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Abstract

In environmental studies, realistic simulations are essential for understanding complex systems.

Statistical emulation with Gaussian processes (GPs) in functional data models have become a

standard tool for this purpose. Traditional centralized processing of such models requires sub-

stantial computational and storage resources, leading to emerging distributed Bayesian learning

algorithms that partition data into shards for distributed computations. However, concerns

about the sensitivity of distributed inference to shard selection arise. Instead of using data

shards, our approach employs multiple random matrices to create random linear projections,

or sketches, of the dataset. Posterior inference on functional data models is conducted using

random data sketches on various machines in parallel. These individual inferences are combined

across machines at a central server. The aggregation of inference across random matrices makes

our approach resilient to the selection of data sketches, resulting in robust distributed Bayesian

learning. An important advantage is its ability to maintain the privacy of sampling units, as

random sketches prevent the recovery of raw data. We highlight the significance of our approach

through simulation examples and showcase the performance of our approach as an emulator us-
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ing surrogates of the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) simulator—an

important simulator for government agencies.

Keywords: Data Sketching; Distributed Inference; Gaussian process; Low-rank models; Parallel

computing; SLOSH Emulator.

1 Introduction

In environmental applications, scientific analysis often relies on high-resolution spatiotemporal

physics-based simulations. For instance, various physics-based simulators for climate and weather

systems generate detailed spatial simulations based on input attributes [Petersen et al., 2019, Borge

et al., 2008]. This manuscript specifically centers on the Sea, Lake, and Overland Surges from Hur-

ricanes (SLOSH) simulator [Jelesnianski et al., 1992], developed by the National Weather Service

for operational hurricane monitoring and response. Configured with a specific area of interest,

SLOSH takes a hurricane’s track and a vector of hurricane-related attributes as input, and pro-

duces a spatio-temporal grid of storm surge, or a measure of flood depth above normal levels (e.g.,

water depth above ground level for land spatial locations). In our study, we focus on determining

the maximum flood depth at each spatial location for a given hurricane, with emphasis on flooding

of electrical substations. Our study area encompasses a part of the Delaware Bay, which separates

the southern end of New Jersey from the northern side of Delaware (see Figure 1).

To characterize the spatial variation of maximum flood depth and its relationships with input

attributes, as well as to address input uncertainty, one approach is to treat the simulator as a

black box and explore it by running it with various settings [Sacks and Welch, 1989]. However,

this approach involves conducting numerous runs of the simulator with various settings, and each

of these runs comes with substantial computational costs. As a result, the process of simulating

multiple runs is significantly expensive and often infeasible in terms of computational resources.

A solution to these challenges often involves creating a statistical surrogate model, or emulator,

for the simulator. Once trained, these emulators provide rapid predictions for new input settings,

facilitating studies of model response and parameter uncertainty. Hutchings et al. [2023] compare

four emulation methods for SLOSH, though a significant numbers of model runs were necessary for

satisfactory performance of the framework. In contrast, the focus of this work is to build a SLOSH

emulator with very few model runs while taking special care to treat the spatial association of the
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water depth level and allowing for part of data stored in different centers or servers locally.

Considering flood depth as functional data across spatial locations, Gaussian processes (GPs)

can offer a suitable framework for accounting for the correlation between outputs at different loca-

tions. GPs have gained prominence as effective predictive tools in the domain of computer experi-

ments, as they can significantly reduce the computational burden associated with running simula-

tions while maintaining flexibility and allowing for comprehensive uncertainty analysis encompass-

ing both parameter and code uncertainties [Kennedy and O’Hagan, 2001, Salter and Williamson,

2016]. In the specific context of the SLOSH simulator, corresponding to an input vector zs ∈ Rp

in the sth simulation (s = 1, ..., S), we observe noisy outputs ys(u1), ..., ys(un) ∈ R from the sim-

ulator at d-dimensional index points u1, ...,un ∈ U ⊆ Rd, respectively. These input attributes

remains same corresponding to the output at all index points, and is referred to as global attributes

throughout the article. We observe an additional q-dimensional covariates x(u1), ...,x(un) at each

index point, referred to as local attributes. With global and local attributes, one can build a GP

emulator described by the following model,

ys(ui) = zT
s γ + x(ui)

Tβ + ws(ui) + ϵs(ui), i = 1, ..., n, s = 1, ..., S, (1)

where γ and β are p and q dimensional coefficients corresponding to the global and local attributes,

respectively. The term ϵs(ui) denotes idiosyncratic errors, assumed to be independently and iden-

tically distributed with a Normal distribution with mean 0 and variance τ2, for simplicity. The

unknown function ws(·), accounting for variability across the domain U is considered a realization

from a GP with a mean of 0 and a covariance kernel κ(·, ·), independently over the simulations

s = 1, ..., S.

Performing Bayesian inference for the model (1) with a Gaussian process prior on ws(u) becomes

computationally impractical for a large sample size due to the O(n3) computational cost and the

O(n2) storage cost associated with estimating ws(u). The domain of modeling high-dimensional

dependent functional data has seen substantial growth in the last decade, which has been largely

adapted and built upon scalable spatial models. While the extensive literature in this area cannot

be fully covered here, comprehensive reviews can be found in Heaton et al. [2019].

This literature has largely operated within a centralized data processing framework, where all
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data is stored and processed at a central location. However, an alternative approach involves dis-

tributed Bayesian learning for functional data [Guhaniyogi and Banerjee, 2018, Guhaniyogi et al.,

2023, Guhaniyogi and Banerjee, 2019, Guhaniyogi et al., 2022]. This approach extends the scala-

bility of existing well-established algorithms to estimate (1), without necessitating the development

of new algorithms or software. In essence, this methodology partitions the data into a multitude

of shards, wherein a suitable functional data model such as (1) is fitted to each shard to draw

parallel posterior inferences. These individual inferences are then combined at a central server,

reducing computation and storage requirements on the server itself. Distributed inference elimi-

nates the need for extensive raw data exchange and communication between the central server and

processors during statistical analysis. Consequently, this leads to lower latency and reduced com-

munication traffic. Furthermore, as each processor analyzes a smaller data shard, the computation

and storage becomes more efficient, contributing to overall faster inference. Significantly, numer-

ous state-of-the-art methods in the analysis of large functional data come from spatial statistics

research, though they crucially use smaller dimensionality of U in their design, as exemplified by

methods that utilize nearest neighbors Datta et al. [2016]. These methods may not be entirely

suitable when U is higher-dimensional since all points in higher dimensions are approximately

equidistant. In contrast, distributed approaches offer scalability without the need to leverage the

reduced dimensionality of U , thus making them suitable for the seamless application to functional

data models with higher dimensional U . Nevertheless, it is important to note that inference in

distributed Bayesian learning can become sensitive to the choice of data subsets, as highlighted by

simulation studies in Guhaniyogi et al. [2023].

We will address this issue by introducing a distributed Bayesian inferential framework for func-

tional data modeling that employs Bayesian data sketching techniques [Vempala, 2005, Halko et al.,

2011, Mahoney et al., 2011, Woodruff et al., 2014, Guhaniyogi and Dunson, 2015, 2016]. The concept

of data sketching involves compressing the complete dataset before applying a model, facilitating

more efficient computation and storage. While data sketching methods have gained popularity in

high-dimensional and penalized regression contexts with large datasets [Zhang et al., 2013, Chen

et al., 2015, Dobriban and Liu, 2018, Drineas et al., 2011, Ahfock et al., 2017, Huang, 2018], their

application to resolving computational challenges in Bayesian high-dimensional and functional data

regression remains limited, with a few notable exceptions [Guhaniyogi and Scheffler, 2021].
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The overarching outline of this framework is as follows. First, we generate H random matrices,

each with dimensions m×n, where m is significantly smaller than n, following the literature on data

sketching, and construct H random linear sketches of both the response vector and the predictor

matrix. Secondly, we undertake parallel posterior computations on these k data sketches using

the functional data model (1). In this process, the likelihood in the model is raised to the power

of n/m for each sketch. This manipulation ensures that the variance of each sketch’s posterior

distribution is of the same order of n as that of the full data posterior distribution. This set of

pseudo posterior distributions, constructed for each data sketch, is referred to as the “sketched

posterior.” Thirdly, we calculate the Wasserstein mean of these k sketched posterior distributions,

yielding a single probability distribution termed the “collaborative sketched posterior” distribution.

This collaborative sketched posterior serves as a computationally tractable approximation to the

full posterior distribution.

The proposed approach addresses a number of important issues on distributed Bayesian learning

simultaneously. First, unlike current distributed Bayesian learning methods that perform inference

conditional on a fixed choice of data shards, our proposed approach takes a distinct route. Instead

of being confined to a single set of data shards, we compute the Wasserstein mean of sketched

posteriors obtained using different random matrices. This innovative technique mitigates the sen-

sitivity of inference stemming from the selection of specific random matrix in the construction of

data sketches. As a result, we introduce a novel category of distributed learning paradigm, referred

to as the “robust distributed learning,” that is resilient to the influences of data shard choices. Sec-

ond, a crucial aspect of the proposed methodology is its ability to uphold the privacy of sampling

units throughout the inference. This is achieved by revealing only lower-dimensional sketches to

the analysts which are designed in such a way that the mutual information between them and the

full data converges to zero as sample size becomes large, rendering the recovery of the full data

from data sketches practically impossible [Zhou et al., 2008]. Importantly, the framework allows

constructing a sketch for the full data from sketches of subsets of data stored privately in different

research centers.

The rest of this article progresses as follows. Section 2 describes the data simulated from SLOSH

simulator. Section 3 describes the robust distributed learning approach in detail. Implementation of

the approach on our own simulated data, followed by the SLOSH simulator analysis, are presented
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Predictor Lower Upper Units

Heading 204.0349 384.0244 degrees
Velocity 0 40 knots
Latitude 38.32527 39.26811 degrees
Pressure 930 980 millibars
Sea level rise (2100) -20 350 cm

Table 1: Parameters varied in SLOSH simulations.

in Sections 4 and 5, respectively. Finally, Section 6 concludes the paper with an eye towards future

work.

2 SLOSH Emulator Data

Storm surge models simulate floodwater depth resulting from hurricanes, and are used for

emergency response, planning, and research. The Sea, Lake, and Overland Surges from Hurricanes

(SLOSH) simulator (Jelesnianski et al., 1992) is one such model developed by the National Weather

Service. Various other storm surge models exist, with more complex models requiring extreme

computation time to run. While SLOSH is not prohibitively expensive, our purpose in this paper

is to develop emulator for expensive models often encountered in national laboratories that can

only be run at a handful of times. Therefore, our dataset comprises an ensemble of only 10

simulations executed using the SLOSH simulator, representing 10 distinct simulated storms. Each

storm within this ensemble is characterized by a unique combination of five input parameters or

global attributes. Four of these attributes describe hurricane characteristics when the hurricane

makes landfall, including the heading of the eye, the velocity of the eye, the latitude of the eye,

and the minimum air pressure experienced. The fifth attribute is the projected sea level rise for

the year 2100, which of course is uncertain. General ranges for these parameters are given in Table

1, from which 10 simulations were generated.

Our SLOSH simulations predict hurricane-induced flooding in the southern tip of New Jersey

(see Figure 1). Since the major focus is study the damage to electrical power stations, and majority

of the power stations are far enough in-land, we only focus on the functional data over n = 49719

spatial locations. A map of of output from one SLOSH model run is shown in Figure 1.

In addition, elevation data is available for each spatial location of the electrical power stations.

Recognizing the significance of this attribute in assessing the maximum flood height at a given
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Figure 1: Output from one SLOSH model run, side-by-side with the location of the peninsula in
Google Maps. Here, x and y axes represent longitude and latitude, respectively.

location, we incorporate elevation as a local attribute in our analysis.

Power stations within this region are typically designed to withstand flooding up to a level of four

feet, with higher levels leading to catastrophic damage. Consequently, our focus is on evaluating

the emulator’s capability to reliably predict whether a storm surge has exceeded the four-foot mark.

This predictive information is crucial for making informed decisions about potential interventions,

such as the need to initiate a station shutdown in anticipation of an approaching storm.

3 Proposed Approach: A Collaborative Sketching Framework

Let ys = (ys(u1), ..., ys(un))
T and ϵs = (ϵs(u1), ..., ϵs(un))

T be the vector of responses and

errors collected over all index points for the sth simulation. Further, assume X is an n× q matrix

with its ith row given by x(ui)
T and ws = (ws(u1), ..., ws(un))

T is the vector of functional random

effects at all the index points corresponding to the sth simulation. The model (1) yields the

Gaussian linear mixed model

ys = (1n ⊗ zT
s )γ +Xβ +ws + ϵs , ϵs ∼ N(0, τ2In), s = 1, ..., S, (2)

where 1n refers to the n-dimensional vector of ones.

Specifying Gaussian process prior on the unknown function ws(u) ∼ GP (0, σ2κ(·, ·; θ)) inde-

pendently over s = 1, .., S leads to ws
i.i.d.∼ N(0, σ2K(θ)), where K(θ) is an n× n matrix with its

7



(i, j)th entry given by κ(ui,uj ; θ). Here θ and σ2 are referred to the length-scale parameter and

variance parameter, respectively, for the functional regression. Assuming response over simulators

are independent, a customary Bayesian hierarchical model is formulated from (2) as follows

p(γ,β, τ2, σ2)×
S∏

s=1

N(ys|(1n ⊗ zT
s )γ +Xβ, σ2K(θ) + τ2In), (3)

where p(γ,β, τ2, σ2) is the prior distribution on the parameters (γ,β, τ2, σ2). The hierarchical

model (3) fixes the length-scale parameter θ. While the data can inform about this parameter, it

is inconsistently estimable for the general Matern class of correlation functions [Zhang, 2004] often

resulting in poorer convergence. Hence, recent studies proposed an approach where inference is

drawn using hierarchical models like (3) by fitting the model across several fixed values of θ and

subsequently combining the inferences tailored to draw achieve a specific inferential goal [Zhang

et al., 2023]. We will adopt a similar strategy of fixing θ during model fitting with every data

sketch. Even with a fixed θ, the Bayesian computation of (3) involves inverting the n × n matrix

σ2K(θ) + τ2In which is infeasible for the simulator data in Section 2.

To circumvent the computational issues posed by K(θ) induced from full GP prior on ws, vari-

ants of GP prior are proposed on ws, leading to efficient computation of K(θ)−1. This includes low-

rank GP priors and sparse GP priors, among others. This article employs modified predictive pro-

cess (MPP) prior [Finley et al., 2009] and nearest neighbor GP (NNGP) prior [Datta et al., 2016] as

the representative low-rank and sparse GP priors, respectively. Let ũ1, ..., ũnknot
be a set of “knot”

points randomly selected from U , with nknot << n. Let K̃(θ) and ˜̃K(θ) be nknot×nknot and n×nknot

matrix with the (i, j)th entries given by κ(ũi, ũj ; θ) and κ(ui, ũj ; θ), respectively. The MPP spec-

ifies K(θ) as K(θ) = ˜̃K(θ)K̃(θ)−1 ˜̃K(θ) +D(θ), where D(θ) is an n× n diagonal matrix with the

ith diagonal entry 1 − κ̃(ui; θ)
T K̃(θ)−1κ̃(ui; θ), κ̃(ui; θ) = (κ(ui, ũ1; θ), ..., κ(ui, ũnknot

; θ))T . In

contrast, NNGP sparsifies K(θ)−1 by replacing ws(ui)|ws(u1), ..., ws(ui−1) with ws(ui)|ws(Ui,nn),

where Ui,nn is the few nearest neighbors of ui [Datta et al., 2016]. While MPP and Sparse GP

offers model based efficient alternatives to the full GP, this article considers an approach orthogonal

to them. Specifically, it considers a two-stage distributed Bayesian learning approach, referred to

as the collaborative sketching framework, which enables scaling up full-GP, as well as its computa-

tionally efficient alternatives (e.g., MPP and Sparse-GP), as elaborated in the subsequent sections.
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3.1 Construction of Sketched Posteriors

At the first stage, we construct multiple low-dimensional random linear mapping or “sketches”

of the full data and fit model (3) with these data sketches in parallel. To elaborate on this, let

Φ1, ...,ΦH are m× n dimensional sketching matrices with random entries encoding random linear

mapping of the data to lower dimensions, with m << n. For h = 1, ..,H, the sketching matrix Φh is

applied to ys,X andZs = 1n⊗zT
s to construct them×1 sketched response vector ys,Φh

= Φhys and

sketched predictor matrices XΦh
= ΦhX and Zs,Φh

= ΦhZs. We will return to the specification

of Φh, which, of course, will be crucial for relating the inference from the compressed data with the

full model. For now assuming that we have fixed Φh and a fixed value of the length-scale parameter

θh, we define the sketched posterior distribution of the model parameters by

Πh(γ,β, τ
2, σ2|Φh, θh) =

p(γ,β, τ2, σ2)×
∏S

s=1 Ls,h(σ
2, τ2,γ,β)n/m∫

p(γ,β, τ2, σ2)×
∏S

s=1 Ls,h(σ2, τ2,γ,β)n/mdσ2dτ2dγdβ
, (4)

where Ls,h(σ
2, τ2,γ,β) = N(ys,Φh

|Zs,Φh
γ+XΦh

β, σ2ΦhK(θh)Φ
T
h + τ2Im) denotes the likelihood

of data sketch from the sth simulator run, after fixing {Φ, θ} at {Φh, θh}. Here K(θh) can be

induced from full-GP or its computationally efficient variants as discussed before. The likelihood

Ls,h differs from the one obtained by applying Φh to the likelihood in (2) because the error distri-

bution in Ls,h is retained as the usual noise distribution without any influence of Φh. Thus, the

likelihood Ls,h corresponds to the likelihood derived from a model similar to (2), but it is applied

to the sketched dataset ys,Φh
,XΦh

,Zs,Φh
. Employing a Φh-transformed model on (2), where noise

distribution is transformed by Φhϵs will not deliver the computational benefits.

The modification of likelihood to yield the sketched posterior density in (4) is referred to as

stochastic approximation [Guhaniyogi et al., 2023, 2022]. Conceptually, raising the likelihood to

the power of n/m can be viewed as replicating the sketched data n/m times, so stochastic ap-

proximation accounts for the fact that the hth sketched posterior distribution Πh conditions on

an m−dimensional random sketch of the full data and ensures that its variance aligns in the same

order (as a function of n) as that of the full data posterior distribution.
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3.1.1 Computation of sketched posteriors

Assume an IG(aτ , bτ ), IG(aσ, bσ) and N(0, I) prior distributions on τ2, σ2 and λ = (βT ,γT )T .

With the proposed stochastic approximation, the posterior computation of sketched posterior Πh

with the hth data sketch involves Markov Chain Monte Carlo (MCMC) which cycles through

drawing samples from the following distributions:

• Sample (βT ,γT )T |− ∼ N(µβ,γ , Σβ,γ), where Σβ,γ =
{
(m/n)

∑S
s=1A

T
s Σ

−1As + Ip

}−1
,

µβ,γ = Σβ,γ

{
(m/n)

∑S
s=1A

T
s Σ

−1ys,Φh

}
. Here As = [XΦh

: Zs,Φh
] is an m× n matrix and

Σ = (ΦhK(θh)Φ
T
h + τ2Im) is an m×m matrix. This step incurs a computation complexity

of O(m3), since Σ is an m×m covariance matrix that needs to be inverted.

• Sample σ2 and τ2 through Metropolis-Hasting sampler. Since θh is kept fixed throughout the

analysis of Πh, we need to compute Φ⊺K(θh)Φ only once which leads to substantial compu-

tational benefit. Additionally, the strategy needs storage of the m × m matrix Φ⊺K(θh)Φ

instead of the full data covariance matrix, which reduces the storage cost from O(n2) to

O(m2).

Next we focus on drawing predictive inference at n∗ index points U = {u∗
1, ...,u

∗
n∗} for a new

simulator run. To this end, let y∗ and X∗ be n∗×1 dimensional response vector and n∗× q dimen-

sional matrix of local attributes at n∗ index points, respectively. Assume z∗ is the input attributes

corresponding to the new simulator run, Z∗ = 1n∗ ⊗ z∗T , and w∗
s = (ws(u

∗
1), ..., ws(u

∗
n∗))T . The

posterior predictive density of y∗ is given by

p(y∗|X∗,Z∗,XΦh
,Zs,Φh

,ys,Φh
) =

∫
f(y∗|X∗,Z∗,γ,β, σ2, τ2)Πh(γ,β, σ

2, τ2|Φh, θh)

f(y∗|X∗,Z∗,γ,β, σ2, τ2) = N(y∗|µ∗ +Σ21Σ
−1
11 (y − µ),Σ22 −Σ21Σ

−1
11 Σ12)

µ∗ = (1n∗ ⊗ z∗)γ +X∗β, µ = (1n ⊗ z)γ +Xβ

Σ22 = Var(w∗
s), Σ11 = Var(ws), Σ12 = ΣT

21 = Cov(ws,w
∗
s).

(5)

We utilize composition sampling to generate MCMC samples from the posterior predictive density

(5) of y∗. The entire analysis of Π1, ...,ΠH will be distributed across H separate CPUs, enabling

parallel processing for enhanced efficiency.
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3.1.2 Choice of Sketching Matrices

To specify the matrixΦh, we adopt the concept of data oblivious Gaussian sketching as proposed

in Sarlos [2006]. This involves independently selecting elements of Φh from a normal distribution

with mean 0 and variance 1/n, and then keeping them fixed. The dominant computational effort

required for generating the sketched data using Gaussian sketches follows a time complexity of

O(mn2). While there are alternative data oblivious methods available for efficiently sketching Φh,

like the Hadamard sketch [Ailon and Chazelle, 2009] and the Clarkson-Woodruff sketch [Clarkson

and Woodruff, 2017], these options hold less relevance in Bayesian contexts. This is due to the

fact that the computational time needed for the operation in (4) is significantly greater than that

needed for constructing the sketching matrix itself. The sketched data serves as a surrogate for the

Bayesian estimation of model coefficients. Given that the count of sketched records is much smaller

than the total records in the complete data matrix, the process of fitting the model becomes both

computationally efficient and resource-friendly. This efficiency extends to storage requirements as

well as the count of floating-point operations (flops) needed, as outlined in Section 3.1.1.

3.1.3 Data Privacy

Crucially, even when Φh is known, the linear systems Φhys, ΦhX, and ΦhZs are significantly

under-determined due to the substantial difference in the dimensions m and n. This results in a

safeguarding of the privacy of the data samples. To evaluate the privacy implications in terms

of information theory, an upper bound on the average mutual information per unit can be used,

denoted as I(XΦh
,X)/nq. It can be shown that the supremum of I(XΦh

,X)/nq is bounded by

O(m/n) [Zhou et al., 2008], where the supremum is taken across all possible distributions of X. As

m grows at a much slower rate than n, and n → ∞, the supremum of the average mutual information

approaches 0. This implies that, intuitively, the compressed data reveals no more information about

the original data than what could be derived from an independent sample. It’s important to note

that this bound is derived under the assumption that Φh is known. In practical scenarios, only

XΦh
(along with ys,Φh

and Zs,Φh
) would be disclosed to the analyst, without revealing the actual

matrix Φh itself. Consequently, the privacy imposed through sketching turns out to be more

stringent than what is implicated by this theoretical outcome. It is worth emphasizing that these

privacy implications stem from the information theory and are distinct from the broader notion of
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data privacy explored through concepts like ϵ-differential privacy.

3.1.4 Distributed Storage in Research Centers

An essential benefit of the proposed framework lies in its capacity to analyze data collectively

from research centers that are restricted from sharing their data with one another. Consider a

scenario with J centers denoted as Center1, ..., CenterJ , where the jth center holds data for nj

indexing points, n =
∑J

j=1 nj . In this context, the jth center privately stores an nj-dimensional

response vector y
(j)
s and an nj × p-dimensional matrix X(j) for local attributes, such that ys =

(y
(1)
s , ...,y

(J)
s )T and X = [X(1)T : · · · : X(J)T ]T . Let Φh = [Φ

(1)T
h : · · · : Φ(J)T

h ]T , where Φ
(j)
h

represents the m × nj sketching matrix. The sketching matrix Φ
(j)
h can be constructed within

each research center, and local computations of Φ
(j)
h y

(j)
s and Φ

(j)
h X(j) can be performed within the

jth center before releasing them to calculate the hth sketched posterior. The privacy guarantee,

as discussed in Section 3.1.3, ensures that the original data cannot be reconstructed from the

sketches obtained from centers. By aggregating these local sketches Φhys =
∑J

j=1Φ
(j)
h y

(j)
s and

ΦhX =
∑J

j=1Φ
(j)
h X(j), the framework allows the computation of complete data sketches. The

schematic representation in the Figure 2 illustrates the strategy for securely computing sketched

posteriors while preserving privacy.

3.2 Construction of the Collaborative Sketched Posterior

The approach described below for combining sketched posteriors constructed in Section 3.1 is

in the same spirit as the combination of “subset posteriors” outlined in the divide-and-conquer

strategies in Bayesian inference [Guhaniyogi et al., 2023]. The salient feature of the combina-

tion technique is that it is agnostic to the model- or data-specific assumptions, such as assuming

independence among samples in the training data.

This process of combining sketched posteriors involves leveraging the concept of the Wasserstein

barycenter, a technique extensively used in the realm of scalable Bayesian methods for distributed

inference, as highlighted in works such as Guhaniyogi et al. [2023] and Srivastava et al. [2018].

Let (Ω, ρ) be a complete separable metric space and P2(Ω) denotes the probability distributions

on (Ω, ρ) with finite second moments. Let Π̃1, Π̃2 be two probability measures in P2(Ω). Assume

∆(Π̃1, Π̃2) is the set of all probability measures on Ω × Ω with marginals Π̃1, Π̃2 ∈ P2(Ω). Then

the Wasserstein distance of order 2, denoted as W2, between Π̃1, Π̃2 is defined as W2(Π̃1, Π̃2) =
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Φh = [Φ
(1)
h · · ·Φ(J)

h ]

Φ
(1)
h Φ

(2)
h

. . . Φ
(J)
h

Center 1

y
(1)
s , X(1)

Center J

y
(J)
s , X(J)

. . .

. . .Φ
(1)
h y

(1)
s

Φ
(1)
h X(1)

Φ
(J)
h y

(J)
s

Φ
(J)
h X(J)

Φhys =
∑J

j=1Φ
(j)
h y

(j)
s

ΦhX =
∑J

j=1Φ
(j)
h X(j)

Figure 2: Distributed storage of data for J separate storage centers.

{ inf
π∈∆(Π̃1,Π̃2)

∫
Ω×Ω ρ2(x, y) dπ(x, y)}1/2. In the context of Section 3.1, if Π1, . . . ,ΠH all have finite

second moments, then the Wasserstein barycenter of Π1, . . . ,ΠH is defined as

Π̄ = argmin
Π∈P2(Ω)

1

H

H∑
h=1

W 2
2 (Π,Πh). (6)

It is known that Π̄ exists and is unique [Agueh and Carlier, 2011]. The Wasserstein barycenter Π̄ is

referred to as the collaborative sketched posterior for the parameters and replaces full data posterior

as its computationally efficient approximation for inference on (2). The two-step procedure for the

construction of collaborative sketched posterior can be visualized in Figure 3.

When focus lies on drawing inference on one-dimensional functional of the parameters, denoted

as α, the sketched pseudo posterior distribution of α can be easily derived by averaging the empirical

sketched posterior quantiles [Guhaniyogi et al., 2023]. This is facilitated by the fact that the

Wasserstein distance (W2 distance) between two univariate distributions corresponds to the L2

distance between their respective quantile functions (as demonstrated in Lemma 8.2 of Bickel and

Freedman [1981]). More precisely, for a given quantile level ξ ∈ (0, 1), let α̂ξ,h represent the ξth
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Figure 3: Visual overview of distributed learning algorithm for H parallel nodes.

empirical quantile of α based on MCMC samples drawn from the marginal posterior distribution of

α from hth subset. With α̂ξ as the ξth empirical quantile of α following the collaborative sketched

posterior, α̂ξ can be expressed as,

α̂ξ =
1

H

H∑
h=1

α̂ξ,h, (7)

where the value of ξ is varied across a fine grid within the interval (0,1). By utilizing a sufficiently

fine ξ-grid in the equation (7), MCMC samples from the marginal collaborative sketched posterior

distribution of α can be obtained by inverting the empirical distribution function supported on the

estimated quantiles.

In real-world applications, the primary focus often centers on the marginal distributions of

model parameters and predicted values, i.e., on one-dimensional functionals of parameters. Con-

sequently, the process of obtaining the univariate Wasserstein barycenter by averaging quantiles,

as described in equation (7), accomplishes this objective with remarkable versatility and a user-

friendly implementation. Due to its general applicability and ease of use, in the subsequent sections,

we concentrate exclusively on scenarios where α is one-dimensional and utilize equation (7) to cal-

culate the collaborative sketched posterior by utilizing its empirical quantiles. It is worth noting

that there are existing approaches which allow combination of joint posteriors instead of marginal
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posteriors, see the recent work by Guhaniyogi et al. [2022] and the references therein. However,

these methods are computationally more demanding and yield only marginal improvements over

the univariate quantile combination approach mentioned in equation (7).

While our proposed approach shares similarities with the evolving field of distributed Bayesian

inference for correlated data [Guhaniyogi et al., 2023, 2022, Guhaniyogi and Banerjee, 2018], it

offers a distinct advantage over these approaches. Notably, all the existing distributed Bayesian

learning approaches involve dividing the data into shards based on a user-defined partitioning

scheme. However, a crucial observation from simulation studies in Guhaniyogi et al. [2023] is

that the effectiveness of distributed inference is somewhat influenced by the specific choice of

data shards. This necessitates application-specific judgments when partitioning data into these

shards. In contrast, our approach sidesteps the need to create data shards and instead focuses on

constructing data sketches with multiple random sketching matrices. The fundamental distinction

lies in the fact that while the Wasserstein barycenter of shard posteriors in traditional distributed

learning methods is contingent upon the chosen data partitioning, our approach incorporate data

sketching as an intrinsic facet of the model development process, and mitigates the impact of

variations due to the choice of sketching matrices by computing the Wasserstein barycenter of

sketched posteriors, each constructed using a different random sketching matrix. This innovation

leads to the novel concept of robust distributed Bayesian learning, where the resulting inference is

more resilient to the uncertainties introduced by random sketching.

4 Simulation Studies

One salient feature of the proposed approach is that it is agnostic to the dimension d of the

index points. However, we empirically validate the efficacy of the collaborative sketched posterior

for the case of d = 2, where the index points represent locations in space, since d = 2 for the

SLOSH emulator data. To comprehensively evaluate the performance of the collaborative sketched

posterior, it is constructed with ws(u) modeled using each of the three strategies: (i) the full-rank

GP, (ii) the low-rank Modified predictive process [Finley et al., 2009] and (iii) NNGP [Datta et al.,

2016]. The inferential and predictive performance of the collaborative sketched posterior under (i)-

(iii) is compared with existing distributed Bayesian approaches utilizing different data subsetting

techniques. To simulate the data, we use n+n0 spatial locations u1, . . . ,un+n0 drawn uniformly over
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the domain D = [0, 10]× [0, 10]. The data generation procedure involves p = 1 global attribute and

q = 2 local attributes. The global attribute values are generated from the N(0, 1) distribution for

S+S0 simulations, i.e., z1, ..., zS+S0

i.i.d.∼ N(0, 1). Similarly, the local attributes x(u1), ...,x(un+n0)

are simulated independently from N(0, I). For each s = 1, ..., S + S0 and i = 1, ..., n + n0, the

response ys(ui) is drawn independently from N(zsγ0+x(ui)
Tβ0+ws0(ui), τ

2
0 ) following (1), where

the noise variance τ20 is set to be 0.2.

The true coefficient γ0 for the global attribute is set to be 5, where as the true coefficient β0 for

local attributes is kept at (2,−1). The true function ws0(u)s are generated from a Gaussian process

with mean 0 and covariance kernel σ2
0κ(·, ·; θ0) independently over s, i.e., (ws0(u1), ..., ws0(un+n0))

T ind.∼

N(0, σ2
0K(θ0)) for s = 1, ..., S+S0, where K(θ0) is an (n+n0)× (n+n0) matrix with the (j, j′)th

element κ(uj ,uj′ ; θ0). We set the covariance kernel κ(·, ·; θ0) to be the exponential correlation

function given by κ(uj ,uj′ ; θ0) = exp
(
−θ0||uj − uj′ ||

)
, with the true values σ2

0 and θ0 set to 2 and

3, respectively.

Out of S + S0 = 15 simulations, we randomly choose S = 10 simulations for model fitting, and

the remaining S0 = 5 simulations are used for testing the predictive performance of the model.

For the S = 10 training simulations, the model is fitted on n = 10, 000 spatial locations, whereas

prediction is performed on n0 = 1000 different locations for the remaining S0 = 5 simulations.

In other words, we assess predictive accuracy not only on different locations in space but also on

entirely different simulations.

Throughout all simulations, the collaborative sketched posterior is calculated using a sketching

dimension of m = 500. Moreover, when fitting sketched posteriors with the MPP for each ws(u),

we employ 500 knots, and for fitting NNGP for each ws(u), we consider 10 nearest neighbors.

4.1 Competitors

For all simulations, we compare the collaborative sketching framework proposed here with the

Distributed Kriging (DISK) approach [Guhaniyogi et al., 2023], a divide-and-conquer Bayesian

approach that computes subset posteriors with user-defined data subsets and combines marginal

distributions of these subset posteriors by averaging their quantiles, similar to the strategy in (7).

To demonstrate sensitivity in inference due to the choice of different data subsetting, DISK is

fitted with two different strategies: (a) subdomain and (b) stratification. The subdomain strategy
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divides the domain into rectangular subdomains with each subset constituting all data points from

a subdomain, while the stratification strategy constructs each subset with representative samples

from each subdomain. We refer to them as DISK-subdomain and DISK-stratified, respectively,

and they both maintain the number of samples per subset to be around the sketching dimension

m = 500 to ensure a fair comparison with our collaborative sketching approach.

4.2 Metrics of Comparison

Let Y (l) denote the lth post burn-in MCMC sample from the posterior predictive distribution

of Y = (ys(ui) : i = n+1, ..., n+n0; s = S+1, ..., S+S0)
T , for l = 1, .., L. The point prediction for

competitors is assessed using mean squared prediction error (MSPE), defined as the discrepancy

between the true and the predicted responses ||Ȳ − Yt||2/(n0S0), where Ȳ = 1
L

∑L
l=1 Y

(l) and Yt

denotes the true value of Y . The predictive uncertainty is determined with the coverage probability,

interval score and energy score [Gneiting and Raftery, 2007] for 95% predictive intervals (PIs) for

all the competing methods over n0 out of sample locations in S0 out of sample simulations. Interval

scores favors model with the smallest possible intervals that still contain the data. On the other

hand, energy score is a multivariate extension to Continuous Rank Probability Score (CRPS) and is

calculated as 1
L

∑L
l=1 ||Y (l)−Yt||− 1

2L2

∑L
l=1

∑L
l′=1 ||Y (l)−Y (l′)||. Energy score takes into account

not only the predictive accuracy of each sample from the posterior predictive distribution, but also

the level of uncertainty in the distribution. For this reason, energy score has gained interest in recent

literature as a model ranking mechanism [Heaton et al., 2019]. Finally, we compare performance

of all distributed Bayesian methods for parameter estimation using the posterior medians or point

estimates and the 95% credible intervals (CIs) for β = (β1, β2), γ, σ
2, τ2.

4.3 Results of Simulated Data Analysis

The simulation results presented in Table 2 highlight significant sensitivity in parameter es-

timation, contingent upon the nature of data partitioning in the DISK approach. For instance,

when a full GP or NNGP is fitted to each data subset, the 95% CIs for σ2 in DISK-Subdomain

and DISK-Stratified do not overlap. Additionally, the 95% CI for β1 exhibits a much larger con-

fidence interval for DISK-subdomain than DISK-stratified. Furthermore, under the MPP fitting,

DISK-Stratified underestimates τ2, whereas the estimation remains precise when DISK-Subdomain

is fitted with MPP. However, DISK-subdomain underestimates σ2 more egregiously than DISK-
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Model Competitors σ2 τ2 β1 β2 γ

Truth 2.00 0.20 2.00 -1.00 5.00

Full GP DISK-Subdomain 2.13 (2.09, 2.16) 0.21 (0.21, 0.22) 1.77 (1.39, 2.14) -1.00 (-1.01, -0.98) 5.00 (4.99, 5.01)
DISK-Stratified 1.94 (1.91, 1.96) 0.20 (0.19, 0.21) 1.99 (1.89, 2.08) -1.02 (-1.02, -0.98) 5.00 (5.00, 5.00)

Collaborative Sketching 2.07 (2.03, 2.10) 0.21 (0.19, 0.22) 2.00 (1.98, 2.01) -0.99 (-1.00, -0.97) 5.00 (5.00, 5.00)

MPP DISK-Subdomain 1.62 (1.59, 1.65) 0.18 (0.17, 0.20) 1.79 (1.55, 2.03) -1.00 (-1.02, -0.98) 5.00 (4.99, 5.00)
DISK-Stratified 1.80 (1.79, 1.82) 0.05 (0.04, 0.05) 1.94 (1.86, 2.01) -0.99 (-1.02, -0.97) 5.00 (5.00, 5.00)

Collaborative Sketching 2.07 (1.99, 2.16) 0.11 (0.10, 0.13) 2.01 (2.00, 2.03) -0.95 (-0.96, -0.95) 5.00 (5.00, 5.00)

NNGP DISK-Subdomain 2.14 (2.10, 2.18) 0.21 (0.21, 0.22) 1.76 (1.37, 2.14) -1.00 (-1.01, -0.98) 5.00 (5.00, 5.01)
DISK-Stratified 1.99 (1.97, 2.01) 0.21 (0.20, 0.21) 1.99 (1.90, 2.08) -1.00 (-1.01, -0.98) 5.00 (4.99, 5.00)

Collaborative Sketching 2.04 (2.00, 2.07) 0.19 (0.18, 0.20) 1.97 (1.95, 1.99) -0.98 (-0.99, -0.97) 5.00 (5.00, 5.00)

Table 2: We calculate the posterior median with 95% confidence intervals for all model parameters
for all the distributed Bayesian competitors, fitting a full-GP, low-rank modified predictive process
(MPP), and NNGP. The MPP utilizes 500 knots for model implementation and NGGP uses 10
nearest neighbors. We set both the sketching dimension for our approach and the size of each
subset for the DISK approach to be m = 500 to ensure comparability.

Model Competitors MSPE Coverage Interval Score Energy Score

Full GP DISK-Subdomain 2.44 0.95 7.02 0.89
DISK-Stratified 2.30 0.94 6.89 0.86

Collaborative Sketching 2.27 0.95 6.87 0.86

MPP DISK-Subdomain 2.50 0.91 7.24 0.90
DISK-Stratified 2.32 0.92 7.05 0.89

Collaborative Sketching 2.30 0.95 6.87 0.86

NNGP DISK-Subdomains 2.43 0.95 7.00 0.89
DISK-Stratified 2.29 0.94 6.88 0.86

Collaborative Sketching 2.28 0.95 6.88 0.86

Table 3: MSPE, coverage, interval score and energy score for all competing methods.

stratified. Consequently, there is uncertainty regarding which data partitioning scheme to rely on

while providing inference with DISK on model parameters. In contrast, the collaborative sketching

approach aggregates inference over the data sketching mechanism, resulting in robust and accurate

point estimation, as well as 95% credible intervals that cover the true parameters.

The MSPE values presented in Table 3 exhibit some variation between DISK-Subdomain and

DISK-Stratified, although it is less pronounced compared to the parameter estimation. DISK-

Subdomain performs inferior to DISK-Stratified across full-GP, MPP, and NNGP fittings on each

subset. The coverage of both approaches is approximately equal, with DISK-Stratified show-

ing slightly smaller interval score and energy score. This finding aligns with Guhaniyogi et al.

[2023], which demonstrates DISK-Stratified to be the best strategy among alternatives (e.g., DISK-

Subdomain) for partitioning data subsets, as it includes representative samples from every subdo-

main in each subset, resulting in better model fitting using each subset posterior. Notably, the col-

laborative sketching strategy yields a slightly smaller MSPE than DISK-Stratified. While offering
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Figure 4: MSPE and computation time (in hours) for model fit and prediction in our simulation
data, as a function of the compressed dimension size m.

similar coverage, interval score, and energy score with DISK-Stratified for full-GP and NNGP, col-

laborative sketching provides better coverage and smaller interval and energy scores when sketched

posteriors are fitted with MPP. In summary, the empirical investigation demonstrates the excellent

performance of the collaborative sketching framework in terms of both inference and prediction

when fitting each sketched posterior with a full-GP and its most popular computationally efficient

alternatives.

4.4 Choice of the Rank m of Sketching Matrices

We explore the selection of an appropriate compression matrix size, denoted as m. The the-

oretical consideration suggests that m should be on the order of n/ log(n). However, in practical

applications, it is feasible to achieve robust and accurate inference with smaller values of m. To

illustrate this with simulated data having a sample size of n = 10, 000, we conducted model runs

for various values of m. As expected, the MSPE decreases as m increases, albeit with a diminishing

rate of decline (refer to Figure 4) until m reaches 1% of the full sample size n. Beyond this point,

the MSPE stabilizes, a trend observed in our empirical experiments. Further increasing m may

result in marginal reductions in MSPE but comes at the expense of longer computation times (see

Figure 4). Therefore, for the real data analysis, and in particular, for SLOSH emulator data, we

recommend utilizing m as 1% of the total sample size in the subsequent sections.
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5 SLOSH Emulator Data Analysis

We fit the collaborative sketching approach with full Gaussian process on the SLOSH emulator

data described in Section 2. As noted in Sections 1 and 2, this article offers the first principled

functional analysis of SLOSH emulator data incorporating global and local attributes. Out of 10

simulated storms each on n = 49719 locations, 5 storms are randomly selected for model fitting

and rest are employed to assess predictive performance of the proposed approach. Following the

discussion in Section 4.4, m is set at 1% of n, i.e., m = 498.

We compare our approach with Bayesian adaptive spline surfaces (BASS) [Francom and Sansó,

2020], a commonly used approach in national laboratories for analyzing functional data from multi-

ple simulations. BASS is not able to incorporate local attributes (i.e., elevation in the SLOSH data)

and is susceptible to high variance of estimation when the number of simulations is as low. However,

given its popularity among researchers in national laboratories for the functional data analysis, we

include it as a competitor and implement it using the R package BASS. Note that in this article, our

primary focus centers on distributed Bayesian approaches. However, for benchmarking purposes,

we also introduce a non-distributed method. Spatial statistics methods typically rely on a single

simulation, making it challenging to compare our approach with an appropriate non-distributed

state-of-the-art spatial techniques. In addressing this challenge, we employ the non-distributed

NNGP on the complete dataset Datta et al. [2016] as a comparative method, albeit with a slight

modification. Due to constraints in the NNGP package that allow only independent simulation runs,

we perform predictive inference on NNGP by averaging results across multiple simulation runs.

Despite the potential suboptimal performance of NNGP under this approach, we designate it as a

benchmark to evaluate the non-distributed spatial model’s performance across the entire dataset,

referring to it as NNGP-ind.

Figure 5 presents densities of the posterior distribution of model parameters with posterior

median and 95% CIs marked within each figure. All global and local attributes turn out to be

significantly associated with the storm surge with none of their 95% CIs includes zero. Under-

standably, the storm surge is positively associated with the sea level rise, minimum velocity of the

eye of the storm, and negatively associated with the elevation, direction of the wind and minimum

air pressure of the eye of the storm. The estimated posterior median of spatial variance σ2 is
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Figure 5: Densities for each parameter under our sketching model. Solid maroon lines indicate
the posterior means, and dotted maroon lines indicate the upper and lower 95% credible interval
bounds.

MSPE Error % Coverage Score Energy score

Sketching 1.07 0.06 0.88 5.60 0.63
NNGP-ind 0.83 0.09 0.18 20.45 1.52

BASS 1.45 0.10 0.59 11.23 1.02

Table 4: Predictive diagnostics for the storm surge analysis. For interval score and Energy score,
lower values indicate better scores.

dominant over the error variance τ2, justifying the spatial analysis.

Table 4 presents predictive inferences for all the competing approaches. The actual storm surge

and the predicted storm surge in a randomly selected test storm in Figure 6 demonstrate that the

collaborative sketching approach, along with its competitors, accurately captures the local features

of storm surge over space. Moreover, the results from Table 4 suggest that NNGP-ind might out-

perform other methods in terms of point predictions, as evidenced by its lowest MSPE. However,

when considering the energy score, which utilizes predictive samples rather than the mean, the

sketching approach is substantially favored over the NNGP-ind model. Therefore, while NNGP-ind

provides excellent mean predictions, the sketching approach offers superior uncertainty quantifi-

cation in prediction. This observation is further supported by the coverage and interval scores,

where sketching exhibits significantly higher predictive coverage than its competitors, coupled with
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a much smaller interval score. Understandably, BASS underperforms both in terms of point esti-

mation and uncertainty quantification due to the small number S = 5 simulations for model fitting.
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Figure 6: Actual water level (in meters) for a randomly selected storm at each coordinate in the
testing dataset, along with the predicted water level under each model.

Section 2 highlights the significance of a flooding threshold set at four feet, considering its real-

world implications, particularly in the context of power stations designed to withstand this level

of floodwater. Given its importance, it is crucial for an emulator to accurately predict flood levels

above four feet. To evaluate emulators in terms of this feature, we will examine the percentage

of predictions that mis-classify the need for intervention, i.e., the percentage of predictions in the

test simulations where the true SLOSH output exceeds four feet but the predicted output is less

than four feet, or, the predicted output is above four feet and the true SLOSH output is less than

four feet. Error percentage in Table 4 presents this metric for all the competitors. Notably, all

competitors show small mis-classification rate with the rate being minimum for the collaborative

sketching approach.
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6 Conclusion and Future Work

This article introduces a novel distributed Bayesian inferential framework that utilizes the the-

ory of data sketching through random compression matrices. The article proposes fitting a powerful

functional data model on multiple random sketches of the full data constructed using multiple ran-

dom sketching matrices in parallel, followed by combining these inferences in a central server. By

aggregating inference across diverse random sketches, our approach proves resilient to the selec-

tion of data sketches, leading to the development of novel robust distributed Bayesian learning

approach. The proposed framework allows joint analysis of data stored within different research

centers without leaking the privacy of samples. The proposed framework offers accurate inference

on the association between water surge with storm-specific characteristics in the SLOSH simulator

data.

Our framework’s ample generality enables its application in scaling complex data models. An

immediate avenue for future work involves extending the framework to facilitate robust distributed

inference with multivariate functional data models. Additionally, we plan to broaden the framework

to support distributed Bayesian inference with Gaussian Cox process models, specifically tailored

for large point process data.
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