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ABSTRACT

Nonlinear and Distributed Sensory Estimation. (May 2004)

Suranthiran Sugathevan, B.S., University of Peradeniya, Sri Lanka;

M.S., University of Cambridge, England

Chair of Advisory Committee: Dr. Suhada Jayasuriya

Methods to improve performance of sensors with regards to sensor nonlinearity, sen-

sor noise and sensor bandwidth are investigated and new algorithms are developed.

The necessity of the proposed research has evolved from the ever-increasing need for

greater precision and improved reliability in sensor measurements. After describing

the current state of the art of sensor related issues like nonlinearity and bandwidth,

research goals are set to create a new trend on the usage of sensors.

We begin the investigation with a detailed distortion analysis of nonlinear sen-

sors. A need for efficient distortion compensation procedures is further justified by

showing how a slight deviation from the linearity assumption leads to a very severe

distortion in time and in frequency domains. It is argued that with a suitable dis-

tortion compensation technique the danger of having an infinite bandwidth nonlinear

sensory operation, which is dictated by nonlinear distortion, can be avoided. Several

distortion compensation techniques are developed and their performance is validated

by simulation and experimental results. Like any other model-based technique, mod-

eling errors or model uncertainty affects performance of the proposed scheme, which

leads to the innovation of robust signal reconstruction. A treatment for this problem

is given and a novel technique, which uses a nominal model instead of an accurate

model and produces the results that are robust to model uncertainty, is developed.

The means to attain a high operating bandwidth are developed by utilizing sev-



iv

eral low bandwidth pass-band sensors. It is pointed out that instead of using a single

sensor to measure a high bandwidth signal, there are many advantages of using an

array of several pass-band sensors. Having shown that employment of sensor ar-

rays is an economic incentive and practical, several multi-sensor fusion schemes are

developed to facilitate their implementation.

Another aspect of this dissertation is to develop means to deal with outliers

in sensor measurements. As fault sensor data detection is an essential element of

multi-sensor network implementation, which is used to improve system reliability

and robustness, several sensor scheduling configurations are derived to identify and

to remove outliers.
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CHAPTER I

INTRODUCTION

A. Motivation

Sensors are essential for monitoring and controlling of industrial processes. Often the

success of such processes heavily depends on the quality and reliability of the sensors

utilized. There is an ever-increasing need for greater precision in sensor measurements

and processing of signals from all types of sensors is becoming increasingly critical.

In order to achieve this, new sensor technologies must be adapted and demands

on signal processing, digital communication and local intelligence expanded. These

requirements make it imperative that the sensor and its associated electronics be

viewed as an integrated system and increasingly this system needs to be intelligent

or smart.

As the density of the transistors on a chip is continuously increasing while the

cost is decreasing, the intelligent sensor approach to compensate the sensor defects is

becoming an established alternative to traditional methods. To address the need for

intelligent sensor systems several approaches are available to sensor manufacturer or

system integrator [1]. Such a methodology should provide the system intelligence and

allow for data storage as well as software routines for the sensor to perform in-module

sensor calibration, digital compensation, and self-validation. The current status of

intelligent sensor has evolved from derision to acceptance in less than two decades.

The technologies such as microcomputers and integrated circuits have promoted the

progress considerably. As sensor systems get more intelligent, the distinction between

a sensor and an instrument, between an intelligent sensor and a smart sensor, is

The journal model is IEEE Transactions on Automatic Control.
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becoming more blurred. Although the demand for high accuracy, high reliability, low

cost and compactness has been constantly increasing for the last two decades, much

research is still to be done. The current trend toward the intelligent and smart sensors

is to integrate 1) a sensing element that can be made in a standard process, and 2)

electronic circuits to fully and periodically calibrate and compensate the sensor.

The conventional industrial practice corrects or recalibrates sensors and measur-

ing instruments according to a fixed schedule (calibration interval). It can be time-

consuming when the schedule is very tight or even can provide a false control when the

schedule is relaxed. It has no information about the history data, re-calibration and

overall suggestion. The self-calibration means that the sensor can monitor the mea-

suring condition by a confidence test to decide whether a new calibration is needed

or not. For a real time confidence test, a stimulus is looped back with a measurement

and gets the level of confidence. The confidence is used to judge whether the system

is still performing satisfactorily or not. If not, a calibration procedure is required to

recover the sensor performance.

Some of the common unwanted effects found in classical sensors are [2]:

1. nonlinearity

2. noise

3. time (or frequency) response

4. parameter drift

5. cross sensitivity

Methods dealing with these issues have been widely studied in the literature and

fall into four main classes of technique [1]:

1. Structural Compensation

2. Tailored Compensation

3. Monitored Compensation
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4. Deductive Compensation

However, the techniques available to compensate the effects of sensor nonlinearity

are relatively crude. These techniques include the use of diode networks that are

used to realize reciprocal characteristics and linearization processes such as Look-up

Tables or polynomials. Despite being a dominant impediment, issues related to sensor

nonlinearity have not received much attention. The fact that none of the available

techniques can compensate the effects the sensor nonlinearity efficiently affects the use

of sensory systems in two ways. For linear sensors, this will result in inaccurate sensor

measurements. For primary nonlinear sensors, their use may be ignored. However,

the use of primary nonlinear sensors may not be completely ignored or sensors are

only allowed to work in a range where the linearity assumption is valid. However,

the use of nonlinear sensors can be advantageous or may be the only option available.

For example, an image sensor usually has a nonlinear characteristic that can be

modelled as point-wise (memory-less) nonlinearity. Another example is photographic

film [3]. Due to the well known nonlinear relationship between the incoming light

exposure and the silver density deposited on the film, the widely assumed linear

relationship between the blurred image and the “ideal” scene does not hold in the

case of scanned photographic images. This problem is of great interest in many real-

life applications, since the photographic film continues to be a very widely used image

recording medium.

Noise and dynamic range are common measures often used to determine sensor

performance. With lower noise, the sensor measurement is more reliable when used

to characterize a physical variable. Dynamic range determines how much of the total

input energy is captured by the sensor. For example, in Charge-Coupled Device

(CCD) cameras, a linear image sensor is used to capture the image. The output

voltage varies linearly with the input light energy. If the light energy doubles, the
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output voltage doubles. The sensor may not tolerate a very high voltage output,

which limits the maximum amount of light energy they can accumulate. This limit

usually referred to as “Well Capacity” can be increased if the sensor is developed

in such a way that its output varies nonlinearly with its input. This fact is evident

in Fig. 1 as the range covered by the nonlinear sensor is greater than that by the

linear sensor. Logarithmic nonlinear sensor characteristic is used in High Dynamic

Range Complementary Metal-Oxide Semiconductor (CMOS) Sensors to increase the

dynamic range [4].

�����������	�
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Figure 1: Comparison of Linear and Nonlinear Characteristics

Noise is inevitable with sensor measurement. When a signal is measured through

a sensor, there is a tendency for the low amplitude part of the signal to be corrupted

by sensor noise. Referring to Fig. 1, the actual data within the noise floor may not

be distinguishable due to sensor noise. This situation may get worsened if the signal
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amplification due to sensor is not sufficient. In the case of linear sensors, having a

high gradient within the noise floor may not always be possible as higher slope will

result in lower dynamic range. An effective tradeoff between the signal amplification

and dynamic range coverage may not be made. However, with nonlinear sensors both

objectives can easily be achieved. The nonlinear sensor may be designed such that

the slope of the function within the noise floor is chosen as high as required. The

gradient of the sensor function outside the noise floor can be adjusted so as to meet

the dynamic range requirement and the maximum output voltage limit. With this

sensor characteristic, a suitable frequency transform localizes the noise into a few

isolated regions, which can then be eliminated using a threshold estimator.

Sensors are often designed in such a way to preserve linearity so that they can

be reliably calibrated. Achieving a true input-output linearity is very difficult and

not cost effective since nonlinearity is present in some form in almost all physical

devices. In practice, several signal conditioning devices are used to compensate the

distortion caused by nonlinearity and to achieve linearity. For example, the high-end

device Maxim Integrated Product,MAX1457, linearizes a sensor output by establish-

ing 120 piecewise-linear segments, drawing on data stored in EEPROM. Furthermore,

achieving linearity seems to be the prime objective of most sensor manufacturers and

enormous resources are invested for related research. In addition, expensive periodic

calibration procedures may be required to preserve linearity from time to time. The

difficult task of achieving linearity and the trouble of periodic maintenance can be

simplified if nonlinearity is considered as one of the features of a sensor. For example,

a low cost oxygen sensor that is used for closed-loop active combustion control in

automobiles [5] displays nonlinear characteristics and the cost of the linear oxygen

sensor (Wide Band Oxygen Sensor) is much higher than that of the nonlinear sensor.

Fiber optic displacement sensors, which are widely used to obtain approximate
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displacement measurements at very low cost [6], and the Hercules Orthoflex capacity

sensor, a biosensor that is used to measure the pressure between the foot and shoe [7]

are some other well-known nonlinear sensors widely used in practice. Efficient noise

removal and wider dynamic range can be achieved if these sensors are designed as

alluded to earlier.

Despite several advantages in using nonlinear sensors, distortion caused by non-

linearity may appear at first as the main factor discouraging their use. In this dis-

sertation, this problem is investigated in detail and it is shown that a robust signal

recovery setup that reconstructs the original signal from the distorted sensor output

will guarantee that nonlinear distortion will not be a problem. It is also shown that

a unique signal recovery is possible when the nonlinear sensor is designed to satisfy

certain requirements. It is emphasized that utilizing certain characteristics of nonlin-

ear sensor functions, it is possible to compensate nonlinear distortion and to remove

sensor noise by a few step iterative process. The successful development of the real

time recovery procedure will support the use of nonlinear sensors and improve the

accuracy in sensor measurements. It can then be implemented in a hardware unit or

DSP chip. The combination of a nonlinear sensor and the hardware unit or DSP chip

will do the required job that is currently done by a linear sensor with nonlinearity and

other expensive distortion compensation devices whose performance may not always

be guaranteed. The proposed distortion compensation setup is illustrated in Fig. 2.

In the above discussion, we considered a class of sensors that are memory-less

and whose dynamics can be ignored. However, certain applications, for example,

control of dynamical systems require that sensors with a reasonable bandwidth be

used. The success of such application is heavily dependent upon the quality and

reliability of the sensors utilized including sensor bandwidth. The sensors are often

used to measure the information and the necessary control actions are generated based
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Figure 2: Representation of the Proposed Nonlinear Sensor Distortion Compensation

on the feedback provided by sensor measurements. Precise control of processes has

become increasingly important to ensure high performance and reliability. Sensory

systems are used widely in many applications, and high reliability of the system,

which is a crucial factor in achieving high product yield, is heavily dependant on the

accuracy of sensed signals. However, uncertainty caused by sensor noise and failure

and insufficient sensor bandwidth may seriously degrade reliability. Sensor bandwidth

plays a vital role in the success of a control system as it dictates the extent to which

information about a system can be reliably extracted for further signal processing

and interpretation. However, the cost of implementing feedback becomes a direct

function of how large the required bandwidth is.

In the design of feedback systems it is important to keep the bandwidth of the

controller small enough to guarantee the performance needs which are typically at

low frequencies. Of course if there are sensors with very large bandwidth then the

controller design problem does not become a major concern. However, such sensors

are obviously very expensive because they must work with signals over a spectrum

consistent with the sensor bandwidth. It is best to use just enough controller band-

width so that sensors with sufficiently low bandwidth can be incorporated into the

closed loop system. As an example, having large margins of stability implies suppres-
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sion of the closed loop resonances at frequencies around the bandwidth frequency, but

a serious drawback generally arises in the form of an increase of sensor noise response

at the plant input.

Even though designing and implementing of high bandwidth sensors is very ex-

pensive and difficult, having a high sensor bandwidth is advantageous and necessary in

many control applications. For example, the spacecraft attitude needs to be measured

at sufficiently high bandwidth to take full advantage of line-of-sight type instruments

and fast steering mirrors [8]. Other applications include laser marking, trimming

and writing, high speed printing, as well as use in imaging systems, astronomy, and

disturbance simulation [9]. However, expanding the bandwidth of sensors is neither

practical nor economically feasible.

The high bandwidth sensors are very expensive because they must work with

signals over a spectrum consistent with the sensor bandwidth. It is often necessary

to detect signals whose spectrum span over a wide range. The use of a single sensor

is likely to be neither a practical nor economically feasible option for the foreseeable

future. Furthermore, there is no single sensor currently available that would provide

both the accuracy and the bandwidth needed for the measurement. In addition, the

design of a sensor that can accurately pick up low frequency signals as well as high

frequency signals in the same time frame may not be feasible. For example, a common

problem associated with high bandwidth sensors is their inability to accurately reg-

ister slow-varying motion (low-frequencies). Consider the case where accelerometers

are used to sense angular jitter [8]. Then, rapid motion would yield large accelerom-

eter outputs, while slow motion would generate small acceleration signals. If the

accelerometers are selected so that they have enough sensitivity to measure slow mo-

tion, they are likely to saturate under rapid motion. Conversely, if they are scaled not

to saturate under rapid motion, they would lack the resolution to detect slow motion.
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This creates problems when trying to resolve attitude angles over a wide range of

frequencies. Similarly, other high-bandwidth sensor types (like the ADS and quartz

gyros) do not have near DC response. This creates an analogous problem as that as-

sociated with accelerometers. Therefore, other sensing means needs to be developed.

One of the goals of this dissertation is to develop means for producing accurate high

as well as low frequency measurements using a smart and low cost integrated sensory

system.

Instead of using a single sensor to obtain both high and low frequency measure-

ments, we point out there are many advantages of using an array of several sensors.

The idea is to divide the required sensor bandwidth into several frequency segments

and organize a sensor network that consists of low pass-band sensors such that each

sensor is restricted to cover a particular frequency segment. The proposed sensor array

configuration is schematically shown in Fig. 3. This allows us to take full advantage

of cheap and low bandwidth sensors whose performance is optimum only in the given

bandwidth. For example, angular displacement sensors and quartz rate sensors are

good high frequency sensors but have a poor near-DC response whereas accelerome-

ters and gyroscopes have good low frequency responses but are likely to saturate under

rapid motion. Combining these sensors in an array as described would be a cost effec-

tive alternative to a very expensive, high bandwidth sensor design. Multi-sensor data

can then be fused intelligently to obtain the required measurement. This requires

that efficient multi-sensor fusion and sensor scheduling algorithms be developed to

blend the multi-source measurements for off-line as well as real time applications. If

used in feedback control systems, this approach would enable the designer to devise

several low bandwidth controllers each utilizing sensors of much smaller bandwidth.
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Figure 3: Sensor Array with Low Bandwidth Pass-band Sensors

B. Objectives

The main goal of the proposed investigation is to develop and implement a new gen-

eration of smart sensory systems that would enhance capabilities and add intelligence

in existing systems with regard to design, performance, cost, sensor bandwidth, sen-

sor nonlinearity and measurement noise. The proposed research is aimed at achieving

this goal by meeting the following objectives:

1. To utilize certain characteristics of nonlinear sensor function for the improve-

ment of sensory systems performance by making it less sensitive to measurement

noise and increasing its dynamic input range.

2. To develop robust and stable signal recovery schemes that include nonlinear

distortion compensation and noise removal procedures and implement them in

real time applications.

3. To devise several intelligent and efficient multi-sensor fusion procedures to fa-

cilitate the design and implementation of sensor arrays.
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4. To develop sensor scheduling algorithms and faulty sensor detection schemes to

optimize the use of multiple sensors and to reduce the cost of sensory operation.

C. Dissertation Overview

The remaining chapters of this dissertation are organized as follows.

Chapter II presents some important definitions and theorems that are used in

this dissertation. Chapter III aims at providing the reader with some background

information and related previous work. Commonly used signal reconstruction and

multi-sensor fusion methods are presented and their practicality is briefly discussed.

Chapter IV is concerned with the recovery of band-limited signals from the distorted

nonlinear sensor measurements. A detailed nonlinear distortion analysis is given to

point out the need for an efficient signal conditioning scheme to improve accuracy

of sensor measurements. A recursive signal conditioning scheme is developed and its

limitations are discussed. A novel approach that uses non-quadratic optimization to

recover the signals distorted by non-invertible sensor nonlinearity is also proposed.

Chapter V details the multi-sensor fusion schemes developed in this dissertation.

The problem of fusing distorted multi-sensor data is considered and several data

fusion techniques are developed. The main purpose of this chapter is to identify the

faulty sensor measurements and to optimize the number of sensors used in a process.

Chapter VI is devoted to the development and implementation of sensor arrays. A

new and efficient approach that uses the idea of organizing many low bandwidth

pass-band sensors in a distributed sensor array to attain a high operating bandwidth

is proposed. Having emphasized the necessity for a suitable sensor fusion method

to implement the proposed approach, several multi-sensor schemes are developed.

The proposed methods are different from the traditional sensor data fusion methods
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in the sense that the frequency responses of the multi-sensors are shaped by means

of compensators in the proposed approach rather than sensor data association as

done in traditional methods. In Chapter VII, experimental and simulation results

are presented to validate the methods developed in this dissertation. The results are

analyzed and their significance is discussed. Chapter VIII concludes the dissertation

with a summary of results, an outline of its contributions to the research community

and practitioners, and several suggestions for future research.
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CHAPTER II

PRELIMINARIES

This chapter presents some basic theorems that will be used later in this dissertation.

A. Definitions and Theorems

The norm of a function (‖.‖) is simply a measure of the distance of the function to the

origin (i.e., 0). In other words, we can use the norm ‖f−g‖ to measure the difference

between two functions f and g. The norm of a function can be calculated in a variety

of ways. For example, the finite energy space L2(−∞,∞) uses the following definition

for the norm [10].

Definition 1 The norm of a function, f(t) ∈ L2(−∞,∞) is defined by,

‖f(t)‖ =

[∫ ∞

−∞
|f(t)|2dt

] 1
2

(2.1)

The finite energy space L2(−∞,∞) requires that all functions that belong to

this space have finite energy. The following definition states this fact in mathematical

notation [11].

Definition 2 A signal is a function f(t) ∈ L2(−∞,∞)

‖f(t)‖2 =

∫ ∞

−∞
|f(t)|2dt <∞ (2.2)

We use the following convention for Fourier Transform and its inverse(in one

dimension).

Definition 3 Fourier Transform: The Fourier Transform of a finite-energy func-

tion f(t) ∈ L2(R) of a real variable t is defined by:
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F{f(t)} =

∫ ∞

−∞
f(t)e−jωtdt (2.3)

where ω is frequency in rad/sec. F{f(t)} is also known as the spectrum of f(t).

Definition 4 Inverse Fourier Transform: The Inverse Fourier Transform (F−1{.})

recovers the function f(t) from its Fourier Transform F{f(t)}.

F−1{F{f(t)}} = f(t) =
1

2π

∫ ∞

−∞
F{f(t)}ejωtdω (2.4)

A useful theorem named Parseval’s Theorem or Identity that relates the time

and frequency domain functions is stated next [10].

Theorem 1 Parseval’s Theorem states that

∫ ∞

−∞
|f(t)|2dt =

1

2π

∫ ∞

−∞
|F{f(t)}|2dω (2.5)

Theorem 2 Plancherel’s Theorem [12]: Using the above Parseval’s Identity, it

can be shown that [10] two functions, f(t) and g(t) ∈ L2(−∞,∞), are related to their

Fourier Transforms F{f(t)} and F{g(t)} by,

∫ ∞

−∞
f(t)g(t)dt =

1

2π

∫ ∞

−∞
F{f(t)}F{g(t)}dω (2.6)

Definition 5 Band-limitedness: A signal f(t) is bandlimited with frequency band

(−Ω,Ω) if its Fourier Transform F{f(t)} vanishes for |ω| > Ω.

Definition 6 The bandwidth of a signal is a measure of the range of frequencies

present in the signal. More technically, bandwidth is the width of the range of fre-

quencies that an electronic signal occupies on a given transmission medium.

Definition 7 The bandwidth of a device is the range of frequencies over which a

particular instrument is designed to function within specified limits.
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The bandwidth of a device is given by f1 − f2 Hz where frequencies f1 and f2 are

such that the frequency response of the device, G(f), satisfies the following:

|G(f)| < 1 for f /∈ [f1, f2] (2.7)

Definition 8 Convexity: A nonempty set X ∈ En is said to be convex if for any

two points x1, x2 ∈ X the line segment joining x1 and x2 is contained in X, that is,

if [13]

λx1 + (1 − λ)x2 ∈ X for every λ ∈ [0, 1]

Definition 9 Linearity: A function f : X → Em, with X ⊂ En, is said to be linear

if for all x1, x2 ∈ X and for all real scalars α1 and α2 [13]

f(α1x1 + α2x2) = α1f(x1) + α2f(x2). (2.8)

Definition 10 Convex Function: A function f : X ⊂ E1, with X a convex subset

of En, is said to be convex if for any two points x1 and x2 in X and any real λ,

0 ≤ λ ≤ 1, we have

f(λx1 + (1 − λ)x2) 5 λf(x1) + (1 − λ)f(x2). (2.9)

If strict inequality holds in Equation (2.9) for all x1 6= x2 in X and for all

0 < λ < 1, then f(.) is said to be strictly convex [13].

Definition 11 Concave Function: A function f : X ⊂ E1, with X a convex

subset of En, is called concave (strictly concave) if -f(.) is convex (strictly convex)

[13].

Definition 12 Convergence: The convergence of the sequence {xk} to x means
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that the distance |xk − x| of the k − th term xk from the limit x will be arbitrarily

small when k increase beyond all limits [14].

Definition 13 Lipschitz-condition: A function g maps the interval [a, b] into it-

self and it is said to satisfy a Lipschitz-condition with a Lipschitz-constant q < 1 if

there exists a number q with 0 ≤ q < 1 such that

|g(x) − g(y)| ≤ q|x− y| ∀ x, y ∈ [a, b]. (2.10)

Theorem 3 Banach’s Fixed Point Theorem [14]: If A is a contracting self-map

of the complete metric space E, then the Equation (x = Ax) has exactly one solution

in E. This solution can be obtained by iteration: if one chooses an arbitrary point x0

in E and sets xn+1 := Axn, n = 0, 1, 2, · · · , then {xn} converges to x. Furthermore

the error estimate

d(x, xn) ≤
qn

1 − q
d(x1, x0)

is valid.
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CHAPTER III

LITERATURE REVIEW

Before devising a suitable plan to achieve the objectives posed in Chapter I, we

will first gather the relevant background information. This chapter summarizes the

previous work on signal reconstruction methods, nonlinear sensors, distortion com-

pensation and multi-sensor data fusion.

A. Nonlinear Distortion Analysis and Signal Reconstruction

Nonlinear distortion is a well-known problem in communication networks where de-

vices like compander are used to transmit signal data [15]. Several distortion com-

pensation techniques for these devices have been proposed in the literature. Zames

[16] showed nonlinear distortion can be compensated using an invertible nonlinear

filtering technique. Beurling (as cited in [17]) proved the existence of a bandlim-

ited solution to the nonlinear filtering problem. An iterative scheme to obtain such a

solution is given and convergence requirements are derived in [11]. The problem of re-

covering band-limited signals under considerably weaker conditions is investigated in

[15]. A technique based on Orthogonal Polynomial Inverses to compensate nonlinear

distortion is derived in [18].

Compensation of linear and nonlinear distortions due to sensor nonlinearity by

a digital post processing technique using several FIR filters is proposed in [19]. The

use of Tikhonov’s operators to compensate the effects of static nonlinearities in the

presence of noise is detailed in [20]. In [21], Scheoukens et al proposed an approach

to deal with nonlinear distortion in a linear modeling framework in which a nonlinear

system is replaced by a linear system and a nonlinear noise source. The asymptotic

behavior of nonparametric and parametric frequency domain identification methods
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to model linear dynamic systems in the presence of nonlinear distortions under some

general conditions for random multi-sine excitations is presented in [22]. A broad

class of iterative signal restoration techniques, which can be applied to remove the

effects of many different types of distortions are given in [23].

Nonlinear distortion is also a serious problem in audio engineering. For exam-

ple, nonlinearity of magnetic recorder distorts the input sound while recording. A

method to restore nonlinearly distorted magnetic recordings is presented in [24]. A

histogram-equalization method to restore amplitude-distorted speech is developed in

[25]. In this method, a histogram of the input signal is modeled, the distribution func-

tion of the modeled input signal is compared to a reference distribution function and

the mismatch can be used to describe the distorting nonlinearity and its inverse as an

amplitude map, which corrects the distorted signal. Nonlinearities in horn loudspeak-

ers are modeled by electromechanical-acoustical analogous circuits and the methods

to identify the dominant nonlinearity from the nonlinearly distorted measurements

are given in [26].

Though nonlinear distortion is a serious issue with the use of almost all real

sensors, these issues have not received much attention in the literature. Noise related

issues have been paid much attention to [27]. However, a systematic methodology to

address nonlinear distortion related issues is yet to be developed. This dissertation

is devoted to fill this gap and to provide a methodology to improve accuracy and

reliability of sensor measurements.
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B. Conditioning of Distorted Measurements

1. Signal Conditioning

The manipulation of the output of a sensor to prepare it for further processing and use

is generally known as signal conditioning[28]. Common types of signal conditioning

includes the following:

1. Signal conversion

2. Isolation

3. Multiplexing

4. Attenuating

5. Amplifying

6. Filtering

7. Transducer Excitation

8. Linearizing

9. Signal Reproduction

10. Smoothing

2. Filtering

Filtering is the process by which the frequency content of a signal is altered. In

other words, it is a process that selectively lowers the power content of specific sig-

nal frequencies. Filtering is one of the commonly used signal processing techniques.

The classical filtering techniques assume that the signal content of a signal is clearly

distinct from the remainder of the signal in the frequency domain. Filters alter the

frequency content of a signal. The term “filtering” is also used to denote the signal

conditioning operation done in real time.
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3. Smoothing

Smoothing is the manipulation of a signal to make it fit a particular model or pattern.

In practice, signal smoothing is a form of filtering. Specifically, it is low pass filtering.

In fact, if we compare, in the frequency domain, the characteristics of a Butterworth

low-pass filter and spline smoothing, they are very similar [29]. The term “smoothing”

is also used to denote the off-line signal conditioning operation.

C. Multiple Sensor Fusion Techniques

Multiple sensor data fusion is the uniting or blending of several sensor data into a

whole single data set. Several specific advantages obtained by using more than one

source of data in seeking some typical conclusions are improved system reliability and

robustness, increased confidence, reduced ambiguity, shorter response time, improved

resolution, extended coverage and in some cases, reduced cost of operation [30]. The

fusion of redundant information can reduce overall uncertainty and thus serves to

increase the accuracy of process measurements. Complementary measurements from

multiple sensors allow certain features of the environment to be perceived that may

not be possible or feasible with a single sensor. For example, the use of a single sensor

may not be practical when the sensor is employed to detect high bandwidth signals.

The high bandwidth sensors are very expensive because they must work with signals

over a spectrum consistent with the sensor bandwidth. In this case, an array of several

low bandwidth sensors could be employed to cover the required high bandwidth. The

individual measurements can then be combined to yield the required inference.

Sensor data fusion has been a promising research topic for quite some time and

it has been used widely in a variety of applications that include robotics, medical

applications such as electric wheel chair, remote sensing, monitoring and control of



21

manufacturing processes, automated target recognition, guidance of autonomous vehi-

cles, battlefield surveillance and automatic threat recognition systems. A good review

of the multi-sensor fusion techniques and commonly used sensor fusion techniques can

be found in [31] [32], [33], [34], [35].

Tenney and Sandell [36] were among the first to study how distributed sen-

sors may be used for the detection problems. Their analysis, deemed since then to

be pioneering work in the field, follows classical Bayesian theory and offers decen-

tralized statistical binary hypothesis testing at each of the individual sensors in the

distributed network to determine the optimal local detection rules. Kushner and

Pacut [37] reported on their simulation efforts involving to sensors and made a com-

parative analysis of the decentralized detection problem with two observers against

the traditional detection problem based on a single observer. Teneketzis and Varaiya

[38] tackled what they termed the decentralized quickest detection problem. The

problem posed is that of two detectors that while making independent observations

must decide on a binary state change of a Markov chain. Tsitsiklis and Athans [39]

reported a study on the computational complexity of discrete models of some basic

decentralized detection/decision problems.

Chair and Varshney [40] attempted the development of an optimal global decision

rule through the weighting of the independent optimal decisions of the individual sen-

sors by their reliability rates, given in terms of false alarm and miss rates. Hoballah

and Varshney discussed the use of the Neyman-Pearson criterion for deriving the op-

timal decision with distributed sensors and a central fusion unit in [41]. Thomopoulos

and Okello [42] dealt with the problem of detection with mismatched sensors. This

addresses a very specific type of problem, one in which the two sensors each have cer-

tain blind spots. This study is not of a general nature due to numerous assumptions

made in the analysis. However, some of the concepts may have applications in other
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specific contexts.

Izzo and Paura [43], in their comments on the optimal detection study by Reib-

man and Nolte [44], focused their attention on the problem of the computational

complexity of deriving the general solution, which involves highly nonlinear coupled

equations. The constant false alarm rate (CFAR) problem in the distributed sensor

environment was studied by Barkat and Varshney [45]. In this study, the scope for

adaptive threshold techniques instead of the preestablished thresholds used in the

earlier studies in order to assure a detection with constant false alarm rate was ex-

amined. A study of correlated noise in a distributed detection system was reported

in [46]. This study assumes that the local sensors have the same operating points

and that the distribution of sensor observations is a symmetric function. A study on

optimum decision space partitioning in multi-sensor environments, which investigates

the benefits of transmitting reliability data in addition to the traditional decision-only

transmission assumed between the local sensors and the central processor in many of

the previous studies was presented in [47].

A method that does not assume availability of any probabilistic descriptions

( probability density functions and the like) of the target data environment was

presented in [48]. In this way, this method differs from other traditional approaches

and more or less corresponds to nonparametric training approaches in the classic

pattern recognition field. Hoballah and Varshney [49] dealt with the problem of

deriving a global decision by combining local binary decisions through a Bayesian

formulation. This method involves a computational challenge for large values of

number of sensors considered, especially when one considers that in realistic military

environments where real time detection decisions are crucial. A study on a distributed

m-ary hypotheis-testing problem with correlated observation is presented in [50]. In

this study, each of the local processors is assumed to be transmitting any one of a
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predefined set of messages, on the basis of its own local processing, to a central fusion

processor wherein these messages are fused with with its own inputs to arrive at the

overall decision.

Three specific schemes for fusing information namely 1) fusion of observations,

2) fusion of local decisions, 3) fusion of probabilities are reported in [51]. Unlike most

of earlier studies, this attempts to relate the analysis to nonmilitary applications.

A method of fusion of evidence based on fuzzy integrals is presented in [52]. This

method combines objective evidence with subjective interpretation on the reliability of

the source of such evidence. Wang and Cai [53] adapted the sample matrix inversion

(SMI) procedure to tackle the problem of adaptive signal detection in multiband

sensor environments. The SMI procedure uses two (primary and secondary) noise-

and interference-inclusive data sets, with the signal being present only in the so-

called primary input. The secondary input is the basis for the estimation of the

covariance matrix of the inference and noise. and this estimate is used in place of

the unknown covariance matrix in the primary data containing the signal to set the

optimal detection thresholds.

A new study on distributed detection with decision feedback was presented in

[54]. The central decision of the fusion processor is communicated back to the local

sensors to influence subsequent decisions on a new observation. According to the

author, the feedback leads to consistency in an asymptotic sense; that is, asymp-

totically all the local sensors have to agree among themselves and hence with the

central fusion processor. A study in which each local processor, or decision maker, is

assumed to receive an observation and transmit a binary message to its successor was

presented in [55]. The last decision maker makes the final decision as to which the

hypothesis is true, which essentially represents the configuration of multi-sensors in

series. The asymptotic performance of a class of multi-sensor memoryless detection



24

system was investigated in [56]. Some results in distributed nonparametric detection

are discussed in [57].

The problem of signal detection amid the combination of clutter and thermal

noise was considered in [58]. It presents adaptive threshold techniques designed to

maintain a constant false alarm rate through a cell-averaging approach. In this study,

two different sensor network topologies, parallel and tandem, are considered. The

study on hardware complexity, defined as number of sensors of distributed detection

systems was reported in [59]. This study compares two specific schemes, namely, 1)

an optimal parallel-sensor centralized architecture, 2) a suboptimal binary distributed

detection architecture. In the former scheme, the data measurements themselves are

transmitted to the centralized decision processor for derivation of the globally optimal

decision. In the latter scheme, each sensor has its own local decision processor that

minimizes the local Bayes risk and transmits only a binary decision to the central

processor for minimization of the global risk.

A study on optimum fusion of correlated local decisions was presented in [60].

The system considered in this work consists of a central fusion unit and a number

of local detectors with each local detector making its own binary-hypothesis-based

decision using its own set of observations. A normative Bayesian model consisting of

a primary decision-maker and two expert assistants organized in a hierarchical team

structure for tackling the binary hypotheis testing problem was presented in [61]. An

alternative approach to the design of decentralized Bayesian detection systems was

presented in [62]. The practical problem of CFAR detection in clutter environments

is addressed by Donohue and Bilgutay [63] in their stud on OS characterization as a

means of modeling the clutter statistics. The problem of distributed detection by a

team of sensors in tandem with each sensor/decision-maker sends a binary message

based on its observations to the succeeding one is considered in [64]. Kam, Zhu and
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Gray [65] discuss the problem of optimal data fusion of correlated local decisions in

multi-sensor systems.

The multi-sensor fusion algorithms can be broadly classified into four categories

[31], which are:

1. Estimation Methods

2. Classification Methods

3. Inference Methods

4. Artificial Intelligence Methods

A brief discussion of the above methods is presented next.

1. Estimation Methods

a. Linear Weighted Averaging

One of the common method of fusing or combining information received by multiple

sensors is to take the weighted average of the various sensor data to arrive at a

composite fused value. The well known advantages of this techniques are simple,

easy to use and most importantly real time implementable.

b. Kalman Filtering

Kalman filtering [66] provides another fusion method, which generates the estimates

of the required data. The estimates are optimal in a statistical sense. It is a linear sys-

tems technique that works well for reconstructing the environment, when the data is

corrupted by measurement noise only. It is different from conventional filtering meth-

ods in that it is it uses an explicit (probabilistic) system model. The system model

is represented by a state vector to be estimated, a known state transition matrix,

and an additive zero mean white noise process with known covariance matrix. This
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approach is useful when the state vector can be identified and related to its previous

values through a state transition matrix. The Kalman filter has found widespread

application is data fusion problems. For example, Durrant-Whyte has demonstrated

in many occasions how Kalman Filter can be used to solve some challenging multi-

sensor fusion problems encountered in robotic and vehicle applications [67], [68], [69],

[70], [71]. Other areas of application include target detection, collision avoidance,

automatic target recognition, multi-target tracking, etc. [33], [72], [73], [74], [75]. A

detailed discussion on target association and track-to-track fusion methods can be

found in [76], [77], [78], [79].

c. Least Square Estimation

Least squares methods fuse data by searching for solutions, which minimize the

squared error between the observed data and the predicted data. A weighted least

squares method to compute the position and orientation parameters of an object from

sparse contact point tactile data is presented in [80]. A least approach is used to fuse

multi-sensor data to determine the pose of a known object in [81].

2. Classification Methods

Cluster method that include hierarchical agglomerative, hierarchical divisive and it-

erative partitioning methods tries to establish geometrical relationships on a set of

sample data in a training process [82]. It is considered a powerful tool to classify multi-

sensor data and the classification is done by unsupervised or self-organized learning

algorithms such as learning vector quantization, K-means clustering etc. [83]. In the

clustering methods, the distance between two clusters are optimized or adjusted to

reach the final decision.
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3. Inference Methods

The Bayesian inference fusion methods allow the multi-sources to be united according

to the rules of probability theory [84]. Dempster-Shafter evidential reasoning, which

is an extension to the Bayesian approach makes explicit any lack of information

concerning a proposition’s probability by separating firm support for the proposition

from just its plausibility. A generalized evidence processing that unifies the Bayesian

and Dempster-Shafter evidential reasoning to perform sensor fusion at the level of

evidence is proposed in [85].

4. Artificial Intelligence Methods

The artificial intelligence methods use a priori set of training data to establish a

inference system and the applicable rules are identified by searching the complete set

of rules [86],[31]. Artificial Intelligence Techniques such as Neural Networks and Fuzzy

Logic have sufficient degrees of freedom to fit complex nonlinear relationships with

the necessary precautions to properly generalize. Some of the artificial intelligence

methods are briefly discussed in here.

a. Dempster-Shafer Theory

Dempster-Shafer (DS) theory of evidence is based on the notion of assigning beliefs

and plausibilities to the possible interpretations of observed multi-sensor data. A

survey and taxonomy of various belief fusion operators are presented in [87]. It

also provides a guide for choosing an appropriate operators for belief combination.

Dempster-Shafer theory is applied for data fusion in [88] and [89].
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b. Fuzzy Logic

Fuzzy Logic has been used by many researchers and practitioners for fusing multi-

sensor data. A modular fuzzy control architecture where the control function is broken

down into multiple local agents, each of which samples a subset of a large sensor input

space is presented in [90]. Runkler [91] describes model based fusion using a fuzzy

model of the functional dependence between the sensor signals.

c. Neural Networks

Neural Networks are used in data mining [92], classification [93], and in robotics to

map multi-sensor data space into actions for providing a real-time connection between

sensing and action. Lee [94] describes sensor fusion and planning using a perception-

action network, which consists of a number of heterogenous computational units,

representing feature transformation and decision-making for actions.

Even though the above techniques have been proven to conduct sensor fusion

at different levels, there is still a need for a generic multi-sensor fusion tool. Taking

weighted average of the multi-source information may not always yield a reliable

measurement, especially when one or more of the sensors are faulty. Kalman filtering

cannot be used if the model of the process is not available. Furthermore, such an

approach is very sensitive to outliers in the data; they can completely throw off the

estimate of the system state vector [95]. Other techniques must be used to filter

the outliers from the data. The artificial intelligence methods require an extensive

training of the system be performed prior to the actual experiment.
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CHAPTER IV

CONDITIONING OF DISTORTED SENSOR MEASUREMENTS

This chapter details the nonlinear distortion analysis, development of signal recov-

ery schemes, the discussion on how modeling errors and sensor noise affect the pro-

posed methods and the recommendations to improve the accuracy of the signal re-

constructed. A shorter version of this work can also be found in [96], [97], [98], [99],

[100], [101]. A detailed analysis of distortion caused by sensor nonlinearity is given

in section A. A discussion on how bandlimited signals can be reconstructed from the

low pass filtered version of the distorted nonlinear sensor output is documented in

section B. Section C extends the signal recovery procedure to a more general problem

that involves measurement noise. The effects of modeling errors or model uncertainty

on the outcome of the signal recovery procedure is analyzed in section D. The prob-

lem recovering distorted signals in non-stationary noisy environments is studied in

section E. Considered in section F is the problem of recovering non-stationary signal

from distorted nonlinear sensor measurements. A robust signal recovery scheme that

uses a nominal sensor model instead of an accurate model is discussed in section G.

Section H is concerned with the recovery of distorted signals in discrete domain. The

signal recovery problem with non-monotonic nonlinear sensor function is considered

in section I. The problem of recovering signals distorted by non-invertible sensor

nonlinearities is considered in section J.

A. Nonlinear Distortion Analysis

When a band limited signal is measured through a sensor, it is known that the low

amplitude part of the signal is often indistinguishable due to corruption by noise

whereas the high amplitude part may get distorted by sensor nonlinearity. Typically
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only the mid range of amplitude of a signal is reproduced accurately. The nonlinear

distortion of a band-limited signal manifests itself as high and low frequency foreign

components in its frequency spectrum. For example, consider the measurement of a

bandlimited signal

y = a1cos(ω1t) + a2cos(ω2t)

by a nonlinear sensor, which is characterized by

w = c1y + c2y
2

where w is the sensor output. The corresponding sensed signal would be

w = d0 + d1cos(ω1t) + d2cos(ω2t) + d3cos[(ω1 − ω2)t] + d4cos[(ω1 + ω2)t]

+d5cos(2ω1t) + d6cos(2ω2t)

Though the spectrum of signal, y, has only two frequency components ω1 and ω2, the

output spectrum consists of more than two frequency components ω1, ω2, (ω1 − ω2),

(ω1 +ω2), 2ω1 and 2ω2. Obviously, sensor nonlinearity destroys the property of band-

limitedness. Thus, if the signals are being measured through a nonlinear sensor, which

is characterized by a function g(.), the sensed signal g(y(t)) will get distorted, even

though the original y(t) would not have been. It is shown in [102] that to recover a

band-limited signal y(t) with band limit −Ω to Ω from the distorted signal g(y(t)),

it is not necessary to know the complete spectrum of g(y(t)) but only that part of its

spectrum that lies in the frequency band [−Ω,Ω]. Ignoring sensor noise, the original

signal y(t) can be recovered from its distorted version if g(0) = 0 and

0 <
dg(y)

dy
<∞ or −∞ <

dg(y)

dy
< 0 ∀ y (4.1)

We will now generalize nonlinear sensor distortion by considering a nonlinear
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sensor, which is characterized by an nth order polynomial g(.),

g(y) = a1y + a2y
2 + · · · + any

n (4.2)

Assuming that g(y) is continuous and differentiable, condition (4.1) can be rewrit-

ten in terms of the coefficients of the above polynomial as follows.

0 < a1 + 2a2y + 3a3y
2 + · · · + nany

n−1 <∞, ∀ y (4.3)

It can be shown that condition (4.3) will be satisfied if

a1 + 3a3|y|2 + 5a5|y|4 + · · · > 2a2|y| + 4a4|y|3 + 6a6|y|5 · · · (4.4)

∀ y.

Next consider the measurement of a band-limited continuous signal y = cos(ωt).

The sensed signal w would be:

w = g(y)

= a0 + a1cos(ωt) + a2cos
2(ωt) + a3cos

3(ωt) + · · · + ancos
n(ωt) (4.5)

To identify the frequency content of the signal, w, we will expand the above trigno-

metric power series using the following identities:

cos2(ωt) =
1

2
+

1

2
cos(2ωt)

cos4(ωt) =
3

8
+

1

2
cos(2ωt) +

1

8
cos(4ωt)

...

cos2m(ωt) =
1

22m
2mCm +

1

22m−1

m−1∑

k=0

2mCk cos[2(m− k)ωt]
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and

cos3(ωt) =
3

4
cos(ωt) +

1

4
cos(3ωt)

cos5(ωt) =
10

16
cos(ωt) +

5

16
cos(3ωt) +

1

16
cos(5ωt)

...

cos2m+1(ωt) =
1

4m

m∑

k=0

2m+1Ck cos[(2m+ 1 − 2k)ωt]

Depending on whether n is odd or even, the expressions for the sensor output,

w, will be as follows.

Case 1: n is even

w = e0 + e1cos(ωt) + e2cos(2ωt) + e3cos(3ωt) + · · · + encos(nωt) (4.6)

where

e0 =
1

2
a2 +

3

8
a4 + · · · +

nCn
2

2n
an

e1 = a1 +
3

4
a3 + · · · +

n−1Cn
2
−1

4
n
2
−1

an−1

e2 =
1

2
a2 +

1

2
a4 + · · · +

nCn
2
−1

2n−1
an

...

en−1 =
1

4
n
2
−1
an−1

en =
1

2n−1
an

Case 2: n is odd

w = d0 + d1cos(ωt) + d2cos(2ωt) + d3cos(3ωt) + · · · + dncos(nωt) (4.7)
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where

d0 =
1

2
a2 +

3

8
a4 + · · · +

n−1Cn−1
2

2n−1
an−1

d1 = a1 +
3

4
a3 + · · · +

nCn−1
2

4
n−1

2

an

d2 =
1

2
a2 +

1

2
a4 + · · · +

n−1Cn−3
2

2n−2
an−1

...

dn−1 =
1

2n−2
an−1

dn =
1

4
n−1

2

an

Using (4.4), the following inequalities can be derived:

e1 > e0, e2, e3, . . . , en (4.8)

d1 > d0, d2, d3, . . . , dn (4.9)

The above results lead to the following conclusion:

If a bandlimited continuous signal with finite frequency components is measured

through this nonlinear sensor, then the spectrum of the sensed signal will have more

frequency components than that of the original signal. However, the original frequency

components dominate the output spectrum. That is, the strengths of the original fre-

quency components in the output spectrum are greater than the strength of any other

foreign frequency spike.

If the spectrum of the original signal consists of multiple frequency components,

then the expressions for the sensor output, w, will slightly differ from those derived
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for the single frequency case. For example, let y be

y = s1cos(ω1t) + s2cos(ω2t) (4.10)

Then the expression for the corresponding sensor output would be,

w = h1cos(ω1t) + h2cos(ω2t) + h3cos[(ω1 − ω2)t] + h4cos[(ω1 + ω2)t]

+h5cos[(2ω1 − ω2)t] + h6cos[(ω1 − 2ω2)t] + h7cos(2ω1t) + h8cos(2ω2t) + · · ·

(4.11)

It is again observed that the amplitudes of the original frequency components are

greater than that of any other frequency component when condition (4.4) is satisfied.

In addition to the high harmonics, the following low frequency components can also

be seen in the output spectrum due to intermodulation: |ω1 − ω2|, |2ω1 − ω2|,|ω1 −

2ω2|,|2ω1 − 2ω2|, |3ω1 − 3ω2|, · · · and so on.

If none of the above intermodulation frequencies is equal to ω1 and ω2, then

the amplitude ratio of the original frequencies is preserved even after the nonlinear

distortion, that is,

s1

s2

=
h1

h2

.

We will next present the distortion compensation techniques and explain how the

actual data can be recovered from the distorted and noisy nonlinear sensor measure-

ment.

B. Recovery of Band-limited Signals

As shown in Fig. 4, to preserve the exact band-limitedness of signals, an ideal low

pass filter should be used, which is given by
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Figure 4: Basic Signal Recovery Setup

H(w) =







1 |ω| ≤ Ω

0 otherwise

It is shown in [96] that the iterative scheme given by

yk+1(t) = yk(t) + αz(t) − αF−1{HF{g(y(t))}} (4.12)

converges to y(t) if r = maxy |1−αdg(y)dy
| < 1, where z(t) is the filtered signal, α is the

convergence parameter, F is Fourier Transform and F−1 is Inverse Fourier Transform.

With a suitable choice of α and conditions (4.1), it can be shown that the con-

vergence requirement r < 1 is satisfied [102, 96]. The converged solution y is given

by

y = y + αz − αF−1{HF{g(y)}} (4.13)

or

z = F−1{HF{g(y)}} (4.14)

Next, it is shown that this user-defined convergence parameter, α, should be

carefully chosen because any inappropriate choice may generate misleading results. To
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derive the correct range of α, suppose that the nonlinear sensor function is monotonic

with positive gradients, i.e. 0 < dg(y)
dy

< ∞ ∀ y. In this case, it can be easily

shown that the convergence requirement r = maxy |1 − αdg(y)
dy

| < 1 will be satisfied if

0 < α < 2

max{ dg(y)
dy } .

The above iterative procedure, which assumes no or high frequency noise will

not converge to y if the sensor output wn is corrupted by noise n as shown in Fig. 5.

The effect of noise is considered next.

�
�

��������	
�����	 
����
���
����
�����	

�

�

�
�

�

�

� �

Figure 5: Recovery of Signals Corrupted by Noise

Let zn be the filtered output of the setup shown above. If convergence require-

ments are met, the algorithm still converges to a solution yn, which is given by

yn = yn + αzn(t) − αF−1{HF{g(yn)}} (4.15)

Subtracting Equations (4.13) and (4.15) and taking the norm on both sides of

the resultant equation yields

‖y − yn‖ ≤ α‖z − zn‖ +

‖(y − yn) − αF−1{HF{g(y)}} + αF−1{HF{g(yn)}}‖ (4.16)

Throughout this subsection, unless otherwise stated norm ‖.‖ refers to:
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‖f(t)‖ =

[∫ ∞

−∞
|f(t)|2dt

] 1
2

As signals y and yn are band-limited with band [−Ω,Ω],

‖(y − yn) − αF−1{HF{g(y)}} + αF−1{HF{g(yn)}}‖2

= ‖(y − yn) −F−1{HF{αg(y) − αg(yn)}}‖2

= ‖F−1{HF{(y − yn) − [αg(y) − αg(yn)]}}‖2

= ‖HF{(y − yn) − [αg(y) − αg(yn)]}‖2

=
1

2π

∫ ∞

−∞
|HF{(y − yn) − [αg(y) − αg(yn)]}|2 dw

=
1

2π

∫ Ω

−Ω

|F{(y − yn) − [αg(y) − αg(yn)]}|2 dw

≤ ‖F{(y − yn) − [αg(y) − αg(yn)]}‖2

= ‖(y − yn) − [αg(y) − αg(yn)]‖2

=

∫ ∞

−∞
|y − yn|2

∣
∣
∣
∣
1 − α

g(y) − g(yn)

y − yn

∣
∣
∣
∣

2

dt

≤ max
y

∣
∣
∣
∣
1 − α

dg(y)

dy

∣
∣
∣
∣

2

‖y − yn‖2

= r2‖y − yn‖2 (4.17)

Using Equation (4.17), Equation (4.16) can be written as:

‖y − yn‖ ≤ α‖z − zn‖ + r‖y − yn‖

That is,

‖y − yn‖ ≤ α

1 − r
‖z − zn‖ (4.18)

According to Equation (4.18), if noise is present, then the filtered signal may not

be equal to z and the recovery algorithm may not converge to the correct solution. It

should be noted that if noise has only high frequency components, then the ideal low

pass filter can remove noise completely. In that case, z = zn and therefore the original
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signal will be recovered. We will not consider this special case, which is obviously

trivial. However, it is worth noting here that at least a part of noise will be removed

by the low pass filter.
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Figure 6: Effect of α on Weight α
1−r

The convergence accelerator α determines the rate of convergence of the iterative

scheme given by Equation (4.12) and the degree of stability of this algorithm. The

relationship between the weighting α
1−r and the convergence accelerator, α is plotted

in Fig. 6. Referring to Equation (4.18) and Fig. 6, the norm of errors due to noise

(‖y − yn‖) has an upper bound, which can be optimized by choosing α to be within 0

and 2
M+m

and the optimum value is 1
m
‖z − zn‖. This proves stability of the recovery

algorithm. Furthermore, if the error bound given in Equation (4.18) is acceptable

for certain applications, then the recovery algorithm could be used to recover signals

that are subject to noise. However, in certain applications that require precision

in sensor measurements, the above error bound may not be tolerable. In this case,

additional procedures should be included to tackle sensor noise. How this can be done
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is discussed in the next section.

C. Recovery of Corrupted/Noisy Band-limited Signals

If a nonlinear sensor is designed such that it supports the recovery requirements as

given in Equation (4.1) and has a very high gradient within the noise floor so that

the actual sensor data can be distinguishable from sensor noise, then it is possible to

remove noise completely and the original signal can be uniquely recovered from the

filtered signal.

By transforming the distorted and noisy sensor output wn = g(y) + n to the fre-

quency domain, noise components can be identified as relatively low strength spikes.

As shown in Fig. 7, a suitable threshold filter could be used to remove these spikes. In

practice, threshold filtering can be accomplished by a threshold comparator as shown

in Fig. 8.

The filtered signal zd can be used to recover the original signal using the following

iterative scheme:

yk+1 = yk + αzd − αF−1{HT F{g(yk)}} (4.19)

where T is the threshold filtering operation defined by,

T (v) =







1 |v| ≥ δ

0 otherwise
(4.20)

where δ is the threshold, and |v| is the amplitude of a frequency spike.
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Figure 7: Signal Recovery Setup That Incorporates Noise Removal
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Figure 8: Practical Implementation of Threshold Filterering
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The threshold filtering operation is done in the frequency domain. For a signal

that has a finite number of frequency spikes, this operation is carried out as follows.

T F{g(yk)} = T . ∗ F{g(yk)}

where .∗ is the term by term multiplication. When each term of F{g(yk)} is multiplied

by the appropriate term of the threshold filter defined by Equation (4.20), the low

strength frequency components will be eliminated.

The important steps involved in the recovery process are summarized in the

following algorithm:

Algorithm 1 Recovery of Corrupted Signals

Step 1 [Acquiring Sensor Data] Acquire sensor data wn.

Step 2 [Obtaining Output Spectrum] Using the Fourier Transform, obtain the fre-

quency spectrum of sensor data wn.

Step 3 [Filtering out Noise] Design a threshold filter to remove the low strength

frequency spikes.

Step 4 [Removing High Harmonics] Pass the cleaned signal through an ideal low pass

filter and use the Inverse Fourier Transform to transform it back to the time

domain.

Step 5 [Recovering the Original] Use the iterative scheme given in Equation (4.19)

to recover the original signal from the filtered signal.

If the convergence requirements are satisfied, the algorithm will converge to a

solution, which is given by
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zd = F−1{HT [F{g(y)]}}

= N (y)

where N is a cascaded nonlinear operation of H,T and g(.). An underlying assump-

tion behind this recovery scheme is that no original information within the frequency

band [−Ω,Ω] is lost by the nonlinear transformation N . In addition, if the nonlinear

function has a very high slope near zero, the iterative schemes (4.12) and (4.19) are

identical as the threshold operator T simply removes noise n and reproduce signal

g(y) from the corrupted signal g(y) + n. If noise is not completely removed by this

process, the true signal may not be recovered and the error in the recovered signal

will be characterized by Equation (4.18).

D. Effect of Modeling Errors

It is emphasized that a unique signal recovery is possible only if the exact sensor

function g(.) is fed to the iterative process. In practice, modeling errors are inevitable

and the exact sensor function is difficult if not impossible to obtain. Investigated next

is how the modeling errors affect the (converged) solution. Let ga(.) be the available

model. The filtered signal obtained using ga(.) is given by

za = F−1{HF{ga(y)}} (4.21)

The expression for the ideally filtered signal would be

z = F−1{HF{g(y)}} (4.22)

The following inequality can be obtained using the previously proven result given
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in Equation (4.18).

‖y − ya‖ ≤ α

1 − r
‖z − za‖ (4.23)

Substituting for z and za using the expressions (4.21) and (4.22), we obtain

‖y − ya‖ ≤ α

1 − r
‖F−1{HF{g(y)}} − F−1{HF{ga(y)}}‖ (4.24)

But

‖F−1{HF{g(y)}} − F−1{HF{ga(y)}}‖ = ‖HF{g(y)} − HF{ga(y)}‖ (4.25)

Using

∫ ∞

−∞
|HF{g(y)} −HF{ga(y)}|2 dw =

∫ Ω

−Ω

|HF{g(y)} −HF{ga(y)}|2 dw

≤
∫ ∞

−∞
|F{g(y)} − F{ga(y)}|2 dw

we obtain

‖HF{g(y)} −HF{ga(y)}‖ ≤ ‖F{g(y)} − F{ga(y)}‖ (4.26)

Using Expressions (4.25) and (4.26), Expression (4.24) can be written as:

‖y − ya‖ ≤ α

1 − r
‖F{g(y)} − F{ga(y)}‖ (4.27)

Using the fact

‖F{g(y)} − F{ga(y)}‖ = ‖g(y) − ga(y)‖
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the expression for the error signal (4.27) becomes

‖y − ya‖ ≤ α

1 − r
‖g(y) − ga(y)‖ (4.28)

The above expression shows that the maximum error is proportional to modeling

error or uncertainty. Referring to Fig. 6, this error can be optimized with a proper

choice of the convergence accelerator α. The weighting α
1−r will be minimum when

0 < α < 2
M+m

. This proves that the algorithm is stable with respect to sensor

model error.

E. Recovery of Signals Corrupted by Non-stationary Noise

In this section, it is discussed how accuracy of recovered signal can be improved

when sensor measurements are subject to unknown non-stationary noise. Numerous

applications ranging from underwater acoustics to cellular communications in which

sensor measurements are subject to non-stationary noise exist in practice [103]. The

fact that the wavelet transform localizes the event on the time-frequency plane by

a projection of the transient signal on to the basic wavelets at different scale or

resolution makes the wavelet based denoising methods very efficient in dealing with

such transient noise effects.

1. Wavelets and Filter Banks

From the mathematical definition of continuous wavelet transform (CWT) [10], a

time domain function f(t) can be represented or approximated by many translated

and scaled versions of a particular (basic) wavelet, ψ(t),

(Wψf)(a, b) =

∫ ∞

−∞
f(t)

1
√

|a|
ψ

(
t− b

a

)

dt (4.29)
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where Wψf is the transformation coefficient that is a function of the scaling and

translation parameters, a and b respectively and ψ(.) is a complex conjugate of ψ(.).

Since b is a parameter of time and a carries the spectral details of the wavelet function,

wavelet transformation reveals both the time and spectral information of f(t) through

fitting of the many different scaled and translated versions of the basic wavelet to f(t).

The Discrete Wavelet Transform (DWT), which is defined below is a fast algorithm

that computes digitally the transform coefficients on the dyadic scale by setting a =

2−j and b = ka.

(Wψf)(2−j, k2−j) = 2−j/2
∫ ∞

−∞
f(t)ψ

(
2jt− k

)
dt (4.30)

The DWT algorithms decomposes the spectrum of a signal by digital filtering

and downsampling into components in octave frequency sub-bands. As shown in

Figure 9 (where ↓ 2 denotes decimation or downsampling, ↑ 2 denotes interpolation

or upsampling and h0, h1, g0 and g1 are filters designed to attain the required de-

composition and a perfect reconstruction), this multi-resolution decomposition of a

signal into its coarse and detail components is useful for denoising. If the frequency

change of an event is too small, the wavelet packet transform (WPT) that consists of

several sub-bands may be used to refine the indication. If the spectra of two different

signatures are too close for the DWT algorithm to resolve, the WPT can refine a

wavelet sub-band into two wavelet-packet sub-band with finer spectral distinction.

The decomposed data can be processed to remove noise. The perfect reconstruction

properties of the DWT algorithms assure the user of recovering the processed original

function from the sample values.
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Figure 9: Decomposition and Reconstruction in Wavelet Packets

2. Removal of Noise in Sensor Output

Filtering of noise is done by the decomposition and reconstruction processes using

the Filter Bank setup shown in Figure 9. The number of sub-bands required will be

decided based on how complicated or noisy is the signal data. The coarsest approxi-

mation of the signal together with the details at every level completely represent the

original signal.

As shown in Figure 9, the basic steps in the wavelet filtering process are:

1. Decompose a complicated noisy signal into simpler ones using the DWT.

2. Process the decomposed components uing standard signal filtering techniques

to identify and remove noise.

3. Reconstruct the denoised estimate using the Inverse Discrete Wavelet Transform

(IDWT).
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The processing of noise can be done in many ways. Thresholding is one of the

most commonly used processing tools in wavelet signal processing. It is widely used in

noise reduction, signal and image compression, and sometimes in signal reconstruction

[10]. We consider two simple thresholding methods [104] here. (1) hard thresholding,

(2) soft thresholding.

Hard thresholding is done by setting a signal or coefficient value to zero when it

is below a preset value. That is,

y =







x |x| ≥ σ

0 |x| < σ,
(4.31)

where σ is the threshold value.

Soft thresholding is defined as

y =







sgn(x)f(|x| − σ) |x| ≥ σ

0 |x| < σ.
(4.32)

Implementation of the hard and soft thresholding methods are quite simple: The

magnitude of each coefficient is subtracted from the threshold, if the difference is

negative, the coefficient is set to zero and if it is positive no change is applied to the

coefficient.

To identify and remove non-stationary noise in the low pass filter output, z (as in

Figure 10), we will use the setup shown in Figure 11, where v is the denoised estimate

of the low pass filter output.

Now, in order to reconstruct the sensor input, y, we will replace signal, z, in

the recursive equation (4.12) by the denoised signal, v(t), and obtain the following

modified iterative equation,

yk+1(t) = yk(t) + αv(t) − αF−1{HF{g(yk(t))}}. (4.33)
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Figure 10: Signal Recovery Setup That Incorporates Non-stationary Noise
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Figure 11: Wavelet Filtering of Noise

If noise is not completely removed by the wavelet filtering method, then the

signal recovered by solving Equation (4.33) will have errors. Let yw be the recovered

signal in this case. It can be shown that [98] yw is related to the actual sensor input

y by,

‖y − yw‖ ≤ α

1 − r
‖z − v‖ (4.34)

With an efficient denoising, the upper bound of the errors due to unfiltered noise

described by Equation (4.34) can be reduced.

Furthermore, as ‖z−v‖ < ‖z−zn‖ in general, it is expected that signal recovered

using the iterative equation (4.33) will be more accurate than that obtained by solving

Equation (4.12).
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F. Recovery of Chirp Signals

The above iterative scheme will fail to reconstruct signal, y if it is a non-stationary

or chirp signal. As frequency content of a chirp signal varies with time, the above

Fourier Transform based algorithm will not be able to analyze or process it efficiently.

This is due to the fact that transforming back and forth from frequency domain to

time domain does not preserve the Time-Frequency information. We will use a simple

example to illustrate this point.

1. Reconstruction of Bandlimited Chirp Signals

The Signal Reconstruction Scheme was developed in the preceding sections bearing

in mind that signals considered are bandlimited and stationary. In practice, it is diffi-

cult to make the separation of stationary and non-stationary or chirp signals as they

are bound to be mixed. For example, almost all biological signals are chirp. ECG

(electrical activity of the heart and electrocardiograph), EEG (electrical activity of

the brain and electroencephalograph) and EMG (electrical activity of the muscles

and elecromyogram) are a few applications worth noting. In order to correctly iden-

tify the chirp signals, the stationarity assumption has to be eliminated or necessary

modifications to the proposed algorithm have to be done.

The use of Fourier Transform in the proposed signal recovery methods has many

disadvantages. A serious drawback is its inability to accurately interpret the time-

frequency information of a chirp signal. The frequency spectrum obtained using

Fourier Transform does not usually display the true frequency content of a chirp

signal. As frequency content of a chirp signal changes with time, the frequency

spectrum may not always be useful and frequency domain data processing may not

yield accurate results. A simple example is presented next to illustrate this point.
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2. Example 1

Let us consider a nonlinear sensor that is characterized by the function shown in

Figure 12. Now pass a band-limited chirp signal shown in Figure 13 through this

sensor and filter it using an ideal low pass filter. The frequency spectrum of the

chirp signal (y) obtained using Fourier Transform is shown in Figure 14. All signals

considered are assumed to be of finite duration and are sampled at 1025 Hz. Figure

15 shows the Time-Frequency Map of the chirp signal obtained using Continuous

Wavelet Transform. It is evident from this figure that signal, y, is bandlimited with

a maximum frequency of 70 Hz. In order to recover the signal, y, using the signal

recovery procedure described by Equation (4.12), an ideal low pass filter of very high

band width, say about 400 Hz has to be used. Referring to the spectrum of y shown in

Figure 14, the input signal has frequencies across the entire frequency spectrum and

the use of the ideal low pass filter whose cut-off frequency is less than the bandwidth of

the entire spectrum will only result in the removal of actual sensor data. An accurate

signal recovery may not be possible in this case.

Implementing a very high bandwidth ideal low pass filter may not be always

feasible as this will result in an infinite bandwidth sensor operation. Intuitively, it

is argued that the hassle of frequency domain processing may be avoided if signal

processing is done only in the time domain, instead of back and forth transformation

from time domain to frequency domain. In fact, this can be made feasible by using

the following convolution identity.

F−1HF{g(y)} =

∫ ∞

−∞
g(y(τ))

sin[Ω(t− τ)]

π(t− τ)
dτ
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Figure 12: Nonlinear Sensor Used in Example 1

Using the above convolution integral, the iterative signal recovery scheme de-

scribed by Equation (4.12) is modified as follows.

vk+1(t) = vk(t) + αz(t) − α

∫ ∞

−∞
g(vk(τ))

sin[Ω(t− τ)]

π(t− τ)
dτ (4.35)

Iterative algorithm given by Equation (4.35) does not require any frequency do-

main transformation as signal processing is done only in the time domain. Therefore,

it can preserve Time-Frequency Information of a chirp signal and should successfully

recover the chirp signals from their distorted versions. The only disadvantage is that

the threshold filtering procedure described in Section 3 is inapplicable. This is because

the threshold filtering operation is done in the frequency domain and the recovery
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Figure 13: Chirp Signal

procedure of Equation (4.35) does not allow frequency domain processing. It is noted

that the ideal low pass filter implemented through its time domain coefficients will

remove high frequency sensor noise. Another example is presented next to support

this method.

3. Example 2

Consider again the same nonlinear sensor and the chirp signal used in Example 1.

Applying the recursive scheme of Equation (4.35), we obtain the signal shown in

Figure 16, which is, in fact, the original chirp signal. To implement the recovery
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Figure 14: Spectrum of Chirp Signal

scheme described by Equation (4.35) for practical problems in Matlab platform, the

following algebraic loop is used.

vk+1(t) = vk(t) + αz(t) − α conv

{

g(vk(t)),
sinΩt

πt

}

where conv is a Matlab Command used to convolve two signals and the cut-off fre-

quency of the ideal low pass filter, Ω, is chosen to be 70 Hz.

This example validates the proposed claim.
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Figure 15: Time Frequency Map Obtained Using Continuous Wavelet Transform

G. Recovery of Signals Using Nominal Sensor Model

It is noted that accurate signal recovery is possible only if the exact sensor model is

known. Though the error that occurs due to model uncertainties can be minimized

up to a certain extent, it cannot be completely removed. Most sensors are sensitive to

physical parameters such as temperature. Therefore, expensive and time consuming

periodic calibration and maintenance are necessary to preserve the true input output

relationship. If it is possible to interpret a physical variable using a nominal sensor

model instead of an accurate sensor model, it would be considered advantageous in

many aspects. In this section, such an approach is proposed.
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Figure 16: Solution to the Recursive Equation (Example 2)

Consider a nonlinear sensor model shown in Fig. 17. Let G be the nominal

nonlinear sensor function matrix and ∆ be the uncertainty matrix. The actual sensor

model Ga is,

Ga = G+ ∆ (4.36)

Suppose that Nonlinear Filtering Setup schematically shown in Fig. 4 and the

Iterative Equation (4.12) are used to recover the original signal. The original signal,

y and the sensor output, w are related by,
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Figure 17: Uncertain Sensor Model

w = Gay + n

= (G+ ∆)y + n

= Gy + ∆y + n

= Gy + ng (4.37)

where n is measurement noise ng = ∆y + n.

The nominal sensor model, G is supposed to preserve the original information

whereas the model uncertainty, ∆ would generate noise-like signal, ∆y. The idea

behind the proposed approach is schematically shown in Fig. 18 in which the nominal
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model is assumed to be linear.
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Figure 18: Proposed Approach

In general, the nominal sensor model may not be linear especially when the input

signal consists of multiple frequency components. This is because the nonlinear sensor

function may amplify multiple frequency components differently, which may not be

equivalently represented by a linear function. However, a linear piece-wise function

may be used as a nominal sensor model. in most cases, identifying a suitable nominal

sensor model may be easier than the tedious actual sensor model identification. For

example, assuming that g(0) = 0, the Taylor Series Expansion of function, g(y) about

the origin can be written using the standard notation as follows.

g(y) = g′y +
1

2!
g′′y2 +

1

3!
g3y3 +

1

4!
g4y4 + · · ·

= a1y + a2y
2 + a3y

3 + a4y
4 + · · ·

The above series can be divided into two as shown below.

g(y) = a1y + a3y
3 + · · ·

︸ ︷︷ ︸

G

+ a2y
2 + a4y

4 + · · ·
︸ ︷︷ ︸

∆

The even power terms do not preserve the original frequency information and

may be considered to generate noise-like signals. The model identification process is
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now simplified because it is only necessary to identify the coefficients of odd power

terms.

In summary, the robust signal recovery procedure with a nominal model will be

successful only if

1. ∆y is a noise-like signal and does not contain the original frequency components.

2. the nominal model, G, is such that the original information does not get lost

by the nonlinear transformation, Gy.

3. noise-like signal, ∆y + n can be filtered.

H. Signal Recovery in Discrete Domain

Consider a general sensor set-up shown in Fig. 19. A band-limited signal y(t) is

measured through a nonlinear sensor whose characteristics are described by a function

g(.). It can be easily shown that the spectra of the original signal and the distorted

signal are not the same. The output of the sensor is then sent through a non-ideal

low pass filter whose time domain function is h(t).

y w z

Nonlinear�Sensor Low�Pass�Filter

Figure 19: A General Setup

Let z(t) be the output of the low pass filter. The pass-band of the low pass filter

is set to allow only frequencies that are in the bandwidth of the signal. It can be

shown that under certain conditions the part of the spectrum outside the frequency
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band of the original signal does not contribute towards the original sensor recovery

and can be discarded with no effect. Analysis suggests that if this were not the case,

then a sensor with a larger bandwidth would be needed and the sensor recovery idea

would not do any good.

It will be shown later that a sensor model may not be known a priori to recover

the signal with reasonable accuracy. But if the nonlinear sensor model is readily

available or can be estimated with reasonable accuracy, then a unique sensor recovery

may be possible. We will next derive sufficient conditions for this to happen.

Suppose that g(.) is described by a linear piecewise function as shown in Fig. 20.

Without loss of generality, it is assumed that g(.) is symmetric about the origin and

its gradients Ki ≥ 0. The negative gradient case is discussed separately in Section

4. Even though the nonlinear sensor function is assumed to be known, it may not

be used to deduce the original signal from the sensed signal directly. This point is

evident from Equation (4.38). As the sensor output is a function of the original signal

as well as measurement noise, direct evaluation of the original signal from the sensed

signal may not yield accurate results. As emphasized in section 1, this is one of the

reasons why the use of look-up tables or calibration curves is not recommended.

The discretized values of the original signal and the sensor output are related by

w = Gy + n (4.38)

where n is high frequency measurement noise and matrix G is composed of the gra-

dients of the linear piecewise function (Ki’s) shown in Fig. 20, and has the following

form for a particular input y(t),



61

y

w

�������(wo,yo) y1
y2 y3 y4 y5 y6

w1

w2

w3

w4

w5

w6

Figure 20: Nonlinear Sensor Function (Approximated)

G =










1 0 0 0 . . . 0

0 K1 0 0 . . . 0

0 K1 −K2 K2 0 . . . 0
...

...
...

...
. . .

...

0 K1 −K2 K2 −K3 K3 −K4 . . . Kn−1










(4.39)

It is noted that matrix G is not constant and its entries must be compatible with

the order the input samples are received. The samples of the filter output, z(t) can

be calculated using the following convolution formula [105],

zk =
n−1∑

i=0

wihk−i (4.40)

which can also be written in matrix form as follows:
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z = Fw (4.41)

where

F =










h0 0 0 0 . . . 0

h1 h0 0 0 . . . 0

h2 h1 h0 0 . . . 0
...

...
...

...
. . .

...

hn−1 hn−2 hn−3 hn−4 . . . h0










(4.42)

Referring to Equations (4.38) and (4.41) the filtered signal, z and the original

signal, y can now be related by,

z = FGy (4.43)

Note that high frequency noise does not appear in Equation (4.43).

Now, the signal recovery problem reduces to finding a solution to Equation (4.43).

If the matrix FG has an inverse, then the original signal can be directly obtained by

y = (FG)−1z. But, this may not be feasible if the dimension of the matrix is very

high. For instance, if the incoming signal has 106 samples, then in order to reproduce

the original signal a matrix of dimension 106 x 106 needs to be inverted. Obviously, it

is unrewarding to attempt to compute the inverse of this matrix. Another practical

difficulty with this inversion process is that even if the matrix to be inverted is singu-

lar, round-off errors quickly destroy the singularity, and numerically one can “invert”

a singular matrix. And therefore inverting a matrix may not always give reliable and

accurate results. These observations emphasize the necessity for a systematic and

efficient procedure to solve Equation (4.43). In the next section, we will discuss how

such a solution procedure could be developed and derive sufficient conditions for the

existence of a unique signal recovery.
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1. Signal Recovery Procedure

By introducing a scalar α, Equation (4.43) can also be written as,

y = (I − αFG)y + αz (4.44)

To solve Equation (4.44) means to find a fixed point of map A: R
n → R

n defined

by:

A(y1, y2, . . . , yn) :=

(
n∑

k=1

b1kyk + αz1, . . . ,

n∑

k=1

bnkyk + αzn

)

where B = (I − αFG) and bij is its ijth element.

Equation (4.44) has a unique solution if A is a contracting self-map of the com-

plete metric space E and this solution can be obtained by iteration [14]. And the

following iterative equation could be used to find the solution if it exists:

yk+1 = (I − αFG)yk + αz (4.45)

As stated above, a unique solution to Equation (4.44) exists if A is a contracting

map. To be able to apply the fixed-point theorem, we have to make first a complete

metric space out of R
n. For this purpose, we define the following three metrics, which

transform R
n into the metric spaces lp(n).

Consider two points x and y of R
n: x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

For p=1: d(x, y) :=
∑n

v=1 |xv − yv|

For p=2: d(x, y) := (
∑n

v=1 |xv − yv|2)
1
2

For p=∞: d(x, y) := maxnv=1 |xv − yv|
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For the cases p=1,2 and ∞, let us now write down the conditions which tell us that

A is contracting.

For p=1:

d(Ax,Ay) =
n∑

i=1

∣
∣
∣
∣
∣

n∑

k=1

bik(xk − yk)

∣
∣
∣
∣
∣

≤
n∑

i=1

|bik||xk − yk|

=
n∑

k=1

|xk − yk|
n∑

i=1

|bik|

and

d(Ax,Ay) ≤
(

n
max
k=1

n∑

i=1

|bik|
)

d(x, y)

For p=2:

d(Ax,Ay) =

√
√
√
√
√

n∑

i=1





∣
∣
∣
∣
∣

n∑

k=1

bik(xk − yk)

∣
∣
∣
∣
∣

2




≤

√
√
√
√

n∑

i=1

(
n∑

k=1

|bik|2
n∑

k=1

|xk − yk|2
)

(4.46)

and

d(Ax,Ay) ≤





√
√
√
√

n∑

i,k=1

|bik|2


 d(x, y)

For p=∞:
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d(Ax,Ay) =
n

max
i=1

∣
∣
∣
∣
∣

n∑

k=1

bik(xk − yk)

∣
∣
∣
∣
∣

≤ n
max
i=1

(
n∑

k=1

|bik|
n

max
k=1

|xk − yk|
)

and

d(Ax,Ay) ≤
(

n
max
i=1

n∑

k=1

|bik|
)

d(x, y)

Therefore, the map A is contracting if one of the numbers, maxnk=1

∑n
i=1 |bik|,

√∑n
i,k=1 |bik|2,maxni=1

∑n
k=1 |bik| is less than one.

Let us now summarize this result in the following theorem.

Theorem 4 The original signal, y (Fig. 19) may be uniquely recovered from the

filtered signal, z, if one of the following numbers is less than one:

maxnk=1

∑n
i=1 |(I − αFG)ik|,

√∑n
i,k=1 |(I − αFG)ik|2,

maxni=1

∑n
k=1 |(I − αFG)ik|

Proof : It is straightforward from the previous development. ♦

It is noted that the choice of α plays a crucial role toward unique signal recovery.

Even though the sensor characteristics support the unique signal recovery, a wrong

choice of α may restrict the successful signal recovery and lead to incorrect conclu-

sions. In addition, matrices F and G need to satisfy certain conditions, which are

not evident in Theorem 4. And therefore, it would be useful if the conditions were

stated in terms of F ,G and α.

The conditions for unique signal recovery can be stated in terms of matrices F

and G and α by considering the three numbers given in Theorem 4. Alternatively,

we could simplify this process by making some reasonable assumptions.

Assume that the gradients of the sensor function are such that |Ki −Ki+1| < ε
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for some ε > 0 and Ki � ε ∀ i. Under these assumptions, the matrix G of Equation

(4.39) will have the following form:

G =










K1 ε ε ε . . . ε

ε K2 ε ε . . . ε

ε ε K3 ε . . . ε
...

...
...

...
. . .

...

ε ε ε ε . . . Kn−1










(4.47)

where ε is either 0 or |Ki −Ki+1|.

Now, using matrices F and G given in Equations (4.42) and (4.47) respectively,

we could form the matrix, I − αFG as:

I − αFG ≈








1 − αh0K1 0 0 0 . . .

−h1K1 1 − αh0K2 0 0 . . .

−h2K1 −h1K2 1 − αh0K3 0 . . .
...

...
...

...
. . .








(4.48)

As I−αFG is lower triangular, the convergence requirements can also be stated

in terms of diagonal elements. This is because the diagonal elements are the eigen-

values of a lower triangular matrix, and the matrix convergence is guaranteed if the

maximum absolute value of the eigenvalues (or the spectral radius) is less than 1. Let

Kp be maxni=1Ki.

Sufficient conditions for the unique signal recovery can be easily derived and are

summarized in the following Theorem.

Theorem 5 The original signal, y (Fig. 19) may be uniquely recovered from the

filtered signal, z if

g(xi)−g(xi+1)
xi−xi+1

6=0 ∀ i provided

1. h(t = 0) 6= 0

2. 0 < α < 2
h0Kp
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Proof: It is clear that when the gradient of the sensor function is zero, the spectral

radius of I−αFG becomes 1. This violates the convergence requirement and therefore,

the original signal may not be recovered. Similar argument is valid to prove that

h0 6= 0 is also a necessary condition for signal recovery. The sufficient condition that

the spectral radius must be less than one for convergence yields the condition on α.

♦

When the above conditions are satisfied, the iterative procedure given in Equa-

tion (4.45) could be used to find y. It is noted that the derivation of matrices may

become tedious, especially when the dimension is very high. Instead an equivalent

iterative scheme could be used to solve for y:

yk+1 = yk + y0 − αIDFT{DFT (g(yk)). ∗DFT (hk)} (4.49)

where y0 = αz.

By summarizing the above results, we formally state the important steps involved

in the signal recovery process in the following algorithm:

Algorithm 2 (Signal Recovery Procedure)

Step 1 Choose α such that it falls in the safety range (0 < α < 2
h0Kp

) and pick the

starting value of the iterative scheme given by Equation (4.49) as αz.

Repeat the following steps for all k until |yk+1−yk| < γ, where γ is a user-defined

stopping criterion.

Step 2 Find Discrete Fourier Transforms of g(yk) and hk, do term-by-term multi-

plication and get the Inverse Discrete Fourier Transform of the multiplied result,

IDFT{DFT (g(yk)). ∗DFT (hk)}

Step 3 Find

yk+1 = yk + y0 − αIDFT{DFT (g(yk)). ∗DFT (hk)}
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The algorithm basically consists of an algebraic loop that uses the filtered signal as

its initial value. As iterations in the algebraic loop are progressed, amplitudes at

frequencies other than that of the original signal gradually diminish provided the

convergence requirements are met.

2. Special Case: Negative Gradients

It was shown that the original signal could be recovered from the filtered signal if the

gradients of the sensor function are not zero. While deriving the recovery procedure,

it was assumed that the gradients are positive. This may not be true always and the

derived procedure will not converge if the gradient of the sensor function at any point

is negative. This could be easily proven by checking the spectral radius of the matrix

I − αFG.

Suppose that ith segment of the linear piecewise function shown in Fig. 20 has a

negative gradient, Ki. Let K = −Ki where K > 0. Let us now examine the matrix

I − αFG of Equation (4.48) for this case.

I − αFG ≈











1 − αh0K1 0 0 0 . . .

−h1K1 1 − αh0K2 0 0 . . .
...

...
. . .

...
...

−h2K1 −h1K2 . . . 1 + αh0Ki . . .
...

...
...

...
. . .











(4.50)

It is clear that the spectral radius is greater than one and therefore the conver-

gence requirement is violated. This proves that the solution technique derived earlier

cannot be used to recover the signals in this case. However, by suitably modifying

the algorithm, a recovery procedure can be obtained. Let us see next how this can

be done.

Recall that in order to write (4.43) in standard format as in (4.44), a scalar α
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was brought into the picture. In fact, α is not necessarily a scaler. It could also be a

matrix, for example α = α0I. where I is an identity matrix of appropriate dimension

and α0 is a scalar. To derive the recovery procedure, the matrix α is modified as

α =











α0 0 . . . 0 . . . 0

0 α0 . . . 0 . . . 0
...

...
. . .

...
. . .

...

0 0 . . . −αi . . . 0
...

...
...

...
. . .

...











(4.51)

where α0 and αi are positive scalars. Note that ith diagonal element of the matrix

α is chosen to be negative and the matrix I − αFG will have the following form:

I − αFG ≈











1 − α0h0K1 0 0 0 . . .

−h1K1 1 − α0h0K2 0 0 . . .
...

...
. . .

...
...

−h2K1 −h1K2 . . . 1 − αih0Ki . . .
...

...
...

...
. . .











(4.52)

It is noted that the spectral radius can now be less than one if 0 < α0, αi <
2

h0Kp

and therefore, the algorithm will converge.

This modification needs to be done whenever the gradient is negative in order

to guarantee successful signal recovery. It can be easily shown that unique signal

recovery may not be possible if the sensor function has negative gradients. To ensure

unique signal recovery, extreme care should be exercised in determining the correct

gradient matrix, G.

I. Signal Recovery with Non-monotonic Sensor Function

The iterative algorithm developed in the previous sections may not be used to recover

signals that are distorted by non-monotonic nonlinear sensor functions of the type
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shown in Fig. 21.

Figure 21: Non-monotonic Nonlinear Sensor Function

Other techniques should be sought in this case and we propose an optimization

based signal recovery procedure in this section. Assuming that the original signal data

is smooth with no sudden amplitude variation,which is the case with any bandlim-

ited signal, the original data can be recovered by solving the following optimization

problem:

min
y
J = min

y
‖z(k) −

∞∑

i=−∞

g(y(i))h(k − i)‖2 (4.53)

subject to

|y(k) − y(k − 1)| < ε (4.54)

where ε is the allowable amplitude variation. The inclusion of constraint (4.54) is

very crucial here as the minimization of the objective function (4.53) alone will result

in multiple optimal solutions. We present simulation data in Section 7 to validate

this recovery procedure.
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J. Recovery of Signals Distorted by Non-invertible Sensor Nonlinearity

Methods developed in previous sections may not yield accurate results if the nonlinear

sensor function dictates “ill-posed” input-output characteristic such as saturation and

dead-band. Saturation nonlinearity is a common defect found in most real sensors

and its effects are clearly apparent when the sensor is used to pick up high amplitude

signals. The main issue with such sensors is that the accurate and unique reproduction

of sensor input from the saturated sensor data may not be possible, in general.

1. Motivation

Bearing in mind that retrieving at least some of the original information and elim-

inating or reducing the distortion caused by saturation nonlinearity are useful con-

tributions towards a “smart sensor technology”, we propose a new approach, which

optimizes a non-quadratic performance index to recover the original data. The fact

that the introduction of non-quadratic penalty in the cost function does not alter the

optimal solution as much as the quadratic penalty does, makes it a better candidate

for the problem posed. The nature of solutions generated by non-quadratic opti-

mization suggests its unique ability to solve several practical problems. For example,

non-quadratic optimization is applied to decentralize multi-variable model predictive

control structures in [106].

We further elaborate the idea of using non-quadratic optimization to solve ill-

conditioned equation by considering a simple numerical example.

Consider an optimization problem, which requires that the following performance

index be minimized:

Jo = (x− a)2 (4.55)

where a is a constant and x is the variable to be optimized.
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Suppose that certain specifications require that a penalty on the variable, x,

be enforced. To investigate the effects of different penalty functions on the optimal

solutions, let us add both the quadratic and non-quadratic penalty terms to the

original cost function given in Equation (4.55) and compare the results. We first

derive the quadratic cost function.

Jq = (x− a)2 + λqx
2 (4.56)

whose gradient is given by,

∇Jq = 2(x− a) + 2λqx (4.57)

where λq is the weight on the quadratic penalty.

The non-quadratic cost function and its gradient are derived as follows.

Jn = (x− a)2 + λnx
0.5 (4.58)

∇Jn = 2(x− a) +
λn

2
√
x

(4.59)

We assume that the weight, λn, on the non-quadratic penalty term, λnx
0.5, is reason-

ably low so that the global minimum does not occur at the origin. Further discussion

on the choice of the weights and their effects on the optimal solutions is given in

Section 3.

Referring to Equation (4.57), the gradient of the quadratic cost function is linear

and the optimal solution is the point where the terms 2(x − a) and 2λqx are equal

but of opposite sign. As schematically shown in Fig. 22, the proximity of the optimal

solution of the quadratic cost function, Jq, to the actual solution (a in this case) is

determined by weight, λq.

Unlike the gradient in the quadratic case, the gradient of the non-quadratic
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Figure 22: Comparison of Optimal Solutions Obtained with Quadratic and Non-

quadratic Cost Functions

function given in Equation (4.59) has a different shape as shown in Fig. 22. Depending

on the value of weight, λn, the gradient of the non-quadratic term, λn

2
√
x
, has a very

high value near zero and dies out as the value of the variable, x, increases. We point

out that this feature of the non-quadratic function makes it a better candidate than

the quadratic function. With a suitable choice of weight, λn, the gradient of the non-

quadratic penalty can be shaped such that it dies out very soon and consequently has

a very small value at the actual solution, a, which will lead to an optimal solution

very near a. Fig. 22 further illustrates this point. It is worth mentioning that the

quadratic penalty does not possess this ability as its gradient is linear.

Another important point is that in order to drive the optimal solution closer
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to the actual value, the weight on the quadratic penalty must be chosen as low as

possible since the accuracy of the solution is simply determined by the weight. This

may not be true in the case of non-quadratic penalty. This is because the gradient of

the non-quadratic penalty will decrease as x increases and a reasonably low weight

may be sufficient to guarantee a small gradient value near the actual solution. It is

also pointed out that the shape of the gradient of the non-quadratic penalty is such

that it would possibly have optimal solutions only in two neighborhoods: one is in the

vicinity of the actual solution when the weight is low and the other is at the origin

when the weight on the non-quadratic penalty is high. Fig. 23 further supports this

point. This fact further encourages the use of non-quadratic cost function as the

availability of wide range of suitable weights makes the tuning process very easy and

the solution reliable.

Motivated by the above example, we tested this idea to solve the ill-posed signal

recovery problem. The results, which are detailed in this section, have been promising

and the optimization of non-quadratic cost function stands out from other available

tools to generate accurate results. The class of non-quadratic functions considered in

this section are those that exhibit infinite gradient at the origin, {xk|0 < k < 1}.

2. Non-quadratic Regularization

The method described in the previous section will fail if the nonlinear operation is

singular. To solve “ill-conditioned” problems of this kind, the standard regularization

techniques are applied in general. Tikhonov regularization [107, 108] is probably the

most commonly used regularization method. This technique augments the least-

squares performance index given in Equation (5.4) with an additional term, generally

known as penalty, which incorporates prior information about signal, y, given by,
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Figure 23: Effect of Weight on Non-quadratic Penalty on Optimal Solutions

min
y
J = ‖z −F−1{HF{g(y)}}‖2 + λq‖y − yo‖2 (4.60)

where λ is a weight on the penalty term and yo is an estimate based on prior

knowledge. The accuracy of the optimal solution is dependent on how close the initial

estimate is to the actual solution. The effect of the penalty function on the optimal

solution as well as on the shape of the resultant cost function is graphically shown in

Fig. 24. For convenience, the variation of the cost function in only one direction is

shown in the plot and the initial estimate, yo, is assumed to be zero.

It is noted that the constraint enforced by means of a penalty moves the solution

away from its actual value. To maintain the accuracy of the solution, the weight

on the penalty, λ, must be kept at a low value. When the value of λ is increased
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Figure 24: Effect of Adding a Quadratic Penalty Function

gradually, the error term on the expression becomes insignificant and the optimal

solution moves towards yo, which is zero in this case. However, it can be shown that

the optimal solution will never be exactly zero for a finite value of λ. This fact is

clear from Fig. 25.

We have shown that adding a quadratic penalty may not improve the accuracy

of the solution, in general. If the accuracy of sensor data is of paramount importance,

other approaches should be sought. In this section, we propose an approach, which

replaces the quadratic penalty in the cost function (4.60) by a non-quadratic penalty

as shown in the following equation:

min
y
J = ‖z −F−1{HF{g(y)}}‖2 + λn

N∑

i=1

|yi|k (4.61)
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Figure 25: Effect of Penalty Function Weight on the Optimal Solution-Quadratic

Penalty Case

where {k|0 < k < 1} is a non-quadratic index and N is the number of samples. In the

above the discrete version of the process is considered and the signals are assumed to

be sampled sufficiently fast.

The rationale behind the choice of the non-quadratic penalty has already been

explained in Section 1. We will provide additional insights by showing how a non-

quadratic penalty alters the shape of the cost function, which is otherwise quadratic.

Fig. 26 shows how this alteration is done. Again, the variation of the cost function

only in one direction is shown in the plot.

Referring to Fig. 27 and Fig. 28, with a low weight on the penalty, the cost

function has two local minimum. One is at zero and the other, which is the global
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Figure 26: Effect of Adding a Non-Quadratic Penalty

minimum is very near the actual or expected solution. The local minimum at zero is

caused by the very high gradient value of the non-quadratic penalty near zero. The

fact is, with low or moderate weight on the non-quadratic penalty, a very low value

of the gradient of the non-quadratic penalty when added to the gradient of the error

will drive the global minimum of cost function (4.61) very near the actual value. This

feature makes the proposed approach different from other traditional approaches. As

shown in Fig. 27 and Fig. 28, with a high weight on the penalty, the cost function

has only one local minimum, which is subsequently the global minimum.

To get further insight about the role of different penalties, we will study the

effects of quadratic and non-quadratic penalties with the aid of Fig. 29. In Equations

(4.60) and (4.61), the cost functions being minimized have the following general form:
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Figure 27: Effect of Penalty Function Weight on the Optimal Solution-Non-Quadratic

Penalty Case

J = E + P (4.62)

where E is the error function and P is the penalty on y.

Referring to Fig. 29, we deduce that when the value of y is high, the penalty on y

is higher in the quadratic case than that in the non-quadratic case. The higher penalty

on y may result in less accurate solution since the cost function being minimized is

J not E and the optimizer “will choose” the solution that minimizes J , which may

not necessarily minimize E. In order to accurately recover signals that exhibit large

fluctuations in strength, it is desired that penalties on the variable y must be restricted

in the working range. This requirement further encourages the use of non-quadratic
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Figure 28: Optimal Solutions for High and Low Weights on Non-Quadratic Penalty

penalty instead of quadratic penalty. Simulation examples presented in Section 5

supports this claim.

3. Optimization of Non-quadratic Cost Functions

The main issue with the proposed scheme is that it involves the optimization of

non-quadratic cost functions, which may not be convex. Non-convexity does not

guarantee a unique minimum and may lead to the existence of multiple local minima.

An efficient search algorithm is an absolute necessity to locate the correct global

minimum. In order to simplify the tasks involving the derivation of difficult algorithms

to solve this optimization problem, we use a procedure in which penalty functions, |y|k

are approximated by piecewise linear functions. This approach will be acceptable only
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Figure 29: Comparison of Penalty Function Values When the Variable Is of High

Value

if the accuracy of the function is less important and the approximation does not lead

to any undesirable effects. It gives us a relatively simple solution method and could be

applied to solve the non-quadratic optimization problems using standard optimization

algorithms. The process of approximating convex and non-convex functions by linear

piece-wise functions are illustrated in Fig. 30 and Fig. 31 respectively.

4. Illustrative Example

We will present a numerical example to explain the proposed methodology. Consider

the following sensor model:

z = F−1{HF{g(y)}} (4.63)
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The discrete version of the above equation can be written in the following matrix

equation form [96]:

z = FGy (4.64)

where G corresponds to nonlinear operation, g, and F denotes the low pass filtering

operation, H.

Taking only the first two time samples, we will use the following ill-conditioned

process to explain the algorithm.

z =






2 1

2 1.1




 y + n (4.65)

that gives

z1 = 2y1 + y2 + 0.1

z2 = 2y2 + 1.1y2 + 0.2 (4.66)

Suppose that the actual samples of the signals are given by

y =






y1

y2




 =






10

8




 (4.67)

The samples of the sensor output for this case are given by,

z =






z1

z2




 =






28.1

29.0




 (4.68)

To solve the above optimization problems, the following initial values are used

to begin the solution search in all three problems.
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yo =






−100

−1000




 (4.69)

Case 1: Minimization of Quadratic Error Function

min
y1,y2

J =

∥
∥
∥
∥
∥
∥
∥






z1

z2




−






2 1

2 1.1











y1

y2






∥
∥
∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥
∥






28.1

29.0




−






2 1

2 1.1











y1

y2






∥
∥
∥
∥
∥
∥
∥

2

= (28.1 − 2y1 − y2)
2 + (29.0 − 2y1 − 1.1y2)

2 (4.70)

The optimal solution is,

y∗ =






9.55

9.00




 (4.71)

Case 2: Minimization of Quadratic Error Function with Quadratic Penalty

min
y1,y2

Jq =

∥
∥
∥
∥
∥
∥
∥






z1

z2




−






2 1

2 1.1











y1

y2






∥
∥
∥
∥
∥
∥
∥

2

+ 0.1
(
y1

2 + y2
2
)

=

∥
∥
∥
∥
∥
∥
∥






28.1

29.0




−






2 1

2 1.1











y1

y2






∥
∥
∥
∥
∥
∥
∥

2

+ 0.1
(
y1

2 + y2
2
)

= (28.1 − 2y1 − y2)
2 + (29.0 − 2y1 − 1.1y2)

2 + 0.1
(
y1

2 + y2
2
)

(4.72)
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The optimal solution is,

y∗ =






11.0196

5.9384




 (4.73)

Case 3: Minimization of Quadratic Error Function with Non-quadratic Penalty

min
y1,y2

Js =

∥
∥
∥
∥
∥
∥
∥






z1

z2




−






2 1

2 1.1











y1

y2






∥
∥
∥
∥
∥
∥
∥

2

+ 0.1
(
|y1|0.5 + |y2|0.5

)

=

∥
∥
∥
∥
∥
∥
∥






z1

z2




−






2 1

2 1.1











y1

y2






∥
∥
∥
∥
∥
∥
∥

2

+ 0.1
(
|y1|0.5 + |y2|0.5

)

= (28.1 − 2y1 − y2)
2 + (29.0 − 2y1 − 1.1y2)

2 + 0.1
(
|y1|0.5 + |y2|0.5

)
(4.74)

The optimal solution is,

y∗ =






10.0379

8.0687




 (4.75)

Clearly, with non-quadratic cost function, more accurate results are attained.

Tables I and II compare the effect of penalty function weights on the optimal solution.
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Table I: Effects of Penalty Weights on Optimal Solution: Quadratic Cost Case

Cost Function Weights, [λ1, λ2] Optimal Solution, [y1, y2]

Jq [0.001, 0.001] [9.8823, 8.3647]

Jq [0.01, 0.01] [10.7173, 6.7511]

Jq [0.1, 0.1] [11.0196, 5.9384]

Jq [1, 1] [10.1851, 5.3653]

Jq [10, 10] [5.6514, 2.9700]

Jq [100, 100] [1.0362, 0.5444]

Table II: Effects of Penalty Weights on Optimal Solution: Non-quadratic Cost Case

Cost Function Weights, [λ1, λ2] Optimal Solution, [y1, y2]

Js [0.001, 0.001] [9.5543, 8.9918]

Js [0.01, 0.01] [9.5933, 8.9173]

Js [0.1, 0.1] [10.0379, 8.0687]

Js [1, 1] [14.2667, 0]

Js [10, 10] [14.1916, 0]

Js [100, 100] [19.2775, 0]
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CHAPTER V

FUSION OF DISTORTED MULTI-SENSOR MEASUREMENTS

This chapter is concerned with the fusion of distorted multiple nonlinear sensor data.

The optimization based algorithms presented are intended to identify the faulty or

inaccurate measurements and to optimize the number of sensors used in a process.

A shorter version of this work also appears in [109], [110], [111], [112]. A sensor

scheduling procedure to identify the faulty sensor measurements using Branch and

Bound technique is developed in section A. Having pointed out the difficulties in

dealing with the combinatorial behavior of solution search procedures required by

the Branch and Bound method, a multi-sensor fusion procedure using continuous

optimization of the error function is developed in section B. Another fusion method

that uses confidence measure of each sensor reading to pick the most accurate sensor

measurement is developed in section (C).

A. Fusion of Distorted Multi-sensor Data by Sensor Scheduling

The multi-sensor fusion problem considered in this chapter is schematically shown

in Fig. 32. Nonlinear sensor functions gi are essentially different. Without loss of

generality, it is assumed that same low pass filters are used in all sensor channels. Let

zi and vi be the corresponding filtered signals and the recovered signals respectively.

zi and y are related by,

zi = FGiy (5.1)

Consider the following fusion equation:

yr = Φ1v1 + Φ2v2 + . . .+ Φnvn (5.2)
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Figure 32: Multi-Sensor Data Fusion Setup

where Φ1,Φ2, . . . ,Φn are diagonal matrices whose entries are either 0 or 1. Let φij|Nj=1

be entries of matrix Φi ∀ i. The dimension of signal, vi is Nx1, and matrices Φi’s are

of size NxN .

Suppose that fusion of signals can be done such that at a particular time instant

only one measurement from the available n measurements can be used and a partial

blending of signals is not possible. This assumption imposes additional constraints

on the problem, which can be written as:

n∑

i=1

φij = 1, j = 1, 2, . . . , N (5.3)

The problem is now simplified to find sensor schedule matrices, Φi’s such that yr

is the best possible blend of all vi’s and thus the best approximation to the original

signal, y. It should be noted that y is unknown and the only available measurements

are zi’s and vi’s.
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Claim: The optimal sensor scheduling, Φ∗
i ’s can be obtained by minimizing the

objective function,

J = ‖zi − FGiyr‖2

= ‖zi − FGi(Φ1v1 + Φ2v2 + . . .+ Φnvn)‖2 (5.4)

subject to,

{φij|φij ∈ R} ∀ i, j (5.5)

and
n∑

i=1

φij = 1 ∀ j (5.6)

Proof of Claim: Ideally, the best way to solve this problem is to obtain Φ∗ that

minimizes the error function

e = ‖y − yr‖2

subject to constraints (5.5) and (5.6).

It is obvious that this is impossible as y is unknown. However, a close inspection

of Equation (5.1) suggests that a weighted error measure can be evaluated by appro-

priately adjusting available measurements. This fact is illustrated in the following

formulation:

zi − FGiyr = FGiy − FGiyr

= FGi(y − yr)

= FGie
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Therefore, when FGi 6= 0, the optimal sensor schedule matrices, Φ∗
i ’s obtained

by solving the optimization problem described by Equations (5.4),(5.5) and (5.6) in

fact, minimizes the weighted error function e. It is worth noting here that FGi may

not be zero in general. And if it is, then zi will also be zero. This means that all the

signals measured through that particular sensor, Si will be zeroed out. In this case,

data from sensor Si should be discarded. ♦

Before deriving the algorithm for the optimization problem specified, we will

validate the proposed idea by solving a simple numerical problem:

1. Example 1

Consider a two-sensor fusion setup shown in Fig. 33. It is noted that a problem

with two sensors is considered in this example in order to simplify the computations

involved but the proposed fusion scheme works with any finite number of sensors.
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Figure 33: Two-Sensor Data Fusion Setup

It was shown in Section H of Chapter IV that the filtered signal vector z, and

the original signal vector y, are related by z = FGy. Assume that the corresponding

relationship for one of the sensors shown in Fig. 33 has the following form:
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




z1

z2




 =






2 1

3 4











y1

y2




 (5.7)

Let the original signal y at a particular time instance be:






y1

y2




 =






1

2




 (5.8)

and the corresponding z be: 




z1

z2




 =






4

11




 (5.9)

Assume that the signal y, is measured by two sensors and the sensor outputs are

recovered using the signal recovery algorithm described in Section 2. The original

signal recovery may not always be possible and in order to obtain a good approxima-

tion to the original signal, recovered signals v1 and v2 should be blended. As partial

blending of v1 and v2 is not possible, the fusion problem reduces to finding an optimal

sensor schedule that extracts the original information from signals v1 and v2.

Let the recovered signals be:

v1 =






v11

v12




 =






2

2




 (5.10)

v2 =






v21

v22




 =






1

3




 (5.11)

The above signals are artificially formed so that the original information is split

and distributed between two signals. As can be seen, the first sample of signal v2 and

the second sample of v1 contain the original information. It will be shown next that
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the proposed fusion procedure is capable of extracting the original information while

discarding the incorrect information.

The idea is to fuse v1 and v2 so that the error between the original signal and

the fused signal is minimal. As described earlier, the first step involves the fusion of

recovered signals using the equation,

yr = Φ1v1 + Φ2v2 (5.12)

As there are only two sensors, constraints (5.6) can be written as follows.

Φ1 + Φ2 = I (5.13)

Let Φ1 = Φ and Φ2 = (I − Φ). where

Φ =






φ1 0

0 φ2






and I is an identity matrix of dimension 2.

The second step is to minimize the cost function as in (5.4):

min
Φ
J = min

Φ
‖z − FGv2 − FGΦ(v1 − v2)‖2

= min
Φ

∥
∥
∥
∥
∥
∥
∥






4

11




−






2 1

3 4











1

3




−






2 1

3 4











φ1 0

0 φ2











1

−1






∥
∥
∥
∥
∥
∥
∥

2

= min
Φ

∥
∥
∥
∥
∥
∥
∥






2φ1 − φ2 + 1

3φ1 − 4φ2 + 4






∥
∥
∥
∥
∥
∥
∥

2

= min
Φ

{(2φ1 − φ2 + 1)2 + (3φ1 − 4φ2 + 4)2} (5.14)
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The optimal solution is clearly

Φ =






0 0

0 1






The corresponding fused signal yr would be

yr =






0 0

0 1











2

2




+






1 0

0 0











1

3






=






1

2






which agrees with the original signal.

It is noted that the cost function value at optimal conditions is zero and the orig-

inal signal is reproduced because the exact original information is available. When

the exact information is not available, the fusion algorithm will generate a signal that

is the best possible approximation to the original signal and obviously the cost func-

tion value may not be exactly zero in this case. Development of the implementation

scheme and Example 2 given in the next section provide further evidence of this point.

2. Implementation Scheme

In this section, we will show how an implementation scheme for the multi-sensor

fusion procedure proposed in the previous section could be devised. The process of

evaluating the optimal sensor scheduling matrices, Φ∗
i ’s is schematically illustrated in

Fig. 34.

Let us first formulate the optimization problem stated above in standard form.

To do so, we define a vector θ that is formed by stacking all φij’s in one column as

follows:
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Figure 34: Optimization Setup to Find Φ∗

θ =

(

φ11 . . . φ1N φ21 . . . φ2N . . . . . . φn1 . . . φnN

)T

(5.15)

The objective function J in Equation (5.4) can now be easily written in terms of

θ as:

J = ‖z − FG(DN
1 (θ)v1 +D2N

N+1(θ)v2 + . . .+DnN
(n−1)N+1(θ)vn)‖2

= ‖z − FG(DN(θ)v1 +D2N(θ)v2 + . . .+DnN(θ)vn)‖2 (5.16)

where DiN
(i−1)N+1(θ) = DiN(θ) is an N x N diagonal matrix, whose entries are elements

of θ from {(i− 1)N + 1}th row to {iN}th row. It is easy to verify that the following

relationship is maintained.

DiN(θ)vi = Φivi (5.17)

Similarly, the constraints given in Equation (5.6) should be written in terms of

θ. To do so, we will expand Equation (5.6) as follows:
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φ11 + φ21 + . . .+ φn1 = 1

φ12 + φ22 + . . .+ φn2 = 1

... (5.18)

φ1N + φ2N + . . .+ φnN = 1

It is noted that the left hand side of ith constraints in Equation (5.18) is simply

the sum of iith diagonal elements of matrices Φ1,Φ2, . . . ,Φn. This interesting pattern

enables us to write constraints (5.18) in a compact form in terms of θ as follows:

(

In In. . .In

)

θ =












1

1

...

1












(5.19)

where In is an nxn identity matrix and the matrix

(

In In. . .In

)

is formed by inserting N number of In matrices as shown in order to match the

dimension of θ.

Now that all variables to be optimized are included in vector θ and objective

function is in terms of θ, this completes the problem formulation. It is noted that

the variables to be optimized are zero-one variables and therefore it is required that

an integer programming technique be used on top of any standard optimizer in order

to solve this problem. In this section, we will use a popular integer programming

technique, Branch and Bound to derive an optimization procedure [113], [114].

Define an integer programming problem PI as:
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Problem PI

Minimize

J = ‖z − FG(DN(θ)v1 +D2N(θ)v2 + . . .+DnN(θ)vn)‖2 (5.20)

subject to

(

In In. . .In

)

θ =












1

1

...

1












(5.21)

and

{θi|θi ∈ R}, θi is 0 or 1 ∀ i ∈ I

where I is the set of integer variables and R is the (closed) feasible region of the

continuous problem.

Next, define a continuous time problem as follows.

Problem PC

Minimize

J = ‖z − FG(DN(θ)v1 +D2N(θ)v2 + . . .+DnN(θ)vn)‖2 (5.22)

subject to

(

In In. . .In

)

θ =












1

1

...

1












(5.23)

and

{θi|θi ∈ R}
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If the optimal solution to the problem PC , θo is feasible in PI , then it solves the

integer programming problem, PI . If not, the following two continuous sub problems

should be created by branching on θo.

Problem P−

Minimize

J = ‖z − FG(DN(θ)v1 +D2N(θ)v2 + . . .+DnN(θ)vn)‖2 (5.24)

subject to

(

In In. . .In

)

θ =












1

1

...

1












(5.25)

and

{θi|θi ∈ R}, θi ≤ [θoi ] ∀ i ∈ I

and

Problem P+

Minimize

J = ‖z − FG(DN(θ)v1 +D2N(θ)v2 + . . .+DnN(θ)vn)‖2 (5.26)

subject to

(

In In. . .In

)

θ =












1

1

...

1












(5.27)
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and

{θi|θi ∈ R}, θi ≥ [θoi ] + 1 ∀ i ∈ I

where [θi] is the largest integer not greater than θi.

The branching process should be repeated until no further branching is possible.

The optimal solutions to all feasible subproblems are compared and the one that

corresponds to the least cost function value is chosen as the optimal solution to

problem PI . This process is described in detail in the following algorithm:
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Figure 35: Branch and Bound Tree Structure

Algorithm 3 Discrete Zero-One Optimization Procedure

Step 1 [Solving the Continuous Problem]. Solve the continuous problem (PC) as-

suming no constraints. If the optimal solution Φo of PC exists, go to next step.
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Otherwise, the solution found is not feasible.

Step 2 [Checking the necessity of Branch and Bound Technique]. If Φo is feasible in

the integer programming problem (PI), then Φ∗ = Φo. If not, go to next step.

Step 3 [Applying the Branch and Bound Technique]. Define two problems, P− and

P+ by branching on variable Φo in Problem PC. Solve problems P− and P+

and let Φ− and Φ+ be the corresponding optimal solutions.

Step 4 [Identifying the parent problem and special cases]. The special cases and the

parent problems can be identified by following the instructions given below:

1. If any problem has no feasible point, it corresponds to one special case (⊗

in Fig. 35).

2. If any solution is feasible in PI (i.e. satisfies all constraints and is integer

feasible), then it is the other special case (� in Fig. 35). This case also

corresponds to one of the feasible solutions.

3. If any problem does not fall in any one of the above-mentioned categories,

then it is a parent problem. Go to Step 3.

Step 5 [Choosing the optimal solution]. Expand the problem tree till no further

branching is possible and compute all feasible solutions. The required solution

Φ∗ is the one which has the least feasible cost function value.

Having derived the solution method for the optimization problem, we formally

state the sensor fusion procedure in the following algorithm:

Algorithm 4 Sensor Scheduling Procedure

Step 1 [Measuring Filtered Signals] Pass the sensor outputs through the ideal low

pass filters as shown in Fig. 32 and measure the filtered signals.
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Step 2 [Recovering the original signal] Recover the original from filtered signals using

the signal recovery procedure derived in [96] and given in the previous chapter

Step 3 [Obtaining the optimal sensor schedule] Solve the optimization problem de-

scribed by the objective function (5.4) and constraints (5.5) and (5.6) using

Algorithm 3 and obtain the optimal sensor schedule matrix, Φ∗
i ’s.

Step 4 [Fusing recovered signals] Fuse recovered signals by (5.2) and Φ∗
i s.

To demonstrate the efficiency of the above fusion procedure, we will present

another example:

3. Example 2

Consider again the two-fusion setup discussed in Example 1. As before, assume that

z = FGy relationship for one of the sensors has the following form:






z1

z2




 =






2 1

3 4











y1

y2




 (5.28)

Let original signal y be: 




y1

y2




 =






1

2




 (5.29)

and the corresponding z be: 




z1

z2




 =






4

11




 (5.30)

Recall that in Example 1, the fusion procedure was able to reproduce the original

signal because recovered signals v1 and v2 were formed such that the exact original

information was distributed between v1 and v2. This may not be the case always.

That is, the exact original information may not be available in recovered signals. In
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this case, the original signal may not be exactly reproduced and the problem reduces

to finding a signal that is the best possible approximation to the original signal. To

illustrate that the developed fusion scheme is capable of generating such a signal, it is

assumed that recovered signals do not contain the exact original information between

them.

Let recovered signals be:

v1 =






v11

v12




 =






2

1.6




 (5.31)

v2 =






v21

v22




 =






1.2

3




 (5.32)

As before, signals v1 and v2 are fused by:

yr = Φv1 + (I − Φ)v2 (5.33)

Now, consider the following optimization problem:

min
Φ
J = ‖z − FGv2 − FGΦ(v1 − v2)‖2

=

∥
∥
∥
∥
∥
∥
∥






4

11




−






2 1

3 4











1.2

3




−






2 1

3 4











φ1 0

0 φ2











0.8

−1.4






∥
∥
∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥
∥






1.6φ1 − 1.4φ2 + 1.4

2.4φ1 − 5.6φ2 + 4.6






∥
∥
∥
∥
∥
∥
∥

2

= {(1.6φ1 − 1.4φ2 + 1.4)2 + (2.4φ1 − 5.6φ2 + 4.6)2} (5.34)
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subject to

{Φ|Φ ∈ R}, and φ(i) is 0 or 1 ∀ i ∈ I.

This optimization problem is not straightforward and therefore an integer pro-

gramming technique such as Branch and Bound should be applied in conjunction with

any standard optimizers. Let us now demonstrate how branch and bound method

could be used to obtain a solution.

The first step is to solve the unconstrained optimization problem. The solution

to this problem is,

Φo =






φo1

φo2




 =






0

0.8319




 (5.35)

The cost function value is Jo = 0.0588.

As φ2 is not an integer, this solution is not feasible. We want φ2 to be either 0

or 1. To do so, we branch on φ2, creating two subproblems.

Problem P−

min
Φ
J− = {(1.6φ1 − 1.4φ2 + 1.4)2 + (2.4φ1 − 5.6φ2 + 4.6)2} (5.36)

subject to,

0 ≤ φ(1) ≤ 1

0 ≤ φ(2) ≤ 0

and φ(i) is 0 or 1 ∀ i ∈ I.
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The solution to this problem is

Φ− =






φ−
1

φ−
2




 =






0

0




 (5.37)

The objective function value is J− = 23.12.

The solution obtained is feasible and therefore no further branching is necessary.

Let us now consider the other subproblem.

Problem P+

min
Φ
J+ = {(1.6φ1 − 1.4φ2 + 1.4)2 + (2.4φ1 − 5.6φ2 + 4.6)2} (5.38)

subject to

0 ≤ φ(1) ≤ 1

1 ≤ φ(2) ≤ 1

and φ(i) is 0 or 1 ∀ i ∈ I.

The solution to this problem is

Φ+ =






φ+
1

φ+
2




 =






0.2885

1




 (5.39)

The objective function value is J+ = 0.3077.

This solution is not feasible and therefore further branching is necessary. Let us

create two more subproblems by branching on φ1.
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Problem P+−

min
Φ
J+− = {(1.6φ1 − 1.4φ2 + 1.4)2 + (2.4φ1 − 5.6φ2 + 4.6)2} (5.40)

subject to

0 ≤ φ(1) ≤ 0

1 ≤ φ(2) ≤ 1

and φ(i) is 0 or 1 ∀ i ∈ I

The solution to this problem is

Φ+− =






φ+−
1

φ+−
2




 =






0

1




 (5.41)

The objective function value is J+− = 1. This solution is feasible and therefore no

further branching is necessary.

Let us consider other subproblem.

Problem P++

min
Φ
J++ = {(1.6φ1 − 1.4φ2 + 1.4)2 + (2.4φ1 − 5.6φ2 + 4.6)2} (5.42)

subject to

1 ≤ φ(1) ≤ 1

1 ≤ φ(2) ≤ 1

and φ(i) is 0 or 1 ∀ i ∈ I.
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The solution to this problem is

Φ++ =






φ++
1

φ++
2




 =






1

1




 (5.43)

The objective function value is J++ = 4.52. As the solution is feasible, no further

branching on this path is possible. As there are no further active subproblems, the

optimal solution to this problem is then the one that gives the least cost function

value. The optimal solution is therefore,

Φ∗ =






0 0

0 1






The fused signal is

yr =






0 0

0 1











2

1.6




+






1 0

0 0











1.2

3






=






1.2

1.6






which is obviously the best possible approximation to the original signal. Note that

the optimal cost function value is not exactly zero. This is because the original signal

is not exactly reproduced.

Simulation results are presented in chapter VII to validate the multi-sensor fusion

scheme developed.

B. Fusion of Distorted Data by Continuous Optimization

The examples presented in the previous section clearly demonstrate performance of

the fusion scheme. The main drawback of the proposed procedure is the increased
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computational load due to the combinatorial nature of solutions generated by the

Branch and Bound Method. Implementing this scheme in real time may require faster

computational resources be used. In order to resolve this issue, we make necessary

modifications to the above algorithm and show that efficiency of the algorithm can

be improved.

It is assumed that at least one of the sensor models (Sp)is exactly known. It

will be shown later that the proposed framework is robust to model uncertainty or

modelling errors. Consider the following fusion equation:

yr = Λ1v1 + Λ2v2 + . . .+ Λnvn (5.44)

where Λ1,Λ2, . . . ,Λn are weighting matrices. Let λij|Nj=1 be entries of matrix Λi ∀ i.

The dimension of signal, vi is Nx1, and matrices Λi’s are of size NxN .

The first step is to find the weighting matrices such that the error between the

fused signal yr and y is minimal. We claim that the optimal weighting matrices can

be generated by solving the following optimization problem.

min
Λi

J = ‖zp − FGpyr‖2

= ‖zp − FGp(Λ1v1 + Λ2v2 + . . .+ Λnvn)‖2 (5.45)

subject to,

{λij|λij ∈ R} ∀ i, j (5.46)

where R is set of real variables.

Therefore, when FGp 6= 0, the optimal sensor schedule matrices, Λ∗
i ’s obtained

by solving the optimization problem described by Equations (5.45) and (5.46) in fact,

minimizes the weighted error function e. It is worth noting here that FGp may not
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be zero in general. And if it is, then zp will also be zero. This means that all the

signals measured through that sensor, Sp will be zeroed out. In this case, data from

sensor Sp should be discarded. ♦

1. Implementation Scheme

In this section, we will show how an implementation scheme for the multi-sensor

fusion procedure proposed in the previous section could be devised. The process of

evaluating the optimal sensor scheduling matrices, Λ∗
i ’s is schematically illustrated in

Fig. 36.
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Figure 36: Optimization Setup to Find Λ∗
i

Let us first formulate the optimization problem stated above in standard form.

To do so, we define a vector X that is formed by stacking all λij’s in one column as

follows:

X =

(

λ11 . . . λ1N λ21 . . . λ2N . . . . . . λn1 . . . λnN

)T

(5.47)

The objective function J in Equation (5.45) can now be easily written in terms

of X as:

J = ‖zp − FGp(D
N
1 (X)v1 +D2N

N+1(X)v2 + . . .+DnN
(n−1)N+1(X)vn)‖2

= ‖zp − FGp(DN(X)v1 +D2N(X)v2 + . . .+DnN(X)vn)‖2 (5.48)
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where DiN
(i−1)N+1(X) = DiN(X) is an N x N diagonal matrix, whose entries are

elements of X from {(i− 1)N + 1}th row to {iN}th row. It is easy to verify that the

following relationship is maintained:

DiN(X)vi = Λivi

Solving the unconstrained optimization problem formulated above will yield the

optimal weighting matrices. These values should then be used to obtain yr as in

Equation (5.44), which is the best possible blend of multi-source data. It is often

the case that fusion of signals can be done such that at a particular time instant

only one measurement from the available n measurements can be used and a partial

blending of signals is not possible. The situations like this can be best tackled by

scheduling the available multi-sensor data so as to obtain the best possible combina-

tion. Having found the best estimation of y, the sensor scheduling problem becomes

straightforward. At each time instant, all available data vi should be compared with

the corresponding entry of yr and the sensor data that is closest to this entry yr

should be the best candidate to fill the spot in the sensor schedule. This process can

be automated by formulating the problem as an optimization problem.

Let vf be the fused signal. Relate vf and the multi-sensor data by

vf = Γ1v1 + Γ2v2 + . . .+ Γnvn (5.49)

where Γ1,Γ2, . . . ,Γn are diagonal matrices whose entries are either 0 or 1. Let γij|Nj=1

be entries of matrix γi ∀ i. The matrices Γi’s are of size NxN .

The optimal sensor scheduling matrices, Γ∗
i ’s can be obtained by minimizing the

objective function
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J = ‖yr − vf‖2 (5.50)

subject to,

{γij|γij ∈ I} ∀ i, j (5.51)

and
n∑

i=1

γij = 1 ∀ j (5.52)

where I is the set of positive integer variables.

The constraint set (5.52) is necessary to generate discrete zero-one output. Any

integer programming technique such as Branch and Bound can be used on top of any

standard optimizer to solve the above zero-one discrete optimization problem [114],

[113].

The multi-sensor fusion scheme given above is summarized in the following algo-

rithm.

Algorithm 5 Sensor Scheduling Procedure

Step 1 [Measuring Filtered Signals] Pass the sensor outputs through the ideal low

pass filters as shown in Fig. 32 and measure the filtered signals.

Step 2 [Recovering the original signal] Recover the original from filtered signals using

the signal recovery procedure derived in [96] and given in the previous chapter.

Step 3 [Obtaining the best blend] Solve the unconstrained optimization problem de-

scribed by the objective function (5.45) to obtain the optimal weighting matrices,

Λ∗
i . Plug in these values in Equation (5.44) to obtain the best possible blend yr.

Step 4 [Scheduling of the multi-sensor data] Minimize the objective function (5.50)

subject to constraints (5.51) and (5.52) to obtain the sensor schedule matri-

ces Γi. The best possible combination of the multi-sensor data (without partial
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Table III: Signal Data for Examples 1 & 2

Time y v1 v2 v3 z

1 2.2 4.6 2.2 -2 7.45

2 -3.4 -3.4 4.3 1.1 -12.98

3 4.1 -2.4 10.1 4.1 13.5

blend) can be obtained by plugging in Γi in Equation (5.49).

2. Example 1

We present a numerical example to illustrate the proposed fusion scheme. Consider a

fusion problem with three sensors. Suppose that the original signal has three samples

and one of the sensor models is known and is given by (according to Equation (58)),

FG1 =









4 1 0.5

3 6 0.2

3 4 5









(5.53)

The original signal, y, three sensor measurements(recovered signals) v1, v2 and

v3 and the filtered output of the sensor whose model is given above, z are tabulated

in Table III.

Applying Algorithm 5, the optimal weighting matrices are calculated and the

signal yr of Equation (5.44) is formed as:

yr =









2.2

−3.4

4.1









(5.54)
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Table IV: Sensor Schedule (Example 1)

T ime S1 S2 S3

1 x
√

x

2
√

x x

3 x x
√

which agrees with the original data, y. The next task is to schedule the sensor data.

The automated sensor scheduling procedure proposed earlier can be used to solve

this problem. The result is tabulated in Table IV, where x and
√

are the off and on

positions of sensors respectively. For example, at time instant 1, data from sensor #2

should be used and the other two values should be discarded.

3. Example 2

Let us now investigate the problem of not having the exact sensor model or the model

available is inaccurate. Considering the same data given in Table III, we will use the

following model to obtain the sensor schedule:

FG1 =









4.2 1 0.5

3 6.4 0.2

3 4 5.5









(5.55)

As was done in the previous example, the signal yr is obatbed as follows.

yr =









2.09

−3.12

3.58









(5.56)
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Table V: Sensor Schedule (Example 2)

T ime S1 S2 S3

1 x
√

x

2
√

x x

3 x x
√

The sensor schedule is tabulated in Table V.

The sensor schedule is same as before even though the correct sensor model was

not used.

If the model uncertainty or modelling errors are modelled by,

∆ =









δ1 0 0

0 δ2 0

0 0 δ3









(5.57)

it can then be shown that there exists l1, l2, l3, u1, u2, u3 ∈ R such that

l1 ≤ δ1 ≤ u1

l2 ≤ δ2 ≤ u2

l3 ≤ δ3 ≤ u3 (5.58)

for which the algorithm generates the correct sensor schedule.

It can be concluded from this example that the algorithm is robust to small

modelling errors or model uncertainty.
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Table VI: Signal Data for Example 3

Time y v1 v2 v3 z

1 2.2 4.6 1.9 -2 7.45

2 -3.4 -3.0 4.3 1.1 -12.98

3 4.1 -2.4 10.1 3.8 13.5

4. Example 3

In the above examples, it was shown that the proposed algorithm is capable of ex-

tracting the original information, which is randomly distributed in the multi-sensor

data. In general, the original information may not be exactly available in the sensed

data. Consider the signal data given in Table VI.

The sensor measurements v1,v2 and v3 do not contain the actual signal data. The

fused signal yr is found to be,

yr =









2.3

−3.4

4.1









(5.59)

The original information is reproduced even though the multi-sensor data do not

contain it. As discussed earlier, the partial blending of data may not be possible

always and the process may require that one of the available measurements be used.

The sensor scheduling is necessary in this case and the automated scheduling algo-

rithm could be used to obtain the best possible measurements. Table VII summarizes

the result.
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Table VII: Sensor Schedule (Example 3)

T ime S1 S2 S3

1 x
√

x

2
√

x x

3 x x
√

C. Effective Sensor Fusion by Confidence Measures

In this section, we propose another sensor fusion scheme in which sensor data fusion

is done by assigning a “confident measure” to all available sensor data and picking

the ones that lead the list of confidence measures. The result is then used to solve

the sensor scheduling problem.

1. Characterization of Sensor Measurements

The characterization of sensor measurements is the first step of the proposed multi-

sensor fusion procedure. Assuming that sensor measurements are given as time sam-

ples, we characterize each sample of the sensed data by assigning a “confidence mea-

sure”. The confidence measure, which is estimated by solving an optimization problem

is used to understand how close a particular sensor measurement is to its actual value.

For example, a confidence measure of 1 means that the sensor measurement is 100%

accurate whereas a measure that is not close to 1 denotes that the corresponding

sensor measurement is the least desirable. The idea of assigning confidence measures

to sensor data is illustrated in Fig. 37. The processor uses the algorithm proposed

in this section to calculate confidence measures. Each sensor data vi is replaced by

(vi, αi) while being passed through the processor, where αi is its confidence measure.
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Figure 37: Assigning “Confidence Measure” to Sensor Data

Claim:

It is claimed that such confidence measures can be calculated by solving the

following optimization problem:

min
αij

‖zi − FiGiαivi‖ (5.60)

subject to αij ∈ R (5.61)

where vi is the recovered signal/sensor measurements, zi is the corresponding filtered

signal, and Fi and Gi are the low pass filter and nonlinear sensor matrices respectively

as defined in the previous sections. The confidence measure matrix αi is defined as
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follows.

αi =












αi1 0 . . . 0

0 αi2 . . . 0

...
...

. . .
...

0 0 . . . αiN












(5.62)

Proof of Claim: As the optimization problem formulated above is uncon-

strained, the optimal cost function value must be zero. This implies that the optimal

α∗
i should satisfy the following equation:

zi = FiGiα
∗
i vi (5.63)

Recalling that the actual signal yi and zi are related by,

zi = FiGiyi (5.64)

Comparing Equations (5.63) and (5.64), the following equation is obtained.

α∗
i vi = y (5.65)

Expanding Equation (5.65),












αi1
∗ 0 . . . 0

0 αi2
∗ . . . 0

...
...

. . .
...

0 0 . . . αiN
∗























vi1

vi2
...

viN












=












y1

y2

...

yN












(5.66)

That is

α∗
ij =

yi
vij

(5.67)

As the confidence measure α∗
ij is the ratio of the actual value and the sensor

measurement, any measurement whose confidence measure is closest to 1 is most
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desirable. This completes the proof. ♦

2. Multi-sensor Fusion

Consider the fusion problem that is schematically shown in Fig. 32. Nonlinear

sensor functions gi are essentially different. Let v1, v2, . . . , vn be recovered signals,

z1, z2, . . . , zn be filtered signals, n1, n2, . . . , nn be sensor noise and w1, w2, . . . , wn be

output signals of sensors S1, S2, . . . , Sn respectively. Define vi as follows:

vi =












vi1

vi2
...

viN












(5.68)

where i = 1, 2, . . . , n and N is the number of samples.

As explained in Section 2, the filtered (zi) and original (y) signals are related by,

z1 = F1G1y

z2 = F2G2y

...

zn = FnGny

Define the n diagonal matrices namely A1, A2, . . . , An each of dimension N ×N

as:

Ai =












αi1 0 . . . 0

0 αi2 . . . 0

...
...

. . .
...

0 0 . . . αiN












(5.69)
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where i = 1, 2, . . . , n.

As formulated in the previous section, the confidence measures αij are calculated

by solving n optimization problems. For instance, the ith optimization problem is

formulated as:

min
αij

‖zi − FiGiAivi‖ (5.70)

subject to αij ∈ R (5.71)

where i = 1, 2, . . . , n.

For i = 1, 2, . . . , n, we have n optimization problems, which should be formulated

and solved to obtain αij. For a problem with n sensors and a signal sample size of N ,

the number variables (confidence measures) to be optimized are nN . This process of

evaluating confidence measures is illustrated in Fig. 38.

As all of the above optimization formulations are convex quadratic programming

problems, the solutions can be easily obtained. Once all αij are available, the fusion

of signals at some time k should be done by comparing confidence measures of all

samples at that particular instant and choosing the signal value whose confidence

measure is closest to 1. The fusion rule is stated as follows.

3. Fusion Rule

At some time k, given n multi-sensor data v1k, v2k, · · · , vnk and their corresponding

confidence measures α1k, α2k, · · · , αnk, the best available sensor measurement at that

particular time instant, k is vqk that corresponds to the confidence measure obtained

by the rule
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Figure 38: Calculation of αij

αqk =
n

min
i=1

|1 − αik| (5.72)

where q ∈ {1, 2, · · · , n}

4. Illustrative Example

We present a numerical example to illustrate the proposed fusion scheme. Consider

a fusion problem with two sensors. Let the sensor models be given by
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z1 =






2 1

3 4




y (5.73)

z2 =






4 0.5

1 2.5




y (5.74)

Let the original signal y be:

y =






1

2




 (5.75)

The corresponding z1 and z2 are

z1 =






4

11




 (5.76)

z2 =






5

6




 (5.77)

Let recovered signals/sensor measurements be:

v1 =






v11

v12




 =






2

2




 (5.78)

v2 =






v21

v22




 =






1

3




 (5.79)

Define two diagonal matrices α1 and α2 as:

α1 =






α11 0

0 α12




 (5.80)
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α2 =






α21 0

0 α22




 (5.81)

As explained in the previous section, the unconstrained optimization problems

are formulated as follows.

Minimize

J1 = ‖z1 − F1G1α1v1‖2 (5.82)

=

∥
∥
∥
∥
∥
∥
∥






4

11




−






2 1

3 4











α11 0

0 α12











2

2






∥
∥
∥
∥
∥
∥
∥

2

(5.83)

= (4 − 4α11 − 2α12)
2 + (11 − 6α11 − 8α12)

2 (5.84)

The solution to the above optimization problem is






α∗
11

α∗
12




 =






0.5

1




 (5.85)

or written according to our notation, {(2,0.5),(2,1)}. That is, the second sample is

100% accurate.

Let us now solve the other optimization problem:

Minimize

J2 = ‖z2 − F2G2α2v2‖2 (5.86)

=

∥
∥
∥
∥
∥
∥
∥






5

6




−






4 0.5

1 2.5











α21 0

0 α22











1

3






∥
∥
∥
∥
∥
∥
∥

2

(5.87)

= (5 − 4α21 − 1.5α22)
2 + (6 − α21 − 7.5α22)

2 (5.88)



122

The solution to the above optimization problem is






α∗
11

α∗
12




 =






1

0.6667




 (5.89)

Or written according to our notation, {(1,1),(3,0.6667)}. That is, the first sample

is 100% accurate.

From Equations (5.85) and (5.89), it can be concluded that the second sample

of sensor #1 and first sample of sensor #2 are 100% accurate and therefore should

be chosen.

Or applying the fusion rule,

αqk =
2

min
i=1

|1 − αik| (5.90)

where q ∈ {1, 2} and choosing the corresponding sensor outputs, the following

estimate of the original signal is obtained:

v =






1

2




 (5.91)

It is noted that the original signal is detected accurately, which validates the

proposed scheme. Simulation data is presented in Chapter VII to further validate the

proposed scheme.



123

CHAPTER VI

ATTAINING HIGH OPERATING BANDWIDTH BY SENSOR ARRAYS

This chapter is devoted to the development of sensor arrays to attain a high operating

bandwidth. Three approaches are presented to implement the sensor array framework

introduced in chapter I. Simulation results are presented in chapter VII to validate

the schemes developed. The material presented in this chapter also appears in [115],

[116].

A. Implementation of Sensor Arrays

To implement the sensor array framework proposed in chapter I, it is required that

a suitable multi-sensor data fusion scheme be developed first. As discussed, the

proposed sensor array should have several frequency segments that are characterized

by frequency responses of low pass-band sensors. Transition from one operating region

to the other may not be sharp. This would result in several overlapping regions where

data from more than one sensor is available. The individual measurements must be

combined to yield a single inference. An effective data fusion plays a crucial role in

improving the accuracy of sensor array measurements.

In this section, we develop a data fusion scheme using Frequency Response Meth-

ods. The sensor array design problem is formulated as a feedforward problem and

Quantitative Feedback Theory (QFT) loopshaping techniques are adopted to solve

the problem posed. QFT is a controller design methodology that is well suited for the

design of controllers or compensators for systems with large parameter uncertainty

for which it is required to meet point-wise, closed loop frequency domain performance

tolerances [117, 118]. Sensors used in the proposed sensor arrays may have complex

and time varying dynamics and analytic models may be difficult to obtain. This
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would make the data fusion and the design process, in general, very difficult and

challenging. To simplify this task and utilize the features of the QFT methodology,

the sensor array design is done in a QFT environment. The QFT methodology fits

a wide range of applications of this kind. In particular, Bentley [119] uses the QFT

method to combine the inertial-angle-sensor data with the less perfect information

in the command signal to achieve maximum jitter reduction. Though data fusion is

done primarily using frequency domain techniques in this setup, other techniques are

also explored and their applicability is tested. For example, the design of a multi-

sensor system for a high speed land vehicle navigation and control system using the

continuous time Kalman Filter and classical frequency response techniques is given

in [68]. A detailed discussion on other fusion techniques and their limitations are pre-

sented in Section C. Furthermore, a new optimization based sensor fusion technique

is developed in Section 38.

B. Sensor Arrays

In general, the term ‘sensor array’ is used to denote a collection of multiple sensors

arranged in a specific pattern. The way sensors are arranged may differ from one

application to another. In the literature, there are several general and many more

application specific definitions given for sensor arrays [120], [121], [122], [123], [124].

The Oxford English Dictionary definition of an array is: A series of things exhibited

or displayed in line or order. Using this definition, in this context, a sensor array is

defined as a multi-sensor arrangement in which each sensor is assigned to cover only

a specific segment of the overall operating bandwidth and the required bandwidth is

covered by the union of all the pass-bands of the sensors in the collection.

The proposed sensor array configuration is schematically shown in Fig. 39, where



125

y is a signal whose frequency spectrum spans over a wide range, S1, S2, · · · , Sn are

sensor transfer functions, y1, y2, · · · , yn are their respective outputs and yr is the fused

signal. Frequency responses of sensor dynamics are shown in Fig. 40, where the idea

of proposed sensor array is illustrated. It is noted that sensor bandwidth of
∑n

i=1 ωi

can be achieved with low cost, low pass-band sensors, where ωi are bandwidths of

sensors used in a sensor array shown in Fig. 40.
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Figure 39: Sensor Array Configuration
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Figure 40: Sensor Array with Low Pass-band Sensors
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A part of the frequency response shown in Fig. 40 is zoomed in and shown in Fig.

41. With a region where data from more than one sensor is available, it is evident

that the implementation of the sensor array is not straightforward and an efficient

sensor fusion scheme is necessary.
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Figure 41: Sensor Array with Two Sensors

Ideally, the proposed scheme would work best with sensors whose frequency

responses have sharp cutoffs as shown in Fig. 42. It is well known that these ideal

sensors are not physically realizable and this would mean that the difficult task of

data fusion is unavoidable. It is noted that sensor arrays whose frequency responses

form another ideal sensor array as shown in Fig. 43 are not considered here. This

would require that a large number of sensors be used in a sensor array,however, an

effective trade off between performance and system complexity may not be made.

Furthermore, uncertainties associated with sensors might place the sensory system in

a vulnerable condition. We argue that good system performance can be achieved with
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just enough sensors (optimum number of sensors if it is possible to obtain this number)

and a suitable sensor fusion scheme. As will be discussed later, a sensor fusion scheme

integrated in a sensory system improves system reliability and robustness.
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Figure 42: Ideal Sensor Array
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Figure 43: Another Ideal Sensor Array
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C. Multi-sensor Fusion in Sensor Arrays

As discussed in the previous sections, effective fusion of multi-sensor data is essential

for the successful implementation of sensor arrays. Multi-sensor data fusion is the

process of integrating information from different sensors. Several specific advantages

obtained by using more than one source of data in seeking some typical conclusions

are the following: improved system reliability and robustness, increased confidence,

reduced ambiguity, shorter response time, improved resolution, extended coverage and

in some cases, reduced cost of operation [30]. The fusion of redundant information

can reduce overall uncertainty and thus serves to increase the accuracy of the process

measurements. Complementary measurements from multiple sensors allow certain

features of the environment to be perceived that may not be possible or feasible

with a single sensor. As discussed earlier, the idea of sensor arrays evolved from the

difficulty that a single sensor cannot accurately measure low as well as high frequency

measurements.

A common data fusion approach is to take the weighted average of the various

sensor data to arrive at a composite fused value. Kalman Filtering provides another

fusion method, which generates the estimates of the required data. The estimates

are optimal in a statistical sense. The Kalman Filtering technique is a linear sys-

tems technique that works well for reconstructing the environment, when the data is

corrupted by measurement noise only. This approach is useful when the state vector

can be identified and related to its previous values through a state transition ma-

trix. Cluster analysis provides a powerful tool to classify multi-sensor data [82]. In

the clustering methods, the distance between two clusters are optimized or adjusted

to reach the final decision. The Bayesian inference fusion methods allow the multi-

sources to be united according to the rules of probability theory [84]. The artificial
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intelligence methods use a priori set of training data to establish an inference system

and the applicable rules are identified by searching the complete set of rules [86, 31].

Even though the above techniques have been proven to conduct sensor fusion

at different levels, there is still a need for a generic, efficient multi-sensor fusion

tool. Taking weighted-average of the multi-source information may not always yield

a reliable measurement, especially when one or more of the sensors are faulty. Kalman

filtering cannot be used if the model of the process is not available. Furthermore, such

an approach is very sensitive to outliers in the data; they can completely throw off the

estimate of the system state vector [95]. The artificial intelligence methods require

that an extensive training of the system be performed prior to the actual experiment.

Though sensors are, in general, used to measure signals that come from plants

or processes, it would be advantageous to consider the sensor and the data fusion

setup as an integrated system, which does not interact with the process/plant. Such

a setup would allow the integrated sensory system to be used as a stand-alone process.

When used in feedback control systems, this would simplify the controller design as

no additional consideration for the feedback loop needs to be given. This fact is

illustrated in Fig. 44. To facilitate the above implementation, we will consider the

data fusion setup schematically shown in Fig. 45. In the above setup, the data fusion

is done by suitable compensators P1, P2, · · · , Pn. The compensators P1, P2, · · · , Pn
must be designed such that the magnitude and the phase of the frequency response of

the integrated setup of sensors and compensators are 1 and 0 respectively and remain

the same over the entire frequency range or the required bandwidth as shown in Fig.

46 .
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Figure 44: Sensor Array as a Stand-alone Process
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Figure 45: Multi-sensor Data Fusion Setup in Sensor Arrays

D. Design of Compensators by Frequency Domain Methods

We will now discuss how the compensators can be designed to meet the above require-

ments. As the objective is to shape the frequency response of the integrated system

in Fig. 45, the design of compensators can be done using frequency response models

of sensors only and the analytical models may not be needed. This assumption would
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Figure 46: Ideal Frequency Response of the Sensors and Compensators Integrated

Setup

remove the burden of tedious modelling processes. The approach may also yield a

more accurate design than that may be possible with analytical models of sensors

as modelling errors are inevitable due to certain assumptions and/or approximations

that are needed in deriving such models.

Like any other control system design, uncertainty associated with sensor models

must be taken into account in order to obtain a robust design. This is a critical issue

with sensors as they are sensitive to environmental factors, for example, temperature.

Therefore, compensators must cope with the sensor uncertainty to satisfy the goals

expressed in terms of the frequency response shown in Fig. 46 of the integrated

system.

Sensor uncertainties may not be truly characterized. However, it is reasonable

to assume that they have some bounds. Multi-sensor fusion setup shown in Fig. 45
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is modified to include sensor uncertainties and is shown in Fig. 47.
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Figure 47: Multi-sensor Data Fusion Setup in Sensor Arrays with Uncertain Sensor

Models

S1(jω, α1), S2(jω, α2), · · · , Sn(jω, αn) are uncertain sensor models, where uncer-

tainties are characterized by variables, α1, α2, · · · , αn. ω is frequency in rad/sec. It

is assumed that these variables vary within known bounds. The inclusion of sensor

uncertainties into the design problem requires families of sensor functions, namely,

S1,S2, · · · ,Sn be considered rather than single sensor functions.

S1 = {S1(jω, α1)} ∀ α1

S2 = {S2(jω, α2)} ∀ α2

...

Sn = {Sn(jω, αn)} ∀ αn

With uncertain sensor models, the ideal frequency response of Fig. 46 may not be
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achieved by any robust design technique. To obtain a practically feasible design, the

expected frequency response of the integrated system is modified as shown in Fig. 48.
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Figure 48: Expected Frequency Response of the Sensors and Compensators Integrated

Setup

The robust design process involves obtaining compensators P1, P2, · · · , Pn to sat-

isfy the following ∀ω:

1 − ε ≤ |I(jω)| ≤ 1 + ε (6.1)

−δ ≤ ∠I(jω) ≤ +δ (6.2)
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where

I(jω) = S1(jω)P1(jω) + S2(jω)P2(jω) + · · · + Sn(jω)Pn(jω)

=
n∑

i=1

Si(jω)Pi(jω). (6.3)

ω − frequency in rad/sec.

ε − maximum allowable deviation of ‖I(jω)‖ from 1.

δ − maximum allowable deviation of ∠I(jω) from 0.

Si − Sensor assigned to cover frequency segment (ωi, ωi+1).

Si − Family of Sensors {Si(jω, αi)} ∀ αi

Pi − Compensator associated with sensor Si.

This is a feedforward control problem and techniques used in Quantitative Feed-

back Theory can be adopted to solve the robust design problem formulated above.

The QFT loop-shaping is generally done in the Nichols Chart. As shown in Fig. 49,

constraints (6.1) and (6.2) restrict the feasible region of I(jω) to a rectangle in the

Nichols Chart. Using the QFT loopshaping techniques, compensators P1, P2, · · · , Pn
can be designed so that I(jω) stays within this region for all frequencies within the

required bandwidth.

E. Design of Compensators by Optimization

If there is no uncertainty associated with sensors, then compensators can also be

designed using optimization based approaches. One way to obtain compensators

by optimization is to minimize the error function, e = 1 − I(jω) as formulated in
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Figure 49: Feasible Region of I(jω) in Nichols Chart

Equation (6.4).

min
P1(jω),P2(jω),··· ,Pn(jω)

J = ‖1 −
n∑

i=1

Si(jω)Pi(jω)‖ (6.4)

As the optimization problem is unconstrained, the optimal cost function value

should be zero. Therefore, compensators generated by minimizing the objective func-

tion, J , will satisfy conditions (6.1) and (6.2). However, the optimal design may

not address some important practical concerns. Referring to Fig. 50, in frequency

region R1, the measurement obtained by sensor, S1 is more reliable than any other

measurement available. Similarly, in frequency region, R3, sensor, S2 is expected to

have the most reliable data. Any design that chooses data from a sensor other than

the specialized one should not be considered good and if this happens, the whole idea
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Figure 50: Identifying Different Confidence Regions in a Sensor Array

of the proposed sensor array would be lost. One way to prevent this from happening

is to add more constraints to the optimization problem.

Referring to Fig. 51, such constraints may be formulated as:
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Figure 51: Sensor Array with Different Confidence Regions
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Constraint Set 1

If ωix ≤ ω ≤ ωiy =⇒ Pk(jω) =







Pi(jω) when k=i

0 otherwise.
∀ i, k = 1, 2, · · · , n

or

Constraint Set 2

If |Si(jω)| > |Sk(jω)| =⇒ |Pi(jω)| > |Pk(jω)| ∀ k 6= i ∀ i = 1, 2, · · · , n

Constraint Set 1 may generate compensators with discontinuous frequency re-

sponses. If continuous compensator responses are preferred, Constraint Set 2 may be

chosen. It is noted that phase angle condition (6.2) will automatically be satisfied if

only magnitude response data is used in the optimization process and optimal value

of I(jω) is 1.

The optimization problem proposed above is not very difficult and it can be easily

shown that a unique solution always exists. In fact, this problem can also be solved

by a rule-based solution technique. A close look at the problem will reveal that the

optimizer is employed to do two tasks at any given frequency: 1) choose the sensor

whose data is more reliable, 2) shape the frequency response so that the magnitude of

the compensator plus sensor setup is unity. Though many techniques can be utilized

to do these two tasks, the main advantage of the optimization framework is that

specifications can be easily translated into objectives and constraints.

F. Implementation of Sensors Array by Feedback Mechanisms

In the previous sections, two methods are developed to implement an array of several

low bandwidth pass-band sensors. Sensor models are assumed to be known in both

cases. However, in practice, obtaining sensor models may not be easy and may be
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an additional burden to an already challenging and tedious problem. To address

this issue, a novel multi-sensor data fusion approach that does not require the sensor

models is presented in this section. The cut-off frequencies of the pass-band sensors

must be known to make use of this approach.

To explain how this method works, a sensor array with three pass-band sensors

is considered and is shown in Fig. 52.
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Figure 52: Sensor Arrays

The frequency responses of sensors S1, S2 and S3 used in the setup (Fig. 52 are

shown in Fig. 53. It will be shown that only the cut-off frequency information is

necessary to implement this sensor array.

It is proposed that the fusion of multi-sensor data of sensors S1, S2 and S3

can be effectively done by a two-stage process depicted in Fig. 54. The methods

described in the previous two sections shape the frequency responses of the sensor

functions by means of compensators in order to get a flat frequency response over the

working range. In this method, we manipulate the multi-sensor data and combine

them smoothly by means of low and high filters whose cut off frequencies are chosen

to be consistent with the frequency responses of sensors. For example, the cut off

frequency of the low pass filter, F1 must be the same as that of sensor S1. Similarly,
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the cut off frequencies of the high pass filter Fh and sensor S3 should match.

The output of the closed loop control system of stage 1 y2c is related to the inputs

that are the output of sensor S1, y1 and the output of sensor S2, y2 by the following

equation:

y2c =
FlCl

1 + FlCl
y1 +

1

1 + FlCl
y2

= Tly1 + Sly2 (6.5)

where Sl is the Sensitivity Function and Tl is the Complementary Sensitivity Function

of the closed loop control system of Stage 1.

The purpose of using the low pass filter Fl is to attenuate the frequency data that

lie above the cut off frequency of sensor S1. The low pass filter must be chosen so that

its frequency response cuts off as sharply as possible to improve its high frequency

amplitude attenuation capability. The controller Cl is employed to ensure the closed

loop stability and consequently the smooth fusion of sensor data y1 and y2.
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Figure 54: Multi-sensor Data Fusion by Feedback Mechanisms

The specifications that the closed loop control system of stage 1 should satisfy

in order to guarantee a smooth fusion can be translated in terms of low pass function

Fl and the controller Cl as follows. Referring to Equation (6.5, the controller Cl and

the low pass filter must be chosen such that:

1. The frequency response of the sensitivity function Sl

(
1

1+FlCl

)

is equal to one

within the band of sensor S2 and as small as possible within the band of sensor S1

(This condition will automatically satisfy the requirements on complementary

sensitivity function Tl as Sl + Tl = 1, i.e. the frequency response of Tl is equal

to one within the band of sensor S1 as small as possible beyond the cut off
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frequency of sensor S1).

2. The closed control system is stable.

3. The cut off frequency of the low pass filter should be equal to that of sensor S1.

4. The frequency response of the low pass filter F1 should cut off as sharply as

possible.

When the above specifications are closely met, the output of stage 1 y2c will

contain the fused information of data y1 and y2. Stage 2 of this process will undergo

similar actions. The feedback control system of stage 2 has two inputs that are the

fused signal from stage 1 y2c and the data from sensor S3. The output of stage 2

control system yf is the final outcome of this process and contain the data from all

three sensors. The following equation relates the output with the inputs:

yf =
FhCh

1 + FhCh
y3 +

1

1 + FhCh
y2c

= Thy3 + Shy2c (6.6)

where Sh and Th are the Sensitivity and Complementary Sensitivity Functions of the

closed loop control system of Stage 2 respectively.

The filter Fh and the controller Ch are designed in a similar fashion as was done

in Stage 1. In summary, the specifications on Fh and Ch are:

1. The frequency response of the sensitivity function Sh

(
1

1+FhCh

)

is equal to one

below the cut off frequency of sensor S3 and as small as possible elsewhere

(This condition will automatically satisfy the requirements on complementary

sensitivity function, i.e. the frequency response of Th is equal to one within the

band of sensor S3 as small as possible below the cut off frequency of sensor S3).

2. The closed control system is stable.
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3. The cut off frequency of the high pass filter should be equal to that of sensor

S3.

4. The frequency response of the high pass filter Fh should cut off as sharply as

possible.

Simulation results are presented in chapter VII to validate this method. The

above approach can be easily extended to a general problem that consists of n stages.

The only difference is that one has to use to band-pass filters (where ever appropriate)

in place of low and high filters. The underlying assumption behind this approach

approach is that sensor measurements are accurate within their respective frequency

bands. Excluding the possibility of the sensors being faulty, this assumption may

be reasonable in real situations. This is because the corruption by sensor noise and

other factors is generally a major problem whenever the amplification due to sensor

is insufficient, which is inevitable outside the working band of a sensor. Within

the band of a sensor, signal amplification may be guaranteed and it is possible to

maintain a reasonably high signal-to-noise noise, which enables the designer to apply

some commonly used techniques to remove sensor noise.
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CHAPTER VII

RESULTS AND ANALYSIS

In this chapter, experimental and simulation results are presented to further explain

the methods developed in this dissertation. The results are analyzed to validate the

claims.

A. Signal Conditioning

This section is devoted to the analysis of the signal conditioning schemes developed

in chapter IV.

1. Nonlinear Filtering Example: A Computer Simulation

To demonstrate the validity and performance of Algorithm 2, a simulation example

is presented in this section. Consider a sensor that has the nonlinear input-output

characteristic depicted in Fig. 55.

This sensor characteristic is chosen because it satisfies the necessary and sufficient

conditions of Theorem 5. It can be easily shown that any signal that is measured

through this sensor will get distorted. Consider an input signal shown in Fig. 56 and

its distorted version is shown Fig. 57. The high harmonics of the distorted signal are

filtered out using an ideal low pass filter whose cutoff frequency is the bandwidth of

the input signal. The filtered signal is depicted in Fig. 58. The procedure given in

Algorithm 2 is then used to recover the original signal using the filtered signal. Fig.

59 shows the recovered signal, which is exactly the same as the original signal. This

implementation scheme is illustrated in Fig. 60.
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Figure 60: Implementing Signal Recovery Scheme
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2. Experimental Demonstration of Performance of the Nonlinear Filtering

Algorithm

In order to demonstrate how signal recovery algorithm described in Algorithm 2 could

be used in practice, a nonlinear physical sensor shown in Fig. 61 is considered. Vin

and Vout are the input and the output of the system respectively. As the actual

model of this system is not available it is necessary to employ a model identification

technique. It is noted that the incorporation of such an identification scheme extends

the scope of the signal recovery procedure developed in this section. Among various

model identification procedures found in the literature, the fuzzy clustering technique,

which is proposed in [125] and applied to identify models in [126] is chosen because

of its simplicity and practicality. The fuzzy rule based model is first derived using

a known input signal and the corresponding output. The signal-processing scheme

is then developed based on this model. The signal data is acquired using dSPACE

Acquisition Real Time System. This process is illustrated in Fig. 62 and Fig. 63.

�
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Figure 61: Nonlinear Diode Circuit

Having derived the model, an input signal shown in Fig. 64 is distorted by the
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Figure 63: Signal Recovery Implementation Scheme Based on Fuzzy Model

nonlinear circuit and the distorted signal is then passed through the low pass filter.

The distorted signal is shown in Fig. 65. The signal processing scheme developed in

Algorithm 2 is applied to the filtered signal. The recovered signal and the error signal

(difference between the recovered and the input signals) are shown in Fig. 66.
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3. Nonlinear Filtering Algorithm as a Distortion Compensation Technique

In [19], Frank uses a digital post processing technique to compensate the distortions

caused by nonlinear sensors. Analyzed in the section is a nonlinear acceleration sensor,

whose nonlinearity is described by the equation, y = 10−6tan−1( a
40

) , where a is the

acceleration and y is the displacement. This nonlinear characteristic is depicted in

Fig. 67.

Let us now show how the algorithm developed in this dissertation could be used

to compensate the distortion caused by this nonlinear sensor. Suppose that a ban-
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dlimited input signal shown in Fig. 68 is deliberately distorted by this nonlinearity

and the distorted signal is shown in Fig. 69. As the model of the sensor is available,

Algorithm 2 is used to see whether the distortions could be compensated. As was

done earlier, high harmonics of the distorted signal are filtered out by an ideal low

pass filter and the procedure given in Algorithm 2 is used to recover the original signal

or compensate the distorted signal.

As the nonlinear characteristic depicted in Fig. 67 satisfies all the conditions of
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Theorems 4 and 5, it is expected that the original signal could be uniquely recovered.

The recovered signal is depicted in Fig. 70 and it is evident that the distortions caused

by the nonlinear sensor are completely compensated and the compensated signal is

exactly the same as the original signal. Comparison with the results shown in [19]

clearly demonstrates the fact that the results produced by the nonlinear filtering

algorithm is better than that of [19]. This study shows that Algorithm 2 can also be

used to compensate the distortions caused by linear and nonlinear sensors.
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4. Recovery with Monotonic Nonlinear Sensor Function

In this section, the simulation results are presented to further support the proposed

nonlinear sensor design scheme and the signal recovery algorithm. Consider a signal

detection problem where a band-limited signal shown in Fig. 72 is to be measured.

Band-limitedness of this signal is guaranteed by its spectrum with frequency band

[-41,41] Hz as shown in Fig. 73. To show how the characteristics of a nonlinear sensor

function can be utilized to remove sensor noise, to increase the input dynamic range
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and to compare the results with that of a linear sensor, the input signal is measured

through the linear and nonlinear sensors that are characterized by the functions shown

in Fig. 71 and the results are analyzed.

The first conclusion is that the nonlinear sensor is capable of covering a wider

input dynamic range for a given sensor output (voltage, in general) limit. Fig. 71

provides evidence to this conclusion. The next issue is the noise removal. Assuming

that sensor noise is stationary, it is modelled as a random signal as shown in Fig. 74.
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The frequency spectrum of this noise signal is shown in Fig. 75. It is worth pointing

out that the spectrum of sensor noise spans over a wide frequency range and a low

pass filter alone cannot remove this noise.

Fig. 76 and Fig. 77 show the corrupted linear and nonlinear sensor measurements

respectively. As nonlinear sensor function has a high slope near zero, it amplifies low

strength original data. This signal amplification helps distinguish the original data

from measurement noise. Fig. 77 supports this fact. As the linear sensor does not

share this advantage, its measurement shown in Fig. 76 has relatively equal strength



159

0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time/(s)

A
m

pl
itu

de
Original Signal or Sensor Input

Figure 72: Input Signal Used in Subsection 4

frequency spikes and noise and the original data are not easily distinguishable.

As discussed earlier, sensor noise is removed by a simple threshold filter. High

harmonics are removed by an ideal low pass filter, which is primarily used to preserve

band-limitedness of signals. The filtered signal is shown in Fig. 78. The iterative

scheme given in Algorithm 1 is then used to recover the original signal from the

filtered signal. The recovered signal and its spectrum are given in Fig. 79 and Fig.

80 respectively. Comparison with the sensor input data reveals that the original signal

is reproduced.
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5. Recovery of Distorted Signals in Non-stationary Noisy Environments

In this section, experimental and simulation results are presented to support the

method developed in section E of chapter IV.
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a. Simulation Results

We will use a bandlimited signal, y, shown in Figure 81 to demonstrate the perfor-

mance of the proposed method. Signal, y, is measured through a nonlinear sensor,

g(.), whose input-output characteristic is shown in Figure 82.

The distorted sensor output, g(y), is corrupted by adding a non-stationary noise

and the resultant output signal, w, is shown in Figure 83. Signal, w, is then passed

through an ideal low pass filter to obtain signal, z. The Discrete Wavelet Transform

discussed in the previous section is implemented through the Filter Bank setup shown

in Figure 84. The low pass filter output, z, is decomposed into details and approx-

imations using the DWT, which is evaluated using the Daubechies (db15) wavelets

[127]. The decomposition process is carried out with a Filter Bank that has three

sub-bands as illustrated in Figure 84 and signals obtained through this process are

shown in Figure 85.

The insignificant details are processed using hard threshold filters and the de-

noised estimate (v) of the low pass filter output, z, is reconstructed using the IDWT

as shown in Figure 84. The intermediate signals of this reconstruction process and

the final denoised estimate, v, are shown in Figure 86.

The denoised estimate is then used to solve the iterative recovery scheme de-

scribed by Equation (4.33) to recover the original sensor input and the recovered

signal is shown in Figure 87. A comparison of this recovered signal with the actual

signal shown in Figure 81 clearly demonstrates that the signal is recovered with a

reasonable accuracy.
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b. Experimental Results

This section documents the experimental results, which support the proposed method-

ology. A simple nonlinear diode circuit shown in Figure 61 was built and the output

voltage, vout, shown in Figure 89 was acquired using the dSpace Real Time Data

Acquisition System and the data were processed in Matlab platform to recover the

unknown voltage signal, vin, shown in Figure 88. The output signal, vout, was further

corrupted by adding a non-stationary noise signal to it and the noisy output signal,

vn, is shown in Figure 90. A filter bank with four sub-bands as shown in Figure
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91 was used to decompose the signal, vn, and the details and approximations of vn

obtained at each sub-band of the filter bank using the DWT are shown in Figure 92.

The insignificant details were removed using hard threshold filters and the denoised

estimate, v, (of signal vn) shown in Figure 93 was obtained by reconstructing the

processed details and approximations using the IDWT. The Daubechies [127] (db15)

wavelets were used for the implementation of the DWT and the IDWT. The recursive

signal recovery scheme described by Equation (4.33) was then solved using the de-

noised estimate, v, and the signal recovered is shown in Figure 94. It is clear that the

signal is recovered with a reasonable accuracy, which supports the proposed methods.
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6. Signal Recovery Using Nominal Sensor Model

In this subsection, an example is presented to support the findings derived in section

G of chapter IV. Consider a nonlinear sensor function, which is characterized by the

following input-output relationship.

w = y + y2 + 2y3 (7.1)

It is noted that the term y2 in the above expression will not preserve the original

frequency information and therefore may not be needed to reproduce the original

signal. We will show that the exact reproduction of original signal is possible using
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the following nominal model.

ŵ = y + 2y3 + 8 (7.2)

The actual and nominal sensor models are shown in Fig. 95. We will measure the

signal shown in Fig. 96 through the actual sensor. The sensed signal is shown in Fig.

97. The iterative signal recovery scheme given in Section 2 is then used to recover

the signal. The important point is that the recovery process is carried out using the

nominal model, not the actual. The recovered signal shown in Fig. 98 supports the

fact that the actual sensor model may not always be needed to reproduce the original

signal exactly.
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Figure 95: Actual and Nominal Sensor Models
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7. Recovery with Non-monotonic Nonlinear Sensor

To further illustrate the optimization-based recovery scheme developed in Section I

of chapter IV, a simulation example is presented in this section. The signal shown in

Fig. 99 is measured through the non-monotonic nonlinear sensor whose input-output

characteristic is shown in Fig. 100. The distorted sensor output shown in Fig. 101 is

passed through an ideal low pass filter and the optimization-based recovery scheme
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proposed is then used to recover the input signal. The fact that the recovered signal

shown in Fig. 102 agrees with the actual input signal validates the proposed recovery

procedure.
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8. Recovery of Signals Distorted by Non-invertible Sensor Nonlinearity

In this subsection, the method presented in section J of chapter IV is further analyzed

by illustrative examples.

a. Simulation Example 1

To illustrate performance of the proposed non-quadratic optimization scheme, we will

present a simulation example in this section. Consider the measurement of a signal

shown in Fig. 103 through a nonlinear sensor whose input-output characteristics is
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depicted in Fig. 105. The distorted sensor output is shown in Fig. 104. The different

performance indices formulated in the previous section are optimized to obtain an

estimate of the original signal.

Je1 = ‖z −F−1{HF{g(y)}}‖ (7.3)

Jq1 = ‖z −F−1{HF{g(y)}}‖ + λq

N∑

i=1

y2
i (7.4)

Jn1 = ‖z −F−1{HF{g(y)}}‖ + λn

N∑

i=1

|yi|0.5 (7.5)

where N is the number of samples of signal, y.
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Fig. 106, Fig. 107 and Fig. 108 show the signals recovered by optimizing the

error function, Je1 , quadratic cost function, Jq1 and non-quadratic cost function, Jn1 ,

respectively. A simple comparison with the actual data clearly demonstrates that the

signal obtained with non-quadratic criteria is the closest to the actual data.
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Figure 108: Signal Recovered by Optimizing Non-quadratic Cost Function, Jn1

b. Simulation Example 2

We will present another example to further demonstrate performance of the proposed

scheme. The signal to be measured and its frequency spectrum are shown in Fig. 109

and Fig. 110 respectively. We will use the same nonlinear sensor, which is used in

the previous example. The distorted sensor output and its frequency spectrum are

shown in Fig. 111 and Fig. 112.
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The following performance indices are derived to obtain the actual signal.

Jq2 = ‖z −F−1{HF{g(y)}}‖ + λq

N∑

i=1

y2
i (7.6)

Jn2 = ‖z −F−1{HF{g(y)}}‖ + λn

N∑

i=1

|yi|0.1 (7.7)

where N is the number of samples of signal, y and λq and λn are weights on quadratic

and non-quadratic penalties respectively.
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The signal recovered by minimizing the quadratic criteria, Jq2 and its frequency

spectrum are shown in Fig. 113 and Fig. 115 respectively. Fig. 114 and Fig. 116 show

the signal recovered by optimizing the non-quadratic criteria, Jn2 and its spectrum

respectively. By filtering out the low strength or insignificant frequency components

appearing in Fig. 115 and Fig. 116, we will obtain signals shown in Fig. 117 and Fig.

118, which are the solutions to the quadratic and non-quadratic criteria respectively.

Clearly, the signal obtained using the non-quadratic criteria is more accurate than

that of quadratic performance index.
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Figure 110: Spectrum of the Signal to Be Measured



197

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

time/(s)

A
m

pl
itu

de
Sensor Output Before Low Pass Filtering(w)

Figure 111: Signal Output Before Low Pass Filtering



198

−150 −100 −50 0 50 100 150
0

10

20

30

40

50

60

70

80

Frequency/(Hz)

A
m

pl
itu

de
Spectrum of Sensor Output Before Low Pass Filtering

Figure 112: Spectrum of the Sensor Output before Low Pass Filtering



199

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

time/(s)

A
m

pl
itu

de
Recovered Signal using Quadratic Criteria

Figure 113: Signal Recovered by Optimizing Quadratic Cost Function, Jq2



200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4

time/(s)

A
m

pl
itu

de
Recovered Signal using Non−quadratic Criteria

Figure 114: Signal Recovered by Optimizing Non-quadratic Cost Function, Jn2



201

−150 −100 −50 0 50 100 150
0

10

20

30

40

50

60

70

80

Frequency/(Hz)

A
m

pl
itu

de
Spectrum of Recovered Signal with Quadratic Criteria

Figure 115: Spectrum of Signal Recovered by Optimizing Quadratic Cost Function,

Jq2



202

−150 −100 −50 0 50 100 150
0

20

40

60

80

100

120

Frequency/(Hz)

A
m

pl
itu

de
Spectrum of Recovered Signal with Non−quadratic Criteria

Figure 116: Spectrum of Signal Recovered by Optimizing Non-quadratic Cost Func-

tion, Jn2



203

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

time/s

A
m

pl
itu

de
Filtered Signal recovered by Quadratic Criteria

Figure 117: Signal Recovered by Quadratic Criteria (Jq2)(after Filtering out Insignif-

icant Frequency Components)



204

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

4

time/s

A
m

pl
itu

de
Filtered Signal recovered by Non−quadratic Criteria

Figure 118: Signal Recovered by Non-quadratic Criteria, (Jn2) (after Filtering out

Insignificant Frequency Components)

B. Fusion of Distorted Multi-sensor Data

This section is concerned with the analysis of the sensor fusion schemes developed in

chapter V.
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1. Fusion of Distorted Data by Sensor Scheduling

This subsection further analyzes the sensor scheduling scheme presented in section A

of chapter V. Consider a multi-sensor fusion problem with three sensors. A signal y

shown in Fig. 119 is measured through three different nonlinear sensors and distorted

sensor outputs are then filtered using ideal low pass filters. The filtered signals are

used to recover the original signal using the sensor recovery procedure. The next task

is to fuse three recovered signals to obtain the best approximation to the original

signal. We will show how the derived fusion procedure could be used to do this.
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Figure 119: Original Signal y Used to Demonstrate the Sensor Scheduling Scheme
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To demonstrate the performance of Algorithm 4 in providing the accurate sensor

schedule, the original signal data is spilt into three and distributed among three data

sets which are otherwise random sets as shown in Fig. 120, Fig. 121 and Fig. 122.

The distribution of original information is done in such a way that it is hidden in three

sets and could only be retrieved by any smart algorithm to reproduce the original

signal. Let these data sets be recovered signals v1 ,v2 and v3.
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Figure 120: Sensor Data 1 Used to Demonstrate Sensor Scheduling Scheme
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Let us use the sensor function shown in Fig. 123 to generate the filtered signal

depicted in Fig. 124.
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Figure 123: Nonlinear Sensor Function
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Let the fused signal be

yr = Φ1v1 + Φ2v2 + Φ3v3 (7.8)

We now apply Algorithm 4 to obtain the sensor schedule and the result is shown

in Fig. 125. Using this schedule θ, the fused signal yr is constructed and shown in

Fig. 126. It is noted that the original signal is reproduced, which demonstrates the

fact that the switching between sensors is done as desired and thus the fused signal is
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exactly same as the original. The exact original signal recovery is further guaranteed

by the zero cost function value at optimal conditions.
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2. Fusion of Distorted Data by Continuous Optimization

This subsection presents evidence to validate the claim made in section B of chapter

V. Consider a multi-sensor fusion problem with three sensors. A signal y shown in

Fig. 127 is measured through three different nonlinear sensors and distorted sensor

outputs are then filtered using ideal low pass filters. The filtered signals are used to

recover the original signal using the sensor recovery procedure. The next task is to

fuse three recovered signals to obtain the best approximation to the original signal.

We will show how the derived fusion procedure could be used to do this.
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To demonstrate performance of the Algorithm 5 in providing the accurate sensor

schedule, the original signal data is split into three and distributed among three data

sets which are otherwise random sets as shown in Fig. 128, Fig. 129 and Fig. 130.

The distribution of original information is done in such a way that it is hidden in three

sets and could only be retrieved by any smart algorithm to reproduce the original

signal. Let these data sets be sensor measurements v1 ,v2 and v3. Suppose that one

of the sensor functions (Sp) is known and is shown in Fig. 131. The filtered signal

output of sensor Sp is depicted in Fig. 132.
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Let the fused signal be,

yr = Λ1v1 + Λ2v2 + Λ3v3 (7.9)
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We now apply Algorithm 5 to obtain the best possible blend yr and the sensor

schedule. The optimal sensor schedule is shown in Fig. 133. Using this sensor

schedule, the original signal is estimated and shown in Fig. 134. It is noted that vf is

exactly the same as the original signal, which demonstrates the fact that the switching

between sensors is done as desired. The optimal solution is further guaranteed by its

zero cost function value at optimal conditions.

3. Effective Sensor Fusion by Confidence Measures

The sensor fusion technique developed in section C of chapter V is further explained

in this subsection by simulation results. Consider a multi-sensor fusion problem with

two sensors. A signal y shown in Fig. 135 is measured through two different nonlinear

sensors (S1,S2) shown in Fig. 136 and Fig. 137 respectively. The sensor measurements

are passed through low pass filter as explained in Section 2 and the filtered sensor
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outputs (z1, z2) are shown in Fig. 140 and Fig. 141. The goal is to fuse two sensor

measurements to obtain the best approximation to the original signal. We will show

how the derived fusion procedure could be used to do this.

To demonstrate performance of the fusion algorithm proposed, the original signal

data is split into two signals and each of which is randomly distributed among two data

sets (v1,v2) which are otherwise random sets. The signals v1 and v2 are shown in Fig.

138 and Fig. 139 respectively. The distribution of the original information is done in

such a way that it is hidden in two sets and can only be retrieved by a smart algorithm

to reproduce the original signal. The algorithm proposed in this dissertation is used to

obtain the confidence measures, which are shown in Fig. 142 and Fig. 143. Applying

the fusion rule (Equation (5.72)), inaccurate data found in the sensor measurements

are identified and discarded. By replacing the inaccurate samples by zero and keeping
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the accurate samples as is, sensor measurements obtained are shown in Fig. 144 and

Fig. 145. Comparing the confidence measures of the overlapping data and the fusion

rule (Equation (5.72)), the signals shown in Fig. 144 and Fig. 145 are fused and

the fused signal is shown in Fig. 146. The fact that the fused signal is exactly the

same as the signal to be measured demonstrates performance of the proposed fusion

scheme.



219

0 5 10 15 20 25 30 35
−5

−4

−3

−2

−1

0

1

2

3

4

5
Signal to be detected, y

time/(s)

am
pl

itu
de

Figure 135: Original Signal y Used to Demonstrate Sensor Fusion Algorithm

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

input

ou
tp

ut

Nonlinear Sensor #1

Figure 136: Nonlinear Sensor S1



220

−10 −8 −6 −4 −2 0 2 4 6 8 10
−15

−10

−5

0

5

10

15

input

ou
tp

ut

Nonlinear Sensor #2

Figure 137: Nonlinear Sensor S2
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Figure 139: Sensor Data v2
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Figure 141: Filtered Signal z2
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C. Sensor Arrays: Illustrative Examples

Presented in this section are the simulation results to further analyze the sensor array

implementation schemes developed in chapter VI.

1. Design of Sensor Arrays by Frequency Domain Methods

We present a design example to validate the proposed frequency domain loop-shaping

design procedure developed in section D of chapter VI. To extend the bandwidth to

10000 rad/sec, we will use a three-sensor array. Frequency responses of sensors S1,S2

and S3 are shown in Fig. 147 and Fig. 148.
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Figure 146: Fused Signal Obtained Using the Confidence Measure Based Sensor Fu-

sion Algorithm

The transfer function of the integrated system, I(jω), is formulated as follows.

I(jω) = P1(jω)S1(jω) + P2(jω)S2(jω) + P3(jω)S3(jω) (7.10)

Suppose that the task is to design compensators P1,P2 and P3 so that I(jω) satisfies

the following conditions ∀ω:

−1db ≤ 20 log10 |I(jω)| ≤ 1db (7.11)

−5 deg ≤ ∠I(jω) ≤ 5 deg (7.12)

The QFT loop-shaping technique is used to design the following compensators:
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Figure 147: Magnitude Plot of Sensors,S1,S2,S3

P1 =
10s+ 1

s+ 1

P2 =
0.0041667(s+ 80)(s+ 0.5)

(s+ 2)(s+ 1)

P3 =
s+ 9

s+ 1

It should be noted that any frequency domain loop-shaping method can be used

to design these compensators. Furthermore, the above compensators are not unique

and similar system performance can be obtained by using another set of compensators.

It usually depends on the loop-shaping skills of the designer.

The frequency response of I(jω) is obtained by substituting the above compen-

sators in Equation (7.10) and plotted in Bode Diagram and Nichols Chart, which are

Fig. 149 and Fig. 150 respectively. It is clear that conditions (7.11) and (7.12) are
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Figure 148: Phase Angle Plot of Sensors,S1,S2,S3

satisfied. This example is presented just to illustrate the proposed sensor array design

and sensor uncertainties are not considered while designing compensators. However,

the design procedure with uncertain sensor models is similar. The only difference is

that conditions (7.11) and (7.12) have to be satisfied for all sensor functions in their

corresponding families.



228

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

M
ag

ni
tu

de
 (d

B
)

10
−2

10
−1

10
0

10
1

10
2

10
3

−5

0

5

P
ha

se
 (d

eg
)

Bode Diagram

Frequency  (rad/sec)

Magnitude Bound 

Phase Angle Bound 
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Figure 150: Frequency Response of I(jω) in Nichols Chart

2. Design of Sensor Arrays by Optimization

In this section, we present a simulation example to validate the optimization based

design procedure developed in section E of chapter VI. We consider a sensor array

with two sensors whose frequency responses are shown in Fig. 151.

The transfer function of the integrated system, I(jω), is formulated as before.

I(jω) = P1(jω)S1(jω) + P2(jω)S2(jω) (7.13)
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Figure 151: Frequency Responses of Sensors S1 and S2

The objective function,

min
P1(jω),P2(jω),··· ,Pn(jω)

J = ‖1 − S1(jω)P1(jω) − S1(jω)P1(jω)‖, (7.14)

is minimized subject to the constraint set,

If |S1(jω)| > |S2(jω)| =⇒ |P1(jω)| > |P2(jω)|

If |S2(jω)| > |S1(jω)| =⇒ |P2(jω)| > |P1(jω)|.

Frequency responses of resultant, optimal compensators and the function, I(jω)

are shown in Fig. 152 and Fig. 153 respectively. At optimal conditions, function,

I(jω), is real and its phase angle is zero.
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Figure 152: Frequency Responses of Compensators P1 and P2
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Figure 153: Frequency Response of I(jω)

3. Design of Sensor Arrays from Realistic Sensor Models

The proposed approach may also be used to combine low and high frequency mea-

surements in practice. One such situation could be velocity measurement using the

accelerometer-tachometer setup shown in Fig. 154. n1 and n2 are high frequency

measurement noise. The low pass filter used in channel S1 will attenuate high fre-

quency noise, n1. The high pass filter used in channel S2 will attenuate the integrated

high frequency noise, n2

s
, which is of low frequency.

Suppose that the frequency responses shown in Fig. 155 characterize (sensor S1

and the low pass filter) and (sensor S2 and the high pass filter). To test how sensi-

tive the proposed approach is to modeling errors, noise and other factors, frequency



233

�
�

�
�

���

���

�
�

�
�

	
��
�����

�������
�����

1ny +�

�

s
12ny +��

s
n

y 2+�

�
���
���������

������
���������

y�

����
�

�

�

Figure 154: Fusion of Low and High Frequency Data

responses shown in Fig. 155 are used to design a two-sensor array that covers an op-

erating bandwidth of 500 rad/sec. However, these abrupt changes are not considered

while designing compensators. The non-smooth frequency responses are generated

by adding random numbers to the smooth responses. The design process is carried

out using the smooth sensor models. The following optimization problem is solved to

design compensators P1 and P2.

min
P1(jω),P2(jω)

J = ‖1 −
2∑

i=1

Si(jω)Pi(jω)‖ (7.15)

subject to

If |S1(jω)| > |S2(jω)| =⇒ |P1(jω)| > |P2(jω)|

If |S2(jω)| > |S1(jω)| =⇒ |P2(jω)| > |P1(jω)|

0.9 ≤ |I(jω)| ≤ 1.1

∀ω < 500 rad/sec, where

I(jω) = P1(jω)S1(jω) + P2(jω)S2(jω)
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Figure 155: Frequency Responses of Realistic Sensors S1 and S2

The frequency responses of optimal compensators P1 and P2 are shown in Fig-

ures 156 and 157 respectively. The frequency response of the integrated system I(jω)

shown in Figure 158 clearly demonstrates that the specifications are satisfied. Fur-

thermore, it also shows that small errors due to model uncertainty and noise may be

tolerable.
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Figure 156: Frequency Response of Compensator P1
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4. Implementation by Feedback Mechanisms

This subsection validates the implementation scheme developed in section F of chapter

VI. We will illustrate how sensor arrays can be implemented by feedback mechanisms

using a simulation example. Consider a two-sensor fusion problem in which a signal

shown in Fig. 161 that has high as well as low frequency components is measured by

two sensors, one is low frequency sensor and the other is high frequency sensor. As
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this example consists of only two sensors, one stage of closed loop control is sufficient.

The Simulink model of this setup is shown in Fig. 160. The frequency spectrums

of the measurements by the low and high frequency sensors are shown in Fig. 162

and Fig. 163 respectively. The following low pass filter F and the controller C have

been designed to satisfy the required specifications as stated in section F:

F =
1

(
s

200
+ 1
)4

(7.16)

C =
2s2 + 20s+ 2000

s2 + s
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Figure 159: Sensor Fusion Setup

The output of the closed loop control system, which is the fused signal of multi-

sensor data is shown in Fig. 164. Comparison of the fused data with actual data

clearly demonstrates the effectiveness of this proposed scheme. Even though the

fused signal is obtained with negligible error in this case, it may not be always the

case. If the data to be measured have frequency components near but above the

cut off frequency of the low pass filter, then these frequency components may not be
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perfectly attenuated by the low pass filter, which will results in errors. These errors

can be minimized but may not be completely removed, in general, by designing a

low pass filter that has a very sharp cut off. However, this may cause problems in

stabilizing the loop and the controller design may become very difficult. Further

research is needed to clarify this issue.

y3

Low Freq Signal

1

conv([1/320 1],conv([1/320 1],conv([1/320 1],[1/320 1])))(s)
Low Freq Sensor

High Freq Signal

0.1s  2

0.1s  +1.1s+12High Freq Sensor

1

conv([1/200 1],conv([1/200 1],conv([1/200 1],[1/200 1])))(s)
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2s  +20s+20002

s  +s2

Controller

Figure 160: Multi-sensor Data Fusion Simulation Setup
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

This dissertation is devoted to the investigation of some of the sensor related issues

such as sensor nonlinearity, sensor bandwidth and sensor noise and the development of

means to address them. It is demonstrated through detailed analysis the significance

of the proposed research in improving reliability and accuracy of sensor measurements.

It is shown that the effects of sensor nonlinearity can be reverted by conditioning

the distorted sensor measurements. An efficient method that uses an array of low

bandwidth pass-band sensor to attain a high operating bandwidth is proposed. In

addition, several fault detection algorithms to optimize the use of sensors is proposed.

A. Summary and Conclusions

The problem is stated and objectives are set in chapter I. Terms used in this disserta-

tion are defined and some important theorems are stated in chapter II. The relevant

literature is reviewed to provide background information and to point out the need

for further research in chapter III.

Chapter IV details the methods that have been developed to compensate the

distortion caused by sensor nonlinearity. The distortion caused by sensor nonlinearity

is analyzed and an efficient recursive signal recovery scheme is proposed. Some of the

sufficiency conditions for the successful implementation of the proposed scheme are

derived. Having shown that the proposed recursive scheme will work for certain

type of sensor nonlinearities, an optimization based algorithm is proposed to treat

ill-conditioned sensor nonlinearities. The results presented in Chapter VII validate

performance of the signal recovery algorithms developed in this dissertation. If the

characteristic of sensor function satisfies the sufficient requirements of Theorems 4



245

and 5 and the model of the sensor is known a priori, it is shown that the original

signal can be uniquely recovered. It is also shown how the derived algorithm should

be modified in order to obtain a solution when the gradients of the sensor function

are negative.

When the sensor model is not available, the signal could still be recovered with

a reasonable error bound by incorporating a model identification technique. Unique-

ness of the recovered signal is solely dependent on the model identification scheme

employed and the input-output data used to build the model. Identification of sensor

model using the known input-output data may not always be possible. For example,

if the physical quantity is temperature or pressure, it may not be possible to send

“known” input data directly through the sensor. A knowledge based learning tech-

nique may be used to obtain the sensor model or the calibration curve in this case.

In the examples presented in the previous chapter, an ideal low pass filter was used

to filter out the high harmonics. This may not be necessary and it can be shown that

a non-ideal low pass filter that satisfies the requirements of Theorems 4 and 5 can

also be used in place of an ideal filter. As the ideal low pass filter is not physically

realizable, this observation increases the scope of the developed scheme. According to

Theorem 5, the algorithm may not converge to the expected value when the gradient

of the monotonic function at any point within the working range is zero. This places

a limitation on the usage of the new algorithm and the signal recovery may not be

possible in this situation. However, the results show that the scheme could still be

used to reduce the distortions caused by a large class of nonlinear sensors. Whenever

the necessary and sufficient conditions are violated, it is shown that the algorithm

converges to a solution, which is not as distorted as the sensor output. Compari-

son with another distortion compensation technique demonstrates the fact that the

converged solution is the closest possible attainable by any available technique.
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Furthermore, Some of the advantages and disadvantages of using nonlinear sen-

sors are investigated. It is shown that whenever noise removal and wide dynamic

range coverage are equally important, the use of nonlinear sensors will produce bet-

ter results. Both objectives can be achieved by designing a sensor such that it has a

very high slope near the origin and tapers off rapidly at ±∞. The weaker parts of

the signal will get amplified and thus the actual sensor output can be easily distin-

guishable from low strength noise. It is emphasized that the successful design and

implementation of nonlinear sensors simplify the task of preserving sensor linearity,

which is very difficult and expensive and requires enormous effort. Furthermore, pe-

riodic maintenance and calibration may no longer be required, which is an economic

incentive. With accurate sensor model, the distortion caused by monotonic nonlinear-

ity can be completely compensated. Errors occur whenever the model is inaccurate.

However, theoretical studies presented suggest that the maximum error due to model

inaccuracy has a bound, which proves that algorithm is stable. It is also shown that

the convergence parameter can be chosen such that the error is minimal and the

algorithm is less sensitive to model uncertainty.

The iterative signal recovery scheme developed is further analyzed and several

modifications needed to accommodate various anomalies are proposed. An efficient

approach to recover chirp signals from distorted nonlinear sensor measurements is

developed. The problem of recovering signals using a nominal sensor model instead of

an accurate sensor model is investigated. Bearing in mind that successful development

of such an approach will be a tremendous money-saver, several suggestions to initiate

this work are provided.

Chapter V is concerned with the fusion of the distorted multiple nonlinear sensor

measurements. We have taken the initiative to consider the nonlinearity as an em-

bedded feature of a sensor. Several approaches to fuse the multi-sensor measurements
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are proposed and their performance has been demonstrated by illustrative examples.

It is shown that the derived fusion algorithms could efficiently extract the true infor-

mation, which is hidden in the distorted multi-sensor data. It can be easily verified

that if complete true information is hidden in the distorted measurements, the algo-

rithms are capable of retrieving it to successfully reproduce the original information.

Even though the exact original information is not available in the sensed data, an

estimation with reasonable accuracy is possible by blending the multi-source data. If

the partial blending is not possible, the sensor scheduling can be done to obtain the

closest possible data. In addition, whether the original signal is recovered or not can

easily be verified by checking the corresponding cost function value. If the cost func-

tion value is zero, it guarantees that the recovered signal is the original. The derived

fusion procedures could also be used to compare or evaluate the performance of sen-

sors. A faulty or redundant sensor could easily be identified by checking the optimal

sensor schedule. If a particular sensor does not appear anywhere in the schedule, it

is faulty or can be removed without affecting the process run. This observation has

some interesting consequences. It is evident that repeatedly applying this procedure

could minimize the number of sensors to be used and thus help reduce the cost of

operation. The main advantage of this fusion scheme is that it could be used as a

stand-alone process with no interaction with the other interconnected processes.

The main drawback of one of the fusion procedures is the increased computational

load due to the combinatorial nature of solutions generated by the Branch and Bound

Method. Implementing this scheme in real time looks remote at this stage and several

issues need to be resolved before doing so. Though it is a time consuming process, the

solution obtained is reliable and there is no other established technique available to

solve this zero-one discrete optimization problem. One possible remedy to resolve this

problem is to make use of faster computational resources. To avoid the use of branch
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of bound technique, the fusion problem has been reformulated and two optimization

based algorithms have been developed to perform the same task. In one approach, the

original data is estimated from the multi-sensor measurements by partially blending

the data. The relaxation of this constraint leads to the continuous optimization of

the error function, which generates the optimal solution at a much faster rate than

the discrete optimization. Though this fusion procedure requires that at least one of

the sensor models is known a priori, it is noted that accurate sensor models may not

be necessary to effectively fuse the sensor data. It was shown that a slight variation

or error in the sensor model may not have a big impact on the fusion decision. In

the other fusion approach, the fusion is done by comparing the confidence measure of

each sensor reading. The main idea of this approach is to pick only the reliable data

for the fusion and disregard the rest. This is done by assigning confidence measures

to all available sensor data and picking the ones that lead the list of confidence

measures. An optimization based approach to determine the confidence measures.

This fusion procedure requires that sensor models are known a priori. However, as

data fusion is done by comparing closeness measures of all available data, it is shown

that model uncertainty or error within the pre-specified limits may not affect the

sensor scheduling.

A new approach to attain a high operating bandwidth using sensor arrays is

proposed in chapter VI. It is argued that the design of a single sensor of high

bandwidth is not feasible both economically and practically. It is shown that the

use of an array of low pass-band sensors is a cost-effective solution to attain a high

operating bandwidth. The implementation issues with regard to sensor arrays are

detailed and a robust multi-sensor fusion scheme using Frequency Response Methods

is proposed. Sensor model uncertainties are considered while developing the imple-

mentation scheme and it is discussed that frequency domain loop-shaping techniques
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can be used to solve this problem efficiently. Fusion of multi-sensor data can also be

done using optimization based approaches if sensor model uncertainties are negligi-

ble. In practice, sensor models may not be readily available. This situation limits the

application of the above-mentioned approached. Further investigation of this issue

yielded an approach, which utilizes feedback mechanisms to systematically combine

the sensor data from the different frequency bands. This scheme does not require sen-

sor models. However, the operating frequency bands of the sensors must be known

in order to apply this method.

The techniques developed in this dissertation are further analyzed and their

performance are demonstrated by experimental and simulation results in chapter

VII.

Some conclusions that can be made based on this research work include:

1. The distortion caused by sensor nonlinearity can be effectively compensated

if:

(a) nonlinear sensor function is monotonic

(b) sensor noise is of additive type, that is, sensor input is assumed to be noise-

free and sensor noise enters into the picture after nonlinear transformation

2. The distortion caused by sensor nonlinearity may be partially compensated

when the above requirements are not met.

3. When the distortion caused by nonlinearity cannot be compensated as required

by specifications, the use of multiple sensors and the multi-sensor fusion will

improve the accuracy of sensor measurements.

4. A high operating bandwidth can be attained by employing an array of low

bandwidth pass-band sensors.
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B. Directions for Future Work

The signal recovery method developed in this dissertation is an off-line scheme and

cannot be used to recover signals in real time. It was shown that with a suitable

choice if the convergence parameter, α, the iterative schemes given in (4.12) and

(4.49) converge in a few steps. In addition, with faster computer resources, this

iteration time can be further reduced. However, as time progresses the size of the

signals can be very high and therefore iterative schemes may require a longer time

to converge than that is expected. A good remedy to this problem is to divide the

total time into several low range time segments and to solve the iterative equations in

each time segment independently maintaining the continuity of signals. In this case,

Short Fourier Transform or Wavelet Transform should replace Fourier Transform. A

detailed investigation is necessary to explore the other related issues.

Another approach that may reduce the iteration time, is to obtain the down-

sampled version of the signal first and gradually interpolate among the available

samples until all samples are obtained. The process of interpolation can be devised

such that the smoothing operation is done in several steps. Much work is needed to

investigate this possibility.

The signal recovery scheme is developed under the assumption that sensor noise

is of additive type and there will be no input noise. This simplifies the development,

but seems unrealistic for some applications. As the input side of a sensor is generally

inaccessible, filtering out noise is very challenging. This problem is worth investigating

further.

When a signal is distorted by non-invertible sensor nonlinearities like dead-band

and saturation, it is shown that the original signal may not be exactly reproduced.

However, non-quadratic optimization seems to produce better results than that ob-
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tained with other standard methods. The main issue with non-quadratic optimization

is the existence of multiple solutions and therefore an efficient search algorithm is nec-

essary to identify the global optimal solution. This deficiency will be clearly evident

when a large scale non-quadratic optimization problem is solved with a standard soft-

ware like Matlab, which prematurely terminates the search procedure and settles with

most probably an incorrect local solution. In order to successfully test and implement

the proposed idea, these issues have to be addressed first.

The proposed idea of using sensor arrays to attain a high bandwidth has great

potential and positive benefits for many applications. It should be successful in

high bandwidth applications such as flight control, altitude jitter control etc. The

implementation schemes are presented just to illustrate this idea and need to be

improved before applying them to solve the actual problems. For example, while

designing the compensators, there was no bound or constraint enforced on the design

of the compensators such as causality, order, coefficients etc. As obtaining large

variations in gains are difficult to achieve on a real system, the design process should

be reformulated to include these constraints.

Another issue that should be investigated further is the effect of sensor model

uncertainties on overall performance of a sensor array. Though this issue is briefly

discussed, a large variation of modeling errors may place a major limitation on the

implementation of compensators. A systematic investigation is needed to address this

issue.

The research work initiated in this dissertation opens up many avenues of explo-

ration. Even though the problems investigated are inspired by common deficiencies

found in the feedback control applications, other practitioners and researchers may

find the developed tools very useful. Feedback control, signal and image processing,

pattern recognition, medical sensing applications, automobile technology, manufac-
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turing and control of processes, robotics and altitude jitter control are some of the

areas that will directly benefit from the results of this dissertation.
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