HIERARCHICAL MODELING OF MULTI-SCALE DYNAMICAL
SYSTEMSUSING ADAPTIVE RADIAL BASISFUNCTION NEURAL

NETWORKS: APPLICATION TO SYNTHETIC JET ACTUATOR WING

A Thesis

by
HEE EUN LEE

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2004

Major Subject: Aerospace Engineering

HIERARCHICAL MODELING OF MULTI-SCALE DYNAMICAL
SYSTEMS USING ADAPTIVE RADIAL BASISFUNCTION NEURAL

NETWORKS: APPLICATION TO SYNTHETIC JET ACTUATOR WING

A Thesis

by
HEE EUN LEE

Submitted to Texas A&M University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Approved as to style and content by

John L. Junkins Othon K. Rediniotis
(Chair of Committee) (Member)
Don R. Halverson Walter E. Haidler
(Member) (Head of Department)
May 2004

Major Subject: Aerospace Engineering

ABSTRACT

Hierarchical Modeling of Multi-scale Dynamica Systems Using Adaptive Radial Basis
Function Neural Networks: Application to Synthetic Jet Actuator Wing. (May 2004)
Hee Eun Lee, B.S., Yonsei University

Chair of Advisory Committee: Dr. John L. Junkins

To obtain a suitable mathematical model of the input-output behavior of highly
nonlinear, multi-scale, nonparametric phenomena, we introduce an adaptive radial basis
function approximation approach. We use this approach to estimate the discrepancy
between traditional model areas and the multiscale physics of systems involving
distributed sensing and technology. Radial Basis Function Networks offers the possible
approach to nonparametric multi-scale modeling for dynamical systems like the adaptive
wing with the Synthetic Jet Actuator (SJA). We use the Regularized Orthogonal Least
Square method (Mark, 1996) and the RAN-EKF (Resource Allocating Network-
Extended Kaman Filter) as a reference approach. The first part of the algorithm
determines the location of centers one by one until the error goal is met and
regularization is achieved. The second process includes an algorithm for the adaptation
of al the parameters in the Radial Basis Function Network, centers, variances (shapes)
and weights. To demonstrate the effectiveness of these algorithms, SJA wind tunnel data
are modeled using this approach. Good performance is obtained compared with

conventional neural networks like the multi layer neural network and least square

algorithm. Following this work, we establish Model Reference Adaptive Control
(MRAC) formulations using an off-line Radial Basis Function Networks (RBFN). We
introduce the adaptive control law using a RBFN. A theory that combines RBFN and
adaptive control is demonstrated through the simple numerical simulation of the SJA
wing. It is expected that these studies will provide a basis for achieving an intelligent

control structure for future active wing aircraft.

TOMY FAMILY

Vi

ACKNOWLEDGMENTS

First and foremost | am very thankful to my advisor, Professor John L. Junkins,
whose knowledge is seemingly endless, for honoring me as his student during the past
two years. He is the role model | have always wanted to be in professiona life, as well
asin persond life, because of his distinct wisdom, creativity, and warmness. He always
guided and supported me in developing my research skills and writing this thesis. | thank
Professor Othon Rediniotis and Professor Don R. Halverson, my committee members,
for advising and inspiring me to complete my thesis.

| am also grateful to my lovely family who made my dreams come true. Their
sacrifice to send me here is the most precious thing which cannot be bought.

Finally | dedicate this thesis to everyone who supported me academicaly,

mentally and financially.

vii

TABLE OF CONTENTS
Page
ABSTRACT ...ttt st b e bbbttt e bbb bt i
DEDICATION. ...ttt sttt b e bttt a e b et sbesbesaeeseeneeneas v
ACKNOWLEDGMENTS..... oottt sttt e Vi
TABLE OF CONTENTS. ...ttt sttt viii
LIST OF FIGURES........coiiiiiitisieseeeee ettt sttt ettt nnenne s iX
LIST OF TABLESottt bbbt s sbenne s Xiii
CHAPTER
I INTRODUGCTION.ciutiiiieiieriesiesie sttt see st e sse s 1
Background and MOtIVALiON.........c..cecvieereeie e 1
RESEAC ODJECLIVES......oceeiieee e e 3
TheSiS OrganiZationcceeieeeeieere e ere et ee et re e eeeree s 4
[INTRODUCTION TO THE SYNTHETIC JET ACTUATOR (SJA)..ccccicviirienne. 6
Synthetic Jet Actuation FundamentalS...........ccocveceeveerecceseese e 6
Experimental RESUILS...........oouiiiriieeee e 6
Control Block Diagram for SJA WiNgccceveeveereeieseee e s 11
[LEAST SQUARES FOR FUNCTION APPROXIMATION......ccccceviririiniinnne 12
Linear Least SQUareS WithOUL SJAoocveieeie e 12
Linear Least SQUareSWith SJAc.coiiiiiieeee e 18
IV FOUNDATIONS OF RADIAL BASISNEURAL NETWORK........c.ccceuveennee 26
What isNeural NEtWOrK?........oooiiieeee e 26
Introduction of Radial Basis Neural NetworK............ccoovereriinenenenenenene 29

V DEVELOPMENTSIN NEURAL NETWORK LEARNING THEORY AND
IMPLEMENTATION OF THE ALGORITHMoiiiiiiiiiiiececeeeee e 34

viii

CHAPTER Page
Gradient-descent Based Backpropagation SolUution............ccccceveeeneenieneene 34
Forward Selection with Regularized Orthogonal Least Squares (FS-ROLS)
Method for Implementing RBFN..........cccoiiiiiiiie e 43
Resource Allocating Neural Network with Extended Kalman Filters (RAN
o = 1) TSP 60
VI THE NEURAL NETWORK ADAPTIVE CONTROL APPROACH............... 71
Overview of Neural Network Adaptive Control...........cccceeererinneeneniinsieeneens 71
Nonlinear System Identification Using Lyapunov-based Fully Tuned RBFN
|dentification Strategy and System Error Dynamics.........ccccceeeeereeeene. 73
Stable Parameter TuniNg RUIES...........oooviiericce e 74
Direct Adaptive Control Strategy and Application Using RBFN
Problem FOrmulation ... 75
Stable Tuning Rule USING RBEN..........cooiiiiiieeeeeeee e 76
Stable Adaptive Tuning Rule for RBFNccceoveevieie e 76
Implementation of the Tuning Rule for Dynamic Adaptive Controller .79
Evaluation of Control Error in Terms of Neural Network Learning Error 80
Derivation of the Control Law for SJA Pitch Momentccocceeevieiennee. 82
Simulation Result of Neural Network Adaptive Controller with SJA Pitch
Moment COEffICIENt DaELA..........ceieriiereeieeriee e 84
VII SUMMARY AND CONCLUSIONcoociiiiinieiienieeieseeeeniesie e s sse e 86
SUMMIEIY ..ttt ettt e e s e s ab e e s b e e e sas e e e nsn e e s nnneeenneesnneennneenanes 86
CONCIUSIONS......oiiiiieieeee ettt st re b st esbeseesne s 87
RECOMMENUALIONS......cueiieeieeieiese s, 89
REFERENGCES.......ccoo ittt bbbttt ettt st bbbt 90
APPENDIX ..ttt bbbttt bbbttt e bt bt 95

LIST OF FIGURES

Page
Figure 2.1 Rendered views of upper wing half panel and assembled wing....................... 8
Figure 2.2 NACA 0015 WiNg Profil.......ccciieieiieieeieseese e eee e ae s enee e 9
Figure 2.3C, variation without SJA and C_ variation with SIA.........cccceiviiiiiie 9
Figure 2.4 Measured pressure data for each AOA wWith SJA.......cooiiiiiien e, 10
Figure 2.5 Lift and moment coefficient variation with AOA..........ccoiiririeneneee 10
Figure 2.6 Block diagram model for control approach...........ccccocvreeiiriiniininnice 11
Figure 3.1 Lift coefficient fitting of Model 1.........ccoooiiiiiiiiinee e 13
Figure 3.2 Drag coefficient fitting of Model 1 ..o 14
Figure 3.3 Moment coefficient fitting of Model 1..........cccoovieiiiniiniee e 14
Figure 3.4 Lift coefficient fitting of Model 2. 15
Figure 3.5 Drag coefficient fitting of MOdel 2.........cccoveoiinineee e 15
Figure 3.6 Moment coefficient fitting of Model 2..........cccoooiiiiiniiiie e 16
Figure 3.7 Lift coefficient fitting of Model 3. 19
Figure 3.8 Drag coefficient fitting of Model 3..........cco i 20
Figure 3.9 Moment coefficient fitting of Model 3. 20
Figure 3.10 Lift coefficient fitting of MOdel 4..........ccooieiieiiie e 21
Figure 3.11 Drag coefficient fitting of MOdel 4 ..o 21
Figure 3.12 Moment coefficient fitting of Model 4. 22
Figure 4.1 Anatomy Of neural NEIWOIK..........coceiiiiirie e 27

Figure 4.2 Radial basis neural network architeCture............ccccoeeeveeieninneene e 31

Page
Figure 5.1 Training Stepsin Neural NEWOIK...........cccvereiieereeneseese e s eee e enes 35
Figure 5.2 Description of gradient descent algorithm...........cccocveveiiiceve e 36
Figure 5.3 Architecture of online neural network in error backpropagation.................... 38
Figure 5.4 Output units of the neural NEtWOrK............cccevieeenieriece e 38
Figure 5.5 Hidden units of the neural NEtWOorK............ccceoveeeieeiicceceeeeee e 39
Figure 5.6 Lift coefficient approximation with backpropagation algorithm.................... 40
Figure 5.7 Error convergence rate of lift coefficient...........cccoveeeveviececcese e 40
Figure 5.8 Drag coefficient approximation with backpropagation algorithm.................. 41
Figure 5.9 Error convergence rate of drag COeffiCient...........ccvevvvceereevesceese e, 41
Figure 5.10 Moment coefficient approximation with backpropagation algorithm........... 42
Figure 5.11 Error convergence rate of moment coefficient..........ccccovvvevvecevieerecceseennns 42
Figure 5.12 Lift coefficient approximation with FS-ROL S and true data points............. 51
Figure 5.13 Error convergence of lift coefficient in FS-ROLS.............ccoceiiiiiininennne. 51
Figure 5.14 Estimated and true surface of lift coefficientccooveeviiiieniineiec 52
Figure 5.15 Estimated contour of lift coefficient............cooeriiiiiiiiine 52

Figure 5.16 Drag coefficient approximation with FS-ROL S and true data points........... 53

Figure 5.17 Error convergence of drag coefficient in FS-ROLS............cccoovieiirinnienne 53
Figure 5.18 Estimated and true surface of drag CoeffiCient............c.cceoerererinenienenennens 54
Figure 5.19 Estimated contour of drag COeffiCientccccoveeneriinnnine e 54

Figure 5.20 Moment coefficient approximation with FS-ROL S and true data points.....55

Figure 5.21 Error convergence of moment coefficient in FS-ROLS...........ccccceveiinennene. 55

Xi

Page
Figure 5.22 Estimated and true surface of moment coefficient...........cccceevvevveievieciennnne 56
Figure 5.23 Estimated contour of moment CoeffiCient............ccocvvcevieeiecceveece e 56
Figure 5.24 Updated pitch moment approximation with FS-ROLS..............ccccovvvvieenene 57
Figure 5.25 Error convergence of updated pitch moment in FS-ROLS.............ccccceeunee. 58
Figure 5.26 Estimated and true surface of updated pitch momentc.ccceevvervennnee. 58
Figure 5.27 Estimated contour of updated pitch moment............ccceevvieeveeieseenecie e 59
Figure 5.28 Updated pitch MOMENt VEISUSAccceiuerierierrienienieeie e 59
Figure 5.29 Error convergence of lift coefficient in RAN-EKF...........ccoooiiiiiiiininene. 64
Figure 5.30 Estimated and true surface of lift coefficientccoceieieiinininecee 64
Figure 5.31 Estimated contour of lift coefficient............coovriiiiiiicinee 65
Figure 5.32 Error convergence of drag coefficient in RAN-EKF ... 65
Figure 5.33 Estimated and true surface of drag CoeffiCient..............ccoovvverieienencneneneens 66
Figure 5.34 Estimated contour of drag COeffiCient..........ccoveiiiiiininncceee e 66
Figure 5.35 Error convergence of moment coefficient in RAN-EKF...........ccccoiinieee. 67
Figure 5.36 Estimated and true surface of moment coefficient............c.ccocveeiiicninennns 67
Figure 5.37 Estimated contour of moment coefficientcovveririeieiciese, 68
Figure 5.38 Error convergence of updated pitch moment in RAN-EKF...........cccccoeene. 68
Figure 5.39 Estimated and true surface of updated pitch momentccceevreienennne. 69
Figure 5.40 Estimated contour of updated pitch moment...........cccceceveererieneenenienene 69
Figure 6.1 Model reference adaptive control system structure with neural network 71

FIQUIre 6.2 TraCKing ©ITO........ccuviiiiieieeie et nne s 85

Figure 6.3 Controller inputs vs. adaptive neural controller output

Xii

Xiii

LIST OF TABLES
Page
Table 3.1 Errors of linear least squares without SJA effect in Model 1..........ccoeveneeee. 16
Table 3.2 Errors of linear least squares without SJA effect in Model 2...........ccccveneeee. 16
Table 3.3 The coefficients of aerodynamics coefficients vialinear least square
techNiQUE TN MOEI L........ooeiiee e 17
Table 3.4 The coefficients of aerodynamics coefficient in Model 2..........ccccceevivennnnee, 18
Table3.5 | values (nonlinear terms) INMOdEl 2.......ccoooeeveeiiceeeeceee e 18
Table 3.6 Errors of linear least squaresin Model 3..........ccccoeveeiiieenecce e, 22
Table 3.7 Errors of linear least squaresin Model 4..........ccocoeveeceieenecce e 22
Table 3.8 The coefficients of aerodynamics coefficient in Model 3..........ccccoevveiennene. 23
Table3.9 | values (nonlinear term) iN MOl 4.........coooiiiiiiiieeeee e 23
Table 3.10 The coefficients of aerodynamics coefficient in Model 4cccccveeeeneee. 24
Table 5.1 Comparison between RBFN and MNN...........ccooivriirii e 36
Table 5.2 Properties of aerodynamic coefficient approximation with backpropagation
= [0 [0 11 1 o PSRRI 43
Table 5.3 Errors and number of hidden unitsin FS-ROLS algorithm............cccccoeeenennee. 57
Table 5.4 Tuning parameters of RAN-EKF..........oo e 63
Table 5.5 Errors and number of hidden unitsin RAN EKF algorithm...........cccccoecvennee. 63

Table 5.6 Comparison between RS-ROL S and RAN-EKF agorithm in the updated
PItCh MOMENt SIMUIBLIONco.eeiieiieie e e 63

CHAPTER I

INTRODUCTION

Background and Motivation
The desire to achieve multi-scale autonomous, intelligent, shape controllable
aircraft has been attempted in many ways throughout the years. The difficult-to-model
nonlinear relationship of distributed actuator commands of the resulting aerodynamics
lies at the heart of the difficulties.'” One possible approach is to use an adaptive neural
network algorithm to model such systems, especially nonparametric and highly

nonlinear behavior like that of the SJA wing.

The dynamic properties of the system to be controlled can be developed to
design automatic control systems. We need to overcome the problem of the nonlinear
dynamics and the uncertainties provoked by differences between desired and actual
dynamic models.® If model parameters vary during the system operation and the system
is modified its behavior in the presence of higher degree of uncertainty, this is said to be
an adaptive structure. Reconfigurability of the controlled system is achieved if it can
adapt to the system failures such as sensor or actuation failures in near real time- to rely
on a subset of the sensors and actuators. Since it determines future performance, the
adaptive controller behavior is continuous with the effectiveness of the function

approximator of choice.’

Journal model is Journal of Guidance, Control and Dynamics.

Neural networks in principle enable reconfigurablity, robustness, and adaptation
in that it can learn in any mode to deal with the high multidimensionality and nonlinear
behaviors. Furthermore they can approximate arbitrary continuous nonlinear function
with any errors. While neural networks enable a high degree of feasibility, many difficult
issue arise, associated with learning sets, controllability, observability and stability.>"'

There have been several methods introduced to achieve converged input/output
representation using neural networks. The distinguishing features of adaptation
mentioned above in neural networks make them an appealing approach for nonlinear
control.”!! It has been shown (Hornik, et al.,1989) that any densely measured function of
practicable interest can be approximated precisely with a neural network having enough
neurons, at least one hidden layer and an appropriate set of weights.”'> However, the
efficiency of this approach, as regards the number of free parameters, speed of learning
and the validity of prediction using a given network remain open questions. Furthermore,
if the architecture and learning locus are fixed, its ability to represent input/output
behavior is implicitly constrained and may not work well for any given problem.13'15
There are two kinds of neural networks. One is sigmoidal neural networks which are
composed of one or more layers of sigmoidal transfer functions with a fixed shape and
another popular neural networks implement is radial-basis neural networks with radial
basis transfer functions.

Between these two neural network approaches, we will choose the method of

Radial Basis Function Network (RBFN) as a candidate best approximator. Multi-layer

perceptron networks, especially with a fixed architecture, have shown many defects like

slow convergence of weights and difficulty in modeling differential responses.'® The key
feature of the simplest type of RBFN is that the output layer is only a linear combination
of the hidden units. The RBEN therefore has much simpler weight updating procedure.'*
Furthermore, these basis functions lies in the input space and dominate locally near their
center so heuristic localization of learning is possible. Since approximation is based on a
limited number of centers, which do not have to be placed on a grid through the domain,
an RBFN with adaptive logic used to place centers appears attractive for high
dimensional nonparametric problems. Finally the shape, size, and orientation of local
RBFs can be adapted to capture on the small number of functions the major features of
the input/output behavior.'®"” However, they do not generalize local information very
well. When the large data sets are available their performance is better.

The RBFN is especially attractive in real-time approximation because we can
derive globally and locally optimal solution via simple linear optimization of the weight
parameters; and good estimates for the center locations and shape parameters can be
deriving directly from the residual errors. The computational simplicity is excellent since
only one layer is involved in supervised training; the truth results in significant

advantage compared to other Neural Network functions.

Research Objectives
The ultimate goal of this Thesis is to develop an intelligent control structure
integrating all the usual functions of flight controllers, along with learning and

adaptation. Further, we will study this approach to adaptive control with different flight

regimes to evaluate the merits of the neural network controller. We will use the neural
controller in the context of a Model Reference Adaptive Controller.'>'®" For the
Synthetic Jet Actuator, a relationship between inputs (angle of attack (AOA), actuator
frequency, slot width, Mach number etc.) and outputs (lift, drag, moment aerodynamic
forces) is not obvious and it is difficult to model with existing methods, so the neural
approximation approach is one possible choice.”’ Using the linearized aerodynamics,
even when using static measurements, integrated flight dynamic equations in SJA are
fairly well matched for the case of small angles. However, with the expanded flight
envelopes being considered for future maneuvering aircraft and for the non static case of
interest the problem dimensionality grows quickly and a priori learning strategies are
difficult to implement due to the difficulty of dynamic experiments. This means we can
expect any method to be challenged to predict the highly nonlinear input-output
behaviors at high AOA, over a range of flight conditions. For this problem we will
consider a Radial Basis Function Network as a candidate approach, with both a priori
and real-time lealrning.21 Followed by this work, as a future work, we will try to establish
a closed loop model reference adaptive control law which can apply in real time starting
with the approximation from offline RBFN modeling to achieve the final control
objective which is tracking a prescribed trajectory, angle of attack and pitching moment

using the synthetic jet actuation frequency as the control input.22'24

Thesis Organization

Five Chapters are included in the main body. In Chapter II we introduce a brief

history and foundations of the Synthetic Jet Actuation followed by its characteristic and
recent progress in Texas A&M University. Chapter III supplies the linear and nonlinear
least square fitting algorithms to compare with the efficiency of the neural network
structure and its candidate algorithm. This classical approach is also well match to the
data when the dimensions are less than three. Chanter IV and V, we will go further and
develop a general the neural network algorithms. In Chapter IV we provide the
theoretical background of the neural network and radial basis neural network for basic
foundation. Chapter V contains several algorithms and this theoretical development;
these are the algorithms we will apply to tune the radial basis neural network to adapt the
inputs in the simulations. First part is, for more insight on neural networks, we will try a
traditional sigmoidal basis functions instead of radial basis functions network algorithm
for the purpose of comparison. The second part is composed of implementation of the
two radial basis function network algorithms, Forward Selection with Regularized
Orthogonal Least Square (FS-ROLS) Neural Networks and Resource Allocating Neural
Network with Extended Kalman Filter. In this Chapter we will discuss details of the
function approximation procedure that can be applied to a wide range of nonlinear
problems. Chapter VI describes how the neural controller works when either pre-trained
or adapted on-line. This Chapter shows the model reference adaptive controller can be
used effectively in on-line learning procedure with using SJA experimental wing data
and other analytical test surfaces.

In appendices, some formulation used in the thesis will be derived and the final

section contains the reference for this Thesis.

CHAPTER 11

INTRODUCTION TO THE SYNTHETIC JET ACTUATOR (SJA)

Synthetic Jet Actuation Fundamentals

The several distinguishing features of Synthetic Jet Actuators (SJA) for control
of flow separation over lifting surfaces at high angles of attack has been a great
attraction in recent years. In particular, the ability to modify the aerodynamics lift drag
and moment, by up to 20%, has been demonstrated experimentally, as discussed in
reference. Hingeless SJA wing experimental set up has been developed in Texas A&M
Aerospace Engineering Department. The main object of SJA’s experiment is control of
all of the wing’s parameters.

Before engaging in control law development, the first order of business is to
experimentally measure the input/output behavior of the SJA airfoil, over a range of
operating conditions, mach numbers, angle of attack(AOA), and actuation inputs. Both
static (fixed AOA) and dynamic experiments have been conducted. As the test wing
profile, NACA 0015 airfoil is used for the dynamic pitch test of the synthetic jet actuator.
This model was chosen due to the ease with which the wing could be manufactured and
the available interior space for accommodating the synthetic jet actuator (SJA). The
chord length of the wing is 0.420 meters and a span of 0.430 meters. There are total 32
holes of pressure tapping, 16 for upper wings and 16 for lower wings. Figure 2.1 and 2.2

shows the profile of the wing and its specific scale.

Experimental Results (Rediniotis, 2000)

In the experiment, the wing angle of attack (AOA) is controlled by the
sinusoidal reference signal. Oscillation frequency is given by the 0.2Hz interval from
0.2Hz to 2Hz. Freestream velocity is 25m/sec. From the surface pressures, the lift and
pitching moment coefficients were calculated via integration. Static experiments results
tell us that the repeatability of the pressure measurement is achieved successfully. The
AOA of airfoil is forced to oscillate from 0° to 25° at a given frequency The
experimental data collected were the time histories of the pressure distribution on the
wing surface (at 32 locations). In recent experiment, more holes are added in the tail part
of the SJA wing surface and the region of oscillation of AOA of airfoil is increased to
from O to 30 degree. The data was also integrated to generate the time histories of the lift
coefficient and the pitching moment coefficient. Data was collected with the SJA on and
with the SJA off (i.e both with and without active flow control).

We observed that SJA showed its maximum effectiveness only in some of the
separation region. In other words, its operation extends the AOA which does not exhibit
the flow separation and so increases the maximum lift coefficient. However when the
airfoil is forced to oscillate, the AOA at which flow separation occurs becomes lower as
the AOA motion frequency increases and thus the SJA improves the aerodynamic
performance at far below at which the AOA that showed the flow separation in static
experiment (figure 2.3).

Unfortunately, for the present configuration, the various operating conditions of

SJA do not alter the lift and moment coefficients meaningfully at the lower angle of

attack (figure 2.3) such that the sufficient control authority is not obtained for the free
pivoting so as a consequence the current SJA configuration is not an effective control
actuator at small AOA. However, it is observed that the SJA modifies the aerodynamic
coefficients significantly at the high angle of attack, especially above the stall angle of
attack (when SJA is off). Therefore, we need to consider the role of the SJA under the
incursion of the wing across the high angle of attack, including in the stall region.

The variation range of center of pressure when the permissible operating
parameters (SJA frequency and slot width) are changing should be large enough to cover
the range of that for the entire angle of attack. Therefore, for the current setup, it does
not seem possible to have the good control authority for small angle of attack just by
altering the SJA operating conditions. From the recent experiment, we can know that
there are several possible approaches that can be used to achieve control using SJA
actuation. Thus we can try that the Neural Network algorithm which is non-parametric
and suitable for poorly known input/output models, where a physical parameterization is

not easily derived. Figure 2.3-2.5 show the variation of C, and C,,, for different

pitching frequencies, with and without SJA actuation. As shown especially in figure 2.3,

in SJA actuation has a significant effect on the maximum value of the dynamics C, .

]
L
1

Figure 2.1 Rendered views of upper wing half panel (left) and assembled wing

)

PITCHING ~ CENTEROF AERODYNAMIC
PIVQT GRAVITY (CG) CENTER

<—0ﬂ93—[1‘—>
NACA0015 PROFILE
THICKNESS = 0.056 m - 0152 m
SPAN =0.430 m - 0.165m

CHORD (C) = 0.420

Figure 2.2 NACA 0015 wing profile

AOA Freq.=02Hz - 1.0Hz without SJA AQA Freq.=0.2Hz - 1.0Hz with SJA

T
— 02Hz
H— 0.4Hz
— 06Hz
| — 0.8Hz
1.0Hz

Lift coefficient
Lift coefficient

(]
(]

Lift coefficient

Lift coefficient

o
[=:)

o

[=:)

o
m

o

m

o
=

o

=

02

Figure 2.3 C, variation without SJA (left) and C, variation with SJA (right)

Pressure[Pascal]

Measured pressure data for each ADA with SJA
ADD T T T T T T T T

Chord Length[m)]

Figure 2.4 Measured pressure data for each AOA with SJA

Moment coefficient

I
—=— test at 10/9
-~ test at 10/24

Lift Coefficient

0 T 10 15 20 25 30

AOAdeg]

Figure 2.5 Lift and moment coefficient variation with AOA

10

11

Control Block Diagram for SJA Wing
The control objective in SJA wing is to achieve a commanded lift and moment
by modulating the actuation frequency, slot width, Mach number and the slot opening

rate. We note that varying SJA frequency changes, for example,C,, C,, andC,, , so we
may anticipate difficulty achieving a prescribed change in C,, without experiencing
variations also in C,,andC,, . By increasing the number of actuator inputs, however,
we may be able to achieve prescribed C,,C,,and C,, variations simulation only. In

Chapter V we estimate the blanketed part in the block diagram in that actuator input
output mapping will be determined and control law is derived in Chapter VI.

Several practical challenges are present in this experiment: the flow is unsteady,
the pitch moment control authority at low angle of attack is poor, the problem is very
sensitive. All of these challenges will present and the results of this thesis represent a
first step in addressing them.

Figure 2.6 shows the block diagram of the final model for the intelligent wing.

C,.C

L> M

Aerodynamic

SJA Model

A 4

v

{) Controller

a

<
e
N p—’

Sensor

Figure 2.6 Block diagram model for control approach

12

CHAPTER III

LEAST SQUARES FOR FUNCTION APPROXIMATION

In this section result from Least Square method will be presented based upon
various approaches to fitting the SJA data. Later on we compare this result with the
neural network algorithms, to see their relative merits in input/output model accuracy

and learning ability compared to the without learning algorithm.

Linear Least Squares without SJA
Using well known linear batch least square optimal estimate equation, we can

estimate the each aerodynamics forcesC,, C,,, C,, by solving the normal equation.
ﬁ = (HTH)_l HTSI (1)
Vector H is calculated here with Angle of Attack whose range is from 0 to 25 degree and

SJA frequency and measurementsy ’s are coefficients of the aerodynamic forces from

the experiment. eqn(1) is useful, of course, for the batch estimation case in which all
data is available, as in off-line or a priori learning. First, the key issue in any curve
fitting problem, of course, is the choice of the fitting function. While we do not address
“model optimality”, we give two representative models in the present discussion. For the
linear least squares problem, the X vector is the set of coefficients linearly combine a
chosen set of basis function. In a Model 1 and 2 least squares fitting will be performed

without SJA effects. In figure 3.1-3.3, Model 1 is estimated using simple polynomials.

Model 2 is selected by trial and errors and simulated in figure 3.4-3.6

Model 1

C,(a)=a, +aa+a,d +a,a +a,a’
C,(@)=b, +ba+ba’ +ba’ +b,a'

C,(@)=c, +ca+c,a’ +c, +c,a

Model 2

C(@)=—a Aa—a,l,o’ +d,e ™ +d,e™ +ale™ +a, cos(A)
C, (@) =-b Aa—b, A&’ +be ™ +bje™™ +ble ™ +b, cos(A,x)
C, () =—c Aa—cAa” +cie ™ +cie™™ +cie™ +c, cos(A)

ST LTS SIS

lift force

Figure 3.1 Lift coefficient fitting of Model 1.

13

14

a0y Beip

ADA,

Figure 3.2 Drag coefficient fitting of Model 1.

AOA,

e

-0.02

004 fromee i
D0B fronemeeendes
D08 froemmeeniee
T[] SeSSS—_.
T[] EESHSE—
0.8

JuaLow

t fitting of Model 1.

1cien

3.3 Moment coeffi

igure

F

15

.
1
'
'
'
'
'
'
'
S
'
'
'
'
'
'
'
S
'
'
'
'
'
'
'
-
'
'
'
'
'
'
'
]
'
'
'
'
'

T
'
'
'
'
'
'
S S S| S S S

'
'
'
'
'
'
'
'
'
1

—

T
I
LA

Gty
0

Figure 3.4 Lift coefficient fitting of Model 2.

1.2
(][SES—
(][SES——

[] I

0.25 frmmmeeeee

Figure 3.5 Drag coefficient fitting of Model 2

-0.02

-0.04

-0.08

-0.058

0.1

012

014

018
=]

Figure 3.6 Moment coefficient fitting of Model 2

Table 3.1 Errors of linear least squares without SJA effect in Model 1.

16

Force Lift force Drag force Moment
Force Sum 18.2610 6.0310 -2.3690
Error Sum 0.0011(0.01%) 0.1153(0.62%) 0.0017(0.07%)

Table 3.2 Errors of linear least squares without SJA effect in Model 2.

Force Lift force Drag force Moment
Force Sum 18.2610 6.0310 -2.3690
Error Sum 0.0310 (0.5%) 0.2435(1.3%) 0.0303(1.2%)

17

Table 3.3 The coefficients of aerodynamic coefficients via linear least square

technique in Model 1.

Lift(a,,i =0...4) Drag(b,,i =0...4) Moment(c;,i =0...4)
o’ 0.000001 -0.000001 0.000003
o’ -0.0001 0.0001 -0.000007
o’ -0.0029 0.000003 -0.00002
o 0.1193 -0.0018 0.0016
Constant term 0.0108 0.1031 -0.0345

Observe, when unknowns other than linearly contained parameters (Model 1)
must be estimated, we require a nonlinear optimization algorithm to estimate the model
parameters. From the table 3.1 and 3.2, for all aerodynamic coefficient cases, the least
squares with only polynomial terms results in smaller errors than with this particular
choice of a nonlinear model. This implies when we consider the function with only AOA,
we can successfully approximate the function with linear least squares with polynomial
basis functions. However in real situation other difficulties may arise to change this
conclusion, the above simply shows for two choices (of many possible) basis functions.
There are many more variations that affect basis function choices the behavior of SJA
which show highly nonlinear characteristicc. We can observe the coefficients of
aerodynamic coefficients via linear least square technique of Model 1 in table 3.3 and

Model 2 in table 3.4. To get the A optimal estimates in table 3.5, we used the MATLAB

18

function FMINS. The function FMIN minimizes the residuals to obtain a least square fit

At -A)t

of data with a function of y = xe™" +.--+8 xe

Table 3.4 The coefficients of aerodynamic coefficients in Model 2

Lift (a; ,i =1...6) Drag (b',i=1...6) | Moment (¢;,i=1...6)
Aa 0.1084x10° -2.482x10° -2.810x10’
Ao’ 2.2810x10° -5.40029%10° -6.07601x10°
e 4.4772x10° -1.0510x10" -1.1844x10"
M -2.7425%10° 0.6431x10" 0.72487x10"
ek 0.2891x10’ -0.6896x10" -7.748x10°
cos(A,@) -2.0238x10’ 0.4769x10" 0.5370x10"

Table 3.5 A values (nonlinear term) in Model 2.

Nonlinear term A A A A, A A

value -0.025 0.0039 | 0.0015 |0.0017 |-0.0014 | 0.00069

Linear Least Squares with SJA
Let us construct two another Model 3 and 4 which include SJA’s actuation
effects. In these Models the coupling of angle of attack a and actuation frequency ® are

considered. Different from polynomial Model 3, in Model 4 nonlinear basis functions

19

are included. Model 4 are selected by trial and errors, and represent a “for example”

nonlinear model. Figure 3.7-12 show the simulation results of these models.

Model 3

’

C,(a,w)=1+aa+ad,0+dd +a,00+a, +a,d’ 0+ a,aw +a,d’ +a,@
C,(a,0)=1+ba+b,w+ba’ +b,aw+b,& +b,a’w+b,aw’ +bla’ +bw

C, (a,0)=1+cla+c,0+da’ +c,aw+c,@ +c,a’ o+ c,aw’ +ca’ +c,a

Model 4

C, (@) =dA(a+w)—dA, (0 + & +aw) - A +de ™ +ale ™ ™ +a] cos(A(a+w))
C, (@) =bA (a+ @) — b, (& + & +0w)—bAA +bje ™ +ble ™ + 1 cos(A (a+w))
C, (@) =cA(a+ @)~ A (& + & +0w) — A +cle ™™ + e+l cos(A (a+w))

150

ADA(D)

frequency(m)

Figure 3.7 Lift coefficient fitting of Model 3

20

150

20 [
AOA) frequency(m)

Figure 3.8 Drag coefficient fitting of Model 3.

20 0

AOA) frequency(m)

Figure 3.9 Moment coefficient fitting of Model 3.

21

frequency(m)

ADA(D)

Figure 3.10 Lift coefficient fitting of Model 4.

frequency(m)

=20

ACA[)

Figure 3.11 Drag coefficient fitting of Model 4.

22

E 0.1 4
015
150
AOA) e frequency(m)
Figure 3.12 Moment coefficient fitting of Model 4
Table 3.6 Errors of linear least squares in Model 3
Force Lift force Drag force Moment
Force Sum 139.09 42.8070 16.1550
Error 1.8521(1.3%) 0.0244(0.057%) 0.0144(0.08%)
Table 3.7 Errors of linear least squares in Model 4
Force Lift force Drag force Moment
Force Sum 139.09 42.8070 16.1550
Error Sum 1.1970(0.86%) 0.1297 (0.301%) 0.1099(0.67%)

Table 3.8 The coefficients of aerodynamic coefficients in Model 3

23

Lift(a/,i =0...9) Drag(b/,i =0...9) | Moment(c/,i =0...9)
w? 5.9386x10™ 7.4906x10™° 5.7227x10™°
o’ 4.2373x107 -2.9376x107 1.5307x107
aw? 3.9205x107 -6.8579x10° 7.0259x10°
o 9.8647x10° 1.1033x10° -8.3860x10”
w? -2.6234x10” 1.1097x10° -1.7507x10°
0w 2.8601x10™ 2.5128x10° 1.9104x10°
o2 0.0051 0.0015 -6.8867%10™
© 0.0015 -3.9664 %107 8.5607x10°
o 0.1315 -0.0078 0.0028
C,.C, C, -0.0106 0.1012 0.0311
Table 3.9 A values (nonlinear terms) in Model 4
Nonlinear term A A A A, A As
value -0.025 0.0039 [0.0015 |0.0017 |-0.0014 | 0.00069

To get the A values, as explained in Model 2, we used the MATLAB function of FMINS

again.

24

Table 3.10 The coefficients of aerodynamic coefficients in Model 4

Lift Coefficient Drag Coefficient | Moment Coefficient
A(a+w) -1.2586x10* 5.1885x10? -1.4139x10°
-1 (&’ + @ +aw) 8.8013x10’ -4.195%10° 1.0175x10’
-la’ 6.2835x10’ -2.965x10° 7.2501x10°
o (@+0) -5.1109%10° 2.414x10° -5.8982x10°
e e 8.2208 %10’ -3.830x10° 9.4610x10°
cos(A, (@ +) -1.3428x%10’ 6.3145x10’ -1.5483x%10°

The errors and numerical properties of the simulation result for Model 3 and 4

are shown in table 3.6-3.10. They are calculated in the same way with model 1 and 2.

Upon consideration of SJA effects, the error between the measured and assumed model

is found to be much smaller in the case of Model 3 except for the lift coefficient case

which means highly nonlinear characteristic of SJA has affected to the lift force more

than other forces in high Angle of Attack. Qualitatively, the particular nonlinear terms

related in Model 4 capture well in these experiments (less than 1% error).

As is evident, these models fit the data reasonably well however, the structure of

these models is as ad-hoc and relies upon a subjective, experimental based derivation. A

more general—purpose, adaptive modeling is needed, especially for highly nonlinear and

higher dimensioned input/output modeling problems.

The pessimistic conclusion one might draw from the above is that there are

25

infinity of comparably good curve fits that can model a given set of measurements so,
efficiency of computation and similar issues should play an important role in deciding
which is best. More importantly, one might infer that “it would be nice”, if the
approximation approach was inherently adaptive in the sense that the mathematical
structure of the approximation method was learned from the data, rather than merely
estimating values in an apriori assumed curve-fitting model. These observations

provided much of the motivation of the work in this thesis.

26

CHAPTER IV

FOUNDATIONS OF RADIAL BASIS NEURAL NETWORK

What is Neural Network?

A desire to have system of mathematical modeling and pattern inference like the
human brain motivated the invention of the artificial neural network. Somewhat
analogous to the human brain, artificial neural networks are composed of several
processing element neurons that are highly interconnected. Each neuron transforms a set
of inputs to a set of desired outputs. Artificial neural networks are typically composed of
interconnected units, the most basis unit is a single neuron which serves as a model
neurons. Each unit converts the pattern of incoming activities that it receives into a one
or more outgoing activities that it broadcasts to other units the most basis unit is a single
(Rick Robinson, 2000). Typically, a neuron multiplies each incoming signal by the
weight on the connection and adds together all these weighted inputs to get a quantity
called the total input. And for the next step, a unit neuron uses a prescribed input-output
function that transforms the total input into the outgoing signal.

The behavior of an Artificial Neural Network (ANN) depends on both the
weights and the input-output function (which is also called transfer function) that is
specified for the units.”'® To make a neural network that performs some specific task,
we must choose how the units are connected to one another, and we must set the weights
on the connections appropriately. Often an algorithm is selected to tune (train) the

weights of the network so that some given training input/output behavior is mimiced

27

adequately. The connections determine whether it is possible for one unit to influence
another. The weights specify the strength of the influence. The architecture of the neural

network is shown in figure 4.1.

Incoming neural activations X, Output activation (Yj ymultiplied by

Multiplied by individual individual connection weights(W)

connection weights(VVij) o sent to other weights
Activation (output) of neuron

Figure 4.1 Anatomy of neural network

The most common type of artificial neural network consists of three groups, or
layers, of units. The input layer is connected to a hidden layer, which is connected to
output layer. The behavior of the input units represents the unrefined information that is
conveyed into the network. The activity of each hidden unit is determined by the
activities of the input units and the weights on the connections between the input and the
hidden units. The behavior of the output units depends on the activity of the hidden units
and the weights between the hidden and output units.

To train a neural network to perform some task, we must adjust the weights of
each unit in such a way that the error between the desired output and the actual output is
reduced. During this training process, the neural network should calculate how the error

changes as each weight is increased or decreased slightly according to some algorithm.

28

The back propagation algorithm using the gradient descent least square minimization
method is the most widely used algorithm for determining weight updates. The back-
propagation algorithm can compute these error corrections, although the rate of learning
may be too slow in some applications. The algorithm computes each weight correction
by first computing the rate at which the error changes as the activity level of a unit is
changed. For output units, this rate is simply the difference between the actual and the
desired output. To compute the rate for a hidden unit in the layer just before the output
layer, we first identify all the weights between that hidden unit and the output units to
which it is connected. We then multiply those weights by the rates of those output units
and add the products. This sum equals the rate for the chosen hidden unit. After
calculating all the rates in the hidden layer just before the output layer, we can compute
in like fashion the rates for other layers, moving from layer to layer in a direction
opposite to the way activities propagate through the network. This is what gives back
propagation its name. Once the rate at which the error changes as the activity level of a
unit is changed has been computed for a unit, it is straight forward to compute the error
weight for each incoming connection of the unit. The error weight is the product of the
error rate and the activity through the incoming connection. For non-linear units, the
back-propagation algorithm includes an extra step. Before back propagating, this error
rate must be converted into the rate at which the error changes as the total input received
by a unit is changed. It is not difficult to prove that the back propagation algorithm is
simply an implementation of the method of gradients for nonlinear optimization. The

speed of convergence is one issue, and the accuracy of convergence is a second

29

important issue affecting the suitability of a given ANN to a particular problem. No
global claims can be model and these issues unfortunately must be addressed anew in
each application.

Artificial neural network are used for such applications as pattern recognition
and process control. ANN can in principle perform a host of adjustment functions in
aircraft including many in the field of adaptive control. Neural networks may be able to
deal with some system failures by learning a new input/output behavior. In most of these
applications feedforward network with backpropagation algorithm has been used even
though their defect like slow convergence rate.*'> Difficult issues associated with
controllability and rate of learning may exist in there problems, and every significant
application requires a systematic effort to validate the feasibility of the ANN
implementation. Also of significance, if the architecture is fixed apriori, then a given
ANN may be “destined to fail” even with optimal training, but this can only be inferred
after an unsuccessful attempt to train the ANN in a given application. The severity of
these problems motivates further research, toward ANNs for which the architecture itself
is adaptive. The ultimate purpose of this research is to develop a new adaptive control
approach for aircraft with nonlinear actuations such as SJA’s based on the use of
artificial neural network. This controller is based on the inverse dynamics determination
of the mathematical models taking advantage of the neural networks on-line learning
Capability.25’26

Introduction to Radial Basis Neural Network

Owing to their good globalization properties, Radial Basis Function Networks

30

have been broadly used for function approximation and for applying controls. Radial
Basis Function Networks (figure 4.2) consist of an input layer, one hidden layer, and an
output layer. Gaussian function RBF networks have a hidden layer of basis functions
each of which has a response that is radially symmetric and it performs a nonlinear
transform on inputs. The output layer completes the model by linearly combining the
locally dominant function to get the global input/output representation of the
measurements. The great advantage of RBF networks is that the learning algorithm
includes the solution of a linear problem, and is therefore fast (Chris, 1991). Additional
features needed to compute the algorithm including the particular learning rule used to

adjust the parameter. Gaussian radial basis functions are

M
fE =D A"R*(X))
a=1
R%(%) = R(Hx 5107 3)
RE@) =TI)
For the one dimensional case,
X2
R(x) =exp(———) 5)
20
For multidimensional case, we propose
"> "'x
R(x) = exp(————=—) (6)
20

where X“ are centers of Gaussian function, we take the o”as the root mean square

distance between a hidden neuron center and the center of its N nearest neighbors and

31

A% are weights of the parameters. Location of the centers of the receptive fields is the

crucial issue in RBFN performance. Note X 'in eqn(6) is a positive definite matrix

controlling the size, shape, and orientation of the radial basis function. In the simplest

n

1)
case, ¥ = dig(o; 200 =— 1 . Therefore type of R%(X), 0% and center location
o

a

x“ must be carefully chosen.

The RBFN provide a highly promising interpolation approach to deal with
irregularly positioned data points. Compared to the traditional Multilayer Feed-forward
Network (MFN), RBFN has the following advantages; Good generalization ability,
simple topological structure (RBFNs have the ability to reveal how learning proceeds in
an explicit manner), fast convergence rate easily augmented by additional basis
functions and insensitivity to the local minimum. The fact that these functions’
arguments are the input variable, and that dominates near its center, the parameters of

this network allow important heuristic or physical interpretations.

Output Unit-Linear

Supervised

RBF units-
Nonlinear

Unsupervised

Input units

Figure 4.2 Radial basis neural network architecture

32

The spatially localized network controller (RBF method) can provide a better
tracking performance than tradition ANNs and exhibit the potential for on-line
application of learning control systems. Localization permits local learning methods with
redeviced dimensionality.

A stable weight adjustment can be derived and utilized by the neural network
controller. However, only the weight adjustment results in inaccurate centers and widths
which make deterioration of the performance especially in the time-varying system.
Recently, fully tuned RBFN begins to exhibit their great potential for accurate
approximation and identification. In fully tuned RBFN, not only the weights of the
output layer, but also the other parameters of the network are updated so that the local
nonlinearities of the dynamic system can be captured as quickly as possible with a small
number of basis functions. In contrast to traditional ANN’s the architecture of the
network, the number of nodes, the location of the nodes, and especially the shape of the
basis functions and adapted to best represent the given system’s input/output behavior.
This is in contrast to merely adaptively weights in a fixed architecture with basis
function whose shape and location may have little bearing upon the local behavior of the
procedure at hand. In determining the proper number of hidden neurons for a given
problem, the approach of RAN (Resource Allocating Network), RANEKF (Resource
Allocating Network using Extended Kalman Filter to calculate parameters), MRAN
(Minimal RAN) was introduced.'*?’

A most important issue in real time application is that whatever adaptation

algorithm is ultimately employed to adjust the parameters in a neural network, it must

33

ensure stability of the controlled process. Therefore the control structure designed and

the parameter tuning rules adopted must meet the requirement of the stability and

convergence for the overall system.'**®

34

CHAPTER V
DEVELOPMENTS IN NEURAL NETWORK LEARNING THEORY

AND IMPLEMENTATION OF THE ALGORITHMS

Gradient-descent Based Backpropagation Solution

In this section we introduce the MNN (Multilayer Feedforward Networks) prior
to discussing our proposed the RBFN. One of the popular algorithms of MNN is
standard back propagation approach using the gradient descent idea and generalization
of the Least Mean Squares (LMS) algorithm. The backpropagation algorithm is a
supervised learning method for MNN networks typically employed with the sigmoidal
activation transfer functions. The goal is to find a good input-output mapping by traning
weights of the hidden units. When a new data is supplied to a network, the network
provides a mapping to the output layer by using the actual input/output structure of the
training set. There are many variations of the back propagation algorithm. The
distinguishing feature of these learning algorithms is that all are based on recursive
minimization of the error between the network output and the training data. The main
idea is to establish a mapping between input vectors and the corresponding target output
vectors to train a network until it can adequately approximate the nonlinear mapping
function. There are generally four steps in the training process, as discussed below.

The main difference between MNNs with error back propagation and our radial
basis function network is described in Table 5.1. However a goal we pursue is to

determine which neural network algorithm can give the minimum least squared error so

35

that we can anticipate valid model-based controls. Figure 5.1 show the simple flow chart
of MNN algorithm

For SJA wings, depending upon the configuration, there are many possibilities
that can be selected control variables or state variable, frequency, Angle of Attack(«),
derivative of AOA(«), Slot width, Mach Number etc. To get a precise pressure
distribution, we need the force balance with variation of possible all kinds of control and
state parameters. As of now, the data available are the aerodynamic force coefficients
with AOA(«), SJA frequency(@) and mach number(M). The networks must capture the
output aerodynamics forces on all state and control variables. Thus we only simulate
with how much neural network can decrease the error as these parameters are varied.
There follows the estimated lift coefficient estimate using back propagation algorithm

essentially, the method of gradients.

Assemble the training data » Create the network object

Stepl W (Step2
J L

A 4

Step3
Train the network

Step4 1
Simulate the network Jﬁ

response to new inputs

)

Figure 5.1 Training steps in neural network

36

Table 5.1 Comparison between RBFN and MNN

RBFN<->MNN

RBFN

MNN

Single hidden layer

Single or multiple hidden layer

Non-linear hidden layer,

linear output layer

Non-linear hidden layer,

Nonlinear linear output layer

Argument of hidden units:

Euclidean norm

Argument of hidden units:

Scalar product

Universal approximation property

Universal approximation property

local approximator

Global approximator

localized learning

Global learning

adaptive basis function

Fixed basis function

F(x)

xt+)=x(t) -

of
& |x(t)

\

T

min f(x)

X, (r+D) x,(1)

Figure 5.2 Description of gradient descent algorithm

37

Let us first look at the short description of gradient descent which is the main
algorithm of backpropagation first. Figure 5.2 and 5.3 show simple geometrical
descriptions of the whole backpropagation algorithm.

We desired to train a MNN network by gradient descent to approximate an
unknown function, based on some training data consisting of pairs (x,t). The vector x
represents inputs to the network, and the vector t represents the corresponding desired
output target. We will describe how to compute the gradient for just a single training
pattern.

We need to minimize the error function E using parameter w which is weight

vector in neural network.

E
w(t+1) = w(r) - ag—w e 7

=w(t)+20x(t—x"'W)
The Learning algorithm is composed of three steps. Firstly we need to define the error
criterion of the function E followed by the evaluation of E with respect to parameters w.

Finally parameters w are adjusted according to derivatives.
P
E=YE,(3..).) (8)
p=1

In the batch algorithm p will be omitted.

Assuming that we are using sum squared error for the output unit error E defined by
1 2
EZEZ(IO—ZO))
0

For the online algorithm (figure 5.4) the a is defined as

38

o _ 1y, (1-1)
q; _ZWU’ Z; (10)
7

Figure 5.4 Output units for the neural network

To apply the Gradient descent algorithm let us evaluate the value of the

3"
aalf” - aal::l) aalm :@(Z)Z;Z_l) (11)
W a” ow;

where the error signal 8" = 9F and
" 9a”

4

39

0E OE 9oy 9E ,
9a" 3.0 yl(l) =508 (a") (12)
4 dy;” 9g; a9y,

() _
50 =

PN derivative of known error criterion and g’(a”) is known value.
y.

1

For hidden units, as we see from the figure 5.5

(1+1)
(:) Z,

Figure 5.5 Hidden units of the neural network

The error term (J) is expressed as a combination of errors in the next layers.

(setns)
S5O = oE _z oE aagﬂ) _2{5(1+1) J=) b
i - k

%

o - D ad 0
oa, T oda," oa; oa;

} (13)
— Z (é‘lflﬁ-l)wgﬂ)gf(ay))) — g/(agl))z (é‘k(lﬂ)wiliﬂ)
k k

Operation an input vectorx and propagate it through the network to evaluate all

(O)

activations a” and neuron outputs z|’. After evaluating the error terms &.” in the

output layer 5", back propagate error terms J” to find error terms &' . Then,
. . aE (Z) (l_l)
evaluate all the derivatives of = 0z ;- Propotioned to derivatives and using a
W

J

gradient descent scheme, weights are adjusted.

lift coefficient

angle of attack(A0A) 20 0

frequecy

Figure 5.6 Lift coefficient approximation with back propagation algorithm

: lift coefiicient
10 T T

conyergence rate

10-3 \x:

1 1 1
a 50 100 150 200
247 Epochs

Figure 5.7 Error convergence rate of lift coefficient

40

drag force coefficient

ADA, 2000

frequency

Figure 5.8 Drag coefficient approximation with back propagation algorithm

drag coefficient
10 T T T T T T T T T

conyergence rate

10 1 1 1 1 1 1 1 1 1
a 50 100 150 200 250 300 350 400 450 500
500 Epochs

Figure 5.9 Error convergence rate of drag coefficient

41

42

mornent force coefficient

ACA, <000

frequency

Figure 5.10 Moment coefficient approximation with backpropagation algorithm

Moment coefficient
10 T T T T

conyergence rate

1 1 1
a a0 100 150 200
227 Epochs

Figure 5.11 Error convergence rate of moment coefficient

43

Table 5.2 Properties of aerodynamic coefficient approximation with

backpropagation algorithm

Force C, C, C,
Force Sum 139.09 42.8070 16.1550
Errors Sum 0.00868(0.0062%) 0.0294(0.069%) 0.3316(2.01%)

Mean Errors 0.0433 0.0190 0.0221
of epoch 247 500 227
Learning rate 0.01 0.03 0.05

Figure 5.6 through 5.11 display the simulation results of lift, drag, and moment
coefficient with the error backpropagation algorithm using the SJA data. From the table
5.2, we can recognize that in all cases it takes several hundred of iterations to converge
to the error goal which shows the typical slow convergence rate of backpropagation for
SJA. Especially, for the drag coefficient convergence is even slower rate than other

coefficients. The error goal is set to 0.001 for all cases.

Forward Selection with Regularized Orthogonal Least Square (FS-ROLS) Method
for Implementing RBFN (Mark 1996)

The neural network algorithm with the radial basis function is a candidate for

SJA wing data fitting. In this section we evaluate a modification of this concept by

adding new subset (which is Gaussian) to the design matrix where the error is biggest

44

until finding the best center. These modifications are motivated by problem noted in the
literature (Mark 1996). In more detail, these four algorithms are combined; forward
selection, orthogonal least squares, regularization (using a regularization parameter A),
these last two methods are to avoid the over-fitting and poor generalization. Finally
generalized cross validation is used for choosing the best variance. Over-fitting occurs
when the error variance becomes too large, and the model fits the noise in the training
data and hence captures the underlying function poorly (Irwin, 1995). The motivation of
selecting regularization is from the fact that it is connected to the minimal variance
estimation with apriori estimates. If A (regularization parameter) is not zero then it
tends to “damp” oscillations in convergence by giving some weight to the previous
estimate as a “measurement’.

Regularization involves redefining the model cost function by adding a
constraint to the MSE to produced a new criteria the regularization parameter, A, and this
has to be chosen a priori or estimated from the data. Another way of avoiding over-
fitting is using a smaller number of centers than the data point by selecting the center
column from the full design matrix. Orthogonalization algorithm is adopted because it
can speed up the computations. Orthogonalization Least Squares (OLS) method has
superior numerical characteristics compared with the regular Least Squares. And these
properties can be used to the Forward Selection for choosing the regressor (H matrix).
The efficiency of the orthogonalization scheme in this manner can be observed in
relative ease of computing of the eqn(37) over eqn(30).

This FS-ROLS method has several advantages over other RBFN algorithms.

45

Like Resource Allocating Network (RAN) algorithm, it uses output value as well as
input vector and attempt to find the center location which is the most suitable for the
system. It also can search a discrete space as well as continuous regime. In FS-ROLS
centers are fixed but there is a procedure of selection which centers should be included
in the RBFN while centers are adapted in the RAN. FS-ROLS has only one preset
parameter of RBF width, and can be adapted in the on line as well as in the batch model
where as while RAN can be used only in on-line process. We also model the same data
using RAN with the Extended Kalman Filter algorithm (EKF) for evaluate the relative
merits.

Initially, there are no additional radial basis functions permitted in the design
matrix F (F is initial full design matrix with all data points); we find the maximum error
which can be attached to empty subset. Now we introduce new radial basis function one
by one choosing their location based upon the error matrix. Suppose that we want to

estimate the function y with H matrix from the Radial Basis Function design.
y=F00=3) (14)
J=
We can rewrite this with vector form of
y =Hw +e (15)
where the regressors {h;(.)}", coefficients {w;}]"and H is general design matrix (this is

full design matrix and denoted by F(pxm)), y= p X matrix.

E=e"e+Aw'w (16)

vector e is p unknown error and E is the error matrix. Choosing the first subset column

46

f, where the sum squared error is biggest from the maximum error column J of initial

design matrix F (full design matrix).
fx)=> wh(x)=hW (17)
J=1

IIx-c, ||

where £;(x) = ¢().

i
£ =AW, K0, /" W] = HW = HA'H"§ (18)
where A™ = (H"H)™' and we call this to variance matrix in the case of without

regularization, in that E=e"e.
y-f=y-HA'H"'§ =, -HA'H")y = Py (19)

where I, - HA'H" =P . We call this P matrix as a projection matrix.

S=@F-0HGF-H=y" P Py=3§"P*§ (20)

th

Adding a new basis function, the (m+1)", to a model which already has m basis

function

H =[H, h_Il 21

m+l1
— T

where hm+1 - [hm-H (Xl)’ hm+l (XZ)’ e hm+l (Xp)] .

The new variance matrix is A;} , with regularization.

™H +A

m+1 m+1 m+1

HmT (H h) Am+l 0
= +
h ' " " 0 lm-*—l

AWH—I = H

47

T
= (ATWL Hm hm;l J (22)
h "H A, +h "

m+1 m+1 m+1

A ... 0
where A, =H,["H +A,, A=| i "
0 - A

m

Let us utilize the below inverse of partitioned matrix law.

Al = An + AillAle-lAzlAill 'AillAle-l (23)
'A-lAnAill A-l
where A=A,, -A, AjA,,.
Applying the formula for the inverse of a partitioned matrix yields
Al 0 A'H,"h, \(A'H,"h,,)
A;;"'l = m + 1 T m m m-1 m m m-1 (24)
0 0 2’m+1 + hm+1 thm+1 -1 -1
where P is the projection matrix and P, =1 -H A "'H "
Pm+1 = Ip - Hm+lAm+l-1Hm+1T
25
= - thm+1Thm+le ()
" A.+h "Ph

m+1 m+1 m- m+1

Using this relationships, after attaching f,th column (4, ,,) design matrix is changed
to H,,, =[H, f;].Projection matrix is changed for appended subset matrix f,

P f,f'P,
S " A+ ftPf,

(26)

where P, is a projection matrix and {f,} ;- is the columns of the design matrix.

From the result of the least squares, an optimal weight vector can be determined.

48

HT § = H'f + AW = (H"H + A)W @7)
where Wm =(H'H +A)"'H, §. And the minimized energy is
EV=ee+Aw w=y'Py (28)
where P, =1 —H, (H H+AD™"H] .
To select the best column from F, we select the criteriaof E’ <EY, 1<j<p

which is equivalent to selecting f, to maximize

E _E(i) — (yTPm—lfi)2
S RS & A

m—=1"1i

(29)

Once the best column is chosen from amongst the {f;}/ it is appended to the previously
chosen columns to become h_ , the last columnof H .

When we consider an orthogonalization, H (design matrix) can be factored into

H =0 U, (30)

where H = [ﬁl, hy,....h, 1, U=upper triangular matrix . The regression problem is

formed as

y=H w_+e (31)

(32)
Minimized energy is expressed as

EV =ele+ AW w=y' Py (33)

49

As we derived the weight vector, orthogonalized variance matrix A with regularization
parameter A becomes
A'=H'H,6+AU'U)'
= U, (H,H,, +21,)"(U})" (34)
=U, AU,

The projection matrix after the regularization changes to

L ;
A+hh,
P =1, -Hm(H;Hm +/11m)1H2 =1,-H, : : I:IrTn
1
0 —
A+h'h
n hh’ n-1 h.hT FfT N Ffr
= P-Z J~7{~ _ . J~’I{~ _ ZLT~ =1)m_1_ liT~ (35)
miA+hh, mA+hh, A+ff A+t f

We can find the orthogonalized sum squared error from the new design matrix attached

J-th column as

5 & . . (§"E) 22 +17f
Sm_Sm+1:yT(Pri-Pzi+l)y= Y ”.’Ir” ~"i“I~J
A+t f, A+11

(36)

Next we get the maximum error column to append the design matrix continuously until

the certain error goal met, as we mentioned above, EV <EY 1<J<p.

The optimum f; is the one which maximizes
. f
- E(l) === (37)

So far we discuss about how to select the suitable centers for RBFN. To halt the

50

selection we need some criteria like a threshold. As a candidate criterion we introduce
the Generalized Cross Validation. We define the criteria of selection variance by

0" =S (£ x) =) (38)

Good generalization performance is determined by the point at which this measure

reaches a minimum.**~° It can be derived analytically (Golub et al 1979) as

1 D SN
o’ =;|I (diag(P,))"'P,y |’ (39)

In FS-ROLS product of diag(f’m) and 13my is equivalent to a mere element by
element division of two p-dimensional vectors. Therefore Generalized Cross Validation
is given

, _1 Pyl
“ (U pyirace(P,))’

(40)

GCV is certainly good criteria for avoiding overfit but using regularization as well can
more decrease the likelihood of overfit. To get the good A value, we can automatically
calculate from the above GCV criteria (see Appendix A).

This learning algorithm is applied and simulated to the SJA wing data and it
results in a significant improvement in the error convergence rate when we compare to
the backpropagation algorithm and least linear squares. After few hidden units are
added all the coefficients are converged within the error criteria. Mean Error of the all
observation points are reasonably small which is desirable value. In figure 5.12 through
5.23, the lift, drag and moment coefficient are estimated with FS-ROLS algorithm and

table 5.3 introduce errors and number of hidden units for all cases. 167 training set with

ol

random noise and 167 test pattern used for learning.

estimated surface

*true data paint 1

lift u:oeffiu:ient(q_)

Clok 0 frequency

Figure 5.12 Lift coefficient approximation with FS-ROLS and true data points

lift coefficient
T : : ! : !

0.06

0.05

0.04

MSE

0.03

0.0z

. i i | | |

of neuran

Figure 5.13 Error convergence of lift coefficient in FS-ROLS

52

estimated surface

lift cnefficient((?[_)

lift cnefficient((?[_)

ana frequency

Figure 5.14 Estimated and true surface of lift coefficient

estimate contour
oF T T T T T T

281+ .

d 15_ (i

1 1 1 1 1 1
a 20 40 B0 a0 100 120
o]

Figure 5.15 Estimated contour of lift coefficient

estimated surface

*true data points

. e —
w = i

=)
(]

drag u:oeffiu:ient(CD)

0.1

403 o

frequency

Figure 5.16 Drag coefficient approximation with FS-ROLS and true data points

drag coefficient

T T T T T
""" T"""""\"""""F""""";'""""";"""""IF""""'T"'_
________ J_._._._._.L_._-_.__.J:.__._._._.J:_._._._._.;._._-_._-_J.__._
i i i
Ll'] """ TS T===== i D FEEsEEm———— TEs======= i D FEEsEEm———— T===
= i i
_________ J:._._._._-_J_-_._-_._-;—_._._._._J.__._
I eoemes GRSt SEEEEEEEE TR
| | | | | | |
2 4 B 8 10 12 14
of neuran

Figure 5.17 Error convergence of drag coefficient in FS-ROLS

53

drag l:nefficient(CD

drag l:nefficient(CD

estimated surface

803 frequency

ana frequency

Figure 5.18 Estimated and true surface of drag coefficient

estimate contour
30 C T T T T]

20F -

1 1
o 20 40 B0 Gl 100 120

Figure 5.19 Estimated contour of drag coefficient

o4

55

gstimated surface

P
- '

morment cnefficient(CM)

Clok 0 frequency

Figure 5.20 Moment coefficient approximation with FS-ROLS and true data points

W 10'4 morment coeflicient

MSE

of neuran

Figure 5.21 Error convergence of moment coefficient in FS-ROLS

gstimated surface

moarnent u:oeffiu:ient(CM)

a0a

moarnent u:oeffiu:ient(CM)

ana frequency

Figure 5.22 Estimated and true surface of moment coefficient

estimate contour
30 C T T T T T T]

2ar 8

ot

1 1
o 20 40 B0 Gl 100 120

Figure 5.23 Estimated contour of moment coefficient

56

57

Table 5.3 Errors and number of hidden units in FS-ROLS

Force

(jL (jk) (jAI
Force Sum 139.09 42.8070 16.1550
Errors Sum 0.0135(0.0097%) 0.0114(0.026%) 0.0091(0.056%)
Mean Errors 0.0084 0.0047 3.1425%107*
of hidden Unit 14 15 18

With updated pitch moment data which means more pressure taps in tail part of

the wing (originally 32 pressure taps in SJA) in the range of angle of attack from 17 to

27 degree, we can get faster convergence rate than previous data as we observe from the

figure 5.24-5.28. This is pitch moment only.

gstimated surface

*true data point

updated maoment

30

PR
.

. -

ao0a

B0

frequency

100

Figure 5.24 Updated pitch moment approximation with FS-ROLS

58

updated pitch moment

[T ST PR SPR I

[T SR |

T PSP PSSP P

ST T Tt SIS

[T S|

TS

0.4 fg--mmnm--

] SRR

(R SES—

of neuron

Figure 5.25 Error convergence of updated pitch moment in FS-ROLS

gstimated surface

[]] =+
f]

L
(To)usioy)a0a Juswow

true surface

o] =+
f]

L
(To)usioy)a0a Juswow

frequency

Figure 5.26 Estimated and true surface of updated pitch moment

estimate contour
2? T T T T T T T T T

2ar

24t

g 22r

2

Figure 5.27 Estimated contour of updated pitch moment

Pitching Mament ws o

0.2 4 OH= T T T T T T T

—+— 30Hz
—=- d0Hz
—— olHz 5
—o— GBO0Hz

—= 70Hz
—= B0Hz
—&— 90Hz
—&— 100Hz

s

17 13 19 20 21 22 23 24 25 26 27

Figure 5.28 Updated pitch moment versus o

60

Resource Allocating Neural Network with Extended Kalman Filters (RAN-EKF)

The sequential function estimation problem is how we combine given prior
estimate f“" and new observation "’ in obtaining the posterior estimate . As

one of the sequential learning method, RAN was developed which is by allocating new
resources learning could be achieved in polynomial time.
The RAN is a single hidden layer network whose output response to an input pattern is a

linear combination of the hidden unit responses.
K
fx) =0+, 4,(x,) (41)
k=1

where ¢, (x,) are the responses of the hidden units to an input X, K is number of hidden
neurons and &, =y, 1is an initial condition. The RAN hidden unit responses are given

by

b (x,) = exp(—% I, - IP). 42)

k

For each input x,, we compute ¢,(x,) from the eqn(42), then

g, =max{e 7", €.}, O<y<l.

max

e, =y,— f(X,), (43)
> |-l
e _ i=n—(M-1)
rmsn M

>¢, ande,, > e’ then, allocate a new hidden unit with

rmsn min

If e, >e,,, and

‘xn - /’lnr

min °

(44)

=€, ey =X%X,,and O, = K||Xn — My

61

When the observation (x,,y,) does not satisfy the criteria, the LMS algorithm is used

to adapt the network parameters. However here we will use the EKF instead of LMS for
updating the parameters. Given parameter vector w, the EKF algorithm provides the

(n-1)

posterior estimate w”’ from its prior error covariance estimate w and its prior

error covariance estimate P, .
w, =W, tke,
T —
kn = [Rn +an })r:—lan] IPn—lan’ (45)
P =[I-k,a,]P_ +QI
where Kk, isthe Kalman gain matrix, a, is the gradient vector and R, is the variance

of the measurement noise.

We compute the outputs of all hidden units o, (k =1,..., K) and find the largest absolute

O

hidden unit output value ‘

ax” Next, calculate the normalized value for each hidden

n

Gk
n
max

unit 7' = , (k=1,.K).If r"<d for M consecutive observations, then prune the

k™ hidden neurons reduce the dimensionality of P, to fit for the requirement of EKF.

a, =V f(x,)
2 2 2
= 1,6, (%) 6 (%) (%, — 1) 6, (%) =[x, — [oo, (46)
O-l 61
2 T 2 K 2.r
B (%) B (%) 22 (x, — 11) 6 (%) 2|1, — g1 |
GK GK

The output of hidden units is

62

o =a, exp(—X"O_;'ui”)z . 47)

The network parameters to be adjusted are included inw =[a,,a,, 14| ,0,,, &, i, ,0,1 .
P, is updated by eqn(45). When a new hidden unit is allocated, the dimensionality of

P increased by

P = (48)
0O pl

and p,is an estimate of the uncertainty in the initial values as signed to the parameters

and initializes the new rows and columns. The dimension of the matrix I is equal to
the number of new parameters.

This RAN-EKF learning algorithm is implemented and simulated for the SJA
wing data. From the results, we can observe the decrease of errors and faster
convergence rate than backpropagation (MNN) but, it is obviously slower than FS-
ROLS algorithm. In figure 5.29-37, the lift, drag and moment coefficient are displayed
with RAN algorithm. 167 training set with random noise and test pattern used for
learning. The parameter values selected in this experiment is shown in table 5.4. Slight
changes of these parameters affect much in the each convergence rate. Therefore we
have to choose these parameters carefully. As we observe from the table 5.5, the number
of hidden units in RAN-EKEF is over 100 in for all force coefficients which is much more
than FS-ROLS. In figure 5.38-40, updated pitch moment data with RAN algorithm is
performed in a range of angle of attack from 17 to 27 degree. Same as FS-ROLS

algorithm simulation in section 5.3 we also get a better approximation result than

previous pitch moment data.

Table 5.4 Tuning Parameters of RAN-EKF

63

€ nax Emin €min rmse K o
C, 1 0.002 0.02 0.15 0.5 0.05
C, 1 0.02 0.02 0.01 0.3 0.05
Cy, 0.5 0.002 0.01 0.015 0.03 0.005

Table 5.5 Errors and number of hidden units in RAN-EKF algorithm

Force C, C, C,,
Force Sum 139.09 42.8070 16.1550
Errors Sum 0.057(0.041%) 0.0133(0.031%) 0.0646(0.39%)
Mean error 0.0835 0.0064 -6.15x10™*
of hidden Unit 111 120 137

Table 5.6 Comparison between FS-ROLS and RAN-EKF algorithm

in the updated pitch moment simulation

C, FS-ROLS RAN-EKF
Errors Sum 0.0012% 0.036%
Mean error 0.0019 0.0058

of hidden Unit 6 50

64

errar of lift coefiicient

100 120 140 160

of observation

Jodla

Figure 5.29 Error convergence of lift coefficient in RAN-EKF

estimated surface

(] [] [[
'=r

(hhwerayeoa

true surface

[

{

ke

)

[] [[
'=r

JuBIa1B0D |

Figure 5.30 Estimated and true surface of lift coefficient

BIror

30

25

20

025
0.2
0.15
0.1
0.05

-0.05
0.1
-0.15
0.2
025

gstimated contour

1 1
20 40 B0 a0 100 120

Figure 5.31 Estimated contour of lift coefficient

errar of drag coefficient

20 40 B0 80 100 120 140 160
of ohservation

Figure 5.32 Error convergence of drag coefficient in RAN-EKF

65

drag l:nefficient(CD

drag l:nefficient(CD

estimated surface

Figure 5.33 Estimated and true surface of drag coefficient

estimated contour
30 C T T T T T T]

2ar .

20F .

1 1
o 20 40 B0 Gl 100 120

Figure 5.34 Estimated contour of drag coefficient

66

67

error of moment coefiicient

OO O O 5 1) 5 5 O o S O o 1 o e o B S e o e e e e S e S S S e S S S e e e

e B i ettt ettt mi ittt Bttt

N F Y

Y AP

ittt B e Il Attt mihl it

T eSS PSSP [——

Ay N

P PP PSSPy PSS PSSP S (SYSS PSSP S PP SN SP P P Py

OO O O 5 1) 5 5 O o S O o 1 o e o B S e o e e e e S e S S S e S S S e e e

e i Il

e Attt Rttt

eSS oonos

Ay N

0.25 f-------

(][SES—

K[Sm——

0.1

0.05 f-------

]| SEEssas

lolla

fi]fu3| s

IR

0,15 promnees

1)

| emeees

a 120 140 160

]

1

]

al
of observation

B0

40

20

Figure 5.35 Error convergence of moment coefficient in RAN-EKF

estimated surface

ﬁsur_._m_u_tm_uu amowm

true surface

ﬁsur_._m_u_tm_uu amowm

Figure 5.36 Estimated and true surface of moment coefficient

gstimated contour
30 C T T T T T T]

281+ .

1 1
a 20 40 B0 a0 100 120

Figure 5.37 Estimated contour of moment coefficient

errar of moment
D1 T T T T T T T T T T

errar
]

5 10 15 20 25 30 35 40 45 a0
of ohservation

Figure 5.38 Error convergence of updated pitch moment in RAN-EKF

estimated surface

L el
'

pitch morment{i)

true surface

LRl I
! 8

pitch morment{i)

Figure 5.39 Estimated and true surface of updated pitch moment

estimated contour
2? T T T T T T T T T

26

281+

231

20

Figure 5.40 Estimated contour of updated pitch moment

69

70

From the above results we can easily recognize that all the errors of Resource
Allocating Neural Network are finally converged after some observations and
convergence rate is good but not as good as that of the FS-ROLS.

Let us compare two of RBFN Approximation Algorithms of FS-ROLS and
RAN. The main similarities and differences between RAN and FS-ROLS are as follows.
FS-ROLS and RAN both use the output values as well as the input values of the training
set to determine the center placement. While RAN involve adaptive center and
consequently some kind of learning procedure and multiple passes through the data, FS-
ROLS has the process of heuristic center selection to determine which ones are included
in the network. RAN has several preset parameters and thresholds which must be tuned
to each new problem. Last, RAN searches a continuous space which grows in dimension
as centers are added which is much better for sequential process while FS-ROLS
heuristically searches a discrete space of different combinations of fixed centers.

The FS-ROLS fitting error is consistently smaller than the result from the RAN-
EKF algorithm on the SJA wing test. Besides the number of hidden units in FS-ROLS
algorithm is much smaller than for the RAN-EKF algorithm. We can also recognize FS-
ROLS leads to much less error in table 5.6 which compares these two algorithms in the
updated moment data. These results tell us that FS-ROLS algorithm performs better than
RAN-EKF in the applications to the model of the SJA wing. However more elaborate
applications the network grows complex and dimensionality may decrease the accuracy
with which estimation algorithm converge so it is difficult to generalize from these

results.

71

CHAPTER VI

THE NEURAL NETWORK ADAPTIVE CONTROL APPROACH

Reference Model
1) | 1 w0
~ & ST
1 S 1
)
x(7)

Neural network controller

Figure 6.1 Model reference adaptive control system structure with neural network

Overview of Neural Network Adaptive control
Neural Network Adaptive control is powerful especially for controlling highly
uncertain nonlinear and complex systems. In the model reference adaptive inverse
control, the adaptive algorithm receives the tracking error between the plant output and
the reference model output and the controller parameters updated to minimize the

tracking error (Hagan, 1999) and this approach may be affected by sensor noise and

72

plant disturbance.’’™* Using a neural network, an on-line model will be trained to
receive the same inputs as the plant and to produce the same output. This controller
scheme uses the two neural networks, one is a controller network and the other is model
network which is trained off-line using plant measurements.”**’*> The controller is
trained adaptively so that the plant output can track a reference model output. One of the
problems implementing the neural network to control scheme is that computational work
of performing real-time control on any system with more than a few degrees of freedom
becomes excessively high and may exceed available computational resources (Jacob
1997). Figure 6.1 represent the block diagram of Model reference adaptive control
system structure with neural network.

There are two kinds of adaptive neural control designs used in recent literature.
One is direct adaptive control approach and the other is the indirect adaptive control
approach. In the direct adaptive control approach, Lyapunov stability theory is used for
designing the network tuning rule. On the contrary, in the indirect adaptive control, two
neural networks are used; one is for identifying the forward/inverse dynamics of the
system and the other is connected in cascade with the system to be controlled and its
parameters are updated on-line to implement a suitable control law (Sundararajan,
Saratchandran and Li, 2002).

The main advantage of direct adaptive control over the indirect adaptive control
is that in the latter, there are no strict mathematical proof to guarantee the stability of the
tracking error and the convergence of the network parameters. Also, for the direct

approach, we need a smaller amount of information about the plant and a simpler design.

73

Specifically, bounds of the inputs are only assumed to exist, but neither to be known or
to be estimated (Raul, 2001). This architecture employees a Gaussian RBF network to
adaptively compensate for the system nonlinearities. To implement the RBFN, a stable
weight adjustment mechanism is derived using Lyapunov theory. With this tuning rule
the weights of the RBFN converge to the optimal weights gradually. Using Lyapunov
stability theory, the derived tuning rule can guarantee the convergence of the tracking
error and the stability of the overall system. In the feedback-error-learning strategy, the
total control effort, u, is composed of the output of the neural controller and the output
of the conventional feedback controller. The output of the conventional controller is
utilized as the feedback error signal to tune the parameters of the RBFN, so it is expected
that the output of the conventional feedback controller will tend to zero as the neural
controller learns the appropriate control law.’® The main advantage of direct adaptive
control scheme is that the stability of the overall system can be guaranteed provided the
adaptive tuning law for the nonlinear system is derived based on a Lyapunov synthesis
approach. Some useful dynamic theory to formulate adaptive control law introduced in

the Appendix B.

Nonlinear System Identification Using Lyapunov-based Fully Tuned RBFN
Identification Strategy and System Error Dynamics
Nonlinear dynamic system is given as

(1) = f(x(1),u(r)) x(0)=0 (49)

X(1) = Ax(r) + g(x(1),u(?)) (50)

74

g(x(2),u(?r)) = f(x(2),u(?)) - Ax(r) (51
Setting the RBF network’s inputs &=[x(r)",u(r)"]" , the problem of system

identification can be converted into a nonlinear function approximation problem.

Therefore Growing RBF network based system model can be written as

. 4 * 1 *
X(1) = Ax()+ Y w) exp(— 18-, I +e,

k=1 k
=Ax(1)+ W o(u 0,8 +¢, (52)
Wis hxn optimal weight matrix, ¢ is hx1 Gaussian function vector, # is optimal
center and o is optimal width, hereafter the approximation error ¢, is defined as
g, =gxu)-W'e (53)
&y =SUP 5 g Il & (xu)]| (54)

And g(.) can be approximated by growing RBF network as

h

N N 1 N - A

g(x,u) = YW, exp(~ 57 15, 1) = Wio(&,6,¢) (55)
k=1

k
where W is estimated weight matrix and fI, & are estimated center and width. After
substituting eqn(55), we can get the identification model of
X(t) = Ax(1) + W' . (56)
Defining the approximation error as e=x- X
e=Ae+ W7o -W'g+g,
(537

—Ae+W'o-W'jp+g,

where W=W -W, ¢=0" -

E=)

Stable Parameter Tuning Rules

Choose the following Lyapunov candidate function

1 T 1 ~T~ 1~T~
V=—e Pe+—tr(W W)+— .
5 5 r() 299 ¢

The derivative of the Lyapunov function is given by

V= %(éTPe +e'Pé)+ tr(VVTW) + (ZT(/;

_ _%CTQe + &) Pe+¢"WPe + 9" WPe + tr(WTW) + (‘;T(Z

= —%eTQe +& Pe+¢" (WPe + gZ) + Zn: (W, 9(Pe), + W, W,)

i=1

75

(58)

(59)

where Q =-(P"A +A"P) and A is Hurwitz. Therefore, letting W, , ;/5 be expressed as

w.=—g(Pe), i=1,...n

gZ =—WPe

The derivative of V is

V= —%eTQe+ £ Pe.

.1
V<= llell 4y, @llell+&; 1P el

V<o i flel> 2Pl _ g Gincedn = vif—h, = —gand W =0, ¢ =0
Iﬂ’min(Q)I
W =p(Pe), i=1,..n
¢3=VAVPe

(60)

(61)

(62)

(63)

(64)

(65)

76

Direct Adaptive Control Strategy and Application Using RBFN

At this point, the adaptive tuning rules are derived using Lyapunov synthesis
approach, which guarantee closed-loop stability. RBFN with all the parameters being
updated can capture the system dynamics more quickly and accurately and hence more
suitable for aircraft flight control
Problem Formulation
The system dynamics is presented by the form of equation (66)

x(1) = f(x(¢),u(r)) x(0)=0 (66)

Partitioning x, the dynamics can be written

X, f (x,u)
. |= (67)
X, f (x,u)
The objective is to set up the neurocontroller which the plant state x, can track the
desired state x,, and desired control input can be expressed as
u, (0 = T, (x5 %) (68)

where f,(px1) smooth function, is the inverse function of f,, and x, = [xth,der]

Stable Tuning Rule Using RBFN (YanLi, Narasimahan 2001)

The Control Strategy updating rule for a fully tuned RBFN controller can be derived
based on a feedback-error-learning scheme.

The error dynamics are defined as

e=x-x, =f(x,u)-f(x,,u,) (69)

o= LW, (x-x,)+O(x-x,)+

20 HOW,| you,)+O-u,) (70)
ox ata

uT XqUg

77

O represents the higher order term and neglect the higher order term then,
e=A{e+B@)(u-u,). (71)
This approximation is crucial to make the model affine in the control.
With only the linear proportional controller u=K, (¢) e, the error dynamics is
e=(A(e+B()K, ())e-B()u, (72)
Put the RBEN controller signal together with proportional controller.
u=K,(®e+u,. (73)
Let us look at the RBFN Approximation and Error Dynamics. Setting the RBFN’s inputs

&=[x,"%,"1, u,can be approximated by an RBFN controller through on-line learning

*
u, =u +g&

noo 1 . (74)
=2 W exp(——5 [1§-m IP) +e,
k=1 O-k
=W ,0°,&) +¢,
g, 1is bounded by a constant g, and
&y =SUP 5 o 1€, (x 1)] (75)
With RBFN controller control input vector u is
h o 1 . s
u=) W exp(-—511&- i, IP)+ Ky (e
= % (76)
=W o+K,(1)e

By substituting u into eqn(71), the error dynamics becomes

é=(A()e+BOK, ())e+BOW§-WTo —¢,). (77)

78

By defining J(¢) = A(t)e+ B(t)K, (?), W=W"- W, @=¢ —@ the error dynamics
may be written as

e=Je—BOW '§+ W'+ W'¢)-B(r)g,

) (78)
= J()e-BO(W" '9+W"'9)-B(t)e,
where B(t)(WT(T) +W7"¢) represent the learning error E,.
Stable Adaptive Tuning Rule for RBFN (Narasimahan, 2001)
Let us choose the following Lyapunov candidate function
1 T 1 7T 3 1 ~T ~
A% =Ee P(t)e+5tr(W @W)+Eq) AQ (79)

P(t) is nxn time varying, symmetric, and positive definite matrix and @, A are

hxh nonnegative definite matrices. The derivative of V is given by

V= %(éTP(t)e +e"P()é+e"P(1)e) + 1r(W'OW) +$"Ad (80)

v=—LerQue- £ B(H)P(1)e — " WB(1)P(1)e
2 (81)

—TWB(P(1)e + r(W'OW) + §" A

B _%eTQ(t)e — & B®) P(De+9" (-WB(1)' P(e + Ap)

P .
+> (-W,0B, () P, (e + W, OW,)

where Q = -%(J(t)TP(t) +P(t)J(t) + P(t)).

If we select

W, =0 9B, (1) P.(t)e i=1,...n (82)

79

§=A"WB,(1) P.(e (83)
then derivative of 'V is
V= —%eTQ(t)e — &/ B(1)P(t)e (84)
and this can be negative if
VS—%Ile||ﬂmin(Q)llell—ngIPllB(t)llSH- (85)

Since W, = — W, =9 —@, and W =0, ¢ =0
W, =—-07'¢B.()P(e i=1,..p (86)
¢ =-A"WB,(1) P(ne (87)
Implementation of the Tuning Rule for Dynamic Adaptive Controller (Li and

Sundararajan, 2001, see Appendix C)

The Gaussian function ¢ is embedded with the centers’ locations and widths.
Combining all the adaptable parameters into a composite parameter vector,
x=[W.0,,6,,...W,,0i,,6,] a simple updating law is derived. Firstly, the weight can
be converted into

W, =-@'¢B.(1)'P()e i=1,...p

= W, =-B,(1) P.(1)ed’
- (88)
=W, =-B.(t) P.()eg, k=1,..h O=1I

g =W"§ is defined the output of the RBFN and ¢, 1is the derivative of the g to the

weight W, . Then weight updated form of discrete form is

80

A

Wy (n+1)=w, (n)— T%B(n)T P(n)e(n) k=1..h (89)
W

2k

similarly the updating law rule for center and width are

i+ =p, (n)—1n, aa% B(n) P(n)e(n) k=1..h (90)
"

6, (n+1)=6,(n)—1n, aa% B(n)' P(n)e(n) k=1..h 91)
Oy

Integrating all the parameters we can write
x(n+1) = x() - nilm)Bn) P(wen), Mn)=V,&(E,) (92)

where 7 islearning late and 7 <min(7,7,,7,).

Evaluation of Control Error in Terms of Neural Network Learning Error
We can rewrite the plant eqn(50) by
x(t) + f(x,t)=u(), t=20 (93)

where X(7) is output signal , f(x,7) is unknown static nonlinear function and u(z) is input
signal. Desired reference model is represented by following equation.

x, () + A X, (1) =K r(t) (94)
where x,, is output reference signal r(¢) isreference inputand A , K >0.
The objective of the control law is to obtain a controller which can follow the reference
model within the limit of

lim[x(r)-x,, (| < . (95)

where &£ >0. Then the control law can be proposed as

81

u(t) = -A

m=m

x, O+ K, r@®)+N, [x(#), w@)] = 0 g (1). (96)
A ,K .r(t) is chosen to get desired trajectory and 0 is denoted [Am,Km,l]T, and
¢ (1) is defined by [-x,r,N, ' N ;1s approximated using RBFN network. Let us
define the error.

e(t)= x(1)- x, (1) o7
If the neural network approximation exactly presents the function f', N, =f then, the error
equation is simply written as

e(r)+ A, e) = 0. (98)
However this is not true in real systems. The control objective, therefore, is e(r) =0 as
t— oo, If we consider the neural network learning error term,

Ax, w) = N, [x(2), w(@®)]- f[x,1] . (99)

Now we substitute eqn(99),(94) and (96) into eqn (93), then we get the closed loop
system equation of

e(r)+ A er) = Ax, w) (100)
If we understand the neural network adaptive controller in this sense, as the learning
error in eqn(100) goes to zero then the control error e(7) also converge to zero. Therefore
as long as we can decrease the error enough to close 0, then we can guarantee the
convergence of the error in control signal. We can write the learning error using RBFN

in terms of adjusting the weight parameter.zl’3 !

h
f&=> W (x,.%,,0.,4)=W'® (101)
i=1

82

where W is weight vector with estimate value of W, @ represent radial basis function
and W=W—W" and ®=® —®". From this we can rewrite the error equation with

é= Ame+[W(f) —W*(I)*]

(102)
~A e— [W(f) + W(f)]
Let us define a candidate Lyapunov’s function as
VelePerlr [WiriWlstdr;'d (103)
2 2 2
derivative of Lyapunov’s function is
. 1 ~ 2 ~ 2 ~
V=—e'Qerd’ (F;lfl)—WPe)+Tr[W(F[1W—Pe(I))} (104)
To be stable (V <0), we can get the following adaptation control law
®=TI,W Pe (105)
W =T ,Ped (106)

Derivation of the Control Law for SJA Pitch Moment (Junkins et al, 2003)

For plant model,

a=q
— (107)
. C
q=q7CM(0t,M,w)

For reference model,

(108)

83

where, & is the Angle of Attack, M is the Mach Number, ¢ is the Pitch rate, g is the
wing loading, c is the chord and J is the Moment of Inertia. Subscript r corresponds to

the reference values. Moment coefficient can be modeled as

Cy(@M.0)=C, +C, a+C, 0+C,(a.M,0). (109)

GM (a,M,w®) is the higher order term and can be approximated with radial basis

function network as we already did in Chapter V using several algorithms. Also we can
get the approximate coefficient of the linear terms from the linear least square results.

Higher order terms can be expressed as

_ i —u) R (x—u
CM(X)ZZWieXp[—(X #) . (x ﬂ’)J+eh:WT(I)+gh. (110)
=1

Let us define the tracking errors of the pitch dynamics.
e, =a—0a, e =q—q, (111)
We can take the derivation of the errors and with the RBFN correction, closed loop error

dynamics becomes

e, =e (112)

¢, =—(CyuK, —Cpo)ey —CyoK e, +Cpo@yy + W@ +¢ (113)

Mo ™ q~q

where C,,-C,,K,<0, C,,K, >0 and o=0,+a,,.

The equation can be written in vector form as

x=A x+BW'd+W d+7) (114)

0 1 0
A = ., B= . (115)
_(CMaKa _CMa)) _CMa)Kq CMa)

84

If we formulate the same Lyapunov function in Chapter VI and apply the tuning rule we

derived Chapter VI, fourth section, we get the control law

w=0, +C,, W® -K,e,—Ke, ~Cp,W®D. (116)

r

For weight vector and RBFN, we have the adaptive update laws

w. =TI ®B'Px, i=1..p (117)

& =T, WB' Px (118)

Simulation Result of Neural Network Adaptive Controller with
SJA Pitch Moment Coefficient Data

In this simulation example, we use the model reference adaptive neural network
control law introduced in Chapter VI. For simplification, scalar dynamic model of
X =f(x,1)+g(x)u+e(t) is estimated on-line using Gaussian type RBFN with inputs of angle
of attack and SJA frequency and output of the neural approximation function with these
inputs. In error dynamics, error is defined as between pitch moment and its reference
models. The control input « includes SJA frequency. The reference signal is smooth and
bounded input signal along [-1 0]. The number of hidden units is preset to 100 with a
spread of 1. The centers are distributed uniformly between the range of AOA and SJA
frequency. We apply only weight adapted rule to see if the on line neural network
controller does converge. The weight vector is adjusted by above tuning rule and
simulation time is 100s. I' value is 0.01. This model is successfully converged with

RBEN controller in the simulation (figure 6.2). The final converged error is 0.0185 and

the measured controller output is shown in figure 6.3, which is almost linear.

Tracking error

10 20 30 40 &0 B0 70 Gl 80 100

Figure 6.2 Tracking error

Controller output
m
1

0.1

0.05

) pitch moment coefficient
Reference input, CMr

Figure 6.3 Controller inputs vs. adaptive neural controller output

85

86

CHAPTER VII

SUMMARY AND CONCLUSION

Summary

The main goal of this thesis has been to develop a systematic model which
emphasizes the computational aspects of neural networks in highly nonlinear function
approximation and set up the control law using neural networks. The underlying premise
is that real-time learning from input-output measurements (not on parametric model
physics based) will converge adequately for stable control on many problems. Clearly
the ability of the neural models and update laws strongly affect the validity of this
premise. In the approach adopted the neurocontrollers are composed of two steps. First a
neural network is used to estimate the dynamic model (could be off-line) and then
another network is adapted in real time to estimate the inverse dynamics of the system.
The main focus in this thesis is the first part. We studied existing and modified the
function approximation using several learning algorithm to adjust the SJA parameters so
that we could see the possibility of how close we can efficiently approach real system
model. The highly nonlinear and nonparameteric nature of the SJA modeling problem is
well suited for using a Radial Basis Neural Network.

We presented learning algorithms using RBFNs that allow improvement of the
generalization performance of single linear regression estimator. In the first algorithm of
FS-ROLS, Generalized Cross Validation is used for choosing the variance and an

automatic tuning approach for the stabilization parameter A for generalization is

87

introduced. In the second algorithm of RAN-EKF the adaptation parameters include the
centers, weights and variances; these are adapted by EKF. The advantage of the RAN
and FS-ROLS are that they learn quickly to forms a more compact representation. The
simulation and analysis showed that RBFN with the algorithm of FS-ROLS works better
than RAN-EKF in the application of the SJA wing data. However both algorithms
matches well in SJA modeling, and are much better than the algorithm without learning
and this enhanced RBFN also showed that great results compared with ones from a
multilayer neural network such as backpropagation. This means that RBFN has broad
potential for modeling nonlinear dynamical systems. This RBFN approach may prove
practical if it is combined with an adaptive controller for real time model. However,
there remain unknown factors that could effects SJA performance by changing their
subtle action. In particular, poor controllability near low angle of attack suggests no
control approach can yield truly desirable result. It may be that a new, more controllable
experimental configuration is required. As of now it is very hard to determine what are
the shortcomings of our approach which results in poor controllability of the system.
There should be more experiments with the SJA wing, including improved designs and

more studies of available RBFN approaches.

Conclusions
Existing training algorithms RAN and FS-ROLS are simulated for SJA
modeling purposes. There are several important and desirable attributes to result in good

model learning. The method must be computationally efficient, converge fast and

88

accurately, also the approach should form a compact representation. There are several
algorithms that may achieve these objectives, but for high dimensional problem all face
obstacles and require more analytical computational studies. The RAN and FS-ROLS
algorithm can find the desirable solutions in less computational time compared to other
neural networks. These developments described in this thesis lead to a several successful
implementation, reasonable errors and convergence rates for the SJA wing data set. If
the dimensions of the state, control and parameter space is high then we are not
optimistic any of the approaches studied will be practical without further refinement.
However as presented in this thesis for up to 4 dimensioned state and control spaces,
these methods do appear practical. As an important connection to this class of inverse
dynamic model off-line learning algorithms, we introduce the neurocontrollers to adjust
on line to track prescribed reference trajectories. As a consequence of the non-affine
nature of the dependence on the control vector, linear approximation of the control
dependence was necessary to complete the formulation. The controller type in Chapter
VI is model reference direct adaptive controller and to compensate the nonlinearities in
the plant radial basis function network is used. The simulation results in the Chapter VI
tell us that the discrepancy of reference and actual plant model can be used as a signal
for parameter adjusting law. A reasonable convergence rate is achieved. However no
criterion was found in this work or the literature on the convergence of centers and
variances of RBFN (Jacob, 1997). They are continuously adjusted, and as a consequence,
the RBFN gives only local approximation. To apply these ideas to real systems, we need

better understanding of the theoretical aspects to accept or reject the locally affine

89

control approximation. The neural network adaptive controller structure design
combined with a pre-trained neural network can greatly increase the potential for

applications of intelligent and reconfigurable control.

Recommendations

The recommendation for future work is that we need to develop more
sophisticated and refined radial basis neural network approximation algorithm to
minimize the number of Gaussian basis functions which can result much improvement in
the previous simulation of SJA. This refined method should better manage to localize
learning, high dimensionality and uncertainty of model. More significant, higher
dimensional dynamical systems should be studied.

With the aspect to adaptive control approach, validation of the control law
derived in Chapter VI by experiment and simulations should be performed and further

attention to other means of accommodating the case of non affine control.

90

REFERENCES

[1] Chen, S., Cowman, C., and Grant, P., “Orthogonal least squares learning algorithm
for radial basis function networks” IEEE Transaction on Neural Networks, Vol. 2, 1991,
pp- 302-309.

[2] Mark J. L. Orr. “Regularised centre recruitment in radial basis function networks”,
Research Paper 59, Center for Cognitive Science, Edinburgh University, Edinburgh,
Scotland, 1993.

[3] Bishop, C., “Improving the generalization properties of radial basis function neural
networks”, Neural Computation, Vol. 3(4), 1991, pp.579-588.

[4] Broomhead, D. S., and Lowe, D., “Multivariate functional interpolation and adaptive
networks”, Complex systems, Vol. 2, 1998, pp. 321-355.

29

[5] Platt, J., “A resource allocating network for function interpolation,” Neural
Computation, Vol. 3. 1992, pp. 213-225.

[6] Moody, J. and Darken, C., “Fast learning in network of locally-tuned processing
units”, Neural Computation, Vol. 1, 1989, pp. 281-294.

[7] Arisariyawong, S., and Charoenseang, S., “Self-organized learning in complexity
growing of radial basis function networks”, Mechnical Engineering Department, King
Mongkut’s University of Technology Thonburi, Bangkok, Thailand, 2002.

[8] Bose, N.K., and Liang, P., Neural network fundamentals with graphs, algorithms and

applications, McGraw Hill International Editions, New York, NY, 1996.

[9] Irwin, G.W., Warwick, K., and Hunt, K.J., Neural Network Applications in Control,

91

IEEE Control Engineering Series, Vol.53, London, U.K, 1995.

[10] Kadirkamanathan, V., and Niranjan, M., “A function estimation approach to
sequential learning with neural networks”, Cambridge University Engineering
Department Technical Report, 1993.

[11] Spooner, J. T., Maggiore, M., Ordonez, R., and Passino, K. M., Stable Adaptive
Control and Estimation for Nonlinear Systems, Wiley Interscience, New York, NY,
2002.

[12] Norgaard, M., Ravn, O., Poulsen, N.K., and Hansen, L.K., Neural Networks for
Modelling and Control of Dynamic Systems, Springer, New York, NY, 2000.

[13] Moody, J., and Darken, C. J., “Fast learning in networks of locally-tuned processing
units”, Neural Computation, Vol.1, 1989, 281-294.

[14] Junge, T. F., and Unbehauen, H., “On-line identification of nonlinear time variant
systems using structurally adaptive radial basis function networks”, Proceedings of the
American Control Conference, Albuquerque, New Mexico June 1997.

[15] Warwick, K., and Craddock, R., “An introduction to radial basis function for system
identification a comparison with other neural network methods”, Proceedings of the 36"
Conference on Decision and Control, Kobe, Japan, December 1996, pp 464-469.

[16] Reisenthel, P. H., “Development of a nonlinear indicial model using response
function generated by a neural network™, AIAA, Vol.3, 1997, pp. 1-13.

[17] Park, J., and Sandberg, I. W., “Approximation and radial basis function networks”,
Neural Computation Vol.5, 1993, pp. 305-316

[18] Astrom, K. J., and Wittenmark, B., Adaptive Control, Addison-Wesley, Reading,

92

MA, 1989.

[19] Sundararajan, N., Saratchandran, P., Li, Y., Fully Tuned Radial Basis Function
Neural Networks For Flight Control, Kluwer Academic Publisher, Boston, MA, 2002.
[20] Saad, M., Dessaint, L. A., Bigras, P., and Al-Haddad, K., “Adaptive versus neural
adaptive control: application to robotics”, International Journal of Adaptive Control and
Signal Processing, Vol. 8, 1994, 223-236.

[21] Patino, H.D., and Liu, D., “Neural network-based model reference adaptive control
system” IEEE Transaction on Systems, man and cybernetics-part B: Cybernetics, Vol. 30,
No.1, February 2000, pp. 198-204.

[22] Lewis., F. L., and Parisini, T., “New developments in neurocontrol”, Proceedings of
the 1998 IEEE, International Conference in Control Applications, Trieste, Italy 1-4
September 1998.

[23] Narendra, K. S., “Neural networks for control: theory and practice”, Proceedings of
The IEEE. Vol. 84, No.10, October 1996, pp.1385-1403.

[24] Narendra, K. S., and Mukhopadhyay, S., “Adaptive control using neural networks
and approximate models”, IEEE Transactions on Neural Networks, Vol.8, No. 3, May
1997, pp. 355-359.

[25] Smith, R. M., and Sbarbaro, D., “Nonlinear adaptive control using nonparametric
gaussian process prior models” Technical paper in Department of Computing Science,
University of Glasgow, Glasgow, Nov., 2002.

[26] Chiang, C. Y., and Youssef, H. M., “Neural network approach to aerodynamic

coefficients estimation and aircraft failure isolation design” AIAA, Vol.3, 1994, pp. 500-

93

509.

[27] Yingwei, L., Sundararajan, N., and Saratchandran, P., “A sequential learning scheme
for function approximation using minimal radial basis function neural networks”, Neural
Computation Vol.9, 1997, pp. 461-478.

[28] Behera, L., Gopal, M., and Chaudgury, S., “Adaptive control of nonlinear systems”,
IEE Proc.-Control Theory Appl., Vol. 142, No. 6, November 1995, pp. 617-624.

[29] Golub,G. H., Heath, M., and Wahba., G., “Generalised cross-validation as a method
for choosing a good ridge parameter”, Technometrics, 21(2), 1979, pp. 215-223.

[30] Sarle, W. S., “Neural networks and statistical models”, In Proceedings of the
Nineteenth Annual SAS Users Group International Conference, Cary, NC, 1994,
pp-1538-1550.

[31] Calise, A. J., “Neural networks in nonlinear aircraft flight control”, IEEE AES
Systems Magazine, July 1996, pp 5-10.

[32] Li, Y., Sundararajan, N., and Saratchandran, P., “Stable neuro-flight-controller using
fully tuned radial basis function neural networks”, Journal of Guidance, Control, and
Dynamics, Vol.24, No.4, July-August 2001, pp. 665-674.

[33] Subbarao, K., and Junkins, J. L., “Structured model reference adaptive control for a
class of nonlinear systems”, Journal of Guidance, Control, and Dynamics, Vol. 26, No. 4,
July-August 2003, pp. 551-557.

[34] Narendra., K. S., and Mukhopadhyay, S., “Adaptive control using neural networks
and approximate models”, Proceedings of the America Control Conference Seattle,

Washington, June 1995, pp. 475-485.

94

[35] Kalkkuhl, J., Hunt, K. J., Zbikowski, R., and Dzielinski, A., Applications of neural
adaptive control technology, World Scientific Series in Robotics and Intelligent Systems,
Vol.17, River Edge, N.J., 1997.

[36] Spooner, J. T., and Passino, K. M., “Decentralized adaptive control of nonlinear
systems using radial basis neural networks”, IEEE Transactions on Automatic Control,
Vol. 44, No. 11, 1999, pp 2050-2057.

[37] Ordonez, R., and Passino, K. M., “Adaptive control for a class of nonlinear systems
with a time-varying structure”, IEEE Transactions on Automatic Control, Vol.46, No.1,

January 2001, pp. 1-13.

95

APPENDIX

A. Automatic Estimation of A
Using regularization as well as using Generalized Cross Validation can decrease
the overfit more. Simple re-estimation formula which is integrated into ROLS for letting
the data choose a value for the regularization parameter is derived (Mark J. L. Orr, 1996)
here.
Let us start from the eqn(40). Differentiating eqn(40) with respect to A set

the equation to zero to get the minimum value.

yv'P, agﬁy trace(P,) = ny’ﬁy—atmgi(P’”)

(119)

From the eqn(36), we can substitute the P value to left hand side of eqn(119) and then

m

we get
. oP Y
y'P Sy AW (@TH 4L)W (120)
oA
o (2A+h"h)(y'h,)’ n h'h,

where yTPZy y'y— and trace(P) p— Z

(A+h’h)’ (/1+hTh 2

j=l

We substitute AW’ (HTH +AL)"'W, in eqn(119) and rearrange it with respect to A,

WL

to obtain

[Otrace(P,)/9Aly" Ply

= — - 121
trace(P,)V~V£l (H,TnHm +A1,) \U (121)
D m BTB) m Th
where, race®,) _ N~ and WHCH, +A1,)"'W, =) —S =i)
A S @A+hh) = (/1+h)

96

Using the eqn(126), new A value can be evaluated after each forward selection step

from the previous value and initial value of A is 0.

B. Some useful dynamic theory for formulating Neural Network adaptive control
laws.
Dynamic Inversion

This technique is for control law design in which feedback rule is used to
simultaneously cancel system dynamics and achieve desired response characteristics.

x=f(x)+G(xX)u (122)
u=G"'X(f(X)+%,) (123)
X is state vector and control law u(mx1) which yield the desired state x,. In this way,

dynamic inversion control law presents an attractive alternative to the system with
complicated nonlinearities. However we need exact knowledge of f(x) and G(x) to solve
the equation in terms of controls, and this seldom feasible in practice due to model errors.
Feed back linearization

Feed back linearization is one approach for nonlinear control design. The idea is
to algebraically transform a nonlinear system dynamics into a fully or partially linear one
so that linear control techniques can be applied. Consider the single input single output

nonlinear systems.

=| , X" = f(x)+g(X)u (124)

X, J(x)+g(X)u

97

Let the scalar control input u as

uzi(v—f) (125)
8

We can cancel the nonlinearities and obtain an input output relation

x"=v (126)
v=x"—ke—k,e—--—k, _e"" (127)
e=x(t)—x,(t) (128)

where e is tracking error. The key assumption of feedback linearization is that the system
nonlinearities are known a priori and of course, this the key source of non-robust

behavior is practice.

C. Implementation of the Tuning rule

Firstly, let us see the tuning rule for weight

W =p(Pe). i=1,..n
. (129)
= W' =Pep’ = W =Peg k=1,..,h

Since the estimate value of ék is the derivative of g()to the weight w, this equation

can be converted into a discrete form.

A

% ey (130)

A

Wi

W, (' + D) =W, (n)+7

7
where n =n+m.

The tuning rule for centers and width are from the eqn (65)

A

98

g, =w,Pe (131)
~ 1 ® 00
¢, =exp(——z IS-p II") (132)
O-k
for given input &, derivative of equation (131) can be expressed like
A 8(/3 I3 8(/3 5
P =—u L5, (133)
k aui k ao_k k
To obtain the tuning rule Equation (133) can be partitioned to
94, -
f”; i, = Aw, Pe (134)
ofi,
%, 4 =(1-)wiPe,0< A<1 (135)
N kT —k ’
d6,
96, ;94
Set r, = (T(b’;)T = 4 with column vector of n+m and then tuning rule for center is
ofi, ofi
ﬁk: 4 r, w,Pe
n+m
25 (136)
_ A (r,. ?")*w, Pe
n+m o,
Similarly a tuning rule for width can be derived.
6, -2y yrpe
a6,
o, _, 99
(1= 2%y 2 yrpe (137)
06, 06,

Let o=

n+m

r.' ™, p=01- /1)(aﬂ)_2 and converted to discrete form then,
) 06,

99

&+ =4,0n)+7(a *%)W:Pe(’@’)
o
A (138)
A Vs a V4
- i, () + 7, 2w pe(n')
Of,
6.(n+1)=6,(n")+10 0y 1 ’
k =0, —— W, Pe(n)
N (139)
=6, (n)+1, aqfk w, Pe(n)

k
n,.n, are positive scalar to be selected properly a priori. From the above equation, we

can generalize the tuning rule.
20 +1) = y(n') +71(n")Pe(n), (140)

where II(n)=V g(,).

100

VITA

Hee Eun Lee is the daughter of Pil Gu Lee and Sung Jin Lee, Republic of Korea. She
finished her B.S degree in Physics and Astronomy in Yonsei University in Seoul, Korea
in February, 2002. After that she attended Texas A&M University in the United states.
She studied under Dr. John L. Junkins receiving her master’s degree with emphasis on
dynamics and controls in the field of aerospace engineering. Hee Eun Lee’s permanent

address is 1258 Sangamdong Mapogu Seoul, Korea

