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Abstract

This article is motivated by an application, where we aim to comprehend the neural

underpinnings of general cognition, a pivotal indicator of healthy brain development, by

examining the relationship between structural task-based brain activation maps and

resting-state brain connectivity graphs in children aged 9-10 years old. While prior

studies have identified certain brain regions linked to general cognition, these find-

ings predominantly rely on analyses focusing on a single image modality, such as the

resting-state graph alone. Moreover, no structured regression technique currently exists

to assess the collective impact of both structural and graph features on general cogni-

tion while preserving linkage between their topology. To address this gap, this article

focuses on developing a regression model with a scalar outcome and two sets of imaging

features obtained at different scales: (a) a graph-valued feature with “labelled” nodes

at a coarse scale, quantifying interconnections between nodes in the form of a brain

connectome graph from resting state functional magnetic resonance imaging (fMRI);

and (b) structural features at a finer scale nested within each graph node in the form

of task-based brain activation maps. We introduce a novel flexible Bayesian regres-

sion framework that harnesses the relational information of nodes in the graph-valued
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feature and the nested architecture between graph and structural features through

a novel joint prior structure on coefficients. We refer to the proposed framework as

Bayesian Multi-Object Feature Regression (BMFR). The framework enables inference

on significant nodes in the graph predictive of the outcome, coefficients for features

at both scales, and predictive inference for the outcome, each accompanied by precise

characterization of uncertainty. The implementation utilizes an efficient Markov Chain

Monte Carlo algorithm. Results from simulations showcase the framework’s excellent

performance in terms of influential node inference, regression coefficient estimation,

and outcome prediction, outperforming popular competitors such as high-dimensional

regression approaches, tree-based models, and deep neural networks. Application of

BMFR to the multi-modal imaging data identifies two parieto-frontal resting state net-

works and constituent structural regions activated during a working memory task that

provide new evidence to support existing theories of neuronal integration.

Key Words: Bayesian inference; brain connectome; functional magnetic resonance imaging;

graph features; multi-modal imaging; structural features; spike and slab prior.

1 Introduction

Aided by technological advances, the last decade has witnessed an extraordinary growth in

the collection of structured data from multiple modalities to investigate a scientific question

of importance in neuroscience (Sui et al., 2012; Hagler et al., 2019; Wakeman and Hen-

son, 2015; Zhang and Shi, 2020), biology (Graw et al., 2021; Kang et al., 2022), and social

sciences (Guhaniyogi and Rodriguez, 2020; Zhang et al., 2022). Viewing the collection of

data from each modality as multiple objects, the successful integration of multi-object data

produces a sum of information greater than the individual parts, but this integration can

be difficult due to the complexity induced through different topological structure of the ob-

jects. This is the case in our motivating multi-modal brain imaging study which seeks to

understand the neural underpinnings of general cognition in children aged 9-10 years old as a

function of structural task-based brain activation maps and resting state brain connectivity

graphs. General cognition, also called the g-factor, is considered a critical transdiagnostic

domain that informs diagnosis for several developmental and mental disorders including de-
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pression, attention-deficit/hyperactivity disorder, and schizophrenia (Morris and Cuthbert,

2012). Despite the importance of the g-factor in characterizing cognitive disorders, the as-

sociation between general cognition and both brain structure and function is still not well

understood (Pat et al., 2022) due to the challenge of integrating information from multiple

brain images which fundamentally exist at different scales as detailed below.

Most models have focused on modeling association between general cognition and brain

structure or function via a single brain imaging modality at a time and implicate the parieto-

frontal pathways as fundamental in explaining variation among individuals (Deary et al.,

2010). Specifically, association of general cognition has been studied separately with grey

matter content via MRI (Narr et al., 2007), resting state functional connectivity via fMRI

(Dubois et al., 2018; Pamplona et al., 2015; Sripada et al., 2020), and task-based activation

via fMRI (Gray et al., 2003; Waiter et al., 2009). Recently, several works have begun to

examine the relationship between general cognition and multiple brain imaging modalities

simultaneously and have demonstrated improved prediction of general cognition as well as

detection of informative interactions between imaging modalities (Jiang et al., 2020; Rasero

et al., 2021; Pat et al., 2022). Except for Zhao et al. (2023), most multimodal approaches

have focused on prediction of general cognition from multiple brain images via vectorization

of multimodal images (Jiang et al., 2020; Sui et al., 2020) or ad hoc model stacking (Rasero

et al., 2021; Pat et al., 2022). Specifically, maintenance of the structured information shared

between task-based fMRI and resting state connectivity graphs is vital to better understand

how focal activation and resting state brain connectivity jointly describe human cognition

(Thiele et al., 2022; Cole et al., 2016; Rabini et al., 2023). Yet, there has been no exploration

of this relationship utilizing a structured regression approach that investigates the connection

between general cognition and both localized task-based brain activation and subject-specific

connectivity graphs.

Motivated by this gap, this article focuses on developing a novel regression framework

to predict a general cognition score from two types of features obtained at two scales: (a)

a graph-valued feature over a set of common nodes quantifying interconnection between

nodes at the coarse scale; and (b) a multivariate feature nested within each node of the

graph at the fine scale, henceforth referred to as structural features. Specifically, for each
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subject, at the coarse scale, a graph is constructed, representing the interconnections between

functional networks in the brain. This graph is estimated using resting state functional

magnetic resonance imaging (rs-fMRI). At the fine scale, structural information in the human

brain is obtained over brain regions of interest (ROIs), using task-based fMRI (t-fMRI) data

which measures focal task-based brain activation in each ROI. The graphical and structural

images are collected and aligned such that spatially indexed ROIs are nested within nodes

of predefined brain functional networks. Figure 1 shows an illustration of the two sets of

features with a toy example. In this figure, a graph is constructed over six nodes representing

six functional networks. In each node of the graph, fine scale features over ROIs are observed.

The goal of the proposed regression framework is to effectively model the relationship between

the outcome variable and these two types of features. By incorporating information from

both the graph-object and the nested structural features, the framework aims to capture the

complex interplay between features at different scales to provide valuable insights into the

regression relationship and nodes significantly related to the outcome, each with uncertainty.

Bayesian framework is a naturally suitable tool for modeling the linkage between features

and the topology of individual features through careful construction of prior distributions.

This framework also has the added advantage of incorporating uncertainty in inference and

prediction, crucial for neuroimaging studies characterized by limited sample sizes, low signal-

to-noise ratios, and high dimensionality. However, the endeavor to construct hierarchical

Bayesian models with structured prior distributions is significantly limited with multi-object

features. Particularly, there is a lack of prior work addressing the challenges with a graph-

valued feature and structural features nested within each graph node.

To achieve this objective, we introduce a Bayesian multi-object feature regression (BMFR)

framework. This framework constructs a novel joint prior distribution on graphical and

structural coefficients, incorporating three constraints arising from the topological structure

of graphs and the nested architecture of the features: the nesting constraint, edge constraint,

and transitivity effect (refer to Section 2.2.2 for details). The joint prior formulation serves

to complement and reinforce information from both structural and graphical features. This

enhances the reliability and accuracy of inference on both sets of coefficients. Addition-

ally, it facilitates the identification of influential nodes related to the outcome and enables
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Figure 1: Data diagram: The figure shows a toy example to represent features at two different
scales. It shows a graph-valued feature at the coarse scale over six nodes representing six
functional networks. At each node, it shows a vector of fine-scale features, observed over
ROIs nested within that particular node. In this picture the graph is represented by a
symmetric matrix M i, and fine-scale feature vectors at six different nodes are represented
by z

(1)
i , ..., z

(6)
i . The two sets of features are jointly regressed on the outcome.
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accurate predictive inference for the outcome variable. BMFR demonstrates superior empir-

ical performance compared to ordinary high-dimensional regressions, tree-based non-linear

regression methods and deep neural network approaches.

Rest of the manuscript proceeds as follows. Section 1.1 briefly encapsulates our contri-

bution, while a detailed comparisons of the existing literature with our proposed approach is

provided in Section 1.2. Section 3 describes the novel prior framework to draw inference and

prediction with the structural and graphical features, and Section 4 discusses posterior com-

putation of the proposed model. Empirical investigations with data generated under various

simulation settings are reported in Section 5. Section 6 analyzes the multi-modal imaging

dataset, offering predictive inference and scientific findings on functional subnetworks in the

brain predictive of a cognitive outcome. Finally, Section 7 summarizes the idea laid out in

this article and highlights some of the extensions of our model to be explored in the near

future.

1.1 Our Contribution

The main contribution of this article are listed as follows.

1. We present a innovative prior formulation for structural and graphical coefficients that

reflect properties of our multi-modal brain imaging data. This proposed prior leverages

information regarding the connectivity among graph nodes, as well as the topological

characteristic that structural features are nested within a graph node, while conduct-

ing inference on the model. The linkage between the structural and graphical features,

specifically the former being nested within the nodes of the graph, is enforced in the

prior development through several constraints that reflect neuroscience domain knowl-

edge, known as the edge constraint, nesting constraint, and transitivity effect. For

more details on these constraints, please refer to Section ??.

2. The proposed model and joint prior formulation achieve efficient computation and

accurate predictive inference of the outcome. Additionally, the framework facilitates

estimation of regression coefficients and identification of influential nodes. Further-

more, our proposed method incorporates uncertainty in identifying influential nodes

and generates well-calibrated interval estimates for the structural and graphical co-
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efficients. Previous works exist on Bayesian model-based identification of influential

nodes, focusing solely on a graph-valued feature (Guha and Rodriguez, 2021, 2023).

However, none of these prior methods focus on regression with graph-valued features

and structural features at its nodes to deliver inference on graph nodes, as demon-

strated in our approach. As a result, the prior structure enables novel questions to

be asked and answered in the context of modeling general cognition as a function of

multiple brain images.

3. BMFR is robust to the challenges of real data, and provide domain-relevant insights

for real data analysis. In particular, BMFR facilitates the analysis and interpretation

of multi-modal brain imaging data to better understand the neural underpinning of

human cognition, reinforcing and expanding previous findings that link task-based

activation and resting state connectivity in the parieto-frontal regions of the brain

with fluid intelligence.

1.2 Related Work

In regressions involving object features, a common approach is to restructure the objects

to fit them into an ordinary high-dimensional regression framework. As an example, in an

object-data regression with a graph-valued feature, popular approaches often select a few

summary measures from the graph (Bullmore and Sporns, 2009) or vectorize the graph object

into a high-dimensional collection of edge weights (Craddock et al., 2009; Richiardi et al.,

2011). Downstream inference is then drawn utilizing the latest developments in the ordinary

high-dimensional regression architecture (Tibshirani, 1996; Park and Casella, 2008; Carvalho

et al., 2010), tree-based regression approaches (Sparapani et al., 2021; Denison et al., 1998)

or deep neural network models (Polson and Sokolov, 2018; Dinh and Ho, 2020). However,

restructuring the features in this manner may not adequately capture either the topology of

the graph-valued feature, or the nested architecture of graph-valued and structural features

to draw downstream inference, potentially compromising the inferential accuracy and inter-

pretability of the regression model. Additionally, there is a growing field of study in graph

representation learning, which concentrates on effectively encoding high-dimensional sparse

graph-structured data into low-dimensional dense vectors (Choi et al., 2017; Chen et al.,

7



2020). While much of this research is focused on unsupervised learning, it is feasible to

regress the low-dimensional features derived from a graph against an outcome. However, it

is important to note that after the extraction of low-dimensional features, it is not clear how

to estimate influential nodes that are significantly linked to the outcome while also providing

uncertainty estimates.

Of late, there are developments of scalar-on-object regression approaches exploiting the

special structure of the object features. This include regression with functional features

(Goldsmith et al., 2014; Li et al., 2015; Feng et al., 2019; Kang et al., 2018; Huang et al.,

2013), a tensor-valued feature (Zhou et al., 2013; Guhaniyogi et al., 2017; Guhaniyogi, 2017;

Fan et al., 2019) and a graph-valued feature (Guha and Rodriguez, 2021, 2023). These

methods establish the importance of exploiting the topology of object-type features for bet-

ter inference and prediction, but the referenced works mainly concentrate on developing

regressions with a single object feature. Direct application of these approaches is inadequate

in our setting since model and prior development should ideally consider the nested structure

of the structural features within the nodes of the graph feature. By neglecting the structure

of an object feature and the cross information between two types of features, model-based

inference with multi-source data can suffer from various drawbacks, including lower detection

power and sensitivity of results to noise (Calhoun and Sui, 2016).

There is an emerging literature on regression with multi-object features and a scalar out-

come, mostly motivated from multi-modal imaging data applications, which is distinct from

our approach in terms of modeling and inferential objectives. To this end, Zhao et al. (2023)

model general fluid intelligence in children from multiple structurally indexed images using

a multi-resolution approach that incorporates spatial information to capture main effects

from individual images and interactions among images to predict the outcome. In another

vein, Xue et al. (2018) proposes regression on disease status on low-frequency fluctuation

(fALFF) from resting-state fMRI scans, voxel based morphometry (VBM) from T1-weighted

MRI scans, and fractional anisotropy (FA) from DTI scans. In the same vein Li and Li (2021)

develops a factor analysis-based linear regression model, and Dai and Li (2021) extends this

framework to account for non-linear association between a scalar response and multi-modal

predictors. There is also an active and emerging literature on imaging genetics (Peng et al.,
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2016; Du et al., 2018) where imaging features as well as genetic features are used to predict

an outcome. While these regression approaches exploit the linkages among multiple object

features, they do not specifically address our methodological needs to incorporate graphical

features and structural features at graph nodes to draw simultaneous inference on coefficients,

influential network nodes, and prediction as we aim to do in our study. Furthermore, our

proposed approach offers uncertainty estimation in all these inference, which is particularly

crucial in clinical applications where sample sizes are often limited.

2 General cognition in children: case study

This article considers a clinical application derived from multimodal imaging studies

conducted in children aged 9-10 years from the Adolescent Brain Cognitive Development

(ABCD) study, the largest study on brain development in children and adolescents in the

United States (Casey et al., 2018). Our interest lies in characterizing the association be-

tween general cognition (Flynn, 2007; Pat et al., 2022), a measure of cognitive ability that

spans tasks such as language, memory, and mental flexibility, and multiple brain images

as described in Section 1. Specifically, we consider structural and graph images of focal

task-based functional activity and resting state connectivity, respectively.

Clinical images and language evaluation:

We utilized the ABCD Study 5.0 Tabulated Release Data (http://dx.doi.org/10.

15154/8873-zj65) focusing specifically on baseline imaging and cognitive measures data

collected on a random subsample of 395 children aged 9-10 years old collected form a single

study site. Imaging data is collected and processed from the following imaging modalities

as described thoroughly in (Hagler et al., 2019): task-based fMRI (t-fMRI) data which

measures focal task-based brain activation; and task-free resting state fMRI (rs-fMRI) to

measure brain activation via neuronal oxygen consumption in subjects at rest.

All images are registered to the Montreal Neurological Institute (MNI) template space.

Working memory was measured using t-fMRI activation (Figure 1a) from the ‘N-back’ task

via the 2-back vs 0-back linear contrast as described in Hagler et al. (2019) for 145 spatially-

indexed ROIs defined by the Destrieux atlas (Destrieux et al., 2010). Resting state functional

fMRI data was collected for 333 cortical-surface ROIs defined by the Gordon atlas (Gordon
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Figure 2: Schematic of the multi-object brain imaging data structure for a sample subject. (a) Structural
image encoding ROI-level task activation, (b) Gordon functional atlas parcellation of the brain into functional
networks, (c) Graph image obtained by calculating the pairwise Pearson correlation Z-score for the average
within and between networks. Grey circles and lines connect (a) structural and (c) graphical information from
images via the (b) parcellated atlas. Thus, the atlas provides an organizing hierarchy that links together
structural information (task activation) at the ROI-level with graphical information indexed by pairs of
functional networks.

et al., 2017) and ROIs were subsequently grouped into 11 predefined functional networks ac-

cording to Gordon et al. (2017) (auditory, cingulo-opercular, cingulo parietal, default mode,

dorsal attention, frontoparietal, none, retrosplenial temporal, salience, sensorimotor-hand,

sensorimotor-mouth, ventral attention and visual networks). A symmetric adjacency ma-

trix is obtained as in Hagler et al. (2019) by considering rows and columns of this matrix

corresponding to different networks and entries corresponding to the Z-scores obtained by

Fisher Z-transforming the Pearson correlation the average correlation of each unique pair-

wise combination of ROIs in one network versus another (Figure 1c). Given the lack of

spatial alignment between the Destrieux and Gordon atlases, each ROI in the Destrieux atlas

was nested within the predefined Gordon subnetworks by minimizing the Euclidean distance

between the centroid of a given Destrieux ROI and corresponding centroids for the Gordon

atlas ROIs such that images across modalities and subjects can be directly compared and

each Destrieux ROI is nested in functionally defined Gordon subnetwork (Figure 1b). The

choice of brain atlas is an important decision in the analysis pipeline as it impacts subsequent

results and interpretations.

We focus our analysis of general cognition, a measure of general intelligencce. Using a
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Bayesian principal components analysis with varimax rotation on the ABCD Study data,

Thompson et al. (2019) determined that general cognition as a latent factor is best measured

by three items from the ABCD NIH Toolbox of cognition measures: picture vocabulary item,

list sort working memory item, and oral reading test item. Therefore, we take an average

of the items via their raw measures standardized to mean zero and standard deviation one

to form a measure of general cognition. One of our primary goals is to extend the study

of general cognition to consider multi-modal image data spanning the whole brain to better

understand how structural and graphical changes simultaneously impact general cognition.

We apply our proposed regression framework to regress general cognition scores on so-

phisticated multi-modal images, specifically task-based activation maps which capture local

brain activity during a working memory task, and fMRI brain connectivity graphs which

capture resting state brain connectivity among a priori functional networks. Importantly,

the ROI-level structural imaging features are nested within the graph nodes represented

by functional networks, leading to regression of a scalar outcome with features at multiple

scales. The next section describes the regression framework to achieve these scientific goals.

3 Bayesian Regression with Graphical and Structural

Features at Multiple Scales

This section details out the model development and prior formulation, including the hyper-

parameter specification.

3.1 Model Development

For the ith subject, we observe a continuous scalar response yi ∈ R, a vector of ordinary

unstructured features xi = (xi,1, ..., xi,P )T and two sets of structured features at two scales:

(a) a graph-valued feature at a coarse scale; and (b) features at a fine scale in every node

of the graph. Let the graph-valued feature Gi, for all subjects, be defined on the same set

of labelled nodes/vertices N = {N1, ...,NV }, with the number of nodes |N | = V . The

graph-valued feature Gi is expressed in the form of a V × V adjacency matrix M i ∈ RV×V

over the common set of nodes N , with the (v, v′)-th entry mi,[vv′] signifying the strength of

association between the nodes Nv and Nv′ , where v, v′ = 1, ..., V . This paper specifically
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focuses on graphs that contain no self relationship, i.e., mi,[vv] ≡ 0, and are undirected

(mi,[vv′] = mi,[v′v]). Additionally, z
(1)
i , ...,z

(V )
i are features of dimensions N1, ..., NV , observed

at the V graph nodes N1, ...,NV , respectively. These features observed at a fine scale are

referred to as structural features throughout the article. Exploiting the nested architecture

between graph and structural features is instrumental for drawing meaningful inference and

efficient computation as detailed in the upcoming methodological development.

For i = 1, .., n, we propose a regression relationship between the outcome, structural and

graphical features after accounting for ordinary unstructured features as below,

yi = β0 + βTxxi +
V∑
v=1

βTv z
(v)
i + 〈M i,Λ〉/2 + εi, εi ∼ N(0, τ 2), (1)

where βx represents coefficients of the ordinary unstructured features in RP , and τ 2 is the

variance of the observational error. Here βv is the coefficient of dimension Nv × 1 cor-

responding to the structural features observed at a fine scale in the node Nv, and 〈·, ·〉

is the Frobenius inner product between two matrices. Similar to M i, the V × V coeffi-

cient matrix Λ = ((λ[vv′])) is assumed to be symmetric with zero diagonal entries, so that

〈M i,Λ〉 = 2
∑

1≤v<v′≤V mi,[vv′]λ[vv′]. Such a simplification is useful in drawing connection

between the multi-modal regression model (1) to a linear regression framework given by,

yi = β0 + βTxxi +
V∑
v=1

βTv z
(v)
i +

∑
1≤v<v′≤V

mi,[vv′]λ[vv′] + εi, εi ∼ N(0, τ 2). (2)

(2) allows linking the information on node level data from the two types of features to draw

inference on nodes influential in predicting the outcome through prior construction on model

coefficients as described in the next section.

3.2 Prior Structure

This section introduces a novel joint prior for the structural and graphical coefficients,

considering the nested architecture between the two sets of features at different scales. The

joint prior construction on graphical and structural coefficients is aimed to achieve several

objectives simultaneously: (a) inference on nodes N significantly related to the outcome; (b)
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Figure 3: Plate diagram of the hierarchical model for Bayesian Multi-object Feature Re-
gression (BMFR). The picture demonstrates hierarchical model with three graph nodes Nv,
Nu and Nw. The three nodes have activation indicators ηv, ηu and ηw, respectively. The
structural coefficient vectors corresponding to the three nodes are given by βv, βu and βw,
respectively.
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inference on structural and graphical coefficients; (c) predictive inference of the outcome;

(d) exploiting the nested architecture between the structural and graphical coefficients; and

(e) guaranteeing efficient computation of the posterior for the proposed prior. We set out to

accomplish (a)-(e) by envisioning (2) as a high-dimensional regression problem and formulate

structured variable selection prior distributions on {βv : v = 1, ..., V } and Λ after accounting

for a few science-driven constraints imposed by the nested architecture of the features at two

scales.

1. Edge constraint : If either node Nv or node Nv′ is not influential in predicting the

response, the corresponding edge coefficient λ[vv′] that represents the edge between Nv
and Nv′ is deemed unimportant in predicting the outcome. This constraint ensures

that only edges between influential nodes contribute significantly to the prediction

of the outcome and focuses the analysis of general cognition on connectivity among

distributed brain functional networks (Dubois et al., 2018).

2. Nesting constraint : In line with the nested architecture of the structural and graphi-

cal coefficients, if node Nv is not influential in predicting the outcome, the structural

features z(v) observed at a fine-scale within node Nv do not have any effect on the

prediction of the response. This constraint respects the hierarchical relationship be-

tween the graphical and structural features, ensuring that fine-scale features at the

non-influential nodes do not contribute to the prediction. The nesting constraint re-

flects the assumption that human cognition can be understood by leveraging the the

interplay of focal task-based activation and resting state brain connectivity (Thiele

et al., 2022; Cole et al., 2016; Rabini et al., 2023).

3. Transitivity effects : If both the edge betweenNv andNv′ and the edge betweenNv′ and

Nv′′ are influential in predicting the outcome, the edge between Nv and Nv′′ is likely to

be influential. This constraint captures the transitivity effects within the graph, where

the influence of an edge between two nodes extends to the indirect connection between

other nodes (Hoff, 2005). It helps identify influential edges based on the presence of

influential neighboring edges. The property of transitivity reflects the assumption of

small-world network structure which is a popular model for neural organization that
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achieves the simultaneous demands of network integration and segregation (Rubinov

and Sporns, 2010; Bassett and Bullmore, 2006; Pamplona et al., 2015).

The constraints introduce additional structure and dependencies among the coefficients that

cannot be captured by an ordinary variable selection prior (Carvalho et al., 2010; Park and

Casella, 2008) on βv and λ[vv′] to draw inference on influential nodes in N .

We propose a prior construction that exploits ideas from both discrete and continuous

mixture variable selection priors to address our inferential goals (a)-(e) while incorporating

the constraints 1-3. To achieve this, we introduce binary indicator variables η1, ..., ηV ∈ {0, 1}

that signify the importance of the V nodes in predicting the outcome. Specifically, ηv = 0

indicates that the vth node Nv has no effect on the response from all features. The graph

edge coefficient λ[vv′] is then endowed with a variable selection prior given by

λ[vv′]|α[vv′], σλ, τ
ind.∼

 N(0, τ 2σ2
λα

2
[vv′]), if ηv = ηv′ = 1

δ0, o.w.,
σλ ∼ C+(0, 1), α[vv′]

ind.∼ C+(0, 1),

(3)

where δ0 corresponds to the Dirac-delta function, α[vv′] is the local parameter corresponding

to the edge between Nv and Nv′ , σλ is the global parameter for the graph coefficient, and

C+(0, 1) denotes a half-Cauchy distribution. The prior construction in (3) satisfies the edge

constraint by enforcing λ[vv′] = 0 when either ηv = 0 or ηv′ = 0. The formulation by definition

imposes transitivity effects in the network coefficient Λ. Marginalizing over σλ and α[vv′] in

(3) yields a mixture distribution for λ[vv′]|τ with mixture components as Dirac-delta function

and the popular horseshoe prior (Carvalho et al., 2010). The construction offers a flexible

prior structure for precise estimation of nonzero graph edge coefficients a posteriori.

The structural coefficient vector βv = (βv,1, ..., βv,Nv)T ∈ RNv corresponding to the node

Nv is modeled using,

βv,j|θv,j, ξv, τ
ind.∼

 N(0, τ 2ξ2
vθ

2
v,j), if ηv = 1

δ0, o.w.,
θv,j

i.i.d.∼ C+(0, 1), ξv
i.i.d.∼ C+(0, 1), (4)

for j = 1, ..., Nv; v = 1, ..., V . The construction ensures βv = 0 when ηv = 0, enforcing the
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nesting constraint. Additionally, (4) induces approximate sparsity in structural coefficients

by shrinking the less influential components toward zero while retaining the true signals (Pol-

son and Scott, 2010) using the horseshoe shrinkage mechanism. Finally, the binary inclusion

indicators are assigned Bernoulli prior distribution ηv
i.i.d.∼ Ber(∆) with ∆ ∼ Beta(a∆, b∆)

to account for multiplicity correction (Scott and Berger, 2010). Notably, an estimate of

the posterior probability of the event {ηv = 1} shows the uncertainty in identifying Nv to

be influential. A posterior probability close to 1 or 0 indicates strong evidence in favor of

or against the influence of node Nv in predicting the response. The prior specification is

completed by assigning a normal prior on coefficients of βx, β0 and IG(aτ , bτ ) on the error

variance τ 2. A plate diagram of model and prior structure with only three graph nodes can

be seen in Figure 3.

4 Posterior Computation

Although summaries of the posterior distribution cannot be computed in closed form,

full conditional distributions for all the parameters are available and mostly correspond to

standard families (available in Appendix). Thus, posterior computation can proceed through

a Markov chain Monte Carlo algorithm. While a naive implementation of such an algorithm

to jointly update {βv : v = 1, .., V } and (λ[vv′] : 1 ≤ v < v′ ≤ V )T is viable for small values

of V and N1, ..., NV , it entails complexity of ∼ Q3, where Q =
∑V

v=1 Nv +V (V −1)/2, which

may lead to intractable computation for moderately large values of V and N1, ..., NV . To

address this issue, we follow the procedure outlined in Guha and Rodriguez (2021) which

allows computation at ∼ n3 complexity. Since in biomedical applications, often n is much

smaller than Q, this approach leads to substantial computational savings.

The MCMC sampler is run for 10000 iterations, with the first 5000 iterations discarded

as burn-in. All posterior inference is based on post burn-in samples. The average effective

sample size (ESS) as a fraction of the total post burn-in iterations averaged over all Λ and

βv’s for each case show fairly uncorrelated MCMC samples (see Table 1).
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Table 1: Average effective sample size as a fraction of post burn-in iterations by case for our
proposed approach Bayesian Multi-Object Feature Regression (BMFR) and the Horseshoe
competitor.

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

BMFR 0.81 0.78 0.73 0.7 0.72 0.64 0.56
(0.098) (0.078) (0.068) (0.064) (0.072) (0.054) (0.051)

Horseshoe 0.4 0.37 0.34 0.33 0.32 0.27 0.26
(0.063) (0.055) (0.052) (0.042) (0.044) (0.051) (0.045)

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

BMFR 0.47 0.61 0.48 0.34 0.31 0.35 0.35
(0.064) (0.049) (0.049) (0.034) (0.033) (0.035) (0.033)

Horseshoe 0.29 0.25 0.27 0.32 0.31 0.32 0.32
(0.045) (0.043) (0.049) (0.03) (0.02) (0.026) (0.026)

5 Simulation Studies

In this section we evaluate and compare inferential and out-of-sample predictive perfor-

mance of the proposed BMFR approach to two sets of competitors, (a) high-dimensional

linear and non-linear regressions; (b) object data regressions.

High-dimensional linear and non-linear regressions. Broadly, these competitors treat

the edges between nodes in the undirected graph featureM i as a “long vector of features” and

regress response yi on vectors mi = (mi,[vv′] : 1 ≤ v < v′ ≤ V )T and zi = (z
(1)T
i , ...,z

(V )T
i )T ,

thereby ignoring the relational nature of M i. To this end, horseshoe prior (Carvalho et al.,

2010) is employed on the regression coefficients which we refer to as “Horseshoe” and show

its convergence behavior in terms of ESS averaged over all parameters in Table 1. A fre-

quentist high dimensional regression competitor has also been constructed by adopting a

penalized optimization framework with the minimax concave penalty (MCP) on the feature

coefficients (Zhang, 2010). MCP is implemented using the ncvreg (Breheny and Huang,

2011) package in R, with the penalty parameter of MCP chosen through ten-fold cross vali-

dation technique. Additionally, non-linear relationship between the outcome and vectorized

high-dimensional feature is accommodated in the competitors by fitting Bayesian additive

regression tree (BART) model and deep neural network (NN) model. BART and NN models

are fitted using the BART and neuralnet packages in R, respectively, and we allow variable

selection within the BART implementation. NN is fitted in two layers, with the size of the
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first layer being the sum of number of structural features and the number of edges, given by

V (V − 1)/2 +
∑V

v=1Nv. The size of the second layer is chosen to be half of the first layer.

Horseshoe, MCP and BART are compared with BMFR in terms of inferential and predictive

performance. In contrast, NN is employed only to assess predictive performance of BMFR.

Object data regressions. This approach fits a regression framework as in (1) with horse-

shoe prior on each component of βv and Bayesian network lasso (BNL) prior (Guha and

Rodriguez, 2021) on the coefficient Λ. Unlike ordinary high-dimensional competitors, this

approach accounts for graph topology of M i in the regression, but construction of priors

on βv and Λ separately (as opposed to jointly in BMFR) does not adequately leverage

interconnections between the two sets of features.

5.1 Data Generation

In all our simulations, we generate outcome from the following model,

yi = β0,t +
V∑
v=1

βTv,tz
(v)
i + 〈M i,Λt〉/2 + εi, εi ∼ N(0, τ 2

t ), (5)

where the subscript t indicates the true data generating parameters. We set the number

of graph nodes to be equal to V = 20 and the sample size n = 150 in all simulations.

The number of fine scale features nested in each graph node is taken to be equal, i.e.,

N1 = · · · = NV = N in all simulations. We present simulation cases by varying N , as

discussed later.

Simulating true coefficients Λt and βv,t. To simulate the true coefficients Λt and βv,t,

binary variables η1,t, ..., ηV,t
i.i.d.∼ Ber(∆t) are generated, and ηv,t = 1 indicates that the v-th

node is influential in predicting the outcome. Since (1 − ∆t) is the probability of a region

not being “influential,” it is referred to as the node sparsity parameter. The coefficient

corresponding to the edge connecting the v-th and v′-th node is drawn from the following

distribution,

λ[vv′],t
ind.∼

 N(1, 1), if ηv,t = ηv′,t = 1

δ0, o.w.,
λ[vv′],t = λ[v′v],t; v < v′. (6)
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Table 2: It presents the different simulation cases. Here ∆t is the probability of a region
being active and N is the number of cells per region. Cases 1-12 represent dense graphical
features with all edges present and referred to as Scenario 1, where as Cases 13 and 14 use
graphical features generated from different stochastic block models. Thus these two cases
are referred to as Scenario 2.

Cases Node sparsity Features per node Cases Node sparsity Features per node
(1−∆t) (N) (1−∆t) (N)

Case 1 0.9 10 Case 8 0.8 25
Case 2 0.9 15 Case 9 0.7 10
Case 3 0.9 20 Case 10 0.7 15
Case 4 0.9 25 Case 11 0.7 20
Case 5 0.8 10 Case 12 0.7 25
Case 6 0.8 15 Case 13 0.7 20
Case 7 0.8 20 Case 14 0.7 20

(6) ensures Edge constraint whereby any edge connecting nodeNv in the graph-valued feature

is un-influential if Nv is un-influential, i.e., ηv,t = 0 ⇒ λ[vv′],t = 0 for all v′ ∈ {1, .., V }.

Corresponding to each un-influential node Nv, the N × 1 dimensional structural feature

coefficient βv,t is set at 0. When ηv,t = 1, indicating that node Nv is influential, only a

proportion υt = 0.4 of the elements in the structural feature vector z
(v)
i are considered to be

influentially related to the outcome. Thus, only υt proportion of βv,t is non-zero, and these

non-zero values are simulated from a N(1,1) distribution.

Simulation cases. For a comprehensive simulation study, we consider 14 cases after vary-

ing N and the node sparsity parameter (1−∆t), as summarized in Table 2. These 14 cases

include two different scenarios to simulate the graph-valued feature, as we describe below.

Scenario 1: In Cases 1–12, the upper triangular entries of the undirected graph-valued fea-

ture M i is simulated from a standard normal distribution, resulting in a dense graph-valued

predictor (i.e., there is an edge between any pair of nodes). These 12 cases are together

referred to as Scenario 1.

Scenario 2: To further assess the performance of competitors, the graph feature is gener-

ated following a stochastic block-model in Cases 13 and 14. In Case 13, we assume that each

graph has three local clusters with high within-cluster and low between-cluster connectivity.

More specifically, the matrices M i consist of three symmetric block diagonal matrices of
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dimensions 6× 6, 7× 7, and 7× 7, respectively. Elements in these matrices are drawn from

N(j, j2) where j ∈ {1, 2, 3}, for the j-th block diagonal. The off-diagonal blocks are highly

sparse, with very few non-sparse elements denoting connections between nodes in different

clusters, randomly chosen from N(0, 1). In Case 14, each graph feature consists of 3 block

diagonal matrices of dimensions 6×6, 7×7, and 7×7. As before, the elements in these matri-

ces have been drawn from N(j, j2) where j ∈ {1, 2, 3}, for the j-th block diagonal. However,

in this case the elements in the off-diagonal matrices have been drawn from N(2, 1), N(3, 1),

and N(4, 1). These two cases are referred to as Scenario 2 to differentiate them from the

cases in Scenario 1. The error variance τ 2
t is fixed at 1 under all simulation settings.

5.1.1 Identification of Influential Regions

Table 3 presents the true positive rate (TPR) and false positive rate (FPR) of correctly

identifying the truly influential nodes by the five competing models, averaged over 100 sim-

ulations. While both BMFR and BNL approaches allow identification of influential nodes

from the node-specific latent binary indicators in a principled Bayesian manner as described

in Section 4, ordinary MCP, BART and Horseshoe are not designed for influential node

identification. To compare the performance of ordinary MCP, BART, and Horseshoe with

BMFR in terms of identifying influential nodes, a post-processing strategy is devised. For

MCP, a node Nv is considered influential if at least one of the structural features nested in

Nv or one of the edges connected to Nv in the graph-valued feature is found to be statistically

significant in the regression. In other words, Nv is identified as influential if any element of

βv, {λ[vv′] : v′ > v}, or {λ[v′v] : v′ < v} (referring to (2)) is estimated to be non-zero. The

same technique is applied to identify influential nodes in BART. For the ordinary Horseshoe

prior, a post-processing step is applied following the approach in Guha and Rodriguez (2021)

to distinguish between signal features and noise features. Specifically, we consider Nv to be

influential if at least one of the coefficients in βv, {λ[vv′] : v′ > v}, or {λ[v′v] : v′ < v} is esti-

mated to be non-zero in the post-processing step of Horseshoe. It is important to note that

the neural network (NN) model is not designed to explicitly draw inference on influential

nodes.

The TPR values close to 1 and FPR values close to 0 in most cases (see Table 3), except
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Table 3: True Positive Rates (TPR) and False Positive Rates (FPR) for identifying the truly
influential nodes for BMFR, BNL, Horseshoe (HS), BART and MCP are presented under
all simulation cases. Highest TPR and lowest FPR are boldfaced in each case. Results are
averaged over 100 replications.

Node Sparsity (1−∆t) = 0.9, Scenario 1

True Positive Rate False Positive Rate

Cases N BMFR HS MCP BART BNL BMFR HS MCP BART BNL

1 10 1.00 1.00 0.87 0.13 0.06 0.00 0.82 0.02 0.02 0.06
2 15 0.99 1.00 0.84 0.07 0.03 0.00 0.86 0.03 0.00 0.04
3 20 1.00 1.00 0.87 0.03 0.11 0.00 0.84 0.04 0.01 0.04
4 25 0.99 1.00 0.79 0.05 0.09 0.00 0.95 0.04 0.01 0.05

Node Sparsity (1−∆t) = 0.8, Scenario 1

True Positive Rate False Positive Rate

Cases N BMFR HS MCP BART BNL BMFR HS MCP BART BNL

5 10 1.00 1.00 0.99 0.02 0.07 0.00 0.80 0.04 0.00 0.06
6 15 0.99 1.00 0.99 0.04 0.05 0.00 0.87 0.04 0.01 0.06
7 20 0.99 1.00 0.99 0.08 0.06 0.01 0.84 0.03 0.02 0.08
8 25 1.00 1.00 0.91 0.05 0.10 0.10 0.86 0.08 0.03 0.04

Node Sparsity (1−∆t) = 0.7, Scenario 1

True Positive Rate False Positive Rate

Cases N BMFR HS MCP BART BNL BMFR HS MCP BART BNL

9 10 1.00 1.00 0.91 0.03 0.07 0.00 0.82 0.03 0.02 0.06
10 15 1.00 1.00 0.88 0.04 0.08 0.00 0.77 0.02 0.02 0.04
11 20 1.00 1.00 0.79 0.05 0.09 0.14 0.90 0.08 0.03 0.04
12 25 1.00 1.00 0.54 0.05 0.05 0.74 0.98 0.03 0.03 0.04

Node Sparsity (1−∆t) = 0.7, Scenario 2

True Positive Rate False Positive Rate

Cases N BMFR HS MCP BART BNL BMFR HS MCP BART BNL

13 20 1.00 1.00 0.79 0.03 0.01 0.14 0.87 0.08 0.01 0.00
14 20 0.99 1.00 0.83 0.02 0.01 0.11 0.90 0.19 0.01 0.02

for Case 12, indicate that BMFR achieves highly accurate detection of influential nodes.

MCP is the second best performer, also exhibiting high TPR and low FPR in scenarios

with high sparsity. In contrast, Horseshoe shows high TPR and FPR, identifying almost

all nodes as influential. BNL and BART are least competitive in terms of influential node

identification. As sparsity decreases and the number of nodes V increases, the performance

of all models tends to deteriorate, with case 12 demonstrating high FPR for BMFR and low

TPR for MCP. However, it is worth noting that BMFR provides uncertainty estimates in
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identifying Nv as influential through P (ηv = 1|Data), which is not offered by its competitors.

The performance does not seem to be significantly affected by the different structures of the

network predictor in Scenario 1 and Scenario 2.

5.1.2 Predictive Inference

The predictive inference of different models is compared using n∗ = 100 out-of-sample

observations. Point prediction is evaluated using the mean squared prediction error (MSPE),

which measures the average squared difference between the true and predicted outcome.

Uncertainty quantification is assessed through the coverage and length of 95% predictive

intervals. Table 4 provides the results of predictive inference for all competing models.

Table 4: Mean Squared Prediction Error (MSPE) are presented for all the competitors under
14 different cases, with the lowest MSPE in each case in boldfaced. Additionally, average
coverage and average length of 95% predictive intervals for BMFR, Horseshoe (HS) and BNL
are presented for all simulation scenarios. Results are averaged over 100 replications.

Node Sparsity (1−∆t) = 0.9, Scenario 1

MSPE Avg. Coverage Avg. length

Cases N BMFR HS MCP BART NN BNL BMFR HS BNL BMFR HS BNL

1 10 1.12 1.14 1.14 3.90 85.30 2.918 0.72 0.88 0.909 1.38 2.62 5.697
2 15 1.20 1.24 1.22 6.09 109.35 2.676 0.77 0.92 0.941 1.71 3.17 6.248
3 20 1.21 1.38 1.29 9.87 157.22 2.832 0.81 0.95 0.962 2.03 3.89 6.984
4 25 1.45 1.52 1.44 18.58 148.36 3.298 0.99 0.99 0.970 0.02 0.17 7.740

Node Sparsity (1−∆t) = 0.8, Scenario 1

MSPE Avg. Coverage Avg. length

Cases N BMFR HS MCP BART NN BNL BMFR HS BNL BMFR HS BNL

5 10 1.24 1.49 1.43 13.84 149.34 11.545 0.74 0.87 0.913 2.25 4.00 11.841
6 15 1.42 1.89 1.68 32.23 193.45 11.903 0.79 0.92 0.961 2.83 5.07 14.312
7 20 1.61 2.16 2.32 59.65 159.78 16.702 0.84 0.96 0.969 3.47 6.08 17.855
8 25 1.99 3.12 7.03 81.98 220.75 20.652 0.78 0.91 0.978 4.57 7.80 21.388

Node Sparsity (1−∆t) = 0.7, Scenario 1

MSPE Avg. Coverage Avg. length

Cases N BMFR HS MCP BART NN BNL BMFR HS BNL BMFR HS BNL

9 10 1.60 2.26 2.01 62.64 241.59 27.538 0.81 0.92 0.920 3.18 5.74 18.915
10 15 1.97 3.37 8.55 98.04 248.33 32.869 0.88 0.96 0.959 4.27 8.22 23.797
11 20 6.01 22.74 52.69 147.02 284.98 50.923 0.92 0.96 0.971 7.64 18.20 30.384
12 25 39.29 68.21 89.46 187.21 308.31 76.176 0.95 0.92 0.967 21.79 28.03 36.520

Node Sparsity (1−∆t) = 0.7, Scenario 2

MSPE Avg. Coverage Avg. length

Cases N BMFR HS MCP BART NN BNL BMFR HS BNL BMFR HS BNL

13 20 6.11 24.09 49.28 52.23 141.98 82.37 0.92 0.94 0.964 7.61 17.92 37.260
14 20 6.72 27.28 53.35 737.76 2114.94 75.417 0.92 0.94 0.967 7.17 18.44 36.593

In cases 1-4 with high sparsity, BMFR, MCP and Horseshoe exhibit similar performance
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in terms of MSPE. BMFR starts outperforming its competitors as sparsity decreases, i.e., in

cases 5-14, and the performance gap widens as sparsity decreases and N increases. Digging

a bit further, we observe that with moderate degree of sparsity and larger values of N , both

Horseshoe and MCP over-shrink nonzero coefficients in order to estimate zero coefficients,

which leads to poor performance of these methods. In terms of predictive uncertainty,

BMFR exhibits slight under-coverage when sparsity is high and N is small, but the coverage

improves and becomes close to the nominal level as sparsity decreases and N increases.

Horseshoe, on the other hand, offers slightly better coverage than BMFR, but at the cost

of larger predictive intervals, which are almost twice the size of those in BMFR. BNL and

BART show higher MSPE compared to BMFR in all simulation cases. NN performs the

worst among the competitors, likely due to its inability to fully exploit the nested structure

between the two sets of features. Overall, BMFR appears to be a much better performer

than its competitors in terms of prediction under a variety of simulation settings.

5.1.3 Estimation of Parameters Λt and βv,t

True regression coefficients cannot be estimated from BART and NN since they fit non-

linear regression functions. On the other hand, Horseshoe and MCP emerge as two best

performing competitors of BMFR in Sections 5.1.1 and 5.1.2 vastly outperforming BNL.

Hence, we show comparison with these two competitors in terms of estimating regression co-

efficients. Figures 4 and 5 present point estimation along with uncertainty quantification in

estimating Λt and βt = (βT1,t, ...,β
T
V,t)

T , respectively. The point estimation of every competi-

tor is assessed using mean squared errors (MSE) of estimating the coefficients corresponding

to the network- and the structural features. Since both Λ and Λt are symmetric with zero

diagonals, the MSE for the graphical coefficient is given by 2
∑

v<v′(λ[vv′],t−λ̂[vv′])
2/V (V −1),

where λ̂[vv′] is the point estimate of λ[vv′]. Similarly, we compute and present MSE for the

structural coefficients given by
∑V

v=1 ||βv,t − β̂v||2/NV , with β̂v representing the point es-

timate of βv. The point estimates are taken to be the posterior medians for the Bayesian

competitors.

Both Figures 4 and 5 show that BMFR outperforms Horseshoe and MCP in all 14 cases.

When both N is moderately large and true sparsity level is moderate, i.e. in cases 11,
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Figure 4: Estimation of Θ: Figures present mean squared error, coverage and length of 95%
credible interval for Θ.
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Figure 5: Estimation of B: Figures present mean squared error, coverage and length of 95%
credible interval for B.
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12, 13, 14, we perform overwhelmingly better than both competitors due to exploiting the

graphical information and linkage between the graphical and the structural predictor. Since

an overwhelming number of coefficients are set to zero in cases 1-8, we modestly outperform

our competitors. This might be attributed to the fact that very high degree of sparsity in

the truly influential nodes leads to high degree to sparsity in the regression coefficients in

the truth, which is conducive for ordinary high dimensional regression which treats graph

edges as one set of predictors. As we decrease sparsity or increase N keeping sample size

fixed, the performance of all competitors deteriorate significantly, with BMFR continuing to

show superior performance over the other two.

While both Bayesian competitors BMFR and Horseshoe provide automatic characteriza-

tion of uncertainty, the resulting confidence intervals may not have the correct frequentist

coverage in high dimensional regressions (Szabó et al., 2015). Thus, in order to assess uncer-

tainty in estimating Θt from Bayesian competitors, we evaluate the length and coverage of

95% credible intervals averaged across coefficients in Θ and present them in Figure 4 for all

cases. Similar quantities are presented for B in Figure 5. Both figures show close to nominal

coverage of BMFR under all cases. As sparsity decreases and N increases, the uncertainty

associated with BMFR seems to be more which results in an increase in the length of the

credible intervals. Importantly, under all cases, BMFR enjoys similar coverage as Horseshoe

with much narrower credible intervals. This improved precision in uncertainty quantification

can be attributed to BMFR’s incorporation of the nested arrangement between structural

and graph features, which allows for a more informed and precise estimation of the regression

coefficients.

6 Analysis of General Cognition in Children in ABCD

Study

In this section, we analyze the data on general cognition of children extracted from

the ABCD study to address the scientific questions outlined in Section 2. During our data

analysis, we perform regression of the cognitive score y on both the graph-valued feature and

the structural features for a total of n = 395 subjects. The graph-valued feature for each
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subject is denoted by a symmetric matrix M ∈ R11×11, which estimates the interconnections

between functional networks in the brain. Additionally, the structural features, represented

by {z(v)
i ∈ RNv}, capture the structural information of the brain across ROIs obtained using

task-based functional magnetic resonance imaging (t-fMRI). The dimension of the structural

features Nv represents the number of ROIs in the vth functional network. They vary between

2 to 28 ROIs.

Figure 6 illustrates the plot of activation indicators ηv’s across 5000 post-burn-in itera-

tions corresponding to the 11 functional networks. In each specific iteration, a black vertical

line corresponding to the vth network indicates that particular network is influentially related

to the outcome for that particular iteration. Among the 11 networks, the sensorimotor-hand

and cingulo-parietal networks are included in 72% and 59% of the iterations, respectively,

suggesting the estimated posterior probabilities of them being influentially related to the

response are 0.72 and 0.59, respectively. The retrosplenial temporal network has a posterior

probability of 0.30 of being included, while the remaining functional networks show poste-

rior probabilities of inclusion close to 0. The connection between two identified functional

networks have been previously identified as correlates of human intelligence (Hearne et al.,

2016; Pat et al., 2022). The findings from BMFR also generally agree with the dominant

neuroscience paradigm for explaining variation in human intelligence which focuses on the

parieto-frontal regions of the brain (Deary et al., 2010). Crucially, BMFR enables quan-

tifying uncertainty in the identification of networks by offering posterior probabilities of

networks being selected. In contrast, the only other method capable of identifying influen-

tial functional networks (using only the graph-valued feature), BNL, estimates very similar

probabilities (between 45% and 49%) to every functional network, making it challenging to

derive any meaningful insights.

BMFR also facilitates inference on regions of interest (ROIs) within influential networks.

To illustrate this, Figure 8 displays the 95% posterior credible intervals (CIs) and medians

for the coefficients of structural features within the sensorimotor-hand and cingulo-parietal

networks. Within the sensorimotor-hand network, four ROIs exhibit significant associations

with the cognitive score, with one ROI demonstrating a significantly positive effect. Con-

versely, within the cingulo-parietal network, two ROIs display significant associations with
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Figure 6: Activation indicators ηv’s corresponding to 11 functional networks for 5000 post
burn-in iterations. A vertical line in an iteration indicates the corresponding network being
active in that iteration.

the cognitive score, one of which demonstrates a significantly negative effect.The association

of task-based activation with general cognition in the two identified ROIs reinforces previous

findings that link regions in the cingulo-parietal network (Vazquez-Trejo et al., 2022) and

posterior cingulate cortex (Leech and Sharp, 2014) with working memory. With respect to

general cognition, BMFR estimates a positive association between activation in the right

middle-posterior part of the cingulate gyrus and sulcus and a negative association between

activation in the right pericallosal sulcus though it is difficult to situate the direction of these

associations within the literature which presents mixed findings (Leech and Sharp, 2014). It

is noteworthy that the remaining ROIs in both networks have coefficients with 95% CIs en-

compassing zero, indicating them being un-influential in the current sample though a larger

sample may provide greater precision.

To assess the out-of-sample predictive performance of the competing methods, we con-

ducted a leave-one-out analysis and calculated the mean squared prediction error (MSPE),

along with the coverage and length of 95% predictive intervals. Regarding point estimation,

BMFR notably outperforms other alternatives in terms of MSPE, with BART exhibiting

the second-best performance (see Table 5). In terms of predictive uncertainty, BMFR ex-
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Figure 7: Posterior median and 95% CIs for structural coefficients βv’s for ROIs within
influential networks.

hibits slight under-coverage with narrower CIs compared to BNL and HS. BART provides

the shortest CIs, albeit at the expense of significant under-coverage. MCP and NN are not

designed to offer predictive uncertainty.

6.1 Sensitivity to Hyper-parameter Choice

Our hierarchical Bayesian modeling framework notably involves two sets of user-dependent

hyperparameters: those for the prior distribution of ηv’s denoted by a∆ and b∆, and those

for the prior distribution of error variance, denoted by aτ and bτ . While our analysis sets

these parameters as a∆ = b∆ = 1 and aτ = bτ = 1, we explore the posterior probability

of each functional network being influential by fitting BMFR with different combinations of

aτ , bτ , a∆, b∆, as depicted in Table 6. As shown in Table 6, the posterior probabilities of func-

tional networks being active remain robust despite changes in hyperparameters. Moreover,

predictive inference for BMFR appears to be robust (see Table 6), with minimal perturba-

tion in MSPE, coverage and length of 95% PIs observed across different combinations of
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Figure 8: Posterior median and 95% CIs for structural coefficients βv’s for ROIs within
influential networks.

hyper-parameters.

7 Conclusion and Future Work

This article presents a novel hierarchical Bayesian regression framework designed for a

scalar outcome and features obtained across multiple scales: (a) a graph-valued feature at

a coarse scale, and (b) fine-scale structural features at each node in the graph. We intro-

duce a novel prior distribution on structural and feature coefficients jointly, considering the

nested relationship between these two sets of features. This framework enables simultane-

ous inference on influential graph nodes related to the outcome, feature coefficients, and

predictive inference on the outcome, while incorporating uncertainty in all aspects of the

inference. Compared to conventional high-dimensional regression methods, tree-based non-

linear regression approaches, and neural networks that overlook graph topology or the nested

structure between feature sets, our method demonstrates superior performance. It also out-

performs regression techniques that leverage the graph topology but fail to effectively exploit

the nested architecture between feature sets to predict the outcome. Our approach provides
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Table 5: Mean squared prediction error (MSPE) for the competing methods are presented
where point prediction is computed using leave-one-out analysis. We also compute 95% cred-
ible intervals for Bayesian competitors using leave-one-out analysis and present the length
and coverage of 95% CIs for all competitors.

Competitors MSPE Coverage Length

BMFR 0.495 0.942 2.608
BNL 0.562 0.965 3.034
HS 0.564 0.949 2.815
MCP 0.622 - -
NN 6.698 - -
BART 0.550 0.762 1.687

Table 6: Sensitivity analysis for the hyper-parameters. We show estimated posterior prob-
ability of a functional network being active with different combinations of hyper-parameters.

a∆ = b∆ = 0.1 a∆ = b∆ = 1 a∆ = b∆ = 10

aτ = bτ = 0.1 1 10 0.1 1 10 0.1 1 10

sensorimotor-hand 0.73 0.72 0.70 0.75 0.72 0.74 0.77 0.74 0.73
auditory 0.18 0.18 0.18 0.18 0.19 0.18 0.17 0.18 0.18
cingulo-parietal 0.59 0.59 0.57 0.61 0.59 0.60 0.62 0.59 0.59
retrosplenial temporal 0.27 0.28 0.27 0.29 0.30 0.28 0.32 0.32 0.31
max(Other) 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.08 0.08

MSPE 0.464 0.464 0.464 0.465 0.464 0.465 0.465 0.465 0.466
Interval Coverage 0.946 0.947 0.953 0.945 0.946 0.952 0.943 0.944 0.950
Interval Length 2.579 2.586 2.627 2.570 2.574 2.617 2.571 2.576 2.609
R2 0.228 0.228 0.228 0.226 0.227 0.227 0.226 0.225 0.224
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valuable insights into brain ROIs and functional networks critical for understanding general

cognition in children.

Our proposed approach captures linear associations between the two sets of features

at different scales and the outcome. We foresee an immediate extension of our approach

to capture nonlinear associations between the outcome and features, facilitating inference

on influential nodes, regression functions, and predictive inference on the outcome. Such

methods are likely to be computationally intensive, prompting us to focus on developing

approximate Bayesian algorithms to achieve efficient inference.
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A Full Conditionals

Bayesian estimation of the model is performed through Gibbs sampling which cycles

through the following steps.

1. β0 and βx jointly from the full conditional p(β0,βx|τ 2,β1, . . . ,βv,Λ,y).

2. For each v ∈ 1, . . . , V sample jointly ηv, βv and Λ−v,v from:

p(ηv,Λ−v,v,βv|Λ−v,−v, {βv′}v′ 6=v,∆, τ 2,A2
−v,v, σ

2
λ,θv, ξ

2
v , β0,βx,y)

= p(Λ−v,v,βv|Λ−v,−v, {βv′}v′ 6=v, τ 2,A2
−v,v, σ

2
λ,θv, ξ

2
v , β0,βx,y

× p(ηv|Λ−v,−v, {βv′}v′ 6=v,∆, τ 2,A2
−v,v, σ

2
λ,θv, ξ

2
v , β0,βx,y).

3. Sample ∆ from the full conditional: p(∆|η).

4. Sample τ 2 from the full conditional: p(τ 2|β0,βx, {βv}Vv=1,Λ,A
2, σ2

λ,θ1, . . . ,θV , ξ
2, y).

5. Sample the horseshoe parameters (A2, σ2
λ) and (θ1, . . . ,θV , ξ

2) for Λ and β1, . . . ,βV ,

repectively, using the latent variable approach as in (Makalic and Schmidt, ????).

Next we describe all the relevant conditional distributions in steps 1-5. Note that:

(β0,β
′
x)
′|τ 2, {βv}Vv=1,Λ,y ∼ N(β̂X , τ

2(X ′X)−1)

where

β̂X = (X ′X)−1X ′rx,

X = (1n, (x
′
1, . . . , x

′
n)′),
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rx = (rx,1, . . . , rx,n)′,

rx,i = yi −
V∑
v=1

βTv z
(v)
i − 〈M i,Λ〉/2.

To sample Λ−v,v and βv set them to 0 if ηv = 0, if ηv = 1 there are 2 cases. In case 1, if

ηv′ = 0 ∀v′, then set Λ−v,v = 0 and sample βv from:

βv|Λ−v,−v, {βv′}v′ 6=v, τ 2,θv, ξ
2
v , β0,βx,y ∼ N(b̂v, τ

2(Z ′vZv +L)−1)

where

b̂v = (Z ′vZv +Lv)
−1Z ′vrv

Zv = (z
(v)
1

′
, . . . ,z(v)

n

′
)′,

Lv = diag(ξ2
vθ

2
v),

rv = (rv,i, . . . , rv,n)′,

rv,i = yi − β0 − βTxxi −
∑
v′ 6=v

βTv′z
(v′)
i − 〈M−v,−v,i,Λ−v,−v〉/2

In case 2, if ∃v′ such that ηv′ 6= 0, then sample Λ−v,v[η−v = 1] and βv from:

Λ−v,v[η−v = 1],βv|Λ−v,−v, {βv′}v′ 6=v, τ 2,A−v,v, σ
2
λ,θv, ξ

2
v , β0,βx,y ∼ N(b̂v, τ

2(Z ′vZv +L)−1)

where

b̂v = (Z ′vZv +Lv)
−1Z ′vrv

Zv = [(M ′
−v,v,1[η−v = 1], . . . ,M ′

−v,v,n[η−v = 1])′, (z
(v)
1

′
, . . . ,z(v)

n

′
)′],

Lv = diag(A−v,v[η−v = 1], ξ2
vθ

2
v),

rv = (rv,i, . . . , rv,n)′,

rv,i = yi − β0 − βTxxi −
∑
v′ 6=v

βTv′z
(v′)
i − 〈M−v,−v,i,Λ−v,−v〉/2
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And the indicators functions ηv sampled from:

ηv|Λ−v,−v, {βv′}v′ 6=v,∆, τ 2,A2
−v,v, σ

2
λ,θv, ξ

2
v , β0,βx,y ∼ Bernoulli(∆̂v)

, where

∆̂v = ov/(1 + ov),

ov = exp

(
1

2
C

)
∆

1−∆
,

C =
b̂
′
v(Z

′
vZv +Lv)b̂v
τ 2

− |Z ′vZv +Lv| − |Lv|

with b̂v, Zv and Lv according to the cases 1 and 2. For ∆, sample from the full conditional:

∆|η ∼ Beta(â∆, b̂∆),

where

â∆ = a∆ +
V∑
v=1

ηv,

b̂∆ = b∆ + V −
V∑
v=1

ηv

Finally, sample τ 2 from the full conditional τ 2 from the full conditional:

p(τ 2|β0,βx, {βv}Vv=1,Λ,A
2, σ2

λ,θ1, . . . ,θV , ξ
2, y ∼ Gamma(âτ , b̂τ ),

where

âτ = aτ +
1

2

(
n+

V∑
v=1

Nv +
Q(Q− 1)

2

)
,

b̂τ = bτ +
1

2

(
r′r +

V∑
v=1

Nv∑
j=1

β2
v,j

2θv,jξ2
v

+
V∑
v=1

∑
v′ 6=v

λ2
v,v′

α2
v,v′σ

2
λ

)
,

r = (r1, . . . , rn)′,

ri = yi − β0 − βTxxi −
V∑
v=1

βTv z
(v)
i − 〈M i,Λ〉/2
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