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ABSTRACT 
 

The Fate of Manure Phosphorus During Production and Harvest of  

Turfgrass Sod.  (May 2005) 

Brandon Tieman McDonald, B.S., Texas A&M University 

Co-Chairs of Advisory Committee:  Dr. Richard H. White 
             Dr. Donald M. Vietor 

 

 Removal of manure from dairies to sites less prone to point-source nutrient 

pollution is an option for dealing with dairy confined animal feeding operation 

wastes.  Applications of dairy manure waste to turfgrass sod can be an 

environmentally sound approach because both plant matter and soil are 

removed during harvest (Vietor et al., 2002). 

 Field scale research was conducted on a pair of adjacent, 1.42 ha Tifway 

bermudagrass fields on a fine-textured clay soil to investigate the fate of manure 

phosphorus (P) from composted dairy manure applications.  Both fields received 

equal rates of supplemental nitrogen fertilizer but one was treated with 

composted dairy manure.  The treated field received 75 kg ha-1 P during the first 

crop.  After harvest, 127 kg ha-1 P was applied to the second crop.  Once re-

established, this crop was harvested. 

 Surface layer sod and subsurface soil were frequently sampled on a grid 

pattern from each field and analyzed to monitor soil P.  Both plant extractable 

and total P analyses were used.  It was determined that a sod harvest could 
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effectively remove all of the applied manure P.  Below the sod layer, there were 

no increases in soil P as a result of the composted dairy manure treatments, 

indicating that P leaching did not occur.    

Phosphorus runoff during rain events or irrigation was monitored by 

members of the Department of Biological and Agricultural Engineering.  It was 

reported that more P was lost in runoff from the compost treated field than the 

untreated field. 

Cumulative water infiltration rate, soil bulk density, and plant available 

water holding capacity of the soil were tested to determine if the composted 

dairy manure treatments affected these soil physical properties.  The only 

significant change was an increase in plant available water holding capacity on 

the surface layer of the treated field.   

  An economic analysis was performed using actual financial data from the 

project.  A scenario was created to investigate the feasibility of a dairy farm 

profitably adding a small turfgrass sod enterprise to its operation.  It was 

determined that a sod field enterprise could be moderately to highly profitable for 

a dairy.       
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CHAPTER I 

INTRODUCTION 

 

Dairy manure is an excellent source of mineral nutrients and organic 

carbon for turfgrass production in Texas.  Many dairies in central Texas are 

confined feeding operations.  A tremendous amount of wastes can accumulate 

over a short period of time.  The total mineral nutrients available in manure and 

wastewater produced on CAFO’s can exceed requirements of crops produced 

on surrounding land.    Turfgrass sod production near CAFO’s could enable 

export of manure or waste water sources of nutrients through annual harvests 

and increase manure or wastewater rates applied on land (Vietor et al., 2002).  If 

manure or waste water is applied at rates limited to the P requirements of forage 

or feed crops, large land areas for application will be needed due to the large 

amount of manure produced on a CAFO and the small amount of P needed in 

many soils.  Either fresh or composted dairy manure can be applied to turfgrass 

sod.  In addition, turfgrass production can reduce erosion losses of soil and 

nutrients compared to row-crop agriculture because of a greater duration of 

vegetative cover.  Research has also shown that manure applications to 

turfgrass can improve seedling establishment rate, soil pH, cation exchange  

 

____________ 
This thesis follows the style of Crop Science. 
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capacity, particle aggregation, organic matter, and water content (Murray, 1981).  

In addition, bulk density can be reduced after manure applications (Vietor et al., 

2002).   

 

Objectives 

There are four main research objectives: 

1) Quantify P export through sod in relation to soil P and imports of manure 

P. 

2) Correlate soil-test phosphorus levels with phosphorus concentrations and 

losses in runoff water. 

3) Quantify chemical and physical properties of soil within and below the sod 

layer with and without composted dairy manure. 

4) Develop enterprise budgets for sod production with and without 

composted dairy manure. 
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CHAPTER II 

LITERATURE REVIEW 

 

Introduction 

Removal of manure from dairies for application on sites less prone to runoff 

is one option for managing manure sources of nutrients.  House Bill 2699 

imposed regulations that encouraged manure export from farms and watersheds 

near impaired water bodies to reduce P loading.  Advisory committees joined 

together with regulatory agencies to establish criteria for total maximum daily 

loads (TMDL’s) for P and other contaminants that impaired surface waters 

(Texas Natural Resource Conservation Commission, 2001).  The wastewater 

lagoons, dry lots, and waste application fields of dairy CAFO’s are potential point  

and non-point sources of P that are subject to the TMDL’s and other regulations.    

Rain events large enough to produce significant runoff can carry nutrients from 

both point and non-point sources, which could be transported into the Upper 

North Bosque River.  The Upper North Bosque River, in turn, transports the 

dissolved P to Lake Waco, which supplies drinking water to the city of Waco.  

There has been a great deal of attention given to this particular watershed 

because algal blooms and reduced water quality in lake Waco has been 

attributed to  runoff from fields in the large dairy production region of Texas near 

Stephenville in the central part of the state.  In this river system, the TMDL 

included a mandate for a 50% reduction in soluble reactive phosphorus entering 
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the impaired segments of the Bosque River (Texas Natural Resource 

Conservation Commission, 2001). 

In terms of impact on the environment, the use of raw or composted dairy 

manures for turfgrass sod production can have benefits over the use of 

commercial inorganic phosphate fertilizers.  Gaudreau et al. (2002) reported that 

when equal amounts of P were surface applied as commercial inorganic fertilizer 

or composted dairy manure to turfgrass, losses of dissolved P (DP) were 58% 

less for the manure P than the commercial inorganic P.  

 

Benefits of Turfgrass Use 

Turfgrass sod pairs up well with the dairy industry because turfgrass is a 

high value crop.  Greater value per hectare for turfgrass sod than for forages 

and row crops should make it more feasible for sod producers to afford the extra 

expense involved in shipping dairy manure to their farms.  In addition, turfgrass 

sod removes more nutrients from a given hectare than typical row-crops (Vietor 

et al., 2002).  This is because the surface layer of soil is removed along with the 

turfgrass during each harvest.  The rapid development and maintenance of a 

dense population of plants in turfgrass also prevents the soil erosion problems 

that can occur in row-crop agriculture (Gross et al., 1991).  In addition, manure 

application in sod production can improve re-growth rates of the sod fields and 

establishment of transplanted sod (Angle, 1994).        
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Composted vs. Fresh Dairy Manure 

Dairy manure can either be applied to turfgrass as fresh or as composted 

manure.  Several composting businesses in Erath County, Texas sell and deliver 

composted dairy manure.  Composted manure has less odor problems, less 

volatilization losses of NH3-N, and lower pathogenic microorganism counts than 

fresh manure (Vietor et al., 2002).  However, incorporating fresh manure to a 

depth of 15 cm could prevent many of the problems associated with surface 

applications (Vietor et al., 2002).  This type of incorporation might be performed 

during the seed bed preparation of a new sod field prior to seeding, sprigging, or 

the renovation of an existing sod field.   

The N:P ratio of most manures make it difficult to meet all crop nitrogen 

needs through manure applications alone without causing excessive phosphorus 

loading on sites receiving manure over several years.  In most cases where 

manures are used as a nutrient source, applications should be based on crop 

phosphorus requirements rather than on the nitrogen requirements.  Most crops 

will show little or no economic response in yield or growth from additional P 

when soil-test phosphorus levels using the Bray-1 method exceed 50 ppm 

(Sharpley et al., 1993).   

 Both organic and inorganic compounds are present in dairy manure.  As 

much as two-thirds of the total P found in the manure can be organic (Mikkelsen 

and Gilliam, 1995).  Soil adsorption characteristics and mineralization rates for 

organic P compounds affect availability of manure P (Mikkelsen and Gilliam, 
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1995).  Uncertainty about manure P forms and availability suggest dairy manure 

is more difficult to manage than inorganic P fertilizers (Gracey, 1984).   

   

Phosphorus 

Non-point source P losses from dairies are determined through two main 

factors: transport and source.  The transport factors are rainfall and irrigation 

runoff and sediment loss.  The source factors include soil P concentration and 

the methods, types, and rates at which supplemental P is applied (Sharpley et 

al., 1993).  Though livestock manures contain all major and minor plant 

nutrients, nitrogen and phosphorus are of greatest concern in evaluation of 

source factors.  

Phosphorus can be carried off site as either particulate phosphorus (PP) 

or as DP.  Particulate P is the major form of P transported from tilled agricultural 

land, representing 75 to 90% of all P moved off-site (Schuman et al., 1973; 

Sharpley et al., 1987).  Phosphorus movement in the particulate form occurs 

when P is adsorbed to soil and then erosion occurs from either an irrigation or 

rain event (Burwell et al., 1977; Garbrecht and Sharpley, 1992; Schuman et al., 

1973).  Particulate P is a variable source of P for algal uptake, with anywhere 

from 10 to 90% being bio-available (DePinto et al., 1981; Dorich et al., 1985; 

Sharpley et al., 1992).  Dissolved P on the other hand can be more immediately 

available for algal uptake (Peters, 1981; Walton and Lee, 1972).     
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Application of dairy manure or wastewater to established turfgrass sod 

that has year-round vegetative cover will likely reduce PP movement compared 

to application of equal rates on row-crops.  The dense plant population of grass 

plants in turf acts as a vegetative filter for soil particles suspended in water 

moving across the surface of the field.  The processes of desorption, dissolution, 

and extraction from soil and plant matter within the turf surface must take place 

in order for PP movement through the turf to occur (Sharpley, 1985).  In addition, 

Sharpley (1985) found that the conversion of PP to DP takes place near the soil 

surface as rain or irrigation water moves across the field.  Dissolved reactive P 

concentrations greater than 0.05 mg/L can lead to eutrophication in surface 

waters. 

Soil P concentration is normally quantified as soil-test phosphorus (STP) 

for agronomic purposes.  Several laboratory methods are available to determine 

STP.  Each method involves extracting all of the soluble P and a varying portion 

of the reactive P (Hansen et al., 2002).  These laboratory methods include: Bray-

1, Olsen, Mehlich-1, and Mehlich-3 (Hansen et al., 2002).  Each of the STP 

methods have limitations as indicators of environmental risk because the forms 

of P extracted and measured are not necessarily related to runoff, leaching, or 

eutrophication.  The extracted P forms do not necessarily affect and control P 

transport (Hansen et al., 2002).  A better way to assess potential environmental 

impact from manure and soil P is P adsorption capacity and degree of P-

saturation in soil (Hooda et al., 2000; Brooks et al., 1997; Sharpley, 1995).  The 
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degree of P-saturation is an expression of the percentage of the total P 

adsorption capacity occupied by P (Breeuwsma and Silva 1992).     

 

Phosphorus Transport through Erosion and Runoff 

Loading soil to P levels greater than plant growth requirements increases 

the likelihood for excessive P transport off of fields in runoff.  Surface runoff 

occurs when rainfall or irrigation intensity exceeds water infiltration rate and the 

hydraulic conductivity of the soil (Mikkelsen and Gilliam, 1995).  The risk of 

surface losses is greatest for the first rain event after a manure application and 

decrease for each following rain event (Edwards and Daniel 1994).  The extent 

to which P is lost also decreases as the time between the application and runoff 

event increases (Sharpley, 1997).   

It is important to realize that management practices can play a 

tremendous role in the runoff potential of a sod field.  Management practices 

include timing of application, rates, incorporation methods, percent grass cover 

at the time of application, slope, and the source or type of manure (Hansen et 

al., 2002).  Most of the phosphorus that leaves a field either as PP or DP comes 

from an interaction between the water and the top 0.04 to 0.12” of the soil 

(Sharpley, 1985).  As much as 70% of P losses in runoff from a sod field can 

come from sediment-bound P (Sharpley and Smith, 1990).  Because of this, 

manure application and accumulations of P near the soil surface are major 

factors in P runoff (Oloya and Logan, 1980; Sharpley et al., 1981).  Similarly, 
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runoff losses can be especially large immediately after a surface application of 

manure because of an initially high ratio of organic to inorganic forms of 

phosphorus in the manure.  Two-thirds of manure P can be organic at the time 

of application (Mikkelsen and Gilliam, 1995).  The high ratio of organic to 

inorganic P compounds initially present in the manure contributes to greater 

solubility and mobility of manure P until reactions with the soil have taken place 

and convert organic to inorganic P forms.  The vulnerability of organic P to loss 

in runoff also increases without manure incorporation.  With time, the organic 

forms of P in the manure will hydrolyze into inorganic phosphate forms of P 

(Mikkelsen and Gilliam, 1995). 

Research was conducted on the turfgrass sod field used in this study, by 

faculty and graduate students in the Department of Biological and Agricultural 

Engineering at Texas A & M University.  Runoff volume rates were measured 

and surface loss samples were collected during runoff events using automated 

sampling equipment (Choi et al., 2003).  Runoff samples were filtered and then 

analyzed at the Texas A & M University Soil, Water, and Forage Testing 

Laboratory using inductively coupled plasma atomic emission spectrometry 

(ICP) to determine the levels of total phosphorus and other nutrients in runoff.  

Both the dissolved and sediment-bound or particulate fractions were analyzed.  

Choi (et al., 2003) focused on a time period from September 2002 to March 

2003 (during the first sod crop) to quantify losses from the fields.  Sixteen runoff 

events were sampled during this time period.  The composted dairy manure 
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treated field (75 kg ha-1 P applied) lost 5.303 kg ha-1 dissolved P and 1.065 kg 

ha-1 particulate P for a total of 6.368 kg ha-1 P.  The untreated field (no compost) 

lost 3.034 kg ha-1 dissolved P and 0.546 kg ha-1 particulate P for a total of 3.580 

kg ha-1 P.  The difference of 2.820 kg ha-1 P between the fields is the amount of 

P lost during runoff that can be attributed to the composted manure application. 

In addition to quantifying mass loss in runoff, Choi (et al., 2003) also 

compared soil-test P to total P losses in runoff.  A linear relationship between 

increasing soil-test P and increasing P in runoff was noted.   

 

Subsurface Transport of Phosphorus  

Though surface losses of phosphorus tend to be of greatest concern after 

compost applications on agricultural lands, subsurface losses can occur and 

need attention.  The high P adsorption capacity of most soils often causes sharp 

decreases in subsurface P even when P in surface layers is very high (Stamm et 

al., 1998).  Phosphorus adsorption capacity in the surface and subsurface layers 

increases with clay content.  Conversely, increasing sand content lowers P 

adsorption capacities.  In addition, increasing Al, Fe, or Ca solubility can 

increase P adsorption capacity of a soil (Hansen et al., 2002).  The high P 

adsorption capacity of most agricultural soils leads many researchers to think 

that subsurface movement of P is of little environmental concern (McBride, 

1994).  However, leaching of P can occur in soils that are sandy, acidic, or 

organic, and/or soils prone to macropore flow if STP values are elevated due to 
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continuous application of livestock manures (Gachter et al., 1998; Heckwrath et 

al., 1995; Hooda et al., 1999). 

Preferential flow is a transport mechanism where large amounts of water 

can be transferred through a small volume of soil.  Examples include soil cracks, 

macropores, and fissures (Stamm et al., 1998).  In preferential flow paths, water 

flow velocity is high and the ratio of sorptive surfaces to soil solution is low.  

Although many researchers suggest preferential flow can contribute to 

subsurface losses, little evidence exists to support this suggestion (Stamm et al., 

1998).  Sharpley et al. (1977) reported that high P loads in drainage water could 

be correlated with high soil P adjacent to drain tiles and not to high STP at the 

surface.  This research further supports the idea that preferential flow is not the 

only mechanism by which P can move downward through the soil.  

Nevertheless, Stamm et al. (1998) demonstrates that preferential flow can be a 

mechanism of P transport, especially on soils that have received excessive rates 

of manure.  Whether by worm burrows or soil cracks, subsurface P losses can 

occur and needs further investigation to quantify environmental impacts. 

 

Nutrient Export 

As previously mentioned, a great advantage to applying dairy manure to 

turfgrass is the potential to export 2 cm of soil and manure residue therein with 

the vegetative matter removed with each harvest.  A much greater proportion of 

manure nutrients applied to the soil surface is removed from the sod than with 
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aerial portions of row crops.  Vietor et al. (2002) demonstrated P could be 

removed during harvest in rates proportional to the rates applied.  For 

bermudagrass, 46% of manure P applied to small, replicated plots was removed 

at application rates as high as 200 kg P/ha/year.  Yet sod growth rates and 

manure P export from large production-scale fields remains to be quantified.          

 

Economics 

 Turfgrass sod can be a very agricultural profitable enterprise.  Sod farms 

can see yearly returns to management of $1,968.00 per acre for a 100 acre farm 

up to $2,083.00 per acre by the fifth year of production (Cain et al., 2003).  

However, the initial capital investment can be prohibitive.  According to Cain et 

al. (2003), per acre capital investments for a 100 acre farm can be $5,121.64 

and $3,009.61 for a 1200 acre farm.  In spite of high initial investment costs, 

many farmers have looked at turfgrass sod as an alternative to traditional crops 

because of the high profitability (Martin and Wells, 2001).  According to Adrian 

(et al., 1995) bermudagrass is one of the most profitable warm season 

turfgrasses over a given time period to be used in sod production. 
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CHAPTER III 

MANURE P IMPORT, EXPORT, AND EFFECTS ON SOIL 

PHYSICAL PROPERTIES 

 

 The environmental soundness of applying and cycling dairy manure and 

wastewater through turfgrass sod can be justified in both production and 

economic terms.  First, turfgrass offers a complete ground cover that filters 

runoff and prevents transport of sediment and nutrients off-site.  Second, 

turfgrass sod is unique with respect to greater potential amounts of manure 

phosphorus (P) removed in each harvest.  In addition to vegetative plant parts, a 

thin (2 cm) layer of soil is removed during each sod harvest.  This is important, 

especially for P, because harvesting a layer of soil with the crop removes greater 

percentages of applied manure P than harvest of aerial portions alone, only as in 

other crops (Vietor et al., 2002).  Finally, the high value of turfgrass sod can help 

to offset production costs associated with dairy manure composting, hauling, 

and application. 

 Until now, little field scale work has been done to quantify amounts of 

applied manure P removed in turfgrass sod harvests.  Phosphorus adsorption to 

soil particles can prevent leaching of surface applications of manure P through 

the soil profile, which keeps much of the manure P near the soil surface and 

available for export at harvest (Stamm et al., 1998).  This is especially true of 

soils with high clay content (Hansen et al., 2002).  
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 In addition to quantifying P removal at harvest, the effects of surface 

applications of composted dairy manure on soil physical properties need to be 

evaluated.  Topdressings of compost could increase cumulative infiltration and 

plant available water holding capacity, while reducing bulk density in soil.  

Previous studies have only evaluated changes in these soil properties after 

manure was incorporated into the soil. 

 The two main objectives of this research are first, to quantify amounts of 

manure P removed in turfgrass sod harvests and second, to evaluate changes in 

cumulative infiltration, bulk density, and plant available water holding capacity 

after topdressing of composted dairy manure at rates up to 127 kg ha-1 P. 

 

Materials and Methods 

The research was conducted at the Texas A & M Agricultural Experiment 

Station in Burleson County beginning in June of 2002.  The research site 

consisted of a pair of adjacent 1.42-ha fields (designated as treated or 

untreated) on a 0.9% slope of Ships clay (very fine, mixed, active, thermic 

Chromic Hapludert).  A commercial planter was used to transplant 10-cm square 

plugs of Tifway bermudagrass (Cynodon dactylon X Cynodon transvaalensis) 

sod on 30-cm centers prior to sampling of soil and manure applications on each 

field.  Turfgrass America, a commercial sod production company, provided the 

equipment, plugs, and labor for planting.  
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Composted dairy manure was topdressed on the treatment field when 

turfgrass reached approximately 50% coverage after planting and then again 

after the first sod harvest.  Seventy-five kg ha-1 P was applied to the compost 

treated field for the first crop and 127 kg ha-1 P was applied for the second crop 

(APPENDIX, Table 1).  Rates, dates, and methods of fertilizer N applications on 

fields were designed to simulate commercial sod production practices and 

promote rapid turfgrass growth.  Equal rates of inorganic nitrogen fertilizer (21-0-

0) were applied to each field, 394 kg ha-1 N for the first crop and 327 kg ha-1 N 

for the second crop.  The treated field received composted dairy manure and the 

untreated field was the control.   

Runoff from rainfall and irrigation events was collected on the western 

edge of each field in gutters that channeled water to H-flumes for automated 

measurements and sampling.  The slope and surface drainage of each field 

were similar to commercial sod production fields.   The plots were bordered and 

separated on all but the west end by 45-cm tall earthen dikes.  The dikes 

confined surface runoff within each field for collection in the gutter system. 

Volumes and sediment and nutrient loads of runoff were quantified for each 

rainfall event (Choi et al., 2003).    

Soil samples were taken from 12 locations distributed on a grid pattern 

within each field.  A hydraulic soil probe (Giddings Machine Company, Ft. 

Collins, CO) was used to sample soil to a 90 cm depth at each grid point on 

dates before any composted manure applications and after each sod harvest.  
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Sampling was conducted on these dates to look at composted dairy manure 

effects before and after application for each crop.  The cores were divided into 

depth intervals of 0 to 5 cm, 5 to 15 cm, 15 to 30 cm, 30 to 60 cm, and 60 to 90 

cm.  The 0 to 5 cm depth was of particular interest because most of the runoff 

losses of phosphorus originate from soil-water interaction within the 0.1 to 0.3 

cm depth of soil (Sharpley, 1985).  In addition to the core samples at grid points, 

soil was sampled from the 0 to 5 cm depth and composited from random 

locations in each field in coordination with dates of each major runoff event.   

 All soil, plant, and manure samples were analyzed by the Texas A & M 

University Soil, Water, and Forage Testing Lab.  Analysis was performed to 

determine the amount of total and/or plant extractable nutrients in each sample.  

Total P analysis of soil and composted dairy manure was performed using 

Kjeldahl digestion (Parkinson and Allen, 1975).  Plant-available P was extracted 

in acidified ammonium acetate–ethylenediamine tetraacetic acid (NH4OAc-

EDTA) (Hons et al., 1990).  Both total P in digests and extractable soil P were 

measured through inductively-coupled optical emission spectroscopy (ICP).   

Cumulative water infiltration rate, bulk density, and plant available water 

holding capacity of soil were measured to evaluate compost and turfgrass 

effects on soil physical properties.  Cumulative infiltration was measured using 

30.5 cm diameter x 12.5 cm tall x 1.59 mm thick steel infiltration rings driven 3-4 

cm into the soil.  A 6.5 cm x 100 cm PVC riser pipe with a small hose and valve 

located on the bottom was positioned near the infiltration ring.  The ring was 
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then filled with water to a depth that covered the turf canopy (approximately 3 to 

4 cm in depth).  At this point, a timer was started.  Time (sec) and amount of 

water added was recorded and expressed per hour each time water from the 

riser pipe was added to the ring to maintain the water level.  Cumulative 

infiltration readings were at locations on the grid pattern used for soil sampling.  

Cumulative infiltration was measured one month prior to the harvest of the first 

crop, one month after compost application, and one month prior to harvest of the 

second crop.  These dates were selected in order to compare composted dairy 

manure affects with complete grass coverage for each crop (one month prior to 

harvest) as well as look at the effects of the compost shortly after application 

with partial grass coverage(one month after compost application).  In addition, 

soil water content at each infiltration site was recorded. 

Bulk density (Pb) measurements were taken in conjunction with the dates 

in which 0 to 90 cm soil samples were taken.  Bulk density was measured on 

each date soil was sampled to the 90 cm soil depth.  Soil bulk density was 

computed as the quotient of oven dry weight divided by the volume of depth 

increments of each soil core sampled at the 12 grid locations.  The inside 

diameter of the soil probe used to sample soil was 3.7 cm.     

A ceramic plate moisture extraction apparatus was used to measure soil 

water content at field capacity and the wilting point.  Procedures described by 

Klute (1986) were used.  Soil samples were collected one month after 

composted dairy manure application during re-growth of the second sod crop 



 18

while compost from the recent application was still visible on the soil surface.  

Plant available water holding capacity of the soil was computed as the difference 

between the field capacity (33.3 kPa) and permanent wilting point (1500 kPa).  

Soil samples were removed from 0 to 2.5 cm and 2.5 to 5.0 cm depths to 

separate the effects of the manure on the soil surface from depths out of contact 

with the manure layer.  

Four 10 cm diameter plugs were sampled from each of the 12 grid points 

during harvest of each sod field.  Sod samples were analyzed at the June 2003 

harvest and then again at the November 2003 harvest.  Soil was washed from 

the turf shoots and roots shortly after sampling.  Plant and soil components were 

dried, ground, and analyzed to quantify the amounts of total and extractable P 

forms removed during sod harvest. 

The Paired-T Tests of the Means Procedure was used for statistical 

analysis of effects of composted dairy manure on soil properties between fields 

(SAS Institute Inc., 2002).  The two growth and harvest periods were treated as 

replications.  The Analysis of Variance (ANOVA) Procedure was used to 

evaluate variations in soil sampled to the 90-cm depth before manure application 

and after each sod harvest.  The General Linear Models (GLM) procedure was 

used to analyze variation of water infiltration rate.  A P value ≤ 0.05 was 

regarded as significant.    
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Results and Discussion 

Manure P Import/Export 

Analyses of soil and plant components of 10-cm plugs were used to 

quantify phosphorus (P) export of turfgrass sod grown with and without 

composted dairy manure (Table 1).  Total P analysis of the soil fraction of sod 

samples indicated that more P was removed in each sod harvest than was 

applied in manure.  In addition, P was removed in the plant component of sod.  

The sum of soil P and total plant P removed in the first sod harvest from the 

treated field was 3.4 times greater than the P rate applied in composted manure.   

The second sod harvest removed 1.5 times more manure P than was applied.  

The large total soil P content of fields before composted manure 

applications precluded significant differences in total P of harvested sod 

between treated and untreated fields for either harvest.  In contrast, soil-test P in 

soil of sod harvested from the compost-treated field was greater (P=0.05) than 

from the untreated field at both harvests.   

 

Soil Physical Properties 

Compost application did not affect cumulative water infiltration and bulk 

density, but increases in plant available water holding capacity of the 0 to 2.5 cm 

depth of soil on the treated field were observed.  Soil water content was similar 

each time cumulative water infiltration was measured.  The lack of statistical 

differences (P=0.05) between fields or dates indicated antecedent soil water 
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content was more determinant of water infiltration rate than topdressings of 

composted manure on turfgrass.  Similar to water infiltration rate, bulk density 

did not vary (P=0.05) between fields or dates at the depths sampled.  Yet, 

expected increases in Pb were observed with increasing depth (P=0.05).  

Topdressing of composted dairy manure did increase (P=0.05) plant-

available water holding capacity in samples removed from the 0 to 2.5 cm depth 

increment during re-growth of the second sod crop.  Plant available water 

holding capacity in this surface layer was 19.39% for soil sampled from the 

treated field and 18.25% for the untreated field.  Within the 2.5 to 5.0cm depth, 

plant available water was 18.45% for the treated field and 17.89% for the 

untreated field.  Yet, differences at the 2.5 to 5.0-cm depth were not significant 

(P=0.05).  If the higher water-holding capacity of the treated field at the 0-2.5 cm 

depth is attributed to topdressing of composted dairy manure, a similar effect at 

depths below 2.5 cm would not be expected without incorporation of the 

compost.      

 

Conclusions 

 The harvest of turfgrass sod can effectively remove P applied in 

composted dairy manure.  Soil P present before composted manure applications 

can also be removed with sod as indicated by untreated field export data.  The 

most significant observation is that more P was exported than imported.   
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 Another important observation in this project was that significantly more 

soil-test P was exported from the compost treated field than the untreated field 

for each crop.  This was not the case with total soil P, indicating that much of the 

manure P is in the plant-available form. 

 There was little observed change in cumulative water infiltration, bulk 

density, and plant available water holding capacity due to compost application.  

The application rates of composted dairy manure topdressed on turfgrass fields 

were not large enough to affect cumulative infiltration or bulk density.  

Topdressing of composted dairy manure during re-growth of the second sod 

crop increased plant available water holding capacity in the 0 to 2.5 cm layer, 

but not at deeper depths.  Incorporation of composted manure is necessary for 

improvements in plant available water water-holding capacity at depths below 

the surface layer of soil.   
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CHAPTER IV 

COMPOSTED DAIRY MANURE EFFECTS ON PHOSPHORUS 

THROUGH THE SOIL PROFILE 

 

 Accumulation of residual soil P is a major concern associated with 

repeated annual applications of raw or composted dairy manures during forage 

and row-crop production.  In contrast to typical crop production practices, build 

up of manure P in soil is minimized during turfgrass sod production.  In addition 

to harvest of plant material during sod harvests, a shallow layer of soil is 

removed.  A substantial portion of the applied manure nutrients can be 

contained in this sod layer.  Even after sod removal, P accumulation in soil 

below the harvested layer of sod could have negative, long-term environmental 

impacts.  

 Vietor et al., (2002) reported recovery of 46% to 77% of applied manure P 

in a single sod harvest from replicated plots on sandy soils topdressed with up to 

200 kg ha-1 P year-1.  Increases in soil-test P below the harvested sod layer 

indicated the balance of applied P remained in plots.  In contrast to the plot-

scale studies on sandy soils, a substantial portion of Texas sod production 

occurs on fine-textured, clay soils.  In addition, N fertilizer and irrigation rates on 

commercial sod fields are typically greater than those applied to the replicated 

plot studies (Vietor et al., 2002).  Manure P export and losses during turfgrass 
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sod production need to be quantified and evaluated under field-scale conditions 

similar to commercial sod production on fine-textured soils in Texas. 

 There are two main objectives of this part of the research.  One is to 

determine whether or not phosphorus would accumulate in the surface layer of 

turfgrass sod when composted dairy manure is applied at rates of 75 kg ha-1 and 

127 kg ha-1.  The second is to determine whether or not phosphorus will leach 

into and accumulate in the soil below the surface layer when composted dairy 

manure is applied to turfgrass sod. 

 

Materials and Methods 

The research was conducted at the Texas A & M Agricultural Experiment 

Station in Burleson County beginning in June of 2002.  The research site 

consisted of a pair of adjacent 1.42-ha fields (designated as treated or 

untreated) on a 0.9% slope of Ships clay (very fine, mixed, active, thermic 

Chromic Hapludert).  A commercial planter was used to transplant 10-cm square 

plugs of Tifway bermudagrass (Cynodon dactylon X Cynodon transvaalensis) 

sod on 30-cm centers prior to sampling of soil and manure applications on each 

field.  Turfgrass America, a commercial sod production company, provided the 

equipment, plugs, and labor for planting.  

Composted dairy manure was topdressed on the treatment field when 

turfgrass reached approximately 50% coverage after planting and then again 

after the first sod harvest.  Seventy-five kg ha-1 P was applied to the compost 
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treated field for the first crop and 127 kg ha-1 P was applied for the second crop 

(APPENDIX, Table 1).  Rates, dates, and methods of fertilizer N applications on 

fields were designed to simulate commercial sod production practices and 

promote rapid turfgrass growth.  Equal rates of inorganic nitrogen fertilizer (21-0-

0) were applied to each field, 394 kg ha-1 N for the first crop and 327 kg ha-1 N 

for the second crop.  The treated field received composted dairy manure and the 

untreated field was the control.   

Runoff from rainfall and irrigation events was collected on the western 

edge of each field in gutters that channeled water to H-flumes for automated 

measurements and sampling.  The slope and surface drainage of each field 

were similar to commercial sod production fields.  The plots were bordered and 

separated on all but the west end by 45-cm tall earthen dikes.  The dikes 

confined surface runoff within each field for collection in the gutter system. 

Volumes and sediment and nutrient loads of runoff were quantified for each 

rainfall event (Choi et al., 2003).    

Soil samples were taken from 12 locations distributed on a grid pattern 

within each field.  A hydraulic soil probe (Giddings Machine Company, Ft. 

Collins, CO) was used to sample soil to a 90 cm depth at each grid point on 

dates before any composted manure applications and after each sod harvest.  

Sampling was conducted on these dates to look at composted dairy manure 

effects before and after application for each crop.  The cores were divided into 

depth intervals of 0 to 5 cm, 5 to 15 cm, 15 to 30 cm, 30 to 60 cm, and 60 to 90 
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cm.  The 0 to 5 cm depth was of particular interest because most of the runoff 

losses of phosphorus originate from soil-water interaction within the 0.1 to 0.3 

cm depth of soil (Sharpley, 1985).  In addition to the core samples at grid points, 

soil was sampled from the 0 to 5 cm depth and composited from random 

locations in each field in coordination with dates of each major runoff event.   

 All soil, plant, and manure samples were analyzed by the Texas A & M 

University Soil, Water, and Forage Testing Lab.  Analysis was performed to 

determine the amount of total and/or plant extractable nutrients in each sample.  

Total P analysis of soil and composted dairy manure was performed using 

Kjeldahl digestion (Parkinson and Allen, 1975).  Plant-available P was extracted 

in acidified ammonium acetate–ethylenediamine tetraacetic acid (NH4OAc-

EDTA) (Hons et al., 1990).  Both total P in digests and extractable soil P were 

measured through inductively-coupled optical emission spectroscopy (ICP).   

The Paired-T Tests of the Means Procedure was used for statistical 

analysis of effects of composted dairy manure on soil properties between fields 

(SAS Institute Inc., 2002).  The two growth and harvest periods were treated as 

replications.  The Analysis of Variance (ANOVA) Procedure was used to 

evaluate variation of total and soil-test P in soil sampled to the 90-cm depth 

before manure application and after each sod harvest.   
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Results and Discussion  

A main objective of this research was evaluate changes in total and soil-

test P in the surface layer (0 to 5 cm) and depths below 5 cm after composted 

dairy manure applications during turfgrass sod production on a fine-textured soil.  

Changes in total and soil-test P within the 0 to 5 cm depth integrate effects of 

organic matter and nutrients applied in compost and growth of turfgrass 

(APPENDIX, Tables 2 and 3).  Changes at depths below 5 cm are indicative of 

water percolation and leaching and transformation of nutrients from the surface 

layer since the compost was not incorporated into the soil (APPENDIX, Tables 4 

and 5).   

Total soil P in the 0 to 5 cm depth increased from before to after 

applications of composted dairy manure for each sod crop on the treated field 

(APPENDIX, Table 2).  The mean increase due to manure application was 75% 

of the mean total P rates applied on the two sod crops.  Yet, a comparison of 

total soil P between sampling dates after the second sod harvest and before 

manure application on the first sod crop indicated all of the applied manure P 

was exported with the sod layer removed in the two harvests (APPENDIX, Table 

2).  The reduction of total soil P (62 kg ha-1) between dates spanning the two 

sod crops indicates “mining” of P occurred in the soil depth below the sod layer.  

The total P concentrations in soil sampled before re-growth of the second sod 

crop (June 10, 2004) could be outliers or overestimate soil total P for both 

treated and untreated fields.  Variation of total soil P in the 0 to 5-cm depth of the 
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untreated field supports the supposition that samples removed before manure 

application on the second crop yielded overestimates or outliers (APPENDIX, 

Table 2).  The total soil P amounts measured during the first sod crop and after 

the second crop remained consistent on the untreated field.  The large P content 

measured in soil at the start of the second sod crop occurred without application 

of P or other treatments. 

Similar to total soil P, composted manure applications increased soil-test 

P on the treated field during production of both sod crops (APPENDIX, Table 3).  

The mean increase of soil-test P was 42% of the total P applied on the first sod 

crop and 67% of total P applied to the second crop.  The percentage of inorganic 

P in composted dairy manure is typically greater than 60% and a large 

percentage of the inorganic P is water-soluble (Sharpley and Moyer, 2000).  The 

increases in soil-test P after applications of manure could account for a large 

portion of the inorganic P in composted dairy manure applications.  Similar to 

total P removal, sod harvests reduced soil-test P content in soil remaining below 

the sod layer to levels observed before manure application on the treated field.  

In addition, soil-test P content after the second sod harvest was 11% lower (not 

significant at P=0.05) than P content before manure was applied to the first sod 

crop.   

Variation of soil-test P in the 0 to 5 cm depth of untreated field was similar 

to that for total P and fluctuated little during the course of both crops.  Notice the 

untreated field value before re-growth of the second crop did not increase in 
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relation to other sampling dates.   This is a further indication that the, Table 2 

(APPENDIX) value for total soil P preceding the second crop was erroneous, 

especially since both, Table 2 and Table 3 (APPENDIX) data came from the 

same soil samples on the respective dates.   

Total and soil-test P concentrations within soil depth increments below 5 

cm indicated whether or not P leached into or accumulated in the soil below the 

surface layer (APPENDIX, Tables 4 and 5).  Analysis of variance (SAS, 2004) 

was used to compare total and soil-test P among depths sampled at the 12 grid 

points within each treated and untreated fields.  A paired T Test (SAS, 2004) 

was used to compare treatments within each sampling date.  Dates served as 

replications.  

Mean total soil P at each depth in the compost treated field numerically 

decreased from the sampling date “before compost” (September 13, 2002) to 

the date “after harvest 2” date (November 10, 2003).  Clearly, topdressing of 

manure P did not increase total soil P at depths below the harvested sod layer 

after either harvest date.  In contrast, the reverse trend of total soil P over dates 

was observed at each depth of the untreated field.  It is noteworthy that total soil 

P did not differ between treatments at each depth after either harvest, despite 

greater total soil P at all depths in the treated field before manure was applied.  

The unusually high mean total P at all depths of the untreated field “after harvest 

1” coincide with the high values in the 0 to 5-cm depth in Table 2 (APPENDIX) 

for this field and date, further suggesting an error in lab analysis. 
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The trend of soil-test P over the three sampling dates was similar to total 

P (APPENDIX, Table 5).  The difference in soil-test P between treated and 

untreated fields diminished after each sod harvest compared to the sampling 

date before manure applications.  All but the 5 to 15 cm depth of the untreated 

field changed little over the two harvest dates of sod.   

The compost used on the treatment field had a soil-test phosphorus  

(STP)/total phosphorus (TP) ratio of 0.49.  This ratio was much higher than that 

of the soil on the research field.  A comparison of the STP/TP ratio of the 

compost to the STP/TP ratio in the 0 to 5 cm layer of soil for both fields over time 

was used as an indicator of whether or not the compost applications increased 

the percentage of total phosphorus that was in the plant available or soil-test 

form (APPENDIX, Table 6).  An increase of this ratio in the soil would be 

noteworthy because it has been demonstrated that there can be a direct 

relationship between soil-test P and P in runoff (Choi et al., 2003).   

  Though the treated field mean values appear higher after compost 

applications began, the difference was only significant for the two second crop 

dates.  In fact, if an unusually high untreated field, second crop, before 

application total phosphorus value proved to be erroneous, the fields could 

potentially only be significantly different on one date.  After the second harvest, 

the means for each field return to being very similar. 
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Conclusions 

 As long as sod is harvested after each manure application at phosphorus 

rates similar to this study on a fine-textured clay soil, the applied phosphorus will 

be effectively removed.  Analyses of total and soil-test P at all depths indicate 

manure P does not leach from the harvested layer of sod grown in the fine-

textured soil. 

Topdressing of manure P on turfgrass sod fields at the rates used in this 

study will not be detrimental to soil or groundwater quality beneath the sod layer.  

Moreover, when manure P is applied to turfgrass sod at rates similar to this 

study and harvested at regular intervals, removal or “mining” of P from the 

antecedent soil P can occur. 

 The lack evidence for phosphorus leaching into the soil profile can be 

attributed, at least in part, to the soil type, moisture levels, and compost 

application methods.  The soil is a Ships clay with approximately 33% clay 

content.  Adsorption capacity increases with increasing clay content (Hansen et 

al., 2002).  Due to the intensive growing practices of sod, whereby soil moisture 

levels must be kept high to insure adequate growth, the soil is rarely allowed to 

crack or develop fissures that would allow great preferential flow paths into the 

soil profile.  These cracks or fissures can be a way for phosphorus leaching to 

occur (Gachter et al., 1998; Heckwrath et al., 1995; Hooda et al., 1999).  Since 

the soil adsorptive capacity is high, preferential flow paths are the only likely 

means for P leaching.  By not incorporating the composted dairy manure into the 
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soil, the P stays on the surface and is more readily removed during the sod 

harvest.  In addition, there is no conclusive evidence that composted dairy 

applications increased the ratio of soil-test P to total P below the sod layer.      

According to the results of this study, composted dairy manure can be 

used in turfgrass sod production at P rates up to 125 kg ha-1 without causing 

environmental damage from accumulated manure P. 
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CHAPTER V 

SOD FIELD ENTERPRISE FINANCIAL ANALYSIS 

 

Handling manure waste can require modern equipment and facilities, be 

expensive, and be constrained by environmental regulations.  Current manure 

management practices include long-term storage in lagoons, hauling from 

dairies to composting facilities, and land application for production of silage or 

hay crops near dairy facilities.  A more profitable option for use of at least a 

portion of manure could be a turfgrass sod production enterprise at the dairy.  

The manure could be composted or applied raw.  In either case, attention to 

nutrient loading is essential. 

This integration of confined animal feeding operations (CAFO’s) and 

turfgrass sod production could be feasible for several reasons.  First, many 

dairies have land that could be converted from silage production into turfgrass 

production.  Pasture land would not be a good prospect because of potential 

competition of the previous forage grass with the turfgrass sod.  Second, if a 

dairy is using some portion of their available land for crop production, they will 

likely have access to irrigation water.  Irrigation is a requirement for turfgrass sod 

production.  Third, dairies typically own medium size tractors with hydraulic 

loaders for handling manure, feeding, and dairy maintenance activities.  An 

existing inventory of equipment needed for sod production, such as tractors, will 

reduce the capital investment and depreciation costs allocated to the sod 
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production enterprise.  Finally, a small sod enterprise cannot sustain a full crew 

of laborers by itself.  However, both labor and management costs can be shared 

between the turfgrass and dairy enterprises.  

 

Methods 

 In order to analyze the feasibility of adding a turfgrass sod enterprise to a 

dairy, a scenario was created based on financial numbers generated during  

production of two crops of Tifway bermudagrass sod.  Inputs and management 

practices for the two sod crops were similar to commercial sod production, which 

contributed to realistic estimates of investment and production costs for the sod 

enterprise in this scenario. 

 

Land 

It is assumed the dairy will own land used for the sod enterprise.  For 

example, sod could be introduced on a field previously used to grow silage for 

the dairy cattle.  Similar to the scale of the research field in this study,  7 acres or 

2.84 hectares of a field used for silage production could be converted into 

turfgrass sod.   Land rent will be charged to the sod enterprise at $125.00 per 

acre per crop.  The dairy will likely have to purchase more silage, hay, or feed 

from an outside source to replace silage produced on land taken out of feed crop 

production.  Previous studies in Virginia indicated the high profitability of 

turfgrass sod outweighed the cost of forage needed to replace production on 
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land reallocated to turfgrass (Vietor et al., 2003).  The soil (Ships clay) and slope 

(1%) of the research field is assumed identical to this production scenario.  A 

custom operator will use specialized grass sprigging or plugging equipment to 

plant the Tifway bermudagrass.  Planting cost is an item listed in Table 7 

(APPENDIX).  

 

Irrigation 

Similar to the research field, it is assumed that irrigation water will come 

from a well previously used to irrigate the field.  Installation costs for a larger 

pump needed to operate the irrigation system are included among capital 

investments for the field (APPENDIX, Table 7).  In addition, a new hose reel will 

be purchased to provide over-head sprinkler rather than flood irrigation 

(APPENDIX, Table 7).   

 

Equipment 

 It is assumed that the dairy has at least two tractors in the 50-100 

horsepower range, with at least one having a front-end loader.  The dairy also 

has a manure spreader for raw manure.  In this scenario, raw manure scraped 

from the dairy dry lot will be used and applied through the manure spreader in 

place of composted manure.  Sprayer equipment used for weed and insect 

control in silage will be used for the sod.  In addition, it was assumed the 

equipment inventory of the dairy includes implements needed to prepare the 
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land for the sod.  The depreciation and maintenance cost of equipment 

borrowed from the dairy’s inventory were allocated to Equipment Rental 

expense under operating expenses for each sod crop (APPENDIX, Tables 8 and 

9).  Rented items include: tractors, disks, field cultivator, land plane, tiller, box 

blade, and utility vehicle.    

Several equipment items unique to turfgrass sod production will need to be 

purchased.  Equipment costs for a sod harvester, all-terrain forklift, finishing 

mower, roller, and a used flatbed pickup were itemized for this scenario under 

capital investments (APPENDIX, Table 7).  In addition, Internal Revenue Service 

(2003) depreciation rules were used to allocate equipment costs to each sod 

harvest. 

 

Investment Costs 

It is assumed that the total investment cost of $50,338.50 will be covered 

with a loan at 9% interest over a 10-year amortization period (APPENDIX, Table 

7).  The annual interest expense is allocated based on the time required to 

produce each sod crop (APPENDIX, Tables 2 and 3).   

 

Return  

Based on the time required to establish or re-grow a sod crop on the 

research field, it was assumed sod could be harvested once every 8 months or 

1.5 harvests year-1.  From Lard (2001), an upper-end wholesale price of $1.00 
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yard-2 was assumed.  Wholesale prices ranging from $0.80-$1.00 yard-2 are 

common for Tifway bermudagrass in the turfgrass industry.  Both $0.80 and 

$1.00 yard-2 were used to compute gross revenue per area unit and per field 

(APPENDIX, Tables 8 and 9). 

 

Expense Categories 

 The Operating Expenses (APPENDIX, Tables 8 and 9) are the variable 

costs of operating the sod enterprise.  The labor figure is based upon a $7.00 

hourly wage.  The number of hours required for the sod enterprise was 

estimated from Lard (2001) and maintenance records from the research field.  

Labor costs for the first sod crop (APPENDIX, Table 8) were greater than the 

second crop (APPENDIX, Table 9) due to labor required for land preparation, 

more frequent irrigation, weed control during establishment, and a longer 

growing period.  Labor fringe represents Social Security payments of 6.2% and 

Medicare payments of 1.45% (IRS, 2003).  In addition, worker’s compensation 

insurance payments of $9.50 per $100.00 of wages plus a policy fee of $150.00 

per year were included in labor fringe.  The annual policy fee was prorated to 

represent the eight month duration of each sod crop.  Fuel, fertilizer, and 

chemical costs are based on costs incurred for the research field.  Equipment 

Rental expense for the research field comprised equipment leases from a local 

equipment dealer and daily rental charges for equipment provided by either 

Texas Agricultural Experiment Station Farm Services or rental companies.  
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Electricity expense was estimated from monthly operating charges for the 

electric irrigation well pump used on the research field.  Parts and Supplies 

expenses were assumed to be equal to those incurred during management of 

the research field.  Similarly, miscellaneous expense for the dairy scenario is set 

equal to that for each sod crop produced during the research project, but soil 

analysis fees related to the soil nutrient research in this project were partially 

excluded.  This is because a sod producer would not need to perform such 

extensive or costly soil analysis. .   

 The Capital Expenses category represents fixed costs of operation 

(APPENDIX, Tables 8 and 9) calculated for the eight months required to 

produce each sod crop.  Interest expense for the eight-month duration of each 

crop is based upon the total investment cost of $50,338.50 covered with a loan 

at 9% interest for a 10-year amortization period.  The expenses listed for 

equipment, irrigation pump, irrigation pipe, and planting are depreciation costs 

for capital expenditures (APPENDIX, Tables 8 and 9). 

  Harvesting, Marketing, and Business expenses were classified as Other 

Expenses, separate from Operating and Capital Expenses.  These other 

expenses were estimated per sod crop from Lard (2001).  The sum of Operating, 

Capital, and Other Expenses, presented as Total Expenses, was compared to 

potential revenue for each sod crop (APPENDIX, Tables 8 and 9) .  The 

estimates of total revenue are based on the assumption that sod harvests are 

not 100% efficient.  Although each acre could yield 4840 yd2, only 4100 yd2 are 



 38

assumed harvestable (Lard, 2001).  Harvest inefficiencies include “ribbons” of 

un-harvested turfgrass left between each strip of harvested sod to allow faster 

re-growth, deferred harvest of immature areas, and obstructed access to certain 

areas of the field because of irrigation wells or other objects.  Total revenue was 

calculated for two selling prices, $0.80 yd-2 and $1.00 yd-2.  Breakeven figures 

for each crop were also included.  Net income was computed as Total Revenue 

minus Total Expenses for both sod prices.     

 

Results and Discussion 

This analysis is unique because it involves adding one agricultural 

enterprise to another existing agricultural enterprise.  Much of the previous 

financial analysis work involving turfgrass sod production has been done by 

focusing on the sod enterprise as a stand alone business rather than an 

extension of another.  However, analysis performed by others still has relevance 

for comparison.   

For purposes of comparison, four other studies were reviewed:  Economic 

Feasibility of Turfgrass-Sod Production by Adrian, Loyd, and Duffy (1995), 

Turfgrass-Sod Production in Alabama: Economics and Marketing by Cain, 

Adrian, Duffy, and Guertal (2003), New Organic Production Method for Hybrid 

Bermudagrass, Estimated Costs per Acre and Per Square Yard by Lard (2001), 

and Economics of Turfgrass Establishment by Martin and Wells (2001). 
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All had data for a 100 acre sod farm with the exception of Martin and 

Wells (2001), who performed analysis on a 40 acre farm.  The larger size of 

these operations compared to the 7 acre dairy farm enterprise allows for greater 

economies of scale.  Each had revenue data for bermudagrass sod sold at 

$1.00 yd-2 as well as establishment costs.   

The major ways in which the dairy farm scenario is different from the 

other analyses are: smaller size, connectivity to another enterprise, single  

turfgrass species rather than multiple species grown, percent harvestable sod 

per acre estimations, production timescale for establishment and re-

establishment after each harvest, and finally two of the others were on a per 

year basis rather than a per crop basis as with this study.   

All but Lard (2001) looked at the use of other turfgrass species such as 

zoysiagrass or centipedegrass in addition to bermudagrass.  Harvestable sod 

per acre estimations ranged from 3800 yd2 (Martin and Wells, 2001) to 4100 yd2 

(Cain et al., 2003).  Cain et al. (2003) used an establishment period of 9 months 

and a re-establishment period of 6.8 months.  Adrian et al. (1995) used an 

establishment period of 10 months and a re-establishment period of 4 to 6 

months.  Martin and Wells (2001) estimated establishment to take 3 to 4 months.  

The dairy farm scenario had only Tifway bermudagrass, a 4100 yd2 per 

acre harvestable estimation, and a twelve month establishment period and a 5 

month re-establishment period.  Each of these differences contributed to 

different cost and revenue figures. 
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 Refer to Table 10 (APPENDIX) for establishment crop cost, revenue, and 

profit comparison information between analyses.  It is important to keep in mind 

that accurate comparisons are difficult due to inconsistencies in the way each 

analysis was performed.  However, the dairy farm scenario appears to be 

competitive with the other analyses in spite of the differences.   

 Neither cost savings related to manure disposal for the dairy nor 

commercial fertilizer savings are accounted for in the analysis.  The cost of 

hauling manure off the dairy to composting facilities could be substantially larger 

than costs of application to the turf field.  A more detailed analysis of potential 

cost sharing for manure and wastewater disposal, labor, marketing and 

business, and other expense categories could reveal additional economic 

benefits of turfgrass sod production near dairy CAFO’s. 

 

Conclusions 

 Based upon the given scenario and assumptions made, it could be 

moderately to highly profitable for a dairy to operate a small turfgrass sod 

production field in combination with the dairy.  Estimated costs and revenues 

(APPENDIX, Tables 8 and 9) for the initial and second crop indicate profitability 

if the sod is sold for $1.00 yd-2.  At the $0.80 yd-2 selling price, a loss is reported 

for the initial crop but improves significantly for the second crop   

 There are many variable costs and great flexibility in the capital expense 

category, which would enable an operator to increase profit or incur greater loss.    
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The opportunity for a profitable sod enterprise in conjunction with a dairy 

appears feasible and deserves further investigation.  Manure-grown sod can 

expand and diversify the earning potential of dairy CAFO’s. 
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CHAPTER VI 

DISCUSSION AND CONCLUSIONS 

 

Discussion 

Composted dairy manure can be an environmentally sound component of 

a turfgrass sod production system if handled properly.  With increasing pressure 

on dairies to more carefully manage manure nutrients, applications to turfgrass 

sod should be considered.  The high value of turfgrass per acre in comparison 

with more traditional crops can help offset added costs of manure applications.  

By removing soil and plant material during a sod harvest, more nutrients can be 

removed than with a more traditional crop where only the aerial portions of the 

plant are harvested (Vietor et al., 2002).  Composted dairy manure used in a 

turfgrass sod production system also provides supplemental nutrients and 

organic matter, likely improving turfgrass performance.  Additional analysis was 

performed to determine if a dairy to could establish a small sod field on-site to 

dispose of some manure and make a profit at the same time.   

 

Objectives 

This research study had four main objectives: 

1) Quantify P export through sod in relation to soil P and imports of manure 

P. 
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2) Correlate soil-test phosphorus levels with phosphorus concentrations and 

losses in runoff water. 

3) Quantify chemical and physical properties of soil within and below the sod 

layer with and without composted dairy manure. 

4) Develop enterprise budgets for sod production with and without 

composted dairy manure. 

 

Conclusions 

Objective 1 

The harvest of turfgrass sod can effectively remove P applied in 

composted dairy manure, as well as soil P present before composted manure 

applications can be exported in the layer of soil removed with sod.  The most 

significant observation is that more P was exported than imported.   

 Another important observation in this project was that significantly more 

soil-test P was exported from the compost treated field than the untreated field 

for each crop.  This was not the case with total soil P, indicating that much of the 

manure P is in the plant available form. 

 As long as sod is harvested after each manure application at phosphorus 

rates similar to this study on a fine-textured clay soil, the applied phosphorus will 

be effectively removed.  Analyses of total and soil-test P at all depths indicate 

manure P does not leach from the harvested layer of sod grown in the fine-

textured soil.   
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Refer to Table 1 (APPENDIX) for data related to this objective. 

 

Objective 2 

Research was conducted on the turfgrass sod field used in this study, by 

faculty and graduate students in the Department of Biological and Agricultural 

Engineering at Texas A & M University.  The composted dairy manure treated 

field (75 kg ha-1 P applied) lost 5.303 kg ha-1 dissolved P and 1.065 kg ha-1 

particulate P in runoff water for a total of 6.368 kg ha-1 P.  The untreated field (no 

compost) lost 3.034 kg ha-1 dissolved P and 0.546 kg ha-1 particulate P in runoff 

water for a total of 3.580 kg ha-1 P.  The difference of 2.820 kg ha-1 P between 

the fields is the amount of P lost during runoff that can be attributed to the 

composted dairy manure application. 

In addition to quantifying mass loss in runoff, Choi (et al., 2003) also 

compared soil-test P to total P losses in runoff.  A linear relationship between 

increasing soil-test P and increasing P in runoff was noted.  There is no 

conclusive evidence that composted dairy applications increased the ratio of 

soil-test P to total P.      

Phosphorus runoff from composted dairy manure treated sod fields can 

be a problem as indicated by this recent research.  However, proper 

management and application practices can minimize environmental risks. 

Management practices that can lessen likelihood for manure nutrient runoff  

include proper timing of application, avoiding excessive rates, including soil 
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incorporation methods, having adequate percent of grass cover at the time of 

application, avoiding application to steep slopes, and giving attention to the 

source or type of manure (i.e. nutrient content) (Hansen et al., 2002).  

Refer to Table 6 (APPENDIX) for data related to this objective.      

 

Objective 3 

This study produced little evidence to suggest that phosphorus leached 

into the soil profile.  The soil is a Ships clay with approximately 33% clay 

content.  Adsorption capacity increases with increasing clay content (Hansen et 

al., 2002).  Due to the intensive growing practices of sod, whereby soil moisture 

levels must be kept high to insure adequate growth, the soil is rarely allowed to 

crack or develop fissures that would allow great preferential flow paths into the 

soil profile.  These cracks or fissures can be a way for phosphorus leaching to 

occur (Gachter et al., 1998; Heckwrath et al., 1995; Hooda et al., 1999).  Since 

the soil adsorptive capacity is high, preferential flow paths are the only likely 

means for P leaching.  By not incorporating the composted dairy manure into the 

soil, the P stays on the surface and is more readily removed during the sod 

harvest.  

Topdressing of manure P on turfgrass sod fields at the rates used in this 

study will not be detrimental to soil or groundwater quality beneath the sod layer.  

Moreover, when manure P is applied to turfgrass sod at rates similar to this 
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study and harvested at regular intervals, removal or “mining” of P from the 

antecedent soil P can occur. 

According to the results of this study, composted dairy manure can be 

used in turfgrass sod production at P rates up to 125 kg ha-1 without causing 

environmental damage from accumulated manure P.  

There was little observed change in cumulative water infiltration, bulk 

density, and plant available water holding capacity.  The application rates of 

composted dairy manure topdressed on the treated field were not large enough 

to affect cumulative infiltration or bulk density.  Topdressing of composted dairy 

manure during re-growth of the second sod crop increased plant available water 

holding capacity in the 0 to 2.5 cm layer, but not at deeper depths.  Incorporation 

of composted manure is necessary for improvements in plant available water 

holding capacity at depths below the surface layer of soil.   

Refer to Tables 2, 3, 4, and 5 (APPENDIX) for data related to this 

objective. 

 

Objective 4 

Based upon the given scenario and assumptions made, it could be 

moderately to highly profitable for a dairy to operate a small turfgrass sod 

production field in combination with the dairy.  Estimated costs and revenues 

(APPENDIX, Tables 8 and 9) for the initial and second crop indicate profitability 
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if the sod is sold for $1.00 yd-2.  At the $0.80 yd-2 selling price, a loss is reported 

for the initial crop but improves significantly for the second crop   

 There are many variable costs and great flexibility in the capital expense 

category, which would enable an operator to increase profit or incur greater loss.    

The opportunity for a profitable sod enterprise in conjunction with a dairy 

appears feasible and deserves further investigation.  Manure-grown sod can 

expand and diversify the earning potential of dairy confined animal feeding 

operations (CAFO). 

 Refer to Tables 7, 8, 9, and 10 (APPENDIX) for data related to this 

objective. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 48

REFERENCES 
 

Adrian, J.L. Jr., Loyd, W.M., and Duffy, P.A.  1995.  Economic feasibility of 
turgrass-sod production.  Bulletin 625.  Alabama Agricultural Experiment Station, 
Auburn University.   
 
Angle, J.S.  1994.  Sewage sludge compost for establishment and maintenance 
of turfgrass.  p. 45-52.  In A.R. Leslie (ed.) Handbook of integrated pest 
management for turf and ornamentals.  Lewis Publ., Boca Raton, FL. 
 
Breeuwsma, A., and Silva, S.  1992.  Phosphorus fertilization and environmental 
effects in The Netherlands and Po region (Italy).  Report 57.  Agricultural 
Research Department.  Wageningen, The Netherlands:  The Winand Staring 
Centre for Integrated Land, Soil, and Water Research.  
 
Brooks, P.C., Heckrath, B., DeSmet, J., Hofman, G., and Vanderdeleelen, J.  
1997.  Losses of phosphorus in drainage water.  p. 253-271.  In Tunney, H., 
Brookes, O.T., and Johnston, A.E. (eds).  Phosphorus loss from soil to water.  
Center for Agriculture and Biosciences International, NewYork. 
 
Burwell, R.E., Schuman, G.E., Heinemann, H.G., and Spomer, R.G., 1977.  
Nitrogen and phosphorus movement from agricultural water sheds.  J. Soil 
Water Conserv.  32:226-230. 
 
Cain, J.J. Adrian, J.L., Duffy, P.M., and Guertal, E.  2003.  Turfgrass-sod 
production in Alabama: Economics & marketing.  Bulletin 653.  Alabama 
Agricultural Experiment Station,  Auburn University.   
 
Choi, I., Munster, C.L., Vietor, D.M., White, R.H., Richards, C.E., Stewart, G.A., 
and McDonald, B.  2003.  Use of turfgrass sod to transport manure phosphorus 
out of impaired watersheds.  p. 518-526.  In Proceedings of the TMDL, 
Environmental Regulations II.  8-12 Nov. Albuquerque, NM.  ASAE. 
 
DePinto, J.V., Young, T.C., and Martin, S.C.  1981.  Algal-available phosphorus 
in suspended sediments from lower Great Lakes tributaries.  J. Great Lakes 
Res.  7:311-325 
 
Dorich, R.A., Nelson, D.W., and Sommers, L.E.  1985.  Estimating algal 
available phosphorus in suspended sediments by chemical extraction.  J. 
Environ. Qual.  7:566-570. 
 
Edwards, D.R., and Daniel, T.C.  1994.  Quality of runoff from fescuegrass plots 
treated with poultry litter and inorganic fertilizer.  J. Environ. Qual.  23:579-584. 
 



 49

Garbrecht, J., and Sharpley, A.N.  1992.  Sediment-phosphorus relationships in 
watersheds. p. 601-610.  In P. Larson (ed.)  Sediment management.  
Proceedings 5th Int. Symp. on River Sedimentation, Karlsruhe, Germany.  5-9 
Apr. Univ. of Karlsruhe Press. 
 
Gatcher, R., Ngatiah, J.M., and Stamm, C.  1998.  Transport of phosphate from 
soil to surface waters by preferential flow.  Environ. Sci. and Tech.  32(13):1865-
1869. 
 
Gaudreau, J.E., Vietor, D.M., White, R.H., Provin, T.L., and Munster, C.L.  2002.  
Response of turf and quality of water runoff to manure and fertilizer.  J. 
Environmental Quality.  31:1316-1322. 
 
Gracey, H.I.  1984.  Availability of phosphorus in organic manures compared 
with monammonium phosphate.  Agric. Wastes.  11:133-141. 
 
Gross, C.M., Angle, J.S., Hill, R.L., and Welterlen, M.S.  1991.  Runoff and 
sediment losses from tall fescue under simulated rainfall.  J. Environ. Qual.  
20:604-607. 
 
Hansen, N.C., Daniel, T.C., Sharpley, A.N., and Lemunyon, J.L.  2002.  The fate 
and transport of phosphorus in agricultural systems.  J. Soil Water Conserv.  
6:408-417. 
 
Heckrath, G., Brookes, P.C., Poulton, P.R., and Goulding, K.W.T., 1995.  
Phosphorus leaching from soils containing different phosphorus concentrations 
in the Broadbalk Experiment.  J. Environ.  Qual.  24(5):904-910. 
 
Hons, F.M., Larson-Vollmer, L.A., and Locke, M.A.  1990.  NH4Oac-EDTA-
extractable phosphorus as a soil test procedure.  Soil Sci.  149:249-256. 
 
Hooda, P.S., Moynagh, M., Svoboda, I.F., Edwards, A.C., Anderson, H.A., and 
Sym, G.  1999.  Phosphorus loss in drainage flow from intensively managed 
grassland soils.  J. Environ. Qual.  28(4):1235-1242. 
 
Hooda, P.S., Rendell, A.R., Edwards, A.C., Withers, P.J.A., Aitken, M.N., and 
Truesdale, V.W.  2000.  Relating soil phosphorus indices to potential 
phosphorus release to water.  J. Environ. Qual.  28(4):1235-1242. 
 
Internal Revenue Service.  2003.  Publication 225, Farmer’s tax guide.  
(http:www.irs.gov/publications/p225/index.html) (site accessed 28 September, 
2004) 
 



 50

Lard, C.  2001.  New organic production method for hybrid bermudagrass.  
(Report)  Department of Agricultural Economics.  Texas A&M University, College 
Station. 
 
Martin, S.W. and Wells, W.  2001.  Economics of turfgrass establishment.  
Mississippi Agricultural and Forestry Experiment Station.  Mississippi State 
University.  22(18):1-5   
 
McBride, M.  1994.  Environmental chemistry of soils.  Oxford University Press, 
New York. 
 
Mikkelsen, R.L. and Gilliam, J.W.  1995.  Animal waste management and edge 
of field losses.  Animal Waste and the Land Application Interface.  Lewis 
Publishing., Boca Raton, FL. 
 
Murray, J.J.  1981.  Utilization of composted sewage sludge in sod production.  
p. 544.  In R.W. Sheard (ed)  Proceedings 4th Int. Turfgrass Research Conf., 
Univ. of Guelph, O.N. Ontario Agric. College, Univ. of Guelph, and the Int. 
Turfgrass Soc., Guelph. 
 
Oloya, T.O. and Logan, T.J.  1980.  Phosphate desorption from soils and 
sediments with varying levels of extractible phosphate.  J. Environ. Qual.  9:526-
531. 
 
Parkinson, J.A. and Allen, S.E.  1975.  A wet oxidation procedure suitable for the 
determination of nitrogen and mineral nutrients in biological material.  Commun. 
Soil Sci.  Plant Anal.  6:1-11 
 
Peters, R.H.  1981.  Phosphorus availability in Lake Memphremagog and its 
tributaries.  Limnol. Oceanogr.  26:1150-1161. 
 
Schuman, G.E., Spomer, R.G., and Piest, R.F.  1973.  Phosphorus losses from 
four agricultural watersheds on Missouri Valley loess.  Soil Sci. Soc. Am. Proc.  
37:424-427. 
 
Sharpley, A.N., Tillman, R.W., and Syers, J.K.  1977.  Use of laboratory 
extraction data to predict losses of dissolved inorganic phosphate in surface 
runoff and tile drainage.  J. Environ. Qual.  6:33-36. 
 
Sharpley, A.N., Ahuja, L.R., and Menzel, R.G.  1981.  The release of soil 
phosphorus to runoff in relation to the kinetics of desorption.  J. Environ. Qual.  
10:386-389. 
 



 51

Sharpley, A.N.  1985.  Depth of surface soil runoff interaction as affected by 
rainfall, soil slope and management.  Soil Sci. Soc. Am. J.  49:1010-1015. 
 
Sharpley, A.N., Smith, S.J., and Naney, J.W.  1987.  The environmental impact 
of agricultural nitrogen and phosphorus use.  J. Agric. Food Chem.  36:812-817. 
 
Sharpley, A.N., and Smith, S.J.  1990.  Phosphorus transport in agricultural 
runoff: The role of soil erosion. p. 351-366.  In Boardman, J., Foster, I., and 
Dearing, J. (eds.)  Soil Erosion on Agricultural Land.  John Wiley, London, 
England. 
 
Sharpley, A.N., Smith, S.J., Jones, O.R., Berg, W.A., and Coleman, G.A.  1992.  
The transport of bioavailable phosphorus in agricultural runoff.  J. Environ. Qual.  
21:30-35. 
 
Sharpley, Andrew N., Daniel, T.C., and Edwards, D.R.  1993.  Phosphorus 
movement in the landscape.  J. Prod. Agric.  6:492-500. 
 
Sharpley, A.N.  1995.  Dependence of runoff phosphorus on soil phosphorus 
content.  J. Environ. Qual.  24(5):920-926. 
 
Sharpley, A.N.  1997.  Rainfall frequency and nitrogen and phosphorus runoff 
from soil amended with poultry litter.  J. Environ. Qual.  26(4):1127-1132. 
 
Sharpley, A.N., and Moyer, B.  2000.  Phosphorus forms in manure and compost 
and their release during simulated rainfall.  J. Environ. Qual.  29(5):1462-1469. 
 
Stamm, C. Fluhler, R. Gatcher, R. Leuenberger, J., and Wunderli, H.  1998.  
Preferential transport of phosphorus in drained grassland soils.  J. Environ.  
Qual.  27:515-522. 
 
Texas Natural Resource Conservation Commission.  2001.  Two maximum daily 
loads for phosphorus in the Upper North Bosque River (adopted February, 
2001).  (http://www.tnrcc.state.tx.us/water/quality/tmdl/bosque_tmdl.pdf)  
(verified 30 November 2003).  TNRCC, Austin. 
 
Vietor, D.M., Griffith, E.N., White, R.H., Provin, T.L., Muir, J.P., and Read, J.C.  
2002.  Export of manure phosphorus and nitrogen in turfgrass sod.  J. Environ. 
Qual.  31:1731-1738. 
 
Vietor, D.M., Bosch, D.J., Wolfe, M.L., White, R.H., and Munster, C.L.  2003. 
System for value-added export of manure nitrogen and phosphorus through 
turfgrass sod.  Annual Report. 



 52

(http://www.sare.org/reporting/report_viewer.asp?pn=LS00-117&ry=2003&rf=1) 
(Site accessed 11 September 2004)  USDA SARE, Southern Region. 
 
Walton, C.P., and Lee, G.F.  1972.  A biological evaluation of the molybdenum 
blue method for orthophosphate analysis.  Tech. Int. Ver. Limnol.  18:676-684. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 53

APPENDIX 

 TABLES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 54

Table 1.  Phosphorus Export Through Bermudagrass Sod 
 

 Manure P 
Applied Soil P Exported Plant P Exported 

Treatment  Total P Total P Soil-Test P Total P 
First  Sod Crop -----------------------------------  kg ha-1 -------------------------------------- 

Compost Treated 75 207 68* 47 
Untreated ---- 182 39 45 

Second Sod Crop ------------------------------------  kg ha-1 --------------------------------------- 
Compost Treated 127 159 75* 37* 

Untreated ---- 136 31 23 
 
* denotes significant difference at the 0.05 level between treatments  
-All phosphorus values are on a dry weight basis. 
-Analyzed using the MEANS procedure(paired T-TEST comparison) 
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Table 2.  Total Soil Phosphorus Levels in the 0 to 5 cm Layer before and 
after Composted Dairy Manure Applications to Bermudagrass Sod 

 
Treatment Before Application After Application 
First Sod Crop -----------------------------------------kg ha-1--------------------------------------- 

Compost Treated 426* 518* 
Untreated 335 327 

Second Sod Crop -----------------------------------------kg ha-1--------------------------------------- 
Compost Treated 416 469* (364†) 

Untreated 451 342 (357) 
 
* denotes significant difference at the 0.05 level between treatments 
† denotes significant difference at the 0.05 level between 9/13/02 and 11/10/03 data values. 
() indicates data from soil samples taken on 11/10/02 after the second sod harvest 
-Data was analyzed using the MEANS procedure(paired T-TEST comparison).   
-The dates on which the samples were taken are as follows:  first crop, before application=9/13/02, after 
application=5/1/03; second crop, before application=6/10/03, after application=9/16/03. 
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Table 3.  Soil-Test Phosphorus Levels in the 0 to 5 cm Layer before and after 
Composted  Dairy  Manure Applications to Bermudagrass Sod 

 
Treatment Before Application After Application 
First Sod Crop -----------------------------------------kg ha-1--------------------------------------- 

Compost Treated 103* 134* 
Untreated 87 85 

Second Sod Crop -----------------------------------------kg ha-1--------------------------------------- 
Compost Treated 108* 193* (92) 

Untreated 80 86 (85) 
 
* denotes significant difference at the 0.05 level between treatments 
() indicates data from soil samples taken on 11/10/02 after the second sod harvest 
-Data was analyzed using the MEANS procedure(paired T-TEST comparison).   
-The dates on which the samples were taken are as follows: first crop, before application=9/13/02, after 
application=5/1/03; second crop, before application=6/10/03, after application=9/16/03. 
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Table 4.  Total Phoshorus Main Effects below the  
Surface Layer by Sampling Date 

 
Before Compost After Harvest 1 After Harvest 2 

Treated Untreated Treated Untreated Treated Untreated  
--------------------------------------------------- mg kg-1 -------------------------------------------------- 

5-15 cm 521a* 393a 478a 495a 402a 443a 
15-30 cm 419b* 331b 445ab 474a 359a 389b 
30-60 cm 407b* 303bc 417bc 451a 365a 382b D

ep
th

 

60-90 cm 410b* 291c 382c* 465a 392a 354c 
 
* indicates significant differences between treatments at the 0.05 level 
-Data within each treatment was analyzed by depth using the ANOVA procedure.  Comparisons within each 
replication(date) between treatments at each depth was performed using MEANS procedure(paired T-TEST 
comparison). 
-The dates on which the samples were taken are as follows: before compost=9/13/02, after harvest 
1=6/10/03, and after harvest 2=11/10/03.  
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Table 5.  Soil-Test Phoshorus Main Effects below the  
Surface Layer by Sampling Date 

 
Before Compost After Harvest 1 After Harvest 2 

Treated Untreated Treated Untreated Treated Untreated    
------------------------------------------------- mg kg-1 --------------------------------------------------- 

5-15 cm 120a* 97a 109a* 91a 91a 92a 
15-30 cm 61b* 53b 60b 55b 55b 60b 
30-60 cm 48c 45c 50c* 45c 48b 52c* D

ep
th

 

60-90 cm 44c 40c 47c* 43c 63b 49c 
 
* indicates significant differences between treatments at the 0.05 level 
-Data within each treatment was analyzed by depth using the ANOVA procedure.  Comparisons within each 
replication(date) between treatments at each depth was performed using MEANS procedure(paired T-
TEST comparison). 
-The dates on which the samples were taken are as follows: before compost=9/13/02, after harvest 
1=6/10/03, and after harvest 2=11/10/03. 
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Table 6.  Soil-Test Phosphorus/Total Phosphorus Ratios (0 to 5 cm)  
            Corresponding to Composted Dairy Manure Applications    

                                                                 
Production cycle Sampling Treated Untreated 

1st crop Before application .242 (.028) .261 (.029) 

 After application .264 (.043) .256 (.029) 

2nd crop Before application .261 (.023) .179 (.022) 

 After application  .408 (.052) .253 (.019) 

 After harvest .253 (.026) .240 (.013) 
  
() indicates standard deviation of mean of sampling points on field grid 
-The dates on which the samples were taken are as follows:  first crop, before application=9/13/02, after 
application=5/1/03; second crop, before application=6/10/03, after application=9/16/03, after 
harvest=11/10/04. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 60

Table 7.  Capital Investments 
 

*Years Item Cost †Crops Cost Harvest-1

          Planting Costs 
5 Planting $1963.50 7.5 $261.80

          Equipment Costs 
5 1980 Chevrolet 1-ton, flatbed pickup $1500.00 7.5 $200.00

10 Used Brouwer, tractor-mounted slab 
harvester $15,000.00 15 $1000.00

10 Used Spyder all-terrain diesel forklift $12,000.00 15 $800.00
10 New Kifco hose reel $6500.00 15 $433.33
10 Rhino 100” 3-pt. finishing mower $2875.00 15 $191.67
10 7’ wide, 52” steel sod roller $3500.00 15 $233.33

Equipment Costs Total $41,375.00  $2858.33 
          Irrigation Pump & Pipe 
      20   4” submersible irrigation pump, pipe, risers $7000.00 30 $233.33
         Total Costs $50,338.50  $3353.46
 
*Recovery Period is based off of IRS Alternative Depreciation System 
†Number of crops is based on the assumption of harvesting a crop every 8 months, having 1.5 
harvests year-1 
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Table 8.  Establishment Crop Financial Summary 
 

Category $ Acre-1 $ Hectare-1 Total $ 
Operating Expenses †Labor $285.00 $704.95 $1,995.00 

 †Labor Fringe $54.30 $134.31 $380.10 
 *Fuel $68.11 $168.46 $476.74 
 *Fertilizer $122.63 $303.32 $858.40 
 *Chemicals $186.02 $460.12 $1,302.14 
 *Equipment Rental $768.60 $1,901.14 $5,380.22 
 †Electricity $171.43 $424.03 $1,200.00 
 *Parts $87.94 $217.51 $615.55 
 *Supplies $109.06 $269.76 $763.42 
 †Miscellaneous $70.96 $175.53 $496.74 

Capital Expenses †Interest (9%) $64.72 $160.09 $453.05 
 †Equipment $408.33 $1,010.01 $2,858.33 
 *Irrigation Pump & Pipe $33.33 $82.45 $233.33 
 †Planting $37.40 $92.51 $261.80 

Other Expenses ‡Harvesting $253.50 $627.03 $1,774.50 
 ‡Marketing & Business $480.00 $1,187.28 $3,360.00 
 ‡Land (taxes) $125.00 $309.19 $875.00 
 ‡Taxes and Insurance $150.00 $371.02 $1,050.00 

Total Expenses  $3,476.33 $8598.70 $24,334.32 
Total Revenue $0.80 yard-2 $3,280.00 $8,113.07 $22,960.00 
 $0.84 - $0.85 yard-2 (breakeven) $3,476.33 $8598.70 $24,334.32 
 ‡$1.00 yard-2 $4,100.00 $10,141.34 $28,700.00 
Net Income $0.80 yard-2 ($196.33) ($485.63) ($1,374.32) 
 $0.84 - $0.85 yard-2 (breakeven) $0.00 $0.00 $0.00 
 ‡$1.00 yard-2 $623.67 $1,542.64 $4,365.68 
 
Variable cost figures contained in Table 2 cover a period from June 2002 (planting) to June 2003 
(harvest).  Fixed costs are based upon the assumed 8 month growing season per crop. 
 
* actual project expense    
† some modifications made to actual project expense to fit scenario 
‡ figures obtained from Lard, 2001 
 
 
 
 
 
 
 
 
 
 



 62

Table 9.  Second Crop Financial Summary 
 

Category $ Acre-1 $ Hectare-1 Total $ 
Operating Expenses †Labor $245.00 $606.01 $1,715.00 

 †Labor Fringe $48.69 $120.44 $340.86 
 *Fuel $46.76 $115.66 $327.31 
 *Fertilizer $87.19 $215.65 $610.30 
 *Chemicals $133.27 $329.64 $932.88 
 *Equipment Rental $490.47 $1,213.17 $3,433.26 
 †Electricity $85.71 $212.01 $600.00 
 *Parts $71.52 $176.90 $500.64 
 *Supplies $27.78 $68.72 $194.47 
 †Miscellaneous $19.84 $49.08 $138.89 

Capital Expenses †Interest (9%) $64.72 $160.09 $453.05 
 †Equipment $408.33 $1,010.01 $2,858.33 
 *Irrigation Pump & Pipe $33.33 $82.45 $233.33 
 †Planting $37.40 $92.51 $261.80 

Other Expenses ‡Harvesting $253.50 $627.03 $1,774.50 
 ‡Marketing & Business $480.00 $1,187.28 $3,360.00 

 ‡Land (taxes) $125.00 $309.19 $875.00 
 †*Taxes and Insurance $150.00 $371.02 $1,050.00 
Total Expenses  $2,808.52 $6,946.86 $19,659.62 
Total Revenue $0.68 - $0.69 yard-2  (breakeven) $2,808.52 $6,946.86 $19,659.62 
 $0.80 yard-2 $3,280.00 $8113.07 $22,960.00 
 ‡$1.00 yard-2 $4,100.00 $10,141.34 $28,700.00 
Net Income $0.68 - $0.69 yard-2  (breakeven) $0.00 $0.00 $0.00 
 $0.80 yard-2 $471.48 $1,166.21 $3,300.38 
 ‡$1.00 yard-2 $1,291.48 $3,194.48 $9,040.38 
 
Variable cost figures contained in Table 2 cover a period from June 2003 to November 2003 
(harvest).  Fixed costs are based upon the assumed 8 month growing season per crop. 
 
* actual project expense    
† some modifications made to actual project expense to fit scenario 
‡ figures obtained from Lard, 2001 
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Table 10.  Economic Analysis Comparison for the Establishment Crop of 
Bermudagrass Sod Sold at $1.00 yard-2 

 Cost acre-1 Revenue acre-1 Profit acre-1

Adrian et al., 1995 $2610.37/$2782.04* not available† not available†
Cain et al., 2003 $3535.00 $735.00 ($2800.00)
Lard, 2001 $3302.80 $4100.00 $797.20

Martin and Wells, 2001 $2391.00‡ $3800.00 $1409.00

dairy farm scenario $3476.33 $4100.00 $623.67
 
* early season/late season establishment    
† The model used in this analysis was based on a seven year model and does not specify      
establishment crop return 
‡  excludes land and irrigation well costs. 
() indicates a loss 
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