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ABSTRACT 

 

Hierarchical Modeling of Multi-scale Dynamical Systems Using Adaptive Radial Basis 

Function Neural Networks: Application to Synthetic Jet Actuator Wing. (May 2004) 

Hee Eun Lee, B.S., Yonsei University 

Chair of Advisory Committee: Dr. John L. Junkins 

 

To obtain a suitable mathematical model of the input-output behavior of highly 

nonlinear, multi-scale, nonparametric phenomena, we introduce an adaptive radial basis 

function approximation approach. We use this approach to estimate the discrepancy 

between traditional model areas and the multiscale physics of systems involving 

distributed sensing and technology. Radial Basis Function Networks offers the possible 

approach to nonparametric multi-scale modeling for dynamical systems like the adaptive 

wing with the Synthetic Jet Actuator (SJA). We use the Regularized Orthogonal Least 

Square method (Mark, 1996) and the RAN-EKF (Resource Allocating Network-

Extended Kalman Filter) as a reference approach. The first part of the algorithm 

determines the location of centers one by one until the error goal is met and 

regularization is achieved. The second process includes an algorithm for the adaptation 

of all the parameters in the Radial Basis Function Network, centers, variances (shapes) 

and weights. To demonstrate the effectiveness of these algorithms, SJA wind tunnel data 

are modeled using this approach. Good performance is obtained compared with 

conventional neural networks like the multi layer neural network and least square 



 iv 

algorithm. Following this work, we establish Model Reference Adaptive Control 

(MRAC) formulations using an off-line Radial Basis Function Networks (RBFN). We 

introduce the adaptive control law using a RBFN. A theory that combines RBFN and 

adaptive control is demonstrated through the simple numerical simulation of the SJA 

wing. It is expected that these studies will provide a basis for achieving an intelligent 

control structure for future active wing aircraft. 
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CHAPTER I   

INTRODUCTION 

                                     

Background and Motivation 

The desire to achieve multi-scale autonomous, intelligent, shape controllable 

aircraft has been attempted in many ways throughout the years. The difficult-to-model 

nonlinear relationship of distributed actuator commands of the resulting aerodynamics 

lies at the heart of the difficulties.1-7 One possible approach is to use an adaptive neural 

network algorithm to model such systems, especially nonparametric and highly 

nonlinear behavior like that of the SJA wing. 
6 

The dynamic properties of the system to be controlled can be developed to 

design automatic control systems. We need to overcome the problem of the nonlinear 

dynamics and the uncertainties provoked by differences between desired and actual 

dynamic models.8 If model parameters vary during the system operation and the system 

is modified its behavior in the presence of higher degree of uncertainty, this is said to be 

an adaptive structure. Reconfigurability of the controlled system is achieved if it can 

adapt to the system failures such as sensor or actuation failures in near real time- to rely 

on a subset of the sensors and actuators. Since it determines future performance, the 

adaptive controller behavior is continuous with the effectiveness of the function 

approximator of choice.9  

               
Journal model is Journal of Guidance, Control and Dynamics. 
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Neural networks in principle enable reconfigurablity, robustness, and adaptation 

in that it can learn in any mode to deal with the high multidimensionality and nonlinear 

behaviors. Furthermore they can approximate arbitrary continuous nonlinear function 

with any errors. While neural networks enable a high degree of feasibility, many difficult 

issue arise, associated with learning sets, controllability, observability and stability.6,7,10 

There have been several methods introduced to achieve converged input/output 

representation using neural networks. The distinguishing features of adaptation 

mentioned above in neural networks make them an appealing approach for nonlinear 

control.9,11 It has been shown (Hornik, et al.,1989) that any densely measured function of 

practicable interest can be approximated precisely with a neural network having enough 

neurons, at least one hidden layer and an appropriate set of weights.9,12 However, the 

efficiency of this approach, as regards the number of free parameters, speed of learning 

and the validity of prediction using a given network remain open questions. Furthermore, 

if the architecture and learning locus are fixed, its ability to represent input/output 

behavior is implicitly constrained and may not work well for any given problem.13-15 

There are two kinds of neural networks. One is sigmoidal neural networks which are 

composed of one or more layers of sigmoidal transfer functions with a fixed shape and 

another popular neural networks implement is radial-basis neural networks with radial 

basis transfer functions.  

Between these two neural network approaches, we will choose the method of 

Radial Basis Function Network (RBFN) as a candidate best approximator. Multi-layer 

perceptron networks, especially with a fixed architecture, have shown many defects like 
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slow convergence of weights and difficulty in modeling differential responses.10 The key 

feature of the simplest type of RBFN is that the output layer is only a linear combination 

of the hidden units. The RBFN therefore has much simpler weight updating procedure.14 

Furthermore, these basis functions lies in the input space and dominate locally near their 

center so heuristic localization of learning is possible. Since approximation is based on a 

limited number of centers, which do not have to be placed on a grid through the domain, 

an RBFN with adaptive logic used to place centers appears attractive for high 

dimensional nonparametric problems. Finally the shape, size, and orientation of local 

RBFs can be adapted to capture on the small number of functions the major features of 

the input/output behavior.16-17 However, they do not generalize local information very 

well. When the large data sets are available their performance is better. 

The RBFN is especially attractive in real-time approximation because we can 

derive globally and locally optimal solution via simple linear optimization of the weight 

parameters; and good estimates for the center locations and shape parameters can be 

deriving directly from the residual errors. The computational simplicity is excellent since 

only one layer is involved in supervised training; the truth results in significant 

advantage compared to other Neural Network functions. 

 

Research Objectives 

The ultimate goal of this Thesis is to develop an intelligent control structure 

integrating all the usual functions of flight controllers, along with learning and 

adaptation. Further, we will study this approach to adaptive control with different flight 
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regimes to evaluate the merits of the neural network controller. We will use the neural 

controller in the context of a Model Reference Adaptive Controller.12,18-19 For the 

Synthetic Jet Actuator, a relationship between inputs (angle of attack (AOA), actuator 

frequency, slot width, Mach number etc.) and outputs (lift, drag, moment aerodynamic 

forces) is not obvious and it is difficult to model with existing methods, so the neural 

approximation approach is one possible choice.20 Using the linearized aerodynamics, 

even when using static measurements, integrated flight dynamic equations in SJA are 

fairly well matched for the case of small angles. However, with the expanded flight 

envelopes being considered for future maneuvering aircraft and for the non static case of 

interest the problem dimensionality grows quickly and a priori learning strategies are 

difficult to implement due to the difficulty of dynamic experiments. This means we can 

expect any method to be challenged to predict the highly nonlinear input-output 

behaviors at high AOA, over a range of flight conditions. For this problem we will 

consider a Radial Basis Function Network as a candidate approach, with both a priori 

and real-time learning.21 Followed by this work, as a future work, we will try to establish 

a closed loop model reference adaptive control law which can apply in real time starting 

with the approximation from offline RBFN modeling to achieve the final control 

objective which is tracking a prescribed trajectory, angle of attack and pitching moment 

using the synthetic jet actuation frequency as the control input.22-24  

 

Thesis Organization 

Five Chapters are included in the main body. In Chapter II we introduce a brief 
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history and foundations of the Synthetic Jet Actuation followed by its characteristic and 

recent progress in Texas A&M University. Chapter III supplies the linear and nonlinear 

least square fitting algorithms to compare with the efficiency of the neural network 

structure and its candidate algorithm. This classical approach is also well match to the 

data when the dimensions are less than three. Chanter IV and V, we will go further and 

develop a general the neural network algorithms. In Chapter IV we provide the 

theoretical background of the neural network and radial basis neural network for basic 

foundation. Chapter V contains several algorithms and this theoretical development; 

these are the algorithms we will apply to tune the radial basis neural network to adapt the 

inputs in the simulations. First part is, for more insight on neural networks, we will try a 

traditional sigmoidal basis functions instead of radial basis functions network algorithm 

for the purpose of comparison. The second part is composed of implementation of the 

two radial basis function network algorithms, Forward Selection with Regularized 

Orthogonal Least Square (FS-ROLS) Neural Networks and Resource Allocating Neural 

Network with Extended Kalman Filter. In this Chapter we will discuss details of the 

function approximation procedure that can be applied to a wide range of nonlinear 

problems. Chapter VI describes how the neural controller works when either pre-trained 

or adapted on-line. This Chapter shows the model reference adaptive controller can be 

used effectively in on-line learning procedure with using SJA experimental wing data 

and other analytical test surfaces.  

In appendices, some formulation used in the thesis will be derived and the final 

section contains the reference for this Thesis. 
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CHAPTER II    

INTRODUCTION TO THE SYNTHETIC JET ACTUATOR (SJA) 

 

Synthetic Jet Actuation Fundamentals 

The several distinguishing features of Synthetic Jet Actuators (SJA) for control 

of flow separation over lifting surfaces at high angles of attack has been a great 

attraction in recent years. In particular, the ability to modify the aerodynamics lift drag 

and moment, by up to 20%, has been demonstrated experimentally, as discussed in 

reference. Hingeless SJA wing experimental set up has been developed in Texas A&M 

Aerospace Engineering Department. The main object of SJA’s experiment is control of 

all of the wing’s parameters. 

Before engaging in control law development, the first order of business is to 

experimentally measure the input/output behavior of the SJA airfoil, over a range of 

operating conditions, mach numbers, angle of attack(AOA), and actuation inputs. Both 

static (fixed AOA) and dynamic experiments have been conducted. As the test wing 

profile, NACA 0015 airfoil is used for the dynamic pitch test of the synthetic jet actuator.  

This model was chosen due to the ease with which the wing could be manufactured and 

the available interior space for accommodating the synthetic jet actuator (SJA).  The 

chord length of the wing is 0.420 meters and a span of 0.430 meters. There are total 32 

holes of pressure tapping, 16 for upper wings and 16 for lower wings. Figure 2.1 and 2.2 

shows the profile of the wing and its specific scale.  
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Experimental Results (Rediniotis, 2000) 

In the experiment, the wing angle of attack (AOA) is controlled by the 

sinusoidal reference signal. Oscillation frequency is given by the 0.2Hz interval from 

0.2Hz to 2Hz. Freestream velocity is 25m/sec. From the surface pressures, the lift and 

pitching moment coefficients were calculated via integration. Static experiments results 

tell us that the repeatability of the pressure measurement is achieved successfully. The 

AOA of airfoil is forced to oscillate from 0o to 25o at a given frequency The 

experimental data collected were the time histories of the pressure distribution on the 

wing surface (at 32 locations). In recent experiment, more holes are added in the tail part 

of the SJA wing surface and the region of oscillation of AOA of airfoil is increased to 

from 0 to 30 degree. The data was also integrated to generate the time histories of the lift 

coefficient and the pitching moment coefficient. Data was collected with the SJA on and 

with the SJA off (i.e both with and without active flow control). 

We observed that SJA showed its maximum effectiveness only in some of the 

separation region. In other words, its operation extends the AOA which does not exhibit 

the flow separation and so increases the maximum lift coefficient. However when the 

airfoil is forced to oscillate, the AOA at which flow separation occurs becomes lower as 

the AOA motion frequency increases and thus the SJA improves the aerodynamic 

performance at far below at which the AOA that showed the flow separation in static 

experiment (figure 2.3).  

Unfortunately, for the present configuration, the various operating conditions of 

SJA do not alter the lift and moment coefficients meaningfully at the lower angle of 
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attack (figure 2.3) such that the sufficient control authority is not obtained for the free 

pivoting so as a consequence the current SJA configuration is not an effective control 

actuator at small AOA. However, it is observed that the SJA modifies the aerodynamic 

coefficients significantly at the high angle of attack, especially above the stall angle of 

attack (when SJA is off). Therefore, we need to consider the role of the SJA under the 

incursion of the wing across the high angle of attack, including in the stall region. 

The variation range of center of pressure when the permissible operating 

parameters (SJA frequency and slot width) are changing should be large enough to cover 

the range of that for the entire angle of attack. Therefore, for the current setup, it does 

not seem possible to have the good control authority for small angle of attack just by 

altering the SJA operating conditions. From the recent experiment, we can know that 

there are several possible approaches that can be used to achieve control using SJA 

actuation. Thus we can try that the Neural Network algorithm which is non-parametric 

and suitable for poorly known input/output models, where a physical parameterization is 

not easily derived. Figure 2.3-2.5 show the variation of LC  and MC , for different 

pitching frequencies, with and without SJA actuation. As shown especially in figure 2.3, 

in SJA actuation has a significant effect on the maximum value of the dynamics LC .  

Figure 2.1 Rendered views of upper wing half panel (left) and assembled wing  
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Figure 2.2 NACA 0015 wing profile      

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) cl variation without SJA (b) cl variation with SJA (60 Hz) 
 
 
 

  
 
 
 

Figure 2.3 LC  variation without SJA (left) and LC variation with SJA (right) 

	�

��������	�������� �����
�

���  "!$#&%
�

��� �$'$(&%
����  "#)�*%
�

+-, �
��� .-/ +�0&1 		 , /32 , �
��	
4 �5�

�

671 2�	�
 1 /78671 9 �:2
�

	 , /32 , �;��<8=� +39�1 2�.>��	�8:�
�

/ + 	 + �$�? @# 6 �
��< 1 A�,
�23
 1 	-B
/ ,?C3C �&��� �$#$!&%
�C76D+ /������ ��($�&%

�

�
�

���  "!$#&%
�

��� �$'$(&%
����  "#)�*%
�

+-, �
���E.-/ +�0&1 		 , /32 , �
��	
4 �5�

�

671 2�	�
 1 /78671 9 �:2
�

	 , /32 , �;��<8=� +39�1 2�.>��	�8:�
�

/ + 	 + �$�? @# 6 �
��< 1 A�,
�23
 1 	-B
/ ,?C3C �&��� �$#$!&%
�C76D+ /����

�



�DF

 
 

 
 

 

 

 

 

 

 

 

Figure 2.4 Measured pressure data for each AOA with SJA 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Lift and moment coefficient variation with AOA 
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Control Block Diagram for SJA Wing  

The control objective in SJA wing is to achieve a commanded lift and moment 

by modulating the actuation frequency, slot width, Mach number and the slot opening 

rate. We note that varying SJA frequency changes, for example, , ,L DC C and MC , so we 

may anticipate difficulty achieving a prescribed change in LC , without experiencing 

variations also in ,DC and MC . By increasing the number of actuator inputs, however, 

we may be able to achieve prescribed , ,L DC C and MC  variations simulation only. In 

Chapter V we estimate the blanketed part in the block diagram in that actuator input 

output mapping will be determined and control law is derived in Chapter VI.  

Several practical challenges are present in this experiment: the flow is unsteady, 

the pitch moment control authority at low angle of attack is poor, the problem is very 

sensitive. All of these challenges will present and the results of this thesis represent a 

first step in addressing them.  

Figure 2.6 shows the block diagram of the final model for the intelligent wing. 

 

Figure 2.6 Block diagram model for control approach  
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CHAPTER III    

LEAST SQUARES FOR FUNCTION APPROXIMATION  

 

In this section result from Least Square method will be presented based upon 

various approaches to fitting the SJA data. Later on we compare this result with the 

neural network algorithms, to see their relative merits in input/output model accuracy 

and learning ability compared to the without learning algorithm. 

 

Linear Least Squares without SJA 

 Using well known linear batch least square optimal estimate equation, we can 

estimate the each aerodynamics forces LC , DC , MC  by solving the normal equation. 

                                 
1ˆ ( )−= T Tx H H H y�                            (1) 

Vector H is calculated here with Angle of Attack whose range is from 0 to 25 degree and 

SJA frequency and measurements y� ’s are coefficients of the aerodynamic forces from 

the experiment. eqn(1) is useful, of course, for the batch estimation case in which all 

data is available, as in off-line or a priori learning. First, the key issue in any curve 

fitting problem, of course, is the choice of the fitting function. While we do not address 

“model optimality”, we give two representative models in the present discussion. For the 

linear least squares problem, the x̂ vector is the set of coefficients linearly combine a 

chosen set of basis function. In a Model 1 and 2 least squares fitting will be performed 

without SJA effects. In figure 3.1-3.3, Model 1 is estimated using simple polynomials. 
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Model 2 is selected by trial and errors and simulated in figure 3.4-3.6 

 

Model 1 
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3 54

3 54

3 54

2
1 1 2 2 3 4 5 6 6

2
1 1 2 2 3 4 5 6 6

2
1 1 2 2 3 4 5 6 6

( ) cos( )

( ) cos( )

( ) cos( )

L

D

M

C a a a e a e a e a

C b b b e b e b e b

C c c c e c e c e c

λ α λ αλ α

λ α λ αλ α

λ α λ αλ α

α λ α λ α λ α
α λ α λ α λ α
α λ α λ α λ α

− −−∗ ∗ ∗ ∗ ∗ ∗

− −−∗ ∗ ∗ ∗ ∗ ∗

− −−∗ ∗ ∗ ∗ ∗ ∗

= − − + + + +

= − − + + + +

= − − + + + +

 

 

 

 

Figure 3.1 Lift coefficient fitting of Model 1. 
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Figure 3.2 Drag coefficient fitting of Model 1. 

 

 

Figure 3.3 Moment coefficient fitting of Model 1. 
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Figure 3.4 Lift coefficient fitting of Model 2. 

 

 

Figure 3.5 Drag coefficient fitting of Model 2 
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Figure 3.6 Moment coefficient fitting of Model 2 

Table 3.1 Errors of linear least squares without SJA effect in Model 1. 

 

Force Lift force Drag force Moment 

Force Sum 18.2610 6.0310  -2.3690 

Error Sum 0.0011(0.01%) 0.1153(0.62%) 0.0017(0.07%) 

 

Table 3.2 Errors of linear least squares without SJA effect in Model 2. 

 

Force Lift force Drag force Moment 

Force Sum 18.2610 6.0310 -2.3690 

Error Sum 0.0310 (0.5%) 0.2435(1.3%) 0.0303(1.2%) 
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Table 3.3 The coefficients of aerodynamic coefficients via linear least square 

technique in Model 1.  

 

. Lift( , 0...4ia i = ) Drag( , 0...4ib i = ) Moment( , 0...4ic i = ) 

4α  0.000001       -0.000001      0.000003     

3α  -0.0001 0.0001 -0.000007 

2α  -0.0029 0.000003 -0.00002 

α  0.1193 -0.0018 0.0016 

Constant term 0.0108 0.1031 -0.0345 

 

Observe, when unknowns other than linearly contained parameters (Model 1) 

must be estimated, we require a nonlinear optimization algorithm to estimate the model 

parameters. From the table 3.1 and 3.2, for all aerodynamic coefficient cases, the least 

squares with only polynomial terms results in smaller errors than with this particular 

choice of a nonlinear model. This implies when we consider the function with only AOA, 

we can successfully approximate the function with linear least squares with polynomial 

basis functions. However in real situation other difficulties may arise to change this 

conclusion, the above simply shows for two choices (of many possible) basis functions. 

There are many more variations that affect basis function choices the behavior of SJA 

which show highly nonlinear characteristic. We can observe the coefficients of 

aerodynamic coefficients via linear least square technique of Model 1 in table 3.3 and 

Model 2 in table 3.4. To get the λ optimal estimates in table 3.5, we used the MATLAB 
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function FMINS. The function FMIN minimizes the residuals to obtain a least square fit 

of data with a function of - (1)t - (n)t
1 ny = e + + eλ λβ β× ×� . 

Table 3.4 The coefficients of aerodynamic coefficients in Model 2  

 

 Lift ( , 1...6ia i∗ = ) Drag ( , 1...6ib i∗ = ) Moment ( , 1...6ic i∗ = ) 

1λ α  0.1084 810×  -2.482 810×  -2.810 710×  

   2
2λ α  2.2810 510×  -5.40029 610×  -6.07601 510×  

3e λ α−  4.4772 910×  -1.0510 1110×  -1.1844 1010×  

4e λ α−  -2.7425 910×  0.6431 1110×  0.72487 1010×  

5e λ α−  0.2891 910×  -0.6896 1010×  -7.748 810×  

6cos( )λ α  -2.0238 910×  0.4769 1110×  0.5370 1010×  

 

Table 3.5 λ  values (nonlinear term) in Model 2. 
 

Nonlinear term 1λ  2λ  3λ  4λ  5λ  6λ  

value -0.025 0.0039 0.0015 0.0017 -0.0014 0.00069 

 

Linear Least Squares with SJA 

Let us construct two another Model 3 and 4 which include SJA’s actuation 

effects. In these Models the coupling of angle of attack � and actuation frequency � are 

considered. Different from polynomial Model 3, in Model 4 nonlinear basis functions 
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are included. Model 4 are selected by trial and errors, and represent a “for example” 

nonlinear model. Figure 3.7-12 show the simulation results of these models.  

 

Model 3 
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Figure 3.7 Lift coefficient fitting of Model 3 
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Figure 3.8 Drag coefficient fitting of Model 3. 

 

 

Figure 3.9 Moment coefficient fitting of Model 3. 
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Figure 3.10 Lift coefficient fitting of Model 4. 

 

 

Figure 3.11 Drag coefficient fitting of Model 4. 
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Figure 3.12 Moment coefficient fitting of Model 4 

Table 3.6 Errors of linear least squares in Model 3 

 

Force Lift force Drag force Moment 

Force Sum 139.09 42.8070 16.1550 

Error  1.8521(1.3%) 0.0244(0.057%) 0.0144(0.08%) 

 

Table 3.7 Errors of linear least squares in Model 4 

 

Force Lift force Drag force Moment 

Force Sum 139.09 42.8070 16.1550 

Error Sum 1.1970(0.86%) 0.1297 (0.301%) 0.1099(0.67%) 
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Table 3.8 The coefficients of aerodynamic coefficients in Model 3 

 

 Lift( , 0...9ia i′ = ) Drag( , 0...9ib i′ = ) Moment( , 0...9ic i′ = ) 

�³ -85.9386 10×  -107.4906 10×  -105.7227 10×  

�³ -54.2373 10×  -5-2.9376 10×  -51.5307 10×  

��² -73.9205 10×  -8-6.8579 10×  -87.0259 10×  

�²� -6-9.8647 10×  -61.1033 10×  -7-8.3860 10×  

�² -5-2.6234 10×  -61.1097 10×  -6-1.7507 10×  

�� -4 2.8601 10×  -5-2.5128 10×  -5 1.9104 10×  

�² 0.0051 0.0015 -4-6.8867 10×  

� 0.0015 -5 -3.9664 10×  -58.5607 10×  

� 0.1315 -0.0078 0.0028 

0LC , 
0DC  

0MC  -0.0106 0.1012 0.0311 

  

Table 3.9 λ values (nonlinear terms) in Model 4 

Nonlinear term 
1λ  2λ  3λ  4λ  5λ  6λ  

value -0.025 0.0039 0.0015 0.0017 -0.0014 0.00069 

 

To get the λ values, as explained in Model 2, we used the MATLAB function of FMINS 

again. 
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Table 3.10 The coefficients of aerodynamic coefficients in Model 4 

 

 Lift Coefficient Drag Coefficient Moment Coefficient 

1( )λ α ω+  -1.2586 410×  5.1885 210×  -1.4139 310×  

2 2
2 ( )λ α ω αω− + +  8.8013 710×  -4.195 610×  1.0175 710×  

3
3λ α−  6.2835 910×  -2.965 810×  7.2501 810×  

4 ( )e λ α ω− +  -5.1109 910×  2.414 810×  -5.8982 810×  

5 ( )e λ α ω− +  8.2208 710×  -3.830 610×  9.4610 610×  

6cos( ( ))λ α ω+  -1.3428 910×  6.3145 710×  -1.5483 810×  

 

The errors and numerical properties of the simulation result for Model 3 and 4 

are shown in table 3.6-3.10. They are calculated in the same way with model 1 and 2. 

Upon consideration of SJA effects, the error between the measured and assumed model 

is found to be much smaller in the case of Model 3 except for the lift coefficient case 

which means highly nonlinear characteristic of SJA has affected to the lift force more 

than other forces in high Angle of Attack. Qualitatively, the particular nonlinear terms 

related in Model 4 capture well in these experiments (less than 1% error).   

As is evident, these models fit the data reasonably well however, the structure of 

these models is as ad-hoc and relies upon a subjective, experimental based derivation. A 

more general–purpose, adaptive modeling is needed, especially for highly nonlinear and 

higher dimensioned input/output modeling problems. 

The pessimistic conclusion one might draw from the above is that there are 
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infinity of comparably good curve fits that can model a given set of measurements so, 

efficiency of computation and similar issues should play an important role in deciding 

which is best. More importantly, one might infer that “it would be nice”, if the 

approximation approach was inherently adaptive in the sense that the mathematical 

structure of the approximation method was learned from the data, rather than merely 

estimating values in an apriori assumed curve-fitting model. These observations 

provided much of the motivation of the work in this thesis. 
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CHAPTER IV    

FOUNDATIONS OF RADIAL BASIS NEURAL NETWORK 

 

What is Neural Network? 

A desire to have system of mathematical modeling and pattern inference like the 

human brain motivated the invention of the artificial neural network. Somewhat 

analogous to the human brain, artificial neural networks are composed of several 

processing element neurons that are highly interconnected. Each neuron transforms a set 

of inputs to a set of desired outputs. Artificial neural networks are typically composed of 

interconnected units, the most basis unit is a single neuron which serves as a model 

neurons. Each unit converts the pattern of incoming activities that it receives into a one 

or more outgoing activities that it broadcasts to other units the most basis unit is a single 

(Rick Robinson, 2000). Typically, a neuron multiplies each incoming signal by the 

weight on the connection and adds together all these weighted inputs to get a quantity 

called the total input. And for the next step, a unit neuron uses a prescribed input-output 

function that transforms the total input into the outgoing signal. 

The behavior of an Artificial Neural Network (ANN) depends on both the 

weights and the input-output function (which is also called transfer function) that is 

specified for the units.15,16 To make a neural network that performs some specific task, 

we must choose how the units are connected to one another, and we must set the weights 

on the connections appropriately. Often an algorithm is selected to tune (train) the 

weights of the network so that some given training input/output behavior is mimiced 
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adequately. The connections determine whether it is possible for one unit to influence 

another. The weights specify the strength of the influence. The architecture of the neural 

network is shown in figure 4.1. 

 

Figure 4.1 Anatomy of neural network  

 

The most common type of artificial neural network consists of three groups, or 

layers, of units. The input layer is connected to a hidden layer, which is connected to 

output layer. The behavior of the input units represents the unrefined information that is 

conveyed into the network. The activity of each hidden unit is determined by the 

activities of the input units and the weights on the connections between the input and the 

hidden units. The behavior of the output units depends on the activity of the hidden units 

and the weights between the hidden and output units.  

To train a neural network to perform some task, we must adjust the weights of 

each unit in such a way that the error between the desired output and the actual output is 

reduced. During this training process, the neural network should calculate how the error 

changes as each weight is increased or decreased slightly according to some algorithm. 
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The back propagation algorithm using the gradient descent least square minimization 

method is the most widely used algorithm for determining weight updates. The back-

propagation algorithm can compute these error corrections, although the rate of learning 

may be too slow in some applications. The algorithm computes each weight correction 

by first computing the rate at which the error changes as the activity level of a unit is 

changed. For output units, this rate is simply the difference between the actual and the 

desired output. To compute the rate for a hidden unit in the layer just before the output 

layer, we first identify all the weights between that hidden unit and the output units to 

which it is connected. We then multiply those weights by the rates of those output units 

and add the products. This sum equals the rate for the chosen hidden unit. After 

calculating all the rates in the hidden layer just before the output layer, we can compute 

in like fashion the rates for other layers, moving from layer to layer in a direction 

opposite to the way activities propagate through the network. This is what gives back 

propagation its name. Once the rate at which the error changes as the activity level of a 

unit is changed has been computed for a unit, it is straight forward to compute the error 

weight for each incoming connection of the unit. The error weight is the product of the 

error rate and the activity through the incoming connection. For non-linear units, the 

back-propagation algorithm includes an extra step. Before back propagating, this error 

rate must be converted into the rate at which the error changes as the total input received 

by a unit is changed. It is not difficult to prove that the back propagation algorithm is 

simply an implementation of the method of gradients for nonlinear optimization. The 

speed of convergence is one issue, and the accuracy of convergence is a second 
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important issue affecting the suitability of a given ANN to a particular problem. No 

global claims can be model and these issues unfortunately must be addressed anew in 

each application. 

Artificial neural network are used for such applications as pattern recognition 

and process control. ANN can in principle perform a host of adjustment functions in 

aircraft including many in the field of adaptive control. Neural networks may be able to 

deal with some system failures by learning a new input/output behavior. In most of these 

applications feedforward network with backpropagation algorithm has been used even 

though their defect like slow convergence rate.4,15. Difficult issues associated with 

controllability and rate of learning may exist in there problems, and every significant 

application requires a systematic effort to validate the feasibility of the ANN 

implementation. Also of significance, if the architecture is fixed apriori, then a given 

ANN may be “destined to fail” even with optimal training, but this can only be inferred 

after an unsuccessful attempt to train the ANN in a given application. The severity of 

these problems motivates further research, toward ANNs for which the architecture itself 

is adaptive. The ultimate purpose of this research is to develop a new adaptive control 

approach for aircraft with nonlinear actuations such as SJA’s based on the use of 

artificial neural network. This controller is based on the inverse dynamics determination 

of the mathematical models taking advantage of the neural networks on-line learning 

capability.25,26  

 

Introduction to Radial Basis Neural Network 

Owing to their good globalization properties, Radial Basis Function Networks 
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have been broadly used for function approximation and for applying controls. Radial 

Basis Function Networks (figure 4.2) consist of an input layer, one hidden layer, and an 

output layer. Gaussian function RBF networks have a hidden layer of basis functions 

each of which has a response that is radially symmetric and it performs a nonlinear 

transform on inputs. The output layer completes the model by linearly combining the 

locally dominant function to get the global input/output representation of the 

measurements. The great advantage of RBF networks is that the learning algorithm 

includes the solution of a linear problem, and is therefore fast (Chris, 1991). Additional 

features needed to compute the algorithm including the particular learning rule used to 

adjust the parameter. Gaussian radial basis functions are 
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                     (6)           

where xα�  are centers of Gaussian function, we take the ασ as the root mean square 

distance between a hidden neuron center and the center of its N nearest neighbors and 
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Aα  are weights of the parameters. Location of the centers of the receptive fields is the 

crucial issue in RBFN performance. Note 1−Σ in eqn(6) is a positive definite matrix 

controlling  the size, shape, and orientation of the radial basis function. In the simplest 

case, 1 2 2
1 2

1
( , , )ndig Iσ σ

σ
− − −Σ = =� [ Therefore type of ( )R xα � , ασ  and center location 

xα�  must be carefully chosen.  

The RBFN provide a highly promising interpolation approach to deal with 

irregularly positioned data points. Compared to the traditional Multilayer Feed-forward 

Network (MFN), RBFN has the following advantages; Good generalization ability, 

simple topological structure (RBFNs have the ability to reveal how learning proceeds in 

an explicit manner), fast convergence rate easily augmented by additional basis 

functions and insensitivity to the local minimum. The fact that these functions’ 

arguments are the input variable, and that dominates near its center, the parameters of 

this network allow important heuristic or physical interpretations. 

 

 

Figure 4.2 Radial basis neural network architecture 
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The spatially localized network controller (RBF method) can provide a better 

tracking performance than tradition ANNs and exhibit the potential for on-line 

application of learning control systems. Localization permits local learning methods with 

redeviced dimensionality.  

A stable weight adjustment can be derived and utilized by the neural network 

controller. However, only the weight adjustment results in inaccurate centers and widths 

which make deterioration of the performance especially in the time-varying system. 

Recently, fully tuned RBFN begins to exhibit their great potential for accurate 

approximation and identification. In fully tuned RBFN, not only the weights of the 

output layer, but also the other parameters of the network are updated so that the local 

nonlinearities of the dynamic system can be captured as quickly as possible with a small 

number of basis functions. In contrast to traditional ANN’s the architecture of the 

network, the number of nodes, the location of the nodes, and especially the shape of the 

basis functions and adapted to best represent the given system’s input/output behavior. 

This is in contrast to merely adaptively weights in a fixed architecture with basis 

function whose shape and location may have little bearing upon the local behavior of the 

procedure at hand. In determining the proper number of hidden neurons for a given 

problem, the approach of RAN (Resource Allocating Network), RANEKF (Resource 

Allocating Network using Extended Kalman Filter to calculate parameters), MRAN 

(Minimal RAN) was introduced.14,27  

A most important issue in real time application is that whatever adaptation 

algorithm is ultimately employed to adjust the parameters in a neural network, it must 
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ensure stability of the controlled process. Therefore the control structure designed and 

the parameter tuning rules adopted must meet the requirement of the stability and 

convergence for the overall system.14,28 
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CHAPTER V    

DEVELOPMENTS IN NEURAL NETWORK LEARNING THEORY 

AND IMPLEMENTATION OF THE ALGORITHMS 

 

Gradient-descent Based Backpropagation Solution 

In this section we introduce the MNN (Multilayer Feedforward Networks) prior 

to discussing our proposed the RBFN. One of the popular algorithms of MNN is 

standard back propagation approach using the gradient descent idea and generalization 

of the Least Mean Squares (LMS) algorithm. The backpropagation algorithm is a 

supervised learning method for MNN networks typically employed with the sigmoidal 

activation transfer functions. The goal is to find a good input-output mapping by traning 

weights of the hidden units. When a new data is supplied to a network, the network 

provides a mapping to the output layer by using the actual input/output structure of the 

training set. There are many variations of the back propagation algorithm. The 

distinguishing feature of these learning algorithms is that all are based on recursive 

minimization of the error between the network output and the training data. The main 

idea is to establish a mapping between input vectors and the corresponding target output 

vectors to train a network until it can adequately approximate the nonlinear mapping 

function. There are generally four steps in the training process, as discussed below. 

The main difference between MNNs with error back propagation and our radial 

basis function network is described in Table 5.1. However a goal we pursue is to 

determine which neural network algorithm can give the minimum least squared error so 
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that we can anticipate valid model-based controls. Figure 5.1 show the simple flow chart 

of MNN algorithm 

For SJA wings, depending upon the configuration, there are many possibilities 

that can be selected control variables or state variable, frequency, Angle of Attack(α ), 

derivative of AOA( α� ), Slot width, Mach Number etc. To get a precise pressure 

distribution, we need the force balance with variation of possible all kinds of control and 

state parameters. As of now, the data available are the aerodynamic force coefficients 

with AOA(α ), SJA frequency(ω ) and mach number(M). The networks must capture the 

output aerodynamics forces on all state and control variables. Thus we only simulate 

with how much neural network can decrease the error as these parameters are varied. 

There follows the estimated lift coefficient estimate using back propagation algorithm 

essentially, the method of gradients.   

 

 

 

Figure 5.1 Training steps in neural network  
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Table 5.1 Comparison between RBFN and MNN 
 

RBFN��MNN 

RBFN MNN 

Single hidden layer Single or multiple hidden layer 

Non-linear hidden layer,  

linear output layer 

Non-linear hidden layer, 

Nonlinear linear output layer 

Argument of hidden units: 

Euclidean norm 

Argument of hidden units: 

Scalar product 

Universal approximation property Universal approximation property 

local approximator Global approximator 

localized learning   Global learning 

adaptive basis function   Fixed basis function 

 

 

 

 

Figure 5.2 Description of gradient descent algorithm  
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Let us first look at the short description of gradient descent which is the main 

algorithm of backpropagation first. Figure 5.2 and 5.3 show simple geometrical 

descriptions of the whole backpropagation algorithm. 

We desired to train a MNN network by gradient descent to approximate an 

unknown function, based on some training data consisting of pairs (x,t). The vector x 

represents inputs to the network, and the vector t represents the corresponding desired 

output target. We will describe how to compute the gradient for just a single training 

pattern.  

We need to minimize the error function E using parameter w which is weight 

vector in neural network.  

( )( 1) ( ) | t

E
t t α ∂+ = −

∂ ww w
w

                     (7) 

( ) 2 ( )t tα= + − Tw x x w                        

The Learning algorithm is composed of three steps. Firstly we need to define the error 

criterion of the function E followed by the evaluation of E with respect to parameters w. 

Finally parameters w are adjusted according to derivatives. 

1
1

( ,..., )
P

p c
p

E E y y
=

=�                      (8) 

In the batch algorithm p will be omitted. 

Assuming that we are using sum squared error for the output unit error E defined by  

                              2
0 0

0

1
( )

2
E t z= −�                        (9)   

For the online algorithm (figure 5.4) the a is defined as  



Y7a

( ) ( ) ( 1)l l l
i ij j

j

−=�a w z                       (10) 

 

Figure 5.3 Architecture of online neural network in error backpropagation 

 

 

Figure 5.4 Output units for the neural network 

 

To apply the Gradient descent algorithm let us evaluate the value of the  
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For hidden units, as we see from the figure 5.5 

 

Figure 5.5 Hidden units of the neural network 
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Figure 5.6 Lift coefficient approximation with back propagation algorithm 
 
 
 

 
Figure 5.7 Error convergence rate of lift coefficient  
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Figure 5.8 Drag coefficient approximation with back propagation algorithm 

 

 

 
Figure 5.9 Error convergence rate of drag coefficient 
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Figure 5.10 Moment coefficient approximation with backpropagation algorithm 

 

 

Figure 5.11 Error convergence rate of moment coefficient  
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Table 5.2 Properties of aerodynamic coefficient approximation with  

backpropagation algorithm 

 

Force LC  DC  MC  

Force Sum 139.09 42.8070 16.1550 

Errors Sum 0.00868(0.0062%) 0.0294(0.069%) 0.3316(2.01%) 

Mean Errors 0.0433 0.0190 0.0221 

# of epoch 247 500 227 

Learning rate 0.01 0.03 0.05 

 

Figure 5.6 through 5.11 display the simulation results of lift, drag, and moment 

coefficient with the error backpropagation algorithm using the SJA data. From the table 

5.2, we can recognize that in all cases it takes several hundred of iterations to converge 

to the error goal which shows the typical slow convergence rate of backpropagation for 

SJA. Especially, for the drag coefficient convergence is even slower rate than other 

coefficients. The error goal is set to 0.001 for all cases. 

 

Forward Selection with Regularized Orthogonal Least Square (FS-ROLS) Method 

for Implementing RBFN (Mark 1996) 

The neural network algorithm with the radial basis function is a candidate for 

SJA wing data fitting. In this section we evaluate a modification of this concept by 

adding new subset (which is Gaussian) to the design matrix where the error is biggest 
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until finding the best center. These modifications are motivated by problem noted in the 

literature (Mark 1996). In more detail, these four algorithms are combined; forward 

selection, orthogonal least squares, regularization (using a regularization parameter λ ), 

these last two methods are to avoid the over-fitting and poor generalization. Finally 

generalized cross validation is used for choosing the best variance. Over-fitting occurs 

when the error variance becomes too large, and the model fits the noise in the training 

data and hence captures the underlying function poorly (Irwin, 1995). The motivation of 

selecting regularization is from the fact that it is connected to the minimal variance 

estimation with apriori estimates. If λ  (regularization parameter) is not zero then it 

tends to “damp” oscillations in convergence by giving some weight to the previous 

estimate as a “measurement”. 

 Regularization involves redefining the model cost function by adding a 

constraint to the MSE to produced a new criteria the regularization parameter, λ , and this 

has to be chosen a priori or estimated from the data. Another way of avoiding over-

fitting is using a smaller number of centers than the data point by selecting the center 

column from the full design matrix. Orthogonalization algorithm is adopted because it 

can speed up the computations. Orthogonalization Least Squares (OLS) method has 

superior numerical characteristics compared with the regular Least Squares. And these 

properties can be used to the Forward Selection for choosing the regressor (H matrix). 

The efficiency of the orthogonalization scheme in this manner can be observed in 

relative ease of computing of the eqn(37) over eqn(30).  

This FS-ROLS method has several advantages over other RBFN algorithms. 
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Like Resource Allocating Network (RAN) algorithm, it uses output value as well as 

input vector and attempt to find the center location which is the most suitable for the 

system. It also can search a discrete space as well as continuous regime. In FS-ROLS 

centers are fixed but there is a procedure of selection which centers should be included 

in the RBFN while centers are adapted in the RAN. FS-ROLS has only one preset 

parameter of RBF width, and can be adapted in the on line as well as in the batch model 

where as while RAN can be used only in on-line process. We also model the same data 

using RAN with the Extended Kalman Filter algorithm (EKF) for evaluate the relative 

merits.  

Initially, there are no additional radial basis functions permitted in the design 

matrix F (F is initial full design matrix with all data points); we find the maximum error 

which can be attached to empty subset. Now we introduce new radial basis function one 

by one choosing their location based upon the error matrix. Suppose that we want to 

estimate the function y with H matrix from the Radial Basis Function design.  

1

( ) ( )
m

j j
j

y f w h
=

= =�x x                           (14) 

We can rewrite this with vector form of  

y = Hw + e                          (15)   

where the regressors 1{ (.)}m
jh , coefficients 1{ }m

jw and H is general design matrix (this is 

full design matrix and denoted by F( p m× )), y= 1p × matrix. 

E λ= +T Te e w w                        (16) 

vector e is p unknown error and E is the error matrix. Choosing the first subset column 
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Jf  where the sum squared error is biggest from the maximum error column J of initial 

design matrix F (full design matrix).  

1

ˆ( ) ( )
m

T
i j j i i

j

f x w h x h
=

= =� w                   (17) 

where ( ) ( )j
j

j

h
r

φ=
x - c

x
� � k

 

                     1 2ˆ ˆ ˆ ˆ ˆ[ , ,..., ]T T T T
ph w h w h w= = -1 Tf Hw = HA H y                    (18) 

where 1 1− −TA = (H H)  and we call this to variance matrix in the case of without 

regularization, in that TE = e e . 

ˆ ˆ ˆ ˆ ˆ- = -1 T -1 T
py f y - HA H y = (I - HA H )y = Py              (19)              

.where -1 T
pI - HA H = P  We call this P matrix as a projection matrix. 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ(S = T T T 2y- f)(y- f) = y P P y = y P y                (20) 

Adding a new basis function, the ( 1)thm + , to a model which already has m basis 

function  

1 1[ ],m m m+ +=H H h                             (21) 

where 1 1 1 1 2 1[ ( ), ( ),..., ( )]T
m m m m ph h h+ + + +=h x x x .  

The new variance matrix is -1
m+1A  with regularization. 
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Let us utilize the below inverse of partitioned matrix law. 

� 	

 �
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-1 11 11 12 21 11 11 12

-1 -1 -1
21 11

A + A A � A A -A A �
A =

-� A A �
              (23) 

where -1
22 21 11 12� = A - A A A . 

Applying the formula for the inverse of a partitioned matrix yields 
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1
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-1 T -1 T-1
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A H h A H hA 0 1A = +
+ h P h0 0 - 1 - 1

   (24) 

where P is the projection matrix and m p m m m= -1 TP I - H A H  

1 1 1 1

1 1

1 1

m p m m m

m m m m
m

m m m mλ

+ + + +

+ +

+ + +

-1 T

T

T
1

P = I - H A H

P h h P
= P -

+ h P h

                    (25) 

Using this relationships, after attaching Jf th column ( 1mh + ) design matrix is changed 

to 1m m+ JH = [H f ] . Projection matrix is changed for appended subset matrix Jf   

1
m m

m
m

m λ+

T
J J

T
J J

P f f P
P = -

+ f P f
P                   (26) 

where mP  is a projection matrix and { } 1

M
J J

f
= is the columns of the design matrix. 

From the result of the least squares, an optimal weight vector can be determined. 
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                       ˆ ˆ ˆT T TH y = H f + �w = (H H + �)w                  (27) 

where 1ˆ ˆT T
m m m

−
mw = (H H + �) H y .  And the minimized energy is  

                             ( )i T T T
m m m mE λ= + =e e w w y P y                          (28) 

where 1( )T T
m p m m mλ −= − +P I H H H I H .  

To select the best column from F, we select the criteria of ( ) ( ) , 1i j
m mE E j p≤ ≤ ≤                         

which is equivalent to selecting if  to maximize 

2
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y P f
f P f

                     (29) 

Once the best column is chosen from amongst the 1{ }p
if  it is appended to the previously 

chosen columns to become mh , the last column of mH .  

When we consider an orthogonalization, H (design matrix) can be factored into 

                               m m mH = H U�                           (30) 

where 1 2[ , ,.... ]m mh h h=H � � � , upper triangular matrix=U . The regression problem is  

formed as  

                              m m my = H w + e� �                          (31) 

where m m mw = U w� p At the m-th step is augmented by a new column of 

                             1 1[ ],m m m+ +=H H h� � �                       (32) 

Minimized energy is expressed as  

                               ( )i T T T
m m m mE λ= + =e e w w y P y�� �                    (33) 
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As we derived the weight vector, orthogonalized variance matrix A with regularization 

parameter λ  becomes  
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The projection matrix after the regularization changes to 
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We can find the orthogonalized sum squared error from the new design matrix attached 

J-th column as  

                 1

ˆˆ ˆ ˆ ˆm m m mS S
λ

λ λ+ +− =
T 2 T

T 2 2 J J J
1 T T

J J J J

(y f ) 2 + f f
y (P - P )y =

+ f f + f f

� � �

� � � �
            (36) 

Next we get the maximum error column to append the design matrix continuously until 

the certain error goal met, as we mentioned above, ( ) ( ) , 1i J
m mE E J p≤ ≤ ≤� � .   

The optimum if�  is the one which maximizes  

                            
2

( )
1

( )
.

T
i i

m m T
i i

E E
λ− − =

+
y f

f f

�
� �

� �
                     (37) 

So far we discuss about how to select the suitable centers for RBFN. To halt the 
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selection we need some criteria like a threshold. As a candidate criterion we introduce 

the Generalized Cross Validation. We define the criteria of selection variance by  

                         2 ( ) 2

1

1
( ( ) )

p
i

m i i
i

f x y
p

σ
=

= −�                      (38) 

Good generalization performance is determined by the point at which this measure 

reaches a minimum.29,30 It can be derived analytically (Golub et al 1979) as 

                        2 1 21
( ( ))m mdiag

p
σ −= P P y� �� �                   (39) 

In FS-ROLS product of ( )mdiag P�  and mP y�  is equivalent to a mere element by 

element division of two p-dimensional vectors. Therefore Generalized Cross Validation 

is given 

                       
2

2
2

1
((1/ ) ( ))m

m
GCV

mp p trace
σ =

P y
P

�� �

�
                    (40) 

GCV is certainly good criteria for avoiding overfit but using regularization as well can 

more decrease the likelihood of overfit. To get the good � value, we can automatically 

calculate from the above GCV criteria (see Appendix A).   

This learning algorithm is applied and simulated to the SJA wing data and it 

results in a significant improvement in the error convergence rate when we compare to 

the backpropagation algorithm and least linear squares. After few hidden units are 

added all the coefficients are converged within the error criteria. Mean Error of the all 

observation points are reasonably small which is desirable value. In figure 5.12 through 

5.23, the lift, drag and moment coefficient are estimated with FS-ROLS algorithm and 

table 5.3 introduce errors and number of hidden units for all cases. 167 training set with 
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random noise and 167 test pattern used for learning.  

 

Figure 5.12 Lift coefficient approximation with FS-ROLS and true data points 

 

Figure 5.13 Error convergence of lift coefficient in FS-ROLS 
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Figure 5.14 Estimated and true surface of lift coefficient 

 

 
Figure 5.15 Estimated contour of lift coefficient 
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Figure 5.16 Drag coefficient approximation with FS-ROLS and true data points 

 

 

Figure 5.17 Error convergence of drag coefficient in FS-ROLS 
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Figure 5.18 Estimated and true surface of drag coefficient 

 

 

Figure 5.19 Estimated contour of drag coefficient 
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Figure 5.20 Moment coefficient approximation with FS-ROLS and true data points 

 

 

Figure 5.21 Error convergence of moment coefficient in FS-ROLS  
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Figure 5.22 Estimated and true surface of moment coefficient 

 

 

Figure 5.23 Estimated contour of moment coefficient 
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Table 5.3 Errors and number of hidden units in FS-ROLS  

 

Force 
LC  DC  MC  

Force Sum 139.09 42.8070 16.1550 

Errors Sum  0.0135(0.0097%) 0.0114(0.026%) 0.0091(0.056%) 

Mean Errors  0.0084 0.0047 -3.1425× 410−  

# of hidden Unit 14 15 18 

 

With updated pitch moment data which means more pressure taps in tail part of 

the wing (originally 32 pressure taps in SJA) in the range of angle of attack from 17 to 

27 degree, we can get faster convergence rate than previous data as we observe from the 

figure 5.24-5.28. This is pitch moment only.  

 

Figure 5.24 Updated pitch moment approximation with FS-ROLS 
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Figure 5.25 Error convergence of updated pitch moment in FS-ROLS 

 

 

Figure 5.26 Estimated and true surface of updated pitch moment 
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Figure 5.27 Estimated contour of updated pitch moment 

 

 

Figure 5.28 Updated pitch moment versus � 
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Resource Allocating Neural Network with Extended Kalman Filters (RAN-EKF) 

 The sequential function estimation problem is how we combine given prior 

estimate ( 1)nf −  and new observation ( )nI  in obtaining the posterior estimate ( )nf .  As 

one of the sequential learning method, RAN was developed which is by allocating new 

resources learning could be achieved in polynomial time.  

The RAN is a single hidden layer network whose output response to an input pattern is a 

linear combination of the hidden unit responses.   

                               0
1

( ) ( )
K

k k
k

f α α φ
=

= +�n nx x                         (41) 

where ( )kφ nx  are the responses of the hidden units to an input x, K is number of hidden 

neurons and 0 0yα =  is an initial condition. The RAN hidden unit responses are given 

by 
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For each input nx , we compute ( )kφ nx  from the eqn(42), then 
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If min min, ,n n nr n rmsne e and x and e eµ ε ′> − > >  then, allocate a new hidden unit with 

1 , ,k neα µ+ = =k+1 nx and 1kσ κ µ+ = −n nrx                 (44) 



}�~

When the observation ( , )n nyx  does not satisfy the criteria, the LMS algorithm is used 

to adapt the network parameters. However here we will use the EKF instead of LMS for 

updating the parameters. Given parameter vector w, the EKF algorithm provides the 

posterior estimate n( )w  from its prior error covariance estimate -1n( )w  and its prior 

error covariance estimate -1nP . 
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where nk  is the Kalman gain matrix, na  is the gradient vector and nR  is the variance 

of the measurement noise. 

We compute the outputs of all hidden units , ( 1,..., )n
k k Kσ = and find the largest absolute 

hidden unit output value max
nσ . Next, calculate the normalized value for each hidden 

unit 
max

, ( 1,... )
n

n k
k nr k K

σ
σ

= = . If n
kr <δ  for M consecutive observations, then prune the 

thk  hidden neurons reduce the dimensionality of nP  to fit for the requirement of EKF.  
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The output of hidden units is  
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The network parameters to be adjusted are included in 0 1 1 1[ , , , , , , , ]T T T
k k kα α µ σ α µ σ=w � .  

nP  is updated by eqn(45). When a new hidden unit is allocated, the dimensionality of 

nP  increased by 

                            1

0

n
n p

−� �
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� �

P O
P

O I
                          (48) 

and 0p is an estimate of the uncertainty in the initial values as signed to the parameters 

and   initializes the new rows and columns. The dimension of the matrix I is equal to 

the number of new parameters. 

 This RAN-EKF learning algorithm is implemented and simulated for the SJA 

wing data. From the results, we can observe the decrease of errors and faster 

convergence rate than backpropagation (MNN) but, it is obviously slower than FS-

ROLS algorithm. In figure 5.29-37, the lift, drag and moment coefficient are displayed 

with RAN algorithm. 167 training set with random noise and test pattern used for 

learning. The parameter values selected in this experiment is shown in table 5.4. Slight 

changes of these parameters affect much in the each convergence rate. Therefore we 

have to choose these parameters carefully. As we observe from the table 5.5, the number 

of hidden units in RAN-EKF is over 100 in for all force coefficients which is much more 

than FS-ROLS. In figure 5.38-40, updated pitch moment data with RAN algorithm is 

performed in a range of angle of attack from 17 to 27 degree. Same as FS-ROLS 

algorithm simulation in section 5.3 we also get a better approximation result than 
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previous pitch moment data.  

Table 5.4 Tuning Parameters of RAN-EKF 

 

 maxε  minε  mine  rmsee  κ  δ  

LC  1 0.002 0.02 0.15 0.5 0.05 

DC  1 0.02 0.02 0.01 0.3 0.05 

MC  0.5 0.002 0.01 0.015 0.03 0.005 

 

Table 5.5 Errors and number of hidden units in RAN-EKF algorithm 

 

Force LC  DC  MC  

Force Sum 139.09 42.8070 16.1550 

Errors Sum  0.057(0.041%) 0.0133(0.031%) 0.0646(0.39%) 

Mean error 0.0835 0.0064 46.15 10−− ×  

# of hidden Unit 111 120 137 

 

Table 5.6 Comparison between FS-ROLS and RAN-EKF algorithm  

in the updated pitch moment simulation 
 

MC  FS-ROLS RAN-EKF 

Errors Sum 0.0012% 0.036% 

Mean error 0.0019 0.0058 

# of hidden Unit 6 50 
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Figure 5.29 Error convergence of lift coefficient in RAN-EKF 

 

 
 

Figure 5.30 Estimated and true surface of lift coefficient 
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Figure 5.31 Estimated contour of lift coefficient  

 

 

Figure 5.32 Error convergence of drag coefficient in RAN-EKF 
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Figure 5.33 Estimated and true surface of drag coefficient 

 

 

Figure 5.34 Estimated contour of drag coefficient 
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Figure 5.35 Error convergence of moment coefficient in RAN-EKF 

 

 

Figure 5.36 Estimated and true surface of moment coefficient 
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Figure 5.37 Estimated contour of moment coefficient 

 

 

Figure 5.38 Error convergence of updated pitch moment in RAN-EKF 
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Figure 5.39 Estimated and true surface of updated pitch moment  

 

 

Figure 5.40 Estimated contour of updated pitch moment  
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From the above results we can easily recognize that all the errors of Resource 

Allocating Neural Network are finally converged after some observations and 

convergence rate is good but not as good as that of the FS-ROLS. 

 Let us compare two of RBFN Approximation Algorithms of FS-ROLS and 

RAN. The main similarities and differences between RAN and FS-ROLS are as follows. 

FS-ROLS and RAN both use the output values as well as the input values of the training 

set to determine the center placement. While RAN involve adaptive center and 

consequently some kind of learning procedure and multiple passes through the data, FS-

ROLS has the process of heuristic center selection to determine which ones are included 

in the network. RAN has several preset parameters and thresholds which must be tuned 

to each new problem. Last, RAN searches a continuous space which grows in dimension 

as centers are added which is much better for sequential process while FS-ROLS 

heuristically searches a discrete space of different combinations of fixed centers.  

The FS-ROLS fitting error is consistently smaller than the result from the RAN-

EKF algorithm on the SJA wing test. Besides the number of hidden units in FS-ROLS 

algorithm is much smaller than for the RAN-EKF algorithm. We can also recognize FS-

ROLS leads to much less error in table 5.6 which compares these two algorithms in the 

updated moment data. These results tell us that FS-ROLS algorithm performs better than 

RAN-EKF in the applications to the model of the SJA wing. However more elaborate 

applications the network grows complex and dimensionality may decrease the accuracy 

with which estimation algorithm converge so it is difficult to generalize from these 

results. 
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CHAPTER VI    

THE NEURAL NETWORK ADAPTIVE CONTROL APPROACH 

 

 

 
 
 
 

Figure 6.1 Model reference adaptive control system structure with neural network 

 

Overview of Neural Network Adaptive control 

Neural Network Adaptive control is powerful especially for controlling highly 

uncertain nonlinear and complex systems. In the model reference adaptive inverse 

control, the adaptive algorithm receives the tracking error between the plant output and 

the reference model output and the controller parameters updated to minimize the 

tracking error (Hagan, 1999) and this approach may be affected by sensor noise and 

mA

f(x,t) 

1
smK �

� � 1
s

�

mK

�

mA

u(t) 

Plant 

mu (t) r(t) 

e(t) 

x(t) 

�

MC∆
ω

Reference Model 

Neural network controller 



���

plant disturbance.31-34 Using a neural network, an on-line model will be trained to 

receive the same inputs as the plant and to produce the same output. This controller 

scheme uses the two neural networks, one is a controller network and the other is model 

network which is trained off-line using plant measurements.26,27,35 The controller is 

trained adaptively so that the plant output can track a reference model output. One of the 

problems implementing the neural network to control scheme is that computational work 

of performing real-time control on any system with more than a few degrees of freedom 

becomes excessively high and may exceed available computational resources (Jacob 

1997). Figure 6.1 represent the block diagram of Model reference adaptive control 

system structure with neural network. 

There are two kinds of adaptive neural control designs used in recent literature. 

One is direct adaptive control approach and the other is the indirect adaptive control 

approach. In the direct adaptive control approach, Lyapunov stability theory is used for 

designing the network tuning rule. On the contrary, in the indirect adaptive control, two 

neural networks are used; one is for identifying the forward/inverse dynamics of the 

system and the other is connected in cascade with the system to be controlled and its 

parameters are updated on-line to implement a suitable control law (Sundararajan, 

Saratchandran and Li, 2002). 

The main advantage of direct adaptive control over the indirect adaptive control 

is that in the latter, there are no strict mathematical proof to guarantee the stability of the 

tracking error and the convergence of the network parameters. Also, for the direct 

approach, we need a smaller amount of information about the plant and a simpler design. 
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Specifically, bounds of the inputs are only assumed to exist, but neither to be known or 

to be estimated (Raul, 2001). This architecture employees a Gaussian RBF network to 

adaptively compensate for the system nonlinearities. To implement the RBFN, a stable 

weight adjustment mechanism is derived using Lyapunov theory. With this tuning rule 

the weights of the RBFN converge to the optimal weights gradually. Using Lyapunov 

stability theory, the derived tuning rule can guarantee the convergence of the tracking 

error and the stability of the overall system. In the feedback-error-learning strategy, the 

total control effort, u, is composed of the output of the neural controller and the output 

of the conventional feedback controller. The output of the conventional controller is 

utilized as the feedback error signal to tune the parameters of the RBFN, so it is expected 

that the output of the conventional feedback controller will tend to zero as the neural 

controller learns the appropriate control law.36 The main advantage of direct adaptive 

control scheme is that the stability of the overall system can be guaranteed provided the 

adaptive tuning law for the nonlinear system is derived based on a Lyapunov synthesis 

approach. Some useful dynamic theory to formulate adaptive control law introduced in 

the Appendix B.  

 

Nonlinear System Identification Using Lyapunov-based Fully Tuned RBFN 

Identification Strategy and System Error Dynamics    

Nonlinear dynamic system is given as  

(0) 0t t t =x( ) = f(x( ),u( )) x�                         (49) 

                      t t t tx( ) = Ax( ) + g(x( ),u( ))�                          (50) 
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                     ( t t t t tg x( ),u( )) = f(x( ),u( )) - Ax( )                      (51) 

Setting the RBF network’s inputs [ ]t tξ = T T Tx( ) ,u( ) , the problem of system 

identification can be converted into a nonlinear function approximation problem. 

Therefore Growing RBF network based system model can be written as  
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                 * *( ) , ,t µ σ ξ= + *T
hAx W �( ) + �                       (52) 

W is h n×  optimal weight matrix, �  is 1h ×  Gaussian function vector, *µ is optimal 

center and *σ  is optimal width, hereafter the approximation error h� is defined as 

                          = *T *
h� g(x,u) - W �                         (53)            

                          ,sup ( , )hx X u U x uε∈ ∈=H� � �                     (54) 

And g(.) can be approximated by growing RBF network as  

              2
2

1

1 ˆˆ ˆ ˆ ˆ ˆexp( ) , ,
ˆ

h
T
k

k k

µ σ ξ
σ=

= − =� T
kg(x,u) w � -� W �( )� �            (55) 

where Ŵ  is estimated weight matrix and µ̂ , σ̂ are estimated center and width. After 

substituting eqn(55), we can get the identification model of  

                            ˆ ˆ( ) ( )t t= + Tx Ax W �� .                       (56) 

Defining the approximation error as e=x- x̂  

                         
ˆ ˆ

ˆ ˆ= − +

*T * T
h

T T
h

e = Ae + W � - W � + �

Ae + W � W � �

�

��
                    (57) 

where ˆ ˆ, ∗= −*W = W - W � � �� � . 



���

Stable Parameter Tuning Rules 

Choose the following Lyapunov candidate function 

                       Ttr φ φT T1 1 1V = e Pe + (W W) +
2 2 2

� �� � .                 (58) 

The derivative of the Lyapunov function is given by 

           ( ) Ttr φ φ+T T T1V = e Pe + e Pe (W W) +
2

�� � �� � �� �                          (59) 

1

ˆˆ

ˆˆ( ) ( ( )

T T
h

n
T T
h i i i i

i

tr

w w w

ε φ φ φ φ

ε φ φ φ
=

= − + +

= − + + +�

T T T T

T T

1 e Qe + Pe WPe + WPe (W W) +
2

1 e Qe + Pe WPe + Pe )
2

��� � �� � �

�� � �� � �

 

where T TQ = -(P A + A P)  and A is Hurwitz. Therefore, letting iw�� , φ��  be expressed as  

                          ˆ( ) 1,...,i iw i nφ= − =Pe��                      (60) 

                               ˆφ = −WPe��                            (61) 

The derivative of V�  is  

                            T
hε= − T1V e Qe + Pe

2
� .                      (62) 

min ( ) T
Hλ ε≤ − 1V e Q e + P e

2
� � � �� � ���.              (63) 

0≤V�  if 
min

2
| ( ) |

H
aE

ε
λ

> =Pe
Q
� �

�� . Since ˆˆ ,i i iw w w φ φ φ∗ ∗= − = − ���� � �� � and 0, 0iw φ∗ ∗= =��  

                           ˆˆ ( ) 1,...,i iw i nφ= =Pe�                       (64) 

                                     ˆ ˆφ = WPe�                              (65) 
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Direct Adaptive Control Strategy and Application Using RBFN 

At this point, the adaptive tuning rules are derived using Lyapunov synthesis 

approach, which guarantee closed-loop stability. RBFN with all the parameters being 

updated can capture the system dynamics more quickly and accurately and hence more 

suitable for aircraft flight control 

Problem Formulation 

The system dynamics is presented by the form of equation (66) 

                       (0) 0t t t x =x( ) = f(x( ),u( ))�                       (66) 

Partitioning x, the dynamics can be written 

                            t t

r r

� 	 � 	

 � 
 �
� 
 � 


x f (x,u)
=

x f (x,u)
�

�
                       (67) 

The objective is to set up the neurocontroller which the plant state tx can track the 

desired state dtx  and desired control input can be expressed as  

                             d t d dtu (t) = f (x ,x )� .                       (68) 

where tf ,( 1p× ) smooth function, is the inverse function of tf , and � �= � �
T T

d dt drx x , x  

Stable Tuning Rule Using RBFN (YanLi, Narasimahan 2001) 

The Control Strategy updating rule for a fully tuned RBFN controller can be derived 

based on a feedback-error-learning scheme.  

The error dynamics are defined as 

                         d d de = x - x = f(x,u) - f(x ,u )� � �                    (69) 

       
∂ ∂

∂ ∂d d d dx ,u d d x ,u d dT T

f(x,u) f(x,u)e = | (x - x ) + O(x - x ) + | (u - u ) + O(u - u )
x u

�      (70) 
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O represents the higher order term and neglect the higher order term then, 

                          ( ) ( )t t de = A e + B (u - u )� .                      (71) 

This approximation is crucial to make the model affine in the control. 

With only the linear proportional controller u= ( )tPK e, the error dynamics is  

                       ( ( ) ( ) ( )) )t t t tP de = A e + B K e - B( u�                   (72) 

Put the RBFN controller signal together with proportional controller. 

                             ( )t= +P nnu K e u .                         (73) 

Let us look at the RBFN Approximation and Error Dynamics. Setting the RBFN’s inputs 

[= T T
d dt� x x ]� , du can be approximated by an RBFN controller through on-line learning 

                     
2

2
1

1
exp( )

h
T

k h
k kσ

∗

∗
∗

=

= +

= − +�

d nn h

*
k

u u �

w � -� �� �
                (74) 

* *, ,µ σ ξ= *T
hW �( ) + �  

h�  is bounded by a constant H�  and  

                          ,sup ( , )hx X u U x uε∈ ∈=H� � �                    (75) 

With RBFN controller control input vector u is 

                    

2
2

1

1ˆ ˆexp( ) ( )
ˆ

ˆ ˆ ( )

h
T
k

k k

T

t

t

σ=

− +

= +

� k P

P

u = w � -� K e

W � K e

� �
              (76) 

By substituting u into eqn(71), the error dynamics becomes 

               ˆ ˆ( ( ) ( ) ( )) )( )t t t t+ − −T *T *
P he = A e + B K e B( W � W � �� .         (77) 
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By defining ˆ ˆ( ) ( ) ( ) ( ), ,t t t t ∗= = −*
PJ A e + B K W = W - W � � �� �  the error dynamics 

may be written as  

                  
ˆ ˆ( ) )( ) )

ˆ ˆ( ) )( ) )

t t t

t t t

− + + −

≈ − + −

T T T
h

T T
h

e = J e B( W � W � W � B( �

J e B( W � W � B( �

� �� � �

��
            (78) 

where ˆ ˆ)( )t +T TB( W � W ���  represent the learning error tE . 

Stable Adaptive Tuning Rule for RBFN (Narasimahan, 2001) 

Let us choose the following Lyapunov candidate function 

                    T T T1 1 1V = e P(t)e + tr(W �W) + � ��
2 2 2

� � � �               (79) 

P(t) is n n×  time varying, symmetric, and positive definite matrix and � ,�  are 

h h×  nonnegative definite matrices. The derivative of V is given by 

             ( ( ) ( ) ( ) )t t t tr+ +T T T T T1V = e P e + e P e e P e (W �W) +� ��
2

� �� � � �� � � �         (80) 

                
ˆ( ) ( ) ( )

ˆ ( ) ( )

T
ht t t t t

t t tr

ε= − − −

− +

T T

T T T

1V e Q e B( )P( )e � WB P e
2

� WB P e (W �W) +� ��

� �

� �� � � � �

              (81) 

                  

1

ˆ( ) ) ( ( ) ( ) )

ˆ( )

T T T
h

p
T

i i i i i
i

t t t t

t

ε φ

=

= − − + −

+ − +�

T T

T

1 e Q e B(t) P( e WB P e + ��
2

w �B (t) P ( e w �w )

�� �

�� � �

      

where 
1
2

TQ = - (J(t) P(t) + P(t)J(t) + P(t))� . 

If we select  

                      1 ˆ ) ) 1,...,T
i i it t i nφ−= =w � B ( P ( e��                   (82) 
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                           1 ˆ )T
i it t−=� � WB ( ) P ( e��                       (83) 

then derivative of  V is  

                        ( ) T
ht t tε= − −T1V e Q e B( )P( )e

2
�                    (84) 

and this can be negative if  

                  min ( ) ( )T
H Htλ ε ε≤ − −1V e Q e P B

2
� � � �� � � .              (85) 

Since ˆˆ , , 0, 0i i i iw w w and wφ φ φ φ∗ ∗ ∗ ∗= − = − = =���� � � �� � �  

                      1 ˆˆ ) ) 1,...,T
i i it t i p−= − =w � �B ( P ( e�                  (86) 

                      1 ˆˆ )T
i it t−= −� � WB ( ) P ( e�                           (87) 

Implementation of the Tuning Rule for Dynamic Adaptive Controller (Li and 

Sundararajan, 2001, see Appendix C) 

The Gaussian function �̂  is embedded with the centers’ locations and widths. 

Combining all the adaptable parameters into a composite parameter vector, 

[ ]1 1 1ˆ ˆ ˆ ˆ ˆ ˆ, , ,..., , ,h h hχ = w � 	 w � 	  a simple updating law is derived. Firstly, the weight can 

be converted into 

1 ˆˆ ) ) 1,...,T
i i it t i pφ−= −Θ =w B ( P ( e�  

                 
ˆˆ ) )

ˆˆ ) ) 1,...,

T T T
k i i

T T
k i i k

t t

t t k h I

φ

φ

� = −

� = − = =

w B ( P ( e

w B ( P ( e �

�

�
            (88) 

ĝ = ˆ ˆTW �  is defined the output of the RBFN and ˆ k�  is the derivative of the ĝ  to the 

weight ˆ T
kw . Then weight updated form of discrete form is 
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ˆ

ˆ ˆ( 1) ( ) ) ( ) 1...
ˆ

Tn n n n n k hτ ∂+ = − =
∂

T T
k k T

k

gw w B( ) P( e
w

          (89) 

similarly the updating law rule for center and width are 

              1

ˆ
ˆ ˆ( 1) ( ) ) ( ) 1...

ˆ
T

k k T
k

n n n n n k hτη ∂+ = − =
∂

g
� � B( ) P( e

�
           (90) 

                2

ˆ
ˆ ˆ( 1) ( ) ) ( ) 1...

ˆ
T

k k T
k

n n n n n k hσ σ τη
σ
∂+ = − =

∂
g B( ) P( e         (91) 

Integrating all the parameters we can write 

             ˆ( 1) ( ) ( ) ) ( ), ( ) ( )T
nn n n n n n n gχ χ η ξ+ = − = ∇
� B( ) P( e �� �         (92) 

where η  is learning late and 1 2min( , , )η τ η η< . 

 

Evaluation of Control Error in Terms of Neural Network Learning Error 

We can rewrite the plant eqn(50) by  

                         ( )  ( , ) ( ),  0t f t t t+ = ≥x x u�                    (93) 

where x(t) is output signal , f(x,t) is unknown static nonlinear function and u(t) is input 

signal. Desired reference model is represented by following equation. 

                       ( )  ( )  ( )m m m mt t t+ =x A x K r�                      (94) 

where mx  is output reference signal ( )tr  is reference input and , m mA K >0. 

The objective of the control law is to obtain a controller which can follow the reference 

model within the limit of  

                            lim ( ) - ( )mt
t t ε

→∞
≤x x .                       (95) 

where 0ε > � Then the control law can be proposed as
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            ( )  - ( )  ( )  [ ( ),  ( )]   ( )T
m m m ft t t N t t t= + + =u A x K r x w � � .        (96) 

, m mA K , ( )tr  is chosen to get desired trajectory and �  is denoted [ , ,1] ,T
m mA K  and 

 ( )tφ is defined by [ , , ]T
fN−x r � fN is approximated using RBFN network. Let us 

define the error. 

                             ( )  ( ) -  ( )mt t t≅e x x                        (97) 

If the neural network approximation exactly presents the function f , fN =f then, the error 

equation is simply written as  

                            ( )  ( )  0mt t+ =e A e� .                       (98) 

However this is not true in real systems. The control objective, therefore, is e(t) →0 as 

t → ∞ � If we consider the neural network learning error term,  

                       ( ,  )  [ ( ),  ( )] - [ ] fN t t f t∆ ≅x w x w x, .                (99) 

Now we substitute eqn(99),(94) and (96) into eqn (93), then we get the closed loop 

system equation of  

                          ( )  )  ( ,  )mt t+ = ∆e A e( x w�                    (100) 

If we understand the neural network adaptive controller in this sense, as the learning 

error in eqn(100) goes to zero then the control error e(t) also converge to zero. Therefore 

as long as we can decrease the error enough to close 0, then we can guarantee the 

convergence of the error in control signal. We can write the learning error using RBFN 

in terms of adjusting the weight parameter.21,37 
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( , ) , , ,
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T
i i m m i i

i

f t x xφ σ µ
=

= =�x w W 
�                (101) 
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where W is weight vector with estimate value of Ŵ , 
  represent radial basis function 

and ˆ ∗= −W W W� and ˆ ∗= −
 
 
� . From this we can rewrite the error equation with 

                    
* *ˆ ˆ

ˆ ˆ  

m

m

� �= + −� �

� �≈ − +� �

e A e W
 W 


A e W
 W


�

� �

                       (102) 

Let us define a candidate Lyapunov’s function as 

               1 1
1 2

1 1 1
2 2 2

T T TT r − −� �= + +� �V e P e W � W 
 � 
� � � �             (103) 

derivative of Lyapunov’s function is 

( ) ( )1 1
2 1

1 ˆ
2

T T Tr− −� �= − + − + −
� �� �

V e Qe 
 � 
 WPe W � W Pe
� �� � � � �        (104) 

To be stable ( V� ≤ 0), we can get the following adaptation control law 

                         2
ˆ T=
 � W Pe��                               (105) 

                          1
ˆ=W � Pe
��                               (106) 

 

Derivation of the Control Law for SJA Pitch Moment (Junkins et al, 2003) 

For plant model, 

                             
( , , )M

q

qc
q C M
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α ω
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=
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                     (107) 

For reference model, 
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q C M

J

α

α ω

=

=

�

�
                    (108) 
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where,α  is the Angle of Attack, M is the Mach Number, q is the Pitch rate, q is the 

wing loading, c is the chord and J is the Moment of Inertia. Subscript r corresponds to 

the reference values. Moment coefficient can be modeled as   

                
0

( , , ) ( , , )M M M M MC M C C C C M
α ω

α ω α ω α ω= + + + .         (109) 

( , , )MC Mα ω  is the higher order term and can be approximated with radial basis 

function network as we already did in Chapter V using several algorithms. Also we can 

get the approximate coefficient of the linear terms from the linear least square results. 

Higher order terms can be expressed as  

             ( ) ( ) ( )1

1

exp
2

Th
i i T

M i h h
i

R
C w

µ µ
ε ε

−

=

� 	− −
= − + = +
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� 


�
x x

x W 
 .    (110) 

Let us define the tracking errors of the pitch dynamics.  

                          ,r q re e q qα α α= − = −                      (111) 

We can take the derivation of the errors and with the RBFN correction, closed loop error 

dynamics becomes 

                                        qe eα =�                            (112) 

             ( ) T
q M M M q q M NNe C K C e C K e Cα α ω α ω ωω ε= − − − + + +TW 
�      (113) 

where 0, 0M M M qC C K C Kα ω α ω− < >  and a NNω ω ω= + .          

The equation can be written in vector form as  

                       ˆ ˆ( )T T
m ε= + − + +x A x B W 
 W 
�                  (114) 

                
0 1

( )m
M M M qC K C C Kα α ω ω

� �
= � �− − −� �

A , 
0

MC ω

� �
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� �

B .          (115) 
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If we formulate the same Lyapunov function in Chapter VI and apply the tuning rule we 

derived Chapter VI, fourth section, we get the control law  

                 1 1 ˆ ˆT T
r M q q Mr

C K e K e Cω α α ωω ω − −= + − − −W 
 W 
 .         (116) 

For weight vector and RBFN, we have the adaptive update laws  

                         1
ˆˆ , 1,...T

i i i p= =w � 
B Px�                     (117) 

                             2
ˆ ˆ T=
 � WB Px�                          (118) 

 

Simulation Result of Neural Network Adaptive Controller with  

SJA Pitch Moment Coefficient Data 

In this simulation example, we use the model reference adaptive neural network 

control law introduced in Chapter VI. For simplification, scalar dynamic model of 

x� =f(x,t)+g(x)u+e(t) is estimated on-line using Gaussian type RBFN with inputs of angle 

of attack and SJA frequency and output of the neural approximation function with these 

inputs. In error dynamics, error is defined as between pitch moment and its reference 

models. The control input u includes SJA frequency. The reference signal is smooth and 

bounded input signal along [-1 0]. The number of hidden units is preset to 100 with a 

spread of 1. The centers are distributed uniformly between the range of AOA and SJA 

frequency. We apply only weight adapted rule to see if the on line neural network 

controller does converge. The weight vector is adjusted by above tuning rule and 

simulation time is 100s. Γ  value is 0.01. This model is successfully converged with 

RBFN controller in the simulation (figure 6.2). The final converged error is 0.0185 and 
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the measured controller output is shown in figure 6.3, which is almost linear. 

 

Figure 6.2 Tracking error 

 

Figure 6.3 Controller inputs vs. adaptive neural controller output 
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CHAPTER VII 

SUMMARY AND CONCLUSION 

 

Summary 

The main goal of this thesis has been to develop a systematic model which 

emphasizes the computational aspects of neural networks in highly nonlinear function 

approximation and set up the control law using neural networks. The underlying premise 

is that real-time learning from input-output measurements (not on parametric model 

physics based) will converge adequately for stable control on many problems. Clearly 

the ability of the neural models and update laws strongly affect the validity of this 

premise. In the approach adopted the neurocontrollers are composed of two steps. First a 

neural network is used to estimate the dynamic model (could be off-line) and then 

another network is adapted in real time to estimate the inverse dynamics of the system. 

The main focus in this thesis is the first part. We studied existing and modified the 

function approximation using several learning algorithm to adjust the SJA parameters so 

that we could see the possibility of how close we can efficiently approach real system 

model. The highly nonlinear and nonparameteric nature of the SJA modeling problem is 

well suited for using a Radial Basis Neural Network. 

We presented learning algorithms using RBFNs that allow improvement of the 

generalization performance of single linear regression estimator. In the first algorithm of 

FS-ROLS, Generalized Cross Validation is used for choosing the variance and an 

automatic tuning approach for the stabilization parameter λ  for generalization is 
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introduced. In the second algorithm of RAN-EKF the adaptation parameters include the 

centers, weights and variances; these are adapted by EKF. The advantage of the RAN 

and FS-ROLS are that they learn quickly to forms a more compact representation. The 

simulation and analysis showed that RBFN with the algorithm of FS-ROLS works better 

than RAN-EKF in the application of the SJA wing data. However both algorithms 

matches well in SJA modeling, and are much better than the algorithm without learning 

and this enhanced RBFN also showed that great results compared with ones from a 

multilayer neural network such as backpropagation. This means that RBFN has broad 

potential for modeling nonlinear dynamical systems. This RBFN approach may prove 

practical if it is combined with an adaptive controller for real time model. However, 

there remain unknown factors that could effects SJA performance by changing their 

subtle action. In particular, poor controllability near low angle of attack suggests no 

control approach can yield truly desirable result. It may be that a new, more controllable 

experimental configuration is required. As of now it is very hard to determine what are 

the shortcomings of our approach which results in poor controllability of the system. 

There should be more experiments with the SJA wing, including improved designs and 

more studies of available RBFN approaches. 

 

Conclusions 

Existing training algorithms RAN and FS-ROLS are simulated for SJA 

modeling purposes. There are several important and desirable attributes to result in good 

model learning. The method must be computationally efficient, converge fast and 
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accurately, also the approach should form a compact representation. There are several 

algorithms that may achieve these objectives, but for high dimensional problem all face 

obstacles and require more analytical computational studies. The RAN and FS-ROLS 

algorithm can find the desirable solutions in less computational time compared to other 

neural networks. These developments described in this thesis lead to a several successful 

implementation, reasonable errors and convergence rates for the SJA wing data set. If 

the dimensions of the state, control and parameter space is high then we are not 

optimistic any of the approaches studied will be practical without further refinement. 

However as presented in this thesis for up to 4 dimensioned state and control spaces, 

these methods do appear practical. As an important connection to this class of inverse 

dynamic model off-line learning algorithms, we introduce the neurocontrollers to adjust 

on line to track prescribed reference trajectories. As a consequence of the non-affine 

nature of the dependence on the control vector, linear approximation of the control 

dependence was necessary to complete the formulation. The controller type in Chapter 

VI is model reference direct adaptive controller and to compensate the nonlinearities in 

the plant radial basis function network is used. The simulation results in the Chapter VI 

tell us that the discrepancy of reference and actual plant model can be used as a signal 

for parameter adjusting law. A reasonable convergence rate is achieved. However no 

criterion was found in this work or the literature on the convergence of centers and 

variances of RBFN (Jacob, 1997). They are continuously adjusted, and as a consequence, 

the RBFN gives only local approximation. To apply these ideas to real systems, we need 

better understanding of the theoretical aspects to accept or reject the locally affine 
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control approximation. The neural network adaptive controller structure design 

combined with a pre-trained neural network can greatly increase the potential for 

applications of intelligent and reconfigurable control.  

 

Recommendations 

The recommendation for future work is that we need to develop more 

sophisticated and refined radial basis neural network approximation algorithm to 

minimize the number of Gaussian basis functions which can result much improvement in 

the previous simulation of SJA. This refined method should better manage to localize 

learning, high dimensionality and uncertainty of model. More significant, higher 

dimensional dynamical systems should be studied. 

With the aspect to adaptive control approach, validation of the control law 

derived in Chapter VI by experiment and simulations should be performed and further 

attention to other means of accommodating the case of non affine control. 
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APPENDIX  

 

A. Automatic Estimation of λ  

Using regularization as well as using Generalized Cross Validation can decrease 

the overfit more. Simple re-estimation formula which is integrated into ROLS for letting 

the data choose a value for the regularization parameter is derived (Mark J. L. Orr, 1996) 

here. 

  Let us start from the eqn(40). Differentiating eqn(40) with respect to λ  set 

the equation to zero to get the minimum value. 

                   2 ( )
( )T Tm m

m m m

trace
trace

λ λ
∂ ∂

=
∂ ∂
P y P

y P P y P y
� �

� � �               (119) 

From the eqn(36), we can substitute the mP�  value to left hand side of eqn(119) and then 

we get 
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We substitute 1( )T T
m m m m mλ λ −+w H H I w� �� �  in eqn(119) and rearrange it with respect to λ , 

to obtain 

                  
2

1

[ ( ) / ]
( ) ( )

T
m m

T T
m m m m m m

trace
trace

λλ
λ −

∂ ∂=
+

P y P y
P w H H I w

� �

� � �� �
                  (121) 

where, 2
1

( )
( )

Tm
j jm

T
j j j

trace
λ λ=

=
+�
h hP

h h

� ��

� �
 and 

2
1

3
1

( )
( )

( )

Tm
jT T

m m m m m T
j j j

λ
λ

−

=
+ =

+�
y h

w H H I w
h h

�
� �� �

� �
. 



¤7¥

Using the eqn(126), new λ  value can be evaluated after each forward selection step 

from the previous value and initial value of λ  is 0. 

 

B. Some useful dynamic theory for formulating Neural Network adaptive control 

laws.  

Dynamic Inversion 

This technique is for control law design in which feedback rule is used to 

simultaneously cancel system dynamics and achieve desired response characteristics. 

                             ( ) ( )f G= +x x x u�                         (122)                    

                            -1 -G f du = (x)( (x) + x )�                      (123) 

x is state vector and control law u( 1m× ) which yield the desired state dx� . In this way, 

dynamic inversion control law presents an attractive alternative to the system with 

complicated nonlinearities. However we need exact knowledge of f(x) and G(x) to solve 

the equation in terms of controls, and this seldom feasible in practice due to model errors. 

Feed back linearization 

Feed back linearization is one approach for nonlinear control design. The idea is 

to algebraically transform a nonlinear system dynamics into a fully or partially linear one 

so that linear control techniques can be applied. Consider the single input single output 

nonlinear systems. 
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x x
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 , ( ) ( ) ( )nx f g u= +x x ¦ 124) 
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Let the scalar control input u as 

                               
1

( )u v f
g

= −                          (125) 

We can cancel the nonlinearities and obtain an input output relation 

nx v=                              (126) 

                       ( ) ( 1)
1 2 1

n n
d nv x k e k e k e −

−= − − − −� �                   (127) 

                              ( ) ( )de x t x t= −                          (128) 

where e is tracking error. The key assumption of feedback linearization is that the system 

nonlinearities are known a priori and of course, this the key source of non-robust 

behavior is practice. 

  

C. Implementation of the Tuning rule 

Firstly, let us see the tuning rule for weight  

                
ˆˆ ( ) 1,...,

ˆ ˆˆ ˆ , 1,...,

i i

T T T
k k

w i n

w k h

φ

φ φ

= =

� = � = =

Pe

W Pe Pe
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� �
                (129) 

Since the estimate value of k̂φ  is the derivative of ˆ ()g to the weight ˆ kw  this equation 

can be converted into a discrete form. 

                    
ˆ

ˆ ˆ( 1) ( ) ( )
ˆ T
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n n n
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T T
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where n′ =n+m. 

The tuning rule for centers and width are from the eqn (65) 
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for given input � , derivative of equation (131) can be expressed like 
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To obtain the tuning rule Equation (133) can be partitioned to  
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 with column vector of n+m and then tuning rule for center is  
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Similarly a tuning rule for width can be derived. 
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 and converted to discrete form then, 
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1η , 2η  are positive scalar to be selected properly a priori. From the above equation, we 

can generalize the tuning rule. 

                       ( 1) ( ) ( ) ( ),n n n nχ χ η′ ′ ′ ′+ = + � Pe                  (140) 

where ˆ( ) ( )nn gχ ξ′ = ∇� . 
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