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Abstract

Due to recent advancements in technology, the utilization of massive datasets, whether inde-

pendent or correlated, has become prevalent across various fields such as forestry, ocean science,

neuroimaging, and public health. Traditional Bayesian statistical approaches for analyzing such

datasets operate on the assumption that all data from different units are stored and processed

centrally. This centralized data processing paradigm necessitates significant computing and

storage resources at the central server, while also raising valid privacy concerns for individual

units contributing data. To address these challenges, a comprehensive Bayesian analysis frame-

work has been devised, allowing for approximate Bayesian inference in a decentralized manner,

with model computation distributed across multiple machines. This article presents a review of

pertinent methods in distributed Bayesian inference developed in recent years, catering to both

independent and spatio-temporally correlated data.

Keywords: Bayesian statistics; Distributed inference; spatio-temporal data.

1 Introduction

Due to advancements in technology across various scientific domains, the prevalence of massive

structured datasets has become widespread in crucial applications, including climatology, neuro-

science, bioinformatics, forestry, and environmental science. Flexible models for structured data,

incorporating high-dimensional parameters and/or correlated random effects, are utilized to cap-

ture the intricate features of these complex datasets. Despite numerous successes, current studies
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on such complex structured data models often assume a centralized data processing approach,

where all data is stored and processed at a central location. However, this centralized paradigm

poses several challenges in modern applications, particularly related to storage and model com-

putation. These challenges are magnified when sample units exhibit spatial or spatio-temporal

correlations (Heaton et al., 2019). By adopting a decentralized approach to model computation,

various advantages emerge:

1. Improved Privacy: Decentralized inference allows for the sharing of focused updates from local

computations instead of raw data, enhancing privacy and ensuring that sensitive information

remains localized.

2. Reduced Computation and Storage Needs: De-centralized computation shifts the central

server’s role primarily to combining analyses from different processors, resulting in decreased

computation and storage demands on the server.

3. Reduced Latency and Communication Traffic: De-centralized inference eliminates the need

for massive raw data exchange and communication between the central server and processors

during statistical analysis, leading to reduced latency and communication traffic.

4. Faster Inference: Efficient computation on smaller data shards at each processor leads to

faster overall inference.

Distributed Bayesian inferential approaches have gained popularity by simultaneously addressing

these advantages. These approaches typically operate in three stages. In the first stage, the

sample of size n is divided into J subsets, with the jth subset having a sample size of nj , where∑J
j=1 nj = n. In the second stage, a suitable model is fitted on the J subsets in parallel to obtain J

subset posteriors. This stage allows for Markov Chain Monte Carlo (MCMC) approximations of the

full data posterior without exchanging data between processors or communication with a central

server. Each subset’s likelihood is adjusted to account for the missing fraction of data. At the final

stage, the subset posteriors are combined to obtain a “collaborative pseudo posterior,” serving as a

computationally efficient approximation to the full posterior. Section 2 provides a comprehensive

review of existing literature on three-stage distributed Bayesian inferential techniques.
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While distributed Bayesian approaches share some similarities with composite likelihood ap-

proaches (Varin et al., 2011), the two methodologies exhibit distinct differences. For instance,

Chandler and Bate (2007) and Ribatet et al. (2012) create pseudo-likelihood as a substitute for

the full data likelihood. This pseudo-likelihood aims to capture essential features of the full data

likelihood while ensuring computational efficiency. In spatial or spatio-temporal data modeling

with Gaussian Processes (GP) or their variants, pseudo-likelihood, based on the independence of

data blocks to some extent, is employed for computational efficiency. To address the incorrect

asymptotic distribution of the posterior resulting from the assumption of incorrect independence,

various adjustments in the composite log likelihood, such as margin and curvature adjustments,

have been proposed. Similar to these approaches, the likelihood adjustment in each subset during

the second stage of the general distributed Bayesian approach is motivated by the need to scale the

asymptotic variance of subset posteriors to the same order as the asymptotic variance of the full

posterior. However, unlike composite likelihood approaches, the discussed distributed approaches

do not assume any restrictive structure, such as block independence, in the data likelihood. There

is no guarantee that the induced data likelihood, leading to the collaborative pseudo posterior for

any distributed method, assumes a block independence form. Moreover, Srivastava et al. (2018)

provides an example of embedding a composite likelihood in a distributed setup. Similarly, we

believe that most of these “flexible” composite likelihoods can be employed in extensions of the

distributed framework for subset sampling in models where the true likelihood is either unavailable

or expensive to compute.

2 Distributed Bayesian Inference: A Three-Stage Strategy

2.1 Partitioning of Data

The initial step in distributed Bayesian inference involves the creation of subsets D1, ..., DJ of

the full data D, such that D1 ∪ · · · ∪DJ = D, Di ∩Dj = ϕ. While the partitioning of data samples

is less critical in cases where the data is i.i.d., caution is warranted when dealing with spatio-

temporally correlated data. Several approaches have been explored in the literature (Guhaniyogi

and Banerjee, 2018; Guhaniyogi et al., 2022; Guhaniyogi and Banerjee, 2019; Guhaniyogi et al.,

2023), outlined below,

Random Partitioning
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This scheme involves the random allocation of location-time tuples into J subsets, which may or

may not overlap. The objective is to ensure that each subset contains representative data samples

from all subregions within the domain.

Stratified Partitioning

In this approach, the space-time domain is divided into subdomains, and each of the J subsets is

constructed with representative samples from each subdomain.

Both random and stratified partitioning methods aim to guarantee that each subset comprises

samples from the entire space-time domain. This inclusivity is crucial for achieving reliable in-

ference in distributed Bayesian methods, as emphasized in Guhaniyogi et al. (2023); Guhaniyogi

and Banerjee (2018). However, it is worth noting that even when each subset contains representa-

tive samples from the entire space-time domain, inference in distributed Bayesian learning may be

somewhat sensitive to the choice of data subsets Guhaniyogi et al. (2023).

2.2 Fitting a Model on Data Subsets: Construction of Subset Posteriors

In the second stage, the distributed Bayesian approach involves fitting a suitable statistical

model tailored to the data in each subset. Let f(Dj |η) denote the likelihood of subset Dj corre-

sponding to a suitable model characterized by a scalar- or vector-valued parameter η. We establish

subset posterior distributions by modifying the likelihood in f(Dj |η). More specifically, we define

the jth subset posterior distribution of η as follows:

πnj (η | Dj) =
f(Dj |η)n/njπ(η)∫
f(Dj |η)n/njπ(η)dη

, (1)

where we assume that
∫
f(Dj |η)n/njπ(η)dη < ∞, and the subscript ‘nj ’ indicates that the density

conditions on nj data samples in the jth subset Dj . The modification of the likelihood to yield the

subset posterior density in (1) is termed stochastic approximation (Minsker et al., 2014). Raising

the likelihood to the power of n/nj is equivalent to replicating every Dj , n/nj times (i = 1, . . . , nj),

so stochastic approximation takes into account that the jth subset posterior distribution conditions

on an (nj/n)-fraction of the full data, ensuring that its variance is of the same order (as a function

of n) as that of the full data posterior distribution. Markov Chain Monte Carlo (MCMC) samples

are drawn from each subset posterior distribution to obtain an empirical approximation of the
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subset posteriors.

The existing body of literature on distributed Bayesian approaches extensively explores the fit-

ting of different f(Dj |η) originating from structured data models with independent errors, as well

as those with spatially/spatio-temporally correlated data. In this regard, Minsker et al. (2014);

Srivastava et al. (2018); Li et al. (2017) have delved into fitting ordinary linear regression with

varying dimensions, finite mixtures of Gaussians, and probabilistic parafac models within the dis-

tributed Bayesian framework. Regarding the exploration of distributed Bayesian inference for

spatial/spatio-temporal data, Guhaniyogi and Banerjee (2018); Guhaniyogi et al. (2023) have fitted

spatially dependent Gaussian process (GP) models, Guhaniyogi and Banerjee (2019) have applied

multivariate Gaussian process models, and Guhaniyogi et al. (2022) have employed multivariate

spatially varying coefficient models.

2.3 Combining Subset Posteriors: Construction of Collaborative Pseudo Pos-

terior

In this section, we explore different approaches for merging subset posteriors to create a “col-

laborative pseudo posterior,” serving as a computationally efficient substitute for the full data

posterior. The discussed combination strategies encompass several methods commonly employed

in divide-and-conquer inference for both independent and correlated data scenarios. As part of our

discourse in this article, we will provide a concise overview of the following combination schemes:

(i) Consensus Monte Carlo (CMC); (ii) Double Parallel Monte Carlo (DPMC); (iii) combination

through median posterior (iv) combination through Wasserstein barycenter; and (v) Aggregated

Monte Carlo (AMC).

Consensus Monte Carlo (CMC)

For any parameter of interest, denoted as η and representing either a scalar or a vector, the Consen-

sus Monte Carlo (CMC) strategy (Scott et al., 2022; Rendell et al., 2020; Rabinovich et al., 2015)

offers a method to draw samples from an approximation of the full posterior. Let
{
η
(1)
j , ..., η

(L)
j

}
represent the L posterior samples of η generated from subset j post-convergence. Leveraging the

Bernstein-von Mises theorem, which asserts that the posterior converges to a normal distribution

centered around the true parameter value with increasing observations, Scott et al. (2022) suggested

utilizing the weighted average
∑J

j=1wjη
(l)
j , where l = 1, ..., L, to approximate L samples from the

5



full data posterior. Here, the weight wj corresponds to the inverse of the empirical covariance

matrix of
{
η
(1)
j , ..., η

(L)
j

}
. This algorithm provides an exact solution when each subset posterior

follows a Gaussian distribution.

Double Parallel Monte Carlo (DPMC)

For any parameter of interest, denoted as η and representing either a scalar or a vector, let η1, ...ηJ

denote the empirically estimated mean of η from the J subset posteriors, and η = 1
J

∑J
j=1 ηj de-

note their average. The Double Parallel Monte Carlo (DPMC) method (Xue and Liang, 2019)

re-centers each subset posterior to η and then utilizes the mixture of re-centered subset posteriors,

expressed as 1
J

∑J
j=1 πnj (η − η + ηj |Dj), to approximate the full data posterior (Xue and Liang,

2019). The DPMC algorithm employs the population approximation stochastic Monte Carlo (pop-

SAMC) technique to sample from the approximate posterior distribution for parameters.

Median posterior

This approach relies upon the unique Geometric Median (GM) of the subset posteriors (Minsker

et al., 2014; Minsker, 2015; Guhaniyogi and Banerjee, 2018). Assume that the subset posterior

densities πnj (·) reside on a Banach space P equipped with norm || · ||ρ. The GM is defined as

π∗ = argminπ∈P
∑J

j=1 ||πnj−π||ρ. The norm quantifies distance between any two densities πnj , πnj′

as ||πnj −πnj′ ||ρ = |
∫
ρ(η, ·)d(πnj −πnj′ )(η)|. When πnj and πnj′ are empirically approximated from

the post burn-in iterates of η, ||πnj − πnj′ ||ρ also assumes an empirical approximation. To elabo-

rate, let the empirically approximations of πnj and πnj′ be given by πnj =
∑Mj

m=1 γmj1ξmj
and πnj′ =∑Mj′

m=1 γmj′1ξmj′ , then ||πnj−πnj′ ||ρ =
∑Mj

m=1

∑Mj

m′=1 γmjγm′jρ(ξmj , ξm′j)+
∑Mj′

m=1

∑Mj′

m′=1 γmjγm′j′ρ(ξmj′ , ξm′j′)−

2
∑Mj

m=1

∑Mj′

m′=1 γmjγm′j′ρ(ξmj , ξm′j′) is available in closed form. To compute GM, Weiszfeld’s al-

gorithm (Guhaniyogi and Banerjee, 2018) is employed which estimates weights αρ,j(D), such that

π∗ =
∑J

j=1 αρ,j(D)πnj , with αρ,j(D) ≥ 0 and
∑J

j=1 αρ,j(D) = 1. The approach finds the GM

distribution in the convex hull of the posterior distributions.

Wasserstein barycenter

While GM relies on the “median” of the subset posterior distributions, this combination scheme

relies on finding the “mean” of the subset posterior distribution. In the space of distributions, the

notion of “mean” is defined through Wasserstein barycenter (Srivastava et al., 2018). We first pro-

vide some background on Wasserstein barycenter. Let (H, ζ) be a complete separable metric space

and P(H) be the space of all probability measures on H. The Wasserstein space of order 2 is a set
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of probability distributions defined as P2(H) = {µ ∈ P(H) :
∫
H ζ2(η, η0)µ(dη) < ∞}, where η0 ∈ H

is arbitrary and P2(H) does not depend on the choice of η0. The Wasserstein distance of order 2,

denoted as W2, is a metric on P2(H). Let µ, ν be two probability measures in P2(H) and Π(µ, ν)

be the set of all probability measures on H×H with marginals µ and ν, then W2 distance between

µ and ν is defined as W2(µ, ν) = Inf
π∈Π(µ,ν)

∫
H×H ζ2(x, y) dπ(x, y)}1/2. Let ν1, . . . , νJ ∈ P2(H), then

the Wasserstein barycenter of ν1, . . . , νJ is defined as

ν = argminν∈P2(H)
1

J

J∑
j=1

W 2
2 (ν, νj). (2)

It is known that ν exists and is unique (Agueh and Carlier, 2011).

In this combination framework, for any parameter of interest η, whether scalar or vector, the

term ”collaborative pseudo posterior” refers to the Wasserstein barycenter of the J subset posterior

distributions of η. To explain further, in Wasserstein barycenter-based approaches, the components

ν1, . . . , νJ in (2) are identified as the J subset posterior distributions of η, denoted as νj = πnj (·).

Consequently, the collaborative pseudo posterior, obtained through the mathematical computation

of the Wasserstein barycenter π in (2), represents a general concept for deriving the mean of J

potentially dependent subset posterior distributions.

In the context of Bayesian inference, the exact subset posteriors of η (expressed as πn1 , . . . , πnJ

in (2)) are often analytically intractable. However, effective approximations can be achieved using

MCMC samples from the subset posterior distributions of η. The empirical version of the Wasser-

stein barycenter π is then estimated empirically by solving a sparse linear program efficiently, as

outlined in Cuturi and Doucet (2014); Srivastava et al. (2015, 2018). This approach to combining

subset posteriors leads to the collaborative pseudo posterior known as the Wasserstein posterior

(WASP). Empirical evidence suggests that, particularly for independent data, WASP is a prefer-

able choice over various other combination methods (Srivastava et al., 2018). For instance, directly

averaging over numerous subset posterior densities with different means can often yield an undesir-

able multimodal collaborative pseudo posterior distribution. WASP does not encounter this issue

and can recover a unimodal posterior, as illustrated in Srivastava et al. (2018). Moreover, it does

not rely on the asymptotic normality of subset posterior distributions, distinguishing it from other

methods like CMC, as discussed earlier (Scott et al., 2022).
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While WASP relies upon iterative algorithms to compute π from subset posteriors πn1 , ..., πnJ ,

an approach free of implementing iterative algorithms can be employed if η represents a one-

dimensional functional of interest. For a scalar parameter the Wasserstein barycenter of η can be

easily obtained by averaging empirical subset posterior quantiles (Li et al., 2017; Guhaniyogi et al.,

2023). We refer to this approach as the quantile aggregation (QA) and the collaborative pseudo

posterior is called as the QA posterior. The simple combination formula exists as the W2 distance

between two univariate distributions is the same as the L2 distance between their quantile functions

(Lemma 8.2 of Bickel and Freedman 1981). In particular, let π be the Wasserstein barycenter of

πn1 , . . . , πnJ as in (2). For any q ∈ (0, 1), let π−q
nj be the qth empirical quantile of πnj based on the

MCMC samples from πnj , and π−q be the qth quantile of the empirical version of π. Then, π−q

can be computed as

π−q =
1

J

J∑
j=1

π−q
nj

. (3)

Li et al. (2017); Guhaniyogi et al. (2023) suggested computing the empirical quantiles over a values

of q on a grid. If the grid is fine enough in (3), then the parameter MCMC samples from different

marginals of the collaborative pseudo posterior are obtained by inverting the empirical distribution

function supported on the quantile estimates.

The choice of the grid size is primarily influenced by the Monte Carlo approximation error

associated with each subset posterior. In general, this approximation error for subset posteriors

is measured in terms of the size of MCMC samples, denoted as L. It is crucial to note that this

evaluation involves considering L approaching infinity, distinguishing it from the statistical error,

which occurs when the sample size n tends to infinity. For the divide-and-conquer Bayes method

applied to models with i.i.d. data, Theorem 3 in the supplementary material of Li et al. (2017)

demonstrates that the Monte Carlo error typically follows some polynomial order of L, such as

O(L−1/2) and O(L−1/4), depending on the chosen distance measure. Notably, this error is indepen-

dent of the statistical error defined in terms of n. Following this insight, practical recommendations

suggest drawing a minimum of 104 MCMC samples for each subset posterior and utilizing the entire

set for constructing the desired quantiles.

Aggregated Monte Carlo
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Notably, WASP offers Wasserstein barycenter for the subset posterior distribution for all parameters

jointly, but it relies on an iterative algorithm to compute it. On the other hand, QA technique allows

combination of separate marginal distributions of subset posteriors. In order to combine subset

posterior distributions jointly, as well as to avoid iterative algorithms, Guhaniyogi et al. (2022)

proposed the Aggregated Monte Carlo (AMC) algorithm. With η
(1)
j , ..., η

(L)
j being the MCMC

iterates from the jth subset posterior for parameter η, AMC proposes computing the empirical

mean and empirical variance of η from the jth subset, given by

µjη =
1

L

L∑
l=1

η
(l)
j , Σjη =

1

L

L∑
l=1

(η
(l)
j − µjη)(η

(l)
j − µjη)

T , j = 1, .., J. (4)

We now summarize the AMC algorithm for obtaining draws from the collaborative pseudo posterior

using the subset posterior draws. First, define the combined empirical mean and covariance matrix

for η draws using the subset posterior empirical means and covariance matrices in (4) as

µη =
1

J

J∑
j=1

µjη, Ση =
1

J

J∑
j=1

Σjη

Second, center and scale the jth subset posterior draws of η as

q
(l)
jη = Σ−1

jη (η
(l)
j − µjη)

T , j = 1, ..., J ; l = 1, ..., L.

Third, rescale and recenter the η draws from all the subsets as

ηl′ = µη +Σ1/2
η q

(l)
jη , l′ = l + (j − 1)L, j = 1, .., J

to obtain l′th draws from the collaborative pseudo posterior distribution of η.

While CMC, DPMC and WASP allow combining subset posteriors of a multi-variate parameter,

quantile aggregation approach is based on combining marginals of subset posteriors separately. In

practice, the primary interest often lies in the marginal distributions of model parameters and

predicted values; that is, the posterior distribution of some one-dimensional functional η; therefore,

the uni-variate Wasserstein barycenter obtained by averaging quantiles in (3) accomplishes this

with great generality and convenient implementation. Guhaniyogi et al. (2022) show practically

9



indistinguishable performance from these approaches.

An essential aspect of the combination scheme in distributed approaches is its independence

from the chosen model, given the subset posterior MCMC samples. Importantly, the computational

efficiency of the combination steps is notable, with the primary computational burden residing in

computing each subset posterior. Assuming ample computational resources, a sufficiently large J

is selected to ensure the feasibility of subset posterior computations. However, the choice of J is

constrained from growing arbitrarily with respect to n to maintain the desired inference accuracy

from the collaborative pseudo posterior. Guhaniyogi et al. (2022, 2023) comprehensively explore

theoretical properties of distributed Bayesian approaches for correlated spatial/spatio-temporal

data, and offers a guideline to choose J as a function of n and properties of the fitted model in

each subset.

3 Conclusion

This article provides a comprehensive overview of the literature concerning three-stage dis-

tributed Bayesian approaches. It is crucial to note that the inferences drawn from the distributed

Bayesian framework are contingent upon the selection of data subsets. While both random and

stratified partitioning yield similar predictive inferences, they may diverge in terms of parameter

inference, depending on the characteristics of the true random fields. To address the sensitivity of

inference arising from data partitioning, recent efforts have introduced a data sketching approach.

Specifically, the partitioning of data has been substituted with multiple random sketches of the data.

By implementing the third stage of distributed Bayesian inference over various random sketches,

this approach helps mitigate the sensitivity of inference due to the selection of data sketches. The

author envisions that the simplicity and generality of distributed Bayesian approaches will help

solving scalability of many important inferential problems, such as to solve the serious scalability

issues in Bayesian density estimation problems, spatio-temporal point process modeling.
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