

ENHANCING THE HARDWARE-BASED ADVANCED ENCRYPTION STANDARD

IMPLEMENTATION FOR OPTIMIZED PERFORMANCE IN CYBER-PHYSICAL

SYSTEMS

A Thesis

by

USAMA TARIQ

Submitted to the Graduate and Professional School of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Garth V. Crosby

Committee Members, Rainer J. Fink

 Katherine Davis

Head of Department, Michael Johnson

December 2023

Major Subject: Engineering Technology

Copyright 2023 Usama Tariq

ii

 ABSTRACT

Cyber-Physical Systems play a pivotal role in critical infrastructures but face distinct

security challenges. Traditional software-based security measures often disregard to account for

the resource limitations that these systems encounter. Field Programmable Gate Arrays offer a

solution, enabling hardware-based cryptographic implementations to enhance security. This study

delves into the design and analysis of optimized variants of cryptographic encryption implemented

on hardware, shedding light on design methodologies and optimization techniques. Our research

includes physical verification, rendering the encryption core readily applicable to be deployed in

existing systems. Notably, this study goes beyond the existing research landscape, where the focus

on specific metrics often neglects the holistic perspective. Our performance analysis, with a

particular emphasis on throughput, undergoes rigorous scrutiny and provides a comprehensive

view previously unexplored. This work significantly contributes to enhancing security by

introducing efficient hardware-based cryptographic solutions and advancing the field with a

comprehensive performance analysis.

iii

DEDICATION

To my family, who have stood by me through countless challenges and continue to inspire me

with their unwavering support and enduring patience.

iv

ACKNOWLEDGEMENTS

I extend my heartfelt gratitude to my committee chair, Dr. Crosby, for his constant

encouragement and invaluable mentorship during the course of my research. I am also deeply

appreciative of my committee members, Dr. Fink and Dr. Davis, for their invaluable guidance

and insightful suggestions. Furthermore, I wish to acknowledge Dr. Hounsinou for her vital

contribution as a mentor in this journey.

I would like to express my profound thanks to my parents and my colleagues, whose

unwavering support and continuous encouragement have been a driving force throughout my

educational journey. Their reminders of their pride in my accomplishments have been a constant

source of motivation.

Above all, I humbly thank and acknowledge the Lord and Creator for bestowing upon me

the perseverance, strength, and the overall ability to reach this significant milestone. Without His

divine guidance and grace, I could not have accomplished this feat.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Professor Garth V. Crosby

[advisor] and Professor Rainer J. Fink of the Department of Engineering Technology and Industrial

Distribution and Professor Katherine Davis of the Department of Electrical and Computer

Engineering.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was not funded by outside sources.

vi

NOMENCLATURE

CPS Cyber-Physical Systems

AES Advanced Encryption Standard

FPGA Field Programmable Gate Array

RTL Register-Transfer Level

CLB Configurable Logic Block

LUT Look-Up Table

FF Flip Flop

vii

TABLE OF CONTENTS

 Page

ABSTRACT .. ii

DEDICATION ... iii

ACKNOWLEDGEMENTS ... iv

CONTRIBUTORS AND FUNDING SOURCES .. v

NOMENCLATURE .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

1. INTRODUCTION .. 1

1.1. Background .. 1

1.2. Evolution of Encryption Techniques and the Role of FPGAs ... 5
1.3. Enhancing Cybersecurity Through AES in CPS ... 9

2. HARDWARE IMPLEMENTATION OF AES .. 11

2.1. Cryptographic Solutions From Software to Hardware - Overview of Encryption

Methods and Their Limitations .. 11
2.2. Unraveling the AES Algorithm - Deep Dive Into the AES Algorithm and Its

Significance .. 13

2.3. Previous AES Implementations - Reviewing Existing Research on AES

Implementations ... 16

3. FPGA DESIGN OF AES .. 19

3.1. Platform Selection: Leveraging Artix-7 and Vivado Design Suite for AES 19
3.1.1. Hardware Platform .. 19
3.1.2. Software Platform ... 21

3.2. Test Vectors and Reference Code .. 22

3.3. FPGA AES Architecture Design in VHDL With Testbench ... 24
3.3.1. Standard .. 25
3.3.2. Pipelined ... 29
3.3.3. Unfolded ... 31

3.4. Metrics for Evaluating Hardware Implementations ... 33

viii

4. IMPLEMENTATION ANALYSIS .. 36

4.1. Data Serialization and Deserialization ... 38

4.2. Comprehensive Summary of Project Components .. 39
4.3. Standard Implementation ... 40

4.3.1. Area Utilization ... 40
4.3.2. Power Efficiency ... 46
4.3.3. Optimizing Timing and Latency ... 47

4.4. Pipelined Implementation .. 53
4.4.1. Area Utilization ... 53
4.4.2. Power Efficiency ... 59
4.4.3. Optimizing Timing and Latency ... 60

4.4.4. Analyzing Throughput .. 62
4.5. Unfolded Implementation .. 65

4.5.1. Area Utilization ... 65

4.5.2. Power Efficiency ... 69
4.5.3. Optimizing Timing and Latency ... 70

4.5.4. Analyzing Throughput .. 71
4.6. Trends and Implications ... 73

5. DESIGN VERIFICATION OF THE HARDWARE IMPLEMENTATION 76

5.1. Verifying Bitstream on FPGA – The Process .. 76
5.2. Interpreting Verification Files ... 78

6. SUMMARY AND CONCLUSION ... 82

REFERENCES ... 84

ix

LIST OF FIGURES

 Page

Figure 1 CPS Architecture .. 2

Figure 2 FPGA Architecture ... 7

Figure 3 AES Architecture Block Diagram .. 15

Figure 4 Artix 7 Development Board ... 20

Figure 5 NIST Test Vectors .. 24

Figure 6 Reference Implementation in C .. 24

Figure 7 Entities That Make up AES HDL Model ... 27

Figure 8 VHDL Code of Top-Level Entity... 28

Figure 9 Pipelined Architecture .. 30

Figure 10 Unfolding in AES ... 32

Figure 11 Encryption Flow ... 39

Figure 12 Summary of Thesis Project .. 40

Figure 13 Percentage Utilization .. 41

Figure 14 Absolute Utilization.. 41

Figure 15 Power Profile .. 47

Figure 16 Hierarchical Power Usage .. 47

Figure 17 Power Profile for Pipelined Implementation .. 53

Figure 18 Hierarchical Power Usage for Pipelined Implementation .. 53

Figure 19 Register Summary .. 55

Figure 20 Macro Overview of Area Distribution ... 57

Figure 21 Power Summary ... 59

Figure 22 Hierarchical Power Distribution of Pipelined .. 59

file:///C:/Users/usama/Documents/TAMU-Studies/Research/00_THESIS/thesis%20corrections/corrected_thesis.docx%23_Toc152187550
file:///C:/Users/usama/Documents/TAMU-Studies/Research/00_THESIS/thesis%20corrections/corrected_thesis.docx%23_Toc152187561

x

Figure 23 Unfolded Design Resource Utilization ... 65

Figure 24 Unfolded Design Hierarchical Area Distribution ... 65

Figure 25 Register Summary in Unfolded Architecture ... 67

Figure 26 CLB Summary in Unfolded Design ... 68

Figure 27 Unfolded Design Power Profile.. 69

Figure 28 Unfolded Desing Hierarchical Power Distribution .. 69

Figure 29 TCL Command for Verification ... 77

Figure 30 Logic Location File .. 79

Figure 31 Readback File ... 80

Figure 32 Mask File .. 80

file:///C:/Users/usama/Documents/TAMU-Studies/Research/00_THESIS/thesis%20corrections/corrected_thesis.docx%23_Toc152187567
file:///C:/Users/usama/Documents/TAMU-Studies/Research/00_THESIS/thesis%20corrections/corrected_thesis.docx%23_Toc152187568
file:///C:/Users/usama/Documents/TAMU-Studies/Research/00_THESIS/thesis%20corrections/corrected_thesis.docx%23_Toc152187569

xi

LIST OF TABLES

 Page

Table 1 Resource Utilization Snapshot. .. 42

Table 2 Register Types. .. 43

Table 3 Distribution of Slices in the Design. .. 43

Table 4 Utilization of Memory in the Standard Implementation. ... 44

Table 5 Utilization of I/O in the Standard Implementation. ... 45

Table 6 Clocking Resource Utilization. .. 45

Table 7 Setup and Hold Times.. 48

Table 8 Summary of Timing Metrics in Each Implementation. ... 49

Table 9 Slice Logic Utilization ... 54

Table 10 Slice Logic Distribution. .. 56

Table 11 IO and Clocking Resources Utilization. .. 57

Table 12 Specific Features and Primitives Utilization. .. 58

Table 13 Timing Analysis Summary. ... 60

Table 14 Summary of Timing Metrics in Pipelined ... 60

Table 15 Setup and Hold Time. .. 70

Table 16 Timing Metrics. ... 71

Table 17 Throughput Overview. ... 74

1

1. INTRODUCTION

1.1. Background

In the evolving landscape of technological innovation, Cyber-Physical Systems

(CPS) have emerged as a transformative paradigm that merges the realms of physical

processes and computational power. This convergence holds the potential to revolutionize

critical sectors like healthcare, avionics, and automotive industries by fostering efficiency,

automation, and real-time decision-making. However, this amalgamation of physical and

digital domains also ushers in distinct security challenges that demand careful

consideration. Within the realm of CPS, the seamless interaction of physical elements with

computational components introduces a series of unique challenges. While CPS are

designed to enhance system performance and offer new possibilities, they also bring along

vulnerabilities. The convergence of operational technology (OT) and information

technology (IT) creates potential gateways for cyberattacks that could compromise critical

functions and have far-reaching consequences.

CPS, acting as the cornerstone of automated critical applications, carry the

responsibility of safeguarding themselves against malicious incursions. CPS security is

characterized by the imperative to prevent unauthorized access to system data and network

capabilities. This task is especially daunting due to the spatial-temporal dynamics inherent

to the underlying physical environment [1]. Within CPS, processes operate in

interconnected loops, orchestrated to function autonomously. However, managing the

complexities, unpredictabilities, and constraints of these processes presents a formidable

2

task. The inherent nature of CPS entails an intricate interplay between the cyber and

physical realms. The physical domain, encompassing chemical, mechanical, or electrical

systems, interfaces with the cyber world, which processes and stores gathered information

[2]. The dynamic feedback loop between these realms culminates in the ability of CPS to

modify physical processes in predefined ways, enhancing overall performance and

usability.

A distinguishing aspect of CPS security is its departure from conventional IT

security paradigms [3]. Unlike traditional IT systems, where virus detection updates can

be delivered upon system log-in, CPS's heterogeneous and deeply embedded nature

hinders such frequent updates and patches for malware detection. This intricacy

underscores the urgent need for intensive research to formulate effective security

methodologies tailored to CPS's unique challenges.

Figure 1 CPS Architecture. Reprinted From [4]

3

The scope of CPS applications spans from automated healthcare to energy-

efficient smart cities, fault-free power generation and distribution, robotics, intelligent

automobiles, and safe highways [5]. The integration of independent CPS units into

cohesive systems gives rise to new challenges in the form of Cyber-Physical System of

Systems (CPSoS) [6]. In the domain of automated healthcare, ensuring security for

implanted medical devices within Medical CPS proves to be a fundamental challenge [5].

Instances abound where adversaries could exploit networked medical devices worn by

individuals, accentuating the criticality of CPS security.

With over 90 million Americans living with chronic illnesses, accounting for 70

percent of all deaths in the US, the financial burden and demand for secure Medical CPS

are compelling. Chronic illnesses contribute to approximately 90 percent of the total 3.8

trillion dollars of healthcare costs in the US, with a significant percentage of the aging

population expected to face diagnoses. Amid this context, the safe development of

Medical CPS has become a pressing imperative [7].

Medical CPS encompasses three fundamental functionalities: sensor integration

on the human body to collect organ-specific data, expert medical decision-making based

on accessible reports, and precise prescription recommendations to regulate organ

behavior. Compromising a medical CPS through attacks exposes sensitive medical data to

unknown adversaries, elevating the risk of data falsification and erroneous prescriptions.

The implications are grave, as incorrect drug dosages can have severe health

repercussions, including potentially fatal outcomes.

4

Beyond medical contexts, several instances underscore the vulnerability of critical

applications, leading to unexpected and devastating consequences. A failure in an electric

power transmission grid can trigger widespread blackouts, impacting multiple cities

within a country. Reports reveal successful cyberattacks on power systems resulting in

substantial disruptions [8]. Instances like the development of CarShark, capable of

remotely disabling car brakes via CAN packet sniffing, demonstrate the dire ramifications

of compromised systems [9]. Notably, the interconnectedness of CPS and physical

systems can lead to cyberattacks directly influencing physical infrastructure, as seen in the

German steel-mill incident [10].

The cornerstone of CPS security revolves around ensuring safety, security, and

real-time functionality. Achieving this demands lightweight security solutions [2] that

enhance CPS resilience against Cyber-Physical and Cyber-Attacks [11]. Amidst these

challenges, the necessity to foster CPS security that aligns with the complexities of their

hybrid nature remains paramount.

At the heart of these challenges lies the vital need for secure communication.

Ensuring the confidentiality, integrity, and availability of data within CPS is a paramount

concern. Data security is not just a matter of protecting information—it directly influences

the operational integrity of safety-critical systems. A breach in security could have dire

implications, such as compromised patient care in healthcare settings or accidents

stemming from tampered sensor data in aviation. The conventional methods of software-

based security that have served well in other domains exhibit limitations in the context of

CPS. Resource constraints, real-time demands, and the necessity for deterministic

5

behavior pose hurdles for the application of traditional security mechanisms. These

methods, designed with enterprise IT systems in mind, struggle to adapt to the unique and

demanding requirements that CPS environments entail. In response to these challenges,

the realm of hardware-based security solutions comes to the forefront, promising to bolster

the security of CPS. Among these solutions, Field-Programmable Gate Arrays (FPGAs)

stand out as a beacon of potential. FPGAs introduce unprecedented flexibility in

implementing cryptographic algorithms at the hardware level. Their reprogrammable

nature facilitates the creation of security solutions tailored to the distinctive demands of

CPS environments.

By weaving the intricate fabric of CPS, the security challenges it presents, and the

need for robust encryption mechanisms made possible through hardware solutions like

FPGAs, this section sets the stage for a comprehensive exploration of the intricate

interplay between technology and security in the realm of CPS.

1.2. Evolution of Encryption Techniques and the Role of FPGAs

The evolution of encryption techniques has witnessed a dynamic shift from

conventional software-based approaches towards hardware-based solutions. This

transition has been particularly pronounced in the context of CPS, where the convergence

of physical and digital domains necessitates robust security mechanisms. One pivotal

player in this evolution is the deployment of FPGAs, which offer distinctive advantages

for implementing cryptographic algorithms at the hardware level. FPGAs stand as

adaptable systems enabling the realization of intricate application-specific logic designs

6

through an array of programmable logic gates. These gates can be configured to fulfill

specific functionalities, relying on pivotal FPGA building blocks that operate in synergy:

the interconnect, the fabric logic, and the configurable logic blocks or CLBs [12].

The Interconnect and Logic Fabric: The interconnect constitutes a network of

wires interlinking diverse FPGA components to facilitate signal routing. It establishes

connections between the CLBs and other functional units, ensuring effective signal

propagation while minimizing delay and power consumption. Complementing this, the

fabric logic, also known as the programmable interconnect array (PIA), encompasses

programmable switches governing signal routing between the interconnect and CLBs.

This component offers configurable pathways for signals, enabling dynamic

reconfiguration and optimal utilization of the interconnect.

Configurable Logic Blocks: At the core of an FPGA, the CLBs serve as

foundational elements, housing Look-Up Tables (LUTs) as programmable memory units

capable of data storage and processing. The incorporation of LUTs empowers intricate

Boolean function implementation, rendering the FPGA adaptable across a range of

applications. Notably, prominent FPGA manufacturer Xilinx adopts a distinctive CLB

architecture encompassing a LUT, a flip-flop, and a carry chain, enhancing CLB

functionality and versatility.

7

Figure 2 FPGA Architecture. Reprinted From [12]

Moreover, contemporary FPGAs integrate various specialized cores, often

provided by third-party vendors, alongside additional memory components. Memory

plays a pivotal role in FPGA architecture by enabling real-time data storage and retrieval,

thereby facilitating rapid and efficient computation. FPGAs incorporate both on-chip and

off-chip memory resources, serving various purposes such as data buffering, caching, and

storage. Harnessing these memory resources significantly augments FPGA performance,

especially in applications demanding substantial data processing and storage capabilities

[12].

Historically, software-based encryption methods have been the cornerstone of data

security strategies. These techniques operate in tandem with functional processes, using

algorithms to scramble and protect data. However, as the complexity and sensitivity of

CPS applications increased, the limitations of software-based security mechanisms

became apparent. These methods, while effective in conventional settings, encountered

8

challenges in the resource-constrained environment of CPS. The heavy computational

demands of software-based encryption strained the already limited computing and

memory resources, compromising real-time performance and responsiveness. To address

these limitations, the security landscape witnessed a significant transformation with the

emergence of hardware-based solutions. Hardware implementations of encryption

algorithms offer a distinct advantage by capitalizing on the parallel processing capabilities

of specialized hardware components. This hardware-centric approach optimizes

performance by offloading encryption tasks from the central processing units, thereby

enhancing the overall efficiency and real-time responsiveness of CPS.

FPGAs also present numerous advantages in Edge Computing for CPS and IoT

applications, as well as in hardware-based security solutions. Their flexibility allows for

dynamic adaptation to changing computing requirements, making them well-suited for the

adaptability demanded in the forementioned scenarios. Moreover, FPGAs deliver high

computing performance through parallel processing and hardware-based architecture.

Their reconfigurability supports time-multiplexing of computing resources, enhancing

suitability for CPS adaptability. Additionally, FPGAs have emerged as a pivotal

technology in hardware-based security, enabling tailored hardware implementations of

cryptographic algorithms. Their parallel processing capabilities enhance encryption

efficiency, while runtime reconfigurability optimizes resource utilization to meet evolving

security needs. In both contexts, FPGAs offer a compelling solution for high performance,

energy efficiency, and adaptability demands [13].

9

By recognizing the evolution of encryption techniques from software-based

approaches to hardware-centric solutions and acknowledging the significant influence of

FPGAs in this paradigm shift, it becomes evident that harnessing hardware for bolstering

data security within CPS yields substantial implications.

1.3. Enhancing Cybersecurity Through AES in CPS

The landscape of CPS demands resilient and effective security measures to

safeguard data transmissions and critical operations within these infrastructures. The

evolution of encryption techniques from conventional software-based approaches to

hardware-based solutions has been pivotal in meeting these security requirements. This

transition aligns seamlessly with the growing importance of the Advanced Encryption

Standard (AES) in ensuring the integrity and confidentiality of data transmissions within

CPS environments.

As CPS have advanced, the limitations of software-based security methods have

become apparent, particularly in relation to the real-time demands and resource constraints

these systems face. This transition has prompted the adoption of FPGAs as a powerful tool

for enhancing data security within CPS. FPGAs, with their adaptability, efficiency, and

reconfigurability, present a promising avenue for addressing the unique security

challenges of CPS and bolstering the protection of sensitive data. Amid the array of

cryptographic algorithms, the AES has emerged as a cornerstone for ensuring secure data

communication. Its robust encryption mechanism, providing confidentiality, integrity, and

authenticity, makes it essential for safeguarding data transmission, especially in critical

10

CPS scenarios. The wide adoption of AES across industries highlights its significance in

secure communication.

Despite the growing importance of AES and hardware-based security approaches

in CPS, there exists a gap in achieving optimal AES implementation on FPGAs. Existing

research provides valuable foundations, but a need persists for enhancing AES's

performance in CPS contexts. Consequently, the central objective of this thesis is to

address this gap. It aims to meticulously design and evaluate FPGA-based

implementations of the AES algorithm to enhance both its efficiency and efficacy within

the resource-constrained CPS environments. The research seeks to elevate AES

implementations, offering improved data security and optimized performance for critical

CPS operations. In this context, this section lays the groundwork by emphasizing the shift

towards hardware-based encryption, the pivotal role of FPGAs, and the significance of

AES in the realm of CPS data security. The upcoming sections will delve into the

intricacies of AES implementation on FPGAs, detailing the methodologies employed to

achieve the overarching research objectives.

11

2. HARDWARE IMPLEMENTATION OF AES

2.1. Cryptographic Solutions From Software to Hardware - Overview of

Encryption Methods and Their Limitations

In the realm of securing data transmissions within CPS, cryptographic algorithms

play a fundamental role by concealing information through mathematical functions. These

algorithms encompass two key operations: encryption and decryption. Encryption

transforms plain text into cipher text, while decryption reverts the cipher text back to its

original form [14]. These operations are executed using cryptographic keys, leading to the

classification of cryptographic algorithms into two main categories: symmetric

cryptography (SC) and asymmetric cryptography (AC).

Symmetric cryptography (also known as secret-key or shared-key cryptography)

operates with a shared secret key between the sender and receiver for both encryption and

decryption processes. This approach ensures that the intended recipient is the sole entity

capable of recovering the original plain text, contingent upon keeping the shared key

confidential. Consequently, symmetric cryptography offers a degree of assurance as data

encrypted with a specific symmetric key cannot be decrypted using any other.

Furthermore, the reliance on a single key eliminates the need for intricate mathematical

calculations and resource-intensive processing for generating and handling additional

keys. This efficiency makes symmetric encryption algorithms notably faster compared to

their asymmetric counterparts [15], rendering them a favorable choice for resource-

constrained applications.

12

Nevertheless, a notable limitation of secret-key cryptography arises in the secure

sharing of the secret key. The necessity to maintain key privacy often involves encrypting

the secret key with another key, creating a perpetual dependency on additional keys [16].

Numerous algorithms have emerged to define symmetric key cryptography, often

operating in rounds. Each round applies mathematical operations, such as substitutions

and permutations, to transform plaintext into ciphertext and vice versa. These operations

typically act on fixed-size data blocks, rather than the entire message at once. The

substitution box (S-box) is a common component of symmetric algorithms, functioning as

a lookup table for substituting values during encryption or decryption. The S-box

contributes to properties like confusion and diffusion, essential for robust cryptographic

algorithms.

Moving on to asymmetric cryptography, also known as public-key cryptography,

this class employs a pair of keys: a public key and a private key. The public key can

encrypt a message, and only the intended recipient with the corresponding private key can

decrypt it. Asymmetric cryptography offers unique advantages, including the elimination

of key distribution issues since key exchange is unnecessary. This enhances security, as

private keys are never transmitted or disclosed. Additionally, it enables the use of digital

signatures to verify message origins. However, the computational complexity of

asymmetric cryptographic algorithms often renders them slower compared to symmetric

alternatives.

In summary, this section delves into the overarching landscape of cryptographic

solutions. It encompasses symmetric cryptography, which leverages shared keys for

encryption and decryption, and asymmetric cryptography, characterized by public-private

key pairs. By comprehensively understanding these cryptographic categories, we establish

a firm foundation for exploring the subsequent hardware implementations within the

context of AES and CPS security.

2.2. Unraveling the AES Algorithm - Deep Dive Into the AES Algorithm and Its

Significance

Be sure that there is at least one line of text below any subheading at the bottom of

a page. Within the realm of securing data transmissions in Cyber-Physical Systems (CPS),

the Advanced Encryption Standard (AES) emerges as a critical cornerstone, employing a

substitution-permutation network algorithm to obfuscate data through multiple rounds of

encryption [17]. AES encryption supports three key lengths: 128-bit, 192-bit, and 256-bit,

while consistently maintaining a fixed block size of 128 bits or 16 bytes. As the key length

increases, so does the security level, albeit at the cost of augmented power consumption

and memory requirements within CPS [17]. This encryption scheme employs varying

numbers of rounds based on the key length. AES-128 utilizes 10 rounds, AES-192 uses

12 rounds, and AES-256 employs 14 rounds. The AES algorithm stands as the cornerstone

of symmetric encryption, operating on fixed-size data blocks and leveraging a

sophisticated substitution-permutation network (SPN) structure that comprises multiple

rounds of distinct operations, each contributing to the algorithm's formidable security [18].

Central to the AES algorithm's operations is the state matrix: a 4x4 matrix that

serves as the intermediary repository for data during both encryption and decryption

13

14

processes. The innate structure of the algorithm mandates adherence to a series of

fundamental steps, each aimed at ensuring the confidentiality and integrity of the

transmitted data.

1. Substitute Bytes: In this phase, every byte within the state matrix undergoes

replacement with a corresponding byte sourced from a predefined S-box. This

substitution is denoted by the transformation equation:

state(i, j) = Sbox(state(i, j))

This intricate byte substitution step contributes significantly to the algorithm's

ability to obfuscate data, enhancing its security.

2. Shift Rows: Shifting rows is a cyclic operation applied individually to each row within

the state matrix. The first row remains unaltered, while the subsequent rows experience

cyclic left shifts. The shift progression is as follows:

state(i, j) = state(i, (j+i) mod 4)

This operation plays a crucial role in disassociating the relationship between the

original data and the encrypted result, further fortifying the encryption process.

3. Mix Columns: The mix columns operation targets columns within the state matrix.

Each column is subjected to a complex manipulation involving polynomial

multiplication within a finite field. The formula for this transformation is:

state (i, j) = (2 * state(i, j)) ⊕ (3 * state((i+1) mod

4, j)) ⊕ state((i+2) mod 4, j) ⊕ state((i+3) mod 4, j)

This intricate mixing operation contributes significantly to the diffusion of the

data, preventing the persistence of any recognizable patterns.

15

4. Add Round Key: The final step in each encryption round is the addition of a round

key. The 128-bit input data matrix is XORed with a 128-bit round key, ensuring that

each encryption round operates on a distinct key. This step adds a unique layer of

complexity to the encryption process:

state(i, j) = state(i, j) ⊕ RoundKey(i, j)

The fusion of these operations within each round engenders an encryption

mechanism that is both robust and intricate, rendering it highly resistant to cryptanalysis.

As the AES algorithm seamlessly iterates through these rounds, the transformation of the

state matrix evolves, culminating in an encrypted output that effectively safeguards data

within the CPS environment.

Figure 3 AES Architecture Block Diagram. Reprinted From [19]

In the context of CPS security, the AES algorithm's distinctive structure and

encryption methodology make it an indispensable asset for safeguarding sensitive data

16

during transmissions. The upcoming sections will venture into the world of FPGA-based

AES implementation, leveraging the strengths of FPGAs to augment the efficiency and

efficacy of this encryption process within the realm of CPS. Through a meticulous

examination of the intricacies in AES, this research seeks to fortify data security within

the dynamic and resource-constrained landscape of CPS.

2.3. Previous AES Implementations - Reviewing Existing Research on AES

Implementations

Transitioning from the exploration of the role of cryptography in CPS, our

attention now turns to the examination of existing AES implementations in this domain.

This investigation serves as a vital bridge between AES theory and practical execution,

enabling us to glean insights from past successes and limitations. By dissecting diverse

strategies, we extract valuable lessons that inform our approach in designing CPS-focused

AES architectures. This analysis equips us to transcend prior constraints and tailor AES

implementations to CPS demands. As we navigate this landscape, we gather crucial

knowledge that propels us towards innovative and adaptable solutions. This synthesis of

past experiences empowers us to craft resilient FPGA-based AES implementations

optimized for CPS, enhancing its cybersecurity landscape.

The research in [20] introduces an optimized AES architecture for CTR mode,

achieving a very high throughput. By strategically inserting registers, the design

minimizes byte transformation delay within one clock period. Simulated on Xilinx

Foundation ISE 10.1, it achieves a clock frequency of 576.07MHz and a resource

17

efficiency of 3.21Mbps/LUT. This design outperforms previous solutions in throughput

and resource utilization, presenting a valuable advancement for high-speed encryption

applications. However, the model name of the FPGA used in the implementation of the

proposed design is not explicitly mentioned in the paper. The authors state that they used

Xilinx Foundation ISE 10.1 FPGA design tool for the synthesis of the design, but the

specific hardware is not mentioned.

Another paper [21] introduces an FPGA-based AES implementation for

cryptographic applications. The authors propose a novel approach by incorporating a

modified parallel-pipelined round module (MPPRM) to optimize hardware resource usage

and minimize circuit delay. While the paper delves into the intricacies of the AES-

MPPRM architecture and explores its modified key expansion module, it leans toward a

mathematical and theoretical orientation. Notably, the study doesn't extensively address

the practical applicability of the proposed architecture in the context of CPS. However,

it's worth noting that the paper doesn't specify the FPGA model used for implementation

and compares the simulations on different FPGA platforms.

Going over the previous AES implementations, a notable trend comes to light – a

significant portion of the existing research lacks precise details regarding the hardware

implementations of these architectures. This void highlights a critical gap in the field of

CPS-focused AES design. While various papers offer innovative strategies and

optimizations, the absence of explicit hardware specifications and platform information

limits their practicality and comparability. This limitation underscores the pressing need

for a comprehensive and rigorous approach, which this thesis endeavors to fulfill. By

18

embarking on a journey to build foundational optimizations from the ground up, this thesis

project aims to bridge this gap and provide robust, adaptable, and optimized FPGA-based

AES architectures specifically tailored for the demands of CPS environments. Through

this research project, we strive to empower CPS with enhanced resilience and efficiency,

ushering in a new era of secure communication and operation.

19

3. FPGA DESIGN OF AES

3.1. Platform Selection: Leveraging Artix-7 and Vivado Design Suite for AES

3.1.1. Hardware Platform

To realize the objectives of this thesis, a meticulous selection of the appropriate

hardware platform was imperative. The chosen platform, the Artix-7 FPGA, is a widely

recognized and versatile device from Xilinx, uniquely positioned to cater to the intricate

demands of our AES design project within the realm of CPS.

The Artix-7 FPGA, renowned for its balance of high-performance capabilities and

low-power consumption, is an ideal candidate for a range of applications, including

wireless communication, aerospace, and defense. Its diverse resource offerings and

performance variations make it well-suited for intricate cryptographic tasks, such as AES,

within the context of CPS security enhancement. Characterized by its extensive range of

resources, the Artix-7 FPGA family boasts up to 215K logic cells and clock speeds

reaching up to 600 MHz. These capabilities empower it to accommodate complex AES

implementations while ensuring real-time and high-throughput operations demanded by

CPS environments. With up to 500 user-defined I/O pins that can be flexibly configured

as single-ended or differential I/O [22], the Artix-7 FPGA aligns perfectly with the

requirements of secure data transmission in CPS.

20

Figure 4 Artix 7 Development Board. Reprinted From [23]

Moreover, the Artix-7 FPGA family's inclusion of up to 100 differential pairs

further fortifies its suitability for CPS scenarios by facilitating high-speed communication

interfaces like DDR3/4 memory, PCIe, and Ethernet. This diverse set of connectivity

options ensures that the designed AES architectures can seamlessly integrate with various

CPS components while maintaining efficient and secure data exchange. The availability

of on-chip memory resources, including block RAMs, distributed RAMs, and UltraRAMs,

further amplifies the FPGA's capability to store and manipulate data efficiently, aligning

with the memory-intensive requirements of cryptographic operations. Additionally, with

up to eight GTX transceivers and up to four PCIe Gen2/3 hard IP blocks, the Artix-7

FPGA family ensures that CPS security enhancements are seamlessly integrated into the

broader CPS ecosystem.

Overall, the Artix-7 FPGA family provides a good balance between performance,

power consumption, and cost. With its wide range of resources and connectivity options,

it is well-suited for a variety of applications, from high-performance computing to

embedded systems.

21

3.1.2. Software Platform

The IDE used for development in this project is Xilinx Vivado v2021.2. Vivado is

a comprehensive design suite used for the development of digital systems based on Xilinx

FPGAs and SoCs. The suite offers a wide range of tools and features for designing,

implementing, and verifying FPGA-based digital systems, including a graphical user

interface for creating and editing HDL code, a plethora of tools for synthesizing,

implementing, debugging FPGA designs, with the added support for simulating designs

and generating test benches for verification [24].

One of the key features of Vivado is its ability to optimize and implement FPGA

designs for the target hardware, taking into consideration the specific resources available

on the device. This feature, along with Vivado’s extensive library of IP cores, accelerates

the design process and enables developers to create complex designs in an efficient

manner. For this reason, Vivado is an excellent choice for this project.

Furthermore, Vivado includes a range of debugging and analysis tools such as a

logic analyzer, a waveform viewer, and a software debugger, which aids in the

development and debugging of FPGA designs. Vivado also provides comprehensive

support for the entire RTL to GDS flow, including several stages such as synthesis, place

and route, timing analysis, and bitstream generation. The suite includes a Synthesis tool

that takes the RTL code as input and generates a gate-level netlist, which can be optimized

for the target device’s architecture and resources. The synthesized design can then be

passed to the implementation stage, where it can be placed and routed onto the target

22

FPGA. The implementation stage also includes tools for performing timing analysis and

optimization to ensure that the design meets the timing constraints.

Once the design is implemented, Vivado generates a bitstream file that can be

loaded onto the target FPGA – the Artix-7 in this case. The bitstream file contains the

configuration information for the FPGA, including the placement and routing information.

Another additional useful feature that Vivado provides is the High-Level Synthesis (HLS),

which allows the users to generate RTL from high-level languages such as C or C++.

Overall, Xilinx Vivado is a powerful and comprehensive tool for the development of

FPGA-based digital systems, providing extensive support for the RTL to GDS flow and

advanced features for optimizing FPGA designs.

3.2. Test Vectors and Reference Code

In this section, we delve into the intricate details of the FPGA design and

implementation process of the AES architecture. Utilizing VHDL (VHSIC Hardware

Description Language), a powerful hardware description language, we meticulously

outline the structure of our AES architecture. VHDL allows us to define the behavior and

structure of digital systems, providing a high-level representation of our AES design. Our

approach is substantiated using NIST test vectors, a set of standardized test cases for AES

that enables thorough validation of our design's accuracy and compliance with established

encryption standards. Additionally, for reference and cross-validation purposes, we

present a C implementation of the AES algorithm. This comprehensive exploration

23

underscores our commitment to building a robust and dependable AES architecture

tailored for FPGA implementation within CPS environments.

Test vectors are taken from the National Institute of Standards and Technology

(NIST). NIST is a U.S. government organization responsible for developing and

promoting technology, standards, and measurements to enhance economic security and

improve the quality of life. It has played a crucial role in the development of various

technologies, including the internet, nanotechnology, and cryptography. NIST is known

for its role in developing and maintaining standards such as the AES which is widely used

to encrypt sensitive information. It also provides resources and guidelines for

cybersecurity and risk management, including the Cybersecurity Framework, which is

used by organizations to manage and reduce cybersecurity risk. NIST continues to be a

key player in advancing technology and ensuring its security and reliability [25].

Figure 5 NIST Test Vectors. Reprinted From [25]

Figure 6 Reference Implementation in C

3.3. FPGA AES Architecture Design in VHDL With Testbench

With a solid understanding of the hardware platform and the design environment

in place, the focus now shifts to the core of this project - the FPGA design and

24

25

implementation of the AES architecture. This section delves into the intricacies of

implementing AES using VHDL, along with the comprehensive methodology of testing

and verification through testbenches. The AES architecture is explored in three distinct

variants:

1. standard ECB mode,

2. pipelined architecture and,

3. unfolded architecture.

Each variant is meticulously constructed and optimized for efficiency, aiming to

address the specific requirements of different CPS scenarios. The journey of translating

AES theory into functional VHDL code, conducting rigorous testing, and optimizing the

design unfolds in the upcoming subsections, revealing the hands-on aspect of this research

project.

3.3.1. Standard

In the realm of CPS, the need for reliable encryption techniques cannot be

overstated. As we delve into the FPGA design and implementation of the AES

architecture, the standard Electronic Codebook (ECB) mode takes center stage. This

subsection delves into the intricacies of the standard implementation, shedding light on

the crucial role it plays in securing data transmission within CPS environments. By

adhering to the AES standard and leveraging the fundamental ECB mode, we aim to

establish a strong foundation for further optimizations tailored to the unique demands of

CPS scenarios. The subsequent sections will explore the development process, testing

26

methodologies, and the outcomes of this standard AES implementation, contributing to

the larger goal of enhancing security and efficiency in CPS through FPGA-based

solutions. This implementation will be used as a control to compare and weigh the two

optimization techniques that this research evaluates.

The standard AES implementation entails the realization of the AES block

structure depicted in Figure 3. This structure encompasses four main transformation steps:

Substitute Bytes, Shift Rows, Mix Columns, and Add Round Key, as outlined in Section

3.2. The top-level AES entity orchestrates these transformations through four sub-entities:

sub_byte, shift_rows, mix_columns, and add_round_key. The VHDL description of these

entities translates the theoretical AES steps into functional code. The top-level entity takes

inputs:

• encryption key,

• plaintext data,

• reset signal, and

• clock signal,

and generates the outputs:

• ciphertext, along with

• done signal.

At the core of VHDL, an "entity" serves as a fundamental construct used to define

the structure and behavior of a digital component. In the context of the AES

implementation, an entity encapsulates the functionality of a specific module or sub-

27

component. Each of these steps is realized as an "entity" in VHDL, encapsulating the

necessary logic and operations that correspond to their respective AES steps.

Figure 7 Entities That Make up AES HDL Model

In addition to the four main transformation sub-entities, the AES architecture

includes two crucial components: the key_schedule and the controller. The key_schedule

is responsible for generating round subkeys, which are used in each AES round for the

add_round_key step. The Controller manages the AES rounds by keeping track of a

counter signal, ensuring that each transformation occurs in the correct sequence. Notably,

the last round of AES skips the Mix Columns step, and the controller plays its part to make

sure the implementation respects the algorithm.

Equally pivotal to the actual implementation steps is a critical factor that demands

utmost consideration – the management of data flow. Just as the encryption steps are

28

integral to the AES process, so too is the intricately devised strategy for handling the flow

of data. Instead of transmitting the entire key and plaintext on separate pins, a serial data

transmission process is employed. This technique significantly reduces the number of pins

required for data transmission, saving power in CPS scenarios. The serial data

transmission process involves loading the data from the testbench into a 128-array, which

is then transmitted serially over a single pin. Although this method introduces some

overhead, it is a strategic trade-off to optimize power consumption in CPS.

Figure 8 VHDL Code of Top-Level Entity

However, it's important to note that for metrics calculations, the overhead

introduced by the "READ" process will be omitted, as its primary purpose is power

optimization. This standard AES implementation lays the groundwork for further

optimizations, catering to CPS-specific requirements. The subsequent sections will detail

the intricacies of pipelined and unfolded architectures, adding depth to our exploration of

FPGA-based AES implementations tailored for enhanced performance within CPS

contexts.

29

3.3.2. Pipelined

In the realm of VLSI, optimization techniques play an indispensable role in

achieving enhanced performance. One of the most impactful strategies in this domain is

pipelining, a technique that efficiently divides a complex process into multiple stages,

allowing for parallel execution of tasks. This division not only accelerates the overall

process but also enables a balanced utilization of hardware resources. In the context of our

AES architecture, the introduction of pipelining stands as a crucial enhancement.

Pipelining is implemented by inserting registers between the stages of a process

(figure 3.6), enabling the output of one stage to be immediately used as the input for the

next stage. This continuous handover of data ensures that various stages can work

concurrently on different inputs. In our AES implementation, two potential spots for the

addition of a pipeline were identified: between the individual rounds and between the

processing stages within a single round. A pipeline is a sequence of stages in which a

complex process is divided into smaller tasks or sub-processes. Each stage performs a

specific operation on the data and passes it along to the next stage. Pipelining is used to

improve the efficiency and speed of processing by allowing multiple stages to work

concurrently on different parts of the data [19]. This parallelization reduces the overall

time taken to complete a task.

Sub-pipelining refers to breaking down the stages of a pipeline even further. In a

sub-pipelined architecture, each stage of the main pipeline is divided into smaller sub-

stages. This allows for even finer-grained parallelism and can result in further performance

improvements. Sub-pipelining is often used to optimize complex processes in hardware

30

design, where the main pipeline stages might involve multiple sub-steps that can be

parallelized. After rigorous evaluation, the final iteration that demonstrated superior

results was the introduction of pipelining between the processing stages.

To unlock the true benefits of pipelining, further enhancements were implemented.

In the initial design, the AES entity processed a single block of plaintext, limiting the

apparent advantages of pipelining. However, research asserts that the substantial benefits

of pipelining emerge when multiple blocks are processed. For a single block, the

introduction of pipelining can appear counterintuitive due to the area overhead it entails.

Yet, for multiple blocks, the efficiency gains overshadow the incremental increase in

resource utilization. Therefore, the adoption of multiple-block processing not only

maximizes throughput but also lends justification to the trade-off in terms of area

utilization.

Figure 9 Pipelined Architecture. Reprinted From [20]

31

The pipelining strategy employed here exemplifies a significant aspect of our

research project – the synergistic integration of optimization techniques with a

comprehensive understanding of hardware architecture. This strategic fusion enables the

realization of designs that transcend conventional limitations and excel in the demanding

realm of CPS.

3.3.3. Unfolded

Unfolding, often referred to as loop unrolling, is another optimization technique

that merits exploration in the context of AES implementation. While pipelining focuses

on parallelism between different stages, unfolding takes advantage of inherent parallelism

within a single iteration. This technique involves replicating and expanding the iterative

stages of AES to allow for simultaneous processing of multiple data blocks, thereby

increasing the overall throughput. In our AES implementation, we delve into the unfolding

approach, aiming to capitalize on its potential benefits. Unfolding exploits the inherent

parallelism within each AES round, enabling the simultaneous processing of multiple

rounds for different data blocks. By unraveling the iterative stages of AES, we aim to

enhance both efficiency and throughput.

The anticipated benefits of unfolding are twofold: First, it aligns with the

underlying parallel structure of AES, allowing us to fully utilize the available resources.

Secondly, similar to pipelining, unfolding also demonstrates its true prowess when applied

to scenarios involving multiple blocks of data. Just as we witnessed with the pipelined

approach, the trade-off between increased throughput and higher resource utilization

32

becomes more favorable when dealing with multiple data blocks. The unfolding factor

plays a pivotal role in this approach. It determines how many times the iterative stages of

AES are expanded and replicated. This factor directly influences the amount of parallelism

that can be exploited. In our implementation, we opt for an unfolding factor of 2, which

means that the steps in each round are duplicated twice. This choice strikes a balance

between increased parallelism and resource utilization.

Figure 10 Unfolding in AES. Reprinted From [26]

Unfolding the AES architecture is an intricate process that involves careful design

considerations. The iterative nature of AES stages provides fertile ground for exploiting

this technique. By expanding and unrolling these stages, we aim to harness the inherent

parallelism encoded within the algorithm itself. This approach represents yet another facet

of our comprehensive optimization strategy, allowing us to adapt AES to the intricacies

of CPS. As we progress through the exploration of unfolding, we aim to uncover the extent

to which this technique can contribute to the efficiency and adaptability of our FPGA-

based AES implementations.

33

3.4. Metrics for Evaluating Hardware Implementations

In evaluating the feasibility and effectiveness of hardware implementations, a

comprehensive set of metrics is essential to provide a holistic assessment. The

performance and resource utilization of the AES implementations in CPS will be critically

analyzed across several dimensions. These metrics serve as quantifiable benchmarks to

gauge the capabilities of the designed architectures, offering insights into their efficiency

and suitability for real-world deployment.

1. Power: Power consumption stands as a critical consideration in any FPGA-based

system, particularly those operating within CPS environments. This metric quantifies

the amount of electrical power consumed during the device's operation, typically

measured in watts. The significance of power efficiency lies in its direct impact on

battery life and heat generation. The evaluation of power encompasses both dynamic

and static power requirements, allowing a comprehensive understanding of the energy

footprint of the implementation.

2. Area: Area utilization refers to the physical size of the FPGA and the allocation of its

internal resources, including lookup tables (LUTs), flip-flops (FFs), and memory

blocks. This metric is pivotal in assessing the hardware footprint of the AES

implementations. Area utilization is typically presented as a percentage of the total

available resources or quantified by the number of slices employed. Optimizing area

usage is paramount, especially in applications where compactness or cost-

34

effectiveness is a priority.

3. Throughput: Throughput measures the rate at which data can be efficiently processed

by the FPGA-based system. This metric quantifies the system's data handling capacity

and is expressed in units like bits per second or transactions per second. For AES

implementations tailored to CPS, optimizing throughput is essential for rapid data

processing and communication tasks, aligning with the real-time demands of CPS

environments.

4. Timing and Latency: Timing and latency metrics play a pivotal role in determining

the responsiveness and effectiveness of an FPGA-based system. Timing represents the

signal propagation time within the system, while latency signifies the duration between

input and output generation. Both metrics are crucial in ensuring timely and accurate

system responses. Properly defining timing constraints and ensuring their compliance

are fundamental steps in achieving the desired system behavior.

5. Frequency: The frequency of an FPGA corresponds to its operating clock rate, often

measured in units such as MHz or GHz. Enhancing frequency can lead to improved

system performance; however, this increase may come at the cost of heightened power

consumption and potential timing challenges. Frequency optimization is a careful

balance that contributes to the overall efficiency and responsiveness of the system.

35

As this project aspires to furnish a robust and efficient hardware-based solution to

bolster data security within Cyber-Physical Systems (CPS), the triumphant execution of

the FPGA implementation of AES is intrinsically tied to its performance across these

pivotal metrics. Through a meticulous evaluation of the AES architectures against these

dimensions, we glean insights into their pragmatic viability and adaptability within the

intricate landscape of CPS. With these foundational aspects in place, we now embark on

a comparative analysis of the two distinct techniques—pipelining and unfolding. This

analysis delves into their relative merits and comprehensively scrutinizes their

performance vis-à-vis these metrics, unraveling their comparative strengths and

weaknesses and ultimately charting a course for an optimized AES implementation within

CPS scenarios.

36

4. IMPLEMENTATION ANALYSIS

In the preceding sections, a comprehensive exploration of the FPGA design of the

AES algorithm was undertaken. This journey commenced with a foundational

understanding of the standard AES variant, encompassing its design principles,

architectural intricacies, and code representations. Subsequently, innovative adaptations

were explored, including the pipelined and unfolded variants, each characterized by its

unique attributes and advantages. The primary objective was to establish a profound

comprehension of these AES variants, setting the stage for the ensuing practical

implementation analysis.

After completing the RTL design, VLSI designers progress through the phases of

synthesis, physical implementation, bitstream generation, and FPGA programming. These

phases culminate in an exhaustive phase analysis. The primary focus is on evaluating three

essential dimensions of FPGA-based AES encryption: resource utilization and area

efficiency, power consumption, and timing performance. These metrics have been

comprehensively covered in previous sections.

Vivado Design Suite emerges as a powerful tool for analyzing FPGA designs.

Notably, it possesses the capability to generate detailed reports on various facets of the

design. These reports can be generated using Tcl commands [27], providing a flexible and

customizable means of design analysis. For instance, the "report_utilization" command

[27] facilitates the generation of a report concerning FPGA resource utilization,

encompassing elements like LUTs, flip-flops, and BRAMs. This report proves invaluable

37

in identifying areas of the design that may be over-utilizing resources, thereby enabling

optimization for enhanced performance.

Likewise, the "report_power" [27] command contributes to generating a report that

delves into power consumption within the design. This report aids in pinpointing areas of

the design consuming excessive power, facilitating optimization for reduced power

consumption.

Furthermore, timing analysis, a critical aspect of FPGA design, is facilitated

through various Tcl commands provided by Vivado. The "report_timing" command [27],

for instance, generates a report on the timing performance of the design, encompassing

parameters such as setup and hold times, clock skew, and others. This report assists in

identifying areas of the design that may not meet timing constraints, thus guiding

optimization efforts for improved timing performance.

Overall, Vivado Design Suite offers a potent toolkit for analyzing FPGA designs,

with Tcl commands offering flexibility and customization in generating detailed reports

on diverse design aspects. Through effective utilization of these tools, designers can

optimize their designs to achieve superior performance, lower power consumption, and

enhanced timing performance.

In Section 5.1, a deep dive into the standard AES implementation ensues,

involving an intricate examination of resource allocation, area utilization, power

characteristics, and timing performance. Transitioning to Section 5.2, the focus shifts to

the pipelined AES implementation. The objective remains consistent: the evaluation of

resource utilization, area efficiency, power consumption, and timing performance.

38

Insights garnered from the standard AES analysis serve as a foundation for exploring how

pipelining augments data throughput. Finally, Section 5.3 culminates the implementation

analysis with the unfolded AES implementation.

Through these meticulous analyses, the aim is to illuminate not only the strengths but also

the trade-offs inherent in each AES variant. The overarching goal is to draw meaningful

conclusions regarding their suitability for specific application scenarios.

4.1. Data Serialization and Deserialization

Before embarking on the core of this study, it is imperative to address a pivotal

concern – the management of 128-bit plaintext and ciphertext signals. The practicality of

utilizing 128 pins for both plaintext and ciphertext on an Arty 7 FPGA board presents a

formidable challenge.

In response to this challenge, a pragmatic approach has been adopted, namely, data

serialization and deserialization. This technique enables the sequential transmission of

data over a singular plaintext pin and its subsequent reception over a solitary ciphertext

pin.

The schematic representation of our project workflow, employing “serdes”, is

depicted below:

39

Read and write with respect to encryption module inside the FPGA. Through the

judicious application of data serialization and deserialization, the resource utilization of

the FPGA is optimized, concurrently ensuring the integrity of the 128-bit signals. This

methodological refinement serves to streamline our data handling processes, enhancing

both efficiency and effectiveness in our study.

4.2. Comprehensive Summary of Project Components

In this section, an overview focusing on the over-arching framework and

meticulous planning that underpins the execution of the thesis project is presented. The

success of any research endeavor heavily relies on a well-crafted roadmap and a clear

delineation of tasks and objectives. The framework guiding the research is examined,

emphasizing the strategic choices made to ensure the project's coherence and

effectiveness. This comprehensive snapshot, presented in Figure 12, enables the readers

to gain a holistic perspective of the aim and purpose of the research.

Figure 11 Encryption Flow

40

Figure 12 Summary of Thesis Project

4.3. Standard Implementation

4.3.1. Area Utilization

The following data represents the outcomes obtained from the execution of the

"report_utilization" command. To illustrate the influence of data serialization and

deserialization, in this variant the output side is left unserialized. It is from this comparison

that one can discern the substantial impact that this technique imparts. In contrast, it is

important to note that in the remaining two variants, both input and output data are fully

serialized, reflecting a distinct design choice.

41

Figure 13 Percentage Utilization

Figure 14 Absolute Utilization

A relatively straightforward AES design that does not consume much of the FPGA

resources. However, an anomaly in the count of input/output (IO) pins, is conspicuous.

This section presents a detailed analysis of the area and resource utilization in the standard

AES implementation on an FPGA. Understanding how FPGA resources are utilized is

crucial for optimizing the design and ensuring efficient cryptographic processing.

42

Slice Logic Utilization

The heart of our analysis lies in Slice Logic Utilization, where we examine various

critical components:

Table 1 Resource Utilization Snapshot.

Site Type Used Available Utilization

Slice LUTs 223 63400 0.35%

Slice Registers 532 126800 0.42%

F7 Muxes 0 31700 0.00%

F8 Muxes 0 15850 0.00%

This table provides a detailed breakdown of the utilization of Slice Logic

components, which are fundamental building blocks in an FPGA. The key components

analyzed here include:

• Slice LUTs: These are Look-Up Tables within the slices, and 223 out of 63,400

available are used. LUTs are essential for implementing logic functions.

• Slice Registers: Registers are used for storing intermediate results and control

signals. In this case, 532 out of 126,800 available registers are utilized.

• F7 Muxes and F8 Muxes: These are multiplexers within the slices, which are used

for selecting different inputs. In this implementation, no F7 or F8 Muxes are used.

43

Summary of Registers by Type

An in-depth categorization of registers by their functionality:

Table 2 Register Types.

Type Used

Clock Enable 0

Synchronous 531

Asynchronous 0

This table categorizes registers based on their functionality, providing insights into their

utilization:

• Clock Enable: Registers that enable clock control, but in this implementation,

none are used.

• Synchronous: 531 registers are employed for synchronous operations, typically

associated with clocked data.

• Asynchronous: No asynchronous registers are used.

Slice Logic Distribution

Understanding the distribution of Slice Logic:

Table 3 Distribution of Slices in the Design.

Site Type Used Available Utilization

Slice 142 15850 0.90%

SLICEL 96 - -

SLICEM 46 - -

LUT as Logic 223 63400 0.35%

44

This table focuses on the distribution of Slice Logic components across different sites:

• Slice: A total of 142 out of 15,850 slices are used, indicating that 0.90% of slices

are utilized.

• SLICEL and SLICEM: These represent different types of slices with different

capabilities. 96 SLICEL and 46 SLICEM slices are utilized.

• LUT as Logic: This category provides additional details about LUT utilization.

Out of 63,400 available LUTs, 223 are used. The table also shows how some LUTs

are used exclusively for specific outputs.

Memory Utilization

A look into memory utilization:

Table 4 Utilization of Memory in the Standard Implementation.

Site Type Used Available Utilization

Block RAM Tile 1 135 0.74%

RAMB36/FIFO* 0 135 0.00%

RAMB18 2 270 0.74%

*Note: RAMB36/FIFO occupies a Block RAM Tile but is not used in this

implementation. Memory utilization is crucial in FPGA designs. This table presents

information on memory resources:

• Block RAM Tile: Only 1 out of 135 Block RAM Tiles is used for this

implementation, which has implications for data storage.

• RAMB36/FIFO and RAMB18: These represent different types of memory

resources, but neither is used extensively in this implementation.

45

IO Utilization

Table 5 Utilization of I/O in the Standard Implementation.

Site Type Used Available Utilization

Bonded IOB 133 210 63.33%

IOB Master Pads 62 - -

IOB Slave Pads 66 - -

IO resources are vital for communication with external devices. This table provides

insights into IO resource utilization:

• Bonded IOB: 133 out of 210 bonded Input/Output Blocks are used, indicating that

63.33% of available IOBs are utilized. This may suggest a significant level of

external interfacing in the design.

• IOB Master Pads and IOB Slave Pads: These components provide further details

about IOBs' master and slave pads usage.

Clocking Utilization

Table 6 Clocking Resource Utilization.

Site Type Used Available Utilization

BUFGCTRL 2 32 6.25%

Efficient clocking is essential for synchronization in FPGA designs. This table

outlines clocking resource utilization:

46

• BUFGCTRL: 2 out of 32 BUFGCTRLs are used. BUFGCTRLs play a crucial

role in managing clock signals.

In conclusion, this comprehensive analysis of the standard AES implementation's

area and resource utilization on an FPGA highlights key metrics related to Slice Logic,

Memory, DSP, IO, and Clocking. These insights are invaluable for optimizing the design

and ensuring the efficient deployment of cryptographic algorithms.

4.3.2. Power Efficiency

Overall, the power profile showcases characteristics aligning with standard

expectations.

The reason why the I/O percentage stands out prominently is due to the fact that

the ciphertext signal is not serialized. In resource-constrained environments, those often

encountered by CPS, this significant I/O utilization raises major concerns. This is exactly

why we resorted to serialize the input and output signals, despite the attendant overhead.

A more detailed exploration of this overhead will ensue as we delve into a comparative

analysis of throughput between the pipelined and unfolded implementations.

The standard variant consumed around 300mW of power, where the major chuck

of about 70% is attributed to dynamic power. Dynamic power pertains to the power

consumed during the switching of logic gates and interconnections, primarily influenced

by activity within the circuit. In contrast, static power, often referred to as leakage power,

represents the power consumed when transistors are in a non-switching state. It is largely

dependent on the transistor characteristics and process technology.

47

Figure 15 Power Profile

Figure 16 Hierarchical Power Usage

4.3.3. Optimizing Timing and Latency

In this section, we provide a comprehensive summary of the timing analysis for

your AES implementation on an FPGA using the unfolding technique. Timing analysis is

crucial to ensure that your design meets the required timing constraints and operates

correctly.

• Timing Constraints

Before diving into the analysis, let's define some key timing constraints:

48

• Setup Time (Setup to Clk): The amount of time before the clock edge that data

must be stable to be properly captured.

• Hold Time (Hold to Clk): The amount of time after the clock edge that data must

be stable to be properly captured.

• Setup and Hold Times for Input Pins

The following table presents the setup and hold times for each input pin, each of

which is associated with the sys_clk_pin:

Table 7 Setup and Hold Times.

Input Pin Setup Time (ps) Hold Time (ps)

sys_clk_pin clk 2.68 -0.08

sys_clk_pin key 0.37 1.59

sys_clk_pin plaintext 0.31 1.66

sys_clk_pin rst 1.16 1.94

Timing Metrics Summary

In the upcoming table, we delve into the essential timing metrics pivotal to our

design’s performance. This comprehensive overview encapsulates the critical temporal

parameters that our design adheres to, ensuring efficiency and precision. These metrics

serve as benchmarks for evaluating the design's responsiveness and are crucial for the

subsequent optimization processes. Understanding these metrics is key to grasping how

our design achieves its performance goals within the set temporal constraints.

49

Table 8 Summary of Timing Metrics in Each Implementation.

Metric Description Value

WNS Worst-case timing violation indicating

potential issues

2.324 ns

TNS Cumulative negative slack across all paths 0.000 ns

TNS Failing

Endpoints

Number of endpoints failing to meet timing 0

TNS

Total

Endpoints

Total number of analyzed endpoints 530

WHS Worst-case timing violation for hold time

constraints

0.085 ns

THS Cumulative hold slack across all paths 0.000 ns

THS Failing

Endpoints

Number of endpoints failing to meet hold

time constraints

0

THS

Total

Endpoints

Total number of analyzed endpoints for

hold time

530

WPWS Worst-case timing violation for pulse width

constraints

4.500 ns

Timing Analysis

In the standard implementation of the AES encryption algorithm, a comprehensive

timing analysis was conducted to assess the critical path delays and overall performance

of the design. The timing results are summarized below:

• WNS (Worst Negative Slack): This represents the worst-case timing delay by

which a signal in the design fails to meet its required arrival time (setup time) with

respect to the clock. In your table, the WNS is 2.324 nanoseconds, indicating that

50

the slowest signal is delayed by this amount compared to what's required for proper

operation.

• TNS (Total Negative Slack): This is the sum of all negative slack values across all

endpoints (signals) in the design. In your table, the TNS is 0.000 nanoseconds,

indicating that the design meets all timing requirements collectively.

• TNS Failing Endpoints: This is the number of endpoints (signals) that have

negative slack values, meaning they don't meet their timing requirements. In your

table, there are 0 failing endpoints, which is a good sign.

• TNS Total Endpoints: This is the total number of endpoints (signals) in the design

that are being analyzed for timing. In your table, there are 530 total endpoints.

• WHS (Worst Hold Slack): Similar to WNS, this represents the worst-case timing

delay by which a signal in the design fails to meet its required hold time with

respect to the clock. In your table, the WHS is 0.085 nanoseconds, indicating that

the slowest signal doesn't meet its hold time requirement by this amount.

• THS (Total Hold Slack): This is the sum of all hold slack values across all

endpoints in the design. In your table, the THS is 0.000 nanoseconds, indicating

that the design meets all hold time requirements collectively.

• THS Failing Endpoints: This is the number of endpoints that have negative hold

slack values, meaning they don't meet their hold time requirements. In your table,

there are 0 failing endpoints, which is a good sign.

• THS Total Endpoints: This is the total number of endpoints being analyzed for

hold time. In your table, there are 530 total endpoints.

51

• WPWS (Worst Pulse Width Slack): This represents the worst-case timing delay by

which a signal's pulse width (duration) fails to meet its required specification. In

your table, the WPWS is 4.500 nanoseconds, indicating that the slowest signal's

pulse width is too wide for this amount.

• TPWS (Total Pulse Width Slack): This is the sum of all pulse width slack values

across all endpoints in the design. In your table, the TPWS is 0.000 nanoseconds,

indicating that the design meets all pulse width requirements collectively.

• TPWS Failing Endpoints: This is the number of endpoints that have negative pulse

width slack values, meaning they don't meet their pulse width requirements. In

your table, there are 0 failing endpoints.

• TPWS Total Endpoints: This is the total number of endpoints being analyzed for

pulse width. In your table, there are 269 total endpoints.

• In summary, this table provides a detailed overview of the timing analysis for your

digital design, including information about setup time, hold time, and pulse width

requirements. The negative slack values (WNS, WHS, WPWS) indicate areas

where the design needs improvement to meet its timing constraints, while positive

values or zeros indicate that the design meets the timing requirements for those

aspects.

It is important to note that these timing metrics were evaluated against specified timing

constraints, and any violations should be carefully addressed to ensure the reliable

operation of the AES encryption core.

52

In summary, the timing analysis demonstrates that the standard implementation of

the AES encryption algorithm generally meets its timing requirements, with some specific

paths that may require optimization to achieve optimal performance.

The statement "All user specified timing constraints are met" indicates that, based on this

summary, your design meets all the specified timing constraints, as there are no failing

endpoints for setup, hold, or pulse width timings. This comprehensive timing analysis

assures that your AES implementation on the FPGA with the standard technique operates

within the defined timing parameters. For the subsequent variants we will not go over the

definitions of these terms and parameters again. We will dive directly into the numbers to

get a clear picture.

53

4.4. Pipelined Implementation

4.4.1. Area Utilization

Figure 17 Power Profile for Pipelined Implementation

Figure 18 Hierarchical Power Usage for Pipelined Implementation

In this section, we delve into the area and resource utilization of the pipelined

implementation of the "top" design on the XC7A100TCSG324-1 device using Vivado

v.2021.2. Understanding the utilization of various hardware resources is crucial in

assessing the efficiency and scalability of the design.

Slice Logic

The utilization of slice logic provides insights into the core computational elements

of the design. Table 9 summarizes the key statistics related to slice logic utilization:

54

Table 9 Slice Logic Utilization

Site Type Used Fixed Prohibited Available Utilization

Slice LUTs 9532 0 0 63400 15.03%

LUT as

Logic

9532 0 0 63400 15.03%

Slice

Registers

1557 0 0 126800 1.23%

F7 Muxes 2968 0 0 31700 9.36%

F8 Muxes 1296 0 0 15850 8.18%

• Slice LUTs: A significant portion of the available LUTs (Look-Up Tables) is used,

constituting approximately 15.03% of the total available.

• Slice Registers: Registers, which are essential for pipelining and sequential

operations, are utilized at a rate of 1.23%, indicating efficient use of register

resources.

• F7 and F8 Muxes: These multiplexers are employed in routing and control within

the slices, with F7 Muxes at 9.36% utilization and F8 Muxes at 8.18%, showcasing

their importance in the design.

55

Summary of Registers

Figure 19 Register Summary

The distribution of registers by type provides insight into the nature of clocking

and control signals within the design:

Slice Logic Distribution

The allocation and spread of slice logic elements, which encompass both Look-Up

Tables (LUTs) and registers, across the various types of sites present a crucial aspect for

a comprehensive grasp of the utilization patterns of distinct slices within the design. This

detailed examination sheds light on how these slices are employed strategically to

optimize the logic distribution and ensure the design's efficacy and functional robustness.

It also provides insights into the architectural decisions influencing the overall efficiency

and performance of the system.

0 2000 4000 6000 8000 10000

Used

F8 Muxes F7 Muxes Slice Registers Slice LUTs

56

Table 10 Slice Logic Distribution.

Site Type Used Fixed Prohibited Available Utilization

Slice 2577 0 0 15850 16.26%

SLICEL 1821 0 - - -

SLICEM 756 0 - - -

LUT as Logic 9532 0 0 63400 15.03%

Slice Registers 1557 0 0 126800 1.23%

Register in Slice 1432 - - - -

Register Out Slice 125 - - - -

• Slice Utilization: Slices are utilized at a rate of 16.26%, demonstrating efficient

allocation of logic across the FPGA.

• SLICEL and SLICEM: SLICEL and SLICEM slices are effectively used, with

1821 and 756 slices, respectively.

• LUT as Logic: LUTs primarily serve as logic elements and contribute 15.03% to

the overall utilization.

• Slice Registers: Registers are distributed across slices, with 1432 in-slice

registers and 125 out-of-slice registers.

57

Figure 20 Macro Overview of Area Distribution

Memory and DSP resources provide insights into data storage and digital signal

processing:

• DSPs: No DSP resources are employed in the design, indicating that DSP-based

signal processing is not a requirement.

IO and clocking resources play a crucial role in interfacing with external

components and clock management:

Table 11 IO and Clocking Resources Utilization.

Site Type Used Fixed Prohibited Available Utilization

Bonded IOB 6 6 0 210 2.86%

IOB Master Pads 2 - - - -

IOB Slave Pads 3 - - - -

BUFHCE 0 0 0 96 0.00%

BUFG 2 0 0 32 6.25%

IBUFDS 0 0 0 202 0.00%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Slice LUTs Slice Registers

Used Fixed Prohibited Available

58

• Bonded IOB: A total of 6 Bonded IOBs are used, including 2 IOB Master Pads

and 3 IOB Slave Pads, indicating external interface requirements.

• BUFG: 2 BUFGs are utilized for clock management, ensuring reliable clock

distribution.

• Specific Features and Primitives

This section highlights specific features and primitive elements in the design:

Table 12 Specific Features and Primitives Utilization.

Site Type Used

LUT6 7254

MUXF7 2968

FDRE 1556

MUXF8 1296

LUT5 1062

LUT2 976

LUT4 387

LUT3 273

IBUF 5

BUFG 2

OBUF 1

FDCE 1

• LUTs and Primitives: The design leverages a significant number of LUT6,

MUXF7, FDRE, and other primitive elements, showcasing its computational

intensity.

This comprehensive analysis of area and resource utilization provides a clear

picture of how efficiently hardware resources are employed in the pipelined

59

implementation. It serves as a valuable reference for further optimizations and scaling of

the design.

4.4.2. Power Efficiency

Figure 21 Power Summary

Figure 22 Hierarchical Power Distribution of Pipelined

60

4.4.3. Optimizing Timing and Latency

Table 13 Timing Analysis Summary.

Pin Setup Time (ps) Hold Time (ps)

sys_clk_pin clk 2.54 -0.06

sys_clk_pin key -0.15 2.64

sys_clk_pin plaintext_1 3.58 0.01

sys_clk_pin ciphertext 12.45 3.93

sys_clk_pin rst 1.28 2.50

sys_clk_pin rst2 1.43 2.06

• Timing Metrics Summary

Table 14 Summary of Timing Metrics in Pipelined

Metric Description Value

WNS
Worst-case timing violation indicating

potential issues
2.459 ns

TNS Cumulative negative slack across all paths 0.000 ns

TNS Failing Endpoints Number of endpoints failing to meet timing 0

TNS Total Endpoints Total number of analyzed endpoints 1328

WHS
Worst-case timing violation for hold time

constraints
0.032 ns

THS Cumulative hold slack across all paths 0.000 ns

THS Failing Endpoints
Number of endpoints failing to meet hold

time constraints
0

WPWS
Worst-case timing violation for pulse width

constraints
4.500 ns

61

Detailed Timing Analysis

Now, let's delve deeper into some of the critical timing metrics:

• WNS: A positive WNS (e.g., 2.459 ns) indicates that all paths in your design meet

the timing requirements, while a negative WNS would indicate timing violations.

• TNS: A TNS of 0.000 ns means that, on average, all signal paths meet their timing

requirements.

• TNS Failing Endpoints: In this case, there are 0 failing endpoints out of a total of

1328 endpoints.

• WHS: Similar to WNS, WHS represents the worst-case timing violation for hold

time constraints. In this case, the WHS is 0.032 ns.

• THS: A value of 0.000 ns means that, on average, all signal paths meet their hold

time requirements.

• THS Failing Endpoints: In this design, there are 0 failing endpoints out of a total

of 1328 endpoints.

• WPWS: This metric represents the worst-case timing violation for pulse width

constraints. In this case, the WPWS is 4.500 ns.

The statement "All user specified timing constraints are met" indicates that, based

on this summary, the design meets all the specified timing constraints, as there are no

failing endpoints for setup, hold, or pulse width timings.

62

4.4.4. Analyzing Throughput

In this section, we analyze the throughput of the pipelined implementation of our

design. Throughput is a crucial performance metric, as it measures the rate at which data

is processed and transmitted.

It is worth emphasizing that many existing AES implementations often fall short

in accurately considering critical factors such as input/output (I/O) latency, setup

intricacies, and other pertinent overheads. In our approach, we address these aspects

comprehensively, which augments the significance of our analysis. For instance, in this

research [28], the author talks about high throughout as a result of their pipelined

implementation. The reported throughput of 54.52 Gbps is undeniably remarkable,

representing the highest achievable throughput under ideal conditions. However, it's

essential to acknowledge that in practical, real-world scenarios, the actual throughputs

may be lower. This discrepancy arises from factors such as I/O latency, memory access

times, and various operational overheads, all of which significantly influence

performance. Nonetheless, our reported throughput serves a critical purpose as a valuable

benchmark. It enables us to conduct meaningful performance comparisons between

various AES implementations. This comparative analysis helps us gain insights into how

different implementations perform under less-than-ideal conditions, guiding us in making

informed decisions regarding their suitability for specific applications or use cases [28].

To quantify throughput, we employ the following equation:

Equation 1

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐵𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦

𝐿𝑎𝑡𝑒𝑛𝑐𝑦

63

Latency is taken in nanoseconds. This equation offers insight into the throughput of our

AES encryption scheme by considering the size of data blocks processed concurrently and

the time taken to complete the operation.

Alternatively, looking at latency in terms of clock cycles, this can also be

expressed as:

Equation 2

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐷𝑎𝑡𝑎 × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐿𝑎𝑡𝑒𝑛𝑐𝑦

This second equation provides an alternative perspective on throughput by considering

the amount of data processed per unit of time, alongside the latency measured in clock

cycles. Both equations converge to provide an accurate estimation of the AES encryption

throughput. We have adopted this equation to standardize our throughput analysis,

ensuring consistency in our evaluations.

1. Throughput with Input and Output Setup

This subsection explores throughput while accounting for input and output setup

procedures. Here, we take into consideration the read and write steps involved in the AES

encryption process. It's important to note that this configuration often results in a slightly

lower throughput compared to the ideal scenario, as it encompasses additional processing

steps. The inclusion of input and output setup is vital for a comprehensive analysis of

system performance.

With consideration for input read and output write times, we calculate the

throughput as follows:

64

Time:

• The time required to process all the blocks of data is the sum of the

encryption time, input read time, and output write time:

• Time = Input Read Time + Encryption Time + Output Write Time

• Time = 1270 ns + 150 ns + 1290 ns = 2710 ns

• Clock Cycles = 2710 / 10 = 271 CC

Throughput:

94.4649446494 Mbps

2. Throughput without Input and Output Setup

In contrast to the previous subsection, we examine throughput without factoring in

input and output setup. In such scenarios, the throughput tends to be higher due to the

omission of certain preparatory steps. Analyzing throughput without these additional steps

provides insights into the maximum achievable processing speed when such setup

operations are minimized. Here we only focus on the core encryption process.

If we consider only the encryption time (150ns), the throughput is as follows:

Throughput:

1706.66666667 Mbps or ~ 1.7 Gbps

These throughput values demonstrate the high data processing capabilities of our

pipelined implementation, making it suitable for applications requiring fast encryption and

data transmission.

65

4.5. Unfolded Implementation

4.5.1. Area Utilization

Figure 23 Unfolded Design Resource Utilization

Figure 24 Unfolded Design Hierarchical Area Distribution

This section presents a comprehensive analysis of the area utilization for the

Unfolding implementation of the AES encryption algorithm on the Xilinx FPGA device

(xc7a100tcsg324-1) using Vivado v.2021.2. The primary focus is on metrics such as LUTs

and slices, providing insights into how efficiently the FPGA resources are utilized.

Additionally, bar charts are included to visualize the distribution of resources.

66

Slice Logic

Slice logic represents the core building blocks of the FPGA, consisting of slices that

contain LUTs and registers. In our Unfolding design, the following slice logic metrics are

analyzed:

• 4.2.1.1 Slice LUTs

• Used: 450

• Fixed: 0

• Prohibited: 0

• Available: 63,400

• Utilization: 0.71%

In the Unfolding design, we've demonstrated highly efficient utilization of FPGA

resources. Specifically, when it comes to Slice (LUTs), only a mere 0.71% of the available

LUTs are employed, showcasing meticulous LUT resource management. Moreover, in

terms of Slice Registers, we've made optimal use with 1,061 registers in use, while none

are fixed or prohibited out of a generous pool of 126,800 registers, resulting in an overall

utilization rate of just 0.84%. This resource efficiency underscores the effectiveness of our

design in efficiently harnessing FPGA capabilities.

Moreover, we see that 0.84% of the available Slice Registers are employed in the

design, signifying effective use of register resources.

Memory

Examining memory utilization within the Unfolding design reveals critical insights into

data storage and retrieval within the FPGA. Firstly, in terms of Block RAM Tiles, our

67

analysis indicates the usage of just one out of a total of 135 available tiles, resulting in a

highly efficient utilization rate of 0.74%. This is graphically depicted in Figure 3,

reaffirming the prudent allocation of memory resources.

Moving on to primitives, which are specific functional elements vital to the design,

we observe the following metrics:

• FDRE (Flip-Flops): A total of 1,060 FDRE flip-flops are in use.

• LUTs: The design employs 304 LUT5s, 90 LUT4s, 43 LUT6s, 19 LUT3s, 9

LUT2s, and 1 LUT1.

These statistics collectively showcase the efficient incorporation of these essential

design elements, further highlighting the overall resource optimization and effectiveness

of the Unfolding design.

Figure 25 Register Summary in Unfolded Architecture

0 200 400 600 800 1000 1200

Used

F8 Muxes F7 Muxes Slice Registers Slice LUTs

68

Digging deeper into the LUT distribution in the design, we see LUT5 being the

most prevalent type. In terms of input and output buffers, there are 6 used IBUFs and 4

used OBUFs. In summary, key resource utilization stands at 0.71% for Slice LUTs, 0.84%

for Slice Registers, and 0.74% for Block RAM Tiles.

Figure 26 CLB Summary in Unfolded Design

The utilization analysis reveals that the unfolding implementation of the AES

encryption algorithm effectively manages FPGA resources, maintaining consistently low

resource utilization percentages across various metrics. This meticulous resource

allocation not only ensures the design's current efficiency but also lays a foundation for

potential scalability and optimization without compromising desired performance criteria.

We went over a comprehensive examination of the area utilization within the

Unfolding implementation, encompassing LUTs, Slice Registers, Memory resources, and

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Slice LUTs Slice Registers

Used Fixed Prohibited Available

69

Primitives. Additionally, it provides visual representations in the form of bar charts to

facilitate a clearer understanding of resource allocation. The findings collectively indicate

that the design adeptly and judiciously employs FPGA resources, allowing for future

enhancements and adaptability as needed.

4.5.2. Power Efficiency

Figure 27 Unfolded Design Power Profile

Figure 28 Unfolded Desing Hierarchical Power Distribution

70

4.5.3. Optimizing Timing and Latency

In this section, we provide a comprehensive summary of the timing analysis for

your AES implementation on an FPGA using the unfolding technique. Timing analysis is

crucial to ensure that your design meets the required timing constraints and operates

correctly.

The following table presents the setup and hold times for each input pin, each of

which is associated with the sys_clk_pin:

Table 15 Setup and Hold Time.

Input Pin Setup Time (ps) Hold Time (ps)

sys_clk_pin clk 7,460 30

sys_clk_pin key 3,780 1,000

sys_clk_pin plaintext_1 3,580 1,000

sys_clk_pin plaintext_2 -800 (potential violation) 28,400

sys_clk_pin rst 2,170 4,300

sys_clk_pin rst2 3,170 3,190

71

Timing Metrics Summary

Table 16 Timing Metrics.

Metric Description Value

WNS
Worst-case timing violation indicating

potential issues
2.459 ns

TNS
Cumulative negative slack across all

paths
0.000 ns

TNS Failing Endpoints
Number of endpoints failing to meet

timing
0

TNS Total Endpoints Total number of analyzed endpoints 1328

WHS
Worst-case timing violation for hold

time constraints
0.032 ns

THS Cumulative hold slack across all paths 0.000 ns

THS Failing Endpoints
Number of endpoints failing to meet

hold time constraints
0

THS Total Endpoints
Total number of analyzed endpoints for

hold time
1328

WPWS
Worst-case timing violation for pulse

width constraints
4.500 ns

4.5.4. Analyzing Throughput

In the context of our FPGA-based AES implementation using the unfolding

technique, it is essential to assess the system's throughput. Throughput measures the rate

at which data can be processed, and it is a critical metric for evaluating the efficiency and

performance of cryptographic systems. In this section, we explore the throughput of our

design, considering both scenarios: one with input and output setup times and the other

with only encryption time.

72

1. Throughput with Input and Output Setup

In the first scenario, we take into account the time required for reading input data,

the encryption process, and writing the output data. Here are the key parameters:

• Input Time (input read): 1270 ns for two blocks in parallel.

• Encryption Time (enc time): 130 ns per block for 10 rounds of AES encryption.

• Output Time (output write): 1290 ns for two blocks in parallel.

• Calculation

We calculate the throughput as follows:

1. Total Data Processed:

• We process two blocks of plaintext in parallel, with each block being 128

bits.

• Total Data Processed = 2 blocks * 128 bits per block = 256 bits.

2. Total Time:

• Total Time = Input Time + Encryption Time + Output Time

• Total Time = 1270 ns + 130 ns + 1290 ns = 2690 ns

• We convert nanoseconds to seconds: Total Time = 2690 ns * 1e-9 = 2.69e-

6 seconds.

3. Throughput:

• Throughput = Total Data Processed / Total Time

• Throughput = 256 bits / 2.69e-6 seconds = approximately 95.4 Mbps

(megabits per second). [95.16728624539999 Mbps]

2. Throughput without Input/Output Setup (Only Encryption Time)

73

In the second scenario, we focus solely on the encryption process, excluding input

and output setup times. The key parameter here is the encryption time:

• Encryption Time (enc time): 130 ns per block for 10 rounds of AES encryption.

• Calculation

We calculate the throughput as follows:

1. Total Data Processed:

• Similar to the previous scenario, we process two blocks of plaintext in

parallel, with each block being 128 bits.

• Total Data Processed = 2 blocks * 128 bits per block = 256 bits.

2. Total Time:

• Total Time = Encryption Time

• Total Time = 130 ns

• We convert nanoseconds to seconds: Total Time = 130 ns * 1e-9 = 1.3e-7

seconds.

3. Throughput:

• Throughput = Total Data Processed / Total Time

• Throughput = 256 bits / 1.3e-7 seconds = approximately 1.97 Gbps

(gigabits per second). [1969.23076923 Mbps].

4.6. Trends and Implications

A comparison of the two scenarios reveals significant differences in throughput,

primarily influenced by the presence or absence of input and output setup times. In the

74

case of Unfolding, considering these setup times, our system processes data at an

approximate rate of 95.4 Mbps. This demonstrates the notable impact of setup times on

overall processing speed. However, when we focus exclusively on the encryption process,

the throughput substantially increases to approximately 1.97 Gbps. This underscores the

inherent efficiency of the AES encryption algorithm itself and underscores the potential

for performance gains when minimizing input/output setup times.

For the Pipelined approach, the throughput stands at around 94.5 Mbps when

considering setup times and increases to approximately 1.7 Gbps when focusing solely on

encryption.

Table 17 Throughput Overview.

Scenario Unfolding Pipelined

With setup times 95.4 Mbps 94.5 Mbps

Without setup times 1.97 Gbps 1.7 Gbps

Understanding these trends in throughput is essential for further optimizing our

AES implementation. It highlights the significance of not only considering the

cryptographic algorithm but also the data handling processes when designing secure and

efficient FPGA-based systems.

These findings are particularly promising when considering other factors, such as:

• 100 MHz frequency,

• utilizing two data blocks,

• and working with a lower to mid-range hardware platform.

75

This suggests the potential for achieving even higher throughput by processing

larger input data sets. Additionally, there's the possibility of increasing the frequency,

albeit at a power cost, or transitioning to a high-end FPGA to match the results claimed

by researchers as the fastest in the field.

76

5. DESIGN VERIFICATION OF THE HARDWARE IMPLEMENTATION

When configuring an FPGA, ensuring the accuracy of the loaded bitstream is

paramount. Verification is the process of confirming that the FPGA has been correctly

configured according to the design specifications. This process is crucial to avoid

unexpected behavior or functional errors in the FPGA-based system.

Why Verification Matters

Verification serves as a validation step to guarantee that the configuration data,

often stored in a .bit file, has been accurately transferred and implemented within the

FPGA. A successful verification process provides confidence that the FPGA functions as

intended, aligning with the original design.

5.1. Verifying Bitstream on FPGA – The Process

Vivado Design Suite, a widely used FPGA development environment, provides a

systematic approach to verify a bitstream on an FPGA. Here are the key steps in the

verification process:

1. Open Vivado Design Suite: Begin by launching the Vivado Design Suite.

2. Connect to the Target Device: Establish a connection to the target FPGA device from

within the Vivado Hardware Manager.

3. Select Verification: Right-click on the connected FPGA device in the Hardware

Manager and choose "Verify Device."

77

Figure 1 Figure 29 TCL Command for Verification

4. Choose Bitstream and Mask File: In the "Verify Device" dialog box, select the

appropriate bitstream file (.bit) and the corresponding mask file (.msk) for the FPGA

configuration.

5. Initiate Verification: Click the "Verify" button to initiate the verification process.

Vivado will compare the bitstream with the actual configuration on the FPGA.

6. Readback Data: Use the "readback_hw_device" Tcl command with options to obtain

readback data. You can save this data in either ASCII format using `-readback_file

<filename.rbd>` or binary format using `-bin_file <filename.bin>`.

7. Compare Data: Compare the readback data with the original bitstream file to ensure

they match. Any discrepancies could indicate configuration errors.

8. Masking: If the readback data does not perfectly match the original bitstream file, use

the mask file (.msk) to identify which bits should be skipped or masked during the

comparison process. This step helps account for any bit differences that might be

expected due to technical factors.

9. Additional Resources: For more detailed information on the verification and

readback operations, refer to the "Verifying Readback Data" section in the appropriate

FPGA Configuration User Guide. The specific guide to consult depends on the FPGA

architecture you are working with, such as UltraScale Architecture Configuration User

Guide (UG570) or the 7 Series FPGAs Configuration User Guide (UG470).

78

To summarize, the verification process involves several key steps to ensure the

accuracy and integrity of our design. Initially, when generating the bitstream, a MASK

(.msd) file is concurrently generated. This .msd file serves as a critical reference,

indicating which bits should be disregarded and which ones require comparison.

Subsequently, the logic location (.ll) file is generated, providing valuable information for

pinpointing the register locations within the Readback data. The culmination of this

process involves running a hardware verification command, which yields a Readback

(.rdb) file. To validate our design thoroughly, we analyze the .rdb file by comparing it to

the bit file, while considering the information provided by the MASK and logic location

files. This comprehensive approach ensures that the hardware is verified.

5.2. Interpreting Verification Files

information is about how to interpret and use files generated during the process of

configuring an FPGA.

When you configure an FPGA, you generate a .bit file. This file contains the

instructions for setting up the FPGA's internal logic. However, when you read back the

configuration from the FPGA, some bits might not match exactly what's in the .bit file due

to various technical reasons. To help with this, you can generate additional files:

• .ll File: This file helps you locate where different parts of your design are in the

readback data. It provides information about bit offsets and addresses in the readback

data. This helps you map what you expect from your design to what you get when

reading back.

79

• .msd File: This is a mask file. It tells you which bits should be ignored or "masked"

when comparing the readback data to what's in the .bit file. Sometimes, bits that are

supposed to be 0 in the .bit file might read back as 1, and this file helps you account

for such differences.

• .rbd File: This file contains the actual readback data from your FPGA.

When comparing the readback data to what's in the .bit file, you use these files to

understand where to look in the readback data, what bits to ignore, and how to interpret

any differences you find. In simple terms, these files are tools to help you make sure your

FPGA is configured correctly and to account for any quirks in the reading process.

Figure 30 Logic Location File

80

Figure 31 Readback File

Figure 32 Mask File

81

In conclusion, the verification process for FPGA bitstreams, as discussed above,

plays a pivotal role in ensuring the accurate configuration of hardware, a step of paramount

importance in FPGA-based systems. This process not only guarantees the integrity of the

design but also helps in addressing potential discrepancies that may result from technical

intricacies or physical faults on the actual hardware.

What sets our work apart is the inclusion of both verification and a system

throughput analysis, factors that are notably absent in existing research papers on

hardware AES encryptions. This omission underscores the unique contribution of our

study in providing a more holistic and thorough perspective on FPGA-based AES

encryption implementations, setting a new standard for the field.

82

6. SUMMARY AND CONCLUSION

In conclusion, our research has encompassed a comprehensive exploration of the

FPGA-based implementation of the AES encryption algorithm, comprising three distinct

variants: Standard, Pipelined, and Unfolded. Through rigorous testing and analysis, we

have quantified the performance metrics, shedding light on the strengths and limitations

of each design. Notably, our study has introduced two critical elements often overlooked

in existing research on FPGA-based AES encryption – the meticulous consideration of

I/O latency overhead and the verification process to ensure bitstream integrity. These

novel inclusions have enhanced the robustness and reliability of our implementations.

Looking ahead, future work in this domain could involve the development of a

benchmarking tool for automating the encryption of large datasets, making our module

statistically viable for real-world applications. Such advancements hold the promise of

further bolstering our throughput readings. Additionally, our encryption module could

find valuable utility in a CPS testbed environment, facilitating secure data communication

via Ethernet or wireless means in resource-constrained settings. This represents a

promising avenue for the practical application of our research, with potential implications

for enhancing data security and efficiency in various domains.

In essence, our study not only contributes to the body of knowledge regarding

FPGA-based AES encryption but also underscores the importance of considering often-

83

overlooked aspects in the design and evaluation of cryptographic systems. As technology

continues to advance, it is imperative that our research adapts and evolves, ensuring the

continued security and efficiency of data communication in an increasingly interconnected

world.

84

REFERENCES

[1] A. Banerjee, K. K. Venkatasubramanian, T. Mukherjee, and S. K. S. Gupta,

"Ensuring safety, security, and sustainability of mission-critical cyber–physical systems,"

Proceedings of the IEEE, vol. 100, no. 1, pp. 283-299, 2011.

[2] Z. Cao et al., "Guest editors' introduction: Special issue on trust, security, and

privacy in parallel and distributed systems," IEEE Transactions on Parallel & Distributed

Systems, vol. 25, no. 02, pp. 279-282, 2014.

[3] L. Zhang, L. Xie, W. Li, and Z. Wang, "Security Solutions for Networked Control

Systems Based on DES Algorithm and Improved Grey Prediction Model," International

Journal of Computer Network & Information Security, vol. 6, no. 1, 2013.

[4] W. Duo, M. Zhou, and A. Abusorrah, "A survey of cyber attacks on cyber physical

systems: Recent advances and challenges," IEEE/CAA Journal of Automatica Sinica, vol.

9, no. 5, pp. 784-800, 2022.

[5] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, "Cyber-physical systems: the next

computing revolution," in Proceedings of the 47th design automation conference, 2010,

pp. 731-736.

[6] L. Zhang, "Specification and design of cyber physical systems based on system of

systems engineering approach," in 2018 17th International Symposium on Distributed

Computing and Applications for Business Engineering and Science (DCABES), 2018:

IEEE, pp. 300-303.

85

[7] cms.gov. "Centers for Medicare & Medicaid Services."

https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-

Reports/NationalHealthExpendData/NationalHealthAccountsHistorical (accessed.

[8] K. O’Connell, "Cia report: cyber extortionists attacked foreign power grid,

disrupting delivery," Internet Business Law Services, 2008.

[9] K. Koscher et al., "Experimental security analysis of a modern automobile," in

2010 IEEE symposium on security and privacy, 2010: IEEE, pp. 447-462.

[10] R. M. Lee, M. J. Assante, and T. Conway, "German steel mill cyber attack,"

Industrial Control Systems, vol. 30, no. 62, pp. 1-15, 2014.

[11] M. Yampolskiy, P. Horvath, X. D. Koutsoukos, Y. Xue, and J. Sztipanovits,

"Systematic analysis of cyber-attacks on CPS-evaluating applicability of DFD-based

approach," in 2012 5th International Symposium on Resilient Control Systems, 2012:

IEEE, pp. 55-62.

[12] S. Churiwala and I. Hyderabad, "Designing with Xilinx® FPGAs," Circuits

&Systems, Springer, 2017.

[13] A. Rodríguez, J. Valverde, J. Portilla, A. Otero, T. Riesgo, and E. De la Torre,

"Fpga-based high-performance embedded systems for adaptive edge computing in cyber-

physical systems: The artico3 framework," Sensors, vol. 18, no. 6, p. 1877, 2018.

[14] S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, "A comparative survey of

symmetric and asymmetric key cryptography," in 2014 international conference on

electronics, communication and computational engineering (ICECCE), 2014: IEEE, pp.

83-93.

https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NationalHealthAccountsHistorical
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NationalHealthAccountsHistorical

86

[15] T. Hardjono and L. R. Dondeti, Security in Wireless LANS and MANS (Artech

House Computer Security). Artech House, Inc., 2005.

[16] IBM. "Symmetric cryptography."

https://www.ibm.com/docs/en/ztpf/2023?topic=concepts-symmetric-cryptography

(accessed.

[17] M. B. Yassein, S. Aljawarneh, E. Qawasmeh, W. Mardini, and Y. Khamayseh,

"Comprehensive study of symmetric key and asymmetric key encryption algorithms," in

2017 international conference on engineering and technology (ICET), 2017: IEEE, pp. 1-

7.

[18] J. Daemen and V. Rijmen, The design of Rijndael. Springer, 2002.

[19] K. Rahimunnisa, P. Karthigaikumar, N. A. Christy, S. S. Kumar, and J. Jayakumar,

"PSP: Parallel sub-pipelined architecture for high throughput AES on FPGA and ASIC,"

Central European Journal of Computer Science, vol. 3, pp. 173-186, 2013.

[20] S. Qu, G. Shou, Y. Hu, Z. Guo, and Z. Qian, "High throughput, pipelined

implementation of AES on FPGA," in 2009 International Symposium on Information

Engineering and Electronic Commerce, 2009: IEEE, pp. 542-545.

[21] T. M. Kumar, K. S. Reddy, S. Rinaldi, B. D. Parameshachari, and K. Arunachalam,

"A low area high speed FPGA implementation of AES architecture for cryptography

application," Electronics, vol. 10, no. 16, p. 2023, 2021.

[22] Xilinx. "Artix 7 Datasheet." https://docs.xilinx.com/v/u/en-

US/ds181_Artix_7_Data_Sheet (accessed.

https://www.ibm.com/docs/en/ztpf/2023?topic=concepts-symmetric-cryptography
https://docs.xilinx.com/v/u/en-US/ds181_Artix_7_Data_Sheet
https://docs.xilinx.com/v/u/en-US/ds181_Artix_7_Data_Sheet

87

[23] Digilint. "Arty A-7 100T." https://digilent.com/shop/arty-a7-100t-artix-7-fpga-

development-board/ (accessed.

[24] Xilinx. "Xilinx vivado v2021.2 documentation." (accessed.

[25] Advanced Encryption Standard (AES) [Online] Available:

https://doi.org/10.6028/NIST.FIPS.197-upd1

[26] A. Soltani and S. Sharifian, "An ultra-high throughput and fully pipelined

implementation of AES algorithm on FPGA," Microprocessors and Microsystems, vol.

39, no. 7, pp. 480-493, 2015.

[27] Xilinx. "Vivado Design Suite Tcl Command Reference Guide." (accessed.

[28] M. S. Abdul-Karim, K. H. Rahouma, and K. Nasr, "High Throughput and Fully

Pipelined FPGA Implementation of AES-192 Algorithm," in 2020 International

Conference on Innovative Trends in Communication and Computer Engineering (ITCE),

2020: IEEE, pp. 137-142.

https://digilent.com/shop/arty-a7-100t-artix-7-fpga-development-board/
https://digilent.com/shop/arty-a7-100t-artix-7-fpga-development-board/
https://doi.org/10.6028/NIST.FIPS.197-upd1

