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ABSTRACT

An empirical or regression modeling approach is simple

to develop and easy to use compared to use of detailed hourly

simulations. Therefore, regression analysis has become a widely

used tool in the determination of annual energy savings accruing

from energy conserving retrofits. The regression modeling approach

is accurate and reliable if several months of data (more than six

months) are used to develop the model. If such is not the case, the

regression models can, unfortunately, lead to significant errors in

the prediction of the annual energy consumption.

Issues relating to bias in regression models identified from

short data sets are discussed in this paper. First, the physical

reasons for the differences between the predictions of the annual

energy consumption based on a short data set model and on a long

data set model are discussed. Then, the errors associated with

the multiple linear regression model are evaluated when applied to

short data sets of monitored data from large commercial buildings

in Texas.

The analysis shows that the seasonal variation of the outdoor

dry-bulb and dew-point temperature causes significant errors in the

models developed from short data sets. The MBE (mean bias error)

from models based on short data sets (one month) varied from +40%

to -15%, which is significant. Hence, due care must be exercised

when applying the regression modeling approach in such cases.

* Dept, of Mechanical Engineering, Texas A&M University,

College Station, TX 77843-3123.

INTRODUCTION

The performance of energy conservation retrofits is being

increasingly assessed by direct measurement of energy savings.

(Fels 1986, MacDonald and Wasserman, 1988, Kissock et al., 1992

and Reddy et al., 1994a). Commonly used methods to evaluate

retrofit performance include: (i) direct utility bill comparison from pre-

to post-retrofit energy use, (ii) use of pre-retrofit empirical energy

consumption model with post-retrofit conditions (Kissock et al. 1992

and Katipamula et al., 1994a), (Hi) use of simplified loads and

systems models (Katipamula and Claridge, 1993), and (iv) detailed

hourly simulation (DOE2.1, BLAST, etc.) of pre- and post-retrofit

energy consumption (Kaplan et.al., 1990).

The simplest amongst the savings measurement methods is

direct utility bill comparison, which involves comparing utility bills for

each month prior to retrofit to those after the retrofit. However, it is

limited to simple non-weather dependent retrofits (such as lighting).

On the other hand, the detailed hourly simulation method is probably

the most accurate, but requires advanced skills and several critical

inputs; thus it is time consuming. Empirical or regression models,

based on engineering principles (relating to building description,

HVAC equipment, occupancy and internal load, etc.) are simple

to develop and easy to use as compared to the detailed hourly

simulation models. Therefore, regression analysis has become

a useful tool in the measurement of energy savings from energy

conserving retrofits.

Residential energy consumption (heating and cooling re-

lated) is usually a strong function of the outdoor dry-bulb temperature

(Fels, 1986), whereas the energy consumption of a large commer-
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cial building is a complex function of climatic conditions (dry-bulb

and dew-point temperatures, and solar loads), building charac-

teristics (loss coefficients, heat capacity, internal loads), building

usage (12-hour, or 24-hour, amount of fresh air intake ...), system

characteristics (total air flow, hot and cold deck supply tempera-

tures, economizer cycle), and type of Heating, Ventilation, and Air

Conditioning (HVAC) equipment used. Therefore, Multiple Linear

Regression (MLR) models are well suited to model the energy con-

sumption of large commercial buildings (Reddy et al., 1994b and

Katipamula et al., 1994a).

It has been suggested that the regression modeling approach

is reliable if several months (six months or more) of data are used

for model identification (Kissock et al., 1993). Unfortunately, if

fewer than six months of daily monitored data are available, the

regression models may lead to significant errors in the prediction

of the annual energy consumption. Rachlin et al. (1986) studied

how the parameter estimates of the model identified using the

PRInceton Scorekeeping Method (PRISM, Fels 1986) varied for

different estimation periods. They concluded that twelve consecutive

monthly readings are required for robust estimation of normalized

annual energy consumption using utility billing data. Kissock et al.

(1993) showed that the annual energy use in a commercial building

in Central Texas with dual-duct constant volume system (DDCV)

can be significantly over-or under-estimated depending on the size

and properties of the data sets used. The study showed that for

the buildings considered, the maximum deviation of annual cooling

energy use was about 20% when a one month period was used with

an average deviation of 4% depending on the size of the data set.

The maximum deviation of annual heating energy use was as much

as 400% with an average around 20%. They also suggested that

models identified from short data sets which included the spring and

the fall period had less bias than those identified from the winter and

the summer period. All the comparisons were based on daily energy

use models.

This study is an extension of the previous work by Kissock

et al. (1993). First, physical reasons for the differences between

the predictions of the annual energy consumption based on a short

data set model and the predictions based on a long data set

model are highlighted. Second, regression models are developed

using engineering principles and applied to short data sets for

several different buildings that have the two most commonly used

HVAC systems (dual-duct constant air volume (DDCV] and dual-

duct variable air volume [VAV] systems) in Central Texas. Finally,

an analysis of how the MBE (mean bias error) varies as a function of

outdoor dry-bulb temperature for one-month data sets is presented.

BACKGROUND

In this section, we highlight the physical reasons for the dif-

ferences between the annual energy consumption predicted from a

model based on a short data set and the annual energy consumption

predicted from a model based on a long data set (in this analysis a

long data set consists of an entire year data) are highlighted. Four

commonly used regression models to model the building energy

consumption (both for residential and non-residential buildings) are

the: (i) 2P, (ii) 3P, (iii) 4P and (iv) MLR models (Fels, 1986, Kissock,

1992, Ruch, et al., 1992 and Katipamula et al., 1994a). While

2P, 3P, and 4P models are generally applicable to residential and

small commercial buildings (single zone type buildings), the use of

MLR model is generally more appropriate for large (multi-zone type

buildings) commercial buildings (Ruch et. al., 1992, and Katipamula

et al., 1994a).

Since this study is focused on large commercial buildings,

only the MLR model is analyzed. The analysis can be easily

extended to other model types as well. Unlike heating energy con-

sumption, the cooling energy consumption has two components,

sensible and latent. In most residential and small commercial build-

ings the latent cooling is a small fraction of the sensible cooling

consumption. Therefore, the total cooling energy use is assumed

to have the same functional form as the sensible cooling energy

consumption. However, this assumption is not valid for large com-

mercial building where latent cooling can be a significant portion of

the total cooling (depending on the fraction of outdoor air intake,

Reddy et al., 1994a and Katipamula et al., 1994a). The 2P, 3P, and

4P models fall in the former category, where the total cooling energy

consumption is assumed to have the same functional form as the

sensible cooling energy consumption.

A previous study by Katipamula et al., (1994b), found that

daily regression models (i.e. models developed from daily energy

use data) were more appropriate than monthly, hourly or hour

of the day regression models for estimating the energy savings

from energy conserving retrofits. Therefore, only daily models are

discussed in this study.

Previous studies have suggested that a piecewise MLR

model explains more variation while modeling/predicting the cooling

energy use (Ec) in large commercial buildings with either a DDCV

or a VAV system (Reddy et al., 1994a and Katipamula et al., 1994a).

Also, the Ec in large commercial buildings, operating 24 hours a

day, may show a segmented linear behavior as a function of outdoor

dry-bulb temperature (To) (Kissock et al., 1992 and Katipamula et

al., 1994). One of the reasons for the segmented linear behavior is

due to the hot deck reset schedule in a DDCV system. In a VAV

system, the change in slope as a function of To occurs when the

system reaches its minimum air flow condition (In a VAV system

air flow is modulated to meet the zone load, but this modulation
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stops after a certain minimum. Because the fan motors can not be

modulated below 30% of the full load rated power).

In addition to To, the other variables which effect Ec are:

outdoor dew-point temperature (Tdp), solar radiation (q,oi) and

internal gains from lights and equipment (<?,). In most large com-

mercial buildings the major portion of the latent cooling load is from

ventilation, which is a strong function of outdoor dew-point (T<jp).

However, while performing regression analysis, a better way to han-

dle the latent contribution is to use (Tdp —T,)+, where T, is the

mean surface temperature of the cooling coil and"+" indicates that

the term is set equal to zero when Tdp < T,.

Since Ec is a function of several variables, MLR models are

more appropriate than the single variable models. In regression

modeling a change in slope can be handled by introducing an

indicator variable. The value of the indicator variable, I, is set equal

to 1 for To values to the right of the change point, indicating the

presence of the change point. For the rest of the data (To values to

the left of the change point) the indicator is set equal to zero (Daniel

et al., 1980). Thus the regression model for both DDCV and VAV

systems assumes the following functional form (Katipamula et. al.,

1994a):

where a , /?o. Pi, fo, p3, /?4. and /?5 are regression coefficients.

The coefficient /?i represents the offset of the indicated observations

(To values right of the change point) from the value a. The coefficient

/?2 indicates the extent to which the right hand slope is larger than

the slope to the left. If the change point does not exist in the data,

then the coefficients B\ and J-> will not be statistically significant

(i.e., both 0i and 02 will be near zero). The annual energy use

(AEU) for the above model is given by:

where, n i , is the number of data points to the right of the change

point The fraction error (FE) in predicting AEU, with such model,

is given by:

where all estimates with 'primes* pertain to the short data set and

FE is defined as:

We note from the expression for the fractional error, that we

need to know not only the regression parameter estimates based on

a short data set but also those based on a long data set. There is no

hard and fast rule to determine a priori the regression parameters

based on a long data set for all building classes. Since the building

energy consumption, in large commercial buildings, is a complex

function of several variables, the regression parameters vary widely

from building to building (Kissock et. al., 1992). Any generalization

to quantify the fractional error has to be made by studying several

buildings in each class (Office, Institutional, Hospital, Library, etc.).

Therefore, in this study an alternate approach is used to quantify

the errors (quantifying the mean bias error of short data sets as a

function of regressor variables).

Before we address the source of errors associated with

short data set models, the affect of collinearity between regressor

variables is addressed. The MLR analysis assumes the regressor

variables are independent of each other. Multicollinearity between

the regressor variables results in large uncertainty bounds for the

regression coefficients leading to model uncertainty. Therefore, in

the next section the collinearity between regressor variables for a

short data set is analyzed.

COLLINEARITY BETWEEN VARIABLES

Collinearity between regressor variables is a potential prob-

lem with data sets. It occurs whenever one (or more) of the regressor

variables is a linear function of one (or more) other regressor vari-

able. When regressor variables are related to each other, the

estimates from the model can be misleading; therefore, it is impor-

tant to understand the relationship of the regressor variables with

one another. There are several tests to measure the degree of

collinearity between independent variables. A common, though not

completely adequate, measure of the degree of collinearity between

two independent variables is the square of the sample correlation

rf2 where subscript 12 refers to variable 1 against 2 (Weisberg,

1985). Exact collinearity corresponds to r\2 = 1; noncollinearity

corresponds to r f 2 = 0.

Another rule of thumb (Mullet, 1976) is that when the variance

inflation factor ([1 — r ^ ] " 1 ) is less than 10, collinearity between

independent variable 1 and 2 is considered insignificant. A rule of

thumb suggested by Draper and Smith (1981) is that if the simple

correlation between two variables is larger than the con-elation of

one or either variable with a dependent variable then collinearity

effects can be important

To study the effect of collinearity we selected daily cooling

energy use data of a large institutional building in Central Texas

with a DDCV system. A short data set is assumed to consist of one
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month's daily data only while a long data set is assumed to have data

over an entire calendar year. The ratio of the correlation between

regressor variables to the correlation between the regressor variable

and the dependent variable for one-month data sets and long data

set have been computed from the data (Figure 1). The rule

suggested by Draper and Smith (1981) suggests that the collinearity

effects are important when the ratio is greater than one. Figure

1 (a) shows the ratio (R2
ToT+ /RTOEC) « * (RroqJ RTOEC) f o r

one-month data sets and for the year long data set. For the long

data set, the collinearity between To and q, is small, but there is

some collinearity between To and Tf. The ratio (E? + / R\ E )

is greater than 1 for several one-month data sets (April, May and

August), while the ratio R\oqJ R^OEC is always less than 1. To

accounts for over 60% of the variance in Ec (plot with triangle

symbols), with the August data set being an exception.

Figure 1 (b) shows the variation of the ratios (.ftJL /R1+ „ )
1d,1° JJpC"=

and (R? + I' R"L+ „ ) for one-month data sets and for the year
TdPi' Td,E<:

long data set. For the year long data set, there is some collinearity

between T i and To. For the monthly data sets, there are several

months when the ratio (R"L+-, / R ~ + „ ) is greater than 1, while

for only one data set (October) the ratio, {R^,+ ] R \ \ E ). is

greater than 1. The variable T^p seems to explain over 40% of

the variance in Ec. Figure 1 (c) depicts the ratio (R\tTJ'R\,EC)

and (R2 + I R\XEC) tor one-month data sets and for the year long

data set. There are several data sets, including the long data set,

when both the ratios are greater than 1 because R%tiEc
 i s generally

smaller than F& E and Rl+ „ (less than 20%). Therefore,

qi should be dropped from the model to reduce prediction uncer-

tainty due to collinearity. The above analysis was carried out with a

building with a VAV system. The results and trends were similar.

From the above analysis it is evident that there is some

collinearity between regressor variables both for the short and for

the tang (one year) data sets. The effect of collinearity on parameter

estimates and model predictions with the long data set is probably

small (with exception of q,) for two reasons: (i) at worst, the

collinearity is moderate and (ii) the characteristic of the regressor

variables from year to year are almost similar. Although some short

data sets had lesser collinearity between regressor variables than

the long data set, the uncertainty of the model predictions can be

high because the characteristics of the short data sets can be quite

different as compared to a long data set

IDENTIFICATION OF VARIABLES THAT
CONTRIBUTE TO ERRORS

In this section, we will identify the regressor variables in the

MLR model that contribute to the fractional error. One of the major

Figure 1 Ratio of the Correlation Between Independent

Variables to the Correlation Between the Independent

Variable and the Dependent Variable for One-Month Data

Sets and a Long Data Set (EC Building With a DDCV System

[09/89-08/901). (a) To with Td+ and «,-, (b) T +

With To and qt, and (c) qt with To and T ^ .

All T£p Values for the December data set are zero.

sources of error with the short data sets is insufficient range in

the regressor variable. For example, if the functional relationship

between the dependent {Ec) and the independent variable (To) is

segmented linear (4P), then there should be sufficient number of

data points in both segments of the To range to develop a robust

regression model. The regressor variable T t accounts for the

variation in latent ventilation cooling energy use, which is small

during winter months; therefore, to model this phenomena the data

4



set should have a sufficient number of points where latent cooling

occurs.

By studying the variation (range) of the regressor variables

{To, Tdp, <?;, and qsoi) both within a short data set and over a

long period, we can identify which of the variables could effect the

model seasonally. For this analysis a short data set is assumed

to have one month of data and a long data set to have one year's

data (12 calendar months). The effect of q3Oi on large commercial

buildings with less than 20% glazed surface is small; therefore, it is

dropped from further consideration. Figure 2 shows variation of

Ec, To, Tdp, Qi within short data sets (monthly) and from one data

set to another. All quantities were measured in a large commercial

building with a DDCV system. Figure 2 (a) shows, (i) minimum and

maximum Ec (horizontal bars), (ii) mean Ec (square marker and a

solid line), (iii) the I 0 " 1 and the 90"1 percentiles for Ec within each

data set, and (iv) 1 * ' and 3 r d quartiles for Ec within each data set.

The variation of EC,TO, and Tdp within each data set is

small for summer months (June, July and August), and there is

more variation in the winter months and the fall months. The mean

To values change significantly for winter to summer (variation as

high as 40%). The variation in qi (Figure 2 (d)) within each month is

uniform and there no significant seasonal change.

Since the mean value of both To and Tdp shows significant

seasonal variation, a short data set covering only winter or summer

months may not produce a valid model. On the other hand, qi shows

no seasonal dependence, therefore, it may not effect a model based

on a short data set. Figure 3 shows variation of Ec for a large

commercial building with a dual-duct VAV. Unlike the range of the

Ec from the DDCV system in the summer months, the range in Ee

with the VAV system is wider.

DETAILED ANALYSIS OF EC SHORT DATA
SETS MODELS

In this section, the reasons for differences between the model

based on a short data set and the model based on a long data set

are identified and analyzed. First, the EC (Engineering Center)

building (1989-1990 data) with the DDCV system is analyzed. The

EC building was retrofitted to a VAV system in 1991; therefore, the

EC with the VAV system (1992 data) is analyzed next. The physical

characteristics and operational details of the EC are given in the

Appendix. The measured hourly data for the analysis included: (i)

To, (ii) Tdp, (iii) q,ol (global horizontal solar radiation) (iv) ?,, and

(v) Ec, (September 1989 through August 1990). Daily values were

obtained by summing the hourly values of qsou qi and Ec over the

day and the variables, To and T^p, were averaged over the day.

In general, a data set is considered short if it has fewer than three

months of hourly data. For the initial analysis, the year-long data set

from the EC is divided into 12 data sets, with each data set having

Figure 2 Variation of the mean (a) Ec, (b) To, (c) Tfp,

and (d) q, for One-Month Data Sets From the EC Building With

a DDCV System (9/89-8/90).

one calendar month of daily data.

One-Month Data Sets: DDCV System

The cooling energy consumption in the EC building did not

show a segmented linear relationship with To, because the change

5



Figure 3 Variation of the mean Ec for One-Month

Data Sets From the EC Building With a VAV System (1992).

in the hot deck temperature with To was small. Therefore, the terms

/ a n d I*T0 were dropped while developing the regression models.

First, twelve daily regression models were developed for each of the

12 one-month data sets and then each of the 12 models were used

to predict the average daily Ec for the entire year. Figure 4 shows

£ c a s a function of To for the 12 one-month data sets along with

the residuals (measured - predicted) for the entire year determined

using the model based on that months data set.

All one-month data sets, with the exception of the October

data set, show biased residuals. The residuals vary from a constant

negative for the January and the February data sets, increasing with

To for March, August and December data sets, and decreasing with

To for June, July and September data sets.

To study qualitatively the difference in the prediction of Ec

from models based on a short data set and a model based on a long

data set as a function of To, the effects of Tj~p and g, have to be

isolated. The effect of To can be isolated by assuming T^p as zero

and qi is* assumed to constant. With these modifications the model

is given by:

where qi is the average internal gains value. Similarly, the effect of

T^p can be qualitatively analyzed by using the following model:

Figure 5 enables comparison of selected models from one-

month data sets with the model from the long data set using Eqs. 4

and 5. Figure 5 (a), (b), and (c) shows the effect of To and Figure 5

(d), (e), and (f) shows the effect of T t . The residuals in Figure 4 for

the January data set are mostly negative and show no relationship

with To- The model of Ee as a function of To for January (Figure

5(a)) compares well with the model based on the long data set,

but the model of Ec as a function of Tf predicts slightly larger

values than the long data set model (Figure 5(d)). Therefore, the

residuals are negative with the January model. For the March data

set the residuals increase with To, because the March data set has

a smaller slope than the long data set (Figure 5 (a)) and the slope

of Tf from the March data set is almost zero.

The residuals from the June data set are decreasing with To,

while they are increasing for the August data set. The contribution

of T £ from the June data set differs only slightly from the long data

set, while the model using To from the June data set is significantly

different from the long data set which has a larger slope; therefore,

the residuals are decreasing with To. The slope of To for the August

data set is small. Therefore, the residuals are increasing with To.

The residuals for the October data set are unbiased (Figure

4), because the relationship of Ec with both To and T i is similar

to those of the long data set (Figure 5 (c) and (f)). The relationship

of Ec with To for the December data set is similar to that with

the long data set, but the contribution of Tf is zero because the

outdoor dew-point temperature in December was always lower than

the average surface temperature of the cooling coil (i.e., no latent

cooling).

One-Month Data Sets: VAV System

In this section, we present a detailed analysis of the difference

between the cooling energy consumption model for a VAV system

based on a short data set and the model based on a long data set.

Unlike the cooling energy consumption with the DDCV system, the

cooling energy consumption with the VAV system in the EC building

shows a segmented linear relationship with To. Therefore, using Eq.

1 the daily regression models were developed for the 12 one-month

data sets and then each of the 12 models were used to predict the

daily Ec for the entire year. Figure 6 shows Ec as a function of To

for the 12 one-month data sets along with the residuals (measured

- predicted) for the entire year.

All models based on one-month data sets show bias in the

residuals. Unlike the DDCV residuals, the residuals from the VAV

system show a segmented linear relationship with To. Since the

air flow rate is modulated in a VAV system to match the zone

thermal load, the cooling energy is a stronger function of the outdoor

conditions (To and Tfp). The VAV system in the EC buikSng

reaches the minimum flow condition around 21 °C outdoor dry-bulb

temperature, i.e. below 21 °C the air flow is no longer modulated.

Therefore, at this outdoor temperature there is a change in the slope

of To. If the data sets contain data either above or below 21 °C

only, then the model is totally inadequate to predict consumption on

an annual basis.

To study qualitatively the difference in the prediction of Ec
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Figure 4 Ec and Residuals as a Function of To for One-Month Data Sets; "Jan" Represents the
January Data Set, "Feb" the February Data Set, and so on. (EC Building With the DDCV System (1989-1990))
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Figure 5 Qualitative Comparison of Selected Models From

One-Month Data Sets With Long Data Set Model

(EC Building With DDCV System).

from models based on a short data set and a model based on a long

data set as a function of To, we will assume a constant </,- and no

latent cooling (i.e. Td+ = 0):

Similarly, the effect of Tfp can be qualitatively analyzed by using

the following model:

Figure 7 permits a comparison of selected models from

one-month data sets with the model from the long data set using

Eqs. 6 and 7. Figure 7 (a), (b), and (c) shows the effect of To and

Figure 7 (d), (e), and (f) shows the effect of T^p. The residuals

in Figure 6 for the January data set show a 3P-like pattern. For

low outdoor dry-bulb temperatures (below 10 °C). Ec prediction

from the January data set is identical to that from the long data set

(Figure 7 (a)). However, for To greater than 18 " C the residuals for

the January data set are increasing with To (Figure 6); this effect

is clearly evident from Figure 7 (a). The VAV system in the EC

reaches its minimum flow condition at 21 °C; therefore, there is a

change in the slope above 21 "C outdoor temperature. Since the

temperatures in the January data set are between 0 and 15.6 °C,

the January regression model is not able to capture the change in

the slope at around 21 "C. [

Since the outdoor dry-bulb temperatures in the April data

set are between 10 "C and 21 "C, the model is doing poorly at

both extremes. In addition, the April model is predicting a higher

contribution from T^p than the long data set model. These combined

effects are the cause for the biased residuals (April Figure 6). The

slope of Tf with the June data set is nearly identical to that from

the long data set model. Above 21 °C To, the contribution from the

June model are identical to the long data set, but the model under

predicts increasingly for To below 21 "C.

The range in To for the August data set is small; so the

change-point behavior is not captured. The contributions from T^p

from the October and the December data set models are similar to

that from the long data set model. Since, the temperature range in

these two data sets is mostly below 21 °C, these models do not

show the higher slope above 21 "C and are under predicting above

To of 21 °C.

The regression models based on one month data, for both

the DDCV and the VAV systems, are inadequate in predicting the

annual energy consumption. For buildings with minimum outdoor

air intake (10-20%), the cooling energy consumption with a DDCV

system is not a strong function of the outdoor conditions, because

of constant air flow rate. However, for buildings with 100% outdoor

air intake (medical facilities and laboratories buildings) it is strong.

Since the EC building only takes in 15% outdoor air, the residuals

from the one-month data sets are moderate. Also the use of the hot

deck reset schedule will induce segmented linear behavior in the

cooling energy consumption as a function of To.

In contrast, the cooling energy consumption with a VAV

system is a strong function of the outdoor conditions, because the

air flow rate is modulated to meet the thermal load of the building.

The air flow is modulated until it reaches a certain minimum (30-

50% of the rated capacity), below which the air flow rate is a
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Figure 6 Ec and Residuals as a Function of To for One-Month Data Sets; "Jan" Represents the

January Data Set, "Feb" the February Data Set, and so on. (EC Building With the VAV System (1992))
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Figure 7 Qualitative Comparison of Selected Models From

One-Month Data Sets With Long Data Set Model

(EC Building With VAV System).

constant. Therefore, there is a change in the slope of To when the

minimum flow condition is reached. This makes the cooling energy

consumption segmented linear as a function of To. Therefore, the

one-month data sets of the EC building with the VAV system have

highly biased residuals.

QUANTIFYING THE ERROR FROM SHORT
DATA SETS

Five buildings for which a full year of data were available were

chosen for the analysis. The physical characteristics of the selected

buildings are shown in the Appendix. These buildings are large

commercial/institutional buildings located in Central Texas. Two

buildings (EC, and WEL) have DDCV systems and three buildings

(EC, BUR, and WIN) have VAV systems. A major fraction of the

conditioned area in WEL is made up of laboratories; therefore, it

takes in over 80% of outdoor air.

One way to quantify the annual energy prediction error is to

calculate the MBE (Mean Bias Error):

where n represents the total number of days in the data

set. ECtj is the measured daily cooling energy use, Ecj is the

predicted cooling energy use and Ec is the yearly average daily

cooling energy use.

Figure 8 shows the variation of MBE as a function of

average monthly outdoor dry-bulb temperature for two buildings

with DDCV systems. The MBE in the WEL building is a much

stronger function of To, varying from +30% at 4 °C to -15% at 32

°C. The MBE for the EC building, however, only varies from ±8%.

Unlike the EC building the WEL building takes in about 80% fresh air

and the not deck temperature is also reset based on To, therefore,

the MBE shows such a strong relationship with To.

Figure 8 MBE as a Function of Average Monthly

Temperature for the One-Month Data Sets (DDCV).

Individual Data Points as Well as Corresponding

Regression Lines Are Shown.
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Figure 9 shows variation of MBE as a function of average

monthly outdoor dry-bulb temperature for three buildings with VAV

systems. On an average the MBE varies from +35% at 4 °C to

-10% a t32°C. Since all three buildings are operated identically, the

MBE appears to similar.

Figure 9 MBE as a Function of Average Monthly

Temperature for the One-Month Data Sets (VAV).

Individual Data Points as Well as Corresponding

Regression Lines Are Shown.

CONCLUSIONS

Certain issues relating to regression models based on short

data sets have been investigated in this study. Reasons for dif-

ferences between the models based on short data sets and those

based on long data sets have also been presented.

Since mean monthly values of To and Tiv vary significantly

(50%) over a season, a short data set covering only the winter or

the summer months may produce an inadequate model. The MBE

for a building with a DDCV system which takes in 80% outdoor air

varied from +30% at 4 °C to -15% at 32 °C. On the other hand the

MBE for a building with a DDCV system which takes in only 15%

outdoor air had a MBE variation of only ±8%. The MBE for all three

buildings with VAV systems varied from +35% at 4 "C to -10% at

32 °C.

Since the air flow is modulated in a VAV system, the Ec

is a segmented-linear function of T o ; therefore, if a data set does

not have sufficient number of points covering the entire range the

uncertainty from model predictions will be high.
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NOMENCLATURE

:a,/?0,/?l,/?2,/?3,
: /?4, /?5 are regression coefficients

: all terms with a bar over them indicate

average values

: all terms with a "prime" indicate

parameters from short data set

= rate of energy use (Btu/unit time)

: indicator variable

: dry-bulb temperature (F)

: outdoor dew-point temperature (F)

: outdoor dry-bulb temperature (F)

: average outdoor dry-bulb temperature to right

of the change point (F)

: cooling coil leaving air dry-bulb temperature (F)

: internal gains from lights and equipment (Btu/unit time)

: horizontal global solar radiation (Btu/h-sf)

APPENDIX
Table At Building Characteristics


