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ABSTRACT

Determination of Petroleum Pipe Scale Solubility
in Simulated Lung Fluid. (August 2004)
Jason Roderick Cezeaux, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Ian S. Hamilton

Naturally occurring radioactive material (NORM) exists in connate waters and, under
the right conditions during oil drilling, can plate out on the interior surfaces of oil and
gas industry equipment. Once deposited, this material is commonly referred to as
“scale.” This thesis is concerned with the presence of **°Ra in scale deposited on the
inner surfaces of oil drilling pipes and the internal dose consequences of inhalation of

that scale once released.

In the process of normal operation, barium sulfate scale with a radium component
adheres to the inside of downhole tubulars in oil fields. When crude flow is diminished
below acceptable operational requirements, the pipe is sent to a descaling operation to be
cleaned, most likely by a method known as rattling. The rattling process generates dust.
This research investigated the chemical composition of that aerosol and measured the

solubility of pipe scale from three oilfield formations.

Using standard in-vitro dissolution experimental equipment and methods, pipe scale is
introduced into simulated lung fluid over a two-week period. These samples are
analyzed using quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS),
known for very low detection limits. Analysis reveals virtually no ***Ra present in the
lung fluid exposed to pipe scale. Sample measurements were compared against
background measurements using Student’s t test, which revealed that nearly all the

samples were statistically insignificant in comparison to the lung fluid blanks. This



statistical test proves within a 95% confidence interval that there is no ***Ra present in
the lung fluid samples. These results indicate that inhaled NORM pipe scale should be
classified as Class S and serve to further confirm the extreme insolubility of petroleum

pipe scale.

For dose calculations, the S classification means that the lung is the main organ of
concern. Radium-226 from petroleum pipe scale does not solubilize in the interstitial
lung fluid, and does not, therefore, enter the bloodstream via respiratory pathways.
Since there is no removal by dissolution, the 500 day biological half-life implied by the
S classification is based solely on the mechanical transport of *Ra out of the lungs by

phagocytosis or the mucociliary escalator.
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CHAPTER I

INTRODUCTION

PIPE SCALE

Origin of Petroleum Pipe Scale

Over the course of normal oilfield pumping operations, petroleum pipe scale can deposit
on the inside of down-hole pipes. Pipe scale consists of concentrated inorganic solids
such as barium sulfate, and has been shown to contain naturally occurring radioactive

materials (NORM), predominantly compounds of radium.

Naturally occurring radioactive material (NORM) is ever-present in the earth’s crust.
Uranium and its progeny nuclides leach into subsurface waters and are dissolved along
with the barium, calcium, and other dissolved elements. The daughter of concern in this
research is **°Ra. **°Ra is an intermediate nuclide in the decay of ***U as shown in

Figure 1. **°Ra decays through several nuclides to stable °°Pb, as shown in Figure 2.

Uranium and radium have opposite solubilities in sulfate- and chloride-rich brines.

Since chloride remains in solution over the ranges of pH possible in groundwater,
chloride leaching can remove radium from a subsurface formation while leaving other
nuclides behind (Cowen and Weintritt 1976, Wilson 1992). Under the correct
combination of thermodynamic, kinetic, and hydrodynamic conditions, minerals
precipitate out of solution and become scale (Hamlat 2003). Because it is chemically
analogous (Group II), radium also may become part of the scale by co-precipitation with
barium, strontium, and calcium salts (Hamlat 2001). Eventually, micronuclei are formed

and begin to agglomerate.

This thesis follows the style and format of Health Physics.
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Once critical cluster size is attained, scale, in a self-aggravating process, precipitates out
and adheres to the pipe interiors (Vetter 1975). Self-aggravation is a process in which,
as scale begins to precipitate out, the turbulence caused by the presence of scale causes

more scale to precipitate.

When scale buildup occludes oil flow through the pipe, the pipe is removed from the
well and sent to be cleaned. Due to the extremely insoluble nature of the scale, chemical
cleaning methods cannot be used. In one alternative method of cleaning, the tightly-
bound scale is ground out of the pipe with an auger-type bit mounted on an air motor.
The bulk of the ground scale is expelled from the opposite end of the pipe, shown in
Figure 3, creating a potential airborne radioactive material concern. It is this
phenomenon and associated personnel exposure pathways that prompted research in

lung fluid solubility as an important part of estimating doses from inhaled pipe scale.

Previous work has been done to determine the solubility of pipe scale in human
gastrointestinal fluid (Raabe 1996). Through this work and others, it has been shown
that barium sulfate scale is extremely insoluble, even in harsh acidic environments.
Based on these results, it is hypothesized that there will be very little dissolution of the
scale in simulated lung fluid. A definite classification for the dissolution half-life, the
time it takes for half of the inhaled material in the lungs to solubilize, does not exist for

pipe scale.



Figure 3. Scale released during dry pipe cleaning experiment.

LUNG DEPOSITION AND MODELING

Deposition in the Lung

Lung deposition and clearance are complex processes that involve many competing
chemical and mechanical factors. Clearance from the lung can be achieved via
dissolution or mechanical transport. Once inhaled, particles are first deposited in the
extracellular airway lining fluid. Particles that are dissolved in this fluid are transferred
into the blood. This absorption is the only process easily modeled in-vitro. Particles not
dissolved in the interstitial fluid in the first day are phagocytized by macrophages in the
airways and alveoli, then held in phagolysosomes (pH=4.5 to 5.5) until either the
material is dissolved or the cell dies. Because of the complex cellular transport
processes, there is no viable in-vitro test method to determine material movement via

this mechanism.



Some percentage of scale particles coming from pipe cleaning processes are respirable
(Hamilton, et al. 2004). These particles, once inhaled, are deposited in the lung. The
NORM components of the scale are then only biologically available as the barium

sulfate crystals are dissolved in the lung.

Lung Models

The use of material solubility has varied as the science has progressed. In 1959, the
International Commission on Radiation Protection (ICRP) issued Publication 2, “Report
of ICRP Committee IT on Permissible Dose for Internal Radiation.” This publication did
not define the anatomy of the respiratory tract, the kinetics of lung clearance, nor address
the dependence of clearance on the solubility of the material. Regardless, the ICRP 2
lung model was used to derive Maximum Permissible Concentrations (MPCs) in air that

were used for the next 30 years to calculate dose to a single “critical organ.”

In 1966, the Task Group on Lung Dynamics, headed by Owen Moss, developed a new
lung model. In 1979, ICRP issued Publication 30, “Limits for Intakes of Radionuclides
by Workers” (ICRP 1979). This report was based on the 1966 Task Group on Lung
Dynamics and was designed to improve on the ICRP 2 model while retaining its
simplicity. The model clearly defined anatomy and kinetics and addressed solubility.
Solubility was addressed through the use of Class D, W, and Y. Class D is defined as
material that is cleared from the pulmonary region with a biological half-time less than
10 days. Class W is defined as material that is cleared from the pulmonary region with a
biological half-time more than 10 days, but less than 100 days. Class Y is defined as
material that is cleared from the pulmonary region with a biological half-time more than
100 days. These classifications refer to total clearance (mechanical and absorption to
blood). An important change with regard to solubility from ICRP 2 to ICRP 30 was the
meaning of “insoluble.” In ICRP 2, the term “insoluble” was used to mean that no

material reached the blood, and therefore, no material was deposited in any organs or



tissues. In the ICRP 30 model, even some Class Y material is allowed to reach the blood

(through compartments a, ¢, and e).

In 1994, ICRP issued Publication 66, “Human Respiratory Tract Model for Radiological
Protection” (ICRP 1994). This lung model was the most complete model to date. The
purpose behind the ICRP 66 lung model was to be as realistic as possible. That is, the
model was designed to be more realistic than conservative. Anatomy and physiology,
including lung afflictions such as smoking and asthma, were addressed in detail for the
whole population. In terms of solubility, this model enabled knowledge of the
dissolution behavior of specific materials to be used in the calculation of lung dose
(ICRP 1994). Mechanical clearance of particles to the lymph nodes and gastrointestinal
tract depended on the material. This movement via phagocytosis and the mucociliary
escalator was built into the model. Absorption to blood was material-specific and was
classified as fast (F), moderate (M), and slow (S). These classifications referred solely
to absorption to blood, as particle transport processes and absorption to blood are seen as
competitive processes. For this reason, in-vitro lung solubility experiments, which do
not attempt to model mechanical clearance, are readily adapted to the F/M/S
classification system. One of the major advances of the ICRP 66 lung model was the

ability to incorporate time-dependent dissolution data into the model.

Figure 4 shows the anatomical regions of the ICRP 66 respiratory tract model. In this
model, ET denotes extrathoracic regions such as the nasal passages, mouth, pharynx, and
larynx. BB compartments are the trachea and main bronchi (airway generations 0-8),
where deposited material is cleared via ciliary function. The bronchiolar region is
indicated by bb; this region consists of the bronchioles and terminal bronchioles (airway
generations 9-15). LN denotes lymphatics and lymph nodes that either drain to the
extrathoracic region (LNgr) or the thoracic region (LNty). Finally, Al indicates the

alveolar-interstitial region. This region consists of respiratory bronchioles, alveolar



ducts and sacs with their alveoli, and the interstitial connective tissue (airway

generations 16 and beyond).
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Figure 4. Anatomical regions of the ICRP 66 Respiratory Tract Model (ICRP 1994).

These same regions are utilized in Figure 5, the ICRP 66 overall compartment lung
model that shows time-dependent particle transport from each compartment and
absorption to blood. This model allows for time-dependent transport rates and

absorption. However, most material transport requires no more than a single constant



absorption rate. In this figure, there are three routes that deposited material could take
into the blood. These three routes differ by the particle state and stay time. Particles can
be absorbed to blood in their initial state or a transformed state, but both states have the
same clearance rates (i.e. (1-fp)s,=(1-fp)s;). Bound material will then be absorbed by the

blood at its own rate sy,
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Figure 5. Overall respiratory tract clearance model (ICRP 1994).

The two most common internal radioactive material exposure scenarios are inhalation
and ingestion. It is in these two manners that radioactive material may enter the blood
stream and distribute throughout the body. In inhalation, material may move from the
alveolar-interstitial region into the many pulmonary capillaries there. In ingestion,
radioactive material may be absorbed from material that enters the GI tract. Ingestion of

radioactive material may occur on its own, but no inhalation intake is solely an



inhalation uptake. Because of mechanical removal from the lung, namely the
mucociliary escalator, inhalation exposures are de-facto ingestion exposures, as well.
The mucociliary escalator moves foreign material to the pharynx to be swallowed, at

which point the material enters the GI tract as an ingestion uptake.

Solubility Studies

The many parameters of solubility studies have been optimized through decades of use.
This optimization is based on comparison of in-vitro lab results with in-vivo solubility
studies when possible. Respiratory tract solubility experiments have been predominantly
performed with uranium ore/yellowcake or plutonium oxide dusts. Through a history of

trials, certain experimental details have become almost standard.

The first experimental component is the selection of lung fluid stimulant. Owen Moss
issued a note in 1979 regarding the best materials to use for serum ultrafiltrate (SUF)
(Moss 1979). This work was based on Gamble’s solution and has been used ever since.
Comparison to the actual constituents of human lung fluid as analyzed by Diem and
Lentner shows a very close approximation (Dennis 1982). The material in question is
placed into the SUF with filters as a barrier to prevent the sample from dispersing in the
solution. This “filter sandwich” is then secured by a Teflon® clamp and submerged in
the SUF. The SUF is changed out at a specified time interval (Eidson 1980). The

sample may be placed horizontally or vertically in the solution.

Many other experimental variations were addressed by Miglio, et al. in 1977 (Miglio
1977). In this work, they looked at filter position (horizontal vs. vertical), lung fluid
movement (static vs. flowing), and fluid amount (100 mL vs. 250 mL). Results of this
work showed that these variables did not affect the experimental outcome. The only
experimental variables that changed the results were the presence of a polydisperse

aerosol and methods in which the aerosol was produced.
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Solubility studies should be performed for each specific compound that may be inhaled.
One compound of radium, for example, may not dissolve in the same manner as another.
This may change their biological half-times and result in over- or under-estimation of
dose to the body. This effect has been seen even within the same chemical compound
with different isotopes. In his 1987 paper, Ryan found that 2**PuO, transferred very
differently from **PuO, (Ryan 1987).

ICP-MS

Inductively coupled plasma mass spectrometry (ICP-MS) has been used as an analysis
method for ultratrace detection since the 1980°s. This system has become a powerful
tool because of its extremely high sensitivity and short measurement times.
Additionally, ICP-MS samples require much less chemical preparation than other

sampling methods.

Samples go through a rigorous path in ICP-MS. A peristaltic pump channels a sample
into the nebulizer, which converts the liquid sample to an aerosol that is suspended in the
plasma carrier gas (argon). This aerosol goes through the spray chamber and into the
center channel of the plasma torch. The plasma is generated by passing argon through a
series of concentric quartz tubes (the plasma torch, shown in Figure 6) that are wrapped

at one end by a radiofrequency (RF) coil.

Scott-type
spray
chamber

-

... ]

\ “ ‘ ‘
Alumina
injector

l+———— Torchbox tube

Demountable Demountable
torch torch
adapter /

4

Demountable /

torch
interface

Figure 6. Schematic diagram of a quartz plasma torch. (Montaser 1998)
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Energy supplied to the coil by the RF generator couples with the argon to produce the
plasma, which operates at a temperature around 6000 °C. Coil layout is shown in Figure
7. As the sample droplets flow through the plasma torch, sufficient energy is added to
dry them to a solid, and then sublimate them. The extremely high temperature of the
plasma completely breaks apart molecules in the sample. Atoms are ionized in the

plasma.

Load Coil

Torch “Ground

Figure 7. Schematic diagram of the RF coil used to produce an inductively coupled

plasma. (Taylor 2001)

After being focused by the ion lens, a charged metallic cylinder, the ions are separated
by their mass-to-charge ratio (m/Z) in the mass spectrometer. This is accomplished
through the use of the quadrupole. The quadrupole mass spectrometer sorts ions by the
m/Z ratio and allows only one mass to pass through to the detector at any given time. To
do this, the quadrupole is set at the correct frequencies to guide ions with the selected
m/Z between the four poles, while ions with the incorrect m/Z are ejected from the
quadrupole. A quadrupole analyzer is shown in Figure 8. Despite the fact that the
quadupole analyzer only allows one mass through, its rapid scanning speed allows the

instrument to see from m/Z=1 to m/Z=240 in less than 0.1 seconds.
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Figure 8. Schematic diagram of a quadrupole mass analyzer. (Montaser 1998)

After the selected ions exit the quadrupole mass analyzer, they are incident on the
dynode of the mass detector. As with common photomultiplier tubes, a series of
dynodes allows for signal amplification until a measurable pulse is created. The dynode
amplification process is shown in Figure 9. Counting these pulses allows calculation of

the number of ions that struck the first dynode.
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Figure 9. Schematic diagram of a discrete dynode electron multiplier. (Montaser 1998)

In a typical quantitative analysis, liquid standards with known concentrations are
analyzed and the results produce a calibration curve. The unknown samples are

compared to the calibration curve to determine the unknown concentration.

ICP-MS is very similar to ICP-Optical Emission Spectrometry (ICP-OES) and Graphite
Furnace Atomic Absorption (GFAA) in terms of ion production. However, ICP-OES
and GFAA systems identify analytes via measurement of emitted light. The ICP-MS
system detects and measures the analyte ions themselves. This allows for lower

detection limits and the ability to determine individual isotopes of each element.

ICP-MS is not an unproven technique in the detection of radionuclides. When used to
measure radionuclide concentrations, ICP-MS has excellent detection limits. In the
proceedings of “The Second Symposium on Applications of Inductively Coupled
Plasma-Mass Spectrometry to Radionuclide Determinations,” held in March of 1998, the
American Society for Testing and Materials (ASTM) highlights the use of ICP-MS for
detection and quantification of 234U, 23 8U, PTe, 23 7Np, actinides, and fission products
(Morrow 1998). In addition to these papers, numerous others indicate the viability of

ICP-MS use in the determination of radionuclides, in which detection limits in the
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fg-mL'1 range are not unheard of. In the detection of 2¥py, 2%py, and **' Am, Pointurier
et al. obtained results below the fg mL™ range (Pointurier 2004). ICP-MS has also seen

. . 226
use in detection of

Ra in environmental samples and drinking water (Kim et al. 1999,
Hodge 1994). The extremely low detection limits are due to the large masses, and

therefore relatively easy identification, associated with many long-lived radionuclides.
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CHAPTER II
METHODS AND MATERIALS
DISSOLUTION

Defining the Source Term
To account for the chemical and radiological variance between oilfields, scale samples
from three geographically separate oilfields in Texas and Louisiana were analyzed in

these procedures. These three formations will be referred to as “Lake Sand” (LS), “Mud

Lake” (ML), and “West Delta” (WD).

Understanding particle sizes and what is respirable for inhaled aerosols is important for
developing an understanding of an inhalation scenario. Dust released by rattling
operations has only a small percentage of respirable particles (Hamilton, et al 2004). It
was necessary, therefore, to produce the particles for this research. Using a ball mill,
existing scale particles with activity median aerodynamic diameter (AMAD) less than
105 pm were crushed to AMAD < 10 um. Confirmation of this size reduction was
accomplished for all three formations using three methods. A light microscope provided
initial evidence of the crushed-particle size. A view of particles under the light
microscope is shown in Figure 10. The light microscope images confirmed that the
particles were being crushed by the ball mill. More accurate particle size data were then
obtained using an environmental scanning electron microscope (ESEM). A view of the
scale under the ESEM is shown in Figure 11. The data obtained from the ESEM further
confirmed particle diameter, but particle AMAD was needed. To accomplish this, scale
samples were analyzed with a Coulter Counter. The results of this analysis showed

particle size to be 7.1 £ 0.4 um AMAD.



16

Figure 10. Pulverized scale particles under a light microscope.

Once confirmed to be respirable, the scale particles were analyzed via x-ray fluorescence
(XRF) to determine elemental composition. This analysis confirmed large amounts of
barium, along with sulfur, calcium, and strontium, or (BaCaSr)SO4. A typical example
of results obtained through the use of XRF is shown in Figure 12. The iron peaks in this
spectrum are indicative of rust from inside the pipe. Radiochemistry results obtained
from the Radioanalytical Branch of the Radiation Surveillance Division at Brooks Air
Force Base showed **°Ra concentrations of 910 + 10 pCi g, 1.8+ 0.02 nCi g, and 1.6
+0.01 nCi g in scale from Lake Sand, Mud Lake, and West Delta, respectively. These

results are included in Appendix C.
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Figure 11. Scanning electron micrograph of pulverized petroleum pipe scale particles

used in this solubility study.
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Figure 12. An example of a spectrum obtained from the XRF process.

In ICRP 30, a “standard” particle size, that on which dose calculations are based, is 1 pm
AMAD. In ICRP 66, this standard particle size is 5 um AMAD. Attempts were made to
pulverize the scale down to this range, but this was not possible with the available ball
mill. This fact speaks to the tremendous energy and work that are required to break this
material down into smaller, respirable particles. Another interesting observation is that

the physical diameter closely approximates the AMAD of the respirable particles.

In-Vitro Model

Once the source term was defined, the dissolution in the human lung was modeled by
using a lab simulant for serum ultrafiltrate (SUF). Serum ultrafiltrate (lung fluid) serves
as part of an air-blood barrier in the lung. For an inhaled particle to get into the blood, it
must dissolve through this barrier. It is exactly for this reason that the solubility of pipe

scale in lung fluid is of concern.
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Knowing how long it takes to get from the lungs to the blood is important for dose
calculations. Once the material solubilizes in the lung fluid, it enters the bloodstream

and can deposit in other organs. In this case, if the **°

Ra entered the bloodstream, it
would relocate into the bones, causing the bones (and eventually the red bone marrow)
to receive dose. If, however, the material does not enter the bloodstream, the lung

remains the primary organ of concern.

Lung fluid dissolution trials have been done for many years. Most work in the past has
been centered on uranium yellowcake or plutonium solubility. In these previous works,
a standard simulant for SUF was developed. The simulated SUF was based on the work
of Gamble (1967) and for this experiment, the ingredients and mixing procedure were
referenced from NUREG/CR-6419 (Metzger 1996). Molar concentrations of chemicals
in the SUF are listed in Table 1.

Table 1. Chemical composition of simulated SUF.

Chemical | Molar Concentration
NaCl 0.116 M
NH4Cl 0.010 M
NaHCO; 0.027 M
Glycine 0.005 M
L-cysteine 0.001 M
Na Citrate 0.0002 M
CaCl, 0.0002 M
H,SO4 0.0005 M
NaH,POq4 0.0012 M
DTPA 0.0002 M
ABAC 50 ppm
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Two of these chemicals, DTPA and ABAC, are not present in actual serum.
Diethylenetriaminepentaacetic acid (DTPA) is a chelating agent used to decrease the
amount of dissolved actinide ions sticking to the walls of the dissolution container.
Alkylbenzyldimethyl ammonium chloride (ABAC) is used as an antibacterial agent. All
salts used in the SUF were reagent grade and the water was distilled and deionized. In
addition to matching the chemical make-up of lung fluid, temperature and pH were

controlled to match body conditions of 37 °C and pH=7.3.

To create the interface between the scale and the SUF, standard dissolution equipment
was used (Kanapilly et al. 1973, Miglio et al. 1977). Equipment setup and sampling
followed NUREG/CR-6419 (Metzger 1996), a published procedure concerning
solubility testing for actinides on air filters. Scale was placed on top of a 37 mm, 0.4 um
pore size Gelman GN-4 filter, and covered with another clean filter to create a “filter
sandwich.” The total radium activity on the filters ranged from 16.8 Bq to 32.8 Bq.
This sandwich was placed in the filter holder assembly shown in Figure 13. This holder
was oriented vertically in 200 mL of static SUF with a constant gas flow of 5% CO; to
maintain pH. Both the beaker and the filter holder were made of non-corrosive plastic
(Teflon®) and the beaker was covered to prevent evaporation losses. This setup is
shown in Figure 14. This solution was changed out every hour for the first day, every

day for the first week, and every week for the remainder of the month.
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Figure 13. Teflon® filter holder (unassembled and assembled).

One problem that was encountered was that the filters did not hold up to a full month of
submersion in the lung fluid. After two weeks, each filter ruptured, cutting the
experiment short by two weeks. It was hypothesized that the ruptures were due to
mechanical stress caused by the filter holders. Attempts to change the holder
configuration did not solve this problem. Caution was taken to end the dissolution trial
as soon as signs of rupture were seen so as to prevent loose scale from getting into the

lung fluid samples.
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Figure 14. Dissolution experiment setup.

ANALYSIS

ICP-MS Setup

Once the dissolution trials were completed, the lung fluid samples were analyzed for
2°Ra by quadrupole inductively coupled mass spectrometry (Q-ICP-MS). ICP-MS
measurements were performed with an “ELAN DRC II”” (PerkinElmer SCIEX) equipped
with a quadrupole mass spectrometer. The solution was pumped by a peristaltic pump
(internal three channel pump) and the nebulizer was of the concentric quartz Meinhold-
type. The aerosol produced was directed through a quartz cyclonic spray chamber into a
quartz plasma torch. Additional argon was supplied to the torch as coolant and as extra
support for the plasma. The plasma was maintained at 1400 W. A concise listing of

machine parameters is in Table 2. Blank and standard solutions prepared with 1% HNO;
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were used to determine the sensitivity and stability of the system under normal

conditions. The ICP-MS was calibrated with uranium standard solutions.

Table 2. ICP-MS Parameters
RF Forward Power 1400 W

Argon gas flow

Plasma 15 L min™
Auxiliary 1.2 L min™
Nebulizer 0.95 L min”
Sampling Cone Ni, 1.0 mm aperture
Skimmer Cone Ni, 0.75 mm aperture
Nebulizer Type Concentric Quartz
Meinhard-type
Solution Uptake 1.3 mL min™’
Dwell Time 50 ms
Number of Scans 6
Channels 1
Scanning mass 226.025 m/Z

The sensitivity levels at m/Z=226 and 238 were assumed to be the same for two reasons.
First, the ionization potentials are 5.277 keV for radium and 6.1 keV for uranium, so
both are low enough to assume that ionization differences are not significant in the argon
plasma. Second, both masses are relatively close together and in the region of the mass
spectrum that shows little mass bias. Using this calibration, it was determined that the

detection limit for the analysis was 226 fCi.
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Background

Since the ICP-MS system had such high sensitivity, ultrapure reagents, standards, and
blanks were used: ultrapure HNOs (J.T. Baker), barium stock plasma standard solutions
10 mg L' (Specpure, Alfa Aesar), multi-element stock standard solution containing ***U
(TEXASAM-STD-2A, Inorganic Ventures, Inc.), and ultrapure water with a resistivity
of 18.2 MQ-cm (Milli-Q, Millipore). Each sample was run with an internal standard
solution containing **Bi and '"*Rh (6020ISS, Inorganic Ventures, Inc.) to correct for
any variation in the ICP-MS signal caused by environmental changes and environmental
effects. Internal standards also serve to confirm normal operation from sample to
sample. Measurements of the internal standards should stay relatively constant within a

sample group. Internal standard measurement confirmations are given in Appendix B.

Sampling

The lung fluid samples contained 10,000 ppm of salts. To prevent suppression of the
signal by the abundant salts in solution, each sample was diluted to 10% of the original
strength with 1% HNOs (Olivares 1986). Rinsing with blank solutions between sample
measurements was employed to suppress any memory effect and to avoid any cross-

contamination by the sample probe.

To gain a more complete data set, each sample was analyzed in pulse mode by ICP-MS
six times. These repetitions are called “replicates.” Additionally, each scale formation

was run in duplicate, resulting in two dissolution data sets per formation.

ICP-MS vs. PERALS

The original scope of this project was to use Photon-Electron Rejecting Alpha Liquid
Scintillation (PERALS). PERALS is an advanced chemical procedure that involves
sample concentration via co-precipitating *°Ra, metathesizing the sulfate to carbonate,

dissolving the carbonate, and extracting the radium from this solution. The sample is
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then counted on a very low background detector that uses pulse shape discrimination to

reject counts from incident y and [ radiation.

Being so chemistry-intensive, PERALS samples take on the order of six hours to
prepare. The sample then counts in the detector for an hour. ICP-MS samples required
five minutes of preparation, and six replicate measurements were made in four minutes.
The speed of throughput through ICP-MS and the lack of dependence on advanced
chemistry procedures while maintaining a low detection limit made it the preferable

analysis procedure.
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CHAPTER III
RESULTS

The software associated with the ICP-MS system reports the mean of six replicates from
each sample along with the relative standard deviation (RSD). The raw data obtained
from the ICP measurements have been included in Appendix A. These spreadsheets also

include the statistical analyses.

RADIUM

Examination of Data

Upon examination of the ICP-MS analysis results, the **°Ra concentrations in the
samples were comparable to those in the lung fluid samples that had not been exposed to
scale. The initial goal was to obtain a dissolution curve based on the amount of
dissolved **°Ra in the SUF sample. Since it appeared that there were no results above
the detection limit of 226 fCi, statistical analysis was used to confirm whether or not the
samples exposed to scale were statistically significant in comparison to the blank SUF

samples.

Statistical Significance

Student’s t test allows for the determination of statistical significance. This statistical
test is a comparison of analytical results order to confirm whether both samples contain
the same amount of the measured analyte. By comparing the post-treatment sample to
the mean background, a confidence interval can be ascertained. The background mean
and standard deviation were calculated using the weighted mean and standard deviation

formulas shown below (Cember 1996). First, the weighting factor is determined by:

Wi :—2.

O

The weighted mean is then defined as:

v 2M,

"Xw
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The standard deviation associated with this mean is then given by:

1
Oy, = .
W, + W, +... 4+ W,

For the blank samples, the weighted mean was 2.96 + 0.288 cps.

The sample results were then compared to this weighted mean and standard distribution.
Student’s t test is performed by first calculating the relative error for a given confidence

interval, Tcac (Martin 2000):

= |I’1 _r2|
calc m

r; and r, are count rates and o and o, are the standard deviations of r; and 15,

where,

respectively. This value is then compared with a true probability value Tipe. This Teapie
value has a probability p associated with it, which corresponds to a given confidence

interval.

One way to conduct Student’s t test is to try to confirm a null hypothesis. In this
method, one selects a desired confidence interval and determines the associated Teape.
The null hypothesis states that the sample, in this case, contains no *°Ra with some
given degree of certainty. Once the confidence level has been selected, the associated
Twble 1S Obtained from a table. If the null hypothesis is to hold (i.e. there is no 226Ra),
Tcale Must be less than or equal to Tpie, Which is dependent on the selected confidence
interval. In the analysis of the SUF samples, the selected confidence interval was 95%.

This p corresponds to a Ty of 1.96 (Martin 2000).

Application of Statistics

Upon application of these statistical tests, the sample results were overwhelmingly
insignificant when compared to the background counts. These results are shown in
Appendix A. The fact that the samples were not significant, instead confirms that no

*26Ra had dissolved into the lung fluid to a certainty of 95%.
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Out of the 206 samples analyzed, 198 of them were considered statistically insignificant
with a 95% level of confidence. The other 8 samples, or 3.88% of the total samples, that
were deemed statistically significant by Student’s t test, fall within the 5% error
associated with the 95% confidence interval. If all the samples had proven to be
statistically insignificant using the 95% confidence interval, a positive bias would have

been suspected.

BARIUM

Barium Dissolution

In addition to **°Ra, barium was included as an analyte in the [CP-MS analysis. The
results showed a dissolution profile much like what would be expected for a relatively
insoluble material: a rapid initial dissolution followed by a shallow, asymptotic curve. A
barium dissolution curve is shown in Figure 15. It may seem incongruent that while
chemically analogous, barium and radium solubilize differently. The fact that barium

226Ra does not is attributable to the fact that BaSO, actually

goes into solution while
dissolves more readily than RaSO4. The solubility of BaSO4 in water is 0.00031 g/100 g
H,0 while RaSQy is insoluble in water (Lide 2003). Additionally, there is much more
barium than radium in the scale due to these differing solubilities affecting precipitation
in the scale deposition process. This preferential deposition also creates a non-uniform

matrix in which there is much more barium than radium.
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Figure 15. Curve showing the dissolution profile of barium released from scale.
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CHAPTER IV
DISCUSSION

The result that there was no “*°Ra present in the lung fluid confirms the current
assumption of solubility class S. Once scale is inhaled, the ***Ra is not solubilized in the
interstitial fluid of the lung, and therefore is not transferred to the blood by absorption in
the alveolar-interstitial region of the lung. Therefore, the only removal of inhaled 226Ra
from the lung is via mechanical clearance to the GI tract or lymph nodes. This is
because no inhalation scenario is isolated to inhalation. Due to the mechanical transport
of material out of the lung by the mucociliary escalator and subsequent swallowing,
inhalation exposures become ingestions. In the case of *°Ra, the material that moves to
the GI tract via swallowing is still very insoluble, as previous work has shown (Raabe
1996). Because of this, the material that does make it to the GI tract is excreted
relatively quickly, resulting in very little dose to those organs. Slow removal from the
lungs and rapid removal from the GI tract via excretion result in the identification of the
lungs as the main organ of concern when assessing internal dose due to **°Ra inhaled in

petroleum pipe scale.

The physical processes associated with foreign particle removal from the lungs, the
mucociliary escalator and phagocytosis, are the principle methods of **°Ra removal since
it is not soluble. As previously mentioned, it is very challenging to develop in-vitro
models of these processes. For this reason, ICRP 66 gives mechanical removal rates
based on phagocytotic activity. This activity is represented as a component in the
dissolution half-life of the material. In the case of class S material, this half-life is

assumed to be 500 days.
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CHAPTER V
SUMMARY

Pipe scale is a routine occurrence in the drilling industries, particularly in the petroleum
industry. The scale that is plated onto the drilling tubulars and other equipment typically
contains “*°Ra plated out as a sulfate compound. When the tubulars are cleaned, these

radioactive materials are released as dust and pose a potential inhalation hazard.

Using simulated serum ultrafiltrate based on Gamble’s solution, the dissolution of
respirable-sized pipe scale particles in interstitial lung fluid was measured. The lung

226

fluid samples were then analyzed for “""Ra using inductively coupled plasma mass

spectrometry.

The results from the ICP-MS analysis showed no dissolution of the “**Ra into the SUF.
Statistical analyses (Student’s t test) revealed that the samples that had been exposed to
pipe scale were not statistically different from the lung fluid blanks. Since there was no

dissolution, **°Ra in petroleum pipe scale should be classified as solubility class S.

The results obtained by the ICP-MS analysis lead to more analysis opportunities. For
future studies, it may be beneficial to analyze exposed lung fluid for thorium, bismuth,

lead, and polonium just to see if any of these ***U progeny dissolve in the lung fluid.

It is clear from this study that the NORM radionuclides found in the pipe scale particles

are tenaciously held by the particle matrix and that the particles are extremely insoluble

226

in the interstitial fluid of the lung. This leads to the conclusion that ““"Ra inhaled during

pipe-descaling operations can be classified as class S material, that having exceptionally
slow absorption into the blood from the lungs. Therefore, the lung is the main organ of

226
f

concern when calculating doses attributed to the inhalation of ““°Ra in petroleum pipe

scale.
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INTERNAL STANDARD CONFIRMATION
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Mud Lake Run 1 Internal Standards
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West Delta Run 1 Internal Standards
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Blank (SUF) Internal Standards
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DEPARTMENT OF THE AIR FORCE
AIR FORCE INSTITUTE FOR OPERATIONAL HEALTH (AFMC)
BROOKS AIR FORCE BASE, TEXAS

09 Feb 2004
Radiation Surveillance Division
Radioanalytical Branch
2350 Gillingham Drive
Brooks AFB, TX 78235-5103

Dr. Ian Hamilton

Department of Nuclear Engineering
Texas A&M University

3133 TAMU

College Station, TX 77843-3133

Dear Dr. Hamilton

Attached you find results of the sample analysis and associated quality assurance data for the
samples we analyzed for you.

Attachment A contains the sample results and associated instrument calibration data.
Attachment B contains the associated quality control sample results that were analyzed with
each batch.

Please contact me if we can assist you further. I can be reached at (210) 536-5816 or via
email dale.thomas@brooks.af.mil.

LE D. THOMAS III
Chief, Radioanalytical Branch

Attachments

Sample Results and Calibration Data

Quality Assurance Sample Results
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AFIERA/SDRR ID: 1030

0483

Customer Address Code: Q00253C

SAMPLE ANALYSIS RESULTS REPORTED ON 0%-FEB-2004

51

1ERA/SDRH

2350 GILLINGHAM DRIVE

BROOKS AFB TX, 78235-5103
ATTH: RADIATION SAFETY OFFICER

IDENTIFICATION:
Base Sample # CO0300520
Workplace or Site ID: 253 BROOKS AFB

DATE COLLECTED: 02-JUN-2003 RECEIVED: 06-JUN-2003 COMPLETED: 02-DEC-2003

Sample Volume Received: 1980.5 GRAM(s)

EPA CODE N/A ACTINIUM 228 3.9E+02 +/- 5.3E+00 Picocuries / Gram
EPA CODE N/A BISMUTH 212 4,2E+02 +/- 1.7E+01 Picocuries / Gram
EPA CODE N/A LEAD 212 2.3E+02 +/- 1.2E+01 Picocuries / Gram
EPA CODE N/A RADIUM 226 9.1E+02 +/- 1.0E+01 Picocuries / Gram
EPA CODE N/A THORIUM 228 4.4E+01 +/ 2.9E+00 Picocuries / Gram
EPA CODE N/A THORIUM 230 B.1E-01 +/- 1.7E-01 Picocuries / Gram
EPA CODE N/A THORIUM 232 2.3E-01 +/- 9.0E-02 Picocuries / Gram
EPA CODE N/A THORIUM 234 < 1.5E+01 Picocuries / Gram
EPA CODE N/A URANIUM 234 1.5E+02 +/- 4.4E+01 Femtocuries / Gram
EPA CODE N/A URANIUM 235 1.8E+01 +/- 1.6E+01 Femtocuries / Gram
EPA CODE N/A URANIUM 238 1.3E+02 +/- 4.2E+01 Femtocuries / Gram

COMMENTS :

GENERAL BUCKET #1

QUALITY CONTROL FLAG: GAMMA SPECTROSCOPY RESULTS DO NOT MATCH THE ISOT
THORIUM BY ALPHA SPECTROSCOPY. WE SUSPECT THAT THIS IS ATTRIBUTABLE TO
DEGREE OF INSOLUBILITY OF THE SAMPLE MATRIX. MULTIPLE ATTEMFTS AND VAR
TECHNIQUES FOR DISSOLUTION YIELDED COMPARABLE RESULTS FOR THE

ALPHA SPECTROSCOPY MEASUREMENTS. DUE TO THE KON-DESTRUCTIVE NATURE OF
GAMMA SPECTROSCOPY ANALYSIS, THIS METHOD PROVIDES A MORE QUANTITATIVE
CONCENTRATICNS OF RADIUM-228 AND DECAY PROGENY. THORIUM RESULTS OBTAIN
VIA ALPHA SPECTROSCOPY ARE STILL USEFUL FOR COMPARING THE ISOTOPIC RAT
OF THORIUM PRESENT AND SUBSEQUENTLY NORMALIZING THE DATA TO GAMMA SPEC
DATA TO ESTIMATE THORIUM CONCENTRATION(S).

RECOMMENDATION: RECOMMEND THAT THE ISOTOPIC RATIOS OF THORIUM BE NORMA
TO THE GAMMA SPECTROSCOPY RESULTS FOR ASSESSING ELEMENTAL THORIUM
COMCENTRATION.

RESULTS ACCURATE TO 2 SIGNIFICANT FIGURES.
UNCERTAINTY AT 95% CONFIDENCE LEVEL.

If you have any gquestions concerning the information provided above, please contact AFIERA/SDRR at DSN 240-2061
or commercially at (210} 536-2061 or call ESOH Service Center at 1 888 232-3764.

Mr. Dale D. Thomas, GS5-13
Chief, Radicanalytical Branch



AFIERA/SDRR ID: 10300482

Customer Address Code: Q0025
1ERA/SDRH
2350 GILLINGHAM DRIVE

EROOKS AFE TX,

ac

78235-5103

52

SRMPLE ANALYSIS RESULTS REPORTED ON 09-FEB-2004

ATTN: RADIATION SAFETY OFFICER

IDENTIFICATION:

Bage Sample # CO0300519

Workplace or Site ID: 253 BROOKS AFB

DATE COLLECTED: 02-JUN-2003 RECEIVED:

Sample Volume Received: 2385.5 GRAM(s)

06-JUN-2003

COMPLETED: 02-DEC-2003

EPA CODE N/A ACTINIUM 228 T.2E+02 +/- 9.1E+00 Picocuries / Gram
EPFA CODE N/A BISMUTH 212 9.3E+02 +/- 3.2E+01 Picocuries / Gram
EPA CODE N/A LEAD 212 5.2E+02 +/- 2.6E+01 Picocuries / Gram
EPA CODE N/A RADIUM 226 1.8E+00 +/- 2.0E-02 Nanocuries / Gram
EPA CODE N/A THORIUM 228 7.3E+01 +/- 4.4E+00 Picocuries / Gram
EPA CODE N/A THORIUM 230 1.6E+00 +/- 2.6E-01 Picocuries / Gram
EPA CODE N/A THORIUM 232 6.6E-01 +/- 1.6E-01 Picocuries / Gram
EPA CODE N/A THORIUM 234 < 2.3E+01 Picocuries / Gram
EPA CODE N/A URANIUM 234 6.0E+01 +/- 2.5E+01 Femtocuries / Gram
EPA CODE N/A URANIUM 235 < 1.6E+01 Femtocuries / Gram
EPA CODE N/A URANIUM 238 2.1E+01 +/- 1.5E+01 Femtocuries / Gram
COMMENTS :

MUD LAKE GENREAL BUCKET
QUALITY CONTROL FLAG: GAMMA SPECTROSCOPY RESULTS DO NOT MATCH THE 1SOT
THORIUM BY ALPHA SPECTROSCOPY. WE SUSPECT THAT THIS IS ATTRIBUTABLE TO
DEGREE OF INSOLUBILITY OF THE SAMPLE MATRIX. MULTIPLE ATTEMPTS AND VAR
TECHNIQUES FOR DISSOLUTION YIELDED COMPARABLE RESULTS FOR THE ALPHA

SPECTROSCOPY MEASUREMENTS. DUE TO THE NON-DESTRUCTIVE NATURE OF THE

GAMMA SPECTROSCOPY ANALYSIS, THIS METHOD PROVIDES A MORE QUANTITATIVE
PICTURE OF CONCENTRATIONS OF RADIUM-228 AND DECAY PROGENY. THORIUM

RESULTS OBTAINED VIA ALPHA SPECTROSCOPY ARE STILL USEFUL FOR COMPARING
THE ISOTOPIC RATIOS OF THORIUM PRESENT AND SUBSEQUENTLY NORMALIZING
THE DATA TO GAMMA SPECTROSCOPY DATA TO ESTIMATE THORIUM CONCENTRATION(
RECOMMENDATION: RECOMMEND THAT THE ISOTOPIC RATIOS OF THORIUM BE

NORMALIZED TQ THE GAMMA SPECTROSCOPY RESULTS FOR ASSESSING ELEMENTAL

THORIUM CONCENTRATION.

RESULTS ACCURATE TO 2 SIGNIFICANT
UNCERTAINTY AT 95%

FIGURES.
CONFIDENCE LEVEL.

If you have any questions concerning the infermation provided above, please contact AFIERA/SDRR at DSN 240-2061
or commercially at (210} 536-2061 or call ESCOH Service Center at 1 888 232-3764.

Mr. Dale D. Thomas, GS-13
Chief, Radiocanalytical Branch



SAMPLE ANALYSIS RESULTS REPORTED ON 09-FEB-2004

AFIERA/SDRR ID: 10300792

Customer Address Code: QO00253C
IERA/SDRH
2350 GILLINGHAM DRIVE
BROOKS AFB TX, 78235-5103
ATTN: RADIATION SAFETY OFFICER

53

IDENTIFICATION:
Base Sample #§ GS0300544
Workplace or Site ID: 253 BROOKS AFB

DATE COLLECTED: 14-AUG-2003 RECEIVED: 14-AUG-2003 COMPLETED: 02-DEC-2003

Sample Volume Received: 256.1 GRAM(s)
EPA CODE N/A ACTINIUM 228 2.2E+00 +/- 2.3E-01 Nanocuries / Gram
EPA CODE N/A BISMUTH 212 9.6E+02 +/- 3.3E+01 Picocuries / Gram
EPA CODE N/A LEAD 212 5.7E+02 +/- 2.9E+01 Picocuries / Gram
EPA CODE N/A RADIUM 226 1.6E+00 +/- 1.0E-02 Nanocuries / Gram
EPA CODE N/A THORIUM 228 4.0E+02 +/- 2.1E+01 Picocuries / Gram
EPA CODE N/A THORIUM 230 T.2E+00 +/- 5.8E-01 Picocuries / Gram
EPA CODE N/A THORIUM 232 2.3E+00 +/- 2.8E-01 Picocuries / Gram
EPAR CODE N/A THORIUM 234 < 2.4E+01 Picocuries / Gram
EPA CODE N/A URANIUM 234 4.8E-01 +/- 9.0E-02 Picocuries / Gram
EPA CODE N/A URANIUM 235 < 3.0E-02 Picocuries / Gram
EPA CODE N/A URANIUM 238 2.1E-01 +/- 6.0E-02 Picocuries / Gram
COMMENTS :

WEST DELTA P<105NM/TEXAS A&M
QUALITY CONTROL FLAG: GAMMA SPECTROSCOPY RESULTS DO NOT MATCH THE ISOT
THORIUM BY ALPHA SPECTROSCOPY. WE SUSPECT THAT THIS IS ATTRIBUTALBE TO
HIGH DEGREE OF INSOLUBILITY OF THE SAMPLE MATRIX. MULTIPLE ATTEMFTS
AND VARIED TECHNIQUES FOR DISSOLUTION YIELDED COMPARABLE RESULTS FOR
THE ALPHA SPECTROSCOPY MEASUREMENTS. DUE TO THE NON-DESTRUCTIVE NATURE
GAMMA SPECTROSCOPY ANALYSIS, THIS METHOD PROVIDES A MORE QUANTITATIVE

PICTURE OF CONCENTRATIONS OF RADIUM-228

AND DECAY PROGENY.

THORIUM RESULTS OBTAINED VIA ALPHA SPECTROSCOPY ARE STILL USEFUL

FOR COMPARING THE ISOTOFIC RATIOS OF THORIUM PRESENT AND SUBSEQUENTLY
MWORMALIZING THE DATA TO GAMMA SPECTROSCOPY DATA TO ESTIMATE

THORIUM CONCENTRATION(S) .

RECOMMENDATION:

RECOMMEND THAT THE ISOTOPIC RATIOS OF THORIUM BE

NORMALIZED TO THE GAMMA SPECTROSCOPY RESULTS FOR ASSESSING ELEMENTAL
THORTUM CONCENTRATION.

RESULTS ACCURATE TO 2 SIGNIFICANT FIGURES.
UNCERTAINTY AT 95% CONFIDENCE LEVEL.

I1f you have any questions concerning the information provided above, please contact AFIERA/SDRR at DSN 240-2061

or commercially at

(210} 536-2061 or call ESOH Service Center at 1 888 232-3764.

Mr. Dale D. Thomas, GS-13
Chief, Radicanalytical Branch
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VITA
Jason Roderick Cezeaux

20611 Bouganvilla Blossom Trail
Cypress, TX 77433

Education
Master of Science, Health Physics, Texas A&M University, August 2004
Bachelor of Science, Nuclear Engineering, Texas A&M University, May 2003
Minor in Radiological Health Engineering

Professional Experience
Consulting Health Physicist, April 2002 — Present
Foxfire Scientific, College Station, Texas
Graduate Research Assistant, May 2003 — Present
Department of Nuclear Engineering, Texas A&M University
Student Lab Worker, September 2002 — May 2003
Department of Nuclear Engineering, Texas A&M University
Intern, Summer 2000, 2001, 2002
Comanche Peak Steam Electric Station, Texas Ultilities, Glen Rose, Texas
Research
“Determination of Petroleum Pipe Scale Solubility in Human Lung Fluid”
Work in Progress Presented: HPS Midyear Meeting, February 2002
“Techniques Employed in Measuring Petroleum Pipe Scale Released by a Dry
Rattling Process”
Presented: Waste Management *04, Tucson, Arizona
“In-Situ Spectrographic Analysis of the Vault and Components of a 30-MeV
Cyclotron”
Published: Texas A&M University Undergraduate Journal of Science
Presented: £= International Research Society Forum, November 2002
Presented: National HPS Meeting, June 2002
Professional Development
Nuclear Emergency Planning Course, August 2003
Harvard School of Public Health, Boston, Massachusetts
Radiation Safety Officer Training, May 2003
MFG Environmental, Fort Collins, Colorado
General Plant Information Course, July 2001
Comanche Peak Steam Electric Station, Texas Ultilities, Glen Rose, Texas
Accomplishments
National Academy for Nuclear Training Scholar
Institute for Nuclear Power Operations Fellowship
Mensa Member
Eagle Scout with One Bronze Palm



