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ABSTRACT

Approximation of Linear Partial Differential Equations on Spheres. (August 2003)

Quoc Thong Le Gia, B.S., University of New South Wales;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Joseph D. Ward
Dr. Francis J. Narcowich

The theory of interpolation and approximation of solutions to differential and

integral equations on spheres has attracted considerable interest in recent years; it

has also been applied fruitfully in fields such as physical geodesy, potential theory,

oceanography, and meteorology. In this dissertation we study the approximation

of linear partial differential equations on spheres, namely a class of elliptic partial

differential equations and the heat equation on the unit sphere. The shifts of a

spherical basis function are used to construct the approximate solution. In the elliptic

case, both the finite element method and the collocation method are discussed. In

the heat equation, only the collocation method is considered. Error estimates in

the supremum norms and the Sobolev norms are obtained when certain regularity

conditions are imposed on the spherical basis functions.
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1

CHAPTER I

INTRODUCTION

The theory of interpolation and approximation of solutions to differential and

integral equations on spheres has attracted considerable interest in recent years; it

has also been applied fruitfully in fields such as physical geodesy, potential theory,

oceanography, and meteorology [11, 12, 23]. As more satellites are being launched

into space, the acquisition of global data is becoming more important, and there is a

growing demand for the processing and mathematical modeling of such data.

Differential or, more generally, pseudo-differential equations arise in many areas

of earth sciences. Pseudo-differential operators of order t on spheres are operators

that have eigenvalues Λ(`) : ` = 0, 1, . . . , which are asymptotic to (` + 1/2)t. A

detailed discussion on pseudo-differential operators with their applications can be

found in [5, 12, 16, 42].

Given a pseudo-differential operator L and a continuous function f defined on

the unit sphere Sn ⊂ Rn+1, we shall discuss the approximation of solutions of the

equation

Lu = f on Sn.

The approximate solution will be constructed as a linear combination of spherical

basis functions that are derived from zonal kernels Φ : Sn × Sn → R of the form

Φ(x, y) = φ(x · y), x, y ∈ Sn,

where φ is a univariate function defined on [−1, 1], and x · y is the Euclidean dot

product of the position vectors of the points x, y ∈ Sn. For a fixed x the value of

The journal model is Advances in Computational Mathematics.
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Φ(x, y) depends only on the geodesic distance from x to y, so the function Φ(x, ·) is

radially symmetric with respect to the point x, and is called a spherical basis function

(SBF).

The theory of interpolation of continuous functions by SBFs is well understood,

see [9, 17, 29, 30], while the implications of the results to approximation for partial

differential equations (PDEs) on spheres remain unexplored. In this dissertation we

aim to explore the use of various types of SBFs in approximation of elliptic PDEs

and parabolic PDEs on spheres.

A. Spherical harmonics

First, we need some background on the space of square integrable functions on the

unit sphere, L2(Sn). An important orthonormal basis for L2(Sn) is constructed from

the set of all spherical harmonics, which are polynomials Y (x) satisfying ∆xY (x) = 0

and are restricted to Sn, where ∆x is the Laplacian operator in Rn+1, i.e.,

∆x =

(
∂

∂x1

)2
+ . . .+

(
∂

∂xn+1

)2
.

A more detailed discussion on spherical harmonics can be found in [25, 26]. The space

of all spherical harmonics of degree ` on Sn, denoted by V`, has an orthonormal basis

{Y`k(x) : k = 1, . . . , N(n, `)},

where

N(n, 0) = 1 and N(n, `) =
(2`+ n− 1)Γ(`+ n− 1)

Γ(`+ 1)Γ(n)
for ` ≥ 1.

To describe spherical harmonics intrinsically, we first define the Laplace-Beltrami

operator. If we introduce local coordinates {θ1, . . . , θn} for a coordinate patch on

Sn, then the corresponding patch embedded in Rn+1 will have the parametrization
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xi = fi(θ1, . . . , θn), i = 1, . . . , n + 1. The metric gjk on Sn is then induced via

restricting ds2 =
∑n+1

i=1 dx
2
i to Sn; that is,

n∑

j,k=1

gjkdθjdθk ≡
n+1∑

i=1

(
n∑

k=1

∂fi
∂θk

dθk

)2
.

We follow standard conventions in letting gjk be the matrix inverse of gjk and g =

det gjk. The Laplace-Beltrami operator on Sn is given by

∆ := g−1/2
n∑

j=1

n∑

k=1

∂

∂θj

(
g1/2gjk

∂

∂θk

)
.

The eigenfunctions of the Laplace-Beltrami operator are the spherical harmonics Y`;

more precisely,

−∆Y` = λ`Y`, λ` = `(`+ n− 1).

Every function f ∈ L2(Sn) can be expanded in terms of spherical harmonics

f =
∞∑

`=0

N(n,`)∑

k=1

f̂`kY`k, f̂`k = 〈f, Y`k〉 =
∫

Sn
fY`kdS,

where dS is the surface measure of the unit sphere. The L2(Sn) norm of f , given by

the familiar formula

‖f‖2 =
(∫

Sn
|f |2dS

)1/2
,

and can also be expressed, via Parseval’s identity, as follows:

‖f‖2 =




∞∑

`=0

N(n,`)∑

k=1

|f̂`k|2


1/2

.

Given any nonnegative integer `, we define

Pf` :=

N(n,`)∑

k=1

f̂`kY`k;
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since the set {Y`k : k = 1, . . . , N(n, `)} is orthonormal, we find that

‖Pf`‖2 =




N(n,`)∑

k=1

|f̂`k|2


1/2

.

The Sobolev space Hs := Hs(Sn) on the unit sphere is defined as

Hs :=

{
f : ‖f‖2Hs =

∞∑

`=0

(1 + λ`)
s‖Pf`‖22 <∞

}
.

For more details on Sobolev space with real parameters s we refer to [20, §1.7].

B. Positive definite bizonal functions

Second, we introduce a class of bizonal functions on spheres used in approxi-

mation methods. Bizonal functions on Sn are bivariate functions Φ(x, y) that can

be represented as φ(x · y) for all x, y ∈ Sn where φ(t) is a continuous function over

[−1, 1]. We shall be concerned exclusively with bizonal kernels of the type

Φ(x, y) = φ(x · y) =
∞∑

`=0

a`P`(n+ 1;x · y), a` ≥ 0,
∞∑

`=0

a` <∞, (1.1)

where {P`(n+ 1; t)}∞`=0 is the sequence of (n+ 1)-dimensional Legendre polynomials.

Recall from [25] that

∫ 1

−1

P`(n+ 1; t)Pk(n+ 1; t)(1− t2)(n−2)/2dt = 0 for ` 6= k,

and ∫ 1

−1

[P`(n+ 1; t)]2(1− t2)(n−2)/2dt =
|Sn|

|Sn−1|N(n, `)
,

where |Sn| is the surface area of Sn and |Sn−1| is the surface area of Sn−1.

Thanks to the seminal work of Schoenberg [39], we know that such a Φ is positive

definite on Sn, that is, the matrix A := [Φ(xi, xj)]
m
i,j=1 is positive semidefinite for
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every set of distinct points {x1, . . . , xm} on Sn and every positive integer m. When

the coefficients a` are positive for every `, we say that Φ is strictly positive definite.

In this case the matrix A becomes positive definite, hence invertible, for every set of

distinct points {x1, . . . , xm} on Sn and every m (see [52]).

Using the addition theorem for spherical harmonics (see, for example, [25, page

18]), we can write

Φ(x, y) = φ(x · y) =
∞∑

`=0

N(n,`)∑

k=1

φ̂(`)Y`k(x)Y`k(y), where φ̂(`) =
|Sn|

N(n, `)
a`. (1.2)

Spherical basis functions (SBFs) are constructed from the above class of strictly

positive definite bizonal kernels. The smoothness of the kernels depends on how fast

the coefficients φ̂(`) decay.

The native space induced by Φ is defined to be the closure of the set

NΦ :=



f ∈ D

′(Sn) : ‖f‖2Φ =
∞∑

`=0

N(n,`)∑

k=1

|f̂`k|2/φ̂(`) <∞



 ,

where D′(Sn) denotes the set of all tempered distributions defined on Sn. Note that

Φ is the reproducing kernel in NΦ in the sense that for every f ∈ NΦ and for any

fixed x ∈ Sn,

〈Φ(·, x), f〉Φ =
∞∑

`=0

N(n,`)∑

k=1

φ̂(`)Y`k(x)f̂`k

φ̂(`)
= f(x).

C. Interpolation on spheres by SBFs

Let X = {x1, . . . , xm} be a set of scattered distinct points on Sn. The density

of the scattered points is measured by the mesh norm

hX = sup
y∈X

dist(y,X),
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where dist(y,X) = infx∈X θ(y, x). Here θ is the geodesic distance on Sn which is

defined as θ(x, y) = cos−1(x · y), where x and y are represented as two unit vectors

in Rn+1. The separation radius is defined via

qX =
1

2
min
j 6=k

θ(xj, xk).

It is easy to see that hX ≥ qX ; equality can hold only for a uniform distribution of

points on the circle S1. The mesh ratio

ρX := hX/qX ≥ 1

provides a measure of how uniformly points in X are distributed on Sn.

As pointed out in the previous section, with a class of strictly positive definite

bizonal kernels, the matrix A = [Φ(xi, xj)]i,j=1...m is positive definite, hence invertible,

for any set X of distinct m points on Sn, where m is an arbitrary positive integer.

This special property has been used in the interpolation problem on spheres.

Given a continuous function f on Sn, a positive integer m, and a set of distinct

points {x1, . . . , xm} on Sn, there uniquely exists a sequence of numbers {cj}mj=1 such

that the function

IXf :=
m∑

j=1

cjΦ(x, xj) (1.3)

satisfies the interpolating condition

IXf(xk) = f(xk), 1 ≤ k ≤ m.

The functions φj(x) := Φ(x, xj) are called spherical basis functions (SBFs).

Let IX be the interpolation operator IX : C(Sn)→ VX such that IXf(xj) = f(xj)

for all xj ∈ X. The operator IX is well-defined for every function f ∈ C(Sn) since
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the matrix

[Φ(xi, xj)]i,j=1...m

is positive definite, hence invertible, for every configuration of the set X.

If the sampling function f is in the native space NΦ, we have the following error

estimates, as in [17, 23]:

Theorem I.1 Assume that f ∈ NΦ and the set X has mesh norm hX . Let L be

a positive integer so that 1/(2L + 2) < hX ≤ 1/(2L), then there exists a positive

constant C so that

‖f − IXf‖∞ ≤ C

(∑

`>L

φ̂(`)N(n, `)

)1/2
‖f‖Φ.

If the spherical harmonic coefficients φ̂(`) decay algebraically, i.e. φ̂(`) ∼ (1 + λ`)
−σ

for some σ > n/2 then by the fact that N(n, `) ∼ `n−1, we have:

Corollary I.1 Assume that f ∈ NΦ and the set X has mesh norm hX . Let φ be an

SBF satisfying φ̂(`) ∼ (1 + λ`)
−σ, then there exists a positive constant C so that

‖f − IXf‖∞ ≤ Ch
σ−n/2
X ‖f‖Φ.

In fact, f can be in a larger space than NΦ, as pointed out in [30, Theorem 3.2]. We

introduce the following norm in C2k(Sn):

‖f‖2k := max{‖f‖∞, ‖∆kf‖∞}, f ∈ C2k(Sn).

Theorem I.2 Let φ be an SBF satisfying φ̂(`) ∼ (1 + λ`)
−σ for σ > 2k ≥ n/2. If

f ∈ C2k(Sn) and IXf is defined as in (1.3) then there exists a positive constant C

independent of f and X such that

‖f − IXf‖∞ ≤ Cρσ−2kX h
2k−n/2
X ‖f‖2k.
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In the following we will outline an error estimate in the ‖ · ‖Φ norm, which has

proven to be useful in the error analysis of the parabolic differential equation on Sn.

Lemma I.1 For every f ∈ NΦ, we have

‖IXf‖2Φ + ‖f − IXf‖2Φ = ‖f‖2Φ.

Proof. Since Φ is the reproducing kernel in the reproducing Hilbert space NΦ, the

interpolating condition IXf(xj) = f(xj) for all xj ∈ X is equivalent to

〈IXf − f,Φ(xj, ·)〉Φ = 0 ∀xj ∈ X.

Since IXf is a linear combination of Φ(xj, ·)’s, we have the orthogonal property

〈IXf − f, IXf〉Φ = 0.

Hence the desired relation follows from the Pythagorean theorem. ¤

We define the convolution kernel of Φ by

Φ ∗ Φ(x, y) :=
∫

Sn
Φ(x, z)Φ(z, y)dS(z), x, y ∈ Sn.

In terms of Fourier expansions we have

Φ ∗ Φ(x, y) =
∞∑

`=0

(φ̂(`))2
N(n,`)∑

k=1

Y`k(x)Y`k(y).

This observation allows us to define a convolution native space by

NΦ∗Φ =



f ∈ L

2(Sn) : ‖f‖2Φ∗Φ =
∞∑

`=0

N(n,`)∑

k=1

|f̂`k|2

(φ̂(`))2
<∞



 .

If the kernel Φ satisfies the condition φ̂(`) ∼ (1 + λ`)
−σ then

NΦ∗Φ ∼= H2σ(Sn) ⊂ Hσ(Sn) ∼= NΦ.
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Based on [24, Theorem 4.7], we have the following theorem:

Theorem I.3 Let Φ be a positive definite kernel with φ̂(`) ∼ (1 + λ`)
−σ, and f ∈

H2σ(Sn). Then there exists a constant C, independent of hX , such that

‖f − IXf‖Φ ≤ Chσ
X‖f‖H2σ .

Proof.

‖f − IXf‖2Φ = 〈f, f − IXf〉Φ

=
∞∑

`=0

N(n,`)∑

k=1

f̂`k(f̂`k − ÎXf `k)

φ̂(`)

≤




∞∑

`=0

N(n,`)∑

k=1

|f̂`k|2

φ̂(`)2



1/2


∞∑

`=0

N(n,`)∑

k=1

(f̂`k − ÎXf `k)
2



1/2

≤ ‖f‖Φ∗Φ‖f − IXf‖2. (1.4)

Then by using [24, Theorem 4.4] with p = 2, it follows that

‖f − IXf‖2 ≤ Chσ
X‖f − IXf‖Φ. (1.5)

Combining inequalities (1.4) and (1.5) and noting that NΦ∗Φ
∼= H2σ(Sn), we obtain

‖f − IXf‖Φ ≤ Chσ
X‖f‖H2σ .

¤

In [48] Wendland introduced a class of locally supported positive definite radial

basis function defined on Rn+1. These functions ψ(x) are rotation invariant and thus

are functions of |x| only. So, the corresponding convolution kernel ψ(x−y), x, y ∈ Sn,

is a function of |x− y| = √2− 2x · y. We may therefore define a function

Φ(x, y) = φ(x · y) := ψ(x− y), x, y ∈ Sn. (1.6)
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Note that Φ(x, y) inherits the property of positive definiteness from ψ, and φ̂(`) ∼

(1+λ`)
−σ for some σ > 0 (see Section 4 in [30]). Theorem I.1 and Theorem I.2 provide

error estimates for SBFs as in (1.6) which have fixed support. In this dissertation

we will investigate error estimates when these SBFs are scaled or dilated. The scaled

SBFs enable the interpolation matrix [Φ(xi, xj)]i,j=1...m to be band-limited, facilitate

the use of iterative algorithms in solving large linear systems.

D. Approximation of elliptic PDEs on spheres

When dealing with elliptic PDEs on spheres, we restrict our concern to a class

of elliptic equations of the form:

−∆u(x) + ω2u(x) = f(x), x ∈ Sn,

where ∆ is the Laplace-Beltrami operator and ω is some real non-zero constant. Other

classes of elliptic PDEs are deferred for future research. We investigate and analyze

error estimates only for two common methods of approximation: the finite element

method and the collocation method.

1. Finite element method

The mathematics of the finite element method on Rn can be found in [3]. Here

we attempt to give a version similar to it for Sn. To begin, we set up the weak

formulation for the PDE: find u such that

〈
−∆u+ ω2u, v

〉
= 〈f, v〉 , ∀v ∈ H1(Sn),

where for any functions u, v ∈ C(Sn),

〈u, v〉 :=
∫

Sn
uvdS.
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The bilinear form a(u, v) := 〈−∆u+ ω2u, v〉 is bounded and coercive, so by the Lax-

Milgram theorem, the weak formulation has a unique solution. Then we approximate

the weak formulation by using a sequence of finite dimensional subspaces of H1(Sn).

For a set of points X = {x1, . . . , xm} ⊂ Sn, a possible finite dimensional subspace of

H1(Sn) can be defined as

VX := span {φi(x) : xi ∈ X},

where φi(x) := Φ(x, xi) = φ(x · xi). Assume that the SBFs used in the construction

of the approximate solution are required to have the Fourier coefficients algebraically

decaying:

φ̂(`) ∼ (1 + λ`)
−σ, σ > n/2 + 2.

It is easy to see that φi(x) := Φ(x, xi) is in H
1(Sn) since we require σ > n/2+2. The

Ritz Galerkin approximation problem is:

Find uh ∈ VX such that a(uh, χ) = 〈f, χ〉 , ∀χ ∈ VX .

In this dissertation we will derive an error estimate in the Sobolev norm of the approx-

imate solution. The strategy is that ‖u − uh‖H1 will be estimated via ‖u − IXu‖H1 ,

where IXu is the SBF interpolant of u.

2. Collocation method

In a collocation method one seeks an approximate solution of a differential equa-

tion in a finite dimensional space of sufficient regular functions by requiring that the

equation is satisfied exactly at a finite number of points. Such a procedure for a two-

point boundary problem in one space variable was analyzed by de Boor and Swartz

[6], and for parabolic equations in one space variable was studied by Douglas and
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Dupont [8].

In this dissertation we discuss a collocation method for a more general class of

elliptic differential operators, namely

Lu = f,

in which the differential operator L has eigenvalues asymptotic to (1 + λ`)
β/2. In

other words, for spherical harmonics of order `, where ` = 0, 1, . . . , there are numbers

a` ∼ (1 + λ`)
β/2 such that LY` = a`Y`.

In the collocation method, we require that the differential equation to be exact on

the set of points X. In effect, we would like to find uX which lies in some finite

dimensional space VX such that

LuX |x=xj = f(xj), ∀xj ∈ X.

We have to go back to the original framework set out by Golomb and Weinberger [13]

to obtain error estimates.

E. Approximation of parabolic PDEs on spheres

Evolution equations on spherical geometry such as shallow water equations have

been studied in weather forecasting services [14, 50]. Error estimates of pseudo-

differential operator (which are time-independent) were studied in [12, 23] but error

estimates for the evolution equations remain unexplored.

In this dissertation we only consider the following parabolic partial differential
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equation 



∂
∂t
u(x, t)−∆u(x, t) = F (x, t),

u(x, 0) = f(x), f ∈ Hs(Sn).
(1.7)

It is known that the PDE describes the heat diffusion process on the surface of the unit

sphere with external heat source F (x, t). We shall study methods of approximation in

two steps: First, we shall approximate u(x, t) by means of a function uX(x, t) which,

for each fixed t, belongs to a finite dimensional linear space VX spanned by the SBFs.

This function will be a solution of a finite system of ordinary differential equations and

is referred to as a semi-discrete solution. Second, we discretize (1.7) also in the time

variable so as to produce a completely discrete scheme for the approximate solution

of our problem.

1. Semi-discrete problem

We seek the approximate solution uX ∈ VX such that





∂
∂t
uX(xj, t)−∆uX(xj, t) = F (xj, t), ∀xj ∈ X

uX(x, 0) = IXf(x).
(1.8)

We can express uX(x, t) as uX(x, t) =
∑m

i=1 ci(t)φi(x). In the homogeneous case, i.e.

when F = 0, equation (1.8) is reduced to the following system of ordinary differential

equations:

d

dt
c(t) = A−1Bc(t),

subject to the initial condition

Ac(0) = [f(xj)]
m
j=1,
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where c(t) = [c1(t) . . . cm(t)]
T , A = [φi(xj)]i,j=1...m, and B = [∆φi(x)|x=xj ]i,j=1...m.

The solution for the homogeneous semi-discrete problem is

uX(x, t) = [φ1(x) . . . φm(x)] exp(A
−1Bt)c(0), where c(0) = A−1f |X .

In this dissertation we will investigate error estimates between uX and the exact

solution u.

2. Backward Euler method

Let us discretize the time derivative using backward Euler method with time-step

τ as

u(x, t)− u(x, t− τ)

τ
+ o(1)−∆u(x, t) = F (x, t).

By neglecting the term o(1), we seek the approximate solution uX ∈ VX which satisfies

the following collocation equation

uX(xj, t)− uX(xj, t− τ)− τ∆uX(xj, t) = τF (xj, t), ∀xj ∈ X, (1.9)

subject to the initial condition

uX(x, 0) = IXf(x).

Let us define tN := Nτ and UN := uX(x, tN). The collocation equation (1.9) can be

rewritten as

UN − τ∆UN = UN−1 + τF (xj, tN), ∀xj ∈ X. (1.10)

With U0 = IXf , equation (1.10) defines an iterative algorithm to obtain an approxi-

mate solution as any given time tN . In this dissertation we will derive error estimates

u− uX in the Sobolev norm. Some numerical experiments will be presented.
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3. Crank-Nicolson method

In Crank-Nicolson method, the semi-discrete equation is discretized in a sym-

metric fashion around the point tN−1/2 := (N − 1/2)τ , which will produce second

accuracy in time. More precisely, UN can be defined recursively by

UN − UN−1

τ
−∆(UN(xj) + UN−1(xj))/2 = F (xj, tN−1/2), ∀xj ∈ X.

Here, we also set U0 = IXf . In this dissertation we aim to obtain error estimates and

to implement the algorithm.
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CHAPTER II

INTERPOLATION ON SPHERES BY DILATED SBFs

The theory of interpolation on spheres using SBFs has been outlined in Sec-

tion A of the introduction chapter. In effect, we have to invert the matrix A =

[Φ(xi, xj)]i,j=1,...,m to solve the linear system Ac = [f(xj)]
m
j=1. By choosing a strictly

positive definite kernel Φ, the matrix A is positive definite, so we can employ itera-

tive algorithms to invert A. It is more efficient for the algorithms if the matrix A is

band-limited, which can be achieved by rescaling the support of the spherical basis

functions. In this chapter we shall prove a new result on interpolation using locally

supported SBFs with support scaled by a factor of α, for α > 0.

A. Approximation theorems

We first state several results concerning approximation of functions on Sn by

spherical harmonics in PL, where PL denotes the space of all spherical harmonics of

degree at most L. These results, obtained by Pawelke [34, 35], involve the notions

of spherical mean and spherical modulus of continuity (see below). We shall use

Pawelke’s results later in the chapter.

Let f ∈ C(Sn), x ∈ Sn, and 0 < h ≤ π. The spherical mean of f over the

spherical cap of radius h centered at x is defined as follows:

Thf(x) :=
1

|Sn−1|(sin h)n−1

∫

x·y=cosh

f(y)dσx(y),

where dσx is the volume element corresponding to x · y = cos(h) and |Sn−1| is the

surface area of Sn−1. The spherical modulus of continuity of f is defined to be

ω(f ; ε) := sup
0<h≤ε

‖Thf − f‖∞, ε > 0.
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Given f ∈ C(Sn), we define the distance from f to the polynomial space PL in the

usual manner:

dist(f,PL) := inf
P∈PL

‖f − P‖∞.

Theorem II.1 ([34, Satz 5.1], [35]) Suppose f ∈ C2k(Sn) and L ∈ Z+. Then there

is a positive constant M , independent of both f and L, for which

dist(f,PL) ≤Mω(f ; 1/L),

and for which

dist(f,PL) ≤MkL−2k‖∆kf‖∞, k ∈ Z+.

The remaining approximation theorems that we will use in the proofs are dealing

with the norm of iterates of ∆ applied to the best and near-best approximants from

PL.

Proposition II.1 [35, Satz 4.4] Suppose f ∈ C2k(Sn) and let P ∗L be the best approx-

imation to f from PL, i.e., ‖f − P ∗L‖∞ = dist(f,PL). Then there exists a positive

constant C, independent of f and L, for which

‖∆kP ∗L‖∞ ≤ C‖∆kf‖∞.

The preceding theorem has been extended in [30] to a class of near-best approximants

from PL.

Corollary II.1 [30, Corollary 2.5] Let f ∈ C2k(Sn) and let PL ∈ PL, L = 1, 2, . . ., be

a sequence of polynomials satisfying ‖f − PL‖∞ ≤ Kdist(f,PL), with K independent

of f and L. Then there is a constant C1, independent of f and L, such that

‖∆kPL‖∞ ≤ C1‖∆kf‖∞.
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In the proof, we need to construct, for every f ∈ C(Sn), spherical harmonics that are

both near-best approximants to f from PL and also interpolate f on the point set X.

This is precisely the content of the following theorem:

Theorem II.2 [30, Theorem 3.1] Let X ⊂ Sn be a finite set of distinct points and let

β > 1. If we set L = dM(β+1)
qX(β−1)

e, where M as in Theorem II.1, then for any f ∈ C(Sn)

there exists a spherical harmonic PL ∈ PL which interpolates f on X and satisfies

‖f − PL‖∞ ≤ (1 + β)dist(f,PL).

B. Locally supported basis functions on Rn+1 and Sn

We then review the locally supported spherical basis functions constructed via a

class of compactly supported radial basis functions proposed in [48, 49]. The dilated

strictly positive definite radial basis functions and the corresponding dilated SBF

shall be analyzed. The Fourier transform in Rn+1 and Bessel functions play a crucial

role in the analysis.

1. Compactly supported strictly positive definite functions on Rn+1

We investigate a class of radial basis functions Ψ(x) = ψ(‖x‖), x ∈ Rn+1, where

ψ(t) is of the following form:

ψ(t) =





p(t) 0 ≤ t ≤ 1,

0 t > 1,
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with a univariate polynomial p(t) =
∑N

j=1 cjt
j, cN 6= 0. The Fourier transform of

Ψ(x) in Rn+1 is

Ψ̂(x) ≡ ψ̂(r) = (2π)−(n+1)/2
∫

Rn+1

Ψ(ω)ex·ωdω

= r−(n−1)/2
∫ ∞

0

ψ(t)t(n+1)/2J(n−1)/2(rt)dt

= r−(n+1)
∫ r

0

p(t/r)t(n+1)/2J(n−1)/2(t)dt.

Here Jν denotes the Bessel function of the first kind. Bochner’s theorem establishes

the fact that Ψ, which is compactly supported, is strictly positive definite if and only

if Ψ̂ is nonnegative and positive at least on an open set.

The α-dilation (for α > 0) of ψ is defined as

ψα(t) =





p(αt) 0 ≤ t ≤ 1/α,

0 t > 1/α.

The Fourier transform of the α-dilation of ψ is

ψ̂α(x) = r−(n−1)/2
∫ 1/α

0

p(αt)t(n+1)/2J(n−1)/2(rt)dt

= r−(n+1)
∫ r/α

0

p(αt/r)t(n+1)/2J(n−1)/2(t)dt

= α−(n+1)ρ−(n+1)
∫ ρ

0

p(t/ρ)t(n+1)/2J(n−1)/2(t)dt, ρ = r/α,

= α−(n+1)ψ̂(ρ) = α−(n+1)ψ̂(r/α).

Suppose that there are positive constants c and C such that

c(1 + r2)−s ≤ ψ̂(r) ≤ C(1 + r2)−s, s > (n+ 1)/2,

then there are positive constants c1 and C1 such that

c1α
n+1
(
1 + (r/α)2

)−s ≤ ψ̂α(r) ≤ C1α
n+1
(
1 + (r/α)2

)−s
.
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2. Locally supported strictly positive definite functions on Sn

If the function Ψ(x) is restricted on the unit sphere Sn ⊂ Rn+1, then Ψ(x−y) on

Sn is a function of |x−y| = √2− 2x · y. Consequently, the restriction Ψ(x−y)|x,y∈Sn

is a function of x · y. We define the function

Φ(x, y) := Ψ(x− y), x, y ∈ Sn.

In the spherical harmonics expansion

Φ(x, y) =
∞∑

`=0

N(n,`)∑

k=1

φ̂(`)Y`k(x)Y`k(y),

the coefficients φ̂(`), as in [30, Theorem 4.1], are given as

φ̂(`) =

∫ ∞

0

rψ̂(r)J2`+(n−1)/2(r)dr.

Now we will follow a framework set out in [30] in order to investigate the behavior of

φ̂α(`). For ψ̂α ∼ αn+1(1 + (r/α)2)−s, we need to consider the following integral

χ̂(`) = αn+1

∫ ∞

0

rJ2ν (r)

(1 + (r/α)2)s
dr where ν := `+

n− 1

2
and s >

n+ 1

2
. (2.1)

It is noted that χ̂ ∼ φ̂α. We need the hyper-geometric functions

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) :=
∞∑

j=0

(a1)j(a2)j . . . (ap)jz
j

(b1)j(b2)j . . . (bq)jj!
,

where Pochammer’s symbol (λ)j := λ(λ+1) · · · (λ+ j− 1) when j ≥ 1 and (λ)0 := 1.

Lemma II.1

χ̂(`) = A 1F2(ν +
1

2
; ν + 2− s, 2ν + 1;α2) +B 1F2(s−

1

2
; s+ ν, s− ν;α2),
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where

A =
αn+3−2ν−4sΓ(s− 1− ν)

21+2νΓ(ν + 1)Γ(s)
, B =

αn+1−2sΓ(ν + 1− s)Γ(s− 1
2
)

2
√
πΓ(s)Γ(ν + s)

.

Proof. As in [46, Eq. (1), §5.43], we express J 2ν (r) as

J2ν (r) =
2

π

∫ π/2

0

J2ν(2r cos θ)dθ,

then insert in (2.1) and use Fubini’s theorem to interchange integrals to get

2αn+1−2s

π

∫ π/2

0

∫ ∞

0

rJ2ν(2r cos θ)

(α2 + r2)s
drdθ.

By [46, §13.6, Eq. (1)] with our parameters, it has the form

∫ ∞

0

rJ2ν(2r cos θ)

(α2 + r2)s
dr =

Γ(ν + 1)Γ(s− 1− ν)α2ν−2s+2

2Γ(s)Γ(2ν + 1)
cos2ν(θ)

×1F2(ν + 1; ν + 2− s, 2ν + 1;α2 cos2(θ))

+
Γ(ν + 1− s)

2Γ(s+ ν)
cos2s−2(θ)1F2(s; s+ ν, s− ν;α2 cos2(θ)).

We now consider the integral of the following form

∫ π/2

0

cosµ(θ)1F2(a1; b1, b2;α
2 cos2(θ))dθ.

Let u = cos2(θ) then such integrals transform to

1

2

∫ 1

0

u(µ−1)/2(1− u)−1/21F2(a1; b1, b2;α
2u)du.

Using formula [15, §7.512, #12], we have

∫ 1

0

u(µ−1)/2(1− u)−1/2 1F2(a1; b1, b2;α
2u)du =

√
πΓ(µ+1

2
)

Γ(1 + µ
2
)
2F3

(
µ+ 1

2
, a1; 1 +

µ

2
, b1, b2;α

2

)
.
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Using this result, we have that

χ̂(`) = A 2F3(ν +
1

2
, ν + 1; ν + 1, ν + 2− s, 2ν + 1;α2)

+B 2F3(s−
1

2
, s; s, s+ ν, s− ν;α2),

where A and B are the accumulated factors that are given by

A =
αn+3−2ν−4sΓ(s− 1− ν)Γ(ν + 1

2
)

2
√
πΓ(s)Γ(2ν + 1)

=
αn+3−2ν−4sΓ(s− 1− ν)

21+2νΓ(ν + 1)Γ(s)
,

and

B =
αn+1−2sΓ(ν + 1− s)Γ(s− 1

2
)

2
√
πΓ(s)Γ(ν + s)

.

Using the cancellation property for the hyper-geometric functions, we arrive at

χ̂(`) = A 1F2(ν +
1

2
; ν + 2− s, 2ν + 1;α2) +B 1F2(s−

1

2
; s+ ν, s− ν;α2).

¤

For a class of compactly supported positive definite radial functions introduced by

Wendland in [48, 49], we have s = n+1
2

+ k + 1
2
, where k is a positive integer, and so

ν − s = `− k − 3

2
and ν + s = `+ n+ k +

1

2
.

We now investigate the behavior of χ̂(`) as `→∞.

Lemma II.2 For fixed values of n and k, the asymptotic behavior of χ̂(`) is

χ̂(`) = O
(
`−n−2k−1 exp

(
α2

`

))
.

Proof.

1F2(s−
1

2
; s+ ν, s− ν;α2) = 1F2(

n+ 1

2
+ k; `+ k + n+

1

2
, k − `+

3

2
;α2)

≤ C
∞∑

j=0

α2j

`jj!
≤ C exp

(
α2

`

)
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and

1F2(ν +
1

2
; ν + 2− s, 2ν + 1;α2) = 1F2(`+

n

2
; `− k +

1

2
, 2`+ n;α2)

≤ C

∞∑

j=0

α2j

(2`)jj!
≤ C exp

(
α2

2`

)
.

The coefficients A and B become

A =
2−n−2`α−2`−2n

Γ(n
2
+ k + 1)

Γ(k − `+ 1
2
)

Γ(`+ n+1
2
)

=
2−n−2`α−2`−2n

Γ(n
2
+ k + 1)

π csc(π(`− k + 1
2
))

Γ(`− k + 1
2
)Γ(`+ n+1

2
)
= O(2−n−2`α−2`−2n(`!)−2)

In above equation, we use the relation Γ(1− z)Γ(z) = π csc(πz). For B,

B =
α−2k−1Γ(n+1

2
+ k)Γ(`− k − 1

2
)

2
√
πΓ(n+1

2
+ k + 1

2
)Γ(`+ n+ k + 1

2
)
= O(`−n−2k−1).

¤

C. Interpolation on spheres using dilated locally supported SBFs

As pointed out in the previous section, the dilated positive definite function Ψα

on Rn+1 induces the corresponding dilated Φα on the unit sphere Sn. The asymptotic

behavior of the spherical harmonics coefficients φ̂α as ` → ∞ was given in Lemma

II.2. To avoid singularity at ` = 0, we assume that

φ̂α(`) ∼ (1 + λ`)
−σ exp

(
α2

1 + `

)
. (2.2)

For a function f ∈ C(Sn), the interpolant I
(α)
X f of f is defined as

I
(α)
X f(x) =

m∑

j=1

cjΦα(xj, x) such that I
(α)
X f(xk) = f(xk) for all xk ∈ X.
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The reproducing kernel Hilbert space induced by the kernel Φα(x, y) is defined as

NΦα =



f ∈ L

2(Sn) : ‖f‖2Φα =
∞∑

`=0

N(n,`)∑

k=1

|f̂`k|2

φ̂α(`)
<∞



 . (2.3)

Theorem II.3 Assume that f ∈ NΦα and there is a positive integer L that satisfies

1/(2L+2) < hX ≤ (1/2L). Then there is a positive constant C such that the following

holds:

‖f − I
(α)
X f‖∞ ≤ Ch

σ−n/2
X exp(α2hX)‖f‖Φα .

Proof. By [17, Corollary 2] with an improvement pointed out in [23], we have

‖f − I
(α)
X f‖∞ ≤ C

(∑

`>L

φ̂α(`)N(n, `)

)1/2
‖f‖Φα .

Since N(n, `) ∼ `n−1 and φ̂α(`) ∼ (1 + `)−2σeα
2/(`+1) we have

∑

`>L

φ̂α(`)N(n, `) ≤
∫ ∞

L

(1 + x)−2σ+n−1eα
2/(`+1)dx ≤ CL−2σ+neα

2/(L+1).

Since hX is of order 1/2L we obtain the result. ¤

Now by adopting the same strategy as in [30], we first construct a spherical harmonic

PL that satisfies:

(A) PL interpolates f on X, where L = d2M/qXe with M independent of X, as in

Theorem II.1.

(B) ‖f − PL‖∞ ≤ 4 dist(f,PL).

The existence of PL is guaranteed by Theorem II.2.

Theorem II.4 Assume that f ∈ C2k(Sn) and the interpolant I
(α)
X f is constructed

from the shifts of a positive definite kernel that satisfies condition (2.2). Then there
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are positive constants C1 and C2 so that the following holds:

‖f − I
(α)
X f‖∞ ≤

(
C1ρ

n/2−2k
X + C2ρ

σ−2k
X exp

(
α2(hX − qX/M)

))
h
2k−n/2
X ‖f‖2k.

Proof. We start with the estimate

‖f − I
(α)
X f‖∞ ≤ ‖f − PL‖∞ + ‖PL − I

(α)
X PL‖∞ + ‖I(α)X PL − I

(α)
X f‖∞. (2.4)

Since I
(α)
X PL(xj) = I

(α)
X f(xj) = f(xj) for all j = 1 . . .m and both functions are in the

finite dimensional space VX of dimension m, I
(α)
X PL ≡ I

(α)
X f . So we have to estimate

only the first two terms on the right hand side of (2.4). The spherical harmonic

polynomial PL is in any reproducing kernel space NΦα . So

‖PL − I
(α)
X PL‖∞ ≤ Ch

σ−n/2
X exp(α2hX)‖PL‖Φα . (2.5)

From the definition (2.3),

‖PL‖Φα ≤ exp

(
− α2

2(L+ 1)

)
‖PL‖Hσ ≤ exp

(
− α2

2(L+ 1)

)
(1 + λL)

σ/2−k‖PL‖2k.

(2.6)

From (2.5) and (2.6) we obtain

‖PL − I
(α)
X PL‖∞ ≤ C exp

(
α2hX −

α2

2L+ 2

)
h
σ−n/2
X (1 + λL)

σ/2−k‖PL‖2k

≤ C exp
(
α2(hX − qX/M)

)
h
σ−n/2
X (1 + λL)

σ/2−k‖PL‖2k.

From condition B) we can see that ‖PL‖∞ ≤ 5‖f‖∞, and from Corollary II.1, we also

have ‖∆kPL‖∞ ≤ C1‖∆kf‖∞, so that ‖PL‖2k ≤ max{5, C1}‖f‖2k and, consequently,

‖PL − I
(α)
X PL‖∞ ≤ C exp

(
α2(hX − qX/M)

)
h
σ−n/2
X (1 + λL)

σ/2−k‖f‖2k. (2.7)
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From (2.4) and (2.7) and λL = L(L + n − 1) ∼ L2, we arrive at this bound on the

interpolation error for f ,

‖f − I
(α)
X f‖∞ ≤ 4dist(f,PL) + ‖PL − I

(α)
X PL‖∞

≤ 4MkL−2k‖∆kf‖∞ + C exp
(
α2(hX − qX/M)

)
h
σ−n/2
X Lσ−2k‖f‖2k

≤
(
C0L

n/2−2k + C exp
(
α2(hX − qX/M)

)
h
σ−n/2
X Lσ−2k

)
‖f‖2k

≤
(
C0(hXL)

n/2−2k + C exp
(
α2(hX − qX/M)

)
(hXL)

σ−2k
)
h
2k−n/2
X ‖f‖2k.

Since we use L = d2M/qXe = d2MρX/hXe from A), then we get

‖f − I
(α)
X f‖∞ ≤

(
C1ρ

n/2−2k
X + C2ρ

σ−2k
X exp

(
α2(hX − qX/M)

))
h
2k−n/2
X ‖f‖2k. (2.8)

¤

We arrive at some simple corollaries:

Corollary II.2 If the scaling constant α satisfies α2(hX − qX/M) < γ, where γ is a

positive constant then there exists a positive constant C so that

‖f − I
(α)
X f‖∞ ≤ Cρσ−2kX h

2k−n/2
X ‖f‖2k.

Proof. From inequality (2.8) with the new condition that α2(hX − qX/M) < γ, we

obtain

‖f − I
(α)
X f‖∞ ≤

(
C1ρ

n/2−2k
X + C3ρ

σ−2k
X

)
h
2k−n/2
X ‖f‖2k,

where C3 := C2e
γ. Since ρX ≥ 1 and σ > n/2, it follows that

‖f − I
(α)
X f‖∞ ≤ Cρσ−2kX h

2k−n/2
X ‖f‖2k.

¤

The following corollary has a more practical meaning.

Corollary II.3 If the set of points X is quasi-uniform, i.e. ρX ≤ C then for every
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f ∈ C2k(Sn),

‖f − I
(α)
X f‖∞ ≤ C[1 + exp(α2hX)]h

2k−n/2
X ‖f‖2k.

D. Open problems

As we increase α, the approximation rate will get worse, but the interpolation

matrix is more sparse, and hence the inversion of the matrix is more stable numeri-

cally. What is the optimal α to balance the two effects ?
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CHAPTER III

APPROXIMATION OF ELLIPTIC PDEs ON SPHERES

In [23] a collocation method based on spherical basis functions is used to ap-

proximate the solutions of a class of pseudo-differential equations Lu = f on Sn.

The collocation method requires the approximate solution to satisfy the differential

equations at a certain given set of points on the unit sphere. In this chapter we use

the Galerkin method, with the approximate solution being spanned by spherical basis

functions. The operator L is restricted to a class of pseudo-differential operators of

the form −∆+ ω2, where ∆ is the Laplace-Beltrami operator on the unit sphere and

ω 6= 0. We aim to make use of the recent results in [30] to derive error estimates for

the Galerkin approximation on Sn of the following elliptic partial differential equation

−∆u(x) + ω2u(x) = f(x), x ∈ Sn,

where f ∈ C2k(Sn) for some k ≥ 1.

The finite dimensional subspace used to approximate the solution of the PDE

will be the space spanned by shifts of a spherical basis function. Such spaces are used

extensively in the interpolation problem on spheres in [9, 29, 30]. Assume that the

exact solution u is in C2k(Sn), the main result of this chapter is the following Sobolev

type error estimate

‖u− uh‖H1 ≤ C · h2k−n/2−1
X max{‖u‖∞, ‖∆ku‖∞},

where uh is the finite element approximation of u, hX is the mesh norm of the set

of scattered points X used to define the space of SBFs. The SBFs used in the

construction of the approximation space are required to have the Fourier coefficients
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algebraically decaying:

φ̂(`) ∼ (1 + λ`)
−σ, σ > n/2 + 2.

For a more general class of elliptic PDE Lu = f , a classical theorem in [13] is

revisited in the context of deriving error estimates for the collocation method. The

pseudo-differential operator L is assumed to have eigenvalues asymptotic to (1+λ`)
β/2.

A. Positive definite kernels and the power functions

A conjugate symmetric, complex-valued kernel Φ ∈ C(Sn × Sn) ∩H2s(Sn × Sn)

is said to be positive definite if for every finite subset X = {x1, . . . , xm} ⊂ Sn of m

distinct points, the matrix A with entries Ai,j = Φ(xi, xj) is positive semidefinite. In

terms of distribution, the positive definiteness of Φ is equivalent to the following [9,

Theorem 2.1]: for every nonzero distribution w in the dual Sobolev space H−s(Sn),

(w ⊗ w,Φ) :=

∫

Sn
w(x)

(∫

Sn
w(y)Φ(x, y)dS(y)

)
dS(x) ≥ 0.

If (w ⊗w,Φ) > 0 for every w 6= 0, we will call Φ strictly positive definite. The kernel

Φ is positive definite (or strictly positive definite) if and only if all of coefficients a` in

the Legendre polynomial expansion (1.1) non-negative (or positive) [29]. We define

Φ ∗ w(x) := (δx ⊗ w,Φ), x ∈ Sn,

where δx is the Dirac point evaluation functional. Let P be a finite dimensional

subspace of functions in Ck(Sn), and let P⊥ be a space of all distributions over

Ck(Sn) such that (w, p) = 0 for all p ∈ P . Given a strictly positive definite kernel Φ,

we can define an inner product on P⊥:

[v, w]Φ := (v ⊗ w,Φ), v, w ∈ P⊥.
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The interpolation problem can be put into distributional framework in the following

way. Let W = {w1, . . . , wm} be a linearly independent set of distributions defined on

Ck(Sn), and let f be a function in Ck(Sn). Given the data dj = (wj, f), j = 1, . . . ,m,

we seek to find w ∈ span{W} ∩ P⊥ and p ∈ P such that fX = Φ ∗ w + p satisfies

(wj, fX) = dj for every 1 ≤ j ≤ m, and if f ∈ P , then fX = p = f . The latter

requirement that the interpolation process reproduces P implies that the set W |P =

{w1|P , . . . , wm|P} spans P∗, the dual of P .

Suppose that the function f generating the data has the form f = Φ ∗ v + q

with q ∈ P and v ∈ P⊥. Let η be a distribution defined on functions in Ck(Sn),

for example η = δx. In order to estimate the error f − fX , we need to estimate

|(δx, f − fX)| for every value of x. For a general η, in order to estimate |(η, f − fX)|,

we observe that, by construction, (wj, f − fX) = 0 for j = 1, . . . ,m; and so if we can

find cj’s such that η −
∑m

j=1 cjwj is in P⊥, then

(η, f − fX) = (η −
∑

j

cjwj,Φ ∗ (v − w) + q − p) (3.1)

= (η −
∑

j

cjwj,Φ ∗ (v − w))

= [v − w, η −
∑

j

cjwj]Φ.

If we set η = w ∈ P⊥ ∩ span{W} in (3.1) then the left hand side of (3.1) is 0 and the

right hand side is [v − w,w]Φ = 0, since we can take all cj’s to be 0. It then follows

that bevbe2Φ = bev − wbe2Φ + bewbe2Φ, which yields

bewbeΦ < bevbeΦ and bev − wbeΦ < bevbeΦ. (3.2)

By applying Schwarz’s inequality to the right-hand side of (3.1), and using (3.2), we
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obtain

|(η, f − fX)| ≤ bevbeΦbeη −
∑

j

cjwjbeΦ, where
∑

j

cjwj|P = η|P . (3.3)

We define the power function [38] to be

P η
Φ,W := min

{
beη −

∑

j

cjwjbeΦ :
∑

j

cjwj|P = η|P
}
. (3.4)

Let ΦP ∈ P ⊗P be an appropriate conjugate symmetric kernel that approximates Φ.

We define

∆0 := |(η̄ ⊗ η,Φ− ΦP)|,

∆1 := max
j
|(η̄ ⊗ wj,Φ− ΦP)|,

and

∆2 := max
j,k
|(w̄k ⊗ wj,Φ− ΦP)|.

Theorem III.1 ([32, §3]) For any set of coefficients satisfying the constraint

∑

j

cjwj|P = η|P ,

we have the following bound on the power function:

(P η
Φ,W )2 ≤ ∆0 + 2‖c‖1∆1 + ‖c‖21∆2.

B. Finite element method

In this section, we set up the weak formulation for the PDE on the unit sphere

and prove a version for Cea’s lemma (see [4] for the version on Rn) for our equation

on spheres.
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1. Weak formulation

Let ω be a non-zero real constant and consider the following differential equation

−∆u(x) + ω2u(x) = f(x), x ∈ Sn.

The weak formulation of this equation is

〈
−∆u+ ω2u, v

〉
= 〈f, v〉 , ∀v ∈ H1,

where

〈u, v〉 =
∫

Sn
uvdS.

Defining the bilinear form a(u, v) := 〈−∆u+ ω2u, v〉, we find that the weak formula-

tion becomes:

a(u, v) = 〈f, v〉 , ∀v ∈ H1.

Lemma III.1 There exist positive constants C and α such that

|a(u, v)| ≤ C‖u‖H1‖v‖H1 and |a(u, u)| ≥ α‖u‖2H1 .

Proof.

a(u, v) =
∞∑

`=0

N(n,`)∑

k=1

(λ` + ω2)û`kv̂`k

≤




∞∑

`=0

N(n,`)∑

k=1

(λ` + ω2)|û`k|2


1/2


∞∑

`=0

N(n,`)∑

k=1

(λ` + ω2)|v̂`k|2


1/2

≤ max{1, ω2}‖u‖H1‖v‖H1 .

We also have

a(u, u) =
∞∑

`=0

N(n,`)∑

k=1

(λ` + ω2)|û`k|2 ≥ min{1, ω2}
∞∑

`=0

N(n,`)∑

k=1

(λ` + 1)|û`k|2.
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The preceding lemma shows that the bilinear form a(u, v) is bounded and coercive, so

by the Lax-Milgram theorem (cf. [3]) the weak formulation has a unique solution. It

is easy to see that φi(x) := Φ(x, xi) = φ(x · xi) is in H
1 since we require σ > n/2+ 2.

We now define a finite dimensional subspace of H1:

VX := span{Φ(x, xi) : xi ∈ X}.

The Ritz Galerkin approximation problem is the following:

find uh ∈ VX such that a(uh, χ) = 〈f, χ〉 , ∀χ ∈ VX . (3.5)

The following is a version of Cea’s lemma for unit spheres.

Lemma III.2 The following holds:

‖u− uh‖H1 ≤ C inf
v∈VX

‖u− v‖H1 .

Proof. It is noted that a(u−uh, χ) = 0 for all χ ∈ VX . In particular, a(u−uh, v−uh) =

0 for any v ∈ VX . Thus,

a(u− uh, u− uh) = a(u− uh, u− v + v − uh) = a(u− uh, u− v).

By Lemma III.1, we have

α‖u− uh‖2H1 ≤ a(u− uh, u− uh) = a(u− uh, u− v) ≤ C‖u− uh‖H1‖u− v‖H1 .

Dividing ‖u − uh‖H1 on both sides and taking infimum over v ∈ VX , we obtain the

required result. ¤

Lemma III.3 Assume that u ∈ H1, the following inequality holds:

‖u‖H1 ≤ (‖∆u‖2 + ‖u‖2)1/2‖u‖1/22 .
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Proof.

‖u‖2H1 =
∞∑

`=0

N(n,`)∑

k=1

(λ` + 1)|û`k|2

≤
∞∑

`=0

N(n,`)∑

k=1

λ`|û`k|2 +
∞∑

`=0

N(n,`)∑

k=1

|û`k|2

≤




∞∑

`=0

N(n,`)∑

k=1

λ2` |û`k|2


1/2


∞∑

`=0

N(n,`)∑

k=1

|û`k|2


1/2

+
∞∑

`=0

N(n,`)∑

k=1

|û`k|2

= ‖∆u‖2‖u‖2 + ‖u‖22.

¤

The foregoing lemma enables us to use recent results in [30] to estimate ‖u− IXu‖H1 ,

where IXu ∈ VX is the interpolant of u on X, i.e. u(xj) = IXu(xj) for all xj ∈ VX .

2. The estimate of ‖∆su−∆sIXu‖∞

We shall estimate the error in two steps: first, u is assumed to be in the native

space NΦ and the error will be bounded by a factor of ‖u‖Φ; second, we let u escape

to a larger space C2k(Sn) and estimate the error in terms of ‖u‖2k.

To estimate the error in terms of ‖u‖Φ, we need to estimate the power function,

introduced in part A). Bounding the power function is done via employing norming

sets, the use of which in the context of scattered data interpolation was initiated in

[17].

Let V be a finite dimensional vector space with norm ‖ · ‖V and let Z ⊂ V ∗ be a

finite set of cardinality m. We will say that Z is a norming set for V if the mapping

T : V → T (V ) ⊂ Rm defined by T (u) = (z(u))z∈Z is injective. The operator T is

called the sampling operator. The norm of its inverse is given by

‖T−1‖ = sup
v∈V
{‖v‖V : max

z∈Z
|z(v)| = 1}.
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Proposition III.1 [22, Proposition 4.1] Let Z be a norming set for V with T being

the corresponding sampling operator. If λ ∈ V ∗ with ‖λ‖V ∗ ≤ A, then there exist real

numbers {az : z ∈ Z} depending only on λ such that for every v ∈ V ,

λ(v) =
∑

z∈Z

azz(v), and
∑

z∈Z

|az| ≤ A‖T−1‖.

The second result needed is the Markov-Bernstein inequality for spherical harmonics

of order L. A proof of the inequality may be found in [35].

Theorem III.2 If PL ∈ PL, then

‖∆PL‖∞ ≤ DnL
2‖PL‖∞,

where the constant Dn depends only on the dimension of the ambient space.

Remark. It is known that D2 = 4 (see [32]).

Corollary III.1

‖∆sPL‖∞ ≤ Ds
nL

2s‖PL‖∞.

Next we need to adapt [32, Theorem 6.4] to the case Sn.

Proposition III.2 If the mesh norm of X satisfies hX < 1/(2L), then for any fixed

x there exist numbers αj(x), 1 ≤ j ≤ m, such that

m∑

j=1

αj(x)Y (xj) = ∆sY (x) for all Y ∈ PL,

and
m∑

j=1

|αj(x)| ≤ 2Ds
nL

2s.

Proof. Let T be the point-sampling operator, namely, T (Y ) = (Y (x1), . . . , Y (xm)),

and let λ(Y ) = ∆sY (x). The upper bound for ‖λ‖ is given by Theorem III.2. More-
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over, if the mesh norm hX < 1/(2L) then ‖T−1‖ ≤ 2 (see [17]). The required result

now follows via Proposition III.1. ¤

Defining the ordinary differential operator

L := −(1− t2)(2−n)/2 d

dt
(1− t2)n/2

d

dt
= −(1− t2)

(
d

dt

)2
+ nt

d

dt
,

we recall from [26, page 38] that the (n+1)-dimensional Legendre polynomials P`(n+

1; t) satisfy the differential equation

LP`(n+ 1; t) = λ`P`(n+ 1; t).

We approximate the kernel φ by the truncated kernel φL:

φL(x · y) :=
L∑

`=0

a`P`(n+ 1;x · y),

which belongs to the space PL ⊗ PL.

Lemma III.4 Let φ be a kernel as in (1.1). If φ(t) ∈ C (2k+2j)[−1, 1], then

|Lk[φ− φL](x · y)| ≤
Lk+j[φ− φL](1)

(L+ n− 1)2j
≤ Lk+jφ(1)

(L+ n− 1)2j
.

Proof. We have

|Lkφ(x · y)− LkφL(x · y)| ≤
∑

`≥L+1

λk
`a`|P`(n+ 1;x · y)|.

Since the Legendre polynomials satisfy the inequality |P`(n+1; t)| ≤ P`(n+1; 1) = 1

for every t in [−1, 1], (see [26, page 15]), we have

∑

`>L

λk
`a`P`(n+ 1; t) ≤

∑

`>L

λk
`a`P`(n+ 1; 1)

≤ (L+ n− 1)−2j
∑

`>L

λk+j
` a`P`(n+ 1; 1)

≤ Lk+j[φ− φL](1)

(L+ n− 1)2j
.



37

The lemma follows by observing that Lk+j[φ− φL](1) ≤ Lk+jφ(1). ¤

We are now in a position to obtain an error estimate for ∆s(u− IXu), where IXu is

the SBF interpolant of u on the set X.

Proposition III.3 Suppose that Φ is a positive definite function of the form (1.2),

φ(t) ∈ C4s[−1, 1], and let X be a finite set of distinct points on Sn with mesh norm

hX ≤ 1/(2L). If u belongs to the native space NΦ and IXu is an interpolant of the

form
∑m

j=1 cjΦ(x, xj) which interpolates u on the set X, then

‖∆su−∆sIXu‖∞ ≤ C

(
∞∑

`>L

φ̂(`)N(n, `)λ2s`

)1/2
‖u‖Φ,

where C is a constant depending only on n and s.

Proof. Recalling the distributional framework set out in part A), we consider the

following particular linear functional:

η(u) = ∆su(x).

For a given point x ∈ Sn, we shall use inequality (3.3) in Chapter II to estimate

|∆su(x)−∆sIXu(x)|. Now Theorem III.1 and Proposition III.2 provides the following

bound:

(P η
Φ,W )2 ≤ ∆0 + 4Ds

nL
2s∆1 + 4D2s

n L
4s∆2,

where the ∆j’s are given by

∆0 = |L2sφ(1)− L2sφL(1)|,

∆1 = max
j
|Lsφ(x · xj)− LsφL(x · xj)|,

and

∆2 = max
j,k
|φ(xk · xj)− φL(xk · xj)|.
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Applying Lemma III.4 to bound these quantities and then using the resulting bounds

in the power-function estimate above, we obtain

(P η
Φ,W )2 ≤

(
1 +

4Ds
nL

2s

(L+ n− 1)2s
+

4D2s
n L

4s

(L+ n− 1)4s

)
L2s[φ− φL](1)

≤ CL2s[φ− φL](1),

where C is a constant that depends only on n and s. The required result follows by

the following relation

L2s[φ− φL](1) =
1

|Sn|
∑

`>L

λ2s` φ̂(`)N(n, `).

¤

We now derive a simple consequence for our choice of kernels.

Corollary III.2 Suppose that φ(t) ∈ C2s[−1, 1], φ̂(`) ∼ C(1 + λ`)
−σ for some σ >

n/2 + 2s and the mesh norm hX satisfying 1/(2L+ 2) ≤ hX ≤ 1/2L. Then

‖∆su−∆sIXu‖∞ ≤ Ch
σ−n/2−2s
X ‖u‖Φ.

Proof. Since (1 + λ`) ≤ C`2 and N(n, `) = O(`n−1) we have

∞∑

`=L+1

φ̂(`)N(n, `)λ2s` ≤ C

∫ ∞

L

xn−1+4s−2σdx ≤ CLn+4s−2σ.

The result follows directly from Proposition III.3 and the condition

1/(2L+ 2) ≤ hX ≤ 1/2L.

¤

In the proof of the main result, we need to construct for every u ∈ C(Sn), spherical

harmonics that are both near-best approximants to u from PL and also interpolate u

on the point set X. This is precisely the content of the following theorem:
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Theorem III.3 [30, Theorem 3.1] Let X ⊂ Sn be a finite set of distinct points and

let β > 1. If we set L = dM(β+1)
qX(β−1)

e, with M as in Theorem II.1, then for u ∈ C(Sn)

there exists a spherical harmonic PL ∈ PL that interpolates u on X and also satisfies

the estimate

‖u− PL‖∞ ≤ (1 + β) dist (u,PL).

Lemma III.5 Suppose u ∈ C2s(Sn), where s is a positive integer, and let PL be the

best approximation to u from PL, i.e., dist (u,PL) = ‖u − PL‖∞. Then there is a

constant C, independent of u and L, such that

‖∆su−∆sPL‖∞ ≤ C dist (∆su,PL).

Proof. We prove the lemma by induction on s. We consider the case s = 1. Note that

if Q is a spherical harmonic of degree L, for L > 0, then so is ∆Q, because spherical

harmonics are eigenfunctions of ∆. Therefore, the space of all spherical harmonics

of degree ≤ L except constants, denote by PL \ V0, is isomorphic to ∆(PL \ V0).

Let Q be a spherical harmonic without constant term in PL so that ∆Q is the best

approximation to ∆u. So,

‖∆u−∆Q‖∞ = dist (∆u,PL).

Let R ∈ PL be the best approximation to u−Q, so that

‖R− (u−Q)‖ = dist (u−Q,PL) = dist (u,PL).

Since PL is unique, we obtain PL = R + Q. By the estimate in Theorem II.1 in

Chapter II,

‖∆R‖∞ ≤ C‖∆u−∆Q‖∞ = C dist (∆u,PL).
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Thus

‖∆u−∆PL‖∞ ≤ ‖∆u−∆Q‖∞ + ‖∆R‖∞ ≤ 2C dist (∆u,PL).

Now let s > 1, and suppose that there is a constant C0 so that

‖∆s−1u−∆s−1PL‖∞ ≤ C0 dist (∆
s−1u,PL).

Using the induction hypothesis for ∆u and ∆Q, we have

‖∆s−1∆u−∆s−1∆Q‖∞ ≤ C0 dist (∆
su,PL).

Using Theorem II.1 in Chapter II once again, we have

‖∆sR‖∞ ≤ C1‖∆su−∆sQ‖∞ ≤ C2 dist (∆
su,PL),

where C2 = C1C0. Thus

‖∆su−∆sPL‖∞ ≤ ‖∆su−∆sQ‖∞ + ‖∆sR‖∞ ≤ C3 dist (∆
su,PL),

with C3 = max(C0, C2). ¤

We extend the result of the previous lemma to a broader class of near best approxi-

mants to u.

Lemma III.6 Suppose that u ∈ C2k(Sn) and P is a near best approximation to u

from PL in the sense that there is a constant K, independent of L and u, so that

‖u− P‖∞ ≤ K dist (P,PL).

Then there exists a positive constant C1 so that for any integer s ≤ k,

‖∆su−∆sP‖∞ ≤ C1L
−2k+2s‖∆ku‖∞.

Proof. Let PL be the best approximation to u from PL. The preceding lemma implies
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the estimate

‖∆su−∆sPL‖∞ ≤ C dist (∆su,PL).

By the Markov-Bernstein inequality (Theorem III.2),

‖∆sPL −∆sP‖∞ ≤ Ds
nL

2s‖PL − P‖∞

≤ Ds
nL

2s(‖PL − u‖∞ + ‖u− P‖∞)

≤ Ds
nL

2s(K + 1) dist (u,PL).

Combining the two estimates above, we obtain

‖∆su−∆sP‖∞ ≤ ‖∆su−∆sPL‖∞ + ‖∆sPL −∆sP‖∞

≤ C1 dist (∆
su,PL) +DL2s dist (u,PL),

where D := Ds
n(K + 1). Now by the second part of Theorem II.1 in Chapter II,

dist (∆su,PL) ≤M1L
−2k+2s‖∆ku‖∞

and

dist (u,PL) ≤M2L
−2k‖∆ku‖∞,

so the required result follows by setting C1 = max{CM1, DM2}. ¤

Now we adapt the proof in [30] to estimate ‖u− IXu‖∞ for u ∈ C2k(Sn), which is in

general a larger space of functions than the native space induced by the kernel Φ.

Theorem III.4 Let Φ be an SBF satisfying φ̂(`) ∼ (1 + λ`)
−σ and suppose that

σ > 2k ≥ n/2 + 2s. If u ∈ C2k(Sn) and IXu ∈ VX interpolates u on X then for any

integer s < k − n/4,

‖∆su−∆sIXu‖∞ ≤ Ch
2k−2s−n/2
X ‖∆ku‖∞.

Proof. By Theorem II.2 in Chapter II with β = 3, there exists a PL ∈ PL that
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interpolates u on X, where L = d2M/qXe, where M is as in Theorem II.1 in Chapter

II, and

‖u− PL‖∞ ≤ 4 dist (u,PL).

Let PX be the interpolant of PL in the space VX , then

‖∆su−∆sIXu‖∞ ≤ ‖∆su−∆sPL‖∞+‖∆sPL−∆sPX‖∞+‖∆s(PX−IXu)‖∞. (3.6)

Since PX(xj) = PL(xj) = u(xj) = IXu(xj) for all xj ∈ X and both PX and IXu lie in

the same finite dimensional space VX , we have PX ≡ IXu and the final term in the

previous inequality vanishes. By Lemma III.6, we have the estimate

‖∆su−∆sPL‖∞ ≤ C0L
−2k+2s‖∆ku‖∞.

By the assumption on φ̂(`), Corollary III.2 holds and, since the norms ‖ · ‖Φ and

‖ · ‖Hσ are equivalent, we can estimate the second term in the right hand side of (3.6)

as

‖∆sPL −∆sPX‖∞ ≤ C1h
σ−n/2−2s
X ‖PL‖Hσ .

Using the definition of Sobolev norm and the fact that PL is a polynomial,

‖PL‖Hσ ≤ (1 + λL)
σ/2−k‖PL‖H2k ≤ 2k|Sn|1/2(1 + λL)

σ/2−k‖PL‖2k.

From the assumption, ‖PL‖∞ ≤ 5‖u‖∞, so by Theorem II.1 in Chapter II, we also

have ‖∆kPL‖∞ ≤ C1‖∆ku‖∞, so that

‖PL‖2k ≤ max{5, C1}‖u‖2k.

So, if we set C2 = 2k|Sn|1/2max{5, R} then

‖∆sPL −∆sPX‖∞ ≤ C2h
σ−n/2−2s
X (1 + λL)

σ/2−k‖u‖2k. (3.7)
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From (3.6), (3.7) and λL = L(L+ n− 1) ≤ CL2,

‖∆su−∆sIXu‖∞ ≤ (C1L
2s−2k + C2L

σ−2kh
σ−n/2−2s
X )‖u‖2k

≤ (C1L
n/2+2s−2k + C2L

σ−2kh
σ−n/2−2s
X )‖u‖2k

≤ [C1(hXL)
n/2+2s−2k + C2(hXL)

σ−2k]h
2k−n/2−2s
X ‖u‖2k.

If we use L = d2M/qXe = d2MρX/hXe, then we get

‖∆su−∆sIXu‖∞ ≤ (C3ρ
n/2+2s−2k
X + C4ρ

σ−2k
X )h

2k−n/2−2s
X ‖u‖2k.

Finally, since ρX ≥ 1 and σ > 2s+ n/2, it follows that

‖∆su−∆sIXu‖∞ ≤ Cρσ−2kX h
2k−n/2−2s
X ‖u‖2k.

¤

So, we have all the results to estimate the H1 error for the finite element solution.

Theorem III.5 The finite element solution uh satisfies the following error estimate

‖u− uh‖H1 ≤ Ch
2k−n/2−1
X ‖u‖2k.

Proof. By Theorem III.4, we have

‖∆u−∆IXu‖2 ≤
√
|Sn|‖∆u−∆IXu‖∞ ≤ C1h

2k−n/2−2
X ‖u‖2k.

By Theorem I.2 we also have

‖u− IXu‖2 ≤
√
|Sn|‖u− IXu‖∞ ≤ C2h

2k−n/2
X ‖u‖2k.

So by Lemma III.3, we conclude

‖u− IXu‖H1 ≤ Ch
2k−n/2
X

√
1 + h−2X ‖u‖2k.
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Now, using Cea’s lemma (Lemma III.2), we finally have

‖u− uh‖H1 ≤ C‖u− IXu‖H1 ≤ Ch
2k−n/2
X

√
1 + h−2X ‖u‖2k.

¤

C. Collocation method

In this section, we discuss a collocation method for a more general class of elliptic

differential operator, namely

Lu = f, (3.8)

in which the differential operator L has eigenvalues asymptotic to (1 + λ`)
β/2. In

other words, for spherical harmonics of order `, where ` = 0, 1, . . . , there are numbers

a` ∼ (1 + λ`)
β/2 such that LY` = a`Y`. (3.9)

In the collocation method, we require that the differential equation to be exact on

the set of points X. In effect, we would like to find uX which lies in some finite

dimensional space VX such that

LuX |x=xj = f(xj), ∀xj ∈ X. (3.10)

Before outlining the structure of the space VX , we need to recall a classical framework

set out in [13]:

Theorem III.6 Let Fi, 1 ≤ i ≤ m, be m linearly independent continuous linear

functionals of the native space NΦ. We define the space

S⊥m := {w ∈ NΦ : Fi(w) = 0 for all 1 ≤ i ≤ m},
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and for given data d = (di : 1 ≤ i ≤ m) ∈ Rm let

Sd := {w ∈ NΦ : Fi(w) = di for all 1 ≤ i ≤ m}.

Then there exists a unique interpolant v ∈ Sm ∩ Sd so that

(i) For any w ∈ Sd,

‖w‖2Φ = ‖v‖2Φ + ‖w − v‖2Φ.

(ii) For another continuous linear functional F on NΦ the value Fv is the best

approximation to {Fw : w ∈ Sd, ‖w‖Φ = r}, meaning that

sup
w∈Cr

|Fw − Fz| ≥ sup
w∈Cr

|Fw − Fv|

holds for all z ∈ NΦ. Here Cr := {w ∈ Sd : ‖w‖Φ = r}, r > 0, denotes a

hypercircle.

Furthermore, the hypercircle inequality is satisfied: If y ∈ S⊥m denotes an element with

unit norm for which F |S⊥m attains its least upper bound, then

|Fw − Fv|2 ≤ |Fy|2(r2 − ‖v‖2Φ) for all w ∈ Cr.

Let L∗ be the dual operator of L which is defined as (L∗δx)(w) = δx(Lw). In our case

F = L∗δx and Fi = L∗δxi , i = 1, . . . ,m. For the sake of simplicity, let us assume that

all the linear functionals L∗δxi are linearly independent. Since Φ is the reproducing

kernel in NΦ, we have

Fi(w) = Lw(x)|x=xi = 〈Lw,Φ(·, xi)〉Φ = 〈w,L∗Φ(·, xi)〉Φ .

Hence, the space S⊥m takes the following form

S⊥m := {w ∈ NΦ : 〈w,L∗Φ(·, xi)〉Φ = 0 for all 1 ≤ i ≤ m}.
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Thus the approximation space is Sm := span{φi(x) : i = 1, . . . ,m}, where

φi(·) := L∗Φ(·, xi) = LyΦ(·, y)|y=xi , i = 1, . . . ,m.

So by Theorem III.6, there exists a unique solution for our equation (3.10) provided

that we restrict the problem to a subspace of NΦ in which F = L∗δx and Fi = L∗δxi
are well-defined. We have to solve the linear system:

L
(

m∑

i=1

ciφi(x)

)∣∣∣∣∣
x=xj

= f(xj) or Ac = f , (3.11)

where Aij = L(L∗Φ(xj, xi)), c = [c1 . . . cm]
T and f = [f(x1) . . . f(xm)]

T . It is noted

that A is a positive definite matrix since the kernel Φ is strictly positive definite and

the operator L has positive eigenvalues with respect to spherical harmonics of order

`.

In order to estimate the term |F (y)| in the hypercircle inequality we need to

state a few preliminary results.

Markov’s inequality. Let P ∈ PL, we have the following general Markov’s inequal-

ity:

|DTP (p)| ≤ L‖P‖∞,

where DT denotes any unit tangential derivative at p and the maximum norm is on

Sn. This is a simple case of the general Markov inequality for polynomials on compact

smooth algebraic sub-manifolds of Rn+1 without boundary (see [2]). We will use it

later in its integrated form

|P (p)− P (q)| ≤ Lθ(p, q)‖P‖∞, p, q ∈ Sn. (3.12)

Lemma III.7 Suppose that the set of scattered points X has mesh norm hX that
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satisfies hX ≤ 1/2L. We assume further that there is a constant Λ such that

‖LP‖∞ ≥ Λ‖P‖∞ ∀P ∈ PL.

Then the following holds:

‖LP |X‖∞ ≥
Λ

2
‖P‖∞, ∀P ∈ PL.

Proof. We show that ‖Q|X‖∞ ≥ 1
2
‖Q‖∞ for all Q ∈ PL. Without loss of generality,

we can assume that ‖Q‖∞ = 1 and Q(x0) = 1 for some x0 ∈ Sn. Then for any xi ∈ X,

1 = |Q(x0)| ≤ |Q(x0)−Q(xi)|+ |Q(xi)| ≤ L‖Q‖∞θ(x0, xi) + |Q(xi)|.

The second inequality follows from the intermediate value theorem and the Markov’s

inequality. Since hX ≤ 1/2L, we can choose xi so that θ(x0, xi) ≤ 1/2L and hence

|Q(xi)| ≥ 1/2.

Since L is surjective, given any Q ∈ PL, there is a P such that Q = LP and

hence

‖LP |X‖∞ = ‖Q|X‖∞ ≥
1

2
‖Q‖∞ =

1

2
‖LP‖∞ ≥

Λ

2
‖P‖∞.

¤

In our specific choice of differential operators which satisfy condition (3.9), we can

work out the value of the constant Λ in terms of L as in the following lemma:

Lemma III.8 For any spherical harmonic P ∈ PL, the following holds:

‖LP‖∞ ≥ CL1/2−n‖P‖∞.
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Proof. From [25], we recall that each spherical harmonic in the orthonormal basis can

be bounded by the following inequality:

‖Y`k‖∞ ≤
√
N(n, `)

|Sn| , for k = 1, . . . , N(n, `). (3.13)

We can express P as

P (x) =
L∑

`=0

N(n,`)∑

k=1

P̂`kY`k(x).

Using the Cauchy-Schwarz inequality and inequality (3.13) together with the fact

that N(n, `) = O(`n−1), we have

|P (x)|2 ≤




L∑

`=0

N(n,`)∑

k=1

|P̂`k||Y`k(x)|



2

≤




L∑

`=0

N(n,`)∑

k=1

|P̂`k|2





L∑

`=0

N(n,`)∑

k=1

N(n, `)

|Sn|




≤ C‖P‖22
L∑

`=0

`2n−2 ≤ C‖P‖22L2n−1.

Thus, we obtain ‖P‖∞ ≤ C‖P‖2Ln−1/2, where C is a constant depending only on

n. On the other hand, ‖P‖2 ≤ |Sn|1/2‖P‖∞. Since LY`k ∼ (1 + λ`)
β/2Y`k (condition

(3.9)), we have

‖LP‖2 ≥ ‖P‖2.

Combining all the inequalities above, the following holds:

‖LP‖∞ ≥
1

|Sn|1/2‖LP‖2 ≥
1

|Sn|1/2‖P‖2 ≥
CL1/2−n

|Sn|1/2 ‖P‖∞.

¤

Remark The previous lemma gives a lower bound for ‖L‖. In [41], we can find many

upper bounds for norms of operators of similar type.
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We now prove a proposition, which is a generalized version of [17, Proposition

2].

Proposition III.4 Assume that X = {xi : 1 ≤ i ≤ m} is a given set of points on Sn

and its mesh norm hX ≤ 1/2L. Let PL be the space of spherical harmonics of degree

less than or equal L. Then the dual space P∗L can be identified with the space

span{L∗δx|PL : x ∈ X}.

Moreover, for any w∗ ∈ P∗L with ‖w∗‖ = ‖L‖, w∗ can be identified with some

∑

x∈X

axL∗δx|PL where
∑

x∈X

|ax| ≤ 2/Λ.

Proof. Let T : Ck(Sn)→ C(X) be defined as

T (f) = Lf |X

Let T0 be the restriction of T to PL, i.e.

T0 = T |PL : PL → T (PL)

P 7→ LP |X

By Lemma III.7, T0 is a 1-1 isomorphism and ‖T−10 ‖ ≤ 2
Λ
. Also

T ∗0 : T (PL)
∗ → P∗L

is an isomorphism with ‖(T ∗0 )−1‖ ≤ 2
Λ
. So for any w∗ ∈ P∗L with ‖w∗‖ = ‖L‖ there

is t∗ ∈ T (PL)
∗ such that T ∗0 (t

∗) = w∗ and ‖t∗‖ ≤ 2
Λ
‖L‖. Using the Hahn-Banach

theorem, we can extend t∗ ∈ T (PL)
∗ to l∗ ∈ C(X)∗,

l∗ =
∑

x∈X

axL∗δx|C(X)
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such that t∗ = l∗|T (PL) and

‖t∗‖ = ‖l∗‖ = ‖L‖
∑

x∈X

|ax| ≤
2

Λ
‖L‖.

Thus
∑

x∈X |ax| ≤ 2
Λ
. For a fixed w∗ ∈ P∗L, let l∗ =

∑
x∈X L∗δx|C(X) be the extension

of (T ∗0 )
−1w∗. Then

(w∗, P ) = (w∗, T−10 T0P ) = ((T ∗0 )
−1w∗, T0P )

=

(∑

x

axL∗δx|C(X), T0P
)

=

(∑

x

axL∗δx|PL , P
)
, ∀P ∈ PL.

¤

We are ready to state a theorem.

Theorem III.7 Assume that X has mesh norm hX ≤ 1/(2L), L ∈ Z+, x is a given

point on Sn, then there exist ci’s, i = 1, . . . ,m such that
∑m

i=1 |ci| ≤ 2/Λ and

(
L∗δx −

m∑

i=1

ciL∗δxi

)
P = 0 ∀P ∈ PL.

The term |Fy|2 in the hypercircle inequality can be bounded by

|L∗δx(y)| ≤
(
1 +

2

Λ

)
max
t∈Sn


∑

`>L

N(n,`)∑

k=1

φ̂(`)|LY`k(t)|2


1/2

.
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Proof. Let c0 = −1. The existence of {ci : 1 ≤ i ≤ m} is given by Proposition III.4.

By orthogonality Fi(y) = Ly(xi) = 0 for i = 1, . . . ,m, so we have

|F (y)| =

∣∣∣∣∣∣
∑

`>L

N(n,`)∑

k=1

(
F −

m∑

i=1

ciFi

)
ŷ`kY`k

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

`>L

N(n,`)∑

k=1

(
LY`k(x)−

m∑

i=1

ciLY`k(xi)

)
ŷ`k

∣∣∣∣∣∣

≤




m∑

i=0

|ci|

∣∣∣∣∣∣
∑

`>L

N(n,`)∑

k=1

ŷ`kLY`k(xi)

∣∣∣∣∣∣




≤
(
1 +

2

Λ

)
max

t∈{x}∪X

∣∣∣∣∣∣
∑

`>L

N(n,`)∑

k=1

ŷ`kLY`k(t)

∣∣∣∣∣∣

We also have ‖y‖Φ = 1 so by Cauchy-Schwarz’s inequality


∑

`>L

N(n,`)∑

k=1

ŷ`kLY`k(t)



2

≤


∑

`>L

N(n,`)∑

k=1

|ŷ`k|2

φ̂(`)




∑

`>L

N(n,`)∑

k=1

φ̂(`)|LY`k(t)|2



≤
∑

`>L

N(n,`)∑

k=1

φ̂(`)|LY`k(t)|2.

Combine the two above inequalities we have the result. ¤

Now we are in a position to give an L2(Sn) error estimate between the exact solution

u of (3.8) and the SBF approximate solution of (3.10).

Theorem III.8 Suppose that Φ is an SBF satisfying φ̂(`) ∼ (1 + λ`)
−σ and the set

X has mesh norm hX . The approximate solution uX is constructed from

span {φi(x) := Lφ(x · xi), xi ∈ X}.

Then there exists a positive constant C3 such that:

‖u− uX‖2 ≤ C3h
(σ−β)−n/2
X ‖u‖Φ.



52

Proof. Choosing an integer L so that 1/(2L + 2) ≤ hX ≤ 1/2L, we can use Λ =

CLn−1/2 as in Lemma III.8 and the estimate in Theorem III.7 to obtain:

‖u− uX‖2 ≤ ‖L(u− uX)‖2

≤ C0‖u‖Φ
(
1 +

2

Λ

)
max
t∈Sn


∑

`>L

N(n,`)∑

k=1

φ̂(`)|LY`k(t)|2


1/2

≤ C1‖u‖Φ(1 + 2L1/2−n)

(∑

`>L

(1 + λ`)
β−σN(n, `)

|Sn|

)1/2

≤ C2‖u‖Φ(1 + 2L1/2−n)L(β−σ)+n/2

≤ C3‖u‖Φh(σ−β)−n/2
X .

¤

D. Implementation of the two methods on S2

In the implementation of the Galerkin method on S2 ⊂ R3, there are two main

issues to be addressed: the quadrature rule used in approximating the bilinear form

a(u, v) and the construction of spherical basis functions.

Since Φ(x, y) is a zonal function, we can reduce the surface integrals in the

bilinear form a(Φ(xi, ·),Φ(xj , ·)) into one dimensional series of Legendre polynomials

as discussed in Section D.1. For the surface integrals 〈f,Φ(xi, ·)〉’s, we have to derive

a quadrature rule over the surface of the unit sphere as in Section D.2.

1. Inner product of two zonal functions

Let φ(t) and ψ(t), for t ∈ [−1, 1], be two zonal functions on S2. We can expand

φ(t) and ψ(t) in terms of series of Legendre polynomials

φ(t) =
∞∑

`=0

a`P`(t), ψ(t) =
∞∑

`=0

b`P`(t),
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where

a` =

∫ +1
−1

φ(t)P`(t)dt∫ +1
−1

[P`(t)]2dt
=

2`+ 1

2

∫ +1

−1

φ(t)P`(t)dt (3.14)

and

b` =

∫ +1
−1

ψ(t)P`(t)dt∫ +1
−1

[P`(t)]2dt
=

2`+ 1

2

∫ +1

−1

ψ(t)P`(t)dt. (3.15)

In the approximation of the bilinear form a(u, v) = 〈−∆u+ ω2u, v〉, we need the

following useful lemma:

Lemma III.9 Let Ψ(x, y) = ψ(x · y) and Φ(x, y) = φ(x · y) be two zonal functions

on S2. For two distinct fixed points p, q ∈ S2, the following relation holds:
∫

S2

φ(p · x)ψ(q · x)dS(x) = 4π
∞∑

`=0

a`b`
(2`+ 1)

P`(p · q).

Proof. We have

φ(p · x) =
∞∑

`=0

a`P`(p · x) = 4π
∞∑

`=0

a`
(2`+ 1)

∑̀

k=−`

Y`,k(p)Y`,k(x),

and

ψ(q · x) =
∞∑

`=0

b`P`(q · x) = 4π
∞∑

`=0

b`
(2`+ 1)

∑̀

k=−`

Y`,k(q)Y`,k(x).

Since {Y`,k : ` = 0, 1, 2, . . . ; k = −` . . . `} is an orthonormal set, we can use Parseval’s

identity to obtain

∫

S2

φ(p · x)ψ(q · x)dS(x) = 16π2
∞∑

`=0

a`b`
(2`+ 1)2

∑̀

k=−`

Y`,k(p)Y`,k(q)

= 16π2
∞∑

`=0

a`b`
(2`+ 1)2

(2`+ 1)

4π
P`(p · q)

= 4π
∞∑

`=0

a`b`
(2`+ 1)

P`(p · q).

¤
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For numerical approximation the integration in (3.14) and (3.15) can be approximated

by a Gaussian quadrature formula over the interval [−1,+1].

2. Quadrature formula

We seek a spherical quadrature rule that integrates exactly all polynomials up to

a certain degree L, i.e., we seek a set of points Ξ := {η1, . . . , ηN} and a set of positive

weights {w1, . . . , wN} such that

∫

S2

P (x)dS =
N∑

j=1

wjP (ηj), ∀P ∈ PL.

If all the weights are equal, namely wj = 4π/N for all j = 1 . . . N , then the set Ξ

are called spherical L-design, see [1, 7, 40]. It can be shown that a pair of antipodal

points, the vertexes of a regular tetrahedron, the regular octahedron, and the regular

icosahedron give 1-,2-, and 5-designs, respectively. The following existence theorem,

proved in [22], provides a general quadrature formula for Sn.

Theorem III.9 Let L be an integer with L ≤ α/hΞ, where hΞ is the mesh norm of

the set Ξ and α is some real constant. Then there exist nonnegative weights {wj : j =

1 . . . N} such that
∫

Sn
P (x)dS =

N∑

j=1

wjP (xj), ∀P ∈ PL,

and the cardinality of the set of weights, N , is comparable to the dimension of PL.

In principle, Ξ can be any set of scattered points on the unit sphere. However, if the

points are uniformly distributed in some sense then the quadrature scheme achieves

higher accuracy, see [5, 18, 37]. Here we shall use the set of points that is constructed

by dividing the surface of the sphere into N cells of roughly equal area (see [18]).
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Let w := {w1, . . . , wN}, the weights are computed by solving the following

quadratic programming problem:

minw ·wT

subject to the following linear constraints:

N∑

j=1

wjY`k(ηj) = 4πY0,0δ`,0, ` = 0, . . . , L, −` ≤ k ≤ `;

wj ≥ 0, j = 1, . . . , N.

This optimization program can be solved numerically using the subroutine quadprog

in MATLAB 6.0. The strategy is to start with a high value of L, say L = b
√
N − 1c,

and step it down by 1 until we reach a value of L for which we obtain a solution. Figure

1 shows weights associated with 2500 points calculated according to the previous

algorithm.

3. The spherical basis functions

In [48] Wendland introduced a class of locally supported positive definite radial

basis function defined on Rn+1. These functions ψ(x) are rotation invariant and thus

are functions of |x| only. So the corresponding convolution kernel ψ(x−y), x, y ∈ Sn,

is a function of |x− y| = √2− 2x · y. We may therefore define a function

Φ(x, y) = φ(x · y) := ψ(x− y), x, y ∈ Sn. (3.16)

Note that Φ(x, y) inherits the property of positive definiteness from ψ, and φ̂(`) ∼

(1 + λ`)
−σ for some σ > 0 (see Section 4 in [30]).

For our numerical study, we use the function ψ(r) = (1 − r)4+(4r + 1), where
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Fig. 1. Weights associated with 2500 quadrature points. The associated quadrature

rule integrates exactly all polynomials up to degree 45.

r =
√
2− 2x · y.

The set of points that are used in constructing the SBFs is generated according

to an algorithm in [37]. These points are generated uniformly, in the sense that each

point is a center of a cell on the unit sphere of area 4π/N .

4. Stability results for the two methods

The stability of the interpolation matrix [Φ(xi, xj)]
m
i,j=1 has been studied in [33],

which can be summarized in the following theorem:

Theorem III.10 Let Φ(x, y) = φ(x · y) be a strictly positive definite function on S2
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with φ̂(`) ∼ `−2σ. Then there is a positive constant γ depending on Φ but not on

the data, such that the minimal eigenvalue of the interpolation matrix [Φ(xi, xj)]
m
i,j=1

satisfying

λmin ≥ γq2σ−2X ,

holds for sufficiently dense data sets X and this order is optimal.

The same approach has been used in [19] in proving the stability results when Φ is a

strictly positive definite function on Sn.

In our collocation method, the collocation matrix is A := [LL∗Φ(xi, xj)]
m
i,j=1

can be understood as an interpolation matrix having positive definite kernel with

φ̂(`) ∼ (1 + λ`)
β−σ. Using Theorem III.10, we conclude that the minimal eigenvalue

of the collocation matrix satisfies

λmin(A) ≥ γq2σ−2β−2X ,

where γ is a constant depending on Φ but not on the data.

In the finite element method, we have to find the inverse of matrix B with entries

Bi,j =

∫

S2

(−∆+ ω2)φ(xi · x)φ(x · xj)dS(x)

=
∞∑

`=0

(λ` + ω2)(φ̂(`))2
∑̀

k=−`

Y`k(xi)Y`k(xj) (Lemma III.9)

The matrix B can be viewed as interpolation matrix having positive definite kernel

with φ̂(`) ∼ (1 + λ`)
−2σ+1. Using Theorem III.10, we have the minimal eigenvalue of

A is bounded below as

λmin(B) ≥ γq4σ−4X ,

where γ is a constant independent from the data.
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5. Numerical results

We aim to solve numerically the following differential equation:

−∆u+ ω2u = f,

where f = ez(z2+2z+ω2− 1) and (x, y, z) satisfying x2+ y2+ z2 = 1. Note that the

function f depends only on the geodesic distance from a point to the north pole. The

exact solution of the differential equation is u = ez. Table I shows the errors between

the exact solution and the approximate solution obtained via the Galerkin method

using the SBFs as in (3.16). The experiments use various values of ω. The errors are

computed over a grid C of 104 points on the sphere. The `2 errors are computed as

follows:

e2 :=

(
1

|C|
∑

ξ∈C

|u(ξ)− uX(ξ)|2
)1/2

.

The supremum errors are computed as

e∞ := max
ξ∈C

|u(ξ)− uX(ξ)|.
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Table I. Numerical errors for different values of ω

ω m hX e∞ e2

0.01 100 0.267187 1.1327189 1.1186866

400 0.128840 0.1239192 0.1233412

800 0.095016 0.0020322 0.0013973

0.1 100 0.267187 0.3375578 0.3177237

400 0.128840 0.0019762 0.0013812

800 0.095016 0.0020748 3.0189262e-04

1600 0.067870 4.2467432e-04 3.4931946e-04

1.0 100 0.267187 0.0258676 0.0074494

400 0.128840 6.863848e-04 1.239210e-04

1600 0.067870 4.596362e-05 1.325570e-05

10 100 0.267187 0.0213299 0.0058496

400 0.128840 7.064579e-04 1.228608e-04

1000 0.084946 6.519814e-04 1.275973e-04

1600 0.067870 4.827265e-04 8.777684e-05
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CHAPTER IV

APPROXIMATION OF PARABOLIC PDEs ON SPHERES

In this chapter we consider the following parabolic partial differential equation

defined on the unit sphere Sn ⊂ Rn+1:





∂
∂t
u(x, t)−∆u(x, t) = F (x, t)

u(x, 0) = f(x), f ∈ Hs(Sn),
(4.1)

where ∆ is the Laplace-Beltrami operator on Sn. It is known that equation (4.1)

describes the heat diffusion process on the surface of the sphere with external heat

source F (x, t).

In many applications in geophysics and global weather forecast, it is common

that the functions f and F are not known analytically everywhere but only at a finite

set of scattered points.

We propose a collocation method in which the spherical basis functions are used

to construct the approximate solution. The approximate solution of the partial dif-

ferential equation will be of the form

uX(x, t) =
m∑

i=1

ci(t)φi(x),

subject to the initial condition

uX(x, 0) = IXf(x),

where φi(x) = φ(xi ·x) = Φ(xi, x)’s are the shifts of a spherical basis function (SBF) φ

and IXf is the SBF interpolant of the function f . In case the basis function φ satisfies

certain regularity conditions, we are able to obtain error estimates in certain Sobolev

norms. Throughout the chapter we make further assumption that φ̂(`) ∼ (1 + λ`)
−σ,
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i.e. there are positive constants c and C and σ > n/2 such that

c(1 + λ`)
−σ ≤ φ̂(`) ≤ C(1 + λ`)

−σ. (4.2)

A. Semi-discrete problem

The numerical analysis here follows a framework set out in [45], which was used

to analyze the approximation of solutions of the heat equation on a bounded domain

Ω ⊂ Rn for the finite element method. However, the framework of [45] is modified

significantly with the structure of the reproducing kernel Hilbert space NΦ for a

collocation method on Sn.

1. The homogeneous problem

By the method of separation of variables, see [36, §5.7], the exact solution for

the homogeneous problem:





∂
∂t
u(x, t) = ∆u(x, t)

u(x, 0) = f(x), f ∈ L2(Sn),

is given as the infinite series

u(x, t) =
∞∑

`=0

e−λ`t

N(n,`)∑

k=1

f̂`kY`k(x).

Let the approximate solution be of the following form:

uX(x, t) =
m∑

i=1

ci(t)φi(x),
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where φi(x) := Φ(xi, x). The homogeneous semi-discrete problem is formulated as

the following: we require the equation (4.1) to be exact on the set X, i.e.





∂
∂t
uX(xj, t) = ∆uX(xj, t), ∀xj ∈ X,

uX(x, 0) = IXf(x),
(4.3)

where IXf is the interpolant of f in VX . Equation (4.3) can be rewritten as the

following:

d

dt

m∑

i=1

ci(t)φi(xj) =
m∑

i=1

ci(t)∆φi(xj), ∀xj ∈ X, (4.4)

subject to the following initial condition:

m∑

i=1

ci(0)φi(xj) = f(xj), ∀xj ∈ X.

If we set A := [φi(xj)]i,j=1,...,m and B := [∆φi(xj)]i,j=1,...,m then equation (4.4) can be

written as the following system of ordinary differential equations in time:

d

dt
c(t) = A−1Bc(t), (4.5)

where c(t) = [c1(t), . . . , cm(t)]
T . It is known that (see, for example, [27]), in order to

solve the system (4.5), we have to compute the distinct eigenvalues r1, . . . , rk of the

matrix A−1B with multiplicities n1, . . . , nk. For each eigenvalue ri, we find ni linearly

independent generalized eigenvectors. Each independent solution of (4.5) is of the

form

exp(A−1Bt)v = ert
(
v + t(A−1B − rI)v +

t2

2
(A−1B − rI)2v + . . .

)
,

where r is an eigenvalue and v is a corresponding generalized eigenvector. If r has

multiplicity ni, then the above series reduces to the first ni terms. The linearly inde-

pendent solutions form column vectors of a matrix E(t), and then the fundamental
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matrix exp(A−1Bt) is given as

exp(A−1Bt) = E(t)E−1(0).

The solution of the homogeneous semi-discrete problem is

uX(x, t) = [φ1(x) . . . φm(x)] exp(A
−1Bt)c(0) where c(0) = A−1f |X . (4.6)

We shall express the solution uX(x, t) in terms of some evolution operator. Let us

consider the following operator:

∆IX : C(Sn) → span {∆φi(x) : i = 1, . . . ,m}

f 7→ ∆(IXf).

Lemma IV.1 At the set of points X, we have

A(A−1B)nA−1[f(xj)]
m
j=1 = [(∆IX)

nf |x=xj ]
m
j=1.

Here and thereafter, the notation [aj]
m
j=1 stands for [a1 . . . am]

T which is a vector in

Rm.

Proof. For n = 1, we have

AA−1BA−1[f(xj)]
m
j=1 = BA−1[f(xj)]

m
j=1 = [∆IXf |x=xj ]

m
j=1.

Now assume that for k > 1

A(A−1B)kA−1[f(xj)]
m
j=1 = [(∆IX)

kf(xj)]
m
j=1
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Then

A(A−1B)k+1A−1[f(xj)]
m
j=1 = A(A−1B)(A−1B)kA−1[f(xj)]

m
j=1

= BA−1A(A−1B)kA−1[f(xj)]
m
j=1

= BA−1[(∆IX)
kf |x=xj ]

m
j=1

= [(∆IX)(∆IX)
kf |x=xj ]

m
j=1

= [(∆IX)
k+1f |x=xj ]

m
j=1.

¤

Lemma IV.2 For small t > 0 we have

uX(x, t) = IXf + tIX∆IXf +
t2

2
IX(∆IX)

2f + . . .+
tn

n!
IX(∆IX)

nf + . . .

Proof. Using equation (4.6) and Lemma IV.1, we have

[uX(xj, t)]
m
j=1 = A exp(A−1Bt)A−1[f(xj)]

m
j=1

= A

(
I + tA−1B + . . .

tn

n!
(A−1B)n + . . .

)
A−1[f(xj)]

m
j=1

= [f(xj)]
m
j=1 + t[∆IXf |x=xj ]

m
j=1 + . . .+

tn

n!
[(∆IX)

nf |x=xj ]
m
j=1 + . . .

Since uX ∈ VX , this implies

uX(x, t) = IXf + tIX∆IXf + . . .+
tn

n!
IX(∆IX)

nf + . . .

¤

Let us define the following evolution operator

EX(t) := I + tIX∆+ . . .+
tn

n!
(IX∆)n + . . .

then uX(x, t) = EX(t)IXf(x). We can show that EX(t) is a stable operator in VX in

the ‖ · ‖Φ norm by the following lemma:
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Lemma IV.3 For every ψ ∈ VX ,

‖EX(t)ψ(x)‖Φ ≤ ‖ψ(x)‖Φ.

Proof. Let θ(x, t) be defined as

θ(x, t) =
m∑

i=1

ci(t)φi(x).

We wish to solve the following PDE by a collocation method

∂

∂t
θ(x, t) = ∆θ(x, t),

subject to the initial condition

θ(x, 0) = ψ(x).

In our collocation method, it is required that the PDE is exact on the set of given

points X, i.e.

∂

∂t
θ(xj, t) = ∆θ(xj, t), ∀xj ∈ X,

subject to the initial condition

θ(xj, 0) = ψ(xj), ∀xj ∈ X.

Since Φ is the reproducing kernel in the Hilbert space NΦ,

〈
∂

∂t
θ(·, t),Φ(·, xj)

〉

Φ

= 〈∆θ(·, t),Φ(·, xj)〉Φ , ∀xj ∈ X. (4.7)

Since VX is spanned by Φ(x, xj), for j = 1, . . . ,m, equation (4.7) implies that for

every function v ∈ VX , 〈
∂θ

∂t
, v

〉

Φ

= 〈∆θ, v〉Φ .
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Since θ ∈ VX , we can take v = θ to obtain

1

2

∂

∂t
‖θ‖2Φ =

〈
∂θ

∂t
, θ

〉

Φ

= 〈∆θ, θ〉Φ .

From the definition of 〈·, ·〉Φ,

〈∆θ, θ〉Φ =
∞∑

`=0

N(n,`)∑

k=1

−λ`|θ̂`k|2

φ̂(`)
≤ 0, ∀θ ∈ VX . (4.8)

Thus, we obtain the result ‖θ(x, t)‖Φ ≤ ‖θ(x, 0)‖Φ or in other words

‖EX(t)ψ(x)‖Φ ≤ ‖ψ(x)‖Φ.

¤

2. The non-homogeneous problem

The approximation of the non-homogeneous equation will be tackled via an

elliptic projection from the space of the exact solution u to the finite dimensional space

VX , which is somehow similar to the Ritz projection in the finite element method. To

begin, let us define the following operator:

P : H2σ+2(Sn) → VX

u 7→ uP ,

where 



∆uP (xj) = ∆u(xj) ∀xj ∈ X,
∫
Sn
uPdS =

∫
Sn
udS.

(4.9)

It is noted that ∆ has zero as an eigenvalue, thus the matrix B = [∆Φ(xi, xj)]i,j=1...m

is not invertible. The null space of B has dimension 1. We fix the null space problem

by finding uP =
∑m

j=1 αjφj(x), where α := (α1, . . . , αm)
T solves the following system
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of linear equations 



Bα = [∆u(xj)]
m
j=1

∑m
i=1 αi

∫
Sn
φidS =

∫
Sn
udS.

We notice that uP is well-defined since the solution α is unique. It is also from the

definition that

IX∆P = IX∆. (4.10)

Lemma IV.4 Let u ∈ H2σ+2(Sn), and uP ∈ VX be constructed from a linear combi-

nation of shifts of SBF Φ with φ̂(`) ∼ (1 + λ`)
−σ. Then there is a positive constant

C, independent of hX , so that

‖uP − u‖Φ ≤ Chσ
X‖u‖H2σ+2 .

Proof. Since ∆uP is the interpolation of ∆u, by Theorem I.3, we have

‖∆uP −∆u‖Φ ≤ Chσ
X‖∆u‖H2σ ≤ Chσ

X‖u‖H2σ+2 . (4.11)

Let ψ = uP − u, then from the definition (4.9)

ψ̂0 =

∫

Sn
(uP − u)dS = 0.

Hence,

‖ψ‖2Φ =
∞∑

`=0

N(n,`)∑

k=1

|ψ̂`k|2/φ̂(`) ≤


|ψ̂0|2 +

∞∑

`=1

N(n,`)∑

k=1

λ2` |ψ̂`k|2/φ̂(`)




≤ ‖∆ψ‖2Φ.

Combining with (4.11), we have

‖uP − u‖Φ ≤ ‖∆uP −∆u‖Φ ≤ Chσ
X‖u‖H2σ+2 .

¤
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The collocation semi-discrete equation (4.3) now takes the following form

∂

∂t
uX(xj, t)−∆uX(xj, t) = F (xj, t), ∀xj ∈ X, (4.12)

subject to the initial condition

uX(x, 0) = IXf(x).

Theorem IV.1 Let f, ut ∈ H2σ+2(Sn) and u, uX be the solution for (4.1) and (4.12)

respectively. The approximate solution uX is constructed as a linear combination of

shifts of a spherical basis function Φ(x, y) = φ(x ·y) which satisfies φ̂(`) ∼ (1+λ`)
−σ.

Then there is a constant C, independent of hX , so that the following error estimate

holds:

‖u(T )− uX(T )‖Φ ≤ Chσ
X

(
‖f‖H2σ + ‖f‖H2σ+2 +

∫ T

0

‖ut‖H2σ+2ds

)
.

Proof. Let θ := uX − uP , and let γ := uP − u. Note that θ ∈ VX . When being

restricted on the set X, using the relation ∆uP |X = ∆u|X we have the following

equations:

(
∂

∂t
θ −∆θ

)∣∣∣∣
X

=

(
∂

∂t
uX −∆uX

)∣∣∣∣
X

−
(
∂

∂t
uP −∆uP

)∣∣∣∣
X

= F |X −
(
∂uP

∂t
−∆u

)∣∣∣∣
X

= F |X −
(
∂u

∂t
−∆u

)∣∣∣∣
X

+

(
∂u

∂t
− ∂uP

∂t

)∣∣∣∣
X

=
∂

∂t
(u− uP )

∣∣∣∣
X

,

or in terms of a PDE in the finite dimensional space VX ,

∂θ

∂t
−∆θ = −IX

∂γ

∂t
. (4.13)
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By Duhamel’s principle, see [36, §3.11], we have

θ(T ) = EX(T )θ(0)−
∫ T

0

EX(T − s)IX
∂γ

∂t
ds.

Since ‖EX(T )v‖Φ ≤ ‖v‖Φ for all v ∈ VX (by Lemma IV.3), we have

‖θ(T )‖Φ ≤ ‖θ(0)‖Φ +

∫ T

0

∥∥∥∥IX
∂γ

∂t
(s)

∥∥∥∥
Φ

ds.

Here,

‖θ(0)‖Φ = ‖IXf − Pf‖Φ ≤ ‖IXf − f‖Φ + ‖Pf − f‖Φ

≤ Chσ (‖f‖H2σ + ‖f‖H2σ+2) .

We can use Lemma IV.4 to obtain

‖γt‖Φ =

∥∥∥∥
∂

∂t
(u− uP )

∥∥∥∥
Φ

≤ Chσ
X‖ut‖H2σ+2 .

Using Lemma I.1, we obtain

‖IXγt‖Φ ≤ ‖γt‖Φ

≤ Chσ
X‖ut‖H2σ+2 .

We know from Lemma IV.4 that

‖γ(T )‖Φ = ‖u(T )− uP (T )‖Φ

≤ Chσ
X‖u(T )‖H2σ+2

≤ Chσ
X

(∥∥∥∥f +

∫ T

0

ut(s)ds

∥∥∥∥
H2σ+2

)

≤ Chσ
X

(
‖f‖H2σ+2 +

∫ T

0

‖ut‖H2σ+2ds

)
.
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Therefore, after adjusting the constant C, we obtain

‖u− uX‖Φ ≤ ‖θ(T )‖Φ + ‖γ(T )‖Φ

≤ Chσ
X

(
‖f‖H2σ + ‖f‖H2σ+2 +

∫ T

0

‖ut‖H2σ+2ds

)
.

¤

B. Time discretization

1. Backward Euler method

Let us discretize the time derivative using backward Euler method as

u(x, t)− u(x, t− τ)

τ
+ o(1)−∆u(x, t) = F (x, t).

The collocation equation for uX is

uX(xj, t)− uX(xj, t− τ)− τ∆uX(xj, t) = τF (xj, t), ∀xj ∈ X. (4.14)

Let us define tN := Nτ , UN(x) := uX(x, tN) and introduce the notation

∂tUN :=
UN − UN−1

τ
.

The collocation equation (4.14) can be rewritten as

∂tUN(xj)−∆UN(xj) = F (xj, tN), ∀xj ∈ X, (4.15)

subject to the initial condition

U0 = IXf.

If we write UN =
∑m

i=1 cN,iφi(x) then in terms of matrices A and B, defined in Section

3, we have

(A− τB)cN = AcN−1 + τ [F (xj, Nτ)]
m
j=1, (4.16)
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with the initial condition

Ac0 = [f(xj)]
m
j=1.

We now estimate the difference between UN and the exact solution u at the time tN .

Theorem IV.2 Let us assume that utt ∈ Hσ(Sn) and ut, f ∈ H2σ+2(Sn) and let UN

be the solution of (4.15). The approximate solution UN is constructed from shifts of

a spherical basis function Φ with φ̂(`) ∼ (1+λ`)
−σ. Then there are positive constants

C1 and C2 so that we have the following error estimate:

‖UN − u(tN)‖Φ ≤ C1h
σ
XΓ(f, ut) + C2τ

∫ tN

0

‖utt‖Hσds.

where

Γ(f, ut) := ‖f‖H2σ + ‖f‖H2σ+2 +

∫ tN

0

‖ut(s)‖H2σ+2ds+ τ
N∑

j=1

‖ut(tj)‖H2σ .

Proof.

UN − u(tN) = UN − Pu(tN) + Pu(tN)− u(tN) =: θN + γN .

We already know

‖Pu(tN)− u(tN)‖Φ = ‖γN‖Φ

≤ Chσ
X‖u(tN)‖H2σ+2

≤ Chσ
X

(
‖f‖H2σ+2 +

∫ tN

0

‖ut(s)‖H2σ+2ds

)
.

Similar to (4.13), we have

∂tθN(xj)−∆θN(xj) = −ωN(xj), ∀xj ∈ X, (4.17)

where

ωN = ∂tPu(tN)− IXut(tN).
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We can rewrite equation (4.17) as

(1− τ∆)θN(xj) = θN−1(xj)− τωN(xj), ∀xj ∈ X. (4.18)

In terms of the inner-product 〈·, ·〉Φ in the reproducing kernel Hilbert space NΦ,

〈θN − τ∆θN ,Φ(xj, ·)〉Φ = 〈θN−1 − τωN ,Φ(xj, ·)〉Φ , ∀xj ∈ X. (4.19)

Since VX is spanned by Φ(xj, ·)’s, j = 1, . . . ,m, this means for every v ∈ VX ,

〈θN − τ∆θN , v〉Φ = 〈θN−1 − τωN , v〉Φ . (4.20)

By taking v = θN , we have

〈θN − τ∆θN , θN〉Φ = 〈θN−1 − τωN , θN〉Φ

‖θN‖2Φ − τ 〈∆θN , θN〉Φ = 〈θN−1, θN〉Φ − τ 〈ωN , θN〉Φ .

Since 〈∆θN , θN〉Φ ≤ 0 (cf. inequality (4.8)), we can conclude

‖θN‖2Φ ≤ 〈θN−1, θN〉Φ + τ | 〈ωN , θN〉Φ |

≤ ‖θN−1‖Φ‖θN‖Φ + τ‖ωN‖Φ‖θN‖Φ.

Simplifying ‖θN‖Φ on both sides, we obtain

‖θN‖Φ ≤ ‖θN−1‖Φ + τ‖ωN‖Φ.

By repeated application,

‖θN‖Φ ≤ ‖θ0‖Φ + τ
N∑

j=1

‖ωj‖Φ.
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Here, as before,

‖θ0‖Φ = ‖IXf − Pf‖Φ

≤ Chσ
X(‖f‖H2σ + ‖f‖H2σ+2).

Now for every 1 ≤ j ≤ N ,

ωj = ∂tPu(tj)− ∂tu(tj) + (∂tu(tj)− IXut(tj))

=: ωj,1 + ωj,2.

We note that

ωj,1 = (P − I)τ−1
∫ tj

tj−1

utds = τ−1
∫ tj

tj−1

(P − I)utds,

whence

τ
N∑

j=1

‖ωj,1‖Φ ≤
N∑

j=1

Chσ
X

∫ tj

tj−1

‖ut(s)‖H2σ+2ds

= Chσ
X

∫ tN

0

‖ut(s)‖H2σ+2ds.

Further,

ωj,2 =
u(tj)− u(tj−1)

τ
− ut(tj) + ut(tj)− IXut(tj)

= −1

τ

∫ tj

tj−1

(s− tj−1)utt(s)ds+ ut(tj)− IXut(tj),

so that

τ
N∑

j=1

‖ωj,2‖Φ ≤
N∑

j=1

∥∥∥∥∥

∫ tj

tj−1

(s− tj−1)utt(s)ds

∥∥∥∥∥
Φ

+ τ
N∑

j=1

‖ut(tj)− IXut(tj)‖Φ

≤ τ

∫ tN

0

‖utt‖Φds+ Cτhσ
X

N∑

j=1

‖ut(tj)‖H2σ .
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Therefore, by setting C1 := C and noting ‖ · ‖Φ ∼ ‖ · ‖Hσ , we obtain a constant C2 so

that

τ
N∑

j=1

‖ωj‖Φ ≤ τ
N∑

j=1

‖ωj,1‖Φ + τ
N∑

j=1

‖ωj,2‖Φ

≤ C1h
σ
X

(∫ tN

0

‖ut(s)‖H2σ+2ds+ τ

N∑

j=1

‖ut(tj)‖H2σ

)

+C2τ

∫ tN

0

‖utt(s)‖Hσds.

Thus

‖u(T )− UN(T )‖Φ ≤ ‖γN‖Φ + ‖θN‖Φ

≤ ‖γN‖Φ + ‖θ0‖Φ + τ

N∑

j=1

‖ωj‖Φ

≤ C1h
σ
XΓ(f, ut) + C2τ

∫ tN

0

‖utt(s)‖Hσds,

where

Γ(f, ut) := ‖f‖H2σ + ‖f‖H2σ+2 +

∫ tN

0

‖ut(s)‖H2σ+2ds+ τ
N∑

j=1

‖ut(tj)‖H2σ .

¤

2. Crank-Nicolson method

We now turn to the Crank-Nicolson method in which the semi-discrete equation

is discretized in a symmetric fashion around the point tN−1/2 := (N − 1/2)τ , which

will produce a second order in time accurate method. More precisely, UN in VX can

be defined recursively by

∂tUN(xj)−∆(UN(xj) + UN−1(xj))/2 = F (xj, tN−1/2), ∀xj ∈ X, (4.21)
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given that

U0 = IXf.

In matrix form

(A− 1

2
τB)cN = (A+

1

2
τB)cN−1 + τ [F (xj, tN−1/2)]

m
j=1,

given that

Ac0 = [f(xj)]
m
j=1.

Theorem IV.3 Let UN and u be the solutions of (4.21) and (4.1), respectively. We

assume that f, ut ∈ H2σ+2(Sn) and uttt,∆utt ∈ Hσ(Sn). The approximate solution

UN is constructed from shifts of a spherical basis function Φ with φ̂(`) ∼ (1 + λ`)
−σ.

Then there are positive constants C1 and C2, independent of hX , so that the following

holds:

‖UN − u(tN)‖Φ ≤ C1h
σ
XΓ(f, ut) + C2τ

2

(∫ tN

0

‖uttt‖Hσ + ‖∆utt‖Hσds

)
,

where

Γ(f, ut) := ‖f‖H2σ + ‖f‖H2σ+2 +

∫ tN

0

‖ut(s)‖H2σ+2ds+ τ

N∑

j=1

‖ut(tj−1/2)‖H2σ .

Proof. Let

UN − u(tN) = UN − Pu(tN) + Pu(tN)− u(tN) =: θN + γN .

With the above notation we have

∂tθN(xj)−∆(θN(xj) + θN−1(xj))/2 = −ηN(xj), ∀xj ∈ X,
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where now

ηN = ∂tPu(tN)− ∂tIXu(tN−1/2) + IX∆

(
u(tN−1/2)−

u(tN) + u(tN−1)

2

)

= (P − I)∂tu(tN) + (∂tu(tN)− IXut(tN−1/2)) +

IX∆

(
u(tN−1/2)−

u(tN) + u(tN−1)

2

)

=: ηN,1 + ηN,2 + ηN,3

Applying arguments similar to (4.19) and (4.20) we arriving at

〈
θN − θN−1 −

τ

2
∆(θN + θN−1), χ

〉
Φ
= −τ 〈ηN , χ〉Φ , ∀χ ∈ VX .

By taking χ = θN + θN−1 and note that 〈∆(θN + θN−1), θN + θN−1〉Φ ≤ 0 (cf. in-

equality (4.11)), we have

‖θN‖2Φ − ‖θN−1‖2Φ ≤ −τ 〈ηN , (θN + θN−1)〉Φ ≤ τ‖ηN‖Φ(‖θN‖Φ + ‖θN−1‖Φ).

Simplifying the common factor (‖θN‖Φ+‖θN−1‖Φ) on both sides of the inequality, we

obtain

‖θN‖Φ ≤ ‖θN−1‖Φ + τ‖ηN‖Φ.

After repeated application this yields

‖θN‖Φ ≤ ‖θ0‖Φ + τ
N∑

j=1

(‖ηj,1‖Φ + ‖ηj,2‖Φ + ‖ηj,3‖Φ).

The term ‖θ0‖Φ can be estimated as before. For the latter sum, we have

‖ηj,1‖Φ = ‖(P − I)∂tu(tj)‖Φ

≤ Cτ−1hσ
X

∫ tj

tj−1

‖ut‖H2σ+2ds.
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Further,

‖ηj,2‖Φ = ‖∂tu(tj)− IXut(tj−1/2)‖Φ

≤ ‖∂tu(tj)− ut(tj−1/2)‖Φ + ‖ut(tj−1/2)− IXut(tj−1/2)‖Φ

=
1

2τ

∥∥∥∥∥

∫ tj−1/2

tj−1

(s− tj−1)
2uttt(s)ds+

∫ tj

tj−1/2

(s− tj)
2uttt(s)ds

∥∥∥∥∥
Φ

+‖ut(tj−1/2)− IXut(tj−1/2)‖Φ

≤ τ

∫ tj

tj−1

‖uttt‖Φds+ Chσ
X‖ut(tj−1/2)‖H2σ .

Let

ψ := u(tj−1/2)−
u(tj) + u(tj−1)

2

=
1

2

∫ tj−1/2

tj−1

(tj−1 − s)utt(s)ds+
1

2

∫ tj

tj−1/2

(s− tj)utt(s)ds.

Then, we have

‖ηj,3‖Φ = ‖IX∆(u(tj−1/2)−
1

2
(u(tj) + u(tj−1)))‖Φ

= ‖IX∆ψ‖Φ ≤ ‖∆ψ‖Φ (see Lemma I.1)

≤ C2τ

∫ tj

tj−1

‖∆utt‖Hσds, since ‖ · ‖Φ ∼ ‖ · ‖Hσ .

Altogether, with C1 := C, we have

τ
N∑

j=1

(‖ηj,1‖Φ + ‖ηj,2‖Φ + ‖ηj,3‖Φ)

≤ C1h
σ
X

(∫ tN

0

‖ut‖H2σ+2ds+ τ

N∑

j=1

‖ut(tj−1/2)‖H2σ

)

+C2τ
2

∫ tN

0

(‖uttt(s)‖Hσ + ‖∆utt(s)‖Hσ)ds.
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Thus

‖θN‖Φ + ‖γN‖Φ ≤ C1h
σ
XΓ(f, ut) + C2τ

2

(∫ tN

0

‖uttt‖Hσ + ‖∆utt‖Hσds

)
,

where

Γ(f, ut) := ‖f‖H2σ + ‖f‖H2σ+2 +

∫ tN

0

‖ut(s)‖H2σ+2ds+ τ
N∑

j=1

‖ut(tj−1/2)‖H2σ .

¤

C. Numerical experiments on S2

Let us consider the following function

G(z) = 1− 2 ln
(
1 +

√
(1− z)/2

)
.

We can expand G(z) as a series of Legendre polynomials (cf. [21]):

G(z) =
∞∑

`=1

1

`(`+ 1)
P`(z).

The following PDE describes the heat diffusion process from the north pole onto the

surface of the unit sphere:





∂
∂t
u(x, t) = ∆u(x, t), x ∈ S2,

u(x, 0) = G(x · p), where p = (0, 0, 1)T .
(4.22)

Since the initial condition u(x, 0) is a zonal function which depends only on the

geodesic distance from any given point on the sphere to the north pole, the solution

u(x, t) also depends only on the geodesic distance to the north pole. Equation (4.22)

is thus reduced to

∂u

∂t
=

∂

∂z
(1− z2)

∂u

∂z
,
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subject to the following initial condition:

u(z, 0) = G(z), z ∈ [−1, 1].

We know that the Legendre polynomials are eigenfunctions of the operator

∂

∂z
(1− z2)

∂

∂z
.

Thus, by the method of separation of variables, the exact solution of (4.22) is given

as

u(z, t) =
∞∑

`=1

e−`(`+1)t

`(`+ 1)
P`(z).

We can approximate u(z, t) by the truncated series of Legendre polynomials:

uL(z, t) =
L∑

`=1

e−`(`+1)t

`(`+ 1)
P`(z).

The error u− uL is estimated by using the tails of the series

‖u− uL‖∞ =

∥∥∥∥∥
∞∑

`=L+1

e−`(`+1)t

`(`+ 1)
P`(z)

∥∥∥∥∥
∞

≤ e−L(L+1)t

∫ ∞

L

dx

x(x+ 1)
since ‖P`(z)‖∞ = 1, (see [25])

≤ e−L(L+1)τ ln

(
1 +

1

L

)
.

For time-step τ = 0.00125, in order to obtain the accuracy of order 10−16 it is required

that L ≥ 160.

The spherical basis functions used to construct the approximate solution are

derived from a class of locally supported radial basis functions proposed by Wendland

[48]. These functions ψ(x) are rotation invariant and thus are functions of |x| only.

So the corresponding convolution kernel ψ(x− y), x, y ∈ Sn, is a function of |x− y| =
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√
2− 2x · y. We may therefore define a function

Φ(x, y) = φ(x · y) := ψ(x− y), x, y ∈ Sn.

Note that Φ(x, y) inherits the property of positive definiteness from ψ, and φ̂(`) ∼

(1 + λ`)
−σ for some σ > 0 (See [30, Section 4]). For our numerical study, we use the

function ψ(r) = (1− r)4+(4r + 1).

The set of points which are used in constructing the SBFs is generated according

to an algorithm in [37]. These points are generated uniformly, in the sense that each

point is a center of a cell on the unit sphere of area 4π/m.

The iterative equation (4.16) becomes

(I − τA−1B)cN = cN−1,

with the initial equation

c0 = A−1f |X .

Since A is positive definite and B has non-positive eigenvalues, it can be shown that

all the eigenvalues of the matrix (I − τA−1B) are in the interval (0, 1] (see Section

D). Hence the numerical algorithm is stable.

Table II shows the numerical errors between the iterated solution UN obtained

by backward Euler method and u160. Here, N = 1.5/τ and

E∞(τ) := max
x∈S2

|UN − uL|.
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Table II. Backward Euler method with different sets of points and time-steps

m hX qX E∞(τ = 0.01) E∞(τ = 0.005) E∞(τ = 0.0025)

200 .1942 .1130 0.0224 0.0225 0.0225

400 .1288 .0731 0.0137 0.0138 0.0139

600 .1122 .0675 0.0088 0.0089 0.0090

800 .0950 .0577 0.0060 0.0061 0.0062

1000 .0849 .0516 0.0044 0.0045 0.0046

1200 .0789 .0476 0.0034 0.0036 0.0036

D. Some supplementary results

Lemma IV.5 (cf. [51, Chapter 1, §31]) Let A be a symmetric positive definite matrix

and B be a symmetric positive semi-definite (negative semi-definite). Then all of the

eigenvalues of AB are non-negative (non-positive).

Proof. Since A is symmetric positive definite, there is an invertible matrix P such that

A = P TP . Let C = PBP T , then C and AB have the same set of eigenvalues since

(P T )−1ABP T = PBP T = C. The matrix C is symmetric since CT = PBTP T =

PBP T = C since B is symmetric. Now since B is positive semi-definite,

(P Tx)TB(P Tx) ≥ 0 for all x ∈ Rm.

Hence C is symmetric semi-positive definite. Hence all of the eigenvalues of C are

non-negative, so are the eigenvalues of the matrix AB. ¤

Lemma IV.6 Let A be a symmetric positive definite matrix and B be a symmetric

negative semi-definite. Then for any ε > 0, all of the eigenvalues of (I − εA−1B)−1

are in the interval (0, 1].

Proof. Let µ be an eigenvalue of I−εA−1B, then 1/µ is an eigenvalue of (I−εA−1B)−1.
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It is observed that µ = 1 − εδ where δ is an eigenvalue of A−1B. By Lemma IV.5,

δ ≤ 0, and therefore, µ ∈ [1,∞). Thus, 1/µ ∈ (0, 1]. ¤
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CHAPTER V

CONCLUSIONS

In this dissertation we have outlined a framework for approximation of elliptic

and parabolic partial differential equations on spheres. Since the theory is relatively

unexplored, there are many open problems to be worked on and many improvements

of the current results can be made.

For the elliptic partial differential equation −∆u+ω2u = f , we have shown that

the error estimate u − uh, where uh is the approximate solution obtained via finite

element method, is of the following form:

‖u− uh‖H1 ≤ Ch2k−n/2−1‖u‖2k, for u ∈ C2k(Sn).

Numerical experiments using MATLAB have shown that the real rate of convergence

can be higher than the theoretical estimates. The error estimates in other norms such

as L2(Sn) and L∞(Sn) remain unknown.

For the heat equation on the unit sphere,





ut(x, t)−∆u(x, t) = F (x, t),

u(x, 0) = f(x),

we have worked out only error estimates for the collocation method in the ‖ · ‖Φ ∼

Hσ(Sn) norm. The error estimates in other norms such as L2(Sn) and L∞(Sn) are

unknown.
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APPENDIX A

MATLAB CODE FOR APPROXIMATION OF PDES ON SPHERES

%---------------------------------------------------------------%

% Compute locally supported spherical basis function according %

% to reference [49] %

%---------------------------------------------------------------%

function phi = cmp_sbf0(x,y)

% The locally supported SBF of smoothness order 0

% phi(r) = (1-r)^2_+ where r = sqrt(2-2*x’*y)

% x,y are (3:n) matrices representing n points on the unit sphere

r = real(sqrt(2.-2.*(x’*y)));

mask = (abs(r) < 1);

phi = mask .* (1-r).^2;

function phi = cmp_sbf2(x,y)

% The locally supported SBF of smoothness of order 2

% phi(r) = (1-r)^4_+ (4r+1)

r = real(sqrt(2.-2.*x’*y));

mask = (abs(r) < 1);

phi = mask .*(1-r).^4.*(4.*r+1);

function phi = cmp_sbf4(x,y)

% The locally supported SBF of smoothness order 4

% phi(r) = (1-r)^6_+ (35*r^2+18*r+3)
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r = real(sqrt(2-2*x’*y));

mask = (abs(r) < 1);

phi = mask .* (1-r).^6.*(35*r.^2+18*r+3);

function phi = cmp_sbf6(x,y)

% The locally supported SBF of smoothness order 6

% phi(r) = (1-r)^8_+ (32*r^3+25*r^2+8*r+1)

r = real(sqrt(2-2*x’*y));

mask = (abs(r) < 1);

phi = mask .* (1-r).^8.*(32*r.^3+25*r.^2+8*r+1);

function phi = poisson(x,y,z)

% The Poisson kernel

% phi = (1-z^2)/(1+z^2-2z cos(x,y))^(3/2)

phi = real((1-z^2)./(1+z^2-2*z*x’*y).^(3/2));

%------------------------------------------------------------%

% Generate various types of set of points on the sphere. %

%------------------------------------------------------------%

function [L,hL,qL] = saffpts(N, n)

% Generate points on the sphere according to an algorithm in

% reference [38]

% [L, hL, qL] = saffpts(N,Z)

% N = number of points

% n = number of zones
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% Return: L is a (3:n) matrix containing Cartesian coordinates

% of the points; hL is the mesh norm; qL is the separate norm

%

if (nargin < 2)

n = floor(sqrt(pi*N)/2)+1;

end

beta = 4/sqrt(N);

step_theta = (pi-beta)/(n-2);

theta1 = [0:step_theta:(n-3)*step_theta] + beta/2;

theta2 = [step_theta:step_theta:(n-2)*step_theta] + beta/2;

mbar = ones(1,n);

mbar(2:n-1) = N*(cos(theta1)-cos(theta2))/2;

alpha = 0;

for i=1:n

if (mbar(i)-floor(mbar(i)+alpha)<0.5)

m(i) = floor(mbar(i)+alpha);

else

m(i) = floor(mbar(i)+alpha) + 1;

end

alpha = alpha + mbar(i) - m(i);

end

L(:,1) = [0,0,1]’;

cur_index = 2;

q = ones(1,n);

for i=2:n-1

% generate points on one partition
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t = (i-3/2)*step_theta + beta/2;

r = sin(t); h = cos(t);

alpha = mod((i-2),2)/2;

s = (2*pi*[0:m(i)-1]+alpha)/m(i);

L(:,cur_index:cur_index+m(i)-1) =

[r*cos(s); r*sin(s); h*ones(1,m(i))];

% compute the separate norm by taking the geodesic distance

% with the previous level

tmp = L(:,cur_index)’* L(:,cur_index-m(i-1):cur_index-1);

q(i) = min(acos([tmp L(:,cur_index)’*L(:,cur_index+1)]));

% advance one more partition

cur_index = cur_index+m(i);

end

L(:,cur_index)=[0 0 -1]’;

tmp = L(:,cur_index)’*L(:,cur_index-m(n-1):cur_index-1);

q(n) = min(acos(tmp));

qL = min(q)/2.0;

%

% now we compute the mesh norm

%

h = zeros(1,n);

for i=2:n-1

if (i==2)

t = step_theta/4 + beta/2;

else

t = (i-3/2-1/2)*step_theta + beta/2;
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end

r = sin(t); h = cos(t);

alpha = mod((i-2),2)/2;

midpt = [r*cos((alpha+pi)/m(i)); r*sin((alpha+pi)/m(i)); h];

htmp = midpt’*L(:,cur_index-m(i-1):cur_index-1);

h(i) = min(acos([htmp midpt’*L(:,cur_index)]));

end

hL = max(h);

%-----------------------------------------------------------%

% An example of interpolation on spheres using SBF %

%-----------------------------------------------------------%

function [hX,qX,err2,errsup] = interp_saff(num,sbftype)

% [hX,qX,err2,errsup] = interp_saff(num,[SBFtype])

% Choices for SBFtype

% 1 = SBF of C^0 class 2 = SBF of C^2 class

% 3 = SBF of C^4 class 4 = SBF of C^6 class

% 5 = SBF of Poisson kernel class

% The scattered points are generated based on an algorithm

% in reference [38]

[x,hX,qX] = saffpts(num);

% generate E. Saff’s equi-area points

n = length(x);

tic;

if (nargin<2)

sbftype = 2;

end
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% set up the interpolation matrix

A = zeros(n,n);

switch sbftype

case 1

A = sparse(cmp_sbf0(x,x));

case 2

A = sparse(cmp_sbf2(x,x));

case 3

A = sparse(cmp_sbf4(x,x));

case 4

A = sparse(cmp_sbf6(x,x));

case 5

A = poisson(x,x,0.5);

end

figure(1);

imagesc(A);

% interpolate f = (1-r)^2_+ for r=sqrt(2-2*cos(x,p)),

% where p is the north pole

b = cmp_sbf2(x,[0; 0 ;1]);

% solve the linear system Ax = b by the conjugate

% gradient method

c = cgs(A,b,1e-10,2500);

clear A;
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num = 100;

figure(2);

[Sx, Sy, Sz] = sphere(num-1);

surf(Sx,Sy,Sz,zeros(num,num)); shading flat;

hold on;

plot3(x(1,:),x(2,:),x(3,:),’*’);

hold off;

mS = sparse(zeros(num*num,n));

switch sbftype

case 1

for i=1:num

mS((i-1)*num+1:(i-1)*num+num,:) =

cmp_sbf0([Sx(i,:);Sy(i,:);Sz(i,:)],x);

end

case 2

for i=1:num

mS((i-1)*num+1:(i-1)*num+num,:) =

cmp_sbf2([Sx(i,:);Sy(i,:);Sz(i,:)],x);

end

case 3

for i=1:num

mS((i-1)*num+1:(i-1)*num+num,:) =

cmp_sbf4([Sx(i,:);Sy(i,:);Sz(i,:)],x);

end

case 4

for i=1:num
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mS((i-1)*num+1:(i-1)*num+num,:) =

cmp_sbf6([Sx(i,:);Sy(i,:);Sz(i,:)],x);

end

case 5

for i=1:num

mS((i-1)*num+1:(i-1)*num+num,:) =

poisson([Sx(i,:);Sy(i,:);Sz(i,:)],x,0.5);

end

end

% calculate the results

sV = mS*c;...

V = zeros(num,num);...

for k=1:num

V(k,:) = (sV((k-1)*num+1 :(k-1)*num+num))’;...

end

figure(3);

surf(Sx,Sy,Sz,V);...

shading interp;

% calculate the errors

err2 = norm(V-exp(Sx));

errsup = max(max(abs(V-exp(Sx))));

err = zeros(num,num);

for k=1:num

err(k,:) =

abs(V(k,:)-cmp_sbf2([0;0;1],[Sx(k,:); Sy(k,:); Sz(k,:)]));

end
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figure(4);

surf(Sx, Sy, Sz, err);shading flat;

err2 = norm(err);

errsup = max(max(err));

toc

%-----------------------------------------------------------------%

% Generate the spherical basis functions and its derivatives %

%-----------------------------------------------------------------%

function phi = s2cmpsbf2(x,y,scale)

% s2cmpsbf2(x,y) returns the locally supported SBF of smoothness

% order 2 with scaling factor s=’scale’

% phi = (1-s*r)^4_+ (4*s*r+1), where r = sqrt(2-2*x’*y)

% x,y are two (3:n) matrices representing the Cartesian

% co-ordinates of n points on S^2

r = real(sqrt(2-2*(x’*y)));

mask = scale*r<1;

phi = mask .* (1-scale*r).^4 .* (4*scale*r + 1);

function ans = sLcmp_sbf2(h,s,x,y)

% Lcmp_sbf2(h,x,y) returns [1- h*d/dt ((1-t^2) d/dt psi(t))]

% where t = cos(x,y), x, y on the unit sphere

% and psi(t) = (1-s*r)^4_+ (4*s*r+1) for r = sqrt(2-2*t) .

% x,y are (3:n) matrices representing n points on the unit sphere

% ans is a (n:n) matrix

t = x’*y;

r = real(sqrt(2-2*t));
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mask = (s*r<1.0)&(t>1-0.5/s);

dphi = mask.*10*s^2.*(-1+s*r).^2.*(7*s.*r.*t-4*t+3*s*r);

phi = (s*r<1.0).*(1-s*r).^4.*(4*s*r+1);

ans = phi - h*dphi;

%-----------------------------------------------------------------%

% Solve the following PDE on the sphere by the collocation method %

% - h\Delta u + u = f %

%-----------------------------------------------------------------%

clear all;

num = 100; % for plotting only

N = 400; % dimension of SBF approximation space

h = 0.01; % in 1 - h\Delta

X = saffsph(N);

A = sLcmp_sbf2(h,1,X,X);

t = X(3,:)’;

b = exp(t).*(ones(N,1)-h*(ones(N,1)-t.^2-2*t));

c = cgs(A,b,1e-10,100);

%

[Sx, Sy, Sz] = sphere(num-1);

surf(Sx,Sy,Sz,zeros(num-1,num-1)); shading flat; hold on;

plot3(X(1,:),X(2,:),X(3,:),’*’);

mS = zeros(num*num,N);

for i=1:num

mS((i-1)*num+1:(i-1)*num+num,:) =

s2cmpsbf2([Sx(i,:); Sy(i,:); Sz(i,:)],X,1);
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end

% calculate the results

sV = mS*c;...

V = zeros(num,num);...

for k=1:num

V(k,:) = (sV((k-1)*num+1 :(k-1)*num+num))’;...

end

figure;

surf(Sx,Sy,Sz,V);...

shading interp; colorbar;

figure;

surf(Sx,Sy,Sz,abs(exp(Sz)-V));

shading interp; colorbar;

max_err = max(max(abs(exp(Sz)-V)))

L2_err = (norm(exp(Sz)-V))/num

%---------------------------------------------------------------%

% Solve the PDE on the sphere %

% - Delta u + omega^2 u = f %

%---------------------------------------------------------------%

clear all;

num = 100; % for plotting only

omega = 0.1;

n = 800;

X = saffsph(n);

N = length(X);
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tic

% [Z,W] = gauss_legendre(-1,1,6000); % the quadrature rule

load weights6000;

A = saffA2(n,omega,Z,W); % set up the matrix

[b,al,fl] = vectorb(n,omega,Z,W); % set up vector b

c = cgs(A,b,1e-10,5000);

%

[Sx, Sy, Sz] = sphere(num-1);

surf(Sx,Sy,Sz,zeros(num-1,num-1)); shading flat; hold on;

plot3(X(1,:),X(2,:),X(3,:),’*’);

mS = zeros(num*num,N);

for i=1:num

mS((i-1)*num+1:(i-1)*num+num,:) =

s2cmpsbf2([Sx(i,:); Sy(i,:); Sz(i,:)],X,1);

end

% calculate the results

sV = mS*c;...

V = zeros(num,num);...

for k=1:num

V(k,:) = (sV((k-1)*num+1 :(k-1)*num+num))’;...

end

figure;

surf(Sx,Sy,Sz,V);...

shading interp;colorbar;

figure;

surf(Sx,Sy,Sz,abs(exp(Sz)-V));
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shading interp; colorbar;

max_err = max(max(abs(exp(Sz)-V)))

L2_err = (norm(exp(Sz)-V))/num

toc

%---------------------------------------------------------%

% Gauss-Legendre quadrature rule %

%---------------------------------------------------------%

function [X,W]=gauss_legendre(x1,x2,n)

% return the abscissas and the weights of the Gaussian

% quadrature on (x1,x2)

m = (n+1)/2;

xm = 0.5*(x1+x2);

xl = 0.5*(x2-x1);

for i=1:m

z = cos(pi*(i-0.25)/(n+0.25));

z1 = 0;

% refine the initial guess by Newton’s method

while (abs(z-z1)>10e-11),

p1 = 1.0; p2 = 0.0;

for j=1:n

p3 = p2; p2 = p1;

p1 = ((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;

end

pp = n*(z*p1-p2)/(z*z-1.0);

z1 = z;



103

z = z1 - p1/pp;

end

X(i) = xm-xl*z;

X(n+1-i) = xm+xl*z;

W(i) = 2.0*xl/((1.0-z*z)*pp*pp);

W(n+1-i) = W(i);

end

%-----------------------------------------------------------%

% Compute the inner-product using symmetries of the points %

%-----------------------------------------------------------%

function [A,nv] = saffA2(n,omega,Z,W)

% A is the matrix with

% A_ij = inner_prod{(-Delta+omega^2)phi_i}{phi_j},

% nv is the number of distinct values

[X,m] = saffsphM(n); % m is number of points on each latitude

N = length(X); % actual number of Saff’s points

nL = length(m); % number of distinct latitudes

maxL= floor(N/2);

% number of Legendre coefficients used in the approximation

A = zeros(N,N);

lZ = length(Z);

phiz = phi2(Z);

al = leg_coeffs(phiz,Z,W,maxL);

% start to compute elements of the matrix A using as many

% symmetries as possible
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[Q,V,nv] = saffV(n);

nv % print out number of nonzeros elements in Q

nv = 1;

myA = phi_ij2(al,omega,V);

A(1,1) = myA(1);

% diagonal elements are the same

for j=2:N

A(j,j) = A(1,1);

end

% the north pole

cur = 2; % current starting point

for i=2:floor(nL/2)+1

% for any latitude on the northern hemisphere

q = X(:,1)’*X(:,cur);

if q <= -0.5

A(1,cur) = 0.0;

else

nv = nv + 1

A(1,cur) = myA(nv);

end

A(cur,1) = A(1,cur);

for j=cur+1:cur+m(i)-1

A(1,j) = A(1,cur); A(j,1) = A(1,j);

end

cur = cur + m(i);

end
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% the south pole

cur = N-1;

for i=nL-1:-1:floor(nL/2)-1

% for any latitude on the southern hemisphere

q = X(:,N)’*X(:,cur);

if q <= -0.5

A(N,cur) = 0.0;

else

nv = nv + 1

A(N,cur) = myA(nv);

end

A(cur,N) = A(N,cur);

for j=cur-1:-1:cur-m(i)+1

A(N,j) = A(N,cur); A(j,N) = A(N,j);

end

cur = cur - m(i);

end

% on each latitute which contains m_i points

cur = 2;

for i=2:nL-1

for step=1:floor(m(i)/2)+1

q = X(:,cur)’*X(:,cur+step);

if q <= -0.5

A(cur,cur+step) = 0.0;

else

nv = nv+1
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A(cur,cur+step) = myA(nv);

end

A(cur+step,cur) = A(cur,cur+step);

for k=cur+1:cur+m(i)-1

ks = k+step;

if ks > cur+m(i)-1

ks = k+step-m(i);

end

A(k,ks) = A(cur,cur+step);

A(ks,k) = A(k,ks);

end

end

cur = cur + m(i);

end

% now for pairs of points on different latitude

for i=2:N-1

for j=i+1:N-1

if A(i,j) == 0 % has not yet been computed

q = X(:,i)’*X(:,j);

if q > -0.5

nv = nv + 1

A(i,j) = myA(nv);

%A(i,j) = phi_ij1(al,omega,q);

A(j,i) = A(i,j);

end

end
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end

end

%---------------------------------------------------------%

% Compute each entry of the matrix %

%---------------------------------------------------------%

function pz = phi_ij2(al,omega,t)

% Compute

% int_{S^2} (-Delta+omega^2) phi(x_i . x) phi(x_j . x) dS,

% ~= 4pi sum_{l=0}^L (l(l+1)+omega^2) a^2_l/(2l+1) P_l(t)

% where

% a_l = (2/2l+1)int_{-1}^{1} phi(z) P_l(z)dz

% t = x_i . x_j

L = length(al)-1;

lt = length(t);

v = zeros(L+1,lt);

pz = zeros(1,lt);

p1 = ones(1,lt); p2=zeros(1,lt);

for i=1:lt

v(1,i) = omega^2*(al(1))^2;

end

for l=1:L

% v(l+1) = (l*(l+1)+omega^2)*(al(l+1))^2*mlegendre(l,t)/(2*l+1);

p3 = p2; p2 = p1;

p1 = ((2.0*l-1.0).*t.*p2 - (l-1.0).*p3)/l;

v(l+1,1:lt) = ((l*(l+1) + omega^2)*(al(l+1))^2/(2*l+1)).*p1;
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end

for i=1:lt

pz(i) = 4*pi*sum(v(:,i));

end

%--------------------------------------------------------------%

% Compute the geodesic distance using symmetries %

% Q is the matrix, nv is the number of distinct nonzero values %

%--------------------------------------------------------------%

[X,m] = saffsphM(n); % m is number of points on each latitude

N = length(X); % actual number of Saff’s points

nL = length(m); % number of distinct latitudes

Q = zeros(N,N);

V = zeros(1,floor(N*N/2));

Q(1,1) = X(:,1)’*X(:,1);

nv = 1;

V(1) = Q(1,1);

% diagonal elements are the same

for j=2:N

Q(j,j) = Q(1,1);

end

% the north pole

cur = 2; % current starting point

for i=2:floor(nL/2)+1

% for any latitude on the northern hemisphere

Q(1,cur) = X(:,1)’*X(:,cur);
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if Q(1,cur) <= -0.5

Q(1,cur) = 0.0;

else

nv = nv + 1;

V(nv) = Q(1,cur);

end

Q(cur,1) = Q(1,cur);

for j=cur+1:cur+m(i)-1

Q(1,j) = Q(1,cur); Q(j,1) = Q(1,j);

end

cur = cur + m(i);

end

% the south pole

cur = N-1;

for i=nL-1:-1:floor(nL/2)-1

% for any latitude on the southern hemisphere

Q(N,cur) = X(:,N)’*X(:,cur);

if Q(N,cur) <= -0.5

Q(N,cur) = 0.0;

else

nv = nv + 1;

V(nv) = Q(N,cur);

end

Q(cur,N) = Q(N,cur);

for j=cur-1:-1:cur-m(i)+1

Q(N,j) = Q(N,cur); Q(j,N) = Q(N,j);
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end

cur = cur - m(i);

end

% on each latitute which contains m_i points

cur = 2;

for i=2:nL-1

for step=1:floor(m(i)/2)+1

Q(cur,cur+step) = X(:,cur)’*X(:,cur+step);

if Q(cur,cur+step) <= -0.5

Q(cur,cur+step) = 0.0;

else

nv = nv+1;

V(nv) = Q(cur,cur+step);

end

Q(cur+step,cur) = Q(cur,cur+step);

for k=cur+1:cur+m(i)-1

ks = k+step;

if ks > cur+m(i)-1

ks = k+step-m(i);

end

Q(k,ks) = Q(cur,cur+step);

Q(ks,k) = Q(k,ks);

end

end

cur = cur + m(i);

end
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% now for pairs of points on different latitude

for i=2:N-1

for j=i+1:N-1

if Q(i,j) == 0 % has not yet been computed

q = X(:,i)’*X(:,j);

if q > -0.5

Q(i,j) = q;

Q(j,i) = q;

nv = nv+1;

V(nv) = Q(i,j);

end

end

end

end

%--------------------------------------------------------------------%

% heat_cmp(d,tau,nframes) %

% solve the heat equation on the unit sphere %

% u_t - Delta_x u = 0 %

% u(x,0) = f(x) %

% time discretization scheme is backward Euler method %

% space discretization using SBF based on locally supported kernel, %

% the points use to construct the SBFs are Saff’s points %

% d number of points, tau is the timestep %

% nframes is the number of iterations %

%--------------------------------------------------------------------%
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function [errsup,err2,exact10] = heat_cmp(d,tau,nframes)

x = saffsph(d);

n = length(x);

% A(i,j) = (I - h Delta) cmp_sbf2(x_i, x_j)

A = zeros(n,n);

A = Lcmp_sbf2(tau,x,x);

B = zeros(n,n);

B = cmp_sbf2(x,x);

% f(x) is the point source, concentrated at the north pole

% b = zeros(n,1);

% b(1) = 1000;

% now f(x) = 1 - 2*ln(1+sqrt(0.5-0.5z));

b = 1 - 2*log(1+sqrt(0.5-0.5*x(3,:)));

b = b’;

num = 100;

[Sx, Sy, Sz] = sphere(num-1);

surf(Sx,Sy,Sz);

plot3(x(1,:),x(2,:),x(3,:),’*’);

mS = zeros(num*num,n);

for i=1:num

mS((i-1)*num+1:(i-1)*num+num,:) = ...

cmp_sbf2([Sx(i,:); Sy(i,:); Sz(i,:)],x);

end
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% for the animation

% nframes = 300;

% Mv = moviein(nframes);

% compute the almost exact solution at equal separated points

% on the longtitute ...

%

exact10 = magnus(160, (Sz(:,1))’,[tau:tau:nframes*tau]);

fprintf ’Finish intializing ... Press any key’

%pause;

newplot;

c = cgs(A,b,1e-10,500);

% next iteration

% b = v(x_j, t)

errsup = zeros(1,nframes);

err2 = zeros(1,nframes);

for t=1:nframes,...

b = B*c;

c = cgs(A,b,1e-10,500);...

sV = mS*c;...

V = zeros(num,num);...

for k=1:num

V(k,:) = (sV((k-1)*num+1 :(k-1)*num+num))’;...

end

surf(Sx,Sy,Sz,V); shading flat; colorbar;
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Mv(:,t) = getframe;...

% compute the supremum error

errsup(t) = max(abs(exact10(t,:) - (V(:,1))’));

err2(t) = norm(exact10(t,:) - V(:,1)’)/sqrt(sqrt(num));

end

fprintf(’Press any key to see the movie ...’);

pause;

% Show movie 10 times 1 frame/sec

movie(Mv)

plot(errsup);

newplot;

plot(err2);

plot([1:num],V(:,1),[1:num],exact10(nframes,:));

%-------------------------------------------------------------------%

% Lcmp_sbf2(h,x,y) returns [1- h*d/dt ((1-t^2) d/dt psi(t))] %

% where h is the timestep and t = cos(x,y), x, y on the unit sphere %

% and psi(t) = (1-r)^4_+ (4*r+1) for r = sqrt(2-2*t) . %

% x,y can be (3:n) matrices representing n points on the unit sphere%

% if x is (3:n) and y(3:m) then the result is a (n:m) matrix %

%-------------------------------------------------------------------%

function ans = Lcmp_sbf2(h,x,y)

t = x’*y;

r = real(sqrt(2-2*t));

mask = ((t>=0.5) & (r<1));

ans = mask .* ((1-r).^4 .*(4*r+1) - h*10*(r-1).^2.*(7*r.*t-4*t+3*r));



115

%-------------------------------------------------------------------%

% cmpsbf2(x,y) returns the Wendland function of smoothness order 2 %

% phi = (1-r)^4_+ (4*r+1), where r = sqrt(2-2*cos(x,y)) %

% x,y can be two matrices (3:n) representing the Cartesian %

% coordinates of n points on S^2 %

%-------------------------------------------------------------------%

function phi = cmpsbf2(x,y)

r = real(sqrt(2-2*(x’*y)));

mask = (r<1);

phi = mask .* (1-r).^4 .* (4*r + 1);

%-------------------------------------------------------------------%

% magnus(N,X,T) %

% according to a formula in [p.168,5] and [21] %

% f^(ell) = 1/ [4pi(2 ell+1)ell(ell + 1)] %

% f(x) = 1-2*ln(1+sqrt(0.5-0.5*x)); %

% y = Gaussian(t) convolutes with f(x) %

% X is a row vector, T is the time row vector, %

% N is the number of terms in the truncated series %

% return: sum_{ell=0}^{infinity} %

% exp(-ell(ell+1)t) [1/ell(ell+1)] P_ell(x) %

%-------------------------------------------------------------------%

function y = magnus(N,X,T)

lX = length(X);

tmp = zeros(N+1,lX);
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for ell=1:N+1

sp = legendre(ell-1,X,’sch’);

% take only Legendre of order 0

tmp(ell,:) = sp(1,:);

end

L = [1:N];

lenT = length(T);

yt = zeros(lenT,N+1);

for kt=1:lenT

yt(kt,:) = [0 exp(-L.*(L+1)*T(kt))./(L.*(L+1))];

end

y = yt*tmp;
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