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 ABSTRACT 

 

Cyber-Physical Systems play a pivotal role in critical infrastructures but face distinct 

security challenges. Traditional software-based security measures often disregard to account for 

the resource limitations that these systems encounter. Field Programmable Gate Arrays offer a 

solution, enabling hardware-based cryptographic implementations to enhance security. This study 

delves into the design and analysis of optimized variants of cryptographic encryption implemented 

on hardware, shedding light on design methodologies and optimization techniques. Our research 

includes physical verification, rendering the encryption core readily applicable to be deployed in 

existing systems. Notably, this study goes beyond the existing research landscape, where the focus 

on specific metrics often neglects the holistic perspective. Our performance analysis, with a 

particular emphasis on throughput, undergoes rigorous scrutiny and provides a comprehensive 

view previously unexplored. This work significantly contributes to enhancing security by 

introducing efficient hardware-based cryptographic solutions and advancing the field with a 

comprehensive performance analysis. 
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1. INTRODUCTION  

 

1.1. Background 

In the evolving landscape of technological innovation, Cyber-Physical Systems 

(CPS) have emerged as a transformative paradigm that merges the realms of physical 

processes and computational power. This convergence holds the potential to revolutionize 

critical sectors like healthcare, avionics, and automotive industries by fostering efficiency, 

automation, and real-time decision-making. However, this amalgamation of physical and 

digital domains also ushers in distinct security challenges that demand careful 

consideration. Within the realm of CPS, the seamless interaction of physical elements with 

computational components introduces a series of unique challenges. While CPS are 

designed to enhance system performance and offer new possibilities, they also bring along 

vulnerabilities. The convergence of operational technology (OT) and information 

technology (IT) creates potential gateways for cyberattacks that could compromise critical 

functions and have far-reaching consequences. 

CPS, acting as the cornerstone of automated critical applications, carry the 

responsibility of safeguarding themselves against malicious incursions. CPS security is 

characterized by the imperative to prevent unauthorized access to system data and network 

capabilities. This task is especially daunting due to the spatial-temporal dynamics inherent 

to the underlying physical environment [1]. Within CPS, processes operate in 

interconnected loops, orchestrated to function autonomously. However, managing the 

complexities, unpredictabilities, and constraints of these processes presents a formidable 
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task. The inherent nature of CPS entails an intricate interplay between the cyber and 

physical realms. The physical domain, encompassing chemical, mechanical, or electrical 

systems, interfaces with the cyber world, which processes and stores gathered information 

[2]. The dynamic feedback loop between these realms culminates in the ability of CPS to 

modify physical processes in predefined ways, enhancing overall performance and 

usability. 

A distinguishing aspect of CPS security is its departure from conventional IT 

security paradigms [3]. Unlike traditional IT systems, where virus detection updates can 

be delivered upon system log-in, CPS's heterogeneous and deeply embedded nature 

hinders such frequent updates and patches for malware detection. This intricacy 

underscores the urgent need for intensive research to formulate effective security 

methodologies tailored to CPS's unique challenges. 

 

Figure 1 CPS Architecture. Reprinted From [4] 
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The scope of CPS applications spans from automated healthcare to energy-

efficient smart cities, fault-free power generation and distribution, robotics, intelligent 

automobiles, and safe highways [5]. The integration of independent CPS units into 

cohesive systems gives rise to new challenges in the form of Cyber-Physical System of 

Systems (CPSoS) [6]. In the domain of automated healthcare, ensuring security for 

implanted medical devices within Medical CPS proves to be a fundamental challenge [5]. 

Instances abound where adversaries could exploit networked medical devices worn by 

individuals, accentuating the criticality of CPS security. 

With over 90 million Americans living with chronic illnesses, accounting for 70 

percent of all deaths in the US, the financial burden and demand for secure Medical CPS 

are compelling. Chronic illnesses contribute to approximately 90 percent of the total 3.8 

trillion dollars of healthcare costs in the US, with a significant percentage of the aging 

population expected to face diagnoses. Amid this context, the safe development of 

Medical CPS has become a pressing imperative [7]. 

Medical CPS encompasses three fundamental functionalities: sensor integration 

on the human body to collect organ-specific data, expert medical decision-making based 

on accessible reports, and precise prescription recommendations to regulate organ 

behavior. Compromising a medical CPS through attacks exposes sensitive medical data to 

unknown adversaries, elevating the risk of data falsification and erroneous prescriptions. 

The implications are grave, as incorrect drug dosages can have severe health 

repercussions, including potentially fatal outcomes. 
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Beyond medical contexts, several instances underscore the vulnerability of critical 

applications, leading to unexpected and devastating consequences. A failure in an electric 

power transmission grid can trigger widespread blackouts, impacting multiple cities 

within a country. Reports reveal successful cyberattacks on power systems resulting in 

substantial disruptions [8]. Instances like the development of CarShark, capable of 

remotely disabling car brakes via CAN packet sniffing, demonstrate the dire ramifications 

of compromised systems  [9]. Notably, the interconnectedness of CPS and physical 

systems can lead to cyberattacks directly influencing physical infrastructure, as seen in the 

German steel-mill incident [10]. 

The cornerstone of CPS security revolves around ensuring safety, security, and 

real-time functionality. Achieving this demands lightweight security solutions [2] that 

enhance CPS resilience against Cyber-Physical and Cyber-Attacks [11]. Amidst these 

challenges, the necessity to foster CPS security that aligns with the complexities of their 

hybrid nature remains paramount. 

At the heart of these challenges lies the vital need for secure communication. 

Ensuring the confidentiality, integrity, and availability of data within CPS is a paramount 

concern. Data security is not just a matter of protecting information—it directly influences 

the operational integrity of safety-critical systems. A breach in security could have dire 

implications, such as compromised patient care in healthcare settings or accidents 

stemming from tampered sensor data in aviation. The conventional methods of software-

based security that have served well in other domains exhibit limitations in the context of 

CPS. Resource constraints, real-time demands, and the necessity for deterministic 
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behavior pose hurdles for the application of traditional security mechanisms. These 

methods, designed with enterprise IT systems in mind, struggle to adapt to the unique and 

demanding requirements that CPS environments entail. In response to these challenges, 

the realm of hardware-based security solutions comes to the forefront, promising to bolster 

the security of CPS. Among these solutions, Field-Programmable Gate Arrays (FPGAs) 

stand out as a beacon of potential. FPGAs introduce unprecedented flexibility in 

implementing cryptographic algorithms at the hardware level. Their reprogrammable 

nature facilitates the creation of security solutions tailored to the distinctive demands of 

CPS environments. 

By weaving the intricate fabric of CPS, the security challenges it presents, and the 

need for robust encryption mechanisms made possible through hardware solutions like 

FPGAs, this section sets the stage for a comprehensive exploration of the intricate 

interplay between technology and security in the realm of CPS. 

 

1.2. Evolution of Encryption Techniques and the Role of FPGAs 

The evolution of encryption techniques has witnessed a dynamic shift from 

conventional software-based approaches towards hardware-based solutions. This 

transition has been particularly pronounced in the context of CPS, where the convergence 

of physical and digital domains necessitates robust security mechanisms. One pivotal 

player in this evolution is the deployment of FPGAs, which offer distinctive advantages 

for implementing cryptographic algorithms at the hardware level. FPGAs stand as 

adaptable systems enabling the realization of intricate application-specific logic designs 
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through an array of programmable logic gates. These gates can be configured to fulfill 

specific functionalities, relying on pivotal FPGA building blocks that operate in synergy: 

the interconnect, the fabric logic, and the configurable logic blocks or CLBs [12]. 

The Interconnect and Logic Fabric: The interconnect constitutes a network of 

wires interlinking diverse FPGA components to facilitate signal routing. It establishes 

connections between the CLBs and other functional units, ensuring effective signal 

propagation while minimizing delay and power consumption. Complementing this, the 

fabric logic, also known as the programmable interconnect array (PIA), encompasses 

programmable switches governing signal routing between the interconnect and CLBs. 

This component offers configurable pathways for signals, enabling dynamic 

reconfiguration and optimal utilization of the interconnect. 

Configurable Logic Blocks: At the core of an FPGA, the CLBs serve as 

foundational elements, housing Look-Up Tables (LUTs) as programmable memory units 

capable of data storage and processing. The incorporation of LUTs empowers intricate 

Boolean function implementation, rendering the FPGA adaptable across a range of 

applications. Notably, prominent FPGA manufacturer Xilinx adopts a distinctive CLB 

architecture encompassing a LUT, a flip-flop, and a carry chain, enhancing CLB 

functionality and versatility. 
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Figure 2 FPGA Architecture. Reprinted From [12] 

 

Moreover, contemporary FPGAs integrate various specialized cores, often 

provided by third-party vendors, alongside additional memory components. Memory 

plays a pivotal role in FPGA architecture by enabling real-time data storage and retrieval, 

thereby facilitating rapid and efficient computation. FPGAs incorporate both on-chip and 

off-chip memory resources, serving various purposes such as data buffering, caching, and 

storage. Harnessing these memory resources significantly augments FPGA performance, 

especially in applications demanding substantial data processing and storage capabilities 

[12]. 

Historically, software-based encryption methods have been the cornerstone of data 

security strategies. These techniques operate in tandem with functional processes, using 

algorithms to scramble and protect data. However, as the complexity and sensitivity of 

CPS applications increased, the limitations of software-based security mechanisms 

became apparent. These methods, while effective in conventional settings, encountered 
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challenges in the resource-constrained environment of CPS. The heavy computational 

demands of software-based encryption strained the already limited computing and 

memory resources, compromising real-time performance and responsiveness. To address 

these limitations, the security landscape witnessed a significant transformation with the 

emergence of hardware-based solutions. Hardware implementations of encryption 

algorithms offer a distinct advantage by capitalizing on the parallel processing capabilities 

of specialized hardware components. This hardware-centric approach optimizes 

performance by offloading encryption tasks from the central processing units, thereby 

enhancing the overall efficiency and real-time responsiveness of CPS. 

FPGAs also present numerous advantages in Edge Computing for CPS and IoT 

applications, as well as in hardware-based security solutions. Their flexibility allows for 

dynamic adaptation to changing computing requirements, making them well-suited for the 

adaptability demanded in the forementioned scenarios. Moreover, FPGAs deliver high 

computing performance through parallel processing and hardware-based architecture. 

Their reconfigurability supports time-multiplexing of computing resources, enhancing 

suitability for CPS adaptability. Additionally, FPGAs have emerged as a pivotal 

technology in hardware-based security, enabling tailored hardware implementations of 

cryptographic algorithms. Their parallel processing capabilities enhance encryption 

efficiency, while runtime reconfigurability optimizes resource utilization to meet evolving 

security needs. In both contexts, FPGAs offer a compelling solution for high performance, 

energy efficiency, and adaptability demands [13]. 
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By recognizing the evolution of encryption techniques from software-based 

approaches to hardware-centric solutions and acknowledging the significant influence of 

FPGAs in this paradigm shift, it becomes evident that harnessing hardware for bolstering 

data security within CPS yields substantial implications. 

 

1.3. Enhancing Cybersecurity Through AES in CPS 

The landscape of CPS demands resilient and effective security measures to 

safeguard data transmissions and critical operations within these infrastructures. The 

evolution of encryption techniques from conventional software-based approaches to 

hardware-based solutions has been pivotal in meeting these security requirements. This 

transition aligns seamlessly with the growing importance of the Advanced Encryption 

Standard (AES) in ensuring the integrity and confidentiality of data transmissions within 

CPS environments. 

As CPS have advanced, the limitations of software-based security methods have 

become apparent, particularly in relation to the real-time demands and resource constraints 

these systems face. This transition has prompted the adoption of FPGAs as a powerful tool 

for enhancing data security within CPS. FPGAs, with their adaptability, efficiency, and 

reconfigurability, present a promising avenue for addressing the unique security 

challenges of CPS and bolstering the protection of sensitive data. Amid the array of 

cryptographic algorithms, the AES has emerged as a cornerstone for ensuring secure data 

communication. Its robust encryption mechanism, providing confidentiality, integrity, and 

authenticity, makes it essential for safeguarding data transmission, especially in critical 
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CPS scenarios. The wide adoption of AES across industries highlights its significance in 

secure communication. 

Despite the growing importance of AES and hardware-based security approaches 

in CPS, there exists a gap in achieving optimal AES implementation on FPGAs. Existing 

research provides valuable foundations, but a need persists for enhancing AES's 

performance in CPS contexts. Consequently, the central objective of this thesis is to 

address this gap. It aims to meticulously design and evaluate FPGA-based 

implementations of the AES algorithm to enhance both its efficiency and efficacy within 

the resource-constrained CPS environments. The research seeks to elevate AES 

implementations, offering improved data security and optimized performance for critical 

CPS operations. In this context, this section lays the groundwork by emphasizing the shift 

towards hardware-based encryption, the pivotal role of FPGAs, and the significance of 

AES in the realm of CPS data security. The upcoming sections will delve into the 

intricacies of AES implementation on FPGAs, detailing the methodologies employed to 

achieve the overarching research objectives. 

 

 



 

11 

 

2. HARDWARE IMPLEMENTATION OF AES  

 

2.1. Cryptographic Solutions From Software to Hardware - Overview of 

Encryption Methods and Their Limitations 

In the realm of securing data transmissions within CPS, cryptographic algorithms 

play a fundamental role by concealing information through mathematical functions. These 

algorithms encompass two key operations: encryption and decryption. Encryption 

transforms plain text into cipher text, while decryption reverts the cipher text back to its 

original form [14]. These operations are executed using cryptographic keys, leading to the 

classification of cryptographic algorithms into two main categories: symmetric 

cryptography (SC) and asymmetric cryptography (AC). 

Symmetric cryptography (also known as secret-key or shared-key cryptography) 

operates with a shared secret key between the sender and receiver for both encryption and 

decryption processes. This approach ensures that the intended recipient is the sole entity 

capable of recovering the original plain text, contingent upon keeping the shared key 

confidential. Consequently, symmetric cryptography offers a degree of assurance as data 

encrypted with a specific symmetric key cannot be decrypted using any other. 

Furthermore, the reliance on a single key eliminates the need for intricate mathematical 

calculations and resource-intensive processing for generating and handling additional 

keys. This efficiency makes symmetric encryption algorithms notably faster compared to 

their asymmetric counterparts [15], rendering them a favorable choice for resource-

constrained applications. 
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Nevertheless, a notable limitation of secret-key cryptography arises in the secure 

sharing of the secret key. The necessity to maintain key privacy often involves encrypting 

the secret key with another key, creating a perpetual dependency on additional keys [16]. 

Numerous algorithms have emerged to define symmetric key cryptography, often 

operating in rounds. Each round applies mathematical operations, such as substitutions 

and permutations, to transform plaintext into ciphertext and vice versa. These operations 

typically act on fixed-size data blocks, rather than the entire message at once. The 

substitution box (S-box) is a common component of symmetric algorithms, functioning as 

a lookup table for substituting values during encryption or decryption. The S-box 

contributes to properties like confusion and diffusion, essential for robust cryptographic 

algorithms. 

Moving on to asymmetric cryptography, also known as public-key cryptography, 

this class employs a pair of keys: a public key and a private key. The public key can 

encrypt a message, and only the intended recipient with the corresponding private key can 

decrypt it. Asymmetric cryptography offers unique advantages, including the elimination 

of key distribution issues since key exchange is unnecessary. This enhances security, as 

private keys are never transmitted or disclosed. Additionally, it enables the use of digital 

signatures to verify message origins. However, the computational complexity of 

asymmetric cryptographic algorithms often renders them slower compared to symmetric 

alternatives. 

In summary, this section delves into the overarching landscape of cryptographic 

solutions. It encompasses symmetric cryptography, which leverages shared keys for 



encryption and decryption, and asymmetric cryptography, characterized by public-private 

key pairs. By comprehensively understanding these cryptographic categories, we establish 

a firm foundation for exploring the subsequent hardware implementations within the 

context of AES and CPS security. 

2.2. Unraveling the AES Algorithm - Deep Dive Into the AES Algorithm and Its 

Significance 

Be sure that there is at least one line of text below any subheading at the bottom of 

a page. Within the realm of securing data transmissions in Cyber-Physical Systems (CPS), 

the Advanced Encryption Standard (AES) emerges as a critical cornerstone, employing a 

substitution-permutation network algorithm to obfuscate data through multiple rounds of 

encryption [17]. AES encryption supports three key lengths: 128-bit, 192-bit, and 256-bit, 

while consistently maintaining a fixed block size of 128 bits or 16 bytes. As the key length 

increases, so does the security level, albeit at the cost of augmented power consumption 

and memory requirements within CPS [17]. This encryption scheme employs varying 

numbers of rounds based on the key length. AES-128 utilizes 10 rounds, AES-192 uses 

12 rounds, and AES-256 employs 14 rounds. The AES algorithm stands as the cornerstone 

of symmetric encryption, operating on fixed-size data blocks and leveraging a 

sophisticated substitution-permutation network (SPN) structure that comprises multiple 

rounds of distinct operations, each contributing to the algorithm's formidable security [18]. 

Central to the AES algorithm's operations is the state matrix: a 4x4 matrix that 

serves as the intermediary repository for data during both encryption and decryption 

13 
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processes. The innate structure of the algorithm mandates adherence to a series of 

fundamental steps, each aimed at ensuring the confidentiality and integrity of the 

transmitted data. 

1. Substitute Bytes: In this phase, every byte within the state matrix undergoes

replacement with a corresponding byte sourced from a predefined S-box. This

substitution is denoted by the transformation equation:

state(i, j) = Sbox(state(i, j)) 

This intricate byte substitution step contributes significantly to the algorithm's 

ability to obfuscate data, enhancing its security. 

2. Shift Rows: Shifting rows is a cyclic operation applied individually to each row within

the state matrix. The first row remains unaltered, while the subsequent rows experience

cyclic left shifts. The shift progression is as follows:

state(i, j) = state(i, (j+i) mod 4) 

This operation plays a crucial role in disassociating the relationship between the 

original data and the encrypted result, further fortifying the encryption process. 

3. Mix Columns: The mix columns operation targets columns within the state matrix.

Each column is subjected to a complex manipulation involving polynomial

multiplication within a finite field. The formula for this transformation is:

state (i, j) = (2 * state(i, j)) ⊕ ( 3 * state((i+1) mod 

4, j)) ⊕ state((i+2) mod 4, j) ⊕ state((i+3) mod 4, j) 

This intricate mixing operation contributes significantly to the diffusion of the 

data, preventing the persistence of any recognizable patterns. 
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4. Add Round Key: The final step in each encryption round is the addition of a round 

key. The 128-bit input data matrix is XORed with a 128-bit round key, ensuring that 

each encryption round operates on a distinct key. This step adds a unique layer of 

complexity to the encryption process: 

state(i, j) = state(i, j) ⊕ RoundKey(i, j) 

The fusion of these operations within each round engenders an encryption 

mechanism that is both robust and intricate, rendering it highly resistant to cryptanalysis. 

As the AES algorithm seamlessly iterates through these rounds, the transformation of the 

state matrix evolves, culminating in an encrypted output that effectively safeguards data 

within the CPS environment. 

 

Figure 3 AES Architecture Block Diagram. Reprinted From [19] 

 

In the context of CPS security, the AES algorithm's distinctive structure and 

encryption methodology make it an indispensable asset for safeguarding sensitive data 



 

16 

 

during transmissions. The upcoming sections will venture into the world of FPGA-based 

AES implementation, leveraging the strengths of FPGAs to augment the efficiency and 

efficacy of this encryption process within the realm of CPS. Through a meticulous 

examination of the intricacies in AES, this research seeks to fortify data security within 

the dynamic and resource-constrained landscape of CPS.  

 

2.3. Previous AES Implementations - Reviewing Existing Research on AES 

Implementations 

Transitioning from the exploration of the role of cryptography in CPS, our 

attention now turns to the examination of existing AES implementations in this domain. 

This investigation serves as a vital bridge between AES theory and practical execution, 

enabling us to glean insights from past successes and limitations. By dissecting diverse 

strategies, we extract valuable lessons that inform our approach in designing CPS-focused 

AES architectures. This analysis equips us to transcend prior constraints and tailor AES 

implementations to CPS demands. As we navigate this landscape, we gather crucial 

knowledge that propels us towards innovative and adaptable solutions. This synthesis of 

past experiences empowers us to craft resilient FPGA-based AES implementations 

optimized for CPS, enhancing its cybersecurity landscape.  

The research in [20] introduces an optimized AES architecture for CTR mode, 

achieving a very high throughput. By strategically inserting registers, the design 

minimizes byte transformation delay within one clock period. Simulated on Xilinx 

Foundation ISE 10.1, it achieves a clock frequency of 576.07MHz and a resource 
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efficiency of 3.21Mbps/LUT. This design outperforms previous solutions in throughput 

and resource utilization, presenting a valuable advancement for high-speed encryption 

applications. However, the model name of the FPGA used in the implementation of the 

proposed design is not explicitly mentioned in the paper. The authors state that they used 

Xilinx Foundation ISE 10.1 FPGA design tool for the synthesis of the design, but the 

specific hardware is not mentioned.  

Another paper [21] introduces an FPGA-based AES implementation for 

cryptographic applications. The authors propose a novel approach by incorporating a 

modified parallel-pipelined round module (MPPRM) to optimize hardware resource usage 

and minimize circuit delay. While the paper delves into the intricacies of the AES-

MPPRM architecture and explores its modified key expansion module, it leans toward a 

mathematical and theoretical orientation. Notably, the study doesn't extensively address 

the practical applicability of the proposed architecture in the context of CPS. However, 

it's worth noting that the paper doesn't specify the FPGA model used for implementation 

and compares the simulations on different FPGA platforms.  

Going over the previous AES implementations, a notable trend comes to light – a 

significant portion of the existing research lacks precise details regarding the hardware 

implementations of these architectures. This void highlights a critical gap in the field of 

CPS-focused AES design. While various papers offer innovative strategies and 

optimizations, the absence of explicit hardware specifications and platform information 

limits their practicality and comparability. This limitation underscores the pressing need 

for a comprehensive and rigorous approach, which this thesis endeavors to fulfill. By 
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embarking on a journey to build foundational optimizations from the ground up, this thesis 

project aims to bridge this gap and provide robust, adaptable, and optimized FPGA-based 

AES architectures specifically tailored for the demands of CPS environments. Through 

this research project, we strive to empower CPS with enhanced resilience and efficiency, 

ushering in a new era of secure communication and operation. 
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3. FPGA DESIGN OF AES  

 

3.1. Platform Selection: Leveraging Artix-7 and Vivado Design Suite for AES 

3.1.1. Hardware Platform 

To realize the objectives of this thesis, a meticulous selection of the appropriate 

hardware platform was imperative. The chosen platform, the Artix-7 FPGA, is a widely 

recognized and versatile device from Xilinx, uniquely positioned to cater to the intricate 

demands of our AES design project within the realm of CPS. 

The Artix-7 FPGA, renowned for its balance of high-performance capabilities and 

low-power consumption, is an ideal candidate for a range of applications, including 

wireless communication, aerospace, and defense. Its diverse resource offerings and 

performance variations make it well-suited for intricate cryptographic tasks, such as AES, 

within the context of CPS security enhancement. Characterized by its extensive range of 

resources, the Artix-7 FPGA family boasts up to 215K logic cells and clock speeds 

reaching up to 600 MHz. These capabilities empower it to accommodate complex AES 

implementations while ensuring real-time and high-throughput operations demanded by 

CPS environments. With up to 500 user-defined I/O pins that can be flexibly configured 

as single-ended or differential I/O [22], the Artix-7 FPGA aligns perfectly with the 

requirements of secure data transmission in CPS. 
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Figure 4 Artix 7 Development Board. Reprinted From [23] 

 

Moreover, the Artix-7 FPGA family's inclusion of up to 100 differential pairs 

further fortifies its suitability for CPS scenarios by facilitating high-speed communication 

interfaces like DDR3/4 memory, PCIe, and Ethernet. This diverse set of connectivity 

options ensures that the designed AES architectures can seamlessly integrate with various 

CPS components while maintaining efficient and secure data exchange. The availability 

of on-chip memory resources, including block RAMs, distributed RAMs, and UltraRAMs, 

further amplifies the FPGA's capability to store and manipulate data efficiently, aligning 

with the memory-intensive requirements of cryptographic operations. Additionally, with 

up to eight GTX transceivers and up to four PCIe Gen2/3 hard IP blocks, the Artix-7 

FPGA family ensures that CPS security enhancements are seamlessly integrated into the 

broader CPS ecosystem. 

Overall, the Artix-7 FPGA family provides a good balance between performance, 

power consumption, and cost. With its wide range of resources and connectivity options, 

it is well-suited for a variety of applications, from high-performance computing to 

embedded systems. 
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3.1.2. Software Platform 

The IDE used for development in this project is Xilinx Vivado v2021.2. Vivado is 

a comprehensive design suite used for the development of digital systems based on Xilinx 

FPGAs and SoCs. The suite offers a wide range of tools and features for designing, 

implementing, and verifying FPGA-based digital systems, including a graphical user 

interface for creating and editing HDL code, a plethora of tools for synthesizing, 

implementing, debugging FPGA designs, with the added support for simulating designs 

and generating test benches for verification [24].  

One of the key features of Vivado is its ability to optimize and implement FPGA 

designs for the target hardware, taking into consideration the specific resources available 

on the device. This feature, along with Vivado’s extensive library of IP cores, accelerates 

the design process and enables developers to create complex designs in an efficient 

manner. For this reason, Vivado is an excellent choice for this project.  

Furthermore, Vivado includes a range of debugging and analysis tools such as a 

logic analyzer, a waveform viewer, and a software debugger, which aids in the 

development and debugging of FPGA designs. Vivado also provides comprehensive 

support for the entire RTL to GDS flow, including several stages such as synthesis, place 

and route, timing analysis, and bitstream generation. The suite includes a Synthesis tool 

that takes the RTL code as input and generates a gate-level netlist, which can be optimized 

for the target device’s architecture and resources. The synthesized design can then be 

passed to the implementation stage, where it can be placed and routed onto the target 
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FPGA. The implementation stage also includes tools for performing timing analysis and 

optimization to ensure that the design meets the timing constraints.  

Once the design is implemented, Vivado generates a bitstream file that can be 

loaded onto the target FPGA – the Artix-7 in this case. The bitstream file contains the 

configuration information for the FPGA, including the placement and routing information. 

Another additional useful feature that Vivado provides is the High-Level Synthesis (HLS), 

which allows the users to generate RTL from high-level languages such as C or C++. 

Overall, Xilinx Vivado is a powerful and comprehensive tool for the development of 

FPGA-based digital systems, providing extensive support for the RTL to GDS flow and 

advanced features for optimizing FPGA designs. 

 

3.2. Test Vectors and Reference Code 

In this section, we delve into the intricate details of the FPGA design and 

implementation process of the AES architecture. Utilizing VHDL (VHSIC Hardware 

Description Language), a powerful hardware description language, we meticulously 

outline the structure of our AES architecture. VHDL allows us to define the behavior and 

structure of digital systems, providing a high-level representation of our AES design. Our 

approach is substantiated using NIST test vectors, a set of standardized test cases for AES 

that enables thorough validation of our design's accuracy and compliance with established 

encryption standards. Additionally, for reference and cross-validation purposes, we 

present a C implementation of the AES algorithm. This comprehensive exploration 
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underscores our commitment to building a robust and dependable AES architecture 

tailored for FPGA implementation within CPS environments. 

Test vectors are taken from the National Institute of Standards and Technology 

(NIST). NIST is a U.S. government organization responsible for developing and 

promoting technology, standards, and measurements to enhance economic security and 

improve the quality of life. It has played a crucial role in the development of various 

technologies, including the internet, nanotechnology, and cryptography. NIST is known 

for its role in developing and maintaining standards such as the AES which is widely used 

to encrypt sensitive information. It also provides resources and guidelines for 

cybersecurity and risk management, including the Cybersecurity Framework, which is 

used by organizations to manage and reduce cybersecurity risk. NIST continues to be a 

key player in advancing technology and ensuring its security and reliability [25]. 

 

 



Figure 5 NIST Test Vectors. Reprinted From [25] 

Figure 6 Reference Implementation in C 

3.3. FPGA AES Architecture Design in VHDL With Testbench 

With a solid understanding of the hardware platform and the design environment 

in place, the focus now shifts to the core of this project - the FPGA design and 
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implementation of the AES architecture. This section delves into the intricacies of 

implementing AES using VHDL, along with the comprehensive methodology of testing 

and verification through testbenches. The AES architecture is explored in three distinct 

variants: 

1. standard ECB mode,  

2. pipelined architecture and, 

3. unfolded architecture.  

Each variant is meticulously constructed and optimized for efficiency, aiming to 

address the specific requirements of different CPS scenarios. The journey of translating 

AES theory into functional VHDL code, conducting rigorous testing, and optimizing the 

design unfolds in the upcoming subsections, revealing the hands-on aspect of this research 

project. 

 

3.3.1. Standard  

In the realm of CPS, the need for reliable encryption techniques cannot be 

overstated. As we delve into the FPGA design and implementation of the AES 

architecture, the standard Electronic Codebook (ECB) mode takes center stage. This 

subsection delves into the intricacies of the standard implementation, shedding light on 

the crucial role it plays in securing data transmission within CPS environments. By 

adhering to the AES standard and leveraging the fundamental ECB mode, we aim to 

establish a strong foundation for further optimizations tailored to the unique demands of 

CPS scenarios. The subsequent sections will explore the development process, testing 
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methodologies, and the outcomes of this standard AES implementation, contributing to 

the larger goal of enhancing security and efficiency in CPS through FPGA-based 

solutions. This implementation will be used as a control to compare and weigh the two 

optimization techniques that this research evaluates.  

The standard AES implementation entails the realization of the AES block 

structure depicted in Figure 3. This structure encompasses four main transformation steps: 

Substitute Bytes, Shift Rows, Mix Columns, and Add Round Key, as outlined in Section 

3.2. The top-level AES entity orchestrates these transformations through four sub-entities: 

sub_byte, shift_rows, mix_columns, and add_round_key. The VHDL description of these 

entities translates the theoretical AES steps into functional code. The top-level entity takes 

inputs:  

• encryption key,  

• plaintext data,  

• reset signal, and  

• clock signal,  

and generates the outputs:  

• ciphertext, along with 

• done signal. 

At the core of VHDL, an "entity" serves as a fundamental construct used to define 

the structure and behavior of a digital component. In the context of the AES 

implementation, an entity encapsulates the functionality of a specific module or sub-
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component. Each of these steps is realized as an "entity" in VHDL, encapsulating the 

necessary logic and operations that correspond to their respective AES steps.  

 

Figure 7 Entities That Make up AES HDL Model 

 

In addition to the four main transformation sub-entities, the AES architecture 

includes two crucial components: the key_schedule and the controller. The key_schedule 

is responsible for generating round subkeys, which are used in each AES round for the 

add_round_key step. The Controller manages the AES rounds by keeping track of a 

counter signal, ensuring that each transformation occurs in the correct sequence. Notably, 

the last round of AES skips the Mix Columns step, and the controller plays its part to make 

sure the implementation respects the algorithm. 

Equally pivotal to the actual implementation steps is a critical factor that demands 

utmost consideration – the management of data flow. Just as the encryption steps are 
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integral to the AES process, so too is the intricately devised strategy for handling the flow 

of data. Instead of transmitting the entire key and plaintext on separate pins, a serial data 

transmission process is employed. This technique significantly reduces the number of pins 

required for data transmission, saving power in CPS scenarios. The serial data 

transmission process involves loading the data from the testbench into a 128-array, which 

is then transmitted serially over a single pin. Although this method introduces some 

overhead, it is a strategic trade-off to optimize power consumption in CPS. 

 

Figure 8 VHDL Code of Top-Level Entity 

 

However, it's important to note that for metrics calculations, the overhead 

introduced by the "READ" process will be omitted, as its primary purpose is power 

optimization. This standard AES implementation lays the groundwork for further 

optimizations, catering to CPS-specific requirements. The subsequent sections will detail 

the intricacies of pipelined and unfolded architectures, adding depth to our exploration of 

FPGA-based AES implementations tailored for enhanced performance within CPS 

contexts. 
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3.3.2. Pipelined  

In the realm of VLSI, optimization techniques play an indispensable role in 

achieving enhanced performance. One of the most impactful strategies in this domain is 

pipelining, a technique that efficiently divides a complex process into multiple stages, 

allowing for parallel execution of tasks. This division not only accelerates the overall 

process but also enables a balanced utilization of hardware resources. In the context of our 

AES architecture, the introduction of pipelining stands as a crucial enhancement.  

Pipelining is implemented by inserting registers between the stages of a process 

(figure 3.6), enabling the output of one stage to be immediately used as the input for the 

next stage. This continuous handover of data ensures that various stages can work 

concurrently on different inputs. In our AES implementation, two potential spots for the 

addition of a pipeline were identified: between the individual rounds and between the 

processing stages within a single round. A pipeline is a sequence of stages in which a 

complex process is divided into smaller tasks or sub-processes. Each stage performs a 

specific operation on the data and passes it along to the next stage. Pipelining is used to 

improve the efficiency and speed of processing by allowing multiple stages to work 

concurrently on different parts of the data [19]. This parallelization reduces the overall 

time taken to complete a task. 

Sub-pipelining refers to breaking down the stages of a pipeline even further. In a 

sub-pipelined architecture, each stage of the main pipeline is divided into smaller sub-

stages. This allows for even finer-grained parallelism and can result in further performance 

improvements. Sub-pipelining is often used to optimize complex processes in hardware 
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design, where the main pipeline stages might involve multiple sub-steps that can be 

parallelized. After rigorous evaluation, the final iteration that demonstrated superior 

results was the introduction of pipelining between the processing stages.  

To unlock the true benefits of pipelining, further enhancements were implemented. 

In the initial design, the AES entity processed a single block of plaintext, limiting the 

apparent advantages of pipelining. However, research asserts that the substantial benefits 

of pipelining emerge when multiple blocks are processed. For a single block, the 

introduction of pipelining can appear counterintuitive due to the area overhead it entails. 

Yet, for multiple blocks, the efficiency gains overshadow the incremental increase in 

resource utilization. Therefore, the adoption of multiple-block processing not only 

maximizes throughput but also lends justification to the trade-off in terms of area 

utilization. 

 

Figure 9 Pipelined Architecture. Reprinted From [20] 
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The pipelining strategy employed here exemplifies a significant aspect of our 

research project – the synergistic integration of optimization techniques with a 

comprehensive understanding of hardware architecture. This strategic fusion enables the 

realization of designs that transcend conventional limitations and excel in the demanding 

realm of CPS. 

 

3.3.3. Unfolded 

Unfolding, often referred to as loop unrolling, is another optimization technique 

that merits exploration in the context of AES implementation. While pipelining focuses 

on parallelism between different stages, unfolding takes advantage of inherent parallelism 

within a single iteration. This technique involves replicating and expanding the iterative 

stages of AES to allow for simultaneous processing of multiple data blocks, thereby 

increasing the overall throughput. In our AES implementation, we delve into the unfolding 

approach, aiming to capitalize on its potential benefits. Unfolding exploits the inherent 

parallelism within each AES round, enabling the simultaneous processing of multiple 

rounds for different data blocks. By unraveling the iterative stages of AES, we aim to 

enhance both efficiency and throughput. 

The anticipated benefits of unfolding are twofold: First, it aligns with the 

underlying parallel structure of AES, allowing us to fully utilize the available resources. 

Secondly, similar to pipelining, unfolding also demonstrates its true prowess when applied 

to scenarios involving multiple blocks of data. Just as we witnessed with the pipelined 

approach, the trade-off between increased throughput and higher resource utilization 
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becomes more favorable when dealing with multiple data blocks. The unfolding factor 

plays a pivotal role in this approach. It determines how many times the iterative stages of 

AES are expanded and replicated. This factor directly influences the amount of parallelism 

that can be exploited. In our implementation, we opt for an unfolding factor of 2, which 

means that the steps in each round are duplicated twice. This choice strikes a balance 

between increased parallelism and resource utilization. 

 

Figure 10 Unfolding in AES. Reprinted From [26] 

 

Unfolding the AES architecture is an intricate process that involves careful design 

considerations. The iterative nature of AES stages provides fertile ground for exploiting 

this technique. By expanding and unrolling these stages, we aim to harness the inherent 

parallelism encoded within the algorithm itself. This approach represents yet another facet 

of our comprehensive optimization strategy, allowing us to adapt AES to the intricacies 

of CPS. As we progress through the exploration of unfolding, we aim to uncover the extent 

to which this technique can contribute to the efficiency and adaptability of our FPGA-

based AES implementations. 
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3.4. Metrics for Evaluating Hardware Implementations 

In evaluating the feasibility and effectiveness of hardware implementations, a 

comprehensive set of metrics is essential to provide a holistic assessment. The 

performance and resource utilization of the AES implementations in CPS will be critically 

analyzed across several dimensions. These metrics serve as quantifiable benchmarks to 

gauge the capabilities of the designed architectures, offering insights into their efficiency 

and suitability for real-world deployment. 

1. Power: Power consumption stands as a critical consideration in any FPGA-based 

system, particularly those operating within CPS environments. This metric quantifies 

the amount of electrical power consumed during the device's operation, typically 

measured in watts. The significance of power efficiency lies in its direct impact on 

battery life and heat generation. The evaluation of power encompasses both dynamic 

and static power requirements, allowing a comprehensive understanding of the energy 

footprint of the implementation. 

 

2. Area: Area utilization refers to the physical size of the FPGA and the allocation of its 

internal resources, including lookup tables (LUTs), flip-flops (FFs), and memory 

blocks. This metric is pivotal in assessing the hardware footprint of the AES 

implementations. Area utilization is typically presented as a percentage of the total 

available resources or quantified by the number of slices employed. Optimizing area 

usage is paramount, especially in applications where compactness or cost-
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effectiveness is a priority. 

 

3. Throughput: Throughput measures the rate at which data can be efficiently processed 

by the FPGA-based system. This metric quantifies the system's data handling capacity 

and is expressed in units like bits per second or transactions per second. For AES 

implementations tailored to CPS, optimizing throughput is essential for rapid data 

processing and communication tasks, aligning with the real-time demands of CPS 

environments. 

 

4. Timing and Latency: Timing and latency metrics play a pivotal role in determining 

the responsiveness and effectiveness of an FPGA-based system. Timing represents the 

signal propagation time within the system, while latency signifies the duration between 

input and output generation. Both metrics are crucial in ensuring timely and accurate 

system responses. Properly defining timing constraints and ensuring their compliance 

are fundamental steps in achieving the desired system behavior. 

 

5. Frequency: The frequency of an FPGA corresponds to its operating clock rate, often 

measured in units such as MHz or GHz. Enhancing frequency can lead to improved 

system performance; however, this increase may come at the cost of heightened power 

consumption and potential timing challenges. Frequency optimization is a careful 

balance that contributes to the overall efficiency and responsiveness of the system. 
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As this project aspires to furnish a robust and efficient hardware-based solution to 

bolster data security within Cyber-Physical Systems (CPS), the triumphant execution of 

the FPGA implementation of AES is intrinsically tied to its performance across these 

pivotal metrics. Through a meticulous evaluation of the AES architectures against these 

dimensions, we glean insights into their pragmatic viability and adaptability within the 

intricate landscape of CPS. With these foundational aspects in place, we now embark on 

a comparative analysis of the two distinct techniques—pipelining and unfolding. This 

analysis delves into their relative merits and comprehensively scrutinizes their 

performance vis-à-vis these metrics, unraveling their comparative strengths and 

weaknesses and ultimately charting a course for an optimized AES implementation within 

CPS scenarios. 
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4. IMPLEMENTATION ANALYSIS 

 

In the preceding sections, a comprehensive exploration of the FPGA design of the 

AES algorithm was undertaken. This journey commenced with a foundational 

understanding of the standard AES variant, encompassing its design principles, 

architectural intricacies, and code representations. Subsequently, innovative adaptations 

were explored, including the pipelined and unfolded variants, each characterized by its 

unique attributes and advantages. The primary objective was to establish a profound 

comprehension of these AES variants, setting the stage for the ensuing practical 

implementation analysis. 

After completing the RTL design, VLSI designers progress through the phases of 

synthesis, physical implementation, bitstream generation, and FPGA programming. These 

phases culminate in an exhaustive phase analysis. The primary focus is on evaluating three 

essential dimensions of FPGA-based AES encryption: resource utilization and area 

efficiency, power consumption, and timing performance. These metrics have been 

comprehensively covered in previous sections. 

Vivado Design Suite emerges as a powerful tool for analyzing FPGA designs. 

Notably, it possesses the capability to generate detailed reports on various facets of the 

design. These reports can be generated using Tcl commands [27], providing a flexible and 

customizable means of design analysis. For instance, the "report_utilization" command 

[27] facilitates the generation of a report concerning FPGA resource utilization, 

encompassing elements like LUTs, flip-flops, and BRAMs. This report proves invaluable 
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in identifying areas of the design that may be over-utilizing resources, thereby enabling 

optimization for enhanced performance. 

Likewise, the "report_power" [27] command contributes to generating a report that 

delves into power consumption within the design. This report aids in pinpointing areas of 

the design consuming excessive power, facilitating optimization for reduced power 

consumption. 

Furthermore, timing analysis, a critical aspect of FPGA design, is facilitated 

through various Tcl commands provided by Vivado. The "report_timing" command [27], 

for instance, generates a report on the timing performance of the design, encompassing 

parameters such as setup and hold times, clock skew, and others. This report assists in 

identifying areas of the design that may not meet timing constraints, thus guiding 

optimization efforts for improved timing performance. 

Overall, Vivado Design Suite offers a potent toolkit for analyzing FPGA designs, 

with Tcl commands offering flexibility and customization in generating detailed reports 

on diverse design aspects. Through effective utilization of these tools, designers can 

optimize their designs to achieve superior performance, lower power consumption, and 

enhanced timing performance. 

In Section 5.1, a deep dive into the standard AES implementation ensues, 

involving an intricate examination of resource allocation, area utilization, power 

characteristics, and timing performance. Transitioning to Section 5.2, the focus shifts to 

the pipelined AES implementation. The objective remains consistent: the evaluation of 

resource utilization, area efficiency, power consumption, and timing performance. 
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Insights garnered from the standard AES analysis serve as a foundation for exploring how 

pipelining augments data throughput. Finally, Section 5.3 culminates the implementation 

analysis with the unfolded AES implementation.  

Through these meticulous analyses, the aim is to illuminate not only the strengths but also 

the trade-offs inherent in each AES variant. The overarching goal is to draw meaningful 

conclusions regarding their suitability for specific application scenarios. 

 

4.1. Data Serialization and Deserialization 

Before embarking on the core of this study, it is imperative to address a pivotal 

concern – the management of 128-bit plaintext and ciphertext signals. The practicality of 

utilizing 128 pins for both plaintext and ciphertext on an Arty 7 FPGA board presents a 

formidable challenge. 

In response to this challenge, a pragmatic approach has been adopted, namely, data 

serialization and deserialization. This technique enables the sequential transmission of 

data over a singular plaintext pin and its subsequent reception over a solitary ciphertext 

pin. 

The schematic representation of our project workflow, employing “serdes”, is 

depicted below: 
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Read and write with respect to encryption module inside the FPGA. Through the 

judicious application of data serialization and deserialization, the resource utilization of 

the FPGA is optimized, concurrently ensuring the integrity of the 128-bit signals. This 

methodological refinement serves to streamline our data handling processes, enhancing 

both efficiency and effectiveness in our study. 

 

4.2. Comprehensive Summary of Project Components 

In this section, an overview focusing on the over-arching framework and 

meticulous planning that underpins the execution of the thesis project is presented. The 

success of any research endeavor heavily relies on a well-crafted roadmap and a clear 

delineation of tasks and objectives. The framework guiding the research is examined, 

emphasizing the strategic choices made to ensure the project's coherence and 

effectiveness. This comprehensive snapshot, presented in Figure 12, enables the readers 

to gain a holistic perspective of the aim and purpose of the research. 

Figure 11 Encryption Flow 
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Figure 12 Summary of Thesis Project 

 

4.3. Standard Implementation 

4.3.1. Area Utilization 

The following data represents the outcomes obtained from the execution of the 

"report_utilization" command. To illustrate the influence of data serialization and 

deserialization, in this variant the output side is left unserialized. It is from this comparison 

that one can discern the substantial impact that this technique imparts. In contrast, it is 

important to note that in the remaining two variants, both input and output data are fully 

serialized, reflecting a distinct design choice.  
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Figure 13 Percentage Utilization 

 

 

Figure 14 Absolute Utilization 

 

A relatively straightforward AES design that does not consume much of the FPGA 

resources. However, an anomaly in the count of input/output (IO) pins, is conspicuous. 

This section presents a detailed analysis of the area and resource utilization in the standard 

AES implementation on an FPGA. Understanding how FPGA resources are utilized is 

crucial for optimizing the design and ensuring efficient cryptographic processing. 
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Slice Logic Utilization 

The heart of our analysis lies in Slice Logic Utilization, where we examine various 

critical components: 

Table 1 Resource Utilization Snapshot. 

Site Type Used Available Utilization 

Slice LUTs 223 63400 0.35% 

Slice Registers 532 126800 0.42% 

F7 Muxes 0 31700 0.00% 

F8 Muxes 0 15850 0.00% 

 

This table provides a detailed breakdown of the utilization of Slice Logic 

components, which are fundamental building blocks in an FPGA. The key components 

analyzed here include: 

• Slice LUTs: These are Look-Up Tables within the slices, and 223 out of 63,400 

available are used. LUTs are essential for implementing logic functions. 

• Slice Registers: Registers are used for storing intermediate results and control 

signals. In this case, 532 out of 126,800 available registers are utilized. 

• F7 Muxes and F8 Muxes: These are multiplexers within the slices, which are used 

for selecting different inputs. In this implementation, no F7 or F8 Muxes are used. 
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Summary of Registers by Type 

An in-depth categorization of registers by their functionality: 

Table 2 Register Types. 

Type Used 

Clock Enable 0 

Synchronous 531 

Asynchronous 0 

 

This table categorizes registers based on their functionality, providing insights into their 

utilization: 

• Clock Enable: Registers that enable clock control, but in this implementation, 

none are used. 

• Synchronous: 531 registers are employed for synchronous operations, typically 

associated with clocked data. 

• Asynchronous: No asynchronous registers are used. 

 

Slice Logic Distribution 

Understanding the distribution of Slice Logic: 

Table 3 Distribution of Slices in the Design. 

Site Type Used Available Utilization 

Slice 142 15850 0.90% 

SLICEL 96 - - 

SLICEM 46 - - 

LUT as Logic 223 63400 0.35% 
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This table focuses on the distribution of Slice Logic components across different sites: 

• Slice: A total of 142 out of 15,850 slices are used, indicating that 0.90% of slices 

are utilized. 

• SLICEL and SLICEM: These represent different types of slices with different 

capabilities. 96 SLICEL and 46 SLICEM slices are utilized. 

• LUT as Logic: This category provides additional details about LUT utilization. 

Out of 63,400 available LUTs, 223 are used. The table also shows how some LUTs 

are used exclusively for specific outputs. 

Memory Utilization 

A look into memory utilization: 

Table 4 Utilization of Memory in the Standard Implementation. 

Site Type Used Available Utilization 

Block RAM Tile 1 135 0.74% 

RAMB36/FIFO* 0 135 0.00% 

RAMB18 2 270 0.74% 

 

*Note: RAMB36/FIFO occupies a Block RAM Tile but is not used in this 

implementation. Memory utilization is crucial in FPGA designs. This table presents 

information on memory resources: 

• Block RAM Tile: Only 1 out of 135 Block RAM Tiles is used for this 

implementation, which has implications for data storage. 

• RAMB36/FIFO and RAMB18: These represent different types of memory 

resources, but neither is used extensively in this implementation. 
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IO Utilization 

Table 5 Utilization of I/O in the Standard Implementation. 

Site Type Used Available Utilization 

Bonded IOB 133 210 63.33% 

IOB Master Pads 62 - - 

IOB Slave Pads 66 - - 

 

IO resources are vital for communication with external devices. This table provides 

insights into IO resource utilization: 

• Bonded IOB: 133 out of 210 bonded Input/Output Blocks are used, indicating that 

63.33% of available IOBs are utilized. This may suggest a significant level of 

external interfacing in the design. 

• IOB Master Pads and IOB Slave Pads: These components provide further details 

about IOBs' master and slave pads usage. 

 

Clocking Utilization 

Table 6 Clocking Resource Utilization. 

Site Type Used Available Utilization 

BUFGCTRL 2 32 6.25% 

 

Efficient clocking is essential for synchronization in FPGA designs. This table 

outlines clocking resource utilization: 
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• BUFGCTRL: 2 out of 32 BUFGCTRLs are used. BUFGCTRLs play a crucial 

role in managing clock signals. 

In conclusion, this comprehensive analysis of the standard AES implementation's 

area and resource utilization on an FPGA highlights key metrics related to Slice Logic, 

Memory, DSP, IO, and Clocking. These insights are invaluable for optimizing the design 

and ensuring the efficient deployment of cryptographic algorithms. 

 

4.3.2. Power Efficiency 

Overall, the power profile showcases characteristics aligning with standard 

expectations.  

The reason why the I/O percentage stands out prominently is due to the fact that 

the ciphertext signal is not serialized. In resource-constrained environments, those often 

encountered by CPS, this significant I/O utilization raises major concerns. This is exactly 

why we resorted to serialize the input and output signals, despite the attendant overhead. 

A more detailed exploration of this overhead will ensue as we delve into a comparative 

analysis of throughput between the pipelined and unfolded implementations. 

The standard variant consumed around 300mW of power, where the major chuck 

of about 70% is attributed to dynamic power. Dynamic power pertains to the power 

consumed during the switching of logic gates and interconnections, primarily influenced 

by activity within the circuit. In contrast, static power, often referred to as leakage power, 

represents the power consumed when transistors are in a non-switching state. It is largely 

dependent on the transistor characteristics and process technology. 
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Figure 15 Power Profile 

 

 

Figure 16 Hierarchical Power Usage 

 

4.3.3. Optimizing Timing and Latency 

In this section, we provide a comprehensive summary of the timing analysis for 

your AES implementation on an FPGA using the unfolding technique. Timing analysis is 

crucial to ensure that your design meets the required timing constraints and operates 

correctly. 

• Timing Constraints 

Before diving into the analysis, let's define some key timing constraints: 
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• Setup Time (Setup to Clk): The amount of time before the clock edge that data 

must be stable to be properly captured. 

• Hold Time (Hold to Clk): The amount of time after the clock edge that data must 

be stable to be properly captured. 

• Setup and Hold Times for Input Pins 

 

The following table presents the setup and hold times for each input pin, each of 

which is associated with the sys_clk_pin: 

Table 7 Setup and Hold Times. 

Input Pin Setup Time (ps) Hold Time (ps) 

sys_clk_pin clk 2.68 -0.08 

sys_clk_pin key 0.37 1.59 

sys_clk_pin plaintext 0.31 1.66 

sys_clk_pin rst 1.16 1.94 

 

Timing Metrics Summary 

In the upcoming table, we delve into the essential timing metrics pivotal to our 

design’s performance. This comprehensive overview encapsulates the critical temporal 

parameters that our design adheres to, ensuring efficiency and precision. These metrics 

serve as benchmarks for evaluating the design's responsiveness and are crucial for the 

subsequent optimization processes. Understanding these metrics is key to grasping how 

our design achieves its performance goals within the set temporal constraints. 
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Table 8 Summary of Timing Metrics in Each Implementation. 

Metric Description Value 

WNS Worst-case timing violation indicating 

potential issues 

2.324 ns 

TNS Cumulative negative slack across all paths 0.000 ns 

TNS Failing 

Endpoints 

Number of endpoints failing to meet timing 0 

TNS 

Total 

Endpoints 

Total number of analyzed endpoints 530 

WHS Worst-case timing violation for hold time 

constraints 

0.085 ns 

THS Cumulative hold slack across all paths 0.000 ns 

THS Failing 

Endpoints 

Number of endpoints failing to meet hold 

time constraints 

0 

THS 

Total 

Endpoints 

Total number of analyzed endpoints for 

hold time 

530 

WPWS Worst-case timing violation for pulse width 

constraints 

4.500 ns 

 

Timing Analysis 

In the standard implementation of the AES encryption algorithm, a comprehensive 

timing analysis was conducted to assess the critical path delays and overall performance 

of the design. The timing results are summarized below: 

• WNS (Worst Negative Slack): This represents the worst-case timing delay by 

which a signal in the design fails to meet its required arrival time (setup time) with 

respect to the clock. In your table, the WNS is 2.324 nanoseconds, indicating that 
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the slowest signal is delayed by this amount compared to what's required for proper 

operation. 

• TNS (Total Negative Slack): This is the sum of all negative slack values across all 

endpoints (signals) in the design. In your table, the TNS is 0.000 nanoseconds, 

indicating that the design meets all timing requirements collectively. 

• TNS Failing Endpoints: This is the number of endpoints (signals) that have 

negative slack values, meaning they don't meet their timing requirements. In your 

table, there are 0 failing endpoints, which is a good sign. 

• TNS Total Endpoints: This is the total number of endpoints (signals) in the design 

that are being analyzed for timing. In your table, there are 530 total endpoints. 

• WHS (Worst Hold Slack): Similar to WNS, this represents the worst-case timing 

delay by which a signal in the design fails to meet its required hold time with 

respect to the clock. In your table, the WHS is 0.085 nanoseconds, indicating that 

the slowest signal doesn't meet its hold time requirement by this amount. 

• THS (Total Hold Slack): This is the sum of all hold slack values across all 

endpoints in the design. In your table, the THS is 0.000 nanoseconds, indicating 

that the design meets all hold time requirements collectively. 

• THS Failing Endpoints: This is the number of endpoints that have negative hold 

slack values, meaning they don't meet their hold time requirements. In your table, 

there are 0 failing endpoints, which is a good sign. 

• THS Total Endpoints: This is the total number of endpoints being analyzed for 

hold time. In your table, there are 530 total endpoints. 
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• WPWS (Worst Pulse Width Slack): This represents the worst-case timing delay by 

which a signal's pulse width (duration) fails to meet its required specification. In 

your table, the WPWS is 4.500 nanoseconds, indicating that the slowest signal's 

pulse width is too wide for this amount. 

• TPWS (Total Pulse Width Slack): This is the sum of all pulse width slack values 

across all endpoints in the design. In your table, the TPWS is 0.000 nanoseconds, 

indicating that the design meets all pulse width requirements collectively. 

• TPWS Failing Endpoints: This is the number of endpoints that have negative pulse 

width slack values, meaning they don't meet their pulse width requirements. In 

your table, there are 0 failing endpoints. 

• TPWS Total Endpoints: This is the total number of endpoints being analyzed for 

pulse width. In your table, there are 269 total endpoints. 

• In summary, this table provides a detailed overview of the timing analysis for your 

digital design, including information about setup time, hold time, and pulse width 

requirements. The negative slack values (WNS, WHS, WPWS) indicate areas 

where the design needs improvement to meet its timing constraints, while positive 

values or zeros indicate that the design meets the timing requirements for those 

aspects. 

It is important to note that these timing metrics were evaluated against specified timing 

constraints, and any violations should be carefully addressed to ensure the reliable 

operation of the AES encryption core. 
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In summary, the timing analysis demonstrates that the standard implementation of 

the AES encryption algorithm generally meets its timing requirements, with some specific 

paths that may require optimization to achieve optimal performance. 

The statement "All user specified timing constraints are met" indicates that, based on this 

summary, your design meets all the specified timing constraints, as there are no failing 

endpoints for setup, hold, or pulse width timings. This comprehensive timing analysis 

assures that your AES implementation on the FPGA with the standard technique operates 

within the defined timing parameters. For the subsequent variants we will not go over the 

definitions of these terms and parameters again. We will dive directly into the numbers to 

get a clear picture. 
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4.4. Pipelined Implementation 

4.4.1. Area Utilization 

 

Figure 17 Power Profile for Pipelined Implementation 

 

Figure 18 Hierarchical Power Usage for Pipelined Implementation 

 

In this section, we delve into the area and resource utilization of the pipelined 

implementation of the "top" design on the XC7A100TCSG324-1 device using Vivado 

v.2021.2. Understanding the utilization of various hardware resources is crucial in 

assessing the efficiency and scalability of the design. 

Slice Logic 

The utilization of slice logic provides insights into the core computational elements 

of the design. Table 9 summarizes the key statistics related to slice logic utilization: 
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Table 9 Slice Logic Utilization 

Site Type Used Fixed Prohibited Available Utilization 

Slice LUTs 9532 0 0 63400 15.03% 

LUT as 

Logic 

9532 0 0 63400 15.03% 

Slice 

Registers 

1557 0 0 126800 1.23% 

F7 Muxes 2968 0 0 31700 9.36% 

F8 Muxes 1296 0 0 15850 8.18% 

 

• Slice LUTs: A significant portion of the available LUTs (Look-Up Tables) is used, 

constituting approximately 15.03% of the total available. 

• Slice Registers: Registers, which are essential for pipelining and sequential 

operations, are utilized at a rate of 1.23%, indicating efficient use of register 

resources. 

• F7 and F8 Muxes: These multiplexers are employed in routing and control within 

the slices, with F7 Muxes at 9.36% utilization and F8 Muxes at 8.18%, showcasing 

their importance in the design. 
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Summary of Registers 

 

 

Figure 19 Register Summary 

 

The distribution of registers by type provides insight into the nature of clocking 

and control signals within the design: 

Slice Logic Distribution 

The allocation and spread of slice logic elements, which encompass both Look-Up 

Tables (LUTs) and registers, across the various types of sites present a crucial aspect for 

a comprehensive grasp of the utilization patterns of distinct slices within the design. This 

detailed examination sheds light on how these slices are employed strategically to 

optimize the logic distribution and ensure the design's efficacy and functional robustness. 

It also provides insights into the architectural decisions influencing the overall efficiency 

and performance of the system.  

 

0 2000 4000 6000 8000 10000
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F8 Muxes F7 Muxes Slice Registers Slice LUTs
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Table 10 Slice Logic Distribution. 

Site Type Used Fixed Prohibited Available Utilization 

Slice 2577 0 0 15850 16.26% 

SLICEL 1821 0 - - - 

SLICEM 756 0 - - - 

LUT as Logic 9532 0 0 63400 15.03% 

Slice Registers 1557 0 0 126800 1.23% 

Register in Slice 1432 - - - - 

Register Out Slice 125 - - - - 

 

• Slice Utilization: Slices are utilized at a rate of 16.26%, demonstrating efficient 

allocation of logic across the FPGA. 

• SLICEL and SLICEM: SLICEL and SLICEM slices are effectively used, with 

1821 and 756 slices, respectively. 

• LUT as Logic: LUTs primarily serve as logic elements and contribute 15.03% to 

the overall utilization. 

• Slice Registers: Registers are distributed across slices, with 1432 in-slice 

registers and 125 out-of-slice registers. 



 

57 

 

 

Figure 20 Macro Overview of Area Distribution 

 

Memory and DSP resources provide insights into data storage and digital signal 

processing: 

• DSPs: No DSP resources are employed in the design, indicating that DSP-based 

signal processing is not a requirement. 

IO and clocking resources play a crucial role in interfacing with external 

components and clock management: 

Table 11 IO and Clocking Resources Utilization. 

Site Type Used Fixed Prohibited Available Utilization 

Bonded IOB 6 6 0 210 2.86% 

IOB Master Pads 2 - - - - 

IOB Slave Pads 3 - - - - 

BUFHCE 0 0 0 96 0.00% 

BUFG 2 0 0 32 6.25% 

IBUFDS 0 0 0 202 0.00% 
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• Bonded IOB: A total of 6 Bonded IOBs are used, including 2 IOB Master Pads 

and 3 IOB Slave Pads, indicating external interface requirements. 

• BUFG: 2 BUFGs are utilized for clock management, ensuring reliable clock 

distribution. 

• Specific Features and Primitives 

This section highlights specific features and primitive elements in the design: 

Table 12 Specific Features and Primitives Utilization. 

Site Type Used 

LUT6 7254 

MUXF7 2968 

FDRE 1556 

MUXF8 1296 

LUT5 1062 

LUT2 976 

LUT4 387 

LUT3 273 

IBUF 5 

BUFG 2 

OBUF 1 

FDCE 1 

 

• LUTs and Primitives: The design leverages a significant number of LUT6, 

MUXF7, FDRE, and other primitive elements, showcasing its computational 

intensity. 

This comprehensive analysis of area and resource utilization provides a clear 

picture of how efficiently hardware resources are employed in the pipelined 
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implementation. It serves as a valuable reference for further optimizations and scaling of 

the design. 

 

4.4.2. Power Efficiency 

 

Figure 21 Power Summary 

 

 

 

Figure 22 Hierarchical Power Distribution of Pipelined 
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4.4.3. Optimizing Timing and Latency 

Table 13 Timing Analysis Summary. 

Pin Setup Time (ps) Hold Time (ps) 

sys_clk_pin clk 2.54 -0.06 

sys_clk_pin key -0.15 2.64 

sys_clk_pin plaintext_1 3.58 0.01 

sys_clk_pin ciphertext 12.45 3.93 

sys_clk_pin rst 1.28 2.50 

sys_clk_pin rst2 1.43 2.06 

 

• Timing Metrics Summary 

Table 14 Summary of Timing Metrics in Pipelined  

Metric Description Value 

WNS  
Worst-case timing violation indicating 

potential issues 
2.459 ns 

TNS  Cumulative negative slack across all paths 0.000 ns 

TNS Failing Endpoints Number of endpoints failing to meet timing 0 

TNS Total Endpoints Total number of analyzed endpoints 1328 

WHS  
Worst-case timing violation for hold time 

constraints 
0.032 ns 

THS  Cumulative hold slack across all paths 0.000 ns 

THS Failing Endpoints 
Number of endpoints failing to meet hold 

time constraints 
0 

WPWS  
Worst-case timing violation for pulse width 

constraints 
4.500 ns 

 

  



 

61 

 

Detailed Timing Analysis 

Now, let's delve deeper into some of the critical timing metrics: 

• WNS: A positive WNS (e.g., 2.459 ns) indicates that all paths in your design meet 

the timing requirements, while a negative WNS would indicate timing violations. 

• TNS: A TNS of 0.000 ns means that, on average, all signal paths meet their timing 

requirements. 

• TNS Failing Endpoints: In this case, there are 0 failing endpoints out of a total of 

1328 endpoints. 

• WHS: Similar to WNS, WHS represents the worst-case timing violation for hold 

time constraints. In this case, the WHS is 0.032 ns. 

• THS: A value of 0.000 ns means that, on average, all signal paths meet their hold 

time requirements. 

• THS Failing Endpoints: In this design, there are 0 failing endpoints out of a total 

of 1328 endpoints. 

• WPWS: This metric represents the worst-case timing violation for pulse width 

constraints. In this case, the WPWS is 4.500 ns. 

The statement "All user specified timing constraints are met" indicates that, based 

on this summary, the design meets all the specified timing constraints, as there are no 

failing endpoints for setup, hold, or pulse width timings. 

 

 

 



 

62 

 

4.4.4. Analyzing Throughput  

In this section, we analyze the throughput of the pipelined implementation of our 

design. Throughput is a crucial performance metric, as it measures the rate at which data 

is processed and transmitted. 

It is worth emphasizing that many existing AES implementations often fall short 

in accurately considering critical factors such as input/output (I/O) latency, setup 

intricacies, and other pertinent overheads. In our approach, we address these aspects 

comprehensively, which augments the significance of our analysis. For instance, in this 

research [28], the author talks about high throughout as a result of their pipelined 

implementation. The reported throughput of 54.52 Gbps is undeniably remarkable, 

representing the highest achievable throughput under ideal conditions. However, it's 

essential to acknowledge that in practical, real-world scenarios, the actual throughputs 

may be lower. This discrepancy arises from factors such as I/O latency, memory access 

times, and various operational overheads, all of which significantly influence 

performance. Nonetheless, our reported throughput serves a critical purpose as a valuable 

benchmark. It enables us to conduct meaningful performance comparisons between 

various AES implementations. This comparative analysis helps us gain insights into how 

different implementations perform under less-than-ideal conditions, guiding us in making 

informed decisions regarding their suitability for specific applications or use cases [28]. 

To quantify throughput, we employ the following equation: 

Equation 1 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝐵𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
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Latency is taken in nanoseconds. This equation offers insight into the throughput of our 

AES encryption scheme by considering the size of data blocks processed concurrently and 

the time taken to complete the operation. 

Alternatively, looking at latency in terms of clock cycles, this can also be 

expressed as: 

Equation 2 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝐷𝑎𝑡𝑎 × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
 

This second equation provides an alternative perspective on throughput by considering 

the amount of data processed per unit of time, alongside the latency measured in clock 

cycles. Both equations converge to provide an accurate estimation of the AES encryption 

throughput. We have adopted this equation to standardize our throughput analysis, 

ensuring consistency in our evaluations. 

 

1. Throughput with Input and Output Setup 

This subsection explores throughput while accounting for input and output setup 

procedures. Here, we take into consideration the read and write steps involved in the AES 

encryption process. It's important to note that this configuration often results in a slightly 

lower throughput compared to the ideal scenario, as it encompasses additional processing 

steps. The inclusion of input and output setup is vital for a comprehensive analysis of 

system performance. 

With consideration for input read and output write times, we calculate the 

throughput as follows: 
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Time: 

• The time required to process all the blocks of data is the sum of the 

encryption time, input read time, and output write time: 

• Time = Input Read Time + Encryption Time + Output Write Time 

• Time = 1270 ns + 150 ns + 1290 ns = 2710 ns 

• Clock Cycles = 2710 / 10 = 271 CC 

Throughput: 

94.4649446494 Mbps 

2. Throughput without Input and Output Setup 

In contrast to the previous subsection, we examine throughput without factoring in 

input and output setup. In such scenarios, the throughput tends to be higher due to the 

omission of certain preparatory steps. Analyzing throughput without these additional steps 

provides insights into the maximum achievable processing speed when such setup 

operations are minimized. Here we only focus on the core encryption process.  

 

If we consider only the encryption time (150ns), the throughput is as follows: 

Throughput:  

1706.66666667 Mbps or ~ 1.7 Gbps 

These throughput values demonstrate the high data processing capabilities of our 

pipelined implementation, making it suitable for applications requiring fast encryption and 

data transmission. 
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4.5. Unfolded Implementation 

4.5.1. Area Utilization 

 

Figure 23 Unfolded Design Resource Utilization 

 

 

Figure 24 Unfolded Design Hierarchical Area Distribution 

 

This section presents a comprehensive analysis of the area utilization for the 

Unfolding implementation of the AES encryption algorithm on the Xilinx FPGA device 

(xc7a100tcsg324-1) using Vivado v.2021.2. The primary focus is on metrics such as LUTs 

and slices, providing insights into how efficiently the FPGA resources are utilized. 

Additionally, bar charts are included to visualize the distribution of resources. 
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Slice Logic 

Slice logic represents the core building blocks of the FPGA, consisting of slices that 

contain LUTs and registers. In our Unfolding design, the following slice logic metrics are 

analyzed: 

• 4.2.1.1 Slice LUTs 

• Used: 450 

• Fixed: 0 

• Prohibited: 0 

• Available: 63,400 

• Utilization: 0.71% 

In the Unfolding design, we've demonstrated highly efficient utilization of FPGA 

resources. Specifically, when it comes to Slice (LUTs), only a mere 0.71% of the available 

LUTs are employed, showcasing meticulous LUT resource management. Moreover, in 

terms of Slice Registers, we've made optimal use with 1,061 registers in use, while none 

are fixed or prohibited out of a generous pool of 126,800 registers, resulting in an overall 

utilization rate of just 0.84%. This resource efficiency underscores the effectiveness of our 

design in efficiently harnessing FPGA capabilities. 

Moreover, we see that 0.84% of the available Slice Registers are employed in the 

design, signifying effective use of register resources. 

Memory 

Examining memory utilization within the Unfolding design reveals critical insights into 

data storage and retrieval within the FPGA. Firstly, in terms of Block RAM Tiles, our 
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analysis indicates the usage of just one out of a total of 135 available tiles, resulting in a 

highly efficient utilization rate of 0.74%. This is graphically depicted in Figure 3, 

reaffirming the prudent allocation of memory resources. 

Moving on to primitives, which are specific functional elements vital to the design, 

we observe the following metrics: 

• FDRE (Flip-Flops): A total of 1,060 FDRE flip-flops are in use. 

• LUTs: The design employs 304 LUT5s, 90 LUT4s, 43 LUT6s, 19 LUT3s, 9 

LUT2s, and 1 LUT1. 

These statistics collectively showcase the efficient incorporation of these essential 

design elements, further highlighting the overall resource optimization and effectiveness 

of the Unfolding design. 

 

Figure 25 Register Summary in Unfolded Architecture 
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Digging deeper into the LUT distribution in the design, we see LUT5 being the 

most prevalent type. In terms of input and output buffers, there are 6 used IBUFs and 4 

used OBUFs. In summary, key resource utilization stands at 0.71% for Slice LUTs, 0.84% 

for Slice Registers, and 0.74% for Block RAM Tiles. 

 

 

Figure 26 CLB Summary in Unfolded Design 

 

The utilization analysis reveals that the unfolding implementation of the AES 

encryption algorithm effectively manages FPGA resources, maintaining consistently low 

resource utilization percentages across various metrics. This meticulous resource 

allocation not only ensures the design's current efficiency but also lays a foundation for 

potential scalability and optimization without compromising desired performance criteria. 

We went over a comprehensive examination of the area utilization within the 

Unfolding implementation, encompassing LUTs, Slice Registers, Memory resources, and 
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Primitives. Additionally, it provides visual representations in the form of bar charts to 

facilitate a clearer understanding of resource allocation. The findings collectively indicate 

that the design adeptly and judiciously employs FPGA resources, allowing for future 

enhancements and adaptability as needed. 

 

4.5.2. Power Efficiency 

 

Figure 27 Unfolded Design Power Profile 

 

 

Figure 28 Unfolded Desing Hierarchical Power Distribution 
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4.5.3. Optimizing Timing and Latency 

In this section, we provide a comprehensive summary of the timing analysis for 

your AES implementation on an FPGA using the unfolding technique. Timing analysis is 

crucial to ensure that your design meets the required timing constraints and operates 

correctly. 

The following table presents the setup and hold times for each input pin, each of 

which is associated with the sys_clk_pin: 

Table 15 Setup and Hold Time. 

Input Pin Setup Time (ps) Hold Time (ps) 

sys_clk_pin clk 7,460 30 

sys_clk_pin key 3,780 1,000 

sys_clk_pin plaintext_1 3,580 1,000 

sys_clk_pin plaintext_2 -800 (potential violation) 28,400 

sys_clk_pin rst 2,170 4,300 

sys_clk_pin rst2 3,170 3,190 
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Timing Metrics Summary 

Table 16 Timing Metrics. 

Metric Description Value 

WNS  
Worst-case timing violation indicating 

potential issues 
2.459 ns 

TNS  
Cumulative negative slack across all 

paths 
0.000 ns 

TNS Failing Endpoints 
Number of endpoints failing to meet 

timing 
0 

TNS Total Endpoints Total number of analyzed endpoints 1328 

WHS 
Worst-case timing violation for hold 

time constraints 
0.032 ns 

THS  Cumulative hold slack across all paths 0.000 ns 

THS Failing Endpoints 
Number of endpoints failing to meet 

hold time constraints 
0 

THS Total Endpoints 
Total number of analyzed endpoints for 

hold time 
1328 

WPWS 
Worst-case timing violation for pulse 

width constraints 
4.500 ns 

 

4.5.4. Analyzing Throughput  

In the context of our FPGA-based AES implementation using the unfolding 

technique, it is essential to assess the system's throughput. Throughput measures the rate 

at which data can be processed, and it is a critical metric for evaluating the efficiency and 

performance of cryptographic systems. In this section, we explore the throughput of our 

design, considering both scenarios: one with input and output setup times and the other 

with only encryption time. 
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1. Throughput with Input and Output Setup 

In the first scenario, we take into account the time required for reading input data, 

the encryption process, and writing the output data. Here are the key parameters: 

• Input Time (input read): 1270 ns for two blocks in parallel. 

• Encryption Time (enc time): 130 ns per block for 10 rounds of AES encryption. 

• Output Time (output write): 1290 ns for two blocks in parallel. 

• Calculation 

We calculate the throughput as follows: 

1. Total Data Processed: 

• We process two blocks of plaintext in parallel, with each block being 128 

bits. 

• Total Data Processed = 2 blocks * 128 bits per block = 256 bits. 

2. Total Time: 

• Total Time = Input Time + Encryption Time + Output Time 

• Total Time = 1270 ns + 130 ns + 1290 ns = 2690 ns 

• We convert nanoseconds to seconds: Total Time = 2690 ns * 1e-9 = 2.69e-

6 seconds. 

3. Throughput: 

• Throughput = Total Data Processed / Total Time 

• Throughput = 256 bits / 2.69e-6 seconds = approximately 95.4 Mbps 

(megabits per second). [95.16728624539999 Mbps] 

2. Throughput without Input/Output Setup (Only Encryption Time) 
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In the second scenario, we focus solely on the encryption process, excluding input 

and output setup times. The key parameter here is the encryption time: 

• Encryption Time (enc time): 130 ns per block for 10 rounds of AES encryption. 

• Calculation 

We calculate the throughput as follows: 

1. Total Data Processed: 

• Similar to the previous scenario, we process two blocks of plaintext in 

parallel, with each block being 128 bits. 

• Total Data Processed = 2 blocks * 128 bits per block = 256 bits. 

2. Total Time: 

• Total Time = Encryption Time 

• Total Time = 130 ns 

• We convert nanoseconds to seconds: Total Time = 130 ns * 1e-9 = 1.3e-7 

seconds. 

3. Throughput: 

• Throughput = Total Data Processed / Total Time 

• Throughput = 256 bits / 1.3e-7 seconds = approximately 1.97 Gbps 

(gigabits per second). [1969.23076923 Mbps]. 

 

4.6. Trends and Implications 

A comparison of the two scenarios reveals significant differences in throughput, 

primarily influenced by the presence or absence of input and output setup times. In the 



 

74 

 

case of Unfolding, considering these setup times, our system processes data at an 

approximate rate of 95.4 Mbps. This demonstrates the notable impact of setup times on 

overall processing speed. However, when we focus exclusively on the encryption process, 

the throughput substantially increases to approximately 1.97 Gbps. This underscores the 

inherent efficiency of the AES encryption algorithm itself and underscores the potential 

for performance gains when minimizing input/output setup times. 

For the Pipelined approach, the throughput stands at around 94.5 Mbps when 

considering setup times and increases to approximately 1.7 Gbps when focusing solely on 

encryption. 

Table 17 Throughput Overview. 

Scenario Unfolding Pipelined 

With setup times 95.4 Mbps 94.5 Mbps 

Without setup times 1.97 Gbps 1.7 Gbps 

 

Understanding these trends in throughput is essential for further optimizing our 

AES implementation. It highlights the significance of not only considering the 

cryptographic algorithm but also the data handling processes when designing secure and 

efficient FPGA-based systems. 

These findings are particularly promising when considering other factors, such as: 

• 100 MHz frequency, 

• utilizing two data blocks,  

• and working with a lower to mid-range hardware platform.  
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This suggests the potential for achieving even higher throughput by processing 

larger input data sets. Additionally, there's the possibility of increasing the frequency, 

albeit at a power cost, or transitioning to a high-end FPGA to match the results claimed 

by researchers as the fastest in the field. 

 



 

76 

 

5. DESIGN VERIFICATION OF THE HARDWARE IMPLEMENTATION 

 

When configuring an FPGA, ensuring the accuracy of the loaded bitstream is 

paramount. Verification is the process of confirming that the FPGA has been correctly 

configured according to the design specifications. This process is crucial to avoid 

unexpected behavior or functional errors in the FPGA-based system. 

Why Verification Matters 

Verification serves as a validation step to guarantee that the configuration data, 

often stored in a .bit file, has been accurately transferred and implemented within the 

FPGA. A successful verification process provides confidence that the FPGA functions as 

intended, aligning with the original design. 

 

5.1. Verifying Bitstream on FPGA – The Process 

Vivado Design Suite, a widely used FPGA development environment, provides a 

systematic approach to verify a bitstream on an FPGA. Here are the key steps in the 

verification process: 

1. Open Vivado Design Suite: Begin by launching the Vivado Design Suite. 

2. Connect to the Target Device: Establish a connection to the target FPGA device from 

within the Vivado Hardware Manager. 

3. Select Verification: Right-click on the connected FPGA device in the Hardware 

Manager and choose "Verify Device." 
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Figure 1  Figure 29 TCL Command for Verification 

4. Choose Bitstream and Mask File: In the "Verify Device" dialog box, select the 

appropriate bitstream file (.bit) and the corresponding mask file (.msk) for the FPGA 

configuration. 

5. Initiate Verification: Click the "Verify" button to initiate the verification process. 

Vivado will compare the bitstream with the actual configuration on the FPGA. 

6. Readback Data: Use the "readback_hw_device" Tcl command with options to obtain 

readback data. You can save this data in either ASCII format using `-readback_file 

<filename.rbd>` or binary format using `-bin_file <filename.bin>`. 

7. Compare Data: Compare the readback data with the original bitstream file to ensure 

they match. Any discrepancies could indicate configuration errors. 

8. Masking: If the readback data does not perfectly match the original bitstream file, use 

the mask file (.msk) to identify which bits should be skipped or masked during the 

comparison process. This step helps account for any bit differences that might be 

expected due to technical factors. 

9. Additional Resources: For more detailed information on the verification and 

readback operations, refer to the "Verifying Readback Data" section in the appropriate 

FPGA Configuration User Guide. The specific guide to consult depends on the FPGA 

architecture you are working with, such as UltraScale Architecture Configuration User 

Guide (UG570) or the 7 Series FPGAs Configuration User Guide (UG470). 
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To summarize, the verification process involves several key steps to ensure the 

accuracy and integrity of our design. Initially, when generating the bitstream, a MASK 

(.msd) file is concurrently generated. This .msd file serves as a critical reference, 

indicating which bits should be disregarded and which ones require comparison. 

Subsequently, the logic location (.ll) file is generated, providing valuable information for 

pinpointing the register locations within the Readback data. The culmination of this 

process involves running a hardware verification command, which yields a Readback 

(.rdb) file. To validate our design thoroughly, we analyze the .rdb file by comparing it to 

the bit file, while considering the information provided by the MASK and logic location 

files. This comprehensive approach ensures that the hardware is verified. 

 

5.2. Interpreting Verification Files 

information is about how to interpret and use files generated during the process of 

configuring an FPGA. 

When you configure an FPGA, you generate a .bit file. This file contains the 

instructions for setting up the FPGA's internal logic. However, when you read back the 

configuration from the FPGA, some bits might not match exactly what's in the .bit file due 

to various technical reasons. To help with this, you can generate additional files:  

• .ll File: This file helps you locate where different parts of your design are in the 

readback data. It provides information about bit offsets and addresses in the readback 

data. This helps you map what you expect from your design to what you get when 

reading back. 
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• .msd File: This is a mask file. It tells you which bits should be ignored or "masked" 

when comparing the readback data to what's in the .bit file. Sometimes, bits that are 

supposed to be 0 in the .bit file might read back as 1, and this file helps you account 

for such differences. 

• .rbd File: This file contains the actual readback data from your FPGA. 

 

When comparing the readback data to what's in the .bit file, you use these files to 

understand where to look in the readback data, what bits to ignore, and how to interpret 

any differences you find. In simple terms, these files are tools to help you make sure your 

FPGA is configured correctly and to account for any quirks in the reading process. 

 

 

Figure 30 Logic Location File 
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Figure 31 Readback File 

 

 

Figure 32 Mask File 
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In conclusion, the verification process for FPGA bitstreams, as discussed above, 

plays a pivotal role in ensuring the accurate configuration of hardware, a step of paramount 

importance in FPGA-based systems. This process not only guarantees the integrity of the 

design but also helps in addressing potential discrepancies that may result from technical 

intricacies or physical faults on the actual hardware.  

What sets our work apart is the inclusion of both verification and a system 

throughput analysis, factors that are notably absent in existing research papers on 

hardware AES encryptions. This omission underscores the unique contribution of our 

study in providing a more holistic and thorough perspective on FPGA-based AES 

encryption implementations, setting a new standard for the field.    
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6. SUMMARY AND CONCLUSION 

 

In conclusion, our research has encompassed a comprehensive exploration of the 

FPGA-based implementation of the AES encryption algorithm, comprising three distinct 

variants: Standard, Pipelined, and Unfolded. Through rigorous testing and analysis, we 

have quantified the performance metrics, shedding light on the strengths and limitations 

of each design. Notably, our study has introduced two critical elements often overlooked 

in existing research on FPGA-based AES encryption – the meticulous consideration of 

I/O latency overhead and the verification process to ensure bitstream integrity. These 

novel inclusions have enhanced the robustness and reliability of our implementations. 

 

Looking ahead, future work in this domain could involve the development of a 

benchmarking tool for automating the encryption of large datasets, making our module 

statistically viable for real-world applications. Such advancements hold the promise of 

further bolstering our throughput readings. Additionally, our encryption module could 

find valuable utility in a CPS testbed environment, facilitating secure data communication 

via Ethernet or wireless means in resource-constrained settings. This represents a 

promising avenue for the practical application of our research, with potential implications 

for enhancing data security and efficiency in various domains. 

 

In essence, our study not only contributes to the body of knowledge regarding 

FPGA-based AES encryption but also underscores the importance of considering often-
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overlooked aspects in the design and evaluation of cryptographic systems. As technology 

continues to advance, it is imperative that our research adapts and evolves, ensuring the 

continued security and efficiency of data communication in an increasingly interconnected 

world. 
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