, and six, then the percentage of the total lost arrivals becomes 3.3%, 

1.75%, 0.98%, and 0.56%, respectively. This decrement of the percentage of the total 

lost job arrivals to the system according to the queue space limit at each workcenter is 

shown in Figure 14. However, the state-space sizes of the case of the queue space of 

three and four are 1,0252 = 1,050,625 and 2,3412 = 5,480,281, respectively. Thus, the 

state-space size of the case of the queue space of two will be increased by almost 10 

times when we have the queue space limit of three at each workcenter. Moreover, if 

we increase the limit of queue space at each workcenter to four, then the state-space  

 



 88

Plot for the Percentage of the Total Lost Arrivals
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Figure 14. Plots for the percentage of the total lost arrivals to the system when 

we increase all queue space limits in equal portion. 

 

size will be increased up to almost 50 times. Due to this fast growth of the 

computational difficulty, we cannot increase the queue space limit infinitely in the 

analytical model. Therefore, we want to find the queue space limit that has both less 

percentage of the lost arrivals and state-space size. For our material-handling system 

model, all four workcenters have external arrivals and these external arrival rates are 

not necessarily the same. Since we set the rate of the external arrivals at each 

workcenter to be different for our example models, it can be expected that the amount 

of lost arrivals would be different at each workcenter. In fact, the amount of lost 
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arrivals at each workcenter is positively related to the arrival rates to the workcenter. 

The larger the arrival rate to the workcenter, the more lost arrivals at the workcenter. 

That is, since we have λ1 > λ2 > λ3 > λ4 for our examples, the lost arrivals at 

workcenter 1 will be the largest, and the lost arrivals at workcenter 2 will be the next 

largest, etc. Thus, we examine this percentage of lost arrivals at the system by 

workcenter. That is, we compute the level-changes of the percentage of the lost 

arrivals at the workcenter level. Then, we have the following Figure 15. 
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Figure 15. Plots for the percentage of the lost arrivals at each workcenter when we 

increase all queue space limits in equal portion. 
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As we can see in Figure 15, the percentage of the lost arrivals at workcenter 1 is 

bigger than those at any other workcenters in the system as we suspected. Actually, it 

dominates the percentages of the lost arrivals at all other workcenters. Note that, when 

the queue space limits at workcenter 2, 3, and 4 exceed four, no more improvement 

can be achieved by increasing the queue spaces because the percentage of lost arrivals 

at those workcenters are already almost zero. Therefore, instead of increasing the 

queue space limits of all workcenters by equal amount, if we allow more queue spaces 

for workcenter 1 than for all other workcenters, then we may have better results.   

 

Plot for the Percentage of the Total Lost Arrivals
as the Queue Space Limits at Workcenters change
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Figure 16. Plots for the percentage of the total lost arrivals to the system when we 

increase queue space limits individually. 
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Figure 16 shows the percentages of the total lost arrivals to the system whose queue 

space limits are increased individually. Note that, in the bottom of Figure 16, (i, j, k, 

m) denotes the queue space limits of workcenter i, j, k, and m. As is clear from the 

results in Figure 14 and Figure 16, by allowing more queue spaces for workcenters 

whose arrival rates are higher than other workcenters, we can reduce the percentage of 

the total lost arrivals to the system while the state-space size of system is maintained 

less than the that from the case of the equal amount queue space increment at each 

workcenter. For example, the percentage of the lost arrivals to the system with the 

queue space limit of three at each workcenter, 3.3%, is bigger than the percentage of 

the lost arrivals to the system of (4,2,2,2) case, 2.9%. Moreover, the state-space size of 

(4,2,2,2) case is 5412 = 292,681, whereas the state-space size of (3,3,3,3) is 1,0252 = 

1,050,625. Table 16 shows the size of the state-space for each queue space limit case. 

 

 (2,2,2,2) (3,2,2,2) (4,2,2,2) (4,3,2,2) (5,3,2,2) 

State-Space Size 105,625 187,489 292,681 514,089 734,449 

 

Table 16. The state-space sizes for different queue space limit cases. 

 

By allowing different queue space at each workcenter, we also can minimize the 

differences of the lost arrivals between workcenters. In Figure 17, we can see that the 

difference of the percentage of the lost arrivals between workcenters becomes very 
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small at (4,2,2,2) and (5,3,2,2). Therefore, this can be another benefit from individual 

increments of the queue space limits at each workcenter.    
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Figure 17. Plots for the percentage of the lost arrivals to each workcenter when we 

increase queue space limits individually. 

 

4.4 Model with Two Transporters in the System 

 In this section, we develop an analytical model for a fixed-route material-

handling system with two transporters. That is, we add one more transporter to the 

system while the queue space limit at each workcenter remains to be one. When a job 
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arrival sees the system empty, then that job sees two empty transporters located at 

arbitrary workcenters and it has to select one of them according to the workcenter-

initiated vehicle dispatching policies. On the other hand, when the transporter is 

available after the previous service and there are two or more job requests in the 

system, it chooses the job request according to the vehicle-initiated vehicle 

dispatching policies. Therefore, the system uses both workcenter-initiated dispatching 

rules and vehicle-initiated dispatching rules. The previous circuit network example 

problem in Figure 1 was used again in this section. All assumptions here are the same 

as the previous section except the number of transporters in the system. That is, we 

have the queue space limit of one at each workcenter and two transporters in the 

system. If we identify all possible states of the system in terms of the number of jobs 

in the system, there are total 186 possible transition states. Each state can be 

represented as numbers. The first four digits represent the location of job request in 

the system as a 0 or 1 for each workstation (0 being no job request, 1 being a job 

request for transportation), and the fifth and sixth digits show the locations of empty 

transporters, and finally, the seventh and eighth digits denote the job pick-up locations 

that are currently being serviced. Thus, for example, if we have (1010:00:34) as the 

system state, then this state representation implies that there are two job requests in the 

system (one is at workcenter 1 and one is at workcenter 3) and the pick-up locations of 

jobs that are currently being serviced were workcenter 3 and 4. Note that, since both 

transporters are currently working, there are no empty transporters in the system. In 

this manner, we can define all 186 system states. 
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 For this system, we assume SDR control scheme for the vehicle-initiated 

dispatching rule and Closest Transporter Allocation Rule (CTAR) control for the 

workcenter-initiated dispatching rule. Under SDR control scheme, when the 

transporter becomes available after the previous service, an empty transporter selects 

the job waiting at the closest workcenter from its current workcenter. Under CTAR 

control scheme, a job arrival chooses the empty transporter whose location is the 

closest one from the current job arrival workcenter. To illustrate the difference 

between the selection schemes under SDR control and under CTAR control in our 

model, consider the following two cases in Figure 18 for the previous unidirectional 

circuit network example in Figure 1. 

 

 

 

Figure 18. The difference between selection schemes under SDR control and under 

CTAR control for our unidirectional circuit network layout example. 
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Assume that we have the first situation shown in Figure 18. That is, when the 

transporter becomes available at workcenter 2 after the previous service, there are two 

job requests from workcenter 1 and workcenter 3. Then, by SDR control scheme, the 

empty transporter will go from workcenter 2 to workcenter 3, i.e., the workcenter 3 

will be selected, because the distance from workcenter 2 to workcenter 3 is shorter 

than the distance from workcenter 2 to workcenter 1. On the other hand, suppose that 

we have the second situation shown in Figure 18. That is, a job arrival to workcenter 2 

sees two empty transporters waiting at workcenter 1 and workcenter 3. Then, by 

CTAR control scheme, the job arrival to workcenter 2 will be picked up by the empty 

transporter from workcenter 1, i.e., the workcenter 1 will be selected, because the 

distance from workcenter 1 to workcenter 2 is shorter than the distance from 

workcenter 3 to workcenter 2.  

 State transitions occur when there are new job arrivals or job service 

completions in the system. For illustration of the transitions between states, let’s 

consider the following example case of state (1010:00:34) shown in Figure 19. Note 

that the probability that the job arrival at workcenter i has its destination as workcenter 

j, Pr{Rij}, and the service rate µijk, the reciprocal of the service time from workcenter i 

to workcenter k via workcenter j, are defined as in the previous section.  
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Figure 19. The diagram of all possible state transitions for state (1010:0:34). 

 

As we can see in Figure 19, if there is a job arrival in the system, a state transition can 

occur from state (1010:00:34) to (1110:00:34) and (1011:00:34) with rates λ2 and λ4, 

respectively. Now, consider the state transition from (1010:00:34) to (1000:00:33). 

When the service of the job picked up at workcenter 4 is finished, the locations of the 

empty transporter will be either workcenter 2 or workcenter 3 depending on the job 

types. Since the empty transporter selects job requests from workcenter 3 in both cases 

because the SDR control was used, routes will be either 4 → 2 → 3 or 4 → 3 → 3 

depending on the job types and the associated rate for this transition will be 

Pr{R42}⋅µ423 + Pr{R43}⋅µ433. The case that the service of the job picked up at 
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workcenter 3 is finished first will not happen in the transition, because, if then, we 

need to have 4 in the sixth or the seventh digits of resultant system state (1000:00:33). 

The transition from (1010:00:34) to (1000:00:34) occurs when the service of the job 

picked up at workcenter 3 is finished at workcenter 2, and an empty transporter selects 

job request from workcenter 3 due to SDR control. Thus, route will be 3 → 2 → 3 and 

the associated transition rate will be Pr{R32}⋅µ323. The case that the service of the job 

picked up at workcenter 4 is finished first will not happen in this transition, because, if 

then, we cannot have 4 in the sixth or the seventh digits of resultant system state 

(1000:00:34).  

 Now, to compute the average queue length, WIPq, we need the steady-state 

probabilities, Pi’s, that there are exactly i-jobs in the system. To obtain those steady-

state probabilities, we need to develop the generator matrix Q. Then the steady-state 

equations relating the system states are of the form TT 0QP =⋅ . For our example 

problem with four workcenters and two transporters, the steady-state flow-balance 

equations have a 186×186 generator Q matrix with the structure shown in Figure 20. 

The blanks within the matrix denote zero matrices and all Aij, Bij, Cij, Dij, ..., Gij’s are 

sub-matrices of the matrix Q whose elements are zeros and the transition rates 

between system states. 
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  P0 P1 P2 P3 P4 P5 P6 

  
(0000:11:0) 

~ 
(0000:44:0) 

(0000:1:1) 
~ 

(0000:4:4) 

(0000:0:11) 
~ 

(0000:0:44) 

(1000:0:11) 
~ 

(0001:0:44) 

(1100:0:11) 
~ 

(0011:0:44) 

(1110:0:11) 
~ 

(0111:0:44) 

(1111:0:11) 
~ 

(1111:0:44) 

P0 
(0000:11:0) 

~ 
(0000:44:0) 

A00 
(10×10) 

B01 
(10×16) 

     

P1 
(0000:1:1) 

~ 
(0000:4:4) 

A10 
(16×10) 

B11 
(16×16) 

C12 
(16×10) 

    

P2 
(0000:0:11) 

~ 
(0000:0:44) 

 B21 
(10×16) 

C22 
(10×10) 

D23 
(10×40) 

   

P3 
(1000:0:11) 

~ 
(0001:0:44) 

  C32 
(40×10) 

D33 
(40×40) 

E34 
(40×60) 

  

P4 
(1100:0:11) 

~ 
(0011:0:44) 

   D43 
(60×40) 

E44 
(60×60) 

F45 
(60×40) 

 

P5 
(1110:0:11) 

~ 
(0111:0:44) 

    E54 
(40×60) 

F55 
(40×40) 

G56 
(40×10) 

P6 
(1111:0:11) 

~ 
(1111:0:44) 

     F65 
(10×40) 

G66 
(10×10) 

 

Figure 20. The structure of a generator matrix Q (186×186) for the example problem 

with two transporters in the system. 

 

Then, from the system TT 0QP =⋅ , we have following systems of equations to be 

solved:  

 

T
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T
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T
0 0APAP =⋅+⋅ , 

T
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T
211

T
101

T
0 0BPBPBP =⋅+⋅+⋅ , 
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TTTT 0CPCPCP 323222121 =⋅+⋅+⋅ , 

TTTT 0DPDPDP 434333232 =⋅+⋅+⋅ , 

TTTT 0EPEPEP 545444343 =⋅+⋅+⋅ , 

TTTT 0FPFPFP 656555454 =⋅+⋅+⋅ , 

TTT 0GPGP 666565 =⋅+⋅ , 

and 

11P1P1P1P1P 101
T

6401
T

5401
T

2161
T

11010 =⋅+⋅++⋅+⋅+⋅ ××××× L . 

 

Note that the last equation is the norming equation which can be used to obtain P0. 

Since we always have one redundant equation for a finite irreducible Markov system 

(Feldman and Valdez-Flores 1996), the first one of above equations is ignored. Using 

successive substitutions and the norming equation, the steady-state probabilities are 

obtained from above systems of equations. Then, using those steady-state probabilities 

of i-jobs in the system, Pi, i = 0, …, 6, we can compute the average number of jobs 

waiting in the queue, WIPq, as follows: 

 

101
T
6401

T
5601

T
4401

T
3 1P1P1P1P ××××

=

⋅⋅+⋅⋅+⋅⋅+⋅⋅=⋅−= ∑ 4321)2(WIP
6

3n
nq Pn . 

 

If we want to know the average number of jobs in the system, WIPsys, it can be 

obtained from:  
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101
T
6401

T
5101

T
2161

T
1101

T
0 1P1P1P1P1P ×××××

=

⋅⋅+⋅⋅++⋅⋅+⋅⋅+⋅⋅=⋅=∑ 65210WIP
6

0
L

n
nsys Pn . 

 

For the four workstations and two transporters example with the queue limit of one at 

each workcenter, i.e., the total system size can be up to six, the analytical model result 

of WIPq is compared in Table 17 with that from a simulation model (written in 

ARENA (Pegden et al. 1995)) with a run length of 500,000 time units and a statistical 

reset at 30,000 time units.  

 

 Analytical Simulation  95%CI Min 95%CI Max % Error 

WIPq 0.3997 0.4026 0.4005 0.4047 0.7% 
 

Table 17. The comparison of analytical and simulation results of WIPq for the model 

with both SDR control and CTAR control schemes 

 

As the table shows, the percentage error between the analytical and simulation results 

of WIPq is 0.7%. Again, this is very acceptable result for an analytical model. 

 

4.5 Chapter Summary 

In this chapter, we tried to extend our original analytical model in two ways: 

for the model in Section 4.2, we increased the queue space limit at each workcenter to 

two, and, for the model in Section 4.4, we added one more transporter to the system so 
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that there are total of two transporters in the system. By increasing the queue space 

limit at each workcenter, we can decrease lost arrivals to the system. However, due to 

the fast growth in the computational difficulty, we cannot increase the queue space 

limit infinitely. As shown in Section 4.3, given the same transporters’ service rates, if 

we allow more queue spaces for workcenters whose arrival rates are higher than other 

workcenters and hold the lower rates at lower limits instead of increasing all queue 

space limits in same amount, then we can obtain better results with fewer 

computational difficulties. As we seen in Section 4.4, when we have two or more 

transporters in the system, the system should have both workcenter-initiated 

dispatching rules and vehicle-initiated dispatching rules for transporter-job 

assignments because of the possibilities that a job arrival sees two or more empty 

transporters in the system.  
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CHAPTER V 

MODIFIED NEAREST NEIGHBOR (NN) HEURISTIC VEHICLE DISPATCHING 

PROCEDURE FOR MATERIAL-HANDLING SYSTEMS WITH MULTI-LOAD 

TRANSPORTERS 

 

5.1 Introduction 

 In this chapter, we developed a revised dispatching policy for multi-load 

transporters from a dispatching policy originally proposed by Tanchoco and Co 

(1994), and attempted to investigate the effects of those two different dispatching 

policies on the system performance measures, such as WIP or cycle time. A multi-load 

transporter can pick up additional loads while transporting a previously assigned job. 

Therefore, by using multi-load transporters, we can reduce the transporter’s empty trip 

time as well as the total distance traveled. Also, the traffic congestion and control 

complexity could be reduced.  

We need to determine the appropriate number of transporters to satisfy the 

material-handling requirements in the system. Using a large number of transporters in 

the system, it is true that we can meet the high volume of job transportation 

requirements. However, we will have more traffic congestion and, therefore, need to 

have a complex control system to avoid transporter collisions and deadlock problems. 

Instead of having a large number of transporters, we might use a small number of 

multi-load transporters to meet the same level of job transportation requirements. By 

doing so, we will reduce the deadhead or unproductive time of transporters and the 
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total distance traveled as well as making a smaller fleet size (number of transporters) 

possible (Bilge and Tanchoco 1997). Even though multi-load transporters can provide 

many benefits over single-load transporters, research on multi-load transporters is 

quite limited so far. Using a simulation approach, Ozden (1988) studied the interaction 

between design parameters such as the carrying capacity of AGVs, the number of 

AGVs, the queue capacity at each workcenter and the total number of pallets. In his 

simulation study, he observed that the throughput rate of the system during a constant 

period of time behaves in a concave fashion as a function of these design parameters. 

Also, he demonstrates that, by increasing the load-carrying capacity of the transporter 

and the buffer size at each workcenter to two, a 50% reduction in the fleet size can be 

achieved.  

Bilge and Tanchoco (1997) showed the benefits of multi-load transporters over 

unit-load transporters using simulation. In their study, two different types of 

transporter dispatching strategies, variable-path dispatching and fixed-path 

dispatching schemes were examined. In the variable-path dispatching policy, a multi-

load transporter can change its original path to the destination so as to pick up 

additional loads. On the other hand, under the fixed-path dispatching policy, new load 

picking points should lie on the original path of the transporter. Then, they showed 

that the variable-path dispatching policy is more advantageous in preventing gridlock. 

After their simulation experiments, they concluded that, for a system with high 

transportation demand, multi-load transporters increase the system throughput. In 

addition, they state that a two-load transporter system is not as sensitive to the guide-
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path layout design as a single-load transporter system. Nayyar and Khator (1993) 

studied the operational control issues of multi-load AGVs using simulation. They 

compared the performances of multi-load transporters and single-load transporters 

under several different dispatching rules and concluded that multi-load transporters 

outperform single-load transporters under several conditions. They observed that, with 

larger number of vehicles, the performance of multi-load vehicles was lower than that 

with unit load vehicles as low levels of shop loading. According to them, this is 

because the loaded travel time in case of unit load vehicles is higher. Co and 

Tanchoco (1991) mentioned that the performance of the dispatching rules is highly 

depend on the guide path layout, the fleet size and the transport patterns in the 

network. Tanchoco and Co (1994) proposed transporter dispatching control schemes 

for multi-load transporters. In their study, they developed the simple Nearest Neighbor 

(NN) heuristic dispatching procedure for multi-load transporters. We modify their NN 

heuristic procedure to incorporate dynamic reallocation features for the transporter’s 

reservation space into multi-load transporter dispatching. That is, we include 

additional steps to their original NN procedure to reevaluate the system status 

periodically and then reassign jobs that have yet to be picked up to the transporter.  

  

5.2 Nearest Neighbor (NN) Transporter Dispatching Procedures 

In this section, the Nearest Neighbor (NN) heuristic dispatching procedure for 

multi-load transporters (Tanchoco and Co 1994) is discussed. According to this 

procedure, once a task (pickup or delivery) is assigned to a transporter, a position on 
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the vehicle is reserved and will not be made available for other tasks until the 

corresponding load has been delivered. Therefore, it is possible that a vehicle can be 

unnecessarily reserved for some period of time. The NN procedure is summarized in 

the following section. 

 

The original NN heuristic transporter dispatching procedure (Tanchoco 

and Co 1994). We start with the information of the transporter’s current “Job List” 

where the set of jobs, Q, is a set of active job requesting workcenters and destination 

workcenters of currently onboard jobs. That is, Q = {WC1(p), WC2(p), …, WCn(p), 

WCn+1(d), WCn+2(d), …, WCn+m(d)} where WCk(p) denotes the workcenter where a 

load is waiting to be picked up and WCk(d) denotes the destination workcenter of a 

load that is currently being carried by the transporter. Also, the current location of the 

transporter, CL, is known. Note that WC1(d), …, WCn(d) are not included in Q 

because those workcenters cannot be visited before WC1(p), …, WCn(p). 

 

• Initialize the transporter location marker T = CL set C = the available capacity of 

the transporter.  

• Sort the jobs list, Q according to the distance from the transporter location 

marker, T. At this point, the transporter checks whether a high-priority job exists 

or not. If there is a high-priority job (for example, its waiting time is greater than 

or equal to the pre-specified Time Limit), then this job is assigned. Otherwise, 
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select the first workcenter j, WCj(p or d) in the sorted Q. That is, workcenter j is 

the closest workcenter from the transporter’s current location.  

• Remove WCj(p or d) from Q. and update C. If the selected workcenter j is a job 

pickup workcenter, then add the destination workcenter of the job, WCq(d), into 

Q. Set T = workcenter j and update Q if additional pickup jobs have arrived 

during this service time.  

• Repeat Step 2 and Step 3 until Q becomes empty. (At this point, transporter  

will wait until the arrival of the next transport request.) 

 

  Since the position of the transporter is changed dynamically, it is possible to 

obtain a better system performance by reevaluating the system status (e.g., locations of 

jobs waiting to be transported and the transporter) and reassigning tasks to the 

transporter periodically. To illustrate the logic of our revised NN procedure, consider 

the following situation. When a transporter selects the closest job (pickup or delivery) 

from its current location, the transporter starts to move from its current location to the 

location of the selected job. During the transporter’s travel, if a job arrival occurs at a 

closer location than the original destination of the transporter, the transporter stops at 

that location instead of the location of the originally assigned job and picks up the job 

at that location. That is, we reassign the new job to the transporter. Depending on the 

system guide path layout, if the location of a workcenter is not the closest one from 

any other workcenters (we call the workcenter as an outlier), some jobs associated 

with the workcenter cannot be delivered or picked up for long period of time. To 
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avoid these situations, we use the Time Limit concept. That is, the transporter will be 

assigned to the job whose waiting time is greater than or equal to the pre-specified 

Time Limit. The following is the summarization of our revised NN procedure. 

 

Our revised NN heuristic transporter dispatching procedure. Start with the 

job list, Q, and the current location of the transporter, CL.  

 

• Initialize the transporter location marker T = CL and set C = the available 

capacity of the transporter.  

• Sort the jobs list, Q, according to the distance from the transporter location 

marker, T. At this point, the transporter checks whether a high-priority job exists 

or not. If there is a high-priority job (for example, its waiting time is greater than 

or equal to the pre-specified Time Limit), then select that job. Otherwise, select 

the first workcenter j, WCj(p or d) in the sorted Q. That is, the closest workcenter 

from the transporter’s current location, T.  

• Temporarily remove WCj(p or d) from Q. During its route to workcenter j from T, 

the transporter updates Q with new information (due to new arrivals during this 

route time). That is, add WCj(p or d) back into Q and update Q if additional 

pickup jobs have arrived to the system during its route to the current location. 

Update T.  

• Perform Step 2 and Step 3 until the transporter reaches at the final destination. 
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Figure 21. Flow diagram of the original NN heuristic dispatching procedure. 
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Figure 22. Flow diagram of the modified NN heuristic dispatching procedure. 
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• At workcenter k, permanently remove WCk(p or d) from the sorted set Q. If the 

selected workcenter k is a job pickup workcenter, then add the destination 

workcenter of the job, WCq(d), into Q. Set T = workcenter k. Update Q and C.               

• Repeat from Step 2 to Step 5 until Q becomes empty. 

 

In Figure 21 and Figure 22, these basic implementation procedures are summarized in 

flow diagrams for both dispatching policies.  

 

5.3 Example Models 

To illustrate the differences between the original and the modified NN 

procedures, consider the small example problem shown in Figure 23.  

 

 

 

 

 

 

 

 

 

Figure 23. The example layout configuration for the fixed-route unidirectional 

material-handling system. 
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Assume that we have a small material-handling system layout as shown in Figure 21 

and there is one two-load transporter in the system. The numbers on arcs denote the 

distances between nodes. 

Now, suppose we have the situation described in Figure 21. At time 0, a new 

job arrival occurs at workcenter 1 with destination workcenter 4, and suppose the job 

sees an empty transporter located at workcenter 3. Then, the job is assigned to the 

transporter and the transporter starts to move to workcenter 1. During the transporter’s 

empty trip from workcenter 3 to Node 6 to pick the job at workcenter 1, another job 

arrival occurs at workcenter 2. Then, another job arrival occurs at workcenter 3 before 

the transporter reaches workcenter 2. Then, we have the following results from two 

different dispatching policies.  

 

Original NN heuristic dispatching procedure for our example problem: 

 

• Initialize T = Workcenter 3 and set the transporter’s available capacity, C, to 2.  

• New arrival occurs at Workcenter 1. Thus, we have Q = {WC1(p)}. 

• Select and remove WC1(p) from Q. That is, assign this job to the transporter.  

Set C = 2 – 1 = 1. Since this is a pickup job, add the destination of this job, 

WC4(d), into Q. Now, we have Q = {WC4(d)}. 

• New arrival occurs at Workcenter 2 during route Workcenter 3 → Node 6.  

Update Q = {WC2(p), WC4(d)} and set T = Node 6. 
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• Sort Q according to the distances from Node 6.  

Select and remove WC2(p) from Q because the distance between Workcenter 2 

and Node 6 is shorter than the distance between Workcenter 4 and Node 6.  

Set C = 1 – 1 = 0 and add the destination of the job picked up at Workcenter 2, 

WC4(d), into Q. Now, we have Q = {WC4(d), WC4(d)}. 

• New arrival occurs at Workcenter 3 during route Node 6 → Node 5.  

Update Q = {WC3(p), WC4(d), WC4(d)}. But, since two jobs are assigned to the 

transporter (C = 0), the transporter cannot pick up a new job.  

Go to the shortest delivery point, Workcenter 4, to drop-off loads. 

• Set T = Workcenter 4 and delete two WC4(d)s from Q. Set C = 0 + 2 = 2 

Thus, we have Q = {WC3(p)}. 

• Select and remove WC3(p) from Q and set C = 2 – 1 = 1. That is, assign this job 

to the transporter. Since this is a pickup job, add the destination of this job, 

WC1(d), into Q. Thus, we have Q = {WC1(d)}. Set T = Workcenter 3. 

• Select and remove WC1(d) from Q and set C = 1 + 1 = 2. Set T = Workcenter 1. 

Since we have Q = ∅, Stop. 

 

Modified NN heuristic dispatching procedure for our example problem: 

 

• Initialize T = Workcenter 3 and set C = 2.  

• New arrival occurs at Workcenter 1. Thus, we have Q = {WC1(p)}. 
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• Select and temporarily remove WC1(p) from Q.  

Do not assign this job to the transporter at this point. 

• New arrival occurs at Workcenter 2 during route Workcenter 3 → Node 6.  Add 

the temporarily removed WC1(p) back into Q. Set T = Node 6. 

Thus, we have Q = {WC1(p), WC2(p)}.  

Sort Q according to the distances from Node 6. 

Select and temporarily remove WC2(p) from Q because the distance between  

Workcenter 2 and Node 6 is shorter than the distance between Workcenter 1 and 

Node 6.  

• New arrival occurs at Workcenter 3 during route Node 6 → Node 5.  

Add the temporarily removed WC2(p) back into Q. Set T = Node 5. Thus we 

have Q = {WC1(p), WC2(p), WC3(p)}.  

Sort Q according to the distances from Node 5.  

Select and temporarily remove WC2(p) from Q because the distance between 

Workcenter 2 and Node 5 is the shortest one. 

• At Workcenter 2, permanently remove WC2(p). That is, assign this job to the  

transporter. Set T = Workcenter 2 and add the destination of the job picked at 

Workcenter 2, WC4(d), into Q. Thus, we have Q = {WC1(p),WC3(p),WC4(d)}. 

Set C = 2 – 1 = 1. 

• At Workcenter 3, permanently remove WC3(p) from Q. Set T = Workcenter 3 

and add the destination of the job picked at Workcenter 3, WC1(d), into Q. Thus, 

we have Q = {WC1(p),WC1(d),WC4(d)}. Set C = 1 – 1 = 0. 
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• Since two jobs are assigned to the transporter, go to the shortest delivery point,  

Workcenter 4. Set T = Workcenter 4 and delete WC4(d) from Q.  

Now, we have Q = {WC1(p), WC1(d)}. Set C = 0 + 1 = 1. 

• At Workcenter 1, permanently remove WC1(p) and WC1(d).  

Set T = Workcenter 1 and set C = 1 + 1 – 1 = 1. 

Add the destination of the job picked at Workcenter 1, WC4(d), into Q.  

Thus, we have Q = {WC4(d)}.  

• Select and permanently remove WC4(d) from Q. Set T = Workcenter 4 and set C 

= 1 + 1 = 2. Since we have Q = ∅, Stop. 

 

Resulting tours and total distances traveled from both procedures are summarized in 

Table 18. As we can see, the number of steps required to complete the trip for the 

modified NN procedure is smaller than that in original NN procedure. Also, the total 

distance traveled has decreased. Note that, in modified NN procedure, pick-up and 

drop-off jobs can be done at the same time in workcenter 1 (see  in Table 18).  

 

 Steps of Trip Distance 

Original NN 3→6→5→2→3→6→4→1→5→2→3→6→4→1 34 

Modified NN 3→6→5→2→3→6→4→ →5→6→4 28 
 

Table 18. The comparison of the number of steps and distances traveled for the 

original NN heuristic procedure and the modified NN heuristic procedure. 
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5.4 Simulation Results  

To compare these two procedures more fully, the AutoMod 11.1 (Banks 2004) 

simulation software is used to evaluate the system performance under two different 

vehicle dispatching procedures described in the precious section. The capacity of 

transporter assumed to be two and there is only one transporter in the system. Now, 

reconsider the circuit network example layout shown in Figure 23. We assumed that 

job arrivals to each workcenter are exponentially distributed with mean inter-arrival 

time units of 15 and the throughput rates of all workcenters are the same. Table 19 

displays all 12 routes in sequential workcenters (nodes) visited. The first node and the 

last node denote the job generating workcenter and the job departure workcenter, 

respectively. In addition, new job arrivals at each job generating workcenter are 

independent of each other. We use pre-specified Time Limit whose value is 3.3 time 

units to give priority to the qualified jobs.  

 

route/ 
steps 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 2 2 2 3 3 3 4 4 4 

2 5 5 5 3 3 3 6 6 6 1 1 1 

3 2 2 6 6  6 4 5 4  5 5 

4  3 4 4  4 1 2   2 2 

5    1        3 
 

Table 19. Routes generated for the fixed-route unidirectional material-handling 

problem of Figure 23. 
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Simulation models were developed for the two different dispatching policies 

and the results are shown in Table 20. Here, the simulation results under the original 

NN dispatching procedure are compared with those from the revised procedure. The 

run length is 1,000,000 time units with a statistical reset at 100,000 time units.  

 

 WIPsys Cycle Time Transporter Utilization 

Original NN 1.59 1.991 0.753 

Modified NN 1.35 1.667 0.727 
 

Table 20. The comparison of simulation results of the original NN heuristic procedure 

and the modified NN heuristic procedure for a non-outlier example model in Figure 23. 

 

As we can see in Table 20, WIPsys and cycle time from modified NN procedure are 

less than those from original NN procedure. Thus, from the results shown in Table 20, 

we can conclude that the modified NN heuristic dispatching procedure performs better 

than the original NN procedure for the example layout problem in Figure 23.  

Now, consider another example system that has an outlier. As mentioned 

earlier, an outlier is a workcenter (node in the network) that is so far from every other 

workcenter that it is never the closest workcenter when more than one workcenter has 

jobs awaiting transportation. From the system layout configuration shown in Figure 24, 

we can see that workcenter 1 is an outlier in this example. Again, all external job 
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arrivals at each workcenter are assumed to be exponentially distributed with mean 

inter-arrival time units of 15. 

 

 

 

Figure 24. The layout configuration for the system with an outlier. 

 

Table 21 displays the 12 routes for this outlier model. Due to the structure of this 

model, if we don’t have the priority option such as Time Limit, a new job arrival at 

workcenter 1 cannot be picked up if there are two or more job requests in the system 

and a transporter with available capacity is located at different workcenters. We use 

the pre-specified Time Limit to send transporters to workcenter 1 to prevent a long 

queue length at that workcenter. Again, the pre-specified Time Limit is set to be 3.3 

time units.  
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route/ 
steps 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 2 2 2 3 3 3 4 4 4 
2 7 7 7 3 3 3 6 6 6 7 7 7 
3 5 5 5 6  6 4 5 4 1 5 5 
4 2 2 6 4  4 7 2   2 2 
5  3 4 7   1     3 
6    1         

 

Table 21. Routes generated for the example problem with an outlier of Figure 24.  

 

From the simulation runs, we obtained the results shown in Table 22. Again, the 

system performance measures under the revised NN dispatching procedure are 

compared with those under original procedure. Again, the run length is 1,000,000 time 

units with a statistical reset at 100,000 time units.  

 

 WIPsys Cycle Time Transporter Utilization 

Original NN 2.46 3.075 0.843 

Modified NN 1.97 2.466 0.817 
 

Table 22. The comparison of simulation results of the original NN heuristic procedure 

and the modified NN heuristic procedure for an outlier example model in Figure 24. 

 

As we can see in Table 22, WIPsys and cycle time under the modified NN 

heuristic dispatching procedure are smaller than those under the original NN heuristic 

procedure. Thus, we can say that the modified NN heuristic dispatching procedure 
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performs better than the original NN procedure for the outlier example layout problem 

also.  

Throughout this chapter, we assumed that the transporter capacity was two 

jobs. Now, consider the question as to how the system performance varies with respect 

to transporter capacity? This question is analyzed for both control procedures using 

the outlier example shown in Figure 24. The graphs shown in Figures 25 ~ 27 display 

the system performance measures for a multi-load transporter as the transporter 

capacity increases. In Figures 25, 26 and 27, cycle time, system WIP and transporter 

utilization, respectively, are compared for both control procedures. In Figures 25 ~ 27, 

two important observations should be noted. First, after the transporter capacity 

reaches five, additional capacity of the transporter doesn’t improve the system 

performance with the same job inter-arrival rates. Second, when the transporter 

capacity exceeds six, the modified NN dispatching procedure and the original NN 

procedure exhibit almost the same performance. That is, if a transporter has a very 

large capacity, then there is little difference between the modified NN procedure and 

the original NN procedure, because most jobs will be picked up and therefore, the 

dynamic selection procedure of the modified NN procedure is nullified. 
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Figure 25. Plots for cycle times under both dispatching procedures for the example 

system with an outlier. 

 

1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3
3.1
3.2

1 2 3 4 5

Transporter Capacity

Sy
st

em
 W

IP

Modified NN Procedure

Original NN Procedure

  2                              3                              4                              5                              6

 
 

Figure 26. Plots for system WIPs under both dispatching procedures for the example 

system with an outlier. 
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Figure 27. Plots for transporter utilizations under both dispatching procedures for the 

example system with an outlier. 

 

5.5 Chapter Summary 

The study of this chapter shows that incorporating periodic reevaluation of the 

current material-handling demands into heuristic transporter dispatching procedures 

can improve the performance of systems with multi-load transporters. By reevaluating 

system status and reallocating transporter reservation space periodically, we can 

reduce the unnecessarily reserved transporter capacities and increase the system 

responsiveness to a dynamic environment. Using a simulation approach, the potential 

benefits of dynamic reallocation of transporter reservation space is illustrated. As 

previously stated, even though multi-load transporters can provide many potential 
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benefits over single-load transporters, it seems that extensive research on this area has 

not been done, especially using analytical modeling approaches. Therefore, further 

study of these systems with multi-load transporters using an analytical modeling 

approach should be conducted. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

 In this dissertation, analytical models for material-handling systems with 

multiple workcenters from both workcenters’ perspective and transporters’ 

perspective are considered. In Chapter II, a queueing approximation model is 

developed from a workcenters’ point of view. A job arrival selects an empty 

transporter by the CTAR to minimize the empty travel time. To develop more accurate 

analytical models, in Chapter II, a state-dependent transportation time approach was 

developed. Since the transportation time is the function of system states, the numbers 

of jobs in the transportation subsystem at the time of the vehicle assignment, we need 

to consider the state-dependent nature of the transportation times. By considering 

these state dependencies, we could decrease the percentage error of the performance 

measures of the system, such as WIP and/or cycle time, by almost 40% compared to 

results from most previous research.  

 The main conclusion from Chapter II is that the standard queueing network 

decomposition approach (Johnson 2001, Benjaafar 2002) must be extended to 

incorporate dependent queueing node approximations to adequately capture the 

behavior of the material-handling system. The approach taken in Chapter II to 

accommodate this strong service time dependency is the development of a Poisson-
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based model incorporating the service time dependencies and then to generalize to 

non-Poisson systems via a typical adjustment factor.  

  In Chapter III, queueing theory based analytical models for material-handling 

systems from the transporter’s point of view were developed. From the transporter’s 

perspective, an empty transporter selects a job request by four different vehicle-

initiated vehicle dispatching rules. The guidance for developing different generator 

matrices according to different vehicle-initiated vehicle dispatching rules was 

investigated in the chapter. For the analytical description of impacts of these 

dispatching rules, we also developed different generator matrices and, using those 

generator matrices, we were able to obtain very accurate analytical results for those 

four different dispatching policies for our example problems. We found that the best 

dispatching policy is the SDR control scheme and the least efficient dispatching policy 

is the LDR control scheme in terms of the system performance measure WIPq. 

TL/SDR and FCFSR control schemes lie in between those two methods. In this 

chapter, it was also shown that, with the situations such that there is no locking 

phenomenon in the system, the best transporter dispatching rule in terms of WIPq for 

an M/G/1 model is SDR.  

  In Chapter IV, we extended our models developed in Chapter III in two 

different ways: the extension of the queue length at each workcenter and the extension 

of the number of transporters in the system. Again, by considering state-dependent 

nature of the transportation time, we can obtain very accurate analytical results in both 

cases. The more we increase the queue space at each workcenter, the fewer the lost 
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arrivals to the system. However as we increase the queue space, the computational 

burden increases very quickly. Therefore, by differentiating queue space additions 

according to arrival rates at workcenters, we can reduce lost arrivals to the system 

with smaller state-space size. When we have two or more transporters in the system, 

we need both workcenter-initiated dispatching rules and vehicle-initiated dispatching 

rules. That is, a job arrival which sees two or more empty transporters needs to select 

an empty transporter according to a workcenter-initiated dispatching rule and an 

empty transporter which sees two or more job requests has to choose a job request 

according to a vehicle-initiated dispatching rule.   

 In Chapter V, from Nearest Neighbor (NN) dispatching policy proposed by 

Tanchoco and Co (1994), we developed a revised dispatching policy and compared 

the system performance measures, such as WIP or cycle time from both dispatching 

procedures. From simulation experiments for two example problems, we conclude that 

the modified NN heuristic dispatching procedure performs better than the original NN 

procedure. That is, we can reduce the unnecessarily reserved transporter capacities and 

increase the system responsiveness to a dynamic environment by periodic reevaluation 

of the system status and reallocation of transporter reservation space. 

 

6.2 Future Work 

 When we developed the queueing approximation model in Chapter II, the 

system exhibits fast growth in the computation burden as the number of transporters 

increases. Thus, there is certainly a need for research into efficient dependent service 
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time approximations in the spirit of the Pollaczek-Khintchine (Gross and Harris 1998) 

and Allen-Cunneen (Allen 1990: 341) formulas. The queueing approximation models 

developed in Chapter III have queue space limits set at one for each workcenter and 

there is only one transporter in the system. If we increase the queue space or the 

number of transporters for the system, then the number of states of the resulting 

analytical models increase very quickly. Therefore, since this rapid growth of the 

number of system states as the queue space length or number of transporters increase 

causes rapid increase in the computational complexity, future research is needed to 

develop efficient dependent service time queueing approximations for these systems.  

To obtain the parameter values of the Gamma distribution adjustments for the 

TL/SDR control scheme of Chapter III, we performed preliminary simulation runs and 

used results from those runs. Since, we don’t have a method at this time for predicting 

the parameter values of the Gamma distribution adjustments for the TL/SDR control 

scheme, further research is needed to develop an analytical methodology for 

predicting the parameter values of the Gamma distribution adjustments for the 

TL/SDR control scheme. However, since the analytical models using these Gamma 

adjustments yield very good estimates for the system performance measures, this 

study is a first step in analytically describing the impact of TL/SDR control schemes 

for material-handling systems.  

As stated in Chapter V, in spite of many potential benefits of multi-load 

transporters, research on this area using analytical modeling approach is quite limited. 

Therefore, further study of these systems with multi-load transporters using an 
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analytical modeling approach is needed. Also, more intelligent and efficient 

dispatching policies for multi-load transporters might be developed.  
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APPENDIX A 

 THE PROOF OF THE THEOREM SHOWN IN CHAPTER III    

 

Theorem: With the situations such that there is no locking phenomenon in the system, 

the best transporter dispatching rule in terms of WIPq for an M/G/1 model is SDR.    

 

Proof:  

P.1 Assumptions 

Since a transporter becomes available to be assigned when it is released from 

the previous service at the job delivery point, the transporter initiated dispatching rules, 

like SDR, can be greatly affected by the facility layout and the location of workcenters. 

Therefore, a locking phenomenon can occur when we use the SDR control scheme. 

According to Egbelu and Tanchoco (1984), if the locations of some workcenters in the 

system are not the closest workcenter from any other workcenters in the system (we 

call these workcenters outliers), then those workcenters will seldom be selected for 

picking up jobs by an empty transporter. Thus, the number of jobs waiting at those 

workcenters will increase and can eventually reach its maximum queue capacity. As 

the result, job delivery to those workcenters becomes impossible. Egbelu and 

Tanchoco called this phenomenon the locking phenomenon. 

Our original model under the SDR control scheme shown in Section 3.3.1 has 

no outliers. Moreover, we assumed that the queue space at each workcenter is limited 

to one. Therefore, we don’t have the locking phenomenon mentioned above and we 
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don’t need any assumptions to process the proof shown in Section P.2. However, if  

we generalize the model by including an outlier in our model as described in Section 

3.5.1 and allow an infinite queue space limit at each workcenter, then we need to 

check the following two conditions. Let λi be the external rates at the workcenter i and 

Pij be the probability that a job at the workcenter i goes to the workcenter j. For 

example, if jobs at the workcenter 1 go to the workcenter 2, 3 or 4 with equal 

probabilities, then we have P12 = P13 = P14 =1/3. Also, let E[ETTij] be the average 

empty transporter travel time from workcenter i to workcenter j and let E[LTTij] be the 

average loaded transporter travel time form workcenter i and workcenter j. Note that 

we have E[ETTjj] = 0 for j = 1,…,4. Then, to insure the nonexistence of the locking 

phenomenon in the system with an outlier and the infinite queue space at each 

workcenter, we need to have either one of the following two relationships for some 

outlier workcenter j:  
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In inequality (A.1), αkj’s are the probabilities that an empty transporter will go to the 

workcenter j from the workcenter k and consists of two components, αkj
1 and αkj

2. 

That is, αkj = αkj
1 + αkj

2, where αkj
1 is the probabilities that an empty transporter will 

go to the workcenter j from the workcenter k when there is only one job request in the 

system and αkj
2 denotes the same probability when there are two or more job requests 

in the system. And ∑≠

4

ki iki Pλ denotes the probability of the external arrivals at all 

workcenters (except workcenter k) in the system that arrive at the workcenter k. Note 

that if workcenter 4 is an outlier in the system under the SDR control scheme, then we 

have α14
2 = α24

2 = α34
2 = 0 and α44

2 ≠ 0. Therefore, for the right hand side of (A.1), we 

have: 
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Note that since the job assignments of empty transporters are determined by the 

transporter dispatching rules, these αkj’s are heavily depend on the various transporter 

dispatching rules. The right hand side of inequality (A.2) is the transporter idle 

fraction, i.e., one minus the transporter utilization, and the left hand side of inequality 

(A.2) is the transporter service time generated utilization for the outlier workcenter j. 

We can rewrite inequality (A.2) as follows: 
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jλρ >−1 E[Time for Servicing Outlier j].   

 

If inequality (A.1) is valid, this insures that the internal job arrival rate into the outlier 

workcenter j (the empty transporter available rate at the workcenter j) is greater than 

or equal to the external job arrival rates at the outlier workcenter j. Furthermore, by 

inequality (A.2), we insure that the transporter idle fraction can cover the percentage 

of the transporter time required to serve jobs arrived at the outlier workcenter j. Now, 

suppose that neither inequality is true, then,  
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and  

            jλρ ≤−1 E[Time for Servicing Outlier j], for some outlier workcenter j.    (A.4) 

 

Note that inequality (A.3) implies that the external arrival rate of jobs at the outlier 

workcenter j is bigger than the internal arrival rate of jobs at the outlier workcenter j, 

where the internal job arrival rate outlier workcenter j results in empty transporters 

being available at the outlier workcenter j. Therefore, the transporters that become 

available at the outlier workcenter j cannot satisfy the external job arrivals at that 

workcenter j. By multiplying E[Time for Servicing Outlier j] > 0 on both sides of 

above inequality (A.3), we obtain, for some outlier workcenter j,  
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Inequality (A.5) implies that the required net transporter service time generated 

utilization for the outlier workcenter j is positive and that must be taken care of to 

avoid a system explosion. By subtracting:  
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from the right hand side of inequality (A.4), we can have the following two possible 

cases. First, if we have:  
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then the queue length of the outlier workcenter j increases and reaches its maximum 

capacity because the transporter idle time proportion cannot satisfy the positive net 

demands for empty transporters from the outlier workcenter j. Thus, the system will 

eventually become unstable. Second, if we have: 

 



 136

                        
















−∑ ∑

= ≠

4

1

4

k ki
ikikjj Pλαλ E[Time for Servicing Outlier j] < ρ−1 ,               

 

then, by inequality (A.4) and (A.5), we can get the following inequality: 
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In this case, since the transporter idle fraction, 1– ρ, can normally cover the positive 

net demands for empty transporters from the outlier workcenter j, the system will not 

be unstable. However, some realizations might be unstable due to the locking 

phenomenon when the transporter idle fraction become very close to λjE[Time for 

Servicing Outlier j]. If the internal job arrival rate at the outlier workcenter j decreases 

to almost zero, then the right hand side of inequality (A.7) becomes λjE[Time for 

Servicing Outlier j]. Thus, ρ−1 will be squeezed down to λjE[Time for Servicing 

Outlier j]. Therefore, inequalities (A.1) and (A.2) are upper bounds and inequality 

(A.6) is a lower bound for the nonexistence of the locking phenomenon. And 

inequality (A.7) is the area lies in between those upper and lower bounds. 
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P.2 Proof 

From the result of the previous section, we can assume that the situation is 

such that no locking phenomenon occurs. That is, we can select the system parameters 

that put us in the proper regions. Now, under the SDR control scheme, we can get the 

minimum value of the empty transporter travel time because an empty transporter will 

select the closest workcenter from its current location as its destination. Thus, we can 

say that, in the long run, the average empty transporter travel time under the SDR 

control scheme, E[ETTSDR], is always less than or equal to the average empty 

transporter travel time under any other dispatching rules, E[ETTNONSDR]. That is, 

][][ NONSDRSDR ETTEETTE ≤  for all non-SDR control schemes. Note that the expected 

service time, E[T], has three components, that is, 

 

][][][][ PDTELTTEETTETE ++= , 

 

where E[LTT] is the average loaded transporter travel time and E[PDT] is the average 

job pick-up/drop-off time, and both E[LTT] and E[PDT] have no relationship with the 

specific transporter dispatching rules. If E[ETT] increases while the other factors, 

E[LTT] and E[PDT], remain the same, then E[T] will also increase. Thus, the 

followings are true: 

 

][][ NONSDRSDR TETE ≤   

or  
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NONSDRSDR µµ ≥   

or  

                             NONSDRSDR ρρ ≤ ,  for all non-SDR control schemes.                 (A.8) 

  

Now, suppose that the SDR control scheme is not always the best dispatching rule in 

terms of WIPq. Then we have NONSDR
q

SDR
q WIPWIP >  for some non-SDR control 

schemes. Therefore, for an M/G/1 model, we can get the followings:  
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0)()()( >−⋅−−⋅+ NONSDRSDRNONSDRSDRNONSDRSDRNONSDRSDR ρρρρρρρρ , 

0)()( >⋅−+⋅− NONSDRSDRNONSDRSDRNONSDRSDR ρρρρρρ , 

0})1({)( >+−⋅⋅− NONSDRNONSDRSDRNONSDRSDR ρρρρρ . 

 

Since the second portion of the above equation, })1({ NONSDRNONSDRSDR ρρρ +−⋅ , is 

always positive, we have finally the following result: 

  

0)( >− NONSDRSDR ρρ   
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or  

                   NONSDRSDR ρρ > ,  for some non-SDR control schemes.                   (A.9) 

 

But inequality (A.9) contradicts with inequality (A.8). Hence, we can say that 

NONSDR
q

SDR
q WIPWIP ≤  for all non-SDR control schemes for an M/G/1 model with the 

assumption that there is no locking phenomenon in the system. This completes the 

proof.  ■ 
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