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Manufacturability-Driven Design (MDD)

. . _ Topology Optimization
A Design and manufacturing methods have rapidly

advanced in recent years

a Additive manufacturing and advanced casting/molding
methods

a Algorithm-based design methods

0 topology optimization, generative design, optimal design,
analytical target cascading (ATC)

a Design freedom

a Additive manufacturing is both a help and a major cause of
the problem

A Previously: Design-for-manufacturing (DFM) methods were
used

Q Simple design, cheap materials, liberal tolerances, etc.

https://www.fetraining.net/topology-optimization-part-1/



https://www.fetraining.net/topology-optimization-part-1/

Manufacturability-Driven Design (MDD)

A Manufacturability-Driven Design (MDD) is a design perspective in which
manufacturability is the prime or co-prime requirement

Q Using advanced design methods can produce far superior designs, even when
restricted for manufacturability

a Explicit or implicit constraints: Purely mathematical, purely expert, or hybrid problem
formulation

QO Process-induced material effects

a Major advantages:
O Take advantage of process characteristics
Q Can be iteratively improved and automated after first round!

O More accurate design representation and more stable problem formulation




Manufacturability-Driven Design (MDD)

a Manufacturing Process-Driven Structured Material (MPDSM)

Q Structured or architected material were the prime design constraint is
manufacturability

a Restrict design candidates to manufacturable options before
performance or cost objectives applied

N e il

- -
—_— o ———

|
——

https://www.techbriefs.com/component/content/article/tb/pub/features/articles/35824 https://3dprintingindustry.com/news/german-scientists-3d-print-lightweight-material-stronger-steel-23300/




Material Architecture Design Levels

Natural material

O Natural material
structure on atomic,
crystal, or molecular
level

U May be influenced by
processing conditions

O Examples: Polymer
chains, grain structure
details in metals

deformed F
nucleated F

deformation band

e

deformed F

Nb

Q Structure observable using
an optical microscope,
heavily influential on
macro-scale properties

O Strongly influenced by
processing conditions

O Examples: Porosity, metal
grain layout, scan structure
in 3-D printed materials

Source of Dominant Properties

Mesostructure

O Designed or patterned

structure, may be generated by
element layout or designed
inclusions/defects/voids

Solid, homogeneous materials
do not have a mesostructure

Examples: Honeycomb
structure, metamaterial, unit
cell-based lattice

Q

Q

Q

In design, typically the “useful
level”

Generally the final component
or product that is to be made
from the designed material

For homogeneous solid
materials, microstructure
drives macrostructure
properties (no mesostructure)




Manufacturability Constraint Mapping
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Patterson, A.E. & Allison, J.T. (2022). Mapping and enforcement of minimally restrictive manufacturability constraints in mechanical design. ASME Open Journal of Engineering, 1: 014502.



Manufacturability Constraint Mapping

Inputs
1. Stakeholder preferences
2. Manufacturing process specification

Input: Given
Output: Raw set of mfg
considerations

INPUT: Non-manufacturability
constraints

Input: Raw set of mfg
considerations

Output: Ranked, ordered,
specified manufacturing
constraints

v
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Patterson, A.E. & Allison, J.T. (2022). Mapping and enforcement of minimally restrictive manufacturability constraints in mechanical design. ASME Open Journal of Engineering, 1: 014502.




Scanning-Type Additive Manufacturing
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Scanning-Type Additive Manufacturing

Powder Bed Fusion AM Material Extrusion AM

The building steps

Filament

Laser beam

(©) — Width (W) —

. "“ > Height (h)

1

ain tank

Overlap

Recoater

Deposited element

Previous layers g-code path -

Initial plate ‘
g-code!

Zhang, Y., Yang, S., & Zhao, Y.F. (2020). Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing — a survey. The International Journal of Advanced Manufacturing Technology, 110: 57-78.

Spread powder

Isotropic and

constant CS!

Patterson, A.E., Chadha, C., & Jasiuk, .M. (2022). Identification and mapping of manufacturability constraints for extrusion-based additive manufacturing. Journal of Manufacturing and Materials Processing, 5(2): 33.




Design Strategy— Meso-Scale Truss Design
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Patterson, A.E., Chadha, C., & Jasiuk, .M. (2022). Manufacturing process-driven structured materials (MPDSMs): Design and fabrication
for extrusion-based additive manufacturing. Rapid Prototyping Journal, 28(4): 716-731.




Design Strategy — Desighed Regions
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Patterson, A.E., Chadha, C., & Jasiuk, .M. (2022). Manufacturing process-driven structured
materials (MPDSMs): Design and fabrication for extrusion-based additive manufacturing. Rapid
Prototyping Journal, 28(4): 716-731.




ABS: Kq + 38%
PLA: K, + 34%
PC: Kg +52%
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Patterson, A.E. (2021). Meso-scale FDM material
layout design strategies under manufacturability
constraints and fracture conditions. Doctoral
Dissertation, University of lllinois at Urbana-
Champaign.




Design Strategy: Analytical Stress Field

Von Mises Stress Field Shape and Size for CS2
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Patterson, A.E. (2021). Meso-scale FDM material layout design strategies under manufacturability
constraints and fracture conditions. Doctoral Dissertation, University of lllinois at Urbana-Champaign.




Design Strategy: Regional w/ Crack Path
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Patterson, A.E. (2021). Meso-scale FDM material layout design strategies under manufacturability constraints
and fracture conditions. Doctoral Dissertation, University of lllinois at Urbana-Champaign.




Design Strategy: Regional w/ Crack Path

(a) Case Study 3 Results
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Patterson, A.E. (2021). Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions. Doctoral Dissertation, University of lllinois at Urbana-Champaign.




Discussion and Conclusions

A Examples shown used FFF, but these principles apply to any ST-AM processes
using a variety of materials.

a Assuming that each bead/element of materials Is isotropic or transversely
Isotropic with a uniform cross-section allows the use of beam and truss theory for
design.

aQ MPDSMs are a promising approach for improving manufacturability outcomes for
architected materials.

A Manufacturabllity is the most important constraint and ensures that all the design
candidates are producible using one or several manufacturing processes.

Q Many different approaches discussed in this presentation, all of which are
effective. Many more approaches and better design automation possible.
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