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ABSTRACT 
 
 

Theoretical Study of Cyclone Design. (May 2004) 

Lingjuan Wang,  

B. Eng., Anhui Institute of Finance and Trade, China;  

M.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Calvin B. Parnell, Jr. 

To design a cyclone abatement system for particulate control, it is necessary to 

accurately estimate cyclone performance. In this cyclone study, new theoretical methods 

for computing travel distance, numbers of turns and cyclone pressure drop have been 

developed. The flow pattern and cyclone dimensions determine the travel distance in a 

cyclone. The number of turns was calculated based on this travel distance. The new 

theoretical analysis of cyclone pressure drop was tested against measured data at 

different inlet velocities and gave excellent agreement. The results show that cyclone 

pressure drop varies with the inlet velocity, but not with cyclone diameter.  

Particle motion in the cyclone outer vortex was analyzed to establish a force 

balance differential equation. Barth’s “static particle” theory, particle (with diameter of 

d50) collection probability is 50% when the forces acting on it are balanced, combined 

with the force balance equation was applied in the theoretical analyses for the models of 

cyclone cut-point and collection probability distribution in the cyclone outer vortex. 

Cyclone cut-points for different dusts were traced from measured cyclone overall 

collection efficiencies and the theoretical model for calculating cyclone overall 
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efficiency. The cut-point correction models (K) for 1D3D and 2D2D cyclones were 

developed through regression fit from traced and theoretical cut-points. The regression 

results indicate that cut-points are more sensitive to mass median diameter (MMD) than 

to geometric standard deviation (GSD) of PSD.  The theoretical overall efficiency model 

developed in this research can be used for cyclone total efficiency calculation with the 

corrected d50 and PSD.  

1D3D and 2D2D cyclones were tested at Amarillo, Texas (an altitude of 1128 m 

/ 3700 ft), to evaluate the effect of air density on cyclone performance. Two sets of inlet 

design velocities determined by the different air densities were used for the tests. 

Experimental results indicate that optimal cyclone design velocities, which are 16 m/s 

(3200 ft/min) for 1D3D cyclones and 15 m/s (3000 ft/min) for 2D2D cyclones, should be 

determined based on standard air density. It is important to consider the air density effect 

on cyclone performance in the design of cyclone abatement systems.  
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CHAPTER I     

INTRODUCTION 

CYCLONE DESIGNS 

Cyclone separators provide a method of removing particulate matter from air 

streams at low cost and low maintenance. In general, a cyclone consists of an upper 

cylindrical part referred to as the barrel and a lower conical part referred to as cone (see 

figure 1). The air stream enters tangentially at the top of the barrel and travels downward 

into the cone forming an outer vortex. The increasing air velocity in the outer vortex 

results in a centrifugal force on the particles separating them from the air stream. When 

the air reaches the bottom of the cone, an inner vortex is created reversing direction and 

exiting out the top as clean air while the particulates fall into the dust collection chamber 

attached to the bottom of the cyclone. 

In the agricultural processing industry, 2D2D (Shepherd and Lapple, 1939) and 

1D3D (Parnell and Davis, 1979) cyclone designs are the most commonly used abatement 

devices for particulate matter control. The D’s in the 2D2D designation refer to the 

barrel diameter of the cyclone. The numbers preceding the D’s relate to the length of the 

barrel and cone sections, respectively. A 2D2D cyclone has barrel and cone lengths of 

two times the barrel diameter, whereas the 1D3D cyclone has a barrel length equal to the 

barrel diameter and a cone length of three times the barrel diameter. The configurations 

______________ 

This dissertation follows the style and format of the journal Transactions of the 
American Society of Agricultural Engineers. 
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of these two cyclone designs are shown in figure 2. Previous research (Wang, 2000) 

indicated that, compared to other cyclone designs, 1D3D and 2D2D are the most 

efficient cyclone collectors for fine dust (particle diameters less than 100 µm).  

Outlet Tube

Barrel 

Outer Vortex

Cone 

Dust Out

Cleaned Gas Out

Dusty Gas In

Tangential Inlet Duct

Axial

Inner Vortex

Figure 1.Schematic flow diagram of a cyclone. 

 

Mihalski et al (1993) reported “cycling lint” near the trash exit for the 1D3D and 

2D2D cyclone designs when the PM in the inlet air stream contained lint fiber. Mihalski 

reported a significant increase in the exit PM concentration for these high efficiency 

cyclone designs and attributed this to small balls of lint fiber “cycling” near the trash exit 

causing the fine PM that would normally be collected to be diverted to the clean air exit 

stream. Simpson and Parnell (1995) introduced a new low-pressure cyclone, called the 

1D2D cyclone, for the cotton ginning industry to solve the cycling-lint problem. The 

1D2D cyclone is a better design for high-lint content trash compared with 1D3D and 



 3

2D2D cyclones (Wang et al., 1999). Figure 3 illustrates the configuration of 1D2D 

cyclone design. 
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1D3D  2D2D 
Bc = Dc/4 Jc = Dc/4  Bc = Dc/4 Jc = Dc/4 
De = Dc/2 Sc = Dc/8  De = Dc/2 Sc = Dc/8 
Hc = Dc/2 Lc = 1 × Dc  Hc = Dc/2 Lc = 2 × Dc

Zc = 3 × Dc  Zc = 2 × Dc

Figure 2. 1D3D and 2D2D cyclone configurations. 



 4

 

1D2D 
Bc = Dc/4 Jc = Dc/2 

De = Dc/1.6 Sc = 5Dc/8 
Hc = Dc/2 Lc = 1 × Dc

Zc = 2 × Dc

Figure 3. 1D2D cyclone configuration. 

CLASSICAL CYCLONE DESIGN (CCD)  

The cyclone design procedure outlined in Cooper and Alley (1994), hereafter 

referred to as the classical cyclone design (CCD) process, was developed by Lapple in 

the early 1950s.  The CCD process (the Lapple model) is perceived as a standard method 

and has been considered by some engineers to be acceptable. However, there are several 

problems associated with this design procedure. First of all, the CCD process does not 

consider the cyclone inlet velocity in developing cyclone dimensions. It was reported 

(Parnell, 1996) that there is an “ideal” inlet velocity for the different cyclone designs for 

optimum cyclone performance. Secondly, the CCD does not predict the correct number 

of turns for different type cyclones. The overall efficiency predicted by the CCD process 
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is incorrect because of the inaccurate fractional efficiency curve generated by the CCD 

process (Kaspar et al. 1993).  

In order to use the CCD process, it is assumed that the design engineer will have 

knowledge of (1) flow conditions, (2) particulate matter (PM) concentrations and 

particle size distribution (PSD) and (3) the type of cyclone to be designed (high 

efficiency, conventional, or high throughput). The PSD must be in the form of mass 

fraction versus aerodynamic equivalent diameter of the PM. The cyclone type will 

provide all principle dimensions as a function of the cyclone barrel diameter (D). With 

these given data, the CCD process is as follows: 

The Number of Effective Turns (Ne) 

The first step of CCD process is to calculate the number of effective turns. The 

number of effective turns in a cyclone is the number of revolutions the gas spins while 

passing through the cyclone outer vortex. A higher number of turns of the air stream 

result in a higher collection efficiency. The Lapple model for Ne calculation is as 

follows: 

                                ⎥
⎦

⎤
⎢
⎣

⎡
+=

2
Z

L
H
1N c

c
c

e       (1) 

Based on equation 1, the predicted numbers of turns for 4 cyclone designs were 

calculated and listed in the table 1. In table 1, 1D2D, 2D2D, and 1D3D cyclones are the 

cyclone designs shown in figures 2 and 3. These three cyclone designs have the same 

inlet dimensions (Hc and Bc), referred to as the 2D2D inlet. The 1D3Dt cyclone is a 

traditional 1D3D cyclone design, which has the same design dimensions as 1D3D 
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cyclones in figure 2 except the inlet dimensions. The 1D3Dt cyclone has an inlet height 

equal to the barrel diameter (Hc = Dc) and an inlet width of one eighth of the barrel 

diameter (Bc = Dc/8). Table 1 gives the comparison of the predicted Ne vs. the observed 

Ne. It has been observed that the Lapple model for Ne produces an excellent estimation 

of the number of turns for the 2D2D cyclone designs. However, this model (equation 1) 

fails to give an accurate estimation of Ne for the cyclone design other than 2D2D design. 

This observation indicates a limitation for the Lapple model to accurately predict the 

number of effective turns. The Ne model is valid only for 2D2D cyclone designs, which 

was originally developed by Shepherd and Lapple (1939). 

 
 

Table 1. Number of effective turns (Ne) 

Cyclone   Lapple    Observed 

1D2D      4      N/A 

2D2D      6       6 

1D3D      5       6 

1D3Dt      2.5       6 

 
 
 
Cut-Point (d50) 

The second step of the CCD process is the calculation of the cut-point diameter. 

The cut-point of a cyclone is the aerodynamic equivalent diameter (AED) of the particle 

collected with 50% efficiency. As the cut-point diameter increases, the collection 

efficiency decreases. 
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The Lapple cut-point model was developed based upon force balance theory. The 

Lapple model for cut-point (d50) is as follows: 

                 
2

1

gpie
pc )(VN2

W9d
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ρ−ρπ
µ

=     (2) 

In the process to develop this cut-point model, it was assumed that the particle 

terminal velocity was achieved when the opposing drag force equaled the centrifugal 

force, and the drag force on every single particle was determined by Stokes law. As a 

result, the cut-point (dpc, or d50) determined by the Lapple model (equation 2) is an 

equivalent spherical diameter (ESD), or in other words, it is a Stokes diameter. The 

following equation can be used to convert ESD to AED for the spherical particles: 

                   ESD*AED pρ=      (3) 

Since ρp >> ρg, it could be considered that (ρp-ρg) ≈ ρp. Combining equations 2&3, 

the Lapple model for cut-point could be modified as follows: 

                   
2

1

ie
pc VN2

W9d ⎥
⎦

⎤
⎢
⎣

⎡
π

µ
=  (in AED)      (4) 

Equation 4 is the Lapple model for cut-point in AED. This model indicates that 

the cut-point is totally independent of characteristics of the inlet PM. However, It has 

been reported (Wang et al. 2000) that the cyclone fractional efficiency curves are 

significantly affected by the particle size distribution of particulate matter entering. The 

cut-point shifted with the change of inlet PSD. The Lapple model for cut-point needs to 

be corrected for particle characteristics of inlet PM. 
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Fractional Efficiency Curve (FEC - ηj) 

The third step of CCD process is to determine the fractional efficiency. Based 

upon the cut-point, Lapple then developed an empirical model (equation 5) for the 

prediction of the collection efficiency for any particle size, which is also known as 

fractional efficiency curve: 

                                   
( )2

pjpc
j

dd1

1

+
=η        (5)  

Overall Efficiency (ηo) 

If a size distribution of the inlet particles is known, the overall collection 

efficiency of a cyclone can be calculated based on the cyclone fractional efficiency. The 

overall collection efficiency of a cyclone is the weighted average of the collection 

efficiencies for the various size ranges. It is given by:  

                         jjo m∑ η=η        (6)  

 Table 2 lists cyclone overall efficiencies predicted by the Lapple model and 

experimentally measured by Wang et al. (2000). The comparison in table 2 indicates that 

the Lapple model greatly underestimated the actual cyclone collection efficiency.  As a 

result, the Lapple model for fractional efficiency curve (equation 5) needs to be 

corrected for accuracy. 
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Table 2. Overall efficiency 

Cyclone      Lapple Model            Measured (Wang et. al, 2000) 

1D2D            78.9 %    95 % 

2D2D            86.6 %               96 %  

1D3D            85.2 %               97 %  

 
 
 
Pressure Drop (∆P) 

Cyclone pressure drop is another major parameter to be considered in the process 

of designing a cyclone system. Two steps are involved in the Lapple approach to 

estimation of cyclone pressure drop. The first step in this approach is to calculate the 

pressure drop in the number of inlet velocity heads (Hv) by equation 7. The second step 

in this approach is to convert the number of inlet velocity heads to a static pressure drop 

(∆P) by equation 8: 

                       2
e

v
D
HWKH =       (7) 

 

                       v
2
ig HV

2
1P ρ=∆      (8) 

There is one problem associated with this approach. “The Lapple pressure drop 

equation does not consider any vertical dimensions as contributing to pressure drop” 

(Leith and Mehta, 1973). This is a misleading in that a tall cyclone would have the same 

pressure drop as a short one as long as cyclone inlets and outlets dimensions and inlet 

velocities are the same. It has been considered that cyclone efficiency increases with an 

increase of the vertical dimensions. With the misleading by Lapple pressure drop model, 
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one could conclude that the cyclone should be as long as possible since it would increase 

cyclone efficiency at no cost in pressure drop (Leith and Mehta, 1973). A new scientific 

approach is needed to predict cyclone pressure drop associated with the dimensions of a 

cyclone. 

TEXAS A&M CYCLONE DESIGN (TCD) 

Sizing Cyclone 

Parnell (1996) addressed problems associated with the design of cyclones using 

the classical cyclone design (CCD) process and presented the Texas A&M cyclone 

design process (TCD) as an alternative. The TCD approach to design cyclones was to 

initially determine optimum inlet velocities (design velocities) for different cyclone 

designs. The design inlet velocities for 1D3D, 2D2D, and 1D2D cyclones are 16 m/s ±2 

m/s (3200 ft/min ±400 ft/min), 15 m/s ±2 m/s (3000 ft/min ±400 ft/min), and 12 m/s ±2 

m/s (2400 ft/min ±400 ft/min), respectively. This design process allows an engineer to 

design the cyclone using a cyclone inlet velocity specific to the type of cyclone desired. 

Knowing the design inlet velocities, a cyclone’s dimensions could easily be determined 

by: 

                      
i

c V
Q8D =       (9) 
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 Pressure Drop (∆P) 

TCD process also provides an empirical model (equation 10) for cyclone 

pressure drop calculation. In this model, K is a dimensionless empirical constant and 

equals to 5.1, 4.7 and 3.4 for the 1D3D, 2D2D and 1D2D cyclones, respectively:  

                    )VPVP(*KP oi +=∆      (10) 

The TCD process is simpler by comparison with the CCD procedure and 

provides more accurate results for estimating pressure drop. But, the TCD process 

doesn’t incorporate means for calculating the cyclone cut-point and fractional efficiency 

curve, so it cannot be used to estimate cyclone efficiency and emission concentration. 

FRACTIONAL EFFICIENCY CURVE  

The cyclone fractional efficiency curve (FEC) relates percent efficiency to the 

particle diameter and can be obtained from test data that include inlet and outlet 

concentrations and particle size distribution (PSD’s). It is commonly assumed that the 

FEC can be defined by a cumulative lognormal distribution. As a lognormal distribution 

curve, the cyclone FEC can be characterized by the cut-point (d50) and sharpness-of-cut 

(the slope of the FEC) of the cyclone (see figure 4). As mentioned above, the cut-point 

of a cyclone is the AED of the particle collected with 50% efficiency. The sharpness-of-

cut (the slope of FEC) is defined as follows: 

                               
9.15

50

50

1.84

d
d

d
d

Slope ==         (11) 
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CHAPTER II     

RESEARCH OBJECTIVES 

The goal of this research was to develop a sound scientific description of the 

operation of a cyclone that can be used to facilitate engineering design with a minimum 

of empirical data. The goal was achieved by developing the following models: 

• Mathematical model for the number of effective turns. 

• Theoretical model for predicting cyclone collection efficiency. 

• Theoretical model for predicting cyclone pressure drop. 
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CHAPTER III     

THE NUMBER OF EFFECTIVE TURNS 

INTRODUCTION 

A theoretical study of cyclone performance requires knowledge of the 

characteristics of the internal flow. This knowledge of the flow pattern in a cyclone fluid 

field is the basis for theoretical considerations for the prediction of the number of 

effective turns, pressure drop and dust collection efficiency. Many investigations have 

been made to determine the flow pattern (velocity profile) in a cyclone rotational field. 

Shepherd and Lapple (1939) reported that the primary flow pattern consisted of an outer 

spiral moving downward from the cyclone inlet and an inner spiral of smaller radius 

moving upward into the exit pipe (known as outer vortex and inner vortex). The transfer 

of fluid from the outer vortex to the inner vortex apparently began below the bottom of 

the exit tube and continued down into the cone to a point near the dust outlet at the 

bottom of the cyclone. They concluded from streamer and pitot tube observations that 

the radius marking the outer limit of the inner vortex and the inner limit of the outer 

vortex was roughly equal to the exit duct radius. Ter Linden (1949) measured the details 

of the flow field in a 36 cm (14 inch) cyclone. He reported that the interface of the inner 

vortex and outer vortex occurred at a radius somewhat less than that of the exit duct in 

the cylindrical section of the cyclone and approached the centerline in the conical 

section. In this research, the interface diameter was assumed to be the cyclone exit tube 

diameter (Do = De). 
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The velocity profile in a cyclone can be characterized by three velocity 

components (tangential, axial and radial). The tangential velocity is the dominant 

velocity component. It also determines the centrifugal force applied to the air stream and 

to the particles. Research results (shown in figure 5) of Shepherd and Lapple (1939), Ter 

Linden (1949) and First (1950) indicated that tangential velocity in the annular section  

(at the same cross-sectional area) of the cyclone could be determined by: 

                         (12) 1
n

t Cr*V =

In equation 12, n is flow pattern factor and   n is 0.5~0.8 in outer vortex; n is 0 at 

the boundary of inner vortex and outer vortex.  The tangential velocity increases with a 

decrease of the rotational radius (r) in the outer vortex. It increases to the maximum at 

the boundary (r = Do/2) of the outer vortex and inner vortex. In the inner vortex the 

tangential velocity decreases as the rotational radius decreases. In the inner vortex, the 

relationship of the tangential velocity and the rotational radius can be modeled by: 

                         (13) 2t Cr/V =ω=
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Figure 5. Tangential velocity distribution in a cyclone fluid field 
 
 
 

FLOW PATTERN IN THE OUTER VORTEX 

The following assumptions were made for the study of flow pattern:  

• In the barrel part, there are two velocity components: tangential velocity (Vt) and 

axial velocity (Vz). Airflow rate in this zone is constant.  

• In the cone, the air stream is squeezed because of change of the body shape. As a 

result, air leaks from outer vortex to inner vortex through their interface (Do). 

The air leak (airflow rate) follows a linear model from the top of the cone part to 

the intersection of the vortexes interface and the cone walls. This assumption 

yields an effective length for the dust collection (Zo, see figure 6). This cyclone 

effective length (also the length of inner vortex core) is determined by the 

diameter (Do in figure 6) of the interface of the inner vortex and the outer vortex. 

Cyclone effective length does not necessarily reach the bottom of the cyclone 
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(Leith and Mehta, 1973). When the cyclone effective length is shorter than the 

cyclone physical length, the space between the bottom of the vortex and the 

bottom of the cyclone will not be used for particle collection. On the other hand, 

if the effective length is longer than the cyclone physical length, the vortex will 

extend beyond the bottom of the cyclone, and a dust re-entrance problem will 

occur. There are three velocity components in the cone part: tangential velocity 

(Vt), axial velocity (Vz) and radial velocity (Vr). (3) There is no radial 

acceleration for the air stream. In other words, the radial velocity of air stream is 

constant. 
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Tangential Velocity (Vt) 

Since the tangential velocity is the dominant velocity component that determines 

the centrifugal force applied to the air stream, it is essential to develop a theoretical 

model to determine the tangential velocity. The theoretical analysis for the tangential 

velocity starts with the analysis of the force on a unit control volume (I) of air stream. 

Figure 7 shows the forces acting on the control volume (I). 

The size of the control volume (I) is (h*r*dr*dφ). The centrifugal force acting on 

the control volume (I) is determined by: 

                    
r

V
*dr*d*r*h*F

2
t

c φρ=      (14) 

 
 

                          Z
r

                                                                    

                                                               

 

                                                                   

dφ 
 

dr 
Fc 

r 

P+dP 

P

Figure 7.  Force balance diagram on a 
 
 
 

The pressure forces acting on the surfaces

       φ== d*r*h*PA*PF pp    
I

 R
r

 

             

h

unit control volume (I) of air stream 

 of the control volume are as follows 

   (15) 
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       ( ) ( ) ( ) φ++=+= ++ d*drr*h*dPPA*dPPF dppdpp   
                ( ) φ+≈ d*r*h*dPP       (16) 

Based upon the assumption that there is no radial acceleration for the air stream, 

momentum conservation yields the force balance equation for the fluid as:  

          , then  0FFF dpppc =−+ +

          ( ) 0d*r*h*dPPd*r*h*P
r

V
*dr*d*r*h*

2
t =φ+−φ+φρ  (17) 

It has been reported that in a cyclone outer vortex, fluid is irrotational flow. In 

other words, the fluid motion follows its streamline. Bernoulli’s equation can be used to 

determine the pressure drop along the streamline, then 

             3

2
t C

2
V

*P =ρ+       (18) 

  Take the derivative of the equation 18 with respect to r, then 

            0
dr

dV
*V*

dr
dP t

t =ρ+       (19) 

Combine equations 17 &19, the following relationship is obtained 

             0
r

dr
V

dV

t

t =+        (20) 

The solution of equation 20 is 

                    (21) 4t Cr*V =
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This is the theoretical model for the tangential velocity distribution in the radial 

direction. It is assumed that in the barrel part of a cyclone, the tangential velocity (Vt1) is 

the same as inlet velocity along the cyclone wall, that is 

            Vt1 = Vin         (22) 

However, in the cone part, the tangential velocity along the cyclone wall (Vt2) 

follows the model in equation 21 such as   Vt2 * r = Vin * R = constant, so 

                      
θ+

==
tan*Zr

V*R
V*

r
RV

o

in
in2t      (23) 

 Since tan θ = 1/8 for 1D3D, tan θ = 3/16 for 2D2D and tan θ = 1/8 for 1D2D (see 

figure 6 for the definition of θ), then 

                      
c

inc
2t D2Z

V*D4
V

+
=        (For 1D3D) 

                      
c

inc
2t D4Z3

V*D8
V

+
=        (For 2D2D) 

                       
c

inc
2t D5Z2

V*D8
V

+
=       (For (1D2D)    (24) 

Axial Velocity (Vz) 

In the barrel part (Vz1) 

It is assumed that in the barrel part, the airflow rate is constant in the outer 

vortex; as a result, the axial velocity (Vz) can be determined by the following analysis: 

Let  
8

D
*V

4
D*

4
D*

*V
2
c

in

2
e

2
c

1z =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ π
−

π  for the constant flow rate. Plug in De 

dimension for 1D3D, 2D2D and 1D2D cyclone designs (see figures 2&3), then 
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π

=
3
V2

V in
1z               (For 1D3D and 2D2D) 

           
π

=
13
V8

V in
1z               (For 1D2D)    (25) 

In the cone part (Vz2) 

As assumed above, in the cone part of a cyclone, the airflow leaks from outer 

vortex to inner vortex flowing a linear model as: 

                   
2o

inz Z
Z*QQ =       (26) 

So, the axial velocity in the cone part can be determined by  

                   ( )
o

2o

oo

in

z

z
2z

r2Z*
Z

rR
1*

rR*
Q

A
Q

V
+

−−π
−

=−=   (27) 

Figure 8 shows the dimensions for the axial velocity calculation in the cone part. 

Zo2 is the effective length in the cone part. It is determined by the interface diameter and 

cyclone design. For 1D3D, 2D2D and 1D2D cyclone designs, Zo2 dimensions are Zo2 = 

2Dc (for 1D3D), Zo2 = 4Dc/3 (for 2D2D) and Zo2 = 3Dc/2 (for 1D2D). 
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Based upon Zo2 dimension and equation 27, the axial velocities for 1D3D, 2D2D 

and 1D2D designs are as follows: 

     ( ) π+
−=

*D4Z
V*D4

V
c

inc
2z          (For 1D3D)     

     ( ) π+
−=

*D8Z3
V*D8

V
c

inc
2z                 (For 2D2D)   (28) 

For the 1D2D cyclone design, the outlet tube is extended into cyclone cone part 

for the length of Dc/8 (see figure 3 for 1D2D design). This divides the cone part into two 

zones. In zone 1, which is from the top of the cone to the bottom of outlet tube, there is 

no air leak from outer vortex to inner vortex. As a result, the axial velocity in this zone 

(Vz21) is the same as in the barrel part, which is 
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π

−=
13
V8

V in
21z           (For 1D2D in the zone 1 of cone part)  (29) 

In the zone 2 of the cone part, which is from the bottom of outlet tube to the 

bottom of interface cone, the air leaks from outer vortex to inner vortex following a 

linear pattern as defined in equations 26 and 27. In this zone, the axial velocity (Vz22) is 

as follows: 

  ( ) π+
−=

*D15Z3
V*D16

V
c

inc
22z    (For 1D2D in the zone 2 of cone part) (30) 

Radial Velocity (Vr) 

It was assumed that the radial velocity is zero in the barrel part. In the cone part 

of a cyclone the radial velocity can be determined by θ= tan*VV 2z2r , so 

  ( ) π+
=

*D8Z2
V*D

V
c

inc
2r            (For 1D3D) 

  ( ) π+
=

*D16Z6
V*D3

V
c

inc
2r          (For 2D2D) 

  
π

=
13
V

V in
21r                           (For 1D2D in the zone 1) 

 ( ) π+
=

*D15Z3
V*D2

V
c

inc
22r          (For 1D2D in the zone 2)  (31) 
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AIR STREAM TRAVEL DISTANCE 

Travel Distance in the Barrel Part (L1) 

To calculate air stream travel distance in the barrel part, it is first necessary to 

determine the total average velocity (V1) of air stream. Since there are only two velocity 

components in the barrel part, the total average velocity can be obtained by 

             2
1z

2
1t1 VVV +=       (32) 

Vt1 and Vz1 are determined by equations 22 and 25. Then, the travel distance can 

be calculated by the velocity and traveling time such as  

             
1z

Z

0

2
1z

2
1t

t

0
11 V

dzVVdtVL
11

∫∫ +==     (33) 

The solutions for equation 33 are as follows 

             L1 = 1.53 πDc = 4.8 Dc         (For 1D3D) 

             L1 = 3.06 πDc = 9.6 Dc         (For 2D2D) 

             L1 = 1.66 πDc = 5.2 Dc         (For 1D2D)   (34) 

Travel Distance in the Cone Part (L2) 

In the cone part of a cyclone, the total average velocity is determined by three 

velocity components as follows: 

           2
2r

2
2z

2
2t2 VVVV ++=       (35) 

In this equation, Vt2, Vz2 and Vr2 are modeled by equations 24, 28, 29, 30 and 31. 

The travel distance in the cone part can be obtained through the following calculations: 
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2o2

∫∫ ++==     (36) 

• For the 1D3D cyclone: 
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• For the 2D2D cyclone: 
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• For 1D2D cyclone: 
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Software Mathcad (2002) was used to solve L2’s for different cyclone diameters 

i.e. Dc = 0.1 m (4 inch), 0.15 m (6 inch), 0.3 m (12 inch), 0.6 m (24 inch) and 0.9 m (36 

inch). The detailed Mathcad calculations are included in appendix D. The general 

solutions for the L2’s with different cyclone diameters are: 

        L2 = 10.83 Dc         (For 1D3D) 

        L2 = 7.22 Dc           (For 2D2D) 

        L2 = 2.57 Dc           (For 1D2D)     (37) 
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NUMBER OF EFFECTIVE TURNS 

In theory, the air stream travel distance in the outer vortex and the cyclone 

dimensions determine the number of effective turns (Wang et al, 2001). In a cyclone 

barrel part the number of turns is defined by  

        
c

1
1e D*

L
N

π
=        (38) 

In the cone part of a cyclone the number of turns is determined by 

        
⎟
⎠

⎞
⎜
⎝

⎛ +
π

=

2
DD

*

L
N

oc

2
2e       (39) 

Table 3 summarizes the calculation of air stream travel distance and number of 

effective turns for 1D3D, 2D2D and 1D2D cyclones with different sizes. 

 
 

Table 3. Air stream travel distance and number of effective turns  

Cyclone     Barrel Part              Cone Part                   Total 

Design    L1       Ne1    L2      Ne2      L      Ne 

1D3D            4.8 Dc      1.53          10.83 Dc     4.60         15.63 Dc     6.13 

2D2D            9.6 Dc      3.06            7.22 Dc     3.07         16.82 Dc     6.13 

1D2D            5.2 Dc      1.66            2.57 Dc     1.01           7.77 Dc     2.67 

 
 
 
SUMMARY 

A new theoretical method for computing air stream travel distance and number of 

turns has been developed in this chapter. The flow pattern and cyclone dimensions 

determine the air stream travel distance in the outer vortex of a cyclone. The number of 
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effective turns for different cyclone sizes was calculated based upon the air stream travel 

distance and cyclone dimensions. The calculations indicate that the number of effective 

turns is determined by the cyclone design, and is independent of cyclone diameter (size) 

and inlet velocity. There are 6.13 turns in both 1D3D and 2D2D cyclones and 2.67 turns 

in the 1D2D cyclones.  
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CHAPTER IV     

CYCLONE PRESSURE DROP 

INTRODUCTION 

In the evaluation of a cyclone design, pressure drop is a primary consideration. 

Because it is directly proportional to the energy requirement, under any circumstance, 

knowledge of pressure drop through a cyclone is essential in designing a fan system. 

Many models have been developed to determine the cyclone pressure drop such 

as Shepherd and Lapple (1939), Stairmand (1949, 1951), First (1950) and Barth (1956). 

However, the equations are either empirical models or involve variables and 

dimensionless parameters not easily evaluated for in practical applications.  It is known 

that cyclone pressure drop is dependent on the cyclone design and its operating 

parameters such as inlet velocity. The empirical models cannot be used for all the 

cyclone designs as new cyclone technology and new cyclone designs are developed. 

Further theoretical research is needed to scientifically evaluate the cyclone performance 

including predicting cyclone pressure drop. 

Shepherd and Lapple (1939) reported that a cyclone pressure drop was composed 

of the following components: 

1. Loss due to expansion of gas when it enters the cyclone chamber. 

2. Loss as kinetic energy of rotation in the cyclone chamber. 

3. Loss due to wall friction in the cyclone chamber. 
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4. Any additional friction losses in the exit duct, resulting from the swirling flow 

above and beyond those incurred by straight flow. 

5. Any regain of the rotational kinetic energy as pressure energy. 

THEORETICAL ANALYSIS OF PRESSURE DROP 

In general, cyclone pressure loss can be obtained by summing all individual 

pressure loss components. The following pressure loss components are involved in the 

analysis of cyclone pressure loss for this research: 

1. Cyclone entry loss (∆Pe). 

2. Kinetic energy loss (∆Pk). 

3. Frictional loss in the outer vortex (∆Pf). 

4. Kinetic energy loss caused by the rotational field (∆Pr). 

5. Pressure loss in the inner vortex and exit tube (∆Po). 

Cyclone Entry Loss (∆Pe) 

A cyclone entry loss is the dynamic pressure loss in the inlet duct and can be 

determined by:  

                     (40) in5e VP*CP =∆

In this equation, C5 is the dynamic loss constant and VPin is the inlet velocity 

pressure.  
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Kinetic Energy Loss (∆Pk) 

This part of energy loss is caused by the area change (velocity change) from the 

inlet tube to outlet tube. It can be calculated by:  

               outink VPVPP −=∆       (41) 

Frictional Loss in the Outer Vortex (∆Pf) 

The frictional pressure loss is the pressure loss in the cyclone outer vortex caused 

by the friction of air/surface wall. In the outer vortex, air stream flows in a downward 

spiral through the cyclone. It may be considered that the air stream travels in an 

imaginary spiral tube (figure 9) with diameter Ds and length L (travel distance in the 

outer vortex). The frictional pressure loss can be determined by Darcy’s equation: 

               dL*
D
VP

*fPd
s

s
f =∆       (42) 

 

 

Imaginary 
spiral tube 

Figure 9.  Imaginary spiral tube of air stream in the outer vortex 
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In the barrel part (∆Pf1) 

The equivalent stream diameter (Ds1) was used to quantify the size of oval-shape 

stream (stream in the imaginary spiral tube). The flow rate and total velocity of the 

stream determine this equivalent diameter as shown in the equation 43: 

               
8

D
*V

4
D*

*V
2
c

in

2
1s

1s =
π      (43) 

 In this equation, Vs1 is the total velocity of air stream in the outer vortex of barrel 

part. So, Vs1 = V1 determined by equation 32, then        

              Ds1 = 0.395 Dc        (for 1D3D, 2D2D and 1D2D) 

The friction pressure loss in the barrel part can be determined as follows: 

              
1z

1
1s

1s
Z

0

L

0 1s

1s
1f V

dZ*V*
D
VP

*fdL
D
VP

*fP
11

∫∫ ==∆    (44) 

In this equation, VPs1 is the stream velocity pressure determined by stream 

velocity Vs1. f is the friction factor and is a function of Reynolds number (Re, equation 

45) and the degree of roughness of imaginary spiral tube surface.  

               
µ

ρ
=

*V*DR e       (45) 

The friction factor (f) can be obtained from the Moody chart (the friction chart) 

based upon the relative roughness factor (e/D) of tube surface and fluid Reynolds 

number. In this case, since the imaginary tube consists of the cyclone inside surface on 

the one side and air stream on the other side. one-half of the friction factors obtained 

from chart were used for pressure drop calculation in equation 44. Table 4 lists the 
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friction factors for 1D3D, 2D2D and 1D2D cyclones at their respective design inlet 

velocities. 

 
 

Table 4. Friction factors (f) for frictional pressure loss calculation 

Cyclone         Size (Dc)                   e/Dc                    Re       f  (moody chart)         f (for ∆Pf models)  

1D3D         0.2 m (6 inch)              0.0010            1.64 *105                  0.022                             0.011 

     0.9 m (36 inch)            0.0002            9.85*105                   0.016                             0.008 

2D2D     0.2 m (6 inch)              0.0010            1.54 *105                  0.022                             0.011 

                  0.9 m (36 inch)            0.0002            9.20*105                   0.015                              0.008 

1D2D     0.2 m (6 inch)              0.0010            1.23 *105                 0.023                              0.012 

            0.9 m (36 inch)           0.0002            7.40*105                   0.015                              0.008 

 
 
 
Equation 44 is the friction loss model in the barrel part of a cyclone. This model 

indicates that the friction pressure loss is a function of the air stream travel distance in 

the outer vortex of the barrel part. In other words, the friction loss is a function of the 

cyclone height. The higher a cyclone body, the higher the friction loss. The following 

results were obtained from equation 44 for predicting friction loss in the barrel part of a 

cyclone: 

              in1s1f VP*14.0VP*13.0P ==∆     (For 1D3D) 

              in1s1f VP*28.0VP*27.0P ==∆     (For 2D2D) 

              in1s1f VP*15.0VP*14.0P ==∆     (For 1D2D)  (46) 

In the cone part (∆Pf2) 

In the cone part, the equivalent stream diameter (Ds2) is determined by 
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The friction pressure loss in the cone part can be determined as follows: 
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The solutions of equation 48 for 1D3D, 2D2D and 1D2D are as follows: 

• For the 1D3D cyclone: 
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• For the 2D2D cyclone: 
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These solutions of equation 48 are the models to predict friction loss in the cone 

part of a cyclone. The friction factor, f, is determined in table 4. Again, the above models 

indicate that the friction loss in the cone part is a function of air stream travel distance in 

the outer vortex of the cone. Therefore, the friction loss in the cone is a function of the 

height of the cone. Appendix E demonstrates the calculations of friction loss in the cone 

part of a cyclone with different inlet velocities and cyclone diameters. 

Kinetic Energy Loss Caused by the Rotational Field (∆Pr) 

In the cyclone cone, the rotation of the airflow establishes a pressure field 

because of radial acceleration. The rotational energy loss is the energy that is used to 

overcome centrifugal force and allow the stream to move from outer vortex to inner 

vortex. To develop an equation for the rotational kinetic energy loss, it is assumed that 

the direction of rotation in both inner vortex and outer vortex is the same so that little 

friction is to be expected at their interface (the junction point).  

The rotational loss can be quantified as the pressure change in the pressure field 

from cyclone cone wall to the vortex interface. This pressure change has been 

determined in the theoretical analysis of tangential velocity  (equation 17). In fact 

equation 17 indicates the following 

                  dr*
r

V
*dP

2
tρ=       (49) 

Solving equation 49, the rotational loss can be obtained as the follows: 

                   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−ρ=∆ 1

r
R*V*P
o

2
inr      (50) 



 35

Then,           ∆Pr = 2 VPin           (For 1D3D and 2D2D) 

                   ∆Pr = 1.22 VPin       (For 1D2D) 

Pressure Loss in the Inner Vortex and Exit Tube (∆Po) 

The inner vortex is assumed to have a constant height of spiral and constant angle 

of inclination to the horizontal, and to have the same rotational velocity at the same 

radius at any vertical position. The method of calculation on this part of the pressure 

component will be to determine the average pressure loss in the inner vortex and the exit 

tube. It can be determined as follows: 

                               (51) out6o VP*CP =∆

In this equation, C6 is the dynamic loss constant and VPout is the outlet velocity 

pressure.  

Cyclone Total Pressure Loss (∆Ptotal)  

Cyclone total pressure is obtained by simply summing up the five pressure drop 

components as follows: 

              orfketotal PPPPPP ∆+∆+∆+∆+∆=∆    (52) 

Cyclone Pressure Drop Predictions 

Equations 40, 41, 46, 48, 50 and 51 are the models to predict five pressure loss 

components. Based on these models pressure drops for different sizes of cyclones with 

different inlet velocities were calculated. Details of the calculations for friction losses in 

the cone part are included in appendix E. Predicted pressure drops listed in tables 5 – 13. 

The predictions of pressure drop indicate: (1) Cyclone pressure drop is independent of 
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cyclone size. (2) Frictional loss in the outer vortex and the rotational energy loss in a 

cyclone are the major pressure loss components. (3) Frictional loss is a function of 

cyclone height. The higher a cyclone height, the higher the friction loss. 

 
 
Table 5. Predicted pressure drop for 1D3D at Vin = 16 m/s (3200 ft/min)  

Cyclone              ∆Pe              ∆Pk                         ∆Pf                 ∆Pr             ∆Po               Total 

  Size                                                    ∆Pf1         ∆Pf2                                                            ∆P 

0.1 (4)      159 (0.64)      95 (0.38)       22 (0.09)       359 (1.44)       319 (1.28)     117 (0.47)     1071 (4.3) 

0.2  (6)      159 (0.64)      95 (0.38)       22 (0.09)       359 (1.44)       319 (1.28)     117 (0.47)     1071 (4.3)           

0.3  (12)      159 (0.64)      95 (0.38)       22 (0.09)       359 (1.44)       319 (1.28)     117 (0.47)     1071 (4.3) 

0.6  (24)      159 (0.64)      95 (0.38)       22 (0.09)       359 (1.44)       319 (1.28)     117 (0.47)     1071 (4.3) 

0.9  (36)      159 (0.64)      95 (0.38)       22 (0.09)       359 (1.44)       319 (1.28)     117 (0.47)     1071 (4.3)       

• Cyclone size: meter (inch) and pressure drop: Pa (inch H2O) 

 
 
 

Table 6. Predicted pressure drop for 1D3D with Dc = 0.2 m (6 inch)  

Velocity                 ∆Pe                    ∆Pk         ∆Pf                     ∆Pr                   ∆Po                  Total 

5 (1000)              16 (0.06)             9 (0.04)          37 (0.15)            31 (0.12)           11 (0.05)      104 (0.42) 

8 (1500)              35 (0.14)            21 (0.08)         84 (0.34)            70 (0.28)           26 (0.10)      235 (0.94) 

10 (2000)            62 (0.25)           37 (0.15)        149 (0.60)          124 (0.50)          45 (0.18)      417 (1.68) 

13 (2500)            97 (0.39)           58 (0.23)        232 (0.93)          194 (0.78)          71 (0.28)       652 (2.62) 

15 (3000)          140 (0.56)           83 (0.33)        335 (1.35)          279 (1.12)        102 (0.41)       939 (3.77) 

16 (3200)          159 (0.64)           95 (0.38)        381 (1.53)         319 (1.28)         117 (0.47)      1071 (4.29) 

18 (3500)          190 (0.76 )        113 (0.45)       456 (1.83)          380 (1.53)         139 (0.56)      1279 (5.13) 

20 (4000)          248 (1.00)         148 (0.59)       596 (2.39)          497 (2.00)         181 (0.73)      1670 (6.71) 

• Velocity: m/s (ft/min) and pressure drop: Pa (inch H2O) 
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Table 7. Predicted pressure drop for 1D3D with Dc = 0.9 m (36 inch)  

Velocity                 ∆Pe                    ∆Pk         ∆Pf                     ∆Pr                   ∆Po                  Total 

5 (1000)              16 (0.06)             9 (0.04)          37 (0.15)            31 (0.12)           11 (0.05)      104 (0.42) 

8 (1500)              35 (0.14)            21 (0.08)         84 (0.34)            70 (0.28)           26 (0.10)      235 (0.94) 

10 (2000)            62 (0.25)           37 (0.15)        149 (0.60)          124 (0.50)          45 (0.18)      417 (1.68) 

13 (2500)            97 (0.39)           58 (0.23)        232 (0.93)          194 (0.78)          71 (0.28)       652 (2.62) 

15 (3000)          140 (0.56)           83 (0.33)        335 (1.35)          279 (1.12)        102 (0.41)       939 (3.77) 

16 (3200)          159 (0.64)           95 (0.38)        381 (1.53)         319 (1.28)         117 (0.47)      1071 (4.29) 

18 (3500)          190 (0.76 )        113 (0.45)       456 (1.83)          380 (1.53)         139 (0.56)      1279 (5.13) 

20 (4000)          248 (1.00)         148 (0.59)       596 (2.39)          497 (2.00)         181 (0.73)      1670 (6.71) 

• Velocity: m/s (ft/min) and pressure drop: Pa (inch H2O) 

 
 
 

Table 8. Predicted pressure drop for 2D2D at Vin = 15 m/s (3000 ft/min)  

Cyclone              ∆Pe              ∆Pk                         ∆Pf                 ∆Pr             ∆Po               Total 

  Size                                                    ∆Pf1         ∆Pf2                                                            ∆P 

0.1 (4)      140 (0.56)      82 (0.33)       40 (0.16)       212 (0.85)       279 (1.12)     103 (0.41)     854 (3.43) 

0.2  (6)      140 (0.56)      82 (0.33)       40 (0.16)       212 (0.85)       279 (1.12)     103 (0.41)     854 (3.43)           

0.3  (12)      140 (0.56)      82 (0.33)       40 (0.16)       212 (0.85)       279 (1.12)     103 (0.41)     854 (3.43) 

0.6  (24)      140 (0.56)      82 (0.33)       40 (0.16)       212 (0.85)       279 (1.12)     103 (0.41)     854 (3.43) 

0.9  (36)      140 (0.56)      82 (0.33)       40 (0.16)       212 (0.85)       279 (1.12)     103 (0.41)     854 (3.43)       

• Cyclone size: meter (inch) and pressure drop: Pa (inch H2O) 
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Table 9. Predicted pressure drop for 2D2D with Dc = 0.2 m (6 inch)  

Velocity                 ∆Pe                    ∆Pk         ∆Pf                     ∆Pr                   ∆Po                  Total 

5 (1000)              16 (0.06)             9 (0.04)          27 (0.11)            31 (0.12)           11 (0.05)         94 (0.38) 

8 (1500)              35 (0.14)            21 (0.08)         62 (0.25)            70 (0.28)           26 (0.10)       213 (0.86) 

10 (2000)            62 (0.25)           37 (0.15)        111 (0.45)          124 (0.50)          45 (0.18)        379 (1.53) 

13 (2500)            97 (0.39)           58 (0.23)        174 (0.70)          194 (0.78)          71 (0.28)        593 (2.38) 

15 (3000)          140 (0.56)           83 (0.33)        250 (1.00)          279 (1.12)         102 (0.41)       854 (3.43) 

16 (3200)          159 (0.64)           95 (0.38)        285 (1.14)          319 (1.28)         117 (0.47)       972 (3.91) 

18 (3500)          190 (0.76 )        113 (0.45)        339 (1.36)          380 (1.53)         139 (0.56)      1161 (4.66) 

20 (4000)          248 (1.00)         148 (0.59)        445 (1.79)          497 (2.00)         181 (0.73)      1519 (6.10) 

• Velocity: m/s (ft/min) and pressure drop: Pa (inch H2O) 

 
 
 

Table 10. Predicted pressure drop for 2D2D with Dc = 0.9 m (36 inch)  

Velocity                 ∆Pe                    ∆Pk         ∆Pf                     ∆Pr                   ∆Po                  Total 

5 (1000)              16 (0.06)             9 (0.04)          27 (0.11)            31 (0.12)           11 (0.05)         94 (0.38) 

8 (1500)              35 (0.14)            21 (0.08)         62 (0.25)            70 (0.28)           26 (0.10)       213 (0.86) 

10 (2000)            62 (0.25)           37 (0.15)        111 (0.45)          124 (0.50)          45 (0.18)        379 (1.53) 

13 (2500)            97 (0.39)           58 (0.23)        174 (0.70)          194 (0.78)          71 (0.28)        593 (2.38) 

15 (3000)          140 (0.56)           83 (0.33)        250 (1.00)          279 (1.12)         102 (0.41)       854 (3.43) 

16 (3200)          159 (0.64)           95 (0.38)        285 (1.14)          319 (1.28)         117 (0.47)       972 (3.91) 

18 (3500)          190 (0.76 )        113 (0.45)        339 (1.36)          380 (1.53)         139 (0.56)      1161 (4.66) 

20 (4000)          248 (1.00)         148 (0.59)        445 (1.79)          497 (2.00)         181 (0.73)      1519 (6.10) 

• Velocity: m/s (ft/min) and pressure drop: Pa (inch H2O) 
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Table 11. Predicted pressure drop for 1D2D at Vin = 12 m/s (2400 ft/min)  

Cyclone             ∆Pe              ∆Pk                         ∆Pf                ∆Pr              ∆Po               Total 

  Size                                                    ∆Pf1         ∆Pf2                                                            ∆P 

0.1 (4)      89 (0.36)       75 (0.30)        12 (0.05)        80 (0.32)       107 (0.43)      27 (0.11)       392 (1.57) 

0.2  (6)      89 (0.36)       75 (0.30)        12 (0.05)        80 (0.32)       107 (0.43)      27 (0.11)       392 (1.57)           

0.3  (12)      89 (0.36)       75 (0.30)        12 (0.05)        80 (0.32)       107 (0.43)      27 (0.11)       392 (1.57) 

0.6  (24)      89 (0.36)       75 (0.30)        12 (0.05)        80 (0.32)       107 (0.43)      27 (0.11)       392 (1.57) 

0.9  (36)      89 (0.36)       75 (0.30)        12 (0.05)        80 (0.32)       107 (0.43)      27 (0.11)       392 (1.57) 

• Cyclone size: meter (inch) and pressure drop: Pa (inch H2O) 

 
 
 

Table 12. Predicted pressure drop for 1D2D with Dc = 0.2 m (6 inch)  

Velocity                 ∆Pe                    ∆Pk         ∆Pf                     ∆Pr                   ∆Po                  Total 

5 (1000)              16 (0.06)            13 (0.05)          17 (0.07)            19 (0.07)            5 (0.02)         69 (0.28) 

8 (1500)              35 (0.14)            29 (0.12)         37 (0.15)            42 (0.17)           11 (0.04)       153 (0.62) 

10 (2000)            62 (0.25)           52 (0.21)          64 (0.26)            75 (0.30)          19 (0.07)        271 (1.09) 

12 (2400)            89 (0.36)           75 (0.30)          94 (0.38)          107 (0.43)          27 (0.11)        392 (1.57) 

15 (3000)          140 (0.56)         117 (0.47)        146 (0.59)          168 (0.67)          42 (0.17)        611 (2.46) 

16 (3200)          159 (0.64)         133 (0.53)        168 (0.67)          191 (0.77)          47 (0.19)        697 (2.80) 

18 (3500)          190 (0.76 )        159 (0.64)        200 (0.80)          228 (0.92)          57 (0.23)        834 (3.35) 

20 (4000)          248 (1.00)         207 (0.83)        261 (1.05)          298 (1.20)          74 (0.30)      1089 (4.37) 

• Velocity: m/s (ft/min) and pressure drop: Pa (inch H2O) 
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Table 13. Predicted pressure drop for 1D2D with Dc = 0.9 m (36 inch)  

Velocity                 ∆Pe                    ∆Pk         ∆Pf                     ∆Pr                   ∆Po                  Total 

5 (1000)              16 (0.06)            13 (0.05)          17 (0.07)            19 (0.07)            5 (0.02)         69 (0.28) 

8 (1500)              35 (0.14)            29 (0.12)         37 (0.15)            42 (0.17)           11 (0.04)       153 (0.62) 

10 (2000)            62 (0.25)           52 (0.21)          64 (0.26)            75 (0.30)          19 (0.07)        271 (1.09) 

12 (2400)            89 (0.36)           75 (0.30)          94 (0.38)          107 (0.43)          27 (0.11)        392 (1.57) 

15 (3000)          140 (0.56)         117 (0.47)        146 (0.59)          168 (0.67)          42 (0.17)        611 (2.46) 

16 (3200)          159 (0.64)         133 (0.53)        168 (0.67)          191 (0.77)          47 (0.19)        697 (2.80) 

18 (3500)          190 (0.76)         159 (0.64)        200 (0.80)          228 (0.92)          57 (0.23)        834 (3.35) 

20 (4000)          248 (1.00)         207 (0.83)        261 (1.05)          298 (1.20)          74 (0.30)      1089 (4.37) 

• Velocity: m/s (ft/min) and pressure drop: Pa (inch H2O) 
 
 
 
TESTING OF THE NEW MODELS 

System Setup 

An experiment was conducted to measure cyclone pressure drops at different 

inlet velocities for the comparison of measured pressure drop versus predicted pressure 

drop by the new theory developed in this research. The experimental setup is shown in 

figure 10. The tested cyclones were 0.2 meter (6 inch) in diameter. Pressure transducers 

and data loggers (HOBO) were used to obtain the differential pressure from cyclone inlet 

and outlet and the pressure drop across orifice meter.  

The orifice pressure drop was used to monitor the system airflow rate by the 

following relationship: 

            
a

2
o

P*D*K*478.3Q
ρ
∆

=      (53) 
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In this equation, K is a dimensionless orifice meter coefficient determined by 

experimental calibration of the orifice meter with a Laminar Flow Element. A problem 

was observed during the tests. In order to measure the static pressure drop through 

cyclones, the static pressure taps (figure 11) were inserted into air stream such that the 

static pressure sensing position was in the direction of airflow. In the outlet tube, the air 

stream is spiraling upward. This spiral path caused some difficulties in measuring static 

pressure in the outlet tube if the static pressure taps were not placed properly in the exit 

tube.  

Figure 10. Pressure drop measurement system setup 

Figure 11. Static pressure taps in a cyclone outlet tube for pressure drop measurement 
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Three measurements were made on 2D2D and 1D2D cyclone designs and four 

measurements on 1D3D cyclone design at different inlet velocities. For the 1D3D 

cyclone, measurements #1, 2, and 3 were conducted on 0.2 m (6 inch) cyclone and #4 

was on 0.1 m (4 inch) cyclone. Testing results are listed in table 14. 

  
 
 

Table 14. Average measured pressure drop  

                1D3D                                                  2D2D                                                         1D2D 

      Vin                 ∆P1D3D                      Vin        ∆P2D2D                            Vin                     ∆P1D2D                   

4.5 (900)  75 (0.3)                 4.1 (805)              56 (0.2)                    4.5 (891)                 25 (0.1) 

6.5 (1273) 174 (0.7)               5.0 (986)             100 (0.4)                    5.0 (986)                 47 (0.2) 

8.7 (1707)            299 (1.2)               7.9 (1559)           199 (0.8)                    6.1 (1207)          80 (0.3) 

11.4 (2241)          535 (2.2)               9.4 (1844)           249 (1.0)                   7.9 (1559)               149 (0.6) 

12.9 (2545)          697 (2.8)               9.8 (1930)           299 (1.2)                   9.1 (1800)               212 (0.9) 

14.7 (2902)          847 (3.4)             10.6 (2091)           405 (1.6)                 10.4 (2052)              286 (1.2) 

15.8 (3117)          971 (3.9)             11.4 (2241)           498 (2.0)                 11.4 (2241)              349 (1.4) 

16.5  (3245)       1121 (4.5)             12.8 (2513)           623 (2.5)                 12.5 (2464)              436 (1.8) 

17.4 (3415)        1220 (4.9)             13.6 (2670)           697 (2.8)                 13.1 (2577)              473 (1.9) 

18.2 (3577)        1370 (5.5)             14.7 (2902)           784 (3.2)                 14.3 (2817)              585 (2.4) 

18.3 (3600)        1469 (5.9)             15.2 (2984)           909 (3.7)                 15.6 (3065)              685 (2.8) 

                                                        16.0 (3146)         1046 (4.2)                 16.5 (3245)              784 (3.2) 

                                                        17.1 (3367)         1220 (4.9)                 17.1 (3367)              859 (3.5) 

                                                        17.7 (3485)         1320 (5.3)                 17.7 (3485)              934 (3.8) 

                                                        18.5 (3644)         1444 (5.8)                 18.3 (3600)            1021 (4.1) 

• Velocity: m/s (ft/min) and pressure drop: Pa (inch H2O) 
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Comparison of Theoretical Prediction with Testing Results 

As shown in tables 5 – 13, cyclone pressure drop is a function of inlet velocity 

and is independent of cyclone size. Figures 12 – 14 show the comparison of the 

predicted and measured cyclone pressure drop curves (pressure drop vs. inlet velocity). 

For the 1D3D cyclone, there are no significant pressure drop differences among tests #1, 

2, 3, and 4 (see figure 12). As mentioned before, tests #1, 2, 3 were conducted on 0.2 m 

(6 inch) cyclone and test #4 was on 0.1 m (4 inch) cyclone. Therefore, the measured 

results also indicate that pressure drop is independent of cyclone size. Comparisons of 

pressure drop curves for 1D3D, 2D2D and 1D2D cyclones also verify that the theoretical 

predictions of pressure drops are in excellent agreement with experimental 

measurements. Thus, the new theoretical methods developed in this research for 

predicting cyclone pressure drop are reliable. 
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Figure 12. Measured and calculated pressure drop vs. inlet velocities for 1D3D cyclone 
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Figure 13. Measured and calculated pressure drop vs. inlet velocities for 2D2D cyclone 
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SUMMARY 

Cyclone pressure drop consists of five individual pressure drop components. The 

frictional loss in the outer vortex and the rotational energy loss in the cyclone are the 

major pressure loss components. The theoretical analyses of the pressure drop for five 

different size cyclones (0.1 m (4 inch), 0.2 m (6 inch), 0.3 m (12 inch), 0.6 m (24 inch) 

and 0.9 m (36 inch)) show that cyclone pressure is independent of its diameter. 

However, cyclone pressure drop is a function of cyclone body height. Experiments were 

conducted to verify the theoretical analysis results and gave excellent agreement. Thus, 

the new theoretical method can be used to predict the air stream travel distance, number 

of turns and cyclone pressure drop. For the 1D3D, 2D2D and 1D2D cyclone designs, the 

predictions of pressure drop are 1071 Pa (4.3 inch H2O), 854 Pa (3.43 inch H2O) and 390 

Pa (1.57 inch H2O) respectively at their own design inlet velocity (16 m/s (3200 fpm), 15 

m/s (3000 fpm) and 12 m/s (2400 fpm), respectively).  
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CHAPTER V     

CYCLONE COLLECTION EFFICIENCY 

INTRODUCTION 

Cyclones, as the most cost-effective air pollution device for particulate matter 

removal, have been studied for decades. Although many procedures for calculating 

collection efficiency have been developed, current design practice either emphasizes past 

experience rather than an analytical design procedure, or cannot accurately predict 

cyclone collection efficiency. 

In the literature, theories to predict cyclone efficiency have been reported for 

many years. As it is mentioned before, Lapple (1951) developed a theory  (also known 

as CCD) for cut-point (d50) based upon a force balance and representation of residence 

time with the air stream number of turns within a cyclone. The Lapple model is easy to 

use, but it cannot accurately predict cyclone collection efficiency. In 1972, Leith and 

Licht presented another theory (back-mixing) for the study of cyclone collection 

efficiency. Their back-mixing theory suggests that the turbulent mixing of uncollected 

particles in any plane perpendicular to the cyclone axis produces a uniform uncollected 

dust concentration through any horizontal cross section of a cyclone. Based upon this 

theory, they developed a model to predict efficiency for any size particles. It has been 

reported that the Leith and Licht model for efficiency appears to work best compared 

with other theories in the literature (Leith and Mehta, 1973). However, this model has 
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not been tested with experimental data and it involves variables and dimensionless 

parameters not easily accounted for in practical applications. 

Stairmand (1951) and Barth (1956) first developed the “static particle theory” for 

the analysis of cyclone collection efficiency in the 50’s. Since then, this static particle 

theory based upon a force balance analysis has been adopted by many other researchers 

in their theoretical analyses for characterizing cyclone performance. Basically the “static 

particle theory” suggested that force balance on a particle yields a critical particle, which 

has 50% chance to be collected and 50% chance to penetrate the cyclone. The diameter 

of the critical particle is d50. The critically sized particle (d50) is smaller than the smallest 

particle, which is collected, and larger than the largest particle that penetrates the 

cyclone. The critical particle with diameter of d50 is theoretically suspended in the outer 

vortex forever due to the force balance. 

COLLECTION MECHANISM IN THE OUTER VORTEX 

Particle Motion in the Outer Vortex 

Study of the particle collection mechanism in the outer vortex is a way to 

understand the relationship between the cyclone performance characteristics and the 

design and operating parameters. The first step in this study is to characterize the particle 

motion in the outer vortex. In the study of particle motion and trajectory in the outer 

vortex, the following assumptions were made: 

• Particle is spherical. For irregular non-spherical particles, their Stokes’ diameters 

(also known as ESD) are used for analysis. 



 48

• The relative velocity between the air stream and particle does not change the 

fluid pattern, i.e. the air stream velocity profile in the outer vortex. 

• Particle motion is not influenced by the neighboring particles. 

• The particle tangential velocity is the same as the air stream tangential velocity. 

In other words, the particle does not “slip” tangentially. 

• Particle Re <1, the drag force on a particle is given by Stokes Law. 

• Force balance on a particle yields 50% collection probability on this particle. 

• Particle moves from the interface of inner vortex and outer vortex towards the 

cyclone wall, once the particle hits the wall, it will be collected. 

Particle velocity and acceleration vectors 

The analysis of particle motion in the outer vortex is conducted in a cylindrical 

coordinate system. When the air stream brings a particle with diameter dp and density ρp 

into the cyclone outer vortex, centrifugal force acting on the particle generates a radial 

acceleration. The relative velocity between the particle and air stream generates a 

different path for the particle and air stream. Figure 15 shows the trend of a particle path 

and air stream path when the particle is moving in the outer vortex.  
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Figure 15. Paths of a particle and air stream in the outer vortex 

 
 
 

In the rθ  coordinates, the particle velocity can be described as  
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The particle acceleration can be obtained by the following analysis: 
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It was assumed that particle tangential velocity is the same as air stream 

tangential velocity (Vt), which is constant with respect to time. Therefore, there is no 

tangential acceleration for the particle ( 0a t =
r ). 
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Forces acting on a particle 

The particle motion in the cyclone outer vortex can be determined by Newton’s 

law as follows: 

                   ∑= F
dt
Vd

*m p
p

r
r

      (56) 

Gravity Force (FG) 

The impact of gravity force on the particle motion is in the form of particle 

terminal settling velocity (VTS). Based on the definition of particle terminal settling 

velocity (Hinds, 1999), the drag force of the air on a particle (FDG) is exactly equal and 

opposite to the force of gravity when the particle is released in air and quickly reaches its 

terminal settling velocity, such as, 

                       (57) mgFF GDG ==

In this equation, FDG is the gas resistance force to the particle motion caused by 

gravity. It can be determined by the Stokes law as: 

                     (58) pTSDG d*V**3F µπ=

Combining equations 57 and 58, a particle terminal settling velocity is obtained 

as follows: 
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In this equation, particle density (ρp) is in kg/m3; g is the acceleration of gravity 

in m/s2; µ is gas viscosity in Pa.S; dp is the particle diameter in m and VTS is the particle 
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terminal gravity settling velocity in m/s. Since particles of interest in the air quality 

research are less than or equal to 100 µm; as a result, the particle settling velocity caused 

by gravity is negligible compared to the particle traveling velocity in the outer vortex 

(VTS << Vp). Therefore the impact of gravity force on particle motion is negligible. 

Centrifugal Force (FC) 

Centrifugal force is the force acting on the particle in the radial direction for the 

particle separation. It is determined by 
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Drag Force (FD) 

Along the radial direction, there is another force, which is the gas resistance force 

to the particle motion caused by centrifugal force. It was assumed that the particle 

Reynolds number is less than one (Re<1), which means Stokes’ law, applies. As a result, 

the drag force on a spherical particle is      
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Force Balance Differential Equation 

As mentioned above, in the cyclone outer vortex fluid field, there are only two 

forces (centrifugal force FC & drag force FD) acting on the particle in the radial direction. 

When FC > FD, the particle moves towards the cyclone wall to be collected. Whereas, 

when FC < FD, the particle will move to the inner vortex and then to penetrate the 
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cyclone. The force balance (FC = FD) gives a particle a 50% chance to penetrate and 50% 

chance to be collected. The force balance differential equation can be set up by letting 

equation 60 equal to equation 61, i.e. FC = - FD, it yields equation 62. 
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This is a general force balance differential equation, which describes particle 

motion in the outer vortex space. The solution of this particle force balance differential 

equation gives the particle radial critical trajectory in polar (rθ) coordinates. This 

trajectory is the critical path in the radial direction and is a function of particle diameter. 

As mentioned above, the force balance gives a 50% collection probability. In other 

words, the particle diameter is d50 when the forces on a particle are in equilibrium on the 

critical path. The force balance differential equation yields a d50 distribution in the 

cyclone outer vortex. 

Particle Critical Trajectory in the Outer Vortex 

The particle tangential velocity, 
dt
dr θ , is the same as air stream tangential velocity 

Vt.  If 
µ

ρ
=τ

18
d 2

pp , then the force balance differential equation 62 can be rewritten as: 
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To solve this force balance differential equation, the following initial conditions 

are used: 
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1. r = ro at t = 0 and ro = radius of the interface of the inner vortex and outer 

vortex = radius of the outlet tube 

2. 
dt
dr = Vpr, and Vpr = 0 at t = 0 

On the other hand, the particle trajectory in the axial direction (rz coordinates) is 

of more concern. So the differential equation 63 should also be solved for the axial 

direction. It is assumed that the particle motion in axial direction follows a linear path 

and gas radial velocity is zero. As a result, the acceleration term, d2r/dt2, can be 

neglected in the equation 63. The Vt term is determined by equation 12. So, the force 

balance differential equation can be further simplified as: 
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In equation 64, 
pz

p

V
Z

t = = particle traveling time in the Z distance along the axial 

direction, then 
pz

p

V
dZ

dt = = particle traveling time in the dz distance along the axial 

direction. The solution of equation 64 gives the particle critical radial trajectory function 

in the rz plane in the outer vortex as 
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d50 Distribution in the Outer Vortex 

As mentioned before, the force balance on the particle gives the particle a 50% 

chance to be collected and a 50% chance to penetrate. In other words, the collection 
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efficiency on this particle will be 50% when the particle is under the force balance 

condition. It is notated that the particle diameter is d50 when the particle is at the force 

balance situation. In fact, d50 is the critical separating diameter. If a particle is larger than 

d50, it will move towards the wall, whereas, if a particle is smaller than the d50, it will 

move towards the inner vortex. The particle diameter (dp) is the critical separating 

diameter (d50) in equation 65. Studying this equation, it is observed that in the cyclone 

outer vortex space, there is a d50 distribution. This distribution is the function of the 

location (r, z), particle density, cyclone design and inlet velocity. The d50 distribution 

function in the outer vortex space can be obtained by rewriting equation 65 as the 

follows: 
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Particle Collection Probability Distribution in the Outer Vortex 

Based on the above analyses, d50 distribution defines the critical separation 

diameter (d50) at the any point P(r, z) in the outer vortex. At the point P(r, z), if the 

particle diameter d > d50, the particle will move to the wall and be collected, whereas if 

the particle diameter d < d50, the particle will move to the inner vortex and penetrate. For 

a given inlet particle size distribution, the ratio of all the particles larger than d50 to the 

total inlet particles is the particle collection probability at the point P(r, z).  If it is 

assumed that the inlet particle size distribution is a lognormal distribution with mass 

median diameter (MMD) and geometric standard deviation (GSD) as shown in equation 
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67, then equation 68 can be used to determine the particle collection probability at any 

point P(r, z) in the outer vortex. 
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The particle collection probability distribution (equation 68) is in fact the particle 

collection rate distribution in the outer vortex. It is also the collected concentration 

distribution in the outer vortex.  

THEORETICAL MODEL FOR CYCLONE CUT-POINT (d50) 

Force balance theory is a unique way to develop a mathematical model for the 

cut-point. However the general force balance differential equation 62 is not readily 

solvable. An approximate solution can be obtained based upon some assumptions. To 

solve the general force balance differential equation 62, Barth (1956) made several 

assumptions. First, the particle radial velocity was assumed to be zero because of static 

status. It was also assumed that air uniformly leaked from the outer vortex to the inner 

vortex. So, the air inwards radial velocity was determined by  
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The Barth solution for theoretical cut-point model was 
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THEORETICAL MODEL FOR CYCLONE OVERALL EFFICIENCY 

Equation 68 is the particle collection probability distribution in the outer vortex 

in which d50 is the critical separation diameter in the space.  When the critical diameter 

on the interface is used in equation 68, the integration yields the cyclone total collection 

efficiency. In other words, equation 68 with d50 = cut-point is the theoretical model for 

calculating cyclone overall efficiency. 

TRACING CUT-POINT (d50) 

There is an inherent problem associated with the force balance analyses. The 

mathematical model for cut-point (equation 70) was based only upon the analysis for an 

individual particle. It did not consider the particle size distribution of the inlet PM. 

However, the cyclone cut-point changes with the PSD of inlet PM (Wang et al, 2002). 

So, a correction factor, which is function of PSD, is needed.  

To determine the relationship of cyclone cut-points and the PSD’s, equation 68 

was used to theoretically trace the d50 from measured cyclone total efficiency with five 

kinds of dust (Wang, 2000).  The traced d50 for 1D3D and 2D2D cyclones are listed in 

table 15. 
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Table 15. Traced cut-points (d50) from measured efficiency and PSD for 1D3D and 

2D2D cyclones  

                                           PSD                               1D3D                                                   2D2D 

Dust            ρp         MMD/GSD           measured ηtotal      Traced d50         measured ηtotal       Traced d50             

A                     1.77          20 / 2.0                      99.7 %               3.00                    99.6 %                 3.20 

B                     1.82          21 / 1.9                      99.3 %               4.30                    98.9%                  4.82 

C                     1.87          23 / 1.8                      99.7 %               4.50                    99.6 %                 4.80 

Cornstarch      1.52          19 / 1.4                      99.3 %               8.25                    99.2 %                 8.50 

 Flyash            2.73          13 / 1.7                      96.8%                4.85                    95.5 %                 5.25 

• PSD: particle size distribution 

• Dusts A, B, and C are fine cotton gin dusts from different ginning processing streams. The dusts 

had been passed through a screen with 100 µm openings. 

• MMD: mass median diameter (µm) of PSD  

• GSD: geometric standard deviation 

• ρp: particle density (g/cm3) 

• Measured ηtotal: measured overall cyclone efficiency from previous research (Wang, 200). 

• Traced d50: d50 (µm) obtained from equation 67 by setting P (d) equal to the overall efficiency. 
 
 
 

It is observed from table 15 that the cut-point of a cyclone changes with the PSD. 

This is the same observation reported by Wang (2000) from the previous experimental 

research. Table 16 shows the results of traced d50’s and experimental d50's. The results 

listed in the table 16 suggest that a cyclone cut-point is a function of MMD and GSD of 

inlet dust PSD. When the GSD is larger than 1.5, the cut-points decrease with an 

increase of MMD (see gin dust vs. fly ash), whereas the cut-points increase with an 

increase of MMD when the dust GSD is less than 1.5. 
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Table 16. Comparison of the traced cut-points against experimental cut-points  

                                                      1D3D                                                                    2D2D 

Dust                        Traced d50       Experimental d50                     Traced d50          Experimental d50                      

A                                      3.00                     2.50                                     3.20                           2.74 

B                                      4.30                     3.55                                     4.82                           3.75 

C                                      4.50                     3.34                                     4.80                           3.60 

Cornstarch                       8.25                       ---                                      8.50                            --- 

 Flyash                             4.85                     4.25                                     5.25                           4.40 

• Traced d50: d50 (µm) obtained from equation 67 by setting P (d) equal to the overall efficiency 

• Dusts A, B, and C are fine cotton gin dusts from different ginning processing stream. The dusts 

had been passed through a screen with 100 µm openings 

• Experimental d50 (µm) were determined from experimental fractional efficiency curves 

calculated from experimental measurements of inlet and outlet concentration and PSD’s (Wang 

et al. 2002) 

• No experimental d50 available for cornstarch.  
 
 
 
CORRECTING d50 MODEL FOR PARTICLE SIZE DISTRIBUTION (PSD) 

The comparisons of cut-points obtained by using the Barth model (equation 70) 

and the traced cut-points solved by using equation 68 and measured overall efficiencies 

for the different dusts are shown in the table 17. The cut-points from the Barth model do 

not change with PSD, which is not consistent with the experimental research. 
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Table 17. Comparison of the traced cut-points against cut-points obtained from 

theoretical model (Barth model: equation 70) 

                                                      1D3D                                                                    2D2D 

Dust                        Traced d50         Barth d50                                Traced d50                  Barth d50                      

A                                      3.00                     3.58                                     3.20                           3.46 

B                                      4.30                     3.58                                     4.82                           3.46 

C                                      4.50                     3.58                                     4.80                           3.46 

Cornstarch                       8.25                     3.58                                      8.50                          3.46 

 Flyash                             4.85                     3.58                                     5.25                           3.46 

• Traced d50: d50 (µm) obtained from equation 67 by setting P (d) equal to the overall efficiency 

• Dusts A, B, and C are fine cotton gin dusts from different ginning processing stream. The dusts 

had been passed through a screen with 100 µm openings 

• Barth d50’s are determined by equation 70 in AED 
 
 
 

It is necessary to introduce a cut-point correction factor (K) to modify the 

theoretical d50 model to quantify the effect of PSD on the cut-point calculation. Table 18 

lists K values based on Barth’s d50’s and traced d50’s. It is obvious that the K value is a 

function of MMD and GSD. A regression analysis was performed to determine the 

relationship of K and MMD and GSD. Equations 71 and 72 show the results of 

regression fit based upon the data in table 18. It is noticed from the regression that the 

GSD has greater effect on K than MMD. In other words, the cut-points are more 

sensitive to GSD than to MMD.  
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Table 18. Cut-point correction factor for 1D3D and 2D2D cyclones with different dusts 

                                                 PSD                                                Cut-Point correction factor (K) 

Dust                       MMD           GSD                                     1D3D                                2D2D             

A                               20                 2.0                                      0.84                                    0.92 

B                               21                 1.9                                      1.20                                    1.39 

C                               23                 1.8                                      1.26                                    1.39 

Cornstarch                19                 1.4                                      2.31                                    2.46 

Flyash                       13                 1.7                                      1.36                                    1.52 

• PSD: particle size distribution 

• Dusts A, B, and C are fine cotton gin dusts from different ginning processing streams. The dusts 

had been passed through a screen with 100 µm openings. 

• MMD: mass median diameter (µm) of PSD  

• GSD: geometric standard deviation 
 
 
 

                  GSD*4.2MMD*02.03.5K D3D1 −+=    (71) 

                  GSD*5.2MMD*02.05.5K D2D2 −+=    (72) 

Putting the cut-point correction factor into the Barth d50 model, the cyclone cut-

point can be determined by the equation 73 which is referred to as the corrected 

theoretical cut-point model. 
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The theory and the methodology used in this research for correcting the cut-point 

model indicate that it is not necessary to develop a fractional efficiency curve to 

calculate the cyclone overall efficiency. The process for calculating cyclone efficiency 

can be summarized as the following steps: 
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1. Obtain PSD (MMD and GSD) of the cyclone inlet dust 

2. Calculate the cut-point correction factor for the different cyclone design and 

the given PSD (MMD and GSD) by equations 71 or 72. 

3. Determine the cut-point using the corrected d50 model (equation 73). 

4. Determine the overall efficiency by integrating equation 68 based upon the 

corrected cut-point and PSD (MMD and GSD). 

SUMMARY 

Particle motion in the cyclone outer vortex was analyzed in this chapter to 

establish the force balance differential equation. Barth’s “static particle” theory 

combined with the force balance equation was applied in the theoretical analyses for the 

models of cyclone cut-point and collection probability distribution in the cyclone outer 

vortex. Cyclone cut-points for different dusts were traced from measured cyclone overall 

collection efficiencies and the theoretical model for the cyclone overall efficiency 

calculation. The theoretical predictions of cut-points for 1D3D and 2D2D cyclones with 

fly ash are 4.85 µm and 5.25 µm. Based upon the theoretical study in this chapter the 

following main observations are obtained: 

1. The traced cut-points indicate that cyclone cut-point is the function of dust PSD 

(MMD and GSD). 

2. Theoretical d50 model (Barth model) needs to be corrected for PSD.  
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3. The cut-point correction factors (K) for 1D3D and 2D2D cyclone were 

developed through regression fits from theoretically traced cut-points and 

experimental cut-points.   

4. The corrected d50 is more sensitive to GSD than to MMD. 

5. The theoretical overall efficiency model developed in this research can be used 

for cyclone total efficiency calculation with the corrected d50 and PSD. No 

fractional efficiency curves are needed for calculating total efficiency. 
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CHAPTER VI     

AIR DENSITY EFFECT ON CYCLONE PERFORMANCE∗

INTRODUCTION 

The cyclone, because of its simplicity and low operating cost, is probably the 

most widely used dust collector in industry. With the growing concern for the 

environmental effects of particulate pollution, it becomes increasingly important to be 

able to optimize the design of pollution control systems. As a result, many studies have 

been made to characterize cyclone performance as affected by design and operational 

parameters. Unfortunately, there is no information available on the effect of air density 

on the cyclone inlet design velocity, and consequently on its performance. 

The cyclone design procedure outlined in Cooper and Alley (1994) is perceived 

as a standard method and has been considered by some engineers to be acceptable. 

However, this design process, hereafter referred to as the classical cyclone design (CCD) 

process, does not consider the cyclone inlet velocity in developing cyclone dimensions. 

Previous research at Texas A&M University (TAMU) (Parnell, 1990) indicated that the 

efficiency of a cyclone increased, and emission concentration decreased, with increasing 

inlet velocity. But at relatively high inlet velocities, the cyclone efficiency actually 

began to decrease. A dramatic increase in emission concentration has been observed at 

velocities higher than a certain threshold level (Parnell, 1996). The level at which the 

                                                 
∗ Reprinted with permission from Air Density Effect on Cyclone Performance by L. Wang , M.D. Buser, 
C.B. Parnell and B.W. Shaw, 2003. Transactions of the American Society of Agricultural Engineers.  
46(4): 1193-1201. ©2003 American Society of Agricultural Engineers. 
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inlet velocities were too high and caused increased emissions was different for each 

cyclone design. The Texas A&M cyclone design (TCD) process specifies the "ideal" 

cyclone inlet velocities (design velocities) for different cyclone designs for optimum 

cyclone performance. The design inlet velocities for 1D3D, 2D2D, and 1D2D cyclones 

are 16 m/s ±2 m/s (3200 ft/min ±400 ft/min), 15 m/s ±2 m/s (3000 ft/min ±400 ft/min), 

and 12 m/s ±2 m/s (2400 ft/min ±400 ft/min), respectively. The TCD process allows an 

engineer to design the cyclone using a cyclone inlet velocity specific for the type of 

cyclone being considered. However, there is one problem with the CCD and TCD 

cyclone design processes. None of these cyclone design methods specify whether the 

cyclone design velocity should be based on the standard air density or actual air density. 

Air density is primarily determined by barometric pressure. Barometric pressure 

is a function of height above sea level and weather patterns. Typically, at 1219 m (4000 

ft) above sea level, the air density will be 1.04 kg per dry standard cubic meter, kg/dscm 

(0.065 lb per dry standard cubic foot, lb/dscf), compared to 1.20 kg/dscm (0.075 lb/dscf) 

at sea level - the standard air density at 21°C (70°F), 1 atm of barometric pressure, and 

zero relative humidity. The actual air density can be determined by: 

                     ( )
T*R
MW*P*RH

T*R
MW*P*RHP wvsdasb

a +
−

=ρ    (74) 

The relationships of cyclone airflow rate, inlet velocity, and air densities can be 

described by equations 75 and 76: 
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A design velocity of 16 m/s (3200 ft/min) based on standard air density (1.20 

kg/dscm or 0.075 lb/dscf) would be 19 m/s (3700 ft/min) based on actual air density 

(1.04 kg/dscm or 0.065 lb/dscf). If the TAMU design process were to be used, then the 

19 m/s (3700 ft/min) design velocity would be outside the acceptable range of inlet 

velocities for 1D3D cyclones (16 m/s ±2 m/s). Which is correct? Should cyclones be 

designed based on standard air density or actual air density? 

It was hypothesized that cyclone performance and pressure drop would be 

affected by varying air density. The goal of this research was to quantify the air density 

effects on cyclone performance, and ultimately, to recommend a cyclone design 

philosophy based on either actual or standard air density. 

EXPERIMENTAL METHOD 

Cyclone airflow rate and inlet velocity change with air density. In this research, 

tests were conducted to evaluate 1D3D and 2D2D cyclone emission concentrations and 

pressure drops with two sets of inlet design velocities: one set based on actual airflow 

rate, and the other set based on dry standard airflow rate. All the tests were conducted at 

Amarillo, Texas, where the altitude is 1128 m (3700 ft) and consequently the air density 

is relatively low (1.04 kg per dry standard cubic meter). During the tests, barometric 
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pressure, air temperature, and relative humidity were monitored by a digital weather 

station (Davis Perception II) to determine the air density by equation 74. 

Cyclones 

In the agricultural processing industry, 2D2D and 1D3D cyclones have been used 

for particulate matter control for many years. In this research, only fine dust and 1D3D 

and 2D2D cyclones were used to conduct experiments. Both 1D3D and 2D2D cyclones 

used in this research were 15 cm (6 in.) in diameter. 

Testing Material 

Fly ash, cornstarch, screened manure dust, and regular manure dust were used as 

test materials in this research ("screened manure dust" refers to cattle feedyard dust that 

has been passed through a screen with 100 µm openings, and "regular manure dust" 

refers to manure dust from the same source as the screened manure dust with the larger 

than 100 µm PM included). The particle densities of fly ash, cornstarch, and manure dust 

were 2.7 g/cm3, 1.5 g/cm3, and 1.8 g/cm3, respectively. Emission concentrations for 

specific cyclone designs were directly related to the fine dust inlet loadings and the 

particle size distributions of inlet particulate matter. Tests were conducted with inlet 

concentrations of the dust at 1 and 2 g/m3. A Coulter Counter Multisizer 3 (CCM) 

(Coulter Electronics, 2002) was used to analyze PSD’s of inlet dust and emitted dust on 

the filters. The CCM is an electronic particle sizer that operates on a resistance principle 

to measure PSD in electrolyte liquid suspensions (Hinds, 1999). Figures 16 to 19 show 

the CCM PSD’s of the four inlet PM. Mass median diameter and geometric standard 

deviation are two parameters that characterize PSD’s. The MMD is the aerodynamic 
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equivalent diameter such that 50% of PM mass is larger or smaller than this diameter. 

The GSD is defined by the following equation (Cooper and Alley, 1994): 
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Figure16. PSD for fly ash (MMD = 11.34 µm, GSD = 1.82) 

 
 

 

Figure 17. PSD for cornstarch (MMD = 20.38 µm, GSD = 1.39) 
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Figure 18. PSD for screened manure dust (MMD = 20.81 µm, GSD = 3.04) 

 

 

 

Figure 19. PSD for regular manure dust (MMD = 18.43 µm, GSD = 2.76) 

 
 
 

Testing System 

The testing system was a pull system, as shown in figure 20. The blowers pull the 

air from the feeding mechanism directly into a pipe and then to the cyclone. A collection 

hopper was connected to the bottom of the cyclone dust outlet to store the dust collected 
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by the cyclone. Cleaned air flowed out of the cyclone through the outlet-conveying duct 

to a filter holder. The filter captured all the dust emitted from the cyclone, and clean air 

flowed through an orifice meter and the blowers and was discharged into the testing 

room. The designed airflow rate was maintained by monitoring the pressure drop across 

the orifice meter during the test. The equipment used in the testing system is listed in 

table 19, and the relationship between flow rate and pressure drop across the orifice 

meter is shown in equation 53. 

 

 

 

Figure 20. Cyclone testing system 
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Table 19. Equipment used for the testing system 

Equipment Model and Make Parameter 

Hand-held blowers Cadillac HP-33, Clements 

National Co., Chicago, Ill. 

1.42 m3/min, 2989 Pa (50 cfm, 12 in. 

w.g.) 

Orifice meter Made in house Range: 0 to 3.11 m3/min; accuracy: 

±0.7% reading. Calibrated with laminar 

flow element (Meriam Process 

Technologies, Cleveland, Ohio). 

Magnahelic differential 

pressure gauges 

Dwyer Instruments, Michigan 

City, Ind. 

Range: 0 to 1245 Pa (0 to 5 in. w.g.); 

accuracy: ±24.9 Pa (±0.1 in. w.g.) 

Magnetic dust feeder Syntron F-TO, FMC 

Technologies, Homer City, Pa. 

-- 

Filter holder Made in house 20.3 × 25.4 cm (8 × 10 in.) 

 
 
 
Testing time was 3 min for each test, and the system was cleaned between tests. 

The filters were conditioned in an environmental chamber for 24 h at 25°C and 46% 

relative humidity, as specified by EPA, and weighed with a microbalance (range: 0 to 

101 mg, accuracy: ±0.1 mg) that was located in the environmental chamber before and 

after testing to determine total penetrating weights. The feeding rates and emission 

concentrations were determined with equations 78 and 79: 

                            (78) Q*LF =

                     1000*
T*Q
FWFW

EC 12 −
=      (79) 

The airflow rates of the testing system were determined by using the TCD design 

velocity. Table 20 shows the airflow rate and cyclone inlet velocity. Equations 75 and 76 
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were used to calculate cyclone airflow rates and inlet velocities based on actual or 

standard conditions. 

 
 
 

Table 20. Airflow rate of the testing system 

 Diameter of cyclone Design velocity Airflow rate of system 

1D3D 15 cm 16 m/s 0.05 m3/s 

 (6 in.) (3200 ft/min) (100 ft3/min) 

2D2D 15 cm 15 m/s 0.04 m3/s 

 (6 in.) (3000 ft/min) (94 ft3/min) 

 
 
 
The same testing system was used to measure cyclone pressure drops at two inlet 

velocity treatments. In order to accurately measure the static pressure drop across the 

cyclones, the static pressure taps were inserted into the air stream such that the static 

pressure sensing position was in the direction of airflow (figure 11). The pressure drop 

measurement was conducted without any dust feeding. 

Experimental Design and Data Analysis 

The tests were conducted as a 4-factorial experiment. The four factors were (1) 

inlet velocity (optimum design velocity at actual air condition, optimum design velocity 

at standard air condition), (2) cyclone design (1D3D, 2D2D), (3) inlet PSD’s (fly ash, 

cornstarch, and manure dust), (4) inlet loading rates (1 and 2 g/m3). Each treatment was 

based on three repeating observations, for a total of 60 observations. ANOVA tests, 

using Tukey's Studentized range (HSD) test at 95% confidence interval, were performed 

on the results. 
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Equation 79 was used to convert the actual air emission concentration to standard 

air emission concentration for the comparison: 

                        s
s

a
a EC*EC ⎟⎟

⎠

⎞
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⎝

⎛
ρ
ρ

=      (80) 

Besides the emission concentration, another important parameter to characterize 

cyclone performance is cyclone fractional efficiency. Cyclone fractional efficiency 

curves were developed based on the cyclone inlet concentration (feeding rate), inlet PSD 

(measured by CCM), emission concentration, and the PSD of PM emitted (on the filter, 

measured by CCM). The inlet and outlet concentrations for various size ranges were 

calculated using inlet and outlet PM concentrations and the fraction of particulate in 

those size ranges obtained from the Coulter Counter PSD analysis. The outlet 

concentration was divided by the corresponding inlet concentration for each particle size 

range and subtracted from one, with the resulting values being the fractional efficiency 

for each particle size range: 

                       
inj

outj
j .Con

.Con
1 −=η      (81) 

As was described in the chapter I, a cyclone fractional efficiency curve (FEC) 

can be represented by a cumulative lognormal distribution. This FEC distribution is 

defined by the cut-point (d50) and sharpness-of-cut (the slope of the FEC). 
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TEST RESULTS AND DISCUSSION 

Emission Concentration Measurements 

Tables 21 and 22 contain the average emission concentrations for the tests 

conducted on the 1D3D and 2D2D cyclones. The null hypothesis for the 1D3D cyclone 

design was that there was no difference in emission concentrations for inlet velocities of 

16 actual m/s (3200 afpm) versus 16 standard m/s (3200 sfpm or 3800 afpm); at an air 

density of 1.02 kg/m3 (0.0635 lb/ft3), the 16 standard m/s (3200 sfpm) velocity 

corresponds to 19 actual m/s (3800 afpm). For comparison purposes, all the emission 

concentrations were converted from mg per actual cubic meter (mg/acm) into mg per dry 

standard cubic meter (mg/dscm).  

 
 

Table 21. Average emission concentrations from 1D3D and 2D2D cyclones with fly ash 

and cornstarch 

Inlet Loading 

Fly Ash Corn Starch 

Inlet 

Velocity 

(Vin, m/s) 

Actual Air 

Density 

(kg/m3) 1 g/m3 2 g/m3  1 g/m3 2 g/m3

1D3D       

16 actual air 1.02 50 93  7a 18b 

16 standard air 1.02 42 73  6a 17b 

2D2D       

15 actual air 1.02 57a 109  9b 20c 

15 standard air 1.01 51a 96  8b 18c 

• Emission concentration = mg/dscm (dscm=cubic meter of dry standard air) 

• Three tests were performed for each condition. Means followed by the same letter are not 

significantly different at 0.05 level. 

 



 74

Table 22. Average emission concentrations from 1D3D cyclone with manure dust 

Inlet Loading 

Screened Manure Regular Manure Inlet Velocity 

(Vin, m/s) 

Actual Air Density

(kg/m3) 2 g/m3 2 g/m3

16 actual air 1.01 75c 50 

16 standard air 1.01 74c 43 

• Emission concentration = mg/dscm (dscm=cubic meter of dry standard air) 

• Three tests were performed for each condition. Means followed by the same letter are not 

significantly different at 0.05 level. 

 
 
 

The statistical analyses indicated that the cyclone emission concentrations were 

highly dependent on cyclone design, inlet loading rates, PSDs of inlet PM, as well as air 

density. The following observations were noted: 

1. For the fly ash tests, the average emission concentrations were significantly 

higher for both 1D3D and 2D2D cyclones for inlet velocities of 16 and 15 actual 

m/s (3200 and 3000 afpm) compared to 16 and 15 standard m/s (3200 and 3000 

sfpm). For an air density of 1.02 kg/m3 (0.0635 lb/ft3), 16 standard m/s (3200 

sfpm) is equivalent to 19 actual m/s (3800 afpm), and 19 m/s (3800 afpm) is 

outside of the TCD ideal design velocity range of 16 ±2 m/s (3200 ±400 fpm) for 

the 1D3D cyclones. One would assume that higher emissions would occur at 19 

m/s (3800 afpm). However, the measured data did not support this assumption. 

Experimental results indicate that the optimum design velocity for the 1D3D 

cyclone is 16 standard m/s (3200 sfpm), not 16 actual m/s (3200 afpm). The 

same observations were made for the 2D2D cyclone. With an air density of 1.01 
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kg/m3 (0.063 lb/ft3), 15 standard m/s (3000 sfpm) inlet velocity is equivalent to 

18 actual m/s (3600 afpm), and 18 actual m/s (3600 afpm) is also outside of the 

TCD ideal design velocity range of 15 ±2 m/s (3000 ±400 fpm) for the 2D2D 

cyclones. Again, the experimental data indicate that the optimum design velocity 

for the 2D2D cyclone should be 15 standard m/s (3000 sfpm), not 15 actual m/s 

(3000 afpm). 

2. For agricultural dust with larger MMD, such as cornstarch and manure dust, the 

trend of decreasing emission concentration for 1D3D and 2D2D cyclones was 

observed when the inlet design velocity was based on standard air density. 

However, the differences in the emission concentrations for inlet velocities based 

on actual versus standard air densities were not statistically significant. 

3. Among the four test dusts, the rankings from the smallest to the largest MMD’s 

are as follows: (1) fly ash, (2) regular manure, (3) cornstarch, and (4) screened 

manure (figures 16 to 19). The test results suggest that as the MMD of the PM 

decreases, the differences in emission concentrations resulting from inlet 

velocities based on standard versus actual air densities will increase (tables 21 

and 22). 

4. The results from both 1D3D and 2D2D cyclones also indicate that higher inlet 

loading rates increased the differences in the emission concentration with 

different inlet velocity treatments. This implies that the effect of air density is 

increased as cyclone inlet loadings increase. 
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The emission concentrations associated with inlet and outlet PSD’s were also 

used to calculate cyclone fractional efficiencies and to develop cyclone fractional 

efficiency curves. The methodology used to develop fractional efficiency curves is 

similar to the one developed by Wang et al. (2002). It includes the following three steps: 

• Obtain PSDs of inlet (original dust) and outlet PM (dust on the filter) using the 

CCM. 

• Calculate the fractional efficiency curves using inlet and outlet concentrations 

and the PSDs. 

• Obtain the "best-fit" lognormal distribution for the fractional efficiency curves 

obtained above. 

Statistical analyses were also conducted on the cyclone cut-points and slopes. 

Table 23 lists the average cut-points and slopes for the 1D3D and 2D2D cyclones with 

fly ash. For the 1D3D cyclone, the cut-points are significantly different with different 

inlet velocity treatments and two inlet loading rates. However, for the 2D2D cyclone, the 

cut-points are not significantly different with different inlet velocity treatments. Air 

density effect on the 1D3D cyclone cut-point is greater than on the 2D2D cyclone cut-

point. 
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Table 23. 1D3D and 2D2D cyclones cut-points and slopes with fly ash 

Inlet Loading 

1 g/m3 2 g/m3Inlet Velocity 

(Vin, m/s) 

Actual Air Density 

(kg/m3) Cut-point (µm) Slope Cut-point (µm) Slope 

1D3D      

16 actual air 1.02 3.9 1.29a 4.1 1.24 

16 standard air 1.02 3.4 1.43a 3.6 1.35 

2D2D      

15 actual air 1.02 4.2a 1.23b 4.2a 1.26b 

15 standard air 1.01 4.0a 1.30b 4.0a 1.28b 

• Three tests were performed for each condition. Means followed by the same letter are not 

significantly different at 0.05 level. 
 
 

Pressure Drop Measurement 

Table 24 lists the pressure drop test results. Parnell (1990) reported that pressure 

drops for 1D3D and 2D2D cyclones operating at design velocities were 1145 and 921 Pa 

(4.6 and 3.7 in. w.g.). However, the experimental data (table 6) indicate that cyclone 

pressure drop is highly dependent on air density. Only when 1D3D and 2D2D cyclones 

operate at their respective design velocities of standard air will their pressure drops be 

near the previously reported value, i.e., 1145 Pa (4.6 in. w.g.) for 1D3D, and 921 Pa (3.7 

in. w.g.) for 2D2D. It is important that air density be considered in the design of cyclone 

systems. 
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Table 24. Cyclone pressure drop measurement  

Inlet Velocity (Vin, m/s) Actual Air Density (kg/m3) Cyclone Pressure Drop 

1D3D  ∆P1D3D (Pa) 

16 actual air 1.02 755 

16 standard air 1.02 1238 

2D2D  ∆P2D2D (Pa) 

15 actual air 1.02 580 

15 standard air 1.01 827 

• Five tests were performed for each condition. 
 

CYCLONE SYSTEM DESIGN – SIZING CYCLONES 

The first step in designing a cyclone abatement system is to size the cyclone. 

Cyclone size and configuration depend on the cyclone design velocity and the volume of 

air to be handled. Equation 9 (Parnell, 1996) can be used to size 1D3D, 2D2D and 1D2D 

cyclones. Based upon the research reported in this chapter, cyclone inlet design velocity 

is standard air velocity.  Equations 75 and 76 can be used to calculate the standard 

airflow rate (Q) and standard air inlet velocity (Vin). Tables 25, 26 and 27 list the 

recommended sizes for 1D3D, 2D2D and 1D2D cyclones. They are similar to the tables 

reported by Parnell (1990). This research supports the practice of sizing cyclones based 

on the standard air volume flow rate. 
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Table 25. Recommended sizes for 1D3D cyclones 

Using 1 Cyclone Using 2 Cyclones Using 3 Cyclones Using 4 Cyclones 

Air Volume, 

dscm/s 

(dscf/min) 
Dc, m 

(in.) 

Approx. 

Height, 

m (ft) 

Dc, m 

(in.) 

Approx. 

Height, 

m (ft) 

Dc, m 

(in.) 

Approx. 

Height, 

m (ft)  
Dc, m 

(in.) 

Approx. 

Height, 

m (ft) 

0.7 (1,500) 0.6 (24) 0.2 (8) -- -- -- --  -- -- 

1.0 (2,000) 0.7 (28) 0.3 (9) 0.5 (20) 0.2 (7) -- --  -- -- 

1.2 (2,500) 0.8 (30) 0.3 (10) 0.6 (22) 0.2 (8) -- --  -- -- 

1.4 (3,000) 0.8 (32) 0.3 (11) 0.6 (24) 0.2 (8) 0.5 (20) 0.2 (7)  -- -- 

1.9 (4,000) 1.0 (38) 0.3 (13) 0.7 (26) 0.2 (9) 0.6 (22) 0.2 (8)  0.5 (20) 0.2 (7) 

2.4 (5,000) 1.1 (42) 0.4 (14) 0.8 (30) 0.3 (10) 0.6 (24) 0.2 (8)  0.6 (22) 0.2 (8) 

2.8 (6,000) 1.2 (46) 0.4 (16) 0.8 (32) 0.3 (11) 0.7 (28) 0.3 (10)  0.6 (24) 0.2 (8) 

3.3 (7,000) -- -- 0.9 (36) 0.3 (12) 0.8 (30) 0.3 (10)  0.7 (26) 0.2 (9) 

3.8 (8,000) -- -- 1.0 (38) 0.3 (13) 0.8 (32) 0.3 (11)  0.7 (28) 0.3 (10) 

4.3 (9,000) -- -- 1.0 (40) 0.4 (14) 0.8 (32) 0.3 (11)  0.7 (28) 0.3 (10) 

4.7 (10,000) -- -- 1.1 (42) 0.4 (14) 0.9 (34) 0.3 (12)  0.8 (30) 0.3 (10) 

5.2 (11,000) -- -- 1.1 (44) 0.4 (15) 0.9 (36) 0.3 (12)  0.8 (32) 0.3 (11) 

5.7 (12,000) -- -- 1.2 (46) 0.4 (16) 1.0 (38) 0.3 (13)  0.8 (32) 0.3 (11) 

6.6 (14,000) -- -- -- -- 1.1 (42) 0.4 (14)  0.9 (36) 0.3 (12) 

7.6 (16,000) -- -- -- -- 1.1 (44) 0.4 (15)  1.0 (38) 0.3 (13) 

8.5 (18,000) -- -- -- -- 1.2 (46) 0.4 (16)  1.0 (40) 0.4 (14) 

9.4 (20,000) -- -- -- -- -- --  1.1 (42) 0.4 (14) 

10.4 (22,000) -- -- -- -- -- --  1.1 (44) 0.4 (15) 

11.3 (24,000) -- -- -- -- -- --  1.2 (46) 0.4 (16) 

• dscm = cubic meter of dry standard air 

• dscf = cubic foot of dry standard air 
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Table 26. Recommended sizes for 2D2D cyclones 

Using 1 Cyclone Using 2 Cyclones Using 3 Cyclones Using 4 Cyclones 

Air Volume, 

dscm/s 

(dscf/min) 
Dc, m 

(in.) 

Approx. 

Height, 

m (ft) 

Dc, m 

(in.) 

Approx. 

Height, 

m (ft) 

Dc, m 

(in.) 

Approx. 

Height, 

m(ft) 

 

Dc, m 

(in.) 

Approx. 

Height, 

m (ft) 

0.7 (1,500) 0.6 (24) 0.2 (8) -- -- -- --  -- -- 

1.0 (2,000) 0.7 (28) 0.3 (10) 0.5 (20) 0.2 (7) -- --  -- -- 

1.2 (2,500) 0.8 (30) 0.3 (10) 0.6 (22) 0.2 (8) -- --  -- -- 

1.4 (3,000) 09 (34) 0.3 (12) 0.6 (24) 0.2 (8) 0.5 (20) 0.2 (7)  -- -- 

1.9 (4,000) 1.0 (40) 0.4 (14) 0.7 (28) 0.3 (10) 0.6 (22) 0.2 (8)  0.5 (20) 0.2 (7) 

2.4 (5,000) 1.1 (44) 0.4 (15) 0.8 (30) 0.3 (10) 0.7 (26) 0.2 (9)  0.6 (22) 0.2 (8) 

2.8 (6,000) 1.2 (48) 0.4(16) 0.9 (34) 0.3 (12) 0.7 (28) 0.3 (10)  0.6 (24) 0.2 (8) 

3.3 (7,000) -- -- 0.9 (36) 0.3 (12) 0.8 (30) 0.3 (10)  0.7 (26) 0.2 (9) 

3.8 (8,000) -- -- 1.0 (40) 0.4 (14) 0.8 (32) 0.3 (11)  0.7 (28) 0.3 (10) 

4.3 (9,000) -- -- 1.1 (42) 0.4 (14) 0.9 (34) 0.3 (12)  0.8 (30) 0.3 (10) 

4.7 (10,000) -- -- 1.1 (44) 0.4 (15) 0.9 (36) 0.3 (12)  0.8 (30) 0.3 (10) 

5.2 (11,000) -- -- 1.2 (46) 0.4 (16) 1.0 (38) 0.3 (13)  0.8 (32) 0.3 (11) 

5.7 (12,000) -- -- 1.2 (48) 0.4 (16) 1.0 (40) 0.4 (14)  0.9 (34) 0.3 (12) 

6.6 (14,000) -- -- -- -- 1.1 (42) 0.4 (14)  0.9 (36) 0.3 (12) 

7.6 (16,000) -- -- -- -- 1.2 (46) 0.4 (16)  1.0 (40) 0.4 (14) 

8.5 (18,000) -- -- -- -- 1.2 (48) 0.4 (16)  1.1 (42) 0.4 (14) 

9.4 (20,000) -- -- -- -- -- --  1.1 (44) 0.4 (15) 

10.4 (22,000) -- -- -- -- -- --  1.2 (46) 0.4 (16) 

11.3 (24,000) -- -- -- -- -- --  1.2 (48) 0.4 (16) 

• dscm = cubic meter of dry standard air 

• dscf = cubic foot of dry standard air 
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Table 27. Recommended sizes for 1D2D cyclones 

Using 1 Cyclone Using 2 Cyclones Using 3 Cyclones Using 4 Cyclones 

Air Volume, 

dscm/s]

(dscf/min) 
Dc, m 

(in.) 

Approx. 

Height, 

m (ft) 

Dc, m 

(in.) 

Approx. 

Height, 

m (ft) 

Dc, m 

(in.) 

Approx. 

Height, 

m (ft)  
Dc, m 

(in.) 

Approx. 

Height, 

m (ft) 

0.7 (1,500) 0.7 (26) 0.2 (7) -- -- -- --  -- -- 

1.0 (2,000) 0.8 (30) 0.2 (8) 0.6 (22) 0.2 (6) -- --  -- -- 

1.2 (2,500) 0.9 (34) 0.2 (9) 0.6 (24) 0.2 (6) -- --  -- -- 

1.4 (3,000) 1.0 (38) 0.3 (10) 0.7 (26) 0.2 (7) 0.6 (22) 0.2 (6)  -- -- 

1.9 (4,000) 1.1 (44) 0.3 (11) 0.8 (30) 0.2 (8) 0.7 (26) 0.2 (7)  0.6 (22) 0.2 (6) 

2.4 (5,000) 1.2 (48) 0.3 (12) 0.9 (34) 0.2 (9) 0.7 (28) 0.2 (7)  0.6 (24) 0.2 (6) 

2.8 (6,000) 1.4 (54) 0.4 (14) 1.0 (38) 0.3 (10) 0.8 (30) 0.2 (8)  0.7 (26) 0.2 (7) 

3.3 (7,000) -- -- 1.0 (40) 0.3 (10) 0.9 (34) 0.2 (9)  0.7 (28) 0.2 (7) 

3.8 (8,000) -- -- 1.1 (44) 0.3 (11) 0.9 (36) 0.2 (9)  0.8 (30) 0.2 (8) 

4.3 (9,000) -- -- 1.2 (46) 0.3 (12) 1.0 (38) 0.3 (10)  0.8 (32) 0.2 (8) 

4.7 (10,000) -- -- 1.2 (48) 0.3 (12) 1.0 (40) 0.3 (10)  0.9 (34) 0.2 (9) 

5.2 (11,000) -- -- 1.3 (52) 0.3 (13) 1.1 (42) 0.3 (11)  0.9 (36) 0.2 (9) 

5.7 (12,000) -- -- 1.4 (54) 0.4(14) 1.1 (44) 0.3 (11)  1.0 (38) 0.3 (10) 

6.6 (14,000) -- -- -- -- 1.2 (48) 0.3 (12)  1.0 (40) 0.3 (10) 

7.6 (16,000) -- -- -- -- 1.3 (50) 0.3 (13)  1.1 (44) 0.3 (11) 

8.5 (18,000) -- -- - -- 1.4 (54) 0.4 (14)  1.2 (46) 0.3 (12) 

9.4 (20,000) -- -- - -- -- --  1.2 (48) 0.3 (12) 

10.4 (22,000) -- -- -- -- -- --  1.3 (52) 0.3 (13) 

11.3 (24,000) -- -- -- -- -- --  1.4 (54) 0.4 (14) 

• dscm = cubic meter of dry standard air 

• dscf = cubic foot of dry standard air 
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SUMMARY 

The performance of 1D3D and 2D2D cyclones is highly dependent on the inlet 

air velocity and air density. Proposed cyclone design inlet velocities are: 

• 16 m/s ± 2 m/s (3200 ft/min ± 400 ft/min) with air density at standard condition 

for 1D3D cyclones. 

• 15 m/s ± 2 m/s (3000 ft/min ± 400 ft/min) with air density at standard condition 

for 2D2D cyclones. 

• 12 m/s ± 2 m/s (2400 ft/min ± 400 ft/min) with air density at standard condition 

for 1D2D cyclones. 

It is important to consider the air density effect on the cyclone performance in the 

design of cyclone abatement systems. TCD ideal design velocity for 1D3D, 2D2D, and 

1D2D cyclones should be the ideal inlet velocity of standard air, not the ideal inlet 

velocity of actual air. In designing cyclone abatement systems, the proposed design 

velocity should be the basis for sizing the cyclone and determining the cyclone pressure 

drop. The recommended sizes for 1D3D, 2D2D, and 1D2D cyclones are reported in this 

chapter. 
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CHAPTER VII     

SUMMARY AND CONCLUSIONS 

SUMMARY – TCD PROCESS 

The detailed new theoretical models for cyclone design developed in this 

research are summarized in appendix C. The results of this research extend the Texas 

A&M cyclone design method to be a comprehensive whole design process in terms of 

energy consumption and efficiency. Basically, following steps are involved in the Texas 

A&M cyclone design process: 

1. Cyclone design velocity: 

1D3D: 16 m/s ± 2 m/s (3200 ft/min ± 400 ft/min) of standard air  

2D2D: 15 m/s ± 2 m/s (3000 ft/min ± 400 ft/min) of standard air  

1D2D: 12 m/s ± 2 m/s (2400 ft/min ± 400 ft/min) of standard air 

2. Sizing cyclone: 

System flow rate and cyclone design velocity are the bases to size a cyclone. 

Equation 74 can be used to convert the actual airflow rate to standard airflow 

rate. Then, equation 9 can be used to determine cyclone diameter by using 

standard airflow rate and inlet velocity. 

3. Determining cyclone collection efficiency: 

The following sub-steps are involved to determine collection efficiency: 

a. Determining particle size distribution to obtain MMD and GSD 

b. Determining cut-point correction factor by equations 71 and 72 



 84

c. Determining cut-points by equation 73 

d. Determining cyclone overall efficiency by equation 68 

4. Determining cyclone pressure drops by equation 10 or equations 40, 41, 46, 

48, 50 and 51. 

CONCLUSIONS 

A new theoretical method for computing air stream travel distance and number of 

turns has been developed in this research. The flow pattern and cyclone dimensions 

determine the air stream travel distance in the outer vortex of a cyclone. The number of 

effective turns for different cyclone sizes was calculated based upon the air stream travel 

distance and the cyclone dimension. The theoretical calculations indicate that the 

number of effective turns is determined by the cyclone design, and is independent of 

cyclone diameter (size) and inlet velocity. There are 6.13 turns in both 1D3D and 2D2D 

cyclones and 2.67 turns in the 1D2D cyclone.  

Cyclone pressure drop consists of five individual pressure drop components. The 

frictional loss in the outer vortex and the rotational energy loss in the cyclone are the 

major pressure loss components. A theoretical analyses of the pressure drop for five 

different size cyclones (0.1 m / 4 inch, 0.2 m / 6 inch, 0.3 m / 12 inch, 0.6 m / 24 inch 

and 0.9 m / 36 inch) show that cyclone pressure is independent of its diameter. However, 

cyclone pressure drop is a function of cyclone body height. Experiments were conducted 

to verify the theoretical analysis and gave excellent agreement. The new theoretical 

method can be used to predict the air stream travel distance, number of turns and cyclone 

pressure drop. For the 1D3D, 2D2D and 1D2D cyclone designs, the predictions of 
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pressure drop are 1071 Pa (4.3 inch H2O), 854 Pa (3.43 inch H2O) and 390 Pa (1.57 inch 

H2O) respectively at their own design inlet velocity (16 m/s / 3200 fpm, 15 m/s / 3000 

fpm and 12 m/s / 2400 fpm, respectively).  

Particle motion in the cyclone outer vortex was analyzed to establish the force 

balance differential equation. Barth’s “static particle” theory combined with the force 

balance equation was applied in the theoretical analyses for the models of cyclone cut-

point and collection probability distribution in the cyclone outer vortex. Cyclone cut-

points for different dusts were traced from measured cyclone overall collection 

efficiencies and the theoretical model for the cyclone overall efficiency calculation. The 

theoretical predictions of cut-points for 1D3D and 2D2D cyclones with fly ash are 4.85 

µm and 5.25 µm. Based upon the theoretical study of collection efficiency in this 

research the following conclusions are obtained: 

• The traced cut-points indicate that cyclone cut-point is the function of dust PSD 

(MMD and GSD). 

• Theoretical d50 model (Barth model) needs to be corrected for PSD.  

• The cut-point correction factors (K) for 1D3D and 2D2D cyclone were 

developed through regression fits from theoretically traced cut-points and 

experimental cut-points.   

• The corrected d50 is more sensitive to GSD than to MMD. 

The theoretical overall efficiency model developed in this research can be used 

for cyclone total efficiency calculation with the corrected d50 and PSD. No fractional 

efficiency curves are need for calculating total efficiency. 
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The performance of 1D3D and 2D2D cyclones is highly dependent on the inlet 

air velocity and air density. Based on the experimental study in this research, proposed 

cyclone design inlet velocities are: 

• 16 m/s ± 2 m/s (3200 ft/min ± 400 ft/min) with air density at standard condition 

for 1D3D cyclones. 

• 15 m/s ± 2 m/s (3000 ft/min ± 400 ft/min) with air density at standard condition 

for 2D2D cyclones. 

• 12 m/s ± 2 m/s (2400 ft/min ± 400 ft/min) with air density at standard condition 

for 1D2D cyclones. 

It is important to consider the air density effect on the cyclone performance in the 

design of cyclone abatement systems. TCD ideal design velocity for 1D3D, 2D2D, and 

1D2D cyclones should be the ideal inlet velocity of standard air, not the ideal inlet 

velocity of actual air. In designing cyclone abatement systems, the proposed design 

velocity should be the basis for sizing the cyclone and determining the cyclone pressure 

drop. The recommended sizes for 1D3D, 2D2D, and 1D2D cyclones are reported in this 

research. 
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av :  particle acceleration (m/s2) 

rav : particle radial acceleration (m/s2) 

tav : particle tangential acceleration 

(m/s2)  

Ap: surface area of control volume I 

(equation 15) 

Az:  outer vortex cross-section area at Z 

location along axial direction 

(annular area, m2) 

C1:    constant 1 

C2:    constant 2 

C3:    constant 3 

C4:    constant 4 

C5:    constant 5 = 1 

C6:    constant 6 = 1.8 

Con.inj: inlet concentration of jth size 

range (mg/m3) 

Con.outj: outlet concentration of jth size 

range (mg/m3) 

D:     Pipe diameter (equation 45) 

d15.9:  (1) diameter of particles collected 

with 15.9% efficiency 

(equation 11) 

(2) diameter such that particles 

constituting 15.9% of the total 

mass of particles are smaller 

than this size (equation 77) 

d50:  (1) diameter of particles collected 

with 50% efficiency (equations 

11, 66, 70, 73) 

(2) diameter such that particles 

constituting 50% of the total 

mass of particles are smaller 

than this size (equation 77) 

d84.1:  (1) diameter of particles collected 

with 84.1% efficiency 

(equation 11) 

(2) diameter such that particles 

constituting 84.1% of the total 

mass of particles are smaller 

than this size (equation 77) 

Dc: cyclone body diameter (m) 

De: diameter of outlet tube (m) 
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Do: (1) diameter of interface (m) 

 (2) orifice diameter (equation 53  

            only, m) 

dp:  particle diameter (µm) 

dpc: diameter of particle collected with 

50% efficiency (m) 

pjd : characteristic diameter of the jth 

particle size range (m) 

Ds:  equivalent stream diameter in the 

outer vortex (m) 

Ds1: equivalent stream diameter in the 

barrel (m) 

Ds2: equivalent stream diameter in the 

cone (m) 

dφ: angle that the control volume I 

covered (equations 14, 15, 16, and 

17)  

EC: emission concentration (mg/m3) 

ECa: actual air emission concentration 

(mg/m3) 

ECs: standard air emission concentration 

(mg/dry standard cubic meter) 

f:  friction factor for frictional pressure 

loss 

F:  feeding rate (g/s) 

Fc: centrifugal force (N) 

FC: centrifugal force acting on the 

particle (N) 

FD: drag force against particle radial 

motion (N) 

FDG: drag force to against gravity 

settling (N) 

FG: gravity force (N) 

Fp: pressure force on the surface of 

control volume (equations 15 and 

16) 

F(d): cumulative particle size 

distribution (%) 

∑ F
v

: all the external forces (N) 

FW1: pre-weight of filter (g) 

FW2: post-weight of filter (g) 

h:   height of control volume I 

(equations 14, 15, 16, and 17) 

H:  height of cyclone inlet duct (m) 
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Hc: height of cyclone inlet duct (m) 

Hv: pressure drop expressed in number 

of inlet velocity heads 

K:  (1) cyclone pressure drop constant 

(equations 7 and 10) 

 (2) orifice meter coefficient  

           (equation 53) 

 (3) cut-point correction factor  

          (equation 73) 

K1D3D: cut-point correction factor for 

1D3D cyclone 

K2D2D: cut-point correction factor for 

2D2D cyclone 

L:   (1) air stream travel distance in the  

            outer vortex (m) 

 (2) total inlet loading rate ( equation  

           78 only g/m3) 

L1:  air stream travel distance in the 

barrel part (m) 

L2:  air stream travel distance in the 

cone part (m) 

Lc: length of cyclone body (m) 

mj: mass fraction of particles in the jth 

size range (%) 

mp:  particle mass (kg) 

MWda: molecular weights of dry air 

(28.96 g/g-mole) 

MWwv: molecular weights of water 

vapor (18 g/g-mole) 

n:   flow pattern factor  

Ne: number of effective turns 

Ne1: number of effective turns in the 

barrel part 

Ne2: number of effective turns in the 

cone part 

P:  (1)  pressure acting on the control 

volume surface (equations 15 – 

17) 

(2) pressure distribution in the outer  

       vortex  (equations 18 and 19) 

P(d): particle collection probability 

distribution (%) 

Pb: barometric pressure (atm) 
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Ps: saturated water vapor pressure at dry 

bulb temperature (Pa) 

∆P: (1) cyclone pressure drop (N/m2 or 

Pa) 

 (2) pressure drop across orifice 

equation 52 only, Pa) 

∆Pf: frictional pressure loss in the outer 

vortex (Pa) 

∆Pf1: frictional pressure loss in the 

barrel part of outer vortex (Pa) 

∆Pf2: frictional pressure loss in the cone 

part of outer vortex (Pa) 

∆Pe: cyclone entry pressure loss (Pa) 

∆Pk: kinetic pressure loss (Pa) 

∆Po: pressure loss in the inner vortex 

and outlet tube 

∆Pr: rotational pressure loss (Pa) 

Q:  system air volume flow rate (m3/s) 

Qa: actual airflow rate (m3/s) 

Qin: inlet airflow rate (m3/s) 

Qz: downward air flow rate in the outer 

vortex (m3/s) 

Qs: standard airflow rate (m3/s) 

r:   radial position in the outer vortex 

space (m) 

R:  (1) cyclone body radius (m) 

 (2) ideal gas constant ( 82.06 atm- 

     cm3/g-mole-K, equation 74 only) 

R
v

: radial unit vector 

Re:  Reynolds number 

ro:  interface radius (m) (figure 6) 

dt
dr θ : particle tangential velocity (m/s) 

rp(z): particle radial trajectory 

RH: relative humidity (%) 

T:  (1) temperature (equation 74, K) 

 (2) testing time for each sample  

           (equation 79, s) 

T
v

: tangential unit vector 

t1:  air stream traveling time in the barrel 

(s) 

t2:  air stream traveling time in the cone 

(s) 

V:  fluid velocity in the pipe (equation 

45) 
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V1:  total average gas velocity in the 

barrel part (m/s) 

V2: total average gas velocity in the 

cone part (m/s) 

Va: actual air inlet velocity (m/s) 

Vs: standard air inlet velocity (m/s) 

Vi: gas inlet velocity (m/s) 

Vgr: gas radial velocity (m/s) 

Vin: cyclone inlet velocity (m/s) 

pV
v

: particle velocity vector (m/s) 

Vpr: particle radial velocity (m/s) 

Vpz: particle axial velocity (m/s) 

Vr2: gas radial velocity in the cone part 

(m/s) 

Vr21: gas radial velocity in the zone 1 of 

a 1D2D cone part (m/s) 

Vr22: gas radial velocity in the zone 2 of 

a 1D2D cone part (m/s) 

Vs1: air stream velocity in the barrel part 

(m/s) 

Vs2: air stream velocity in the cone part 

(m/s) 

Vt: gas tangential velocity (m/s) 

Vt1: gas tangential velocity in the barrel 

part (m/s) 

Vt2: gas tangential velocity in the cone 

part (m/s) 

VTS: particle terminal settling velocity 

(m/s) 

Vz1: gas axial velocity in the barrel (m/s) 

Vz2: gas axial velocity in the cone (m/s) 

Vz21: gas axial velocity in the zone 1 of 

a 1D2D cone part (m/s) 

Vz22: gas axial velocity in the zone 2 of 

a 1D2D cone part (m/s) 

VPi: inlet velocity pressure (N/m2 or Pa) 

VPin: cyclone inlet velocity pressure 

(N/m2 or Pa) 

VPo: outlet velocity pressure (N/m2 or 

Pa) 

VPout: cyclone outlet velocity pressure 

(N/m2 or Pa) 

VPs:  air stream velocity pressure at time 

t in the outer vortex (Pa) 
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VPs1:  air stream velocity pressure at 

time t in the barrel part of outer 

vortex (Pa) 

VPs2:  air stream velocity pressure at 

time t in the cone part of outer 

vortex (Pa) 

W: width of cyclone inlet duct (m) 

Z:  axial position in the outer vortex (m) 

Z1: height of barrel part (m) 

Zc: length of cyclone cone (m) 

Zo: effective length (figure 6, m) 

Zo2: cyclone effective length in the cone 

part figure 8) 

Zp: particle axial location (m) 

ηo: overall collection efficiency (%) 

ηj: collection efficiency for jth particle 

size range (%) 

θ:  cyclone cone angle 

µ:  gas viscosity (kg/m-s) 

ρ:  fluid density (kg/m3) 

ρa: air density (kg/m3) 

ρg: gas density (kg/m3) 

ρp: particle density (kg/m3) 

ρs: standard air density (kg/m3) 

τ:   particle relaxation time (s) 

ω:  angular velocity 
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LIST OF ACRONYMS 
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AED: aerodynamic equivalent diameter 

CCD: classical cyclone design 

CCM: Coulter Counter Multisizer 

ESD: equivalent spherical diameter 

FEC: fractional efficiency curve 

GSD: geometric standard deviation 

MMD: mass median diameter 

PM:  particulate matter 

PSD: particle size distribution 

TCD: Texas A&M cyclone design 
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APPENDIX C 

 
 

SUMMARY OF THE NEW THEORETICAL MODELS 

DEVELOPED IN THIS RESEARCH 
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TRAVEL DISTANCE IN THE BARREL PART 

• L1 = 1.53 πDc = 4.8 Dc         (For 1D3D) 

• L1 = 3.06 πDc = 9.6 Dc         (For 2D2D) 

• L1 = 1.66 πDc = 5.2 Dc         (For 1D2D)  (Equation 34) 

TRAVEL DISTANCE IN THE BARREL PART 

•  1D3D: 
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             L2 = 10.83 Dc      (Equation 37) 

• 2D2D: 
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              L2 = 7.22 Dc       (Equation 37) 

• 1D2D: 
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(Equation 36) 
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 L2 = 2.57 Dc       (Equation 36) 

NUMBER OF EFFECTIVE TURNS 

• In The Barrel Part 

           
c

1
1e D*

L
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π
=         (Equation 38) 

• In The Cone Part 
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CYCLONE TOTAL PRESSURE DROP 

orfketotal PPPPPP ∆+∆+∆+∆+∆=∆    (Equation 52)   

• Friction Loss In The Barrel Part 
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∫∫ ==∆   (Equation 44) 

in1s1f VP*14.0VP*13.0P ==∆     (For 1D3D) 

in1s1f VP*28.0VP*27.0P ==∆     (For 2D2D) 

in1s1f VP*15.0VP*14.0P ==∆     (For 1D2D)  (Equation 46) 

• Friction Loss In The Cone Part 
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o 1D3D: 

              *
Z
D4Z

*
D

*VP*
2
fP c2

3

c

D2

0
in2f

c

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π
=∆ ∫  

                          dZ
D8Z2

D
D4Z

D4
D2Z

D4 4
7

2

c

c
2

c

c
2

c

c

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

 

o 2D2D: 
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o 1D2D: 
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• Rotational Pressure loss 
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            ∆Pr = 2 VPin           (1D3D and 2D2D) 

            ∆Pr = 1.22 VPin       (1D2D) 
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CYCLONE COLLECETION EFFICIENCY 

• Cut-point Model 

                        
o

2
inp

50
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Q9*Kd
πρ

µ
=    (Equation 73) 

                        GSD*4.2MMD*02.03.5K D3D1 −+=  (Equation 71) 

                        GSD*5.2MMD*02.05.5K D2D2 −+=  (Equation 72) 

• Overall Efficiency Model 
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APPENDIX D 

 
 

 CALCULATIONS OF TRAVEL DISTANCE IN THE CONE PART 

OF A CYCLONE 
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Travel Distance In The Cone (L) – 1D3D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 

 

• ( ) ( ) ( ) dZ**D4Z*
D32Z8*

1
D4Z*

1
D2Z

1L 1

D2

0

2

1

2

1

2

1
1

1

π+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∫   

=  43.315 = 10.83 D 

• ( ) ( ) ( ) dZ**D4Z*
D32Z8*

1
D4Z*

1
D2Z

1L 2

D2

0

2

2

2

2

2

2
2

2

π+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∫  

= 64.973 = 10.83 D 

• ( ) ( ) ( ) dZ**D4Z*
D32Z8*

1
D4Z*

1
D2Z

1L 3

D2

0

2

3

2

3

2

3
3

3

π+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∫         

= 129.946 = 10.83 D 

• ( ) ( ) ( ) dZ**D4Z*
D32Z8*

1
D4Z*

1
D2Z

1L 4

D2

0

2

4

2

4

2

4
4

4

π+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∫  

= 259.892 = 10.83 D 

• ( ) ( ) ( ) dZ**D4Z*
D32Z8*

1
D4Z*

1
D2Z

1L 5

D2

0

2

5

2

5

2

5
5

5

π+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∫  

= 389.837 = 10.83 D 
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Travel Distance In The Cone (L) – 2D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 

 

• ( ) ( ) ( ) dZ**D8Z3*
D128Z48*

1
D8Z3*

1
D4Z3

1L 1

D
3
4

0

2

1

2

1

2

1
1

1

π+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∫   

=  28.887 = 7.22 D 

• ( ) ( ) ( ) dZ**D8Z3*
D128Z48*

1
D8Z3*

1
D4Z3

1L 2

D
3
4

0

2

2

2

2

2

2
2

2

π+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∫

       = 43.33 = 7.22 D 

• ( ) ( ) ( ) dZ**D8Z3*
D128Z48*

1
D8Z3*

1
D4Z3

1L 3

D
3
4

0

2

3

2

3

2

3
3

3

π+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∫         

 = 86.613 = 7.22 D 

• ( ) ( ) ( ) dZ**D8Z3*
D128Z48*

1
D8Z3*

1
D4Z3

1L 4

D
3
4

0

2

4

2

4

2

4
4

4

π+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∫

      = 173.226 = 7.22 D 

• ( ) ( ) ( ) dZ**D8Z3*
D128Z48*

1
D8Z3*

1
D4Z3

1L 5

D
3
4

0

2

5

2

5

2

5
5

5

π+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∫  

= 259.839 = 7.22 D 
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Travel Distance In The Cone (L) – 1D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 

 

• +⎥⎦
⎤

⎢⎣
⎡

π
+⎥⎦

⎤
⎢⎣
⎡

π
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

π= ∫ dZ
104

1
13

1
D5Z2

D
13L

1

1

D5.1

D375.1

222

1

1
1   

( ) ( ) ( ) dZ*D15Z3*
D120Z24*

1
D15Z3*

1
D10Z4

1
1

D375.1

0

2

1

2

1

2

1

1

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∫  

=  10.261 = 2.565 D 

 

• +⎥⎦
⎤

⎢⎣
⎡

π
+⎥⎦

⎤
⎢⎣
⎡

π
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

π= ∫ dZ
104

1
13

1
D5Z2

D
13L

2

2

D5.1

D375.1

222

2

2
2   

( ) ( ) ( ) dZ*D15Z3*
D120Z24*

1
D15Z3*

1
D10Z4

1
2

D375.1

0

2

2

2

2

2

2

2

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∫

 
=  15.392 = 2.565 D 

 

• +⎥⎦
⎤

⎢⎣
⎡

π
+⎥⎦

⎤
⎢⎣
⎡

π
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

π= ∫ dZ
104

1
13

1
D5Z2

D
13L

3

3

D5.1

D375.1

222

3

3
3   

( ) ( ) ( ) dZ*D15Z3*
D120Z24*

1
D15Z3*

1
D10Z4

1
3

D375.1

0

2

3

2

3

2

3

3

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∫

 
=  30.784 = 2.565 D 
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• +⎥⎦
⎤

⎢⎣
⎡

π
+⎥⎦

⎤
⎢⎣
⎡

π
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

π= ∫ dZ
104

1
13

1
D5Z2

D
13L

4

4

D5.1

D375.1

222

4

4
4   

( ) ( ) ( ) dZ*D15Z3*
D120Z24*

1
D15Z3*

1
D10Z4

1
4

D375.1

0

2

4

2

4

2

4

4

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∫

 

=  61.568 = 2.565 D 

 

• +⎥⎦
⎤

⎢⎣
⎡

π
+⎥⎦

⎤
⎢⎣
⎡

π
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

π= ∫ dZ
104

1
13

1
D5Z2

D
13L

5

5

D5.1

D375.1

222

5

5
5   

( ) ( ) ( ) dZ*D15Z3*
D120Z24*

1
D15Z3*

1
D10Z4

1
5

D375.1

0

2

5

2

5

2

5

5

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∫

 

=  92.353 = 2.565 D 
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APPENDIX E 

 
 

 CALCULATIONS OF FRICTIONAL LOSS IN THE CONE PART 

OF A CYCLONE 
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Frictional Loss In The Cone (∆Pf) @ Vin = 5 m/s (1000 fpm) – 1D3D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0076.0

P
1D2

0
2
3

1

4
7

2

1

1
2

1

1
2

1

11

1 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  35 Pa (0.14 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0076.0

P
2D2

0
2
3

2

4
7

2

2

2
2

2

2
2

2

22

2 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆  

=  35 Pa (0.14 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0076.0

P
3D2

0
2
3

3

4
7

2

3

3
2

3

3
2

3

33

3 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  35 Pa (0.14 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0076.0

P
4D2

0
2
3

4

4
7

2

4

4
2

4

4
2

4

44

4 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  35 Pa (0.14 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0076.0

P
5D2

0
2
3

5

4
7

2

5

5
2

5

5
2

5

55

5 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  35 Pa (0.14 in H2O) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 8 m/s (1500 fpm) – 1D3D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0171.0

P
1D2

0
2
3

1

4
7

2

1

1
2

1

1
2

1

11

1 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  78.7 Pa (0.316 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0171.0

P
2D2

0
2
3

2

4
7

2

2

2
2

2

2
2

2

22

2 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆  

=  78.7 Pa (0.316 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0171.0

P
3D2

0
2
3

3

4
7

2

3

3
2

3

3
2

3

33

3 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  78.7 Pa (0.316 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0171.0

P
4D2

0
2
3

4

4
7

2

4

4
2

4

4
2

4

44

4 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  78.7 Pa (0.316 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0171.0

P
5D2

0
2
3

5

4
7

2

5

5
2

5

5
2

5

55

5 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  78.7 Pa (0.316 in H2O) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 10 m/s (2000 fpm) – 1D3D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0305.0

P
1D2

0
2
3

1

4
7

2

1

1
2

1

1
2

1

11

1 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  140 Pa (0.563 in H2O) 

• 
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dZ*
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D4

*
Z
D4Z

*0305.0

P
2D2

0
2
3

2

4
7

2

2

2
2

2

2
2

2
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2 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆  

=  140 Pa (0.563 in H2O) 

• 
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Frictional Loss In The Cone (∆Pf) @ Vin = 13 m/s (2500 fpm) – 1D3D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 15 m/s (3000 fpm) – 1D3D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 16 m/s (3200 fpm) – 1D3D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 18 m/s (3500 fpm) – 1D3D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0934.0

P
1D2

0
2
3

1

4
7

2

1

1
2

1

1
2

1

11

1 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  430 Pa (1.725 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0934.0

P
2D2

0
2
3

2

4
7

2

2

2
2

2

2
2

2

22

2 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆  

=  430 Pa (1.725 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0934.0

P
3D2

0
2
3

3

4
7

2

3

3
2

3

3
2

3

33

3 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  430 Pa (1.725 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0934.0

P
4D2

0
2
3

4

4
7

2

4

4
2

4

4
2

4

44

4 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  430 Pa (1.725 in H2O) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*0934.0

P
5D2

0
2
3

5

4
7

2

5

5
2

5

5
2

5

55

5 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆             

=  430 Pa (1.725 in H2O) 



 117

Frictional Loss In The Cone (∆Pf) @ Vin = 20 m/s (4000 fpm) – 1D3D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 

• 

( )
( ) ( )

( )
dZ*

D4

D8Z2*
D

D4Z*
D4

D2Z
D4

*
Z
D4Z

*122.0

P
1D2

0
2
3

1

4
7

2

1

1
2

1

1
2

1

11

1 ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎥
⎦

⎤
⎢
⎣

⎡
+π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡ +

=∆   

 =  561 Pa (2.253 in H2O) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 5 m/s (1000 fpm) – 2D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 8 m/s (1500 fpm) – 2D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 10 m/s (2000 fpm) – 2D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 13 m/s (2500 fpm) – 2D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 15 m/s (3000 fpm) – 2D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 16 m/s (3200 fpm) – 2D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 18 m/s (3500 fpm) – 2D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 20 m/s (4000 fpm) – 2D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 5 m/s (1000 fpm) – 1D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 8 m/s (1500 fpm) – 1D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 10 m/s (2000 fpm) – 1D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 12 m/s (2400 fpm) – 1D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 15 m/s (3000 fpm) – 1D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 16 m/s (3200 fpm) – 1D2D 

D1 = 0.1 m (4 inch) 

D2 = 0.2 m (6 inch) 

D3 = 0.3 m (12 inch) 

D4 = 0.6 m (24 inch) 

D5 = 0.9 m (36 inch) 
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Frictional Loss In The Cone (∆Pf) @ Vin = 18 m/s (3500 fpm) – 1D2D 
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Frictional Loss In The Cone (∆Pf) @ Vin = 20 m/s (4000 fpm) – 1D2D 
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