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Abstract

This article focuses on drawing computationally-efficient predictive inference from Gaussian
process (GP) regressions with a large number of features when the response is conditionally
independent of the features given the projection to a noisy low dimensional manifold. Bayesian
estimation of the regression relationship using Markov Chain Monte Carlo and subsequent pre-
dictive inference is computationally prohibitive and may lead to inferential inaccuracies since
accurate variable selection is essentially impossible in such high-dimensional GP regressions. As
an alternative, this article proposes a strategy to sketch the high-dimensional feature vector with
a carefully constructed sketching matrix, before fitting a GP with the scalar outcome and the
sketched feature vector to draw predictive inference. The analysis is performed in parallel with
many different sketching matrices and smoothing parameters in different processors, and the
predictive inferences are combined using Bayesian predictive stacking. Since posterior predic-
tive distribution in each processor is analytically tractable, the algorithm allows bypassing the
robustness issues due to convergence and mixing of MCMC chains, leading to fast implementa-
tion with very large number of features. Simulation studies show superior performance of the
proposed approach with a wide variety of competitors. The approach outperforms competitors
in drawing point prediction with predictive uncertainties of outdoor air pollution from satellite
images.

Keywords: Bayesian predictive stacking; feature sketching; Gaussian processes; high-dimensional
features; manifold regression; posterior consistency.

1 Introduction

We focus on the problem of drawing predictive inference of a random variable from a high-

dimensional feature vector using “sketching” of the feature vector when it truly lies on a low-
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dimensional noisy unknown manifold. In recent years, there has been a growing literature on “data

sketching,” which involves sketching or compressing the original data before analysis (Halko et al.,

2011; Mahoney et al., 2011; Woodruff et al., 2014; Guhaniyogi and Dunson, 2015, 2016). However,

our approach differs from the existing data sketching literature in two key aspects. Firstly, while

most data sketching approaches aim to reduce the number of data samples, our approach is distinct

in that it maintains the same number of samples but instead reduces the dimensionality of the fea-

ture vector. Secondly, the majority of research in data sketching focuses on performance evaluation

of ordinary and high-dimensional penalized regression methods with sketched data (Zhang et al.,

2013; Dobriban and Liu, 2018; Drineas et al., 2011; Ahfock et al., 2017; Huang, 2018), with only

a few recent articles considering application of data sketching in Bayesian high-dimensional linear

and non-linear regressions (Guhaniyogi and Scheffler, 2021; Guhaniyogi and Dunson, 2015, 2016).

In contrast, our approach leverages the benefits of data sketching to deliver scalable predictive

inference in non-parametric regressions with a limited sample size and a large number of features,

when the features lie on a noisy low-dimensional manifold.

We consider a regression framework with an outcome y ∈ Y ⊆ R and a feature vector x =

(x1, ..., xp)
T when x resides on a noisy unknown manifold, i.e., x = ϕ(o)+η, where o = (o1, ..., od)

T

is d-dimensional co-ordinates for a manifold O ⊆ Rp, ϕ(·) : Rd → Rp is a mapping function such

that ϕ(o) ∈ O and η is p-dimensional noise. Often the complex dependence between y and x is

encoded via co-ordinates of the low-dimensional manifold, i.e.,

y = h(o) + ϵ, (1)

where h is a complex function encoding the true relationship between response and co-ordinates of

the manifold and ϵ is the error. Since the manifold O is unobserved, the co-ordinates o is typically

unknown. Hence, the common practice is to estimate complex dependencies between y and x
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through a non-linear regression model given by,

y = f(x) + ϵ, (2)

where f is an unknown regression function and ϵ is the residual. When dealing with high-

dimensional features, Gaussian process (GP) priors with an automatic relevance determination

(ARD) kernel are commonly used to estimate the underlying function f with sufficient sparsity as-

sumption in the relationship between y and x (Zhao et al., 2018; Jensen et al., 2021). The estimated

f is then employed to predict the response variable. However, when the number of features reaches

the order of a few thousand, estimation of f with GP-ARD framework is often inaccurate, leading to

unsatisfactory predictive inference. This article proposes an alternative approach that exclusively

focuses on drawing predictive inference on the response variable y, including both point prediction

and uncertainty estimation, using GP regression. We review below a list of existing strategies to

draw predictive inference on y in non-linear regressions before introducing our approach.

In the literature, a significant line of work follows a two-stage approach for dealing with high-

dimensional features in non-linear manifold regression tasks. In this approach, the first stage

involves constructing a lower-dimensional representation of the high-dimensional features using

manifold learning techniques. Some popularly employed parsimonious manifold learning algorithms

include Isomap (Tenenbaum et al., 2000), Diffusion Maps (Coifman and Lafon, 2006), and Laplacian

eigenmap (Belkin and Niyogi, 2003). These algorithms enable the reduction of dimensionality

while preserving the essential characteristics of the data. Additionally, there are model-based

approaches that estimate the unknown Riemannian manifold structure within the feature vector.

These methods utilize techniques such as local PCA (Weingessel and Hornik, 2000; Arias-Castro

et al., 2017) or geometric multiresolution analysis (Maggioni et al., 2016), and, more recently,

spherical basis functions (Li et al., 2022). Non-linear regression models in the second stage are

based on these projected features in lower-dimensions. However, it is important to note that such

two-stage approaches rely on learning the manifold structure embedded in the high-dimensional
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features. While this can be valuable for understanding the underlying data structure, it adds

unnecessary computational burden when the primary focus is on prediction rather than inference.

An alternative line of research focuses on estimating the unknown function f using tree-based

approaches or deep neural network methods. Tree-based approaches, such as CART (Denison et al.,

1998), BART (Chipman et al., 2010), and random forest (Breiman, 2001) are based on finding the

best splitting attribute, which can become less efficient as the number of features (p) increases.

While there is a growing literature on variable selection within tree-based methods, such as BART

(Bleich et al., 2014) and its variants (Liu et al., 2021), estimating the true regression function with

a large number of features (p of the order of thousands) can pose challenges. Deep neural networks

with variable selection architecture (Dinh and Ho, 2020) are also not ideal as they lack predictive

uncertainty and struggle to handle the high-dimensional feature space efficiently.

Bayesian modeling approaches are naturally appealing when the focus is on quantifying pre-

dictive uncertainty. To this end, the more traditional Bayesian models simultaneously learn the

mapping to the lower-dimensional subspace along with the regression function in the coordinates on

this subspace. These approaches range from Gaussian process latent variable models (GP-LVMs)

(Lawrence and Hyvärinen, 2005; Titsias and Lawrence, 2010) for probabilistic nonlinear principle

component analysis to mixture of factor models (Chen et al., 2010). However, such methods pose

daunting computational challenges with even moderately large p and sample size due to learning

the number and distribution of latent variables, as well as the mapping functions, while maintaining

identifiability restrictions.

To enhance the time efficiency of the aforementioned approaches, pre-processing steps are of-

ten employed, and two popular pre-processing methods are feature screening and projection. The

feature screening approach identifies features that exhibit the strongest marginal association with

the response variable. By selecting the features with the highest marginal association, this ap-

proach aims to reduce the dimensionality of the problem. Feature screening methods are generally

straightforward to implement, and it offers asymptotic guarantees of selecting a superset of im-

portant features (Chen et al., 2018). On the other hand, projection approaches aim to construct
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lower-dimensional feature vectors by combining the original high-dimensional features. One com-

mon method in projection approaches is to construct a few principal components (PCs) from the

original p-dimensional feature vector.

A naive implementation of the above pre-processing steps is unappealing to our scenario. For

example, in a non-parametric regression with a large number of correlated features and low signal-

to-noise ratio, it may be important to choose a conservative threshold for screening, which limits the

scope of dimension reduction at this stage. On the other hand, construction of PCs are agnostic to

the relationship between the response and the feature vector. Instead, we propose an approach that

first employs variable screening (Chen et al., 2018) with a conservative threshold to identify a large

subset of features, typically a few thousand, having the highest non-linear marginal association

with the response. After variable screening, the screened feature vector is further compressed

using a short and fat random sketching matrix (Mahoney et al., 2011; Drineas et al., 2012). This

matrix has a small number of rows (m) and entries that are independently and identically drawn

from a normal distribution. Predictive inference proceeds by fitting a non-parametric Gaussian

process (GP) regression model (Williams and Rasmussen, 2006; Gramacy, 2020) to the scalar

outcome and them-dimensional sketched feature vector after fixing values for the weakly identifiable

tuning parameters within the covariance kernel of the Gaussian processes. The posterior predictive

distribution corresponding to a choice of such tuning parameters and random sketching matrix

comes in a closed form without the need to implement MCMC sampling, so that one can obtain

the predictive distribution extremely rapidly even in problems with huge numbers of features. To

reduce the sensitivity of predictive inference to the choice of the sketching matrix and the tuning

parameters in GP regression, the model is fit with multiple different choices of the sketching matrix

and parameters. The predictive inferences obtained from such choices are then aggregated using

Bayesian predictive stacking (Yao et al., 2018) to improve accuracy and robustness.

Stacking is a model aggregation procedure to combine predictions from many different models

(Wolpert, 1992; Breiman, 1996; LeBlanc and Tibshirani, 1996). In recent years, substantial ad-

vancements have been made in Bayesian stacking methodology, with notable contributions made
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in Le and Clarke (2017); Yao et al. (2018); Pavlyshenko (2020); Yao et al. (2022a,b) and the refer-

ences therein. However, to the best of our knowledge, the application of stacking in the context of

predictive inference for high-dimensional manifold regression is currently lacking. While Bayesian

model averaging (Raftery et al., 1997) is most popularly used for aggregating predictive inference

from multiple models, it may be less suited to the stacking procedure in our settings. To see this,

assume that there are S candidate models M = {M1, ...,MS}. Bayesian model comparison typ-

ically encounter three different settings: (i) M-closed where a true data generating model exists

and is included in M; (ii) M-complete where a true model exists but is not included in M; and

(iii) M-open where we do not assume the existence of a true data generating model. Although

Bayesian model averaging has the advantage of asymptotically identifying the true data generat-

ing model in the first setting, predictive stacking has advantages in the M-complete and M-open

settings. Given that the true model may not be included in the class of fitted Gaussian process re-

gression models with randomly sketched features, predictive stacking offers substantial advantages

over model averaging.

In regressions involving high-dimensional features and a large sample size, Guhaniyogi and

Scheffler (2021) propose an approach orthogonal to ours which exploits random sketching matrices

to reduce the sample size rather than the number of features. A few approaches closely related to

ours develop theoretical bound on predictive accuracy when high-dimensional features are sketched

with random matrices (Guhaniyogi and Dunson, 2015, 2016; Thanei et al., 2017). These articles

tend to include random linear combinations of many unimportant features, diminishing signal in the

analysis, which results in less than satisfactory predictive performance with massive-dimensional

features. Addressing this issue, Mukhopadhyay and Dunson (2020) proposes novel constructions of

projection matrices tailored to deliver more accurate predictive inference. These approaches aim to

overcome the challenges associated with sketching high-dimensional features and improve predictive

performance. However, they primarily focus on high-dimensional parametric regression, and their

applicability to non-parametric regression tasks may require further investigation. Additionally,

these approaches address sensitivity to the choice of sketching matrices by aggregating predictive
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inference over many sketching matrices using Bayesian model averaging technique (Raftery et al.,

1997) which is less suitable for prediction than the stacking approach we employ here, as discussed

in the last paragraph.

The rest of the article proceeds as follows. Section 1.1 discusses motivating dataset on outdoor

air pollution and satellite imagery. Section 2 proposes the model and computational approach

for predictive inference in manifold regression with large number of predictors. Section 3 offers

empirical evaluation of the proposed approach along with its competitors for simulation studies.

Section 4 investigates the proposed approach in drawing predictive inference of outdoor air pollution

concentration from satellite images. Finally, Section 5 concludes the article with an eye towards

future work.

1.1 Outdoor Air Pollution Application

As a motivation for the development of our methodology, we consider the problem of predicting

outdoor air pollution concentrations across the United States. Outdoor air pollution in the U.S. is

measured using a network of ground-based monitors managed by local air quality agencies and the

U.S. Environmental Protection Agency (Environmental Protection Agency, 1996) (EPA). While the

combined network of monitors consists of thousands of locations, the spatial coverage of the network

is actually quite sparse, leaving many areas of the country without any ground-level data (Apte

et al., 2017). Many dense urban areas only contain one or two monitors, raising a question of

whether such measurements are representative of the burden experienced by all members of the

population. To address the sparsity of the network, there have been efforts to deploy low-cost

sensors across urban areas to fill the gaps. While such approaches have promise, they are still

experimental and ad hoc in nature, and the sensors themselves can sometimes introduce new

measurement problems (Heffernan et al., 2023).

Remote sensing techniques, which use satellite imagery to predict ground-level concentrations

of outdoor air pollution have the potential to address the spatial coverage problem because of

their constant monitoring of the entire planet. Traditional approaches have employed aerosol
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optical depth as a proxy for such pollutants as fine particulate matter (Paciorek et al., 2008),

or PM2.5. While the previous generation of Earth observation satellites had excellent spatial

coverage, they lacked temporal coverage, typically revisiting an area of the planet only once every

one or two weeks. In addition, older satellites tended to have lower resolution, making them

difficult to use for predicting air pollution concentrations in dense urban settings. In recent years,

there has been a revolution in the deployment of satellite constellations, where hundreds of smaller

inexpensive satellites orbit the Earth, providing constant coverage of all areas (Planet Team, 2017).

Furthermore, these satellites have much higher resolution, allowing for more detailed examination

of areas of interest.

Given the recent emergence of data from satellite constellations, there is still a question of

how best to use them for the purpose of predicting ground-level air pollution concentrations. For

this application, we focus on predicting fine particulate matter pollution (PM2.5) from multi-band

satellite images. For ground-truth information we use the EPA’s network of monitors to provide

valid PM2.5 measurements. The combination of high-resolution spatial and temporal coverage

of the entire U.S. with novel statistical prediction approaches has the potential to dramatically

increase the monitoring of outdoor air pollution and its subsequent health effects.

2 Our Approach: Stacked Gaussian Process Regression

Let Dn = {(xTi , yi) : i = 1, ..., n} be a dataset containing n observations each with a p-variate

feature xi = (xi,1, ..., xi,p)
T and a scalar-valued response yi. We assume n is moderately large and p

is large. The feature vector xi lies on an unknown noisy manifold O ⊆ Rp with d-dimensional latent

co-ordinates oi (i.e., xi = ϕ(oi) + ηi, ϕ(oi) ∈ O). We assume a nonlinear regression relationship

between yi and xi, and approximate the density of yi by sketching the high-dimensional feature

vector xi to lower-dimensions using a sketching matrix Pn as follows

yi = f(Pnxi) + ϵi, ϵi
i.i.d.∼ N(0, ξ2), (3)
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with ξ2 as the noise variance and f(·) as an unknown continuous function in the Holder class

of smoothness s. Discussion on the choice of the sketching matrix Pn ∈ Rm×p is provided in

Section 2.1.

2.1 Choice of the Sketching Matrix

The sketching matrix Pn ∈ Rm×p embeds p-dimensional features xi intom dimensions while not

throwing away excessive amounts of information. The most popular linear embedding is obtained

from the singular value decomposition (SVD) of X = [x1 : · · · : xn]T , but they are problematic

to estimate when p >> n. In contrast, random sketching matrices are often used to embed the

high-dimensional features to a random subspace, and appropriate choices of the random matrices

allow distances between samples to be approximately preserved (Li and Gu, 2017).

The direct application of sketching matrices on high-dimensional features is unappealing, as it

constructs random linear combinations of many unimportant features, diminishing the signal in the

analysis. As an alternative approach, we design a sketching matrix that constructs random linear

combinations of features with the highest marginal association with the response. To identify these

features, we perform nonparametric B-spline regression of yi onto each component of xi separately.

The order of importance of the features is determined, in descending order, by the residual sum of

squares of the marginal nonparametric regressions. Features with a residual sum of squares greater

than a user-defined threshold are considered important features related to the response. We adopt

a conservative threshold following Fan et al. (2014) to select a large superset of important features,

which allows for joint contributions of features in explaining the response.

Let I correspond to the indices of the features chosen with marginal screening and Ī be the

indices of the features screened out through this procedure, such that I ∪ Ī = {1, ..., p}. Let En

be a permutation matrix such that Enx = (xTI ,x
T
Ī )
T . We construct a matrix Rn = [Rn,1 : Rn,2]

where Rn,2 = 0m×(p−|I|) and Rn,1 is an m × |I| matrix with entries drawn independently from

N(0,1), following the literature on random sketching matrices (Baraniuk et al., 2008). The resulting

sketching matrix is given by Pn = RnEn.
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2.2 Prior, Posterior and Posterior Predictive Distributions

Following a Bayesian approach, we assign a zero-centered Gaussian process prior on the unknown

regression function f(·), denoted by f(·) ∼ GP (0, σ2δθ). Here, δθ corresponds to an exponential

correlation kernel δθ(xi,xj) = exp(−θ||xi − xj ||) involving the length-scale parameter θ. The

parameter σ2 is the signal variance parameter and || · || denotes the Euclidean norm. A significant

finding by Yang and Dunson (2016) establishes that when features xi lie on a d-dimensional manifold

O, the minimax optimal rate of n−2s/(2s+d) (adapted to the dimension of the manifold) can be

achieved in estimating f through an appropriate choice of prior distributions on θ and σ2. However,

in practical scenarios, features may not exactly lie on a manifold due to noise and data corruption,

as assumed in our setting. In such instances, the application of random compression, denoted as

Pnxi, aids in denoising the features. The de-noised compressed features Pnxi exhibit a higher

concentration around the manifold compared to the original features xi. With this enhanced

concentration, the theory presented by Yang and Dunson (2016) suggests that an appropriate

GP prior can yield excellent performance. In addition to denoising, the compression of the high-

dimensional feature vector has a major advantage in avoiding the estimation of a geodesic distance

along the unknown manifold O between any two feature vectors xi and xi′ .

In practical applications, utilizing the recommended prior distributions on θ and σ2 from Yang

and Dunson (2016) requires computationally expensive Markov Chain Monte Carlo (MCMC) sam-

pling, mainly due to the weak identifiability of θ. The posterior computation of θ typically entails

meticulous tuning, especially when dealing with high-dimensional features, imposing a significant

computational burden. This article introduces an alternative approach that enables exact predic-

tive inference from the model, entirely bypassing the MCMC algorithm in model estimation. The

details of the strategy are elaborated below.

Denote f = (f(Pnx1), ..., f(Pnxn))
T as the vector consisting of the function f evaluated at

the sketched features Pnx1,...,Pnxn and C as an n × n covariance matrix with (i, j)th entry

δθ(Pnxi,Pnxj). With y = (y1, ..., yn)
T as the response vector, a customary Bayesian hierarchi-
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cal model is constructed as

y|f , ξ2 ∼ N(f , ξ2I), (f |ξ2) ∼ N(0, ξ2ψ2C), π(ξ2) ∝ 1

ξ2
,

where we fix the length-scale parameter θ and the signal-to-noise variance ratio ψ2 = σ2

ξ2
. This en-

sures closed-form conjugate marginal posterior and posterior predictive distributions. More specif-

ically, the marginal posterior distribution of ξ2, given the projection matrix Pn, θ, ψ
2 and Dn, is

inverse gamma with parameters a = n/2 and b = yT (ψ2C+I)−1y/2. The marginal posterior distri-

bution of f , given Pn, ψ
2, θ and Dn, follows a scaled n-variate t distribution with degrees of freedom

n, location µt and scale matrix Σt, denoted by tn(µt,Σt), where µt = (I + C−1/ψ2)−1y, Σt =

(2b/n)(I+C−1/ψ2)−1. Consider prediction for the response at nnew data points with corresponding

covariates x̃1, ..., x̃nnew . Let Cnew,new and Cnew,old denote nnew×nnew and nnew×n matrices with

(i, j)th elements δθ(Pnx̃i,Pnx̃j) and δθ(Pnx̃i,Pnxj), respectively. The posterior predictive distri-

bution of the response ỹnew = (ỹ1, ..., ỹnnew)
T given x̃1, ..., x̃nnew , Pn, θ, ψ

2 and Dn, marginalizing

out (f , ξ2), follows a scaled nnew-variate t-distribution tnnew(µ̃t, Σ̃t), where

µ̃t = ψ2Cnew,old(I + ψ2C)−1y

Σ̃t = (2b/n)
[
I + ψ2Cnew,new − ψ4Cnew,old(I + ψ2C)−1CT

new,old

]
. (4)

Since the posterior predictive distribution is available in closed form, Bayesian inference can proceed

from exact posterior samples.

This tractability is only possible if the length-scale parameter θ and the signal-to-noise vari-

ance ratio ψ2 are fixed. While it is possible to estimate their full posterior distributions through

expensive Markov Chain Monte Carlo (MCMC) sampling, these parameters are inconsistently es-

timable for the general Matern class of correlation functions (Zhang, 2004) often resulting in poorer
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convergence. Therefore, for the chosen sketching matrix Pn, we obtain (θ, ψ2) such that

maxθ,ψ2f(θ, ψ2|Pn,y) ∝ maxθ,ψ2

1

|ψ2C + I|
1
2

2
n
2 Γ(n2 )

[y′(ψ2C + I)−1y]
n
2 (

√
2π)n

(5)

Our approach will conduct exact predictive inference using the closed form predictive distribution

in (4) and stack the predictive inference over different fixed values of {Pn, θ, ψ2}.

2.2.1 Stacking of Predictive Distributions

Let Mk represent the fitted model (3) with P
(k)
n , θ(k), ψ2(k) for k = 1, ...,K. While the sketching

matrix P
(k)
n is randomly generated for each k, θ(k) and ψ2(k) are obtained following equation (5)

for the choice of P
(k)
n . Employing the generalized Bayesian stacking framework proposed by Yao

et al. (2018), we implement a stacking procedure over the predictive distribution obtained from each

Mk. Let p(ỹnew|y,Mk) denote the predictive distribution under model Mk, and pt(ỹnew|y) denote

the true predictive distribution. Our objective is to determine the distribution in the convex hull

C = {
∑K

k=1wkp(·|y,Mk) : wk ∈ SK1 }, where SK1 = {w ∈ [0, 1]K :
∑K

k=1wk = 1}, that is optimal

with respect to some proper scoring function. Using the logarithmic score, which corresponds to

the KL divergence, we seek to find the vector w̃ = (w̃1, . . . , w̃K) such that

w̃ = max
w∈SK

1

1

n

n∑
i=1

log

(
K∑
k=1

wkpk,−i(yi)

)
, (6)

where y−i = (yj : j ̸= i, j = 1, ..., n)T and pk,−i(yi) = p(yi|y−i,Mk) has a closed from univariate

t-distribution with parameters µ̃
(k)
−i and Σ̃

(k)
−i obtained using the formula for posterior predictive

distribution given in equation (4). In practice, calculating the predictive densities pk,−i(yi) one

at a time is computationally expensive as the calculation of Σ̃
(k)
−i requires inverting an (n − 1) ×

(n − 1) matrix for every k = 1, ...,K and i = 1, ..., n. To avoid this, we randomly split the data

into S = 10 disjoint folds of approximately equal size, (y(1),X(1)), . . . , (y(S),X(S)), and compute

y(s)|y(1), ...,y(s−1),y(s+1), ...,y(S) for every s = 1, ..., S, which follows a multivariate t-distribution

with parameters obtained using equation (4). If the ith sample belongs to the sth fold, we will
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replace pk,−i(yi) in (6) by pk,(s)(yi), where pk,(s)(yi) represents the marginal distribution of yi from

y(s)|y(1), ...,y(s−1),y(s+1), ...,y(S). This strategy requires inverting an (n−n/S)× (n−n/S) matrix

only S times (assuming that all folds are of equal size), which leads to substantial computational

benefits. No analytical solution to this non-convex constrained optimization problem in (6) is

available, but first and second derivatives are easily obtained to construct an iterative optimizer.

The optimal distribution provides a pseudo posterior predictive distribution given by p̃(ỹnew|y) =∑K
k=1 w̃ktnnew(µ̃

(k)
t , Σ̃

(k)
t ), where µ̃

(k)
t and Σ̃

(k)
t are obtained from equation (4) by evaluating µ̃t

and Σ̃t at P
(k)
n , θ(k), ψ(k). The pseudo posterior predictive distribution is further used to draw

point prediction and 95% predictive interval to quantify predictive uncertainty. Figure 1 offers a

flowchart outlining the proposed framework.

Figure 1: Flowchart representing the Sketched Gaussian process regression framework.
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While Bayesian model averaging (BMA) is a common method for combining multiple distribu-

tions, its applicability in our context is limited for several reasons. Firstly, the fitted models (3)

with randomly sketched features are likely to deviate from the true model, placing us outside the

M-closed setting where BMA is optimal. Additionally, stacking is designed to determine weights

for optimal prediction, whereas asymptotically, BMA assigns full weight to the “best” single model

closest in KL divergence to the true model (Yao et al., 2022a). However, when the true model lies

outside the space of fitted models, it may be more advantageous to leverage multiple models in

predictive inference. Subsequent empirical experiments demonstrate stacking as a powerful tool for

drawing posterior predictive inference in our setting.

3 Simulation Study

We evaluate the performance of the proposed Sketched Gaussian Process (SkGP) regression

across various simulation scenarios, exploring different structure of the manifold (O), different fea-

ture dimensions (p) and noise levels in the features (τ2) to analyze their impact. In all simulations,

the out-of-sample predictive performance of the proposed SkGP regression is compared with that

of uncompressed Gaussian Process (GP), Bayesian Additive Regression Trees (BART) (Chipman

et al., 2010), Random Forests (RF) (Breiman, 2001), and deep neural network (NN). We also ex-

plore sketched versions of BART and RF, referred to as Sketched BART (SkBART) and Sketched

Random Forest (SkRF), respectively, where a single projection matrix is generated to sketch the

features, allowing for faster implementation. Each of these methods are applied on |I| = 1000

screened features having highest marginal association with the response. As a default in this anal-

ysis, we set m = 60. We offer detailed sensitivity analysis with varying choices of the number of

screened features |I| and the sketching dimensions m.

3.1 Simulated Data Generation

During data simulation, we explore specific scenarios where the response distribution follows

a nonlinear function of d-dimensional coordinates for a manifold O ⊆ Rp, embedded in a high-

dimensional ambient space. Two distinct choices for O and their corresponding response distribu-
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tions are simulated.

O is a swiss roll and d = 2. For the swiss roll, we sample manifold coordinates, o1 ∼ U(3π2 ,
9π
2 ),

o2 ∼ U(0, 3). A high dimensional feature x = (x1, . . . , xp) is simulated according to x1 =

o1 cos(o1) + η1, x2 = o2 + η2, x3 = o1 sin(o1) + η3, xi = ηi, i ≥ 4. The response y have a

non-linear relationship with these features and is simulated following,

y = sin(5πo1) + o22 + ϵ, ϵ ∼ N(0, 0.022), (7)

where η1, . . . , ηp ∼ N(0, τ2). Notably, x and y are conditionally independent given o1, o2 which

is the low-dimensional signal manifold. In particular, x lives on a (noise corrupted) swiss roll

embedded in a p-dimensional ambient space (see Figure 2a), but y is only a function of coordinates

along the swiss roll O.

O is a torus and d = 3. For the torus, we consider x1 = o1 + η1, x2 = o2 + η2 and x3 = o3 + η3

where o1, o2, o3 lie on a three dimensional torus with interior radius 1 and exterior radius 3 (see

Figure 2b), such that (3−
√
o21 + o22)

2+o23 = 1, and set xi = ηi for i ≥ 4. The feature noise η1, ..., ηn

are generated i.i.d. from N(0, τ2). The response is generated as,

y = o22 + sin(5πo3) + ϵ, ϵ ∼ N(0, 0.12).

The geodesic distance between two points on both a swiss roll and a torus can substantially differ

from their Euclidean distance in the ambient space Rp. The swiss roll, in particular, poses a

challenging setup for SkGP, as points on O that are close in a Euclidean sense can be quite far in

a geodesic sense.

To assess the impact of the number of features (p) and noise levels of the features (τ2) on

the performance of the competitors, various simulation scenarios are considered by varying p =

2000, 10000 and τ2 = 0.01, 0.03, 0.05, 0.1. For each of these simulation scenarios, 50 datasets are

generated, and metrics such as mean squared prediction error (MSPE), coverage, and lengths of
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95% predictive intervals (PI) are calculated across all replicates. All simulations set the sample size

n = 100 and the number of predicted samples nnew = 100.

(a) (b)

Figure 2: Manifolds embedded in noisy ambient dimensions

3.2 Point prediction

Tables 1 and 2 display the MSPE averaged over 50 replications for all the competing methods

in the swiss roll and torus examples, respectively. Values in parentheses represent the standard

error of MSPE over 50 replicates.

Both Tables 1 and 2 show that incorporating randomly sketched features into the GP model

within the SkGP framework yields strong predictive performance, significantly surpassing the per-

formance of the neural network. For both p = 2000 and p = 10000, when the manifold is affected

by low noise, SkGP significantly outperforms GP, BART, and RF with unsketched features. While

SkBART emerges as the second-best performer in scenarios with very low noise in the manifold

(τ2 = 0.01), its performance declines notably with an increase in the noise level in the features.

In comparison, SkGP effectively mitigates the impact of noise in the features, but there exists a

tipping point (depending on the structure of the underlying manifold O and sample size n) where
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noise distorts the manifold excessively, causing SkGP to perform similarly to other competitors.

This is observed in the MSPE values corresponding to τ2 = 0.1. Among the sketched competitors,

SkRF exhibits notably inferior performance compared to both SkGP and SkBART in all simulation

examples. While theoretically the performance of SkGP should remain similar for both p = 2000

and p = 10000 when all features lie exactly on a low-dimensional manifold, in practice, we observe

a significant decline in the performance of SkGP with an increase in p. This is attributed to the

substantial impact of noise corruption on the manifold, influencing predictive performance.

Swiss Roll Noise
0.01 0.03 0.05 0.1

SkGP 0.96 (0.39) 1.27 (0.53) 1.74 (0.431) 3.26 (0.61)
GP 1.28 (1.03) 1.75 (1.31) 2.49 (1.12) 4.81 (0.85)
BART 2.31 (0.57) 2.28 (0.49) 2.35 (0.49) 2.57 (0.66)

p = 2000 SkBART 0.91 (0.37) 1.62 (0.51) 2.63 (0.90) 5.17 (1.07)
RF 6.92 (0.84) 6.87 (0.87) 6.92 (0.91) 6.97 (0.86)
SkRF 0.99 (0.56) 2.05 (0.85) 3.28 (0.91) 5.84 (0.97)
NN 3.52 (0.61) 6.66 (0.93) 7.41 (1.13) 8.47 (1.08)

SkGP 1.64 (0.48) 2.55 (0.48) 3.57 (0.57) 4.54 (0.91)
GP 5.19 (1.00) 5.65 (1.00) 6.16 (0.99) 7.08 (0.84)
BART 4.17 (1.12) 4.07 (0.85) 4.33 (1.06) 4.37 (0.84)

p = 10,000 SkBART 2.38 (0.99) 5.33 (0.96) 6.34 (0.86) 7.31 (0.87)
RF 7.32 (0.84) 7.30 (0.89) 7.32 (0.95) 7.35 (0.88)
SkRF 3.57 (0.86) 5.72 (0.96) 6.66 (0.90) 7.46 (0.88)
NN 7.32 (1.17) 8.88 (1.58) 10.15 (1.43) 10.80 (1.77)

Table 1: Averaged Mean squared Prediction Error (MSPE) over 50 replications are shown for the
competing models in swiss roll example. Standard errors are presented within parenthesis.

3.3 Predictive Uncertainty

To evaluate quality of predictive uncertainty, we calculate the coverage and length of 95%

predictive intervals (PI) for SkGP and other competitors. While frequentist methods, like SkRF and

RF, do not inherently provide coverage probabilities with point estimates, we employ a two-stage

plug-in approach for them: (i) estimate the regression function in the first stage, and (ii) construct

95% PI based on the normal distribution centered on the predictive mean from the regression model,

with variance equal to the estimated variance in the residuals. Coverage probability boxplots over

50 replications for all simulation cases in the swiss roll example and torus example are presented in
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Torus Noise
0.01 0.03 0.05 0.1

SkGP 0.153 (0.036) 0.281 (0.072) 0.426 (0.108) 0.884 (0.127)
GP 0.210 (0.081) 0.308 (0.085) 0.468 (0.104) 0.817 (0.119)
BART 0.932 (0.132) 0.992 (0.137) 0.970 (0.137) 0.916 (0.152)

p = 2000 SkBART 0.201 (0.084) 0.368 (0.092) 0.645 (0.151) 0.990 (0.139)
RF 0.957 (0.132) 1.01 (0.124) 0.984 (0.124) 0.937 (0.132)
SkRF 0.210 (0.091) 0.417 (0.103) 0.641 (0.132) 0.896 (0.127)
NN 0.547 (0.139) 0.881 (0.122) 0.977 (0.086) 1.082 (0.130)

SkGP 0.196 (0.048) 0.503 (0.103) 0.908 (0.121) 0.968 (0.136)
GP 0.237 (0.077) 0.649 (0.110) 0.991 (0.129) 0.956 (0.132)
BART 0.981 (0.129) 1.04 (0.128) 1.01 (0.129) 0.958 (0.132)

p = 10,000 SkBART 0.228 (0.096) 0.897 (0.152) 1.01 (0.130) 0.995 (0.136)
RF 0.976 (0.136) 1.03 (0.128) 1.00 (0.125) 0.953 (0.129)
SkRF 0.328 (0.102) 0.79 (0.139) 0.941 (0.131) 0.975 (0.131)
NN 0.919 (0.114) 1.010 (0.117) 1.053 (0.125) 1.094 (0.118)

Table 2: Averaged Mean squared Prediction Error (MSPE) over 50 replications are shown for the
competing models in torus example. Standard errors are presented within parenthesis.

Figures 3 and 4, respectively. Figure 5 displays the median lengths of the 95% PI for all competitors

for all simulation cases in both the swiss roll and torus examples.

The results indicate that in all simulation scenarios, the coverage of 95% predictive intervals (PI)

for SkGP is close to the nominal level. Although the intervals tend to widen with both increasing

noise in the manifold (i.e., higher τ2) and an increase in the number of features p, the effect is

less pronounced with p compared to τ2. Both BART and SkBART exhibit poor coverage, with

significantly narrower PIs. RF and SkRF show undercoverage (around 80% coverage) and wider PIs

than SkGP. In the swiss roll example, the coverage of 95% PI for GP is similar to that of SkGP, but

the intervals from GP are approximately twice as wide as those from SkGP. In the torus example,

GP and SkGP perform similarly for p = 2000. However, when p = 10000, SkGP demonstrates

much narrower predictive intervals than GP, with a similar coverage, as the noise increases in the

manifold. Overall, the results suggest that SkGP is more precise in terms of predictive uncertainty

and robust compared to its competitors concerning the noise in the manifold.
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Swiss Roll: p = 2000
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Swiss Roll: p = 10, 000
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Figure 3: Coverage of 95% predictive interval for Swiss Roll Simulations

Torus: p = 2000
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Figure 4: Coverage of 95% predictive interval for Torus Simulations
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Figure 5: Length of 95% predictive intervals for all competitors in all simulation settings.

3.4 Computation Time

The main objective in developing SkGP was to improve computational scalability in large

p settings. For a specific choice of Pn, θ and ψ2, the computation time for SkGP is primarily

influenced by two factors: (a) computing the inverse of an n × n matrix; and (b) multiplying an

m×|I| matrix with an |I|×n matrix. Steps (a) and (b) entail computational complexities of order

n3 and mn|I|, respectively. Since the posterior predictive distribution is available in closed forms,

these computations are only needed once for a specific choice of Pn, θ and ψ2. We will parallelize

the computation across various choices of Pn, θ, ψ
2 on different CPUs. The combination step using

stacking requires inverting S matrices each of dimension (n−n/S)×(n−n/S), incurring a complexity

of the order S(n− n/S)3. Since the focus of this article is on moderate n, all computational steps

are extremely efficient leading to rapid computation of SkGP.

Figure 6a shows the computation times when the number of features increase and sketching

dimension is held fixed (m = 60). Computation times for non-sketched tree based methods increase

linearly with the number of features, while computation time for sketched methods remain constant,
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as they only depend on the number of screened features I. Figure 6b shows the computation times as

the sketching dimension is increased while the original number of screened features is held constant

(p = 1000). Considering that the non-sketched tree based methods are not dependent on sketching

dimension m, their computation times remain constant. The computation times for the sketched

methods increase linearly with sketching dimension. Importantly, SkGP achieves computation

time comparable to frequentist approaches, yet being able to allow principled Bayesian predictive

inference.
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Figure 6: The left panel shows the computation time for competitors by fixing the sketching
dimension (m), while varying the number of features. The right panel shows the computation time
for competitors by fixing the number of screened features |I| = 1000, while varying m.

3.5 Sensitivity to the choice of m and |I|

We present investigation into the choice of the number of features |I| included through highest

marginal association with the response and the dimension of the sketching matrix m applied to

this |I|-dimensional feature vector. Figure 7 illustrates the MSPE values for the swiss roll example

with varying numbers of included features. Considering the small true dimensions of the swiss roll

manifold and the fact that the response is related to x only through the manifold in the swiss

roll example, the inclusion of more redundant features in the regression leads to a performance

loss, as evidenced by the increasing MSPE values. However, this decline in performance is more
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pronounced when the swiss roll is affected by noise with higher variance. This aligns with the fact

that the accuracy of estimating the regression function depends solely on the intrinsic dimension

of the swiss roll and is unaffected by the number of screened features when the features lie on

a manifold. When the noise variance is low, resulting in features that approximately lie on the

swiss roll, the performance does not change significantly with variations in the number of screened

features.
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Figure 7: We show the number of included features through the marginal association analysis vis-
a-vis predictive accuracy. The plots are presented for the swiss roll example.

1
2

3
4

5
6

7

Sketching Dimension

M
S

P
E

5 10 20 30 40 50 100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 8: Distribution of MSPE as sketching dimension increases

Figure 8 illustrates the impact of the sketching dimension m on the performance of SkGP.
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The figure indicates that as the sketching dimension m increases, MSPE decreases up to a certain

point, contingent on the sample size and the structure of the manifold, after which it starts in-

creasing again. This observation is reasonable as, with a low-dimensional manifold O, increasing

the sketching dimension m introduces redundant randomly sketched features to the model, leading

to a natural decline in performance. In practice, we observed that a sketching dimension of around

m ∼ 50 works well for a diverse range of simulation examples when the intrinsic dimensionality d

of the manifold is low.

4 Analysis of Outdoor Air Pollution Data with Satellite Images

We will apply the proposed approach and compare it with relevant competitors in the analysis

of air quality using multi-band satellite images over time (see Section 1.1). The air quality dataset

consists of measurements taken at the EPA federal reference monitor in Las Vegas, Nevada, span-

ning almost daily measurements, sometimes with multiple readings in a day, from January 2019 to

July 2022. This results in 1667 air quality measurements, as depicted in the first row of Figure 9.

For each air quality sample, multi-band satellite images covering the location of the air quality

monitor have been acquired, including four wavelength bands: blue, green, red, and near-infrared.

The left panel of Figure 10 displays a near-infrared image on a representative day. These data were

obtained from Planet using version 1 of their PlanetScope instrument (Planet Team, 2017). No-

tably, multi-band satellite imagery data are easily obtainable, whereas the installation of monitors

measuring air quality is expensive. Hence, a key scientific goal is to predict air quality readings given

the high-dimensional multi-band images. To achieve this, at each time point, the 128×128 = 16384

pixels of the four bands of the multi-band images are vectorized and concatenated into a 65536

dimensional vector.

Although the vectorized images are p dimensional, the estimated intrinsic dimension (ID) for

the images is 4.18 with a standard error of 0.1, determined using the two-nearest neighbor (NN)

method (Facco et al., 2017). This indicates that the high-dimensional vectorized images lie on

a lower-dimensional manifold, motivating the application of our proposed SkGP approach to this
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data.

Out of 1667 samples, we select every fourth sample point for the test set, resulting in n = 1334

training samples and nnew = 333 test samples. As depicted in Figure 9, the raw air quality monitor

data displays characteristics such as non-negativity, heavy-tailed distributions, non-stationary pat-

terns, and periodic behavior. To meet the normality assumption for the error in (3), we apply a log

transformation and standardize the response, ensuring a mean of zero and a variance of one. The

second row of Figure 9 illustrates the log-transformed and standardized air quality data. Many of

the pixels in the satellite images are zero at all times and are included to buffer the image to fit into

a square. In our analysis, these zeros are removed. The columns of the image predictor matrix, with

zeros removed, have dimension 1334× 33068 for the training data, and are pixel-wise standardized

to have zero mean and unit variance. We focus our performance comparison on SkGP, BART and

SkBART, considering them as the top three competitors based on the simulation studies. While

GP is also among the top performers in the simulation studies, it is excluded from the comparison

due to its computational demands and memory intensity for this dataset. While the data has a

temporal component, our current analysis overlooks its time-varying nature. Incorporating the

temporal dynamics and capturing the evolving associations between samples is a direction we plan

to explore in future work.
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Figure 9: Daily air quality monitor data in Las Vegas. Original (top) and standardized for analysis
(bottom). Data before 2019 contains irregular gaps and is excluded.
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Original Screened

Figure 10: Near infrared image on July 2, 2019. The plot on the left shows the original image. The
right plot shows the same image with screened out pixels in white. Interestingly, the independent
screening procedure selects contiguous chunks and borders in the image.

4.1 Results

The Nonparametric Independence Screening (NIS) method outlined in (Fan et al., 2014) iden-

tifies 18640 features out of 33068 features which are marginally related to the air quality. Figure

10 displays the pixels selected by NIS in a representative multi-band image feature. Interestingly,

even though the screening procedure is independent for each pixel, contiguous patched of pixels

and boundaries around notable imaging patterns are screened out.

All competing models are implemented using n = 1334 samples, where each sample comprises air

quality measurements as responses and p = 18640 features. Predictive inferences are generated for

nnew = 333 holdout samples. Figure 11 displays the point predictions and 95% predictive intervals

for SkGP across all time points, effectively capturing the trend in air quality responses. Table 3

highlights the superior performance of SkGP compared to all competitors, as evidenced by its lowest

MSPE value. Although all competitors exhibit under-coverage, potentially due to neglecting the

time-varying nature of the data, SkGP achieves the highest coverage (close to 80%) with predictive

intervals of comparable length to BART or SkBART. Overall, these results underscore SkGP’s

effectiveness in modeling the non-linear regression relationship between air quality and multi-band

satellite images.

25



Competitor MSPE Coverage Length

SkGP 0.327 0.784 1.165
BART 0.369 0.739 1.300
SkBART 0.536 0.613 1.159

Table 3: Mean squared Prediction Error (MSPE), length and coverage of 95% predictive intervals
for the competing methods SkGP, BART and SkBART for air pollution data.
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Figure 11: Point prediction and 95% predictive interval at all test samples of air pollution data for
SkGP.

5 Conclusion and Future Work

This article is the first to present a novel Bayesian approach for predictive inference of outdoor

air quality using high-resolution satellite images, when these images lie on a low-dimensional noise-

corrupted manifold. Our methodology exploits two powerful ideas, data sketching and stacking,

to eliminate the necessity for computationally demanding manifold structure estimation, providing

accurate point predictions and predictive uncertainties. The computation of the posterior predic-

tive distribution does not rely on MCMC sampling, and our framework is amenable to parallel

implementation, resulting in substantial reductions in computation and storage costs. Empirical

findings underscore the significantly improved point prediction and predictive uncertainty of our

approach compared to existing methods. Future research directions will extend our framework

to handle large sample sizes using distributed Bayesian inference (Guhaniyogi et al., 2022, 2023),

exploring applications to non-Gaussian or multivariate outcomes, and simultaneous estimation of

the intrinsic dimensionality of the manifold alongside predictive inference for the outcome.
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