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Abstract

Across a range of scientific fields, including biology, neuroimaging, and security
systems engineering, there is an increasing inclination towards adopting a multilayer
network approach to address significant scientific inquiries. Multilayer networks illus-
trate relationships among entities within various contexts, with each context being
symbolized by a distinct layer. This article introduces a novel regression framework
with a multilayer network as the predictor, and a continuous outcome variable. In
this framework, the structure of the multilayer network is such that each layer corre-
sponds to an undirected network. These undirected networks are typically depicted
as symmetric matrices, with nodes or actors specified along both rows and columns,
and the values within the matrix cells representing the association between the cor-
responding nodes. Existing regression methods with multilayer network predictors
often do not effectively leverage information both within and across network layers.
This can result in subpar inference and predictive accuracy, particularly when work-
ing with limited sample sizes. To address this constraint, our method adopts low-rank
models associated with the coefficients for each layer of the network predictor, sharing
parameters specific to each layer to efficiently capture the complex relationships and
dependencies among nodes across multiple layers. The proposed framework identifies
nodes and edges influentially related to the response within each layer of the network,
as well as offers efficient posterior computation, inference, and prediction. We utilize
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version
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our approach to analyze emulator data obtained from Sandia National Labs, compris-
ing multi-layer security networks crafted to emulate the security system network of a
high-consequence facility (HCF) within the confines of permissions granted. Notably,
our approach presents the first principled model-based statistical study of multilayer
security architecture in HCFs, allowing for accurate prediction of time until detection
of an external threat, as well as the statistical importance of nodes in the security
networks. The empirical findings illustrate the advantages of our approach compared
to prevailing high-dimensional regression methods, tensor regression techniques, and
convolutional neural networks, with respect to both inference and predictive perfor-
mance.

Keywords: Bayesian inference; Low-rank model; Multilayer network; Spike-and-slab prior.
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1 Introduction

The growing complexities witnessed in contemporary security operations for safeguard-

ing high consequence facilities stem from a variety of evolving factors in today’s context.

High-consequence facilities (HCFs) are defined as those whose incapacitation would have a

devastating impact on national security, economic prosperity, and/or public health. How-

ever, current security frameworks are notably linear and encounter difficulties in compre-

hensively addressing the intricate interplay among different security layers like (1) security

technology, (2) infrastructure, (3) cybersecurity, and (4) human/organizational elements.

Therefore, it is imperative to develop sophisticated security models that consider these

interconnections. Security scientists, especially those affiliated with the Sandia National

Laboratories, are currently prioritizing fundamental interactions between various security

domains to design next-generation security networks. These efforts are aimed at developing

adaptable and resilient security systems that are well-suited for future needs, emphasiz-

ing security orchestration [Williams et al., 2020]. Security orchestration is the notion that

disparate security layers can be more effective with enhanced coordination of interactions

among different layers. Modern security research posits that multilayer network models

are uniquely capable of capturing complex interactions between and within security layers

effectively [Williams et al., 2021, Dove et al., 2023]. Nevertheless, there is a deficiency

in principled statistical/data-driven understanding of the components of multilayer net-

work security systems within the field of security research. In this article, we introduce an

innovative Bayesian multi-layer network regression (BMNR) model with a scalar outcome

variable and a multilayer network as a predictor in the realm of security orchestration, with

its application on security orchestration laid out in Section 5. Although our work is rooted

in security networks, its applicability extends beyond this domain, making it a versatile and

broadly applicable approach in multi-layer network applications including neuro-imaging

and genomics data.
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In the existing literature on multilayer networks, they are often treated as random

variables rather than being utilized as predictors within a regression framework. This liter-

ature concentrates on establishing suitable dependencies among edges and among various

relationships that define the multiple layers [Gollini and Murphy, 2016, Han et al., 2015,

Heaney, 2014]. These advancements have extended the applicability of exponential random

graph models [Holland and Leinhardt, 1981, Frank and Strauss, 1986] and latent variable

models [Nowicki and Snijders, 2001, Hoff et al., 2002, Airoldi et al., 2008], which were orig-

inally designed for single networks, to facilitate inference within multilayer frameworks.

These frameworks have undergone further extensions to handle time-varying or dynamic

multilayer networks without [Durante et al., 2017, Snijders et al., 2013, Hoff, 2015] or with

covariates associated with the network nodes [Contisciani et al., 2020, Zhang et al., 2022,

Xu et al., 2023]. There is also related literature on deep graph representation through graph

neural networks (GNN), where the main neural architectures include graph convolutional

networks (GCNs; Kipf and Welling [2016]), graph attention networks (GANs; Veličković

et al. [2017]), graph isomorphism networks (GINs; Xu et al. [2018]), and other variants

[Hamilton, 2020]. While this literature mainly focuses on a single network, there are recent

and ongoing efforts to extend them to multilayer networks [Ma et al., 2019].

However, the existing methods for multilayer networks are inherently unsupervised and

do not align with the inferential objectives specific to our context. Our primary focus is on

generating predictive inferences regarding the outcome, estimating crucial network nodes

in each layer with significant associations to the outcome, and understanding the regression

impact of the network within each layer on the outcome. The proposed regression frame-

work with a multilayer network predictor effectively addresses these inferential objectives.

In our framework, the network coefficients for each layer are represented as the sum of two

components: one shared across all layers and another specific to each layer. Both com-

ponents utilize low-rank structures to capture how interactions between various pairs of

4



network nodes in each layer influence the outcome. Specifically, the low-rank structure for

each component expresses each edge coefficient as a function of latent effects corresponding

to the nodes connected to that particular edge. The latent effects for the nodes used to

construct the first component are shared across layers, whereas those utilized for the second

component are specific to each individual layer. We adopt a variable selection framework

on latent effects specific to each layer to draw inference on nodes and edges in each layer

significantly related to the outcome. The proposed structure accomplishes parsimony, en-

sures accurate predictive inference, facilitates inference on network nodes and edges related

to the outcome, and provides well-calibrated uncertainties for inference and prediction. As

a mode of inference, a Bayesian framework is adopted due to its ability to naturally quan-

tify uncertainty in inference and prediction, particularly in the identification of significant

nodes and edges. This is particularly significant when dealing with a moderate sample size,

especially when the number of network edges far exceeds the sample size.

1.1 Related Literature

Although the literature on regression models incorporating a multilayer network predictor

is sparse, some previous studies have investigated regression frameworks with a scalar

outcome and object predictors. However, existing methods are unable to address all of our

inferential objectives simultaneously, as outlined in this section.

In regressions involving a single network predictor, commonly used methods often in-

volve carefully constructing a few summary statistics from the network [Bullmore and

Sporns, 2009] or the transformation of the network object into a high-dimensional set

of edge weights [Craddock et al., 2009, Richiardi et al., 2011]. Subsequent inference is

then drawn utilizing the developments in ordinary high-dimensional regression architec-

ture [Tibshirani, 1996, Park and Casella, 2008, Carvalho et al., 2010] or neural network

(NN) models [Polson and Ročková, 2018, Dinh and Ho, 2020]. These approaches can be
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extended to handle multilayer networks in a straightforward manner. However, restruc-

turing the multilayer network predictor using these methods may not adequately capture

the effects of intricate interconnections between nodes within and across different layers on

the outcome, potentially compromising the accuracy and interpretability of the regression

model.

Recent advancements in the study of regression models with a scalar outcome and a

single network predictor have shown promising potential by leveraging the structure of the

network predictor. To this end, Relión et al. [2019] introduce a frequentist penalization

framework, and Guha and Rodriguez [2021, 2023] introduce Bayesian network shrinkage pri-

ors to estimate the effects of network nodes and edges on the scalar outcome, exploiting the

topology of the network predictor. The approach presented in Relión et al. [2019] demon-

strates favorable performance in predicting the outcome and making inferences on model

parameters. However, uncertainty quantification in this approach becomes challenging, as

the state-of-the-art bootstrap methods cannot guarantee consistent uncertainty estimation

for the group lasso-like penalties proposed in Relión et al. [2019]. The Bayesian frameworks

introduced by Guha and Rodriguez [2021, 2023] exhibit precise prediction of the outcome

and robust inference on model parameters, while also providing accurate uncertainty es-

timates, particularly in identifying influential network nodes and edges. However, both

these approaches are tailored for a single network predictor. Making further advancements

to handle interactions between nodes within and across layers for a multilayer network

predictor poses nontrivial modeling challenges. Addressing these complexities is crucial for

the development of a comprehensive regression framework capable of effectively handling

multilayer network predictors.

An alternative approach involves stacking networks from different layers to create a

tensor, which is then used to construct a regression framework with the scalar outcome and

the tensor predictor. This approach can take advantage of recent developments in tensor
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regression, consisting of both penalized optimization [Zhou et al., 2013, Fan et al., 2019],

low-rank methods [He et al., 2018, Ahmed et al., 2020] and Bayesian multiway shrinkage

literature [Guhaniyogi et al., 2017, Spencer et al., 2022]. However, these approaches do

not explicitly consider the symmetry constraint in the individual layers of the multilayer

network. Additionally, their primary focus is on prediction and identifying significant edges

or interconnections, rather than specifically detecting important nodes in each layer that

impact the response.

The rest of the article proceeds as follows. Section 2 provides a detailed description

of the model development and prior formulation on model coefficients. Section 3 discusses

posterior computation. The simulation studies in Section 4 and the analysis of security

networks data in Section 5 showcase the effectiveness of the proposed approach compared

to competing methods. Finally, Section 6 offers concluding remarks and future directions.

Appendix A details the full conditional distributions for the model parameters used in

model estimation through Markov Chain Monte Carlo (MCMC).

2 Bayesian Multilayer Network Regression

2.1 Model Description

In this section, we describe our proposed method, referred to as the Bayesian Multilayer

Network Regression (BMNR) Model. For the i-th observation, yi ∈ R is a continuous

scalar response, and {N (l)
i }Ll=1 is a multilayer network predictor with L layers. A L-layer

network is defined as a sequence of L networks: {N (l)
i }Ll=1 = {(A(l), E (l))}Ll=1, with the lth

network consisting of nodes A(l) and edges E (l) ⊂ A(l) × A(l). We assume that node sets

are same across different layers, i.e., A(l) = A(l′) = A, for any 1 ≤ l ̸= l′ ≤ L. The common

set of nodes is denoted by A = {A1, . . . ,AV }, where |A| = V represents the number

of nodes. The network-valued feature at the l-th layer N (l)
i is represented by a V × V
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adjacency matrix X
(l)
i ∈ RV×V , where the entry at position (v, v′) signifies the strength of

association between nodes Av and Av′ , v, v
′ = 1, ..., V . This article specifically focuses on

undirected networks with no self-relationship within each layer, meaning that the adjacency

matrix X
(l)
i is symmetric and the diagonal entries of this matrix are zero. In what follows,

we represent the L-layer network for observation i by the sequence of adjacency matrices

X i = {X(l)
i }Ll=1. For each observation i (i = 1, . . . , N), the proposed high-dimensional

regression model representing the relationship between the response variable yi and the

multilayer network predictor is given by,

yi = µ+
L∑
l=1

⟨X(l)
i |B(l)⟩/2 + ϵi, ϵi

i.i.d.∼ N(0, τ 2), (1)

where B(l) is the coefficient matrix of dimension V × V corresponding to the lth layer

X
(l)
i , and ⟨X(l)

i |B(l)⟩ = Trace(B(l)TX
(l)
i ) denotes the Frobenius inner product between

the matrices X
(l)
i and B(l). The Frobenius inner product serves as an extension of the dot

product, transitioning from vector spaces to matrix spaces, and it naturally represents the

inner product in the space of matrices. In a manner akin to X
(l)
i , we presume that the

coefficient matrix B(l) is symmetric and has zero entries along its diagonal. Equation (1)

establishes a connection between networks at multiple layers and the outcome, allowing us

to infer on influential nodes at each layer in predicting the outcome. To achieve this, prior

distributions on the model coefficients are constructed jointly, as elaborated in the next

section.

2.2 Low-Rank Structure on Coefficients and Prior Formulation

To encompass the network predictor information within each layer and capture the relation-

ship between the multilayer network and the scalar outcome, while maintaining flexibility,

we adopt a low-order spectral representation of the network coefficients within each layer.

This representation includes shared latent effects across layers. Let β
(l)
v,v′ denote the (v, v

′)th

entry of the coefficient matrix B(l), 1 ≤ v < v′ ≤ V , with the symmetry condition implying
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β
(l)
v,v′ = β

(l)
v′,v. The low-rank representation for the coefficient is given by,

β
(l)
v,v′ = ūT

vΛūv′ + u(l)T
v Λ(l)u

(l)
v′ , 1 ≤ v < v′ ≤ V, l = 1, ..., L, (2)

where u
(l)
v ∈ RR is the R-dimensional coordinate in the latent space corresponding to

node Av specific to the l-th layer, and ūv ∈ RR is the node coordinate of Av shared

across all layers. Henceforth, they are referred to as layer-specific latent effects and shared

latent effects, respectively. Here Λ and Λ(l) are R × R diagonal matrices with the r-th

diagonal entries λr and λ
(l)
r , respectively. The diagonal elements λr, λ

(l)
r ∈ {−1, 0, 1}’s are

introduced to assess the effect of the r-th dimension of shared and layer-specific latent

effects, respectively, on the network coefficients. In particular, λ
(l)
r = 0 implies that the

r-th dimension of the l-th layer-specific latent effects are not informative for any v. A

similar conclusion applies to λr. The assumed structure diminishes the count of estimable

parameters from LV (V −1)/2 to (L+1)V R+R(L+1) = R(L+1)(V +1), with the typical

condition that R << V .

The structure of β
(l)
v,v′ in (2) is designed to account for the interaction between nodes

Av and Av′ . Note that ūT
vΛūv′ captures the interaction between the nodes Av and Av′

[Hoff et al., 2002] on the outcome shared across all layers, while u
(l)T
v Λ(l)u

(l)
v′ represents

the layer-specific impact of this interaction, offering flexibility in modeling the effects from

different network layers. Node interactions are characterized by the dot product of shared

and layer-specific node coordinates in a latent space. This arrangement allows nodes with

coordinates in the same direction to positively impact the outcome, whereas nodes with

coordinates in opposite directions exert a negative effect on the outcome. Importantly, u
(l)
v

lacks identifiability due to its invariance to orthogonal transformations. Nevertheless, as

elaborated in subsequent paragraphs, our inferential interest centers around {v : u
(l)
v = 0},

which is an identifiable quantity.

With the specification in (2), the vth node has no effect from the lth layer on the

outcome if u
(l)
v = 0. In order to directly infer on the influential nodes from the lth layer,
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a spike-and-slab [Ishwaran and Rao, 2005] mixture distribution prior is assigned on the

latent effect u
(l)
v s. More specifically, we set

u(l)
v

iid∼ ξ(l)v N(0,M (l)) + (1− ξ(l)v )δ0, ξ(l)v ∼ Ber(πl), l = 1, ..., L, (3)

where δ0 is the Dirac-delta function at 0 and M (l) is a R × R covariance matrix. The

parameter πl corresponds to the probability of the nonzero mixture component and ξ
(l)
v

is a binary indicator set to 0 if u
(l)
v = 0. Thus, the posterior distributions of ξ

(l)
v ’s en-

able identification of nodes related to the outcome. To account for multiplicity in mul-

tiple variable selection, we assign πl
iid∼ Beta(a, b), l = 1, ..., L, following popular lit-

erature [Scott and Berger, 2010]. The shared latent effects for all nodes are assigned

u1, . . . ,uV
iid∼ N(0,M ), where M is a R×R covariance matrix. All covariance matrices are

assigned M ,M (1), ...,M (L) i.i.d.∼ IW (ν, IR) where IW (ν, IR) denotes an Inverse-Wishart

distribution with a R×R identity matrix IR and degrees of freedom ν.

To learn which components of u
(l)
v and ūv are informative, we assign a hierarchical

prior. Since the choice of R is arbitrary, allowing λrs and λ
(l)
r s to be 0 protects the model

from over-fitting. These variables are assigned Multinomial-Dirichlet priors given by,

λ(l)
r = δ1π

(l)
r,1 + δ0π

(l)
r,2 + δ−1π

(l)
r,3, λr = δ1πr,1 + δ0πr,2 + δ−1πr,3, l = 1, ..., L, r = 1, ..., R,

(π
(l)
r,1, π

(l)
r,2, π

(l)
r,3) ∼ Dir(1, rη, 1), (πr,1, πr,2, πr,3) ∼ Dir(1, rη, 1), η > 1.

The hyper-parameters of the Dirichlet distribution are chosen to introduce increasing

shrinkage on λr and λ
(l)
r as r grows. Specifically, R̂ =

∑R
r=1 λr and R̂(l) =

∑R
r=1 λ

(l)
r

represent the dimensions of ūv and u
(l)
v needed for effective modeling of the data. These

quantities are referred to as the shared effective dimension and the layer-specific effective

dimension, respectively. The prior specification is completed by setting a non-informative

prior on µ and IG(aτ , bτ ) prior on τ 2.
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3 Posterior Computation

The summaries from the posterior distribution cannot be computed in closed form. How-

ever, all parameters have full conditional distributions available, which belong to standard

families. Therefore, the posterior computation of parameters is achieved through Gibbs

sampling. Details on all the full conditionals are provided in Appendix A.

3.1 Node Selection

To determine whether the vth node has influence in the lth layer for predicting the outcome,

the post-burn-in S samples ξ
(l)
v,(1), . . . , ξ

(l)
v,(S) of ξ

(l)
v are used. The vth nodeAv is considered in-

fluential at the lth layer if the empirically estimated probability P (ξ
(l)
v = 1|Data), computed

as
∑S

s=1 ξ
(l)
v,(s)/S, is greater than 0.5. Additionally, we estimate the layer-specific effective

dimensions R̂(l), empirically computed as
∑S

s=1

∑R
r=1 |λ

(l)
r,(s)|/S, where λ

(l)
r,(1), . . . , λ

(l)
r,(S) are

the post-burn-in samples of λ
(l)
r .

3.2 Computation Time

Figure 1 illustrates the computation time per iteration of the Gibbs sampler for the pro-

posed method, presented in minutes. The computation time exhibits a linear increase with

the sample size, and it also shows a linear growth concerning the number of nodes V , where

the rate of linear growth is contingent on the sample size n. All computation times are

based upon model runs on a server containing two Intel Xeon E5-2697 processors with

a combined 24 cores and 48 threads and 128 GB of RAM. The Gibbs sampler demon-

strates rapid convergence of all parameters, with traceplots for a few parameters provided

in Appendix B.
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Figure 1: Computation time (in minutes) per iteration for the proposed method with

respect to different choices of V and n.

4 Simulation Studies

In this section, we conduct a comprehensive comparison between the proposed Bayesian

multilayer network regression (BMNR) and several competitors in various simulation set-

tings. We evaluate both the inferential and predictive performances of BMNR in contrast

to these alternative methods. Our competitors encompass penalized likelihood methods,

Bayesian shrinkage priors and convolutional neural networks tailored for high-dimensional

regression tasks. Additionally, we compare our method with a tensor regression approach.

This comprehensive evaluation will showcase the strengths and advantages of BMNR in

handling complex multilayer network data while assessing its efficacy vis-a-vis state-of-

the-art alternatives. In all simulations, we fix the number of layers (L) to be equal to 4,
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consistent with the number of layers in the security systems data application.

Simulated Data Generation. We simulate the multi-layer network X i, represented by

symmetric adjacency matrices at L layers X
(1)
i , ...,X

(L)
i for the ith sample, by drawing

independent and identically distributed (i.i.d.) upper triangular vectors x
(l)
i ∼ N (0, I),

with all diagonal entries set to 0. The response yi for each sample is generated following

the multilayer network regression model proposed in (1), where the true error variance

is τ ∗2, the true intercept is µ∗, and the true network coefficient corresponding to X
(l)
i

at the lth layer is denoted as B∗(l). In all simulations, we set µ∗ = 0.5 and τ ∗2 = 0.1.

The simulations utilize n = 400 samples for model fitting, reserving n∗ = 100 samples for

predictive inference.

Let π∗
l be the probability of a node at the lth layer being influential with respect to

the outcome. We denote (1 − π∗
l ) as the node sparsity corresponding to the lth layer. To

generate the true activation pattern of nodes in relation to the outcome, we simulate node-

specific activation indicators ξ
∗(l)
1 , ..., ξ

∗(l)
V ∼ Ber(π∗

l ) for the lth layer, where l = 1, ..., L.

The entries of B∗(l) are generated from two different scenarios.

Scenario 1: The first scenario simulates R∗-dimensional latent effects corresponding to the

lth layer as u
∗(l)
v

ind.∼ ξ
∗(l)
v N(0, I)+(1−ξ

∗(l)
1 )δ0, for v = 1, ..., V . Further, the R∗-dimensional

shared latent effects are drawn as ū∗
1, ..., ū

∗
V

i.i.d.∼ N(0, I). The true coefficients correspond-

ing to the (v, v′)th edge at the lth layer are constructed using the low-rank formulation

β
∗(l)
v,v′ = (ū∗

v)
T ū∗

v′+(u
∗(l)
v )Tu

∗(l)
v′ , for v < v′. We specify β

∗(l)
v,v′ = β

∗(l)
v′,v and β

∗(l)
v,v = 0 to maintain

symmetry and zero diagonals in the network coefficient at each layer. In Scenario 1, we

assume that the fitted and true network coefficients exhibit a similar low-rank structure,

with the true rank R∗ being less than the fitted rank R. In addition to evaluating the

quality of inference on influential nodes, network coefficients at each layer, and predictive

inference, this simulation framework enables the assessment of the quality of inference on

shared effective dimension and layer-specific effective dimension.
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Scenario 2: Scenario 2 allows for model misspecification by relaxing the low-rank assump-

tion on the network coefficient B∗(l). Specifically, this scenario assumes β
∗(l)
v,v′ = β̄

∗(l)
v,v′ + β̃

∗(l)
v,v′ ,

where β̄
∗(l)
v,v′ is simulated i.i.d. from N(0,1) and β̃

∗(l)
v,v′ is simulated as β̃

∗(l)
v,v′ ∼ ξ

∗(l)
v ξ

∗(l)
v′ N(0, 1)+

(1− ξ
∗(l)
v ξ

∗(l)
v′ )δ0, for v < v′. We set β

∗(l)
v,v′ = β

∗(l)
v′,v and β

∗(l)
v,v = 0 to satisfy the symmetry and

zero diagonals of the network coefficient at each layer, respectively. The construction of

β̃
∗(l)
v,v′ ensures that the edge effect connecting the nodes Av and Av′ is zero if one of these

nodes is not influential in predicting the outcome. Scenario 2 presents challenges due to the

fitted low-rank network coefficient at each layer being employed to estimate a full-rank true

network coefficient. This simulation scenario assesses the quality of inference on influential

nodes, network coefficients at each layer, and predictive inference. However, it does not

permit the evaluation of inference on layer-specific effective dimension, as the true network

coefficient is full-rank at each layer.

For both Scenario 1 and Scenario 2, we simulate data under three distinct combinations of

node sparsity at the four layers, as outlined below:

• Combination 1. 1− π∗
1 = 0.8, 1− π∗

2 = 0.8, 1− π∗
3 = 0.7, 1− π∗

4 = 0.7.

• Combination 2. 1− π∗
1 = 0.4, 1− π∗

2 = 0.3, 1− π∗
3 = 0.4, 1− π∗

4 = 0.3

• Combination 3. 1− π∗
1 = 0.5, 1− π∗

2 = 0.8, 1− π∗
3 = 0.8, 1− π∗

4 = 0.6.

Combinations 1-3 represent cases with high node sparsity for all layers, low node sparsity

for all layers and varying node sparsity between layers, respectively. Since simulation in

Scenario 1 requires specifying rank R∗ for the true node-specific latent effects, we choose

them to be 4,3 and 2 for Combinations 1-3, respectively. The fitted rank is set at R = 6.

In our evaluation, we consider two different network sizes, V = 20 and V = 50, across the

two scenarios and three combinations to comprehensively assess the performance of the

competing methods.

Competitors.We compare the proposed BMNR with two sets of competitors. The first set

of competitors treats the edges between nodes in the multilayer network predictor as a “long
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vector of predictors,” i.e., these competitors extract the vectorized upper triangular part x
(l)
i

from the network at the lth layer X
(l)
i and perform regression of the response variable yi on

the LV (V −1)/2 dimensional vector xi = (x
(1)T
i , ...,x

(L)T
i ). By adopting this approach, they

overlook the relational nature of the network predictor at each layer, potentially limiting

their ability to capture the effect of intricate interconnections among network nodes on the

outcome. To this end, a Horseshoe prior [Carvalho et al., 2010] is employed on the regression

coefficients due to its state-of-the-art empirical performance in regressions with both sparse

and not-so-sparse settings. We refer to this competitor as Horseshoe, implemented through

the monomvn [Gramacy et al., 2023] R package. A frequentist high dimensional regression

competitor has also been constructed by adopting a penalized optimization framework with

the Lasso penalty on the predictor coefficients [Tibshirani, 1996]. Lasso is implemented

using the glmnet [Friedman et al., 2010] package in R, with the penalty parameter of Lasso

chosen through a five-fold cross-validation technique. Additionally, a non-linear relationship

between yi and xi is accommodated in the competitors by fitting convolutional neural

network (CNN) models. CNN models are fit using the tensorflow [Allaire and Chollet,

2023] and keras [Allaire and Tang, 2023] packages in R. The inputs to the CNN models are

composed of the upper-triangular entries of each network layer, stacked to create a matrix

of dimension L×V (V − 1)/2. The models are fit with a two-dimensional convolution layer

having the ReLU activation function, followed by flattening and a fully connected, linear

output layer. The filter sizes, number of filters, and learning rate for the models are tuned

through five-fold cross-validation. For training the CNN, 90 percent of the training samples

are used to fit the model, while 10 percent are used for validation. The batch size is equal

to the number of samples used to fit the model.

The second type of competitor treats the multilayer network as a tensor of dimension

V × V × L and adopts a tensor regression approach [Zhou et al., 2013] for modeling the

continuous outcome and the tensor predictor constructed from the multilayer network. We
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implement the tensor regression approach using the R package TRES. Unlike Horseshoe,

Lasso and CNN, this framework accounts for the inherent association in multiple layers

of the network to predict outcome, providing an alternative way to handle the multilayer

network data. However, it does not account for the symmetry of the matrices at each

layer of the network. Horseshoe, Lasso and Tensor Regression (TensorReg) are compared

with BMNR in terms of inferential and predictive performances. In contrast, CNN is only

designed to assess the comparative predictive performance with BMNR.

Metrics of Comparison. To evaluate BMNR’s performance in identifying nodes signif-

icantly associated with the outcome, we present the estimated posterior probability of a

node being influential in a layer, denoted as P (ξ
(l)
v = 1|Data).

For assessing the competitors’ performance in estimating the coefficient B∗(l), we utilize

the scaled mean squared error (MSE) averaged across L layers. The MSE is defined as

1
L

∑L
l=1

||B̂(l)−B∗(l)||2

||B∗(l)||2 , where B̂
(l)

represents a suitable point estimate of B∗(l). Specifically,

we use the frequentist point estimate for Lasso and TensorReg, while for BMNR and

Horseshoe, we use the posterior mean of B(l).

To assess the quantification of uncertainty by the proposed approach, we calculate the

length and coverage of posterior 95% credible intervals averaged over the edge coefficients

β
(l)
v,v′ from the post burn-in MCMC samples of B(l). For the frequentist competitors, we

compute the coverage and length of the confidence intervals with an asymptotic coverage

of 95%. For evaluating predictive power, we compute the scaled mean squared prediction

error, given by ||y∗ − y∗
pred||2/||y∗||2, where y∗ is the true value of the response at n∗ out-

of-sample observations, and y∗
pred is the point prediction from competitors at these values.

Bayesian competitors impute y∗
pred as the mean of the posterior predictive density. All

results presented are averaged over five simulation replicates.
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4.1 Simulation Results

4.1.1 Accuracy of Influential Node Identification

Table 1 displays three matrices corresponding to three different simulation combinations

under Scenario 1 for V = 20. Table 2 displays corresponding matrices for Scenario 2 for

V = 20. In each matrix, the colored and white cells in the lth column represent truly

influential and truly uninfluential nodes in the lth network layer, respectively. Overlaid on

these matrices are the estimated posterior probabilities P (ξ
(l)
v = 1|Data) for all layers and

nodes, l = 1, .., 4 and v = 1, ..., 20.

Table 1 corresponding to Scenario 1 illustrates highly accurate identification of truly

influential nodes in scenarios characterized by low node-sparsity and varying sparsity be-

tween layers. In these instances, the estimated posterior probabilities are extremely close

to either 1 or 0, correctly categorizing nodes as influential or not, with minimal uncer-

tainty. However, in Combination 1, characterized by high node-sparsity across all layers,

there are instances of both false positives and false negatives. Notably, even Combination

1 leads to excellent estimation of model coefficients and predictive inference discussed in

Sections 4.1.2 and 4.1.3. The discrepancy may be attributed to the fact that high node-

sparsity results in high sparsity in the edge coefficients across all layers. The abundance of

zeros in the true edge coefficients creates a weak network structure, allowing our method

to closely estimate the true coefficient due to the modeling architecture inducing sparsity,

even when some false positives and negatives occur. In Scenario 2, the true coefficient does

not exhibit a low-rank structure. Even amidst such mis-specification, the model largely

distinguishes truly influential and uninfluential nodes. However, for uninfluential nodes,

the probability P (ξ
(l)
v = 1|Data) tends to fall within the range of 0.2 − 0.45, rather than

being very close to zero. The trends are largely similar for V = 50, though they are not

presented due to space constraint.

It is important to emphasize that one of BMNR’s key inferential strengths lies in its
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Node Layer 1 Layer 2 Layer 3 Layer 4

1 0.0000 0.0050 0.0000 0.0000

2 1.0000 1.0000 1.0000 1.0000

3 0.0000 0.0020 0.0000 0.0000

4 0.0000 0.0205 0.0000 0.0000

5 0.0000 0.0365 0.0000 1.0000

6 0.0500 0.2235 1.0000 0.0000

7 0.0030 0.3305 0.0000 1.0000

8 1.0000 1.0000 1.0000 1.0000

9 1.0000 1.0000 0.0000 0.0000

10 1.0000 1.0000 1.0000 1.0000

11 0.0000 1.0000 1.0000 0.0000

12 1.0000 1.0000 1.0000 1.0000

13 1.0000 1.0000 1.0000 1.0000

14 0.9465 0.8860 0.6905 0.7130

15 0.0000 1.0000 0.0000 0.0000

16 0.0000 0.9555 0.0000 1.0000

17 1.0000 1.0000 1.0000 1.0000

18 1.0000 1.0000 1.0000 1.0000

19 1.0000 1.0000 1.0000 1.0000

20 0.0000 0.0520 1.0000 0.0000

(a) Combination 1

Node Layer 1 Layer 2 Layer 3 Layer 4

1 1.0000 1.0000 0.0000 1.0000

2 1.0000 1.0000 1.0000 0.0000

3 1.0000 0.0025 1.0000 1.0000

4 0.0000 1.0000 0.0000 0.0000

5 0.0025 0.0020 0.0000 1.0000

6 0.0000 1.0000 1.0000 1.0000

7 0.0005 1.0000 1.0000 1.0000

8 0.0085 1.0000 1.0000 0.0000

9 1.0000 1.0000 0.0005 1.0000

10 0.0005 1.0000 1.0000 1.0000

11 1.0000 0.0040 0.0000 1.0000

12 1.0000 0.0025 1.0000 1.0000

13 0.0000 1.0000 1.0000 1.0000

14 1.0000 1.0000 1.0000 0.0000

15 1.0000 1.0000 0.0000 0.0000

16 1.0000 1.0000 0.0030 1.0000

17 1.0000 0.0015 1.0000 1.0000

18 1.0000 1.0000 1.0000 0.0000

19 0.0000 0.0010 0.0000 1.0000

20 1.0000 1.0000 1.0000 1.0000

(b) Combination 2

Node Layer 1 Layer 2 Layer 3 Layer 4

1 1.0000 0.0005 0.0000 0.0000

2 1.0000 1.0000 0.0005 0.0005

3 0.0005 0.0005 0.0000 0.0000

4 0.0000 0.0000 1.0000 1.0000

5 0.0000 0.0025 1.0000 1.0000

6 1.0000 0.0005 0.0000 0.0000

7 1.0000 0.0005 0.0000 1.0000

8 1.0000 0.0010 0.0010 0.0000

9 0.0000 1.0000 0.0005 1.0000

10 0.0000 0.0005 0.0005 0.0000

11 0.0000 0.0000 0.0000 0.0005

12 1.0000 0.0000 0.0000 1.0000

13 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.0000 0.0000 0.0000

15 0.0000 1.0000 0.0000 0.0000

16 1.0000 0.0000 1.0000 1.0000

17 1.0000 0.0000 0.0000 0.0000

18 0.0000 0.0000 0.0000 1.0000

19 0.0000 1.0000 1.0000 0.0005

20 1.0000 0.0000 0.0000 1.0000

(c) Combination 3

Table 1: Node selection results for V = 20 under Combinations 1,2 and 3 of Scenario 1. In

each matrix, the colored and white cells in the lth column represent truly influential and

truly uninfluential nodes in the lth network layer, respectively.

ability to detect important nodes in multilayer networks while accounting for the interplay

between multiple layers, all while quantifying uncertainty. This capability aligns directly

with the inferential objectives of our scientific study, which involve identifying critical ac-

tors or nodes within network security systems in high-consequence facilities. In contrast,

existing frequentist or Bayesian high-dimensional regression methods (e.g., Lasso, Horse-

shoe), tensor regression approaches (e.g., TensorReg), or neural network-based methods

(e.g., CNN) do not provide node identification in the present context.
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Node Layer 1 Layer 2 Layer 3 Layer 4

1 0.3700 0.4600 0.9900 0.9000

2 0.6000 0.3300 0.3700 0.4600

3 0.3400 0.3600 0.5000 0.4000

4 0.7800 0.6000 0.7400 0.6300

5 0.9900 0.3600 0.4400 0.7400

6 0.5400 0.4100 1.0000 1.0000

7 0.3500 0.4300 0.4100 0.9400

8 0.3600 0.4200 0.3800 0.2900

9 0.3700 0.3500 0.2600 0.1100

10 0.3000 0.2800 0.2900 0.4100

11 0.8000 0.7500 0.4600 0.9500

12 0.1900 0.2600 0.3800 0.4300

13 0.4600 0.4400 0.4500 0.4300

14 0.3900 0.3900 1.0000 0.3200

15 0.1900 0.1500 0.1300 0.3600

16 0.4000 0.9700 0.4600 0.3200

17 0.3200 0.6400 0.9400 0.3800

18 0.3200 0.4300 0.3100 1.0000

19 0.4800 0.8000 0.6100 0.2200

20 0.3600 0.2800 0.4600 0.9200

(a) Combination 1

Node Layer 1 Layer 2 Layer 3 Layer 4

1 0.9600 0.3800 0.7500 0.8600

2 0.9800 0.3400 0.7400 0.3600

3 0.9900 0.9000 0.3400 0.3900

4 0.4500 0.5800 0.5200 0.8800

5 0.9900 0.9900 0.3700 0.3200

6 0.9300 0.9500 0.8700 1.0000

7 1.0000 0.9700 1.0000 0.9600

8 0.3500 0.8200 1.0000 0.7800

9 0.9800 0.5500 0.3100 1.0000

10 0.4200 0.9600 0.9700 0.4100

11 0.7800 0.9100 0.4200 0.9700

12 0.8600 0.3300 0.9900 0.7000

13 0.4200 1.0000 0.9700 1.0000

14 0.9000 0.8200 0.4600 0.4200

15 0.3800 0.6500 0.9000 0.9600

16 0.9400 0.3800 0.3600 0.9600

17 0.2500 0.2400 0.7000 0.3500

18 0.9500 1.0000 0.7400 0.9900

19 0.2500 0.8400 0.2100 0.7300

20 0.8700 0.6100 0.3300 0.6500

(b) Combination 2

Node Layer 1 Layer 2 Layer 3 Layer 4

1 0.3400 0.9300 0.2500 1.0000

2 0.7800 0.3600 0.2200 0.3700

3 0.9500 0.3300 0.3800 0.3600

4 0.8800 0.8100 0.3400 0.6500

5 0.9700 0.2800 0.3200 0.9300

6 0.8800 0.3900 0.6300 1.0000

7 0.9200 0.3500 0.2700 1.0000

8 0.3300 0.2400 0.3400 0.3500

9 0.3400 0.3400 0.2300 0.1900

10 0.2700 0.3500 0.4100 0.3900

11 0.9700 0.4100 0.7300 0.4000

12 0.9100 0.2900 0.4900 0.3700

13 0.8700 0.3900 0.3200 0.3000

14 0.4000 0.9900 0.3400 0.3300

15 0.9800 0.4400 0.3800 0.4400

16 0.3400 0.5500 0.3900 0.3300

17 0.3100 0.7500 0.4000 0.9400

18 0.2500 0.3100 0.2900 0.3400

19 0.2600 0.3100 0.7300 0.9800

20 0.6000 0.4100 0.7900 0.6200

(c) Combination 3

Table 2: Node selection results for V = 20 under Combinations 1,2 and 3 of Scenario 2. In

each matrix, the colored and white cells in the lth column represent truly influential and

truly uninfluential nodes in the lth network layer, respectively.
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4.1.2 Estimation of Regression Coefficients

To evaluate the point estimation of multilayer network coefficients, Table 3 presents the

scaled Mean Squared Error (MSE) for each of the competitors across the three combinations

in the two scenarios. In all cases, the results consistently demonstrate superior performance

of BMNR compared to its competitors. In Scenario 1, where the true coefficients in each

layer assume a low-rank decomposition, BMNR significantly outperforms all its competi-

tors. However, in Scenario 2, where model misspecification is introduced, the performance

gap between BMNR and its competitors narrows, although BMNR still maintains an advan-

tage. Furthermore, BMNR consistently exhibits better performance under Combinations

1 and 3, where there is high-node sparsity in all layers and varying node-sparsity between

layers, respectively, compared to Combination 2, which exhibits low-node sparsity in all

layers. In Scenario 1, TensorReg emerges as the second-best performer, primarily due to

the imposed low-rank structure on the true coefficients which is conducive to TensorReg.

However, under misspecification in Scenario 2, Horseshoe outperforms Lasso and Tensor-

Reg. All competitors perform better for lower dimensional cases with the number of nodes

V = 20 as compared to V = 50.

BMNR offers a notable advantage over its competitors when it comes to characterizing

uncertainty in parameter estimation. Figure 2 demonstrates that, for V = 20 in Scenario

1, a scenario that particularly favors BMNR, it achieves close-to-nominal coverage with

significantly shorter credible intervals. Even under the more challenging Scenario 2 with

V = 20, BMNR consistently maintains coverage around 90%. Horseshoe, while achieving

coverage around 80%, comes with slightly wider credible intervals compared to BMNR.

TensorReg shows similar coverage to Horseshoe but with slightly shorter credible intervals

under Scenario 1, though it is outperformed by Horseshoe in Scenario 2. In contrast, Lasso

consistently underperforms in all scenarios.

In the case of high-dimensions with V = 50, where both BMNR and TensorReg employ
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dimension reduction, these two methods emerge as the top performers. Under Scenario

1, BMNR exhibits much narrower credible intervals than TensorReg for Combinations 1

and 3, but their performance is equivalent for Combination 2, which has low node-sparsity

across layers. In Scenario 2, when neither TensorReg nor BMNR holds a clear advantage,

BMNR maintains slightly higher coverage compared to TensorReg, albeit with slightly

wider credible intervals.

On the other hand, both Lasso and Horseshoe are ill-suited for high-dimensional scenar-

ios with V = 50, which results in approximately 8000 predictors (upon vectorization of the

multilayer network) with a limited sample size of n = 400. Consequently, both Lasso and

Horseshoe significantly underperform compared to BMNR and TensorReg in these high-

dimensional settings. Overall, BMNR stands out as a robust method for delivering point

estimates and characterizing uncertainty in parameter estimation, particularly in scenarios

with complex network structures.
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Scenario 1

V = 20 V = 50

Method Comb. 1 Comb. 2 Comb. 3 Comb. 1 Comb. 2 Comb. 3

BMNR 0.0006 0.0008 0.0007 0.1005 0.3748 0.0014

Lasso 1.5030 1.5331 1.4064 1.0012 1.0104 1.0110

TensorReg 0.5794 0.6791 0.5344 0.7518 0.8935 0.6071

Horseshoe 0.7420 0.6547 0.6052 0.9907 0.9901 0.9960

Scenario 2

V = 20 V = 50

Method Comb. 1 Comb. 2 Comb. 3 Comb. 1 Comb. 2 Comb. 3

BMNR 0.2301 0.3965 0.2769 0.8961 0.9288 0.9026

Lasso 1.3857 1.5426 1.6366 1.0052 1.0001 1.0372

TensorReg 0.8992 0.9338 0.9358 1.0219 1.0284 1.0228

Horseshoe 0.7086 0.6854 0.7133 0.9914 0.9911 0.9915

Table 3: Mean squared errors (MSE) in estimating multilayer network coefficients.
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Figure 2: Length and coverage of 95% credible intervals for Bayesian competitors and 95%

confidence intervals for frequentist competitors for three combinations under Scenario 1

and Scenario 2, with V = 20 as well as V = 50.

4.1.3 Predictive Inference

In our analyses, we conducted predictive inference on the competitors using a dataset of

n∗ = 100 samples generated according to the multilayer network regression model described

in (1). The predictive abilities of the competitors were evaluated based on the scaled Mean

Squared Prediction Error (MSPE).
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Notably, in Scenario 1, BMNR consistently outperforms all competitors across all com-

binations, demonstrating superior predictive performance for both V = 20 and V = 50.

Even when faced with model misspecification in Scenario 2, BMNR maintains a competi-

tive edge in predictive performance, although the performance gap between BMNR and its

competitors narrows compared to Scenario 1, as expected. BMNR’s predictive accuracy

seems more pronounced when the number of predictors is set to 20 compared to when it is

50.

The data generation schemes in both Scenario 1 and Scenario 2 are devised such that

the true coefficients in the multilayer network matrices take reasonably large positive and

negative values. Additionally, a substantial number of edge coefficients are set to zero.

Given the limited sample size of n = 400 and the large number of edges, reaching as

high as 760 for V = 20 and 4900 for V = 50, all local and global parameters in the

ordinary vector shrinkage priors are effectively shrunk to zero. This behavior facilitates

accurate estimation of zero coefficients but leads to poor point prediction for coefficients

significantly deviating from zero. Consequently, ordinary vector shrinkage priors, such as

the Horseshoe, demonstrate relatively poor performance in terms of point prediction. Lasso

exhibits poor performance for similar reasons.

Among the competitors, TensorReg is better equipped to handle high-dimensional

matrix-valued predictors stacked at multiple layers. However, its performance is consid-

erably compromised due to the lack of addressing the symmetry of network predictor co-

efficients at each layer. In contrast, CNN performs better among all competitors, as it is

specifically designed for drawing targeted predictive inference. While BMNR significantly

outperforms CNN for Scenario 1, CNN demonstrates comparable performance with BMNR

under Scenario 2 with model misspecification.
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Scenario 1

V = 20 V = 50

Method Comb. 1 Comb. 2 Comb. 3 Comb. 1 Comb. 2 Comb. 3

BMNR 0.0006 0.0008 0.0002 0.1257 0.3286 0.00003

Lasso 0.7147 0.6143 0.6298 1.0020 0.9897 0.9976

TensorReg 0.6178 0.7226 0.5931 0.8650 0.8632 0.6453

Horseshoe 0.7414 0.6513 0.6512 1.0022 0.9813 0.9815

CNN 0.4381 0.5123 0.6001 0.9305 0.9205 0.9449

Scenario 2

V = 20 V = 50

Method Comb. 1 Comb. 2 Comb. 3 Comb. 1 Comb. 2 Comb. 3

BMNR 0.2295 0.4058 0.2343 0.9502 0.9166 0.9523

Lasso 0.7259 0.6949 0.8012 1.0028 1.0008 1.0329

TensorReg 0.9544 0.9826 0.9362 1.0574 1.0622 1.0194

Horseshoe 0.7194 0.6878 0.6900 1.0090 0.9887 1.0155

CNN 0.2934 0.4656 0.3587 0.9490 0.9472 0.9466

Table 4: Predictive performance of BMNR and its competitors are presented for Combi-

nations 1, 2 and 3 under the two scenarios. The point prediction of the competitors are

compared using scaled mean squared prediction error (MSPE) computed from n∗ = 100

out-of-sample observations.

4.1.4 Estimation of Effective Dimensionalities

Table 5 presents the estimated shared effective dimension and layer-specific effective di-

mension, denoted as R̂ for ūv and R̂(l) for u
(l)
v , respectively. These estimates are compared

to the true dimensions of node latent variables used in the data generation, denoted as R∗,
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specifically in the context of Scenario 1. There is no assumption of low-rank specification

in Scenario 2 for simulating network coefficients, and therefore, such comparisons are not

applicable under this scenario.

It is worth emphasizing that effective dimensionalities for latent variables are inher-

ently challenging to identify with precision, especially for multilayer network coefficients.

Although we notice occasional instances of minor over-estimation and under-estimation

across certain layers, the estimated effective dimensionalities generally provide a close ap-

proximation of the true latent dimensions.

V Combination R∗ R̂ R̂(1) R̂(2) R̂(3) R̂(4)

20

1 4 4.0000 3.0000 3.0000 4.0000 5.0000

2 3 4.0000 3.0150 3.3605 3.5495 5.0000

3 2 2.0000 2.0000 2.3850 2.2615 2.7700

50

1 4 4.0000 3.0000 3.0000 5.0000 4.0000

2 3 4.4105 2.7255 2.5950 2.8125 2.9935

3 2 3.0000 4.0000 3.0000 2.0000 3.0000

Table 5: Estimation of the Effective Dimensions in Scenario 1. Here R∗ is the true

dimension of the latent variables, R̂ is the estimated shared effective dimension, and R̂(l)

is the estimated lth layer-specific effective dimension.

4.1.5 Sensitivity to the Choice of R

As the analysis involves a user-defined choice of R, it is essential to conduct additional

investigations to assess the sensitivity of inference to different values of R. To address this,

we carried out additional model runs for each simulation scenario with R set to various

values, specifically R = 10, 15, 20, in addition to our initially chosen value of R = 6. Table 6

presents the results for the MSE, coverage of the 95% CI, length of the 95% CI for estimating

multi-layer network coefficients, and the MSPE for predictive inference, specifically for
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the dataset associated with Combination 1 in Scenario 1, where the number of nodes is

V = 20. These results indicate that all the comparison metrics remain sufficiently robust

across different values of R. Comparable explorations into the impact of R in alternative

simulation scenarios yielded similar findings.

R MSE Coverage of 95% CI Length of 95% CI MSPE

10 0.0002 0.8728 0.0813 0.0003

15 0.0006 0.9408 0.1209 0.0006

20 0.00002 0.9601 0.0316 0.0001

Table 6: MSE, Coverage of 95% credible interval, length of 95% credible interval for

estimating multi-layer network coefficients and MSPE for predicting the outcome in BMNR

with different choices of R.

5 Analysis of Emulator Data on Network Security

Systems

In this section, we examine data originating from a simulation model of a high-consequence

facility (HCF) security system, as proposed and developed by Williams et al. [2020]. The

simulation model explores various events relevant to HCF security, spanning from intru-

sions to infrastructure failures. It is characterized as an agent-based simulation model

representing a hypothetical security system.

The hypothetical Lone Pine Nuclear Power Plant (LPNPP) has been used extensively

by Sandia National Laboratories for international security and physical protection training

and demonstration purposes [Osborn et al., 2019]. A combination of security and modeling

subject matter expertise has been used to transform the hypothetical LPNPP into a multi-

layer network [Williams et al., 2020]. This network encompasses four layers, namely (i) data
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security layer, (ii) power security layer, (iii) human security layer, and (iv) communication

security layer. Subsequently, this network is passed into a multi-agent dynamic model that

simulates a sequence of events: initially, positioning an adversary at the security system’s

border; next, determining the optimal path for the adversary to reach critical interior com-

ponents; and finally, executing the optimal path until the adversary is either detected and

assessed by the security system or successfully reaches critical interior components.

Multiple simulation runs were conducted, with two times recorded for each run. These

were: T1: the time the adversary comes into range of potential detection, and, T2: the time

the adversary is detected by a guard or sensor. The response of interest is the Time until

Detection (TUD), which is denoted by (T2 − T1).

The data we examine originates from a series of experimental runs designed to explore

the significance of specific nodes within the multilayer network system in an ad hoc manner.

The experiment involved the sequential removal of 10 nodes at each step from the network

until 100 nodes were removed, spanning 10 steps. Notably, three nodes crucial to system

function—the central power and communications nodes, along with one of the primary or

secondary central command nodes—were deemed non-removable. This decision not only

ensured reasonable simulation results, but also reflected the reality that eliminating the

command centers represented by the central nodes was difficult. Following each removal

step, the multilayer network underwent 256 simulations, resulting in 256 response times

(TUD) obtained from the simulator.

Figure 3 illustrates the median TUD times (median computed over 256 simulations)

for the experimental runs across the 10 steps. These 10 steps are repeated 32 times. Out

of these 32 repetitions, 31 repetitions involved random removal of 10 nodes at each step,

denoted as the random removal simulations. In contrast, one repetition implemented the

structured removal of nodes, following the order of nodes’ importance ranked by their

degrees, referred to as the structured removal. We note that the degree of a node is the
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number of connections that it has to other nodes in the network. The TUDs corresponding

to random node removal are indicated by the grey lines, while the solid black line represents

the TUDs for structured removal. Note that after 80 high degree nodes were removed in the

structured removal, the adversary could no longer be detected by the security system. This

is represented by the missing observations along the black line in Figure 3. The experiment

suggests a likely association between high-degree nodes and the TUD.
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Figure 3: Time Until Detection for 32 experimental runs. The gray lines show the paths for

the 31 runs where nodes were removed randomly (random removal). The black line shows

the result when nodes were removed in order of importance, ranked by degree (structured

removal).

The described experiment, while offering an ad-hoc insight into the relationship between
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high-degree nodes and TUD, falls short of addressing two crucial objectives. First, it does

not enable model-based inference on individual nodes when considering their collective

impact on TUD. Second, it does not support model-based predictive inference for TUD

based on the multilayer network. These represent challenging and important questions for

security scientists, but they are difficult to achieve with the experiment described above,

as it lacks randomness in the input network.

To address these inferential objectives, our team, in collaboration with scientists from

the Sandia National Laboratories, have introduced randomness into the data. Specifically,

for each sample, we constructed a very sparse Erdős-Rényi network and overlaid it on top

of the original multilayer security network with 107 nodes. Importantly, due to the high

sparsity of the added Erdős-Rényi network, the degree of each node in each layer is largely

unaltered. Examples of sampled communication security layers constructed in this manner

are shown in Figure 4. The analyzed data consisted of 431 pairs of multilayer networks

constructed in this way, along with the corresponding TUDs (response) values computed

from the simulator.

Figure 4: Examples of noise-added communication security layers.

With 431 pairs of multilayer networks and scalar-valued TUD, we partitioned the data

into n = 345 training samples and n∗ = 86 test samples. BMNR and its competitors

are fitted on the training data and are used to draw predictive inference on the test data.

Importantly, we offer identification of influential nodes using BMNR. Additionally, predic-

tions of TUD for all competitors are obtained over n∗ = 86 out-of-sample observations. We

30



conduct ten replications, fitting all competitors to ten different training-test data splits,

and the results are described in the following section.

5.1 Results

Table 7 shows the performance of competing methods in terms of predicting TUD based on

the multilayer network on n∗ = 86 out-of-sample observations averaged over ten different

splitting. BMNR largely outperforms all competitors in this task except CNN which shows

about 10% higher MSPE compared to BMNR.

Model BMNR Lasso TensorReg Horseshoe CNN

MSPE 0.6769 0.7590 0.9813 1.2118 0.7206

Table 7: Predictive performance of BMNR and its competitors in predicting TUD on the

Emulator Data.

Due to security restrictions, we are unable to provide the details regarding the nodes

identified as influential by BMNR. Nevertheless, we can offer a general overview of node

selection. Specifically, BMNR identifies 5 nodes in the communication layer, 4 nodes in the

data layer, 5 nodes in the human layer, and 7 nodes in the power layer.

A majority of the identified nodes in the data, power, and communication layers exhibit

high degrees, indicating their membership in node clusters. However, the nodes identified

in the human layer do not exhibit high degrees. This can be attributed to the small size

of the node clusters in the human layer, which are easily influenced by added noise in the

design. Our model’s analysis broadly aligns with the conclusions drawn from the original

simulator experiments, indicating the importance of certain high-degree nodes in designing

the security architecture. It is noteworthy that our approach represents the first statistical

exploration of the association between multilayer security networks and Time to Detection

(TUD) at the Sandia National Laboratories in a principled model-based manner.
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6 Conclusion and Future Work

This article introduces a novel Bayesian framework designed to address a regression prob-

lem characterized by a continuous outcome and a multilayer network-valued predictor, with

each layer representing an undirected network. Our contribution encompasses modeling of

network coefficients associated with different layers using low-rank structures with shared

parameters across layers. This approach enables us to capture complex relationships be-

tween the outcome and various network layers by leveraging information within and across

these layers. The empirical findings from our simulation studies validate the superior effi-

cacy of our approach in situations where the regression coefficients demonstrate a multilayer

network structure. Furthermore, we use our methodology to analyze emulator data of mul-

tilayer security networks from the Sandia National Laboratories. The proposed framework

offers inference on multilayer network coefficients, identifies nodes within each network

layer significantly related to the continuous outcome, and provides accurate predictions of

the continuous outcome, all while quantifying uncertainty with precision.

Our future research will be directed towards expanding our approach to handle poly-

chotomous outcome variables. Additionally, we aim to accommodate non-linear regression

relationships between the outcome variable and the multilayer network predictor by in-

corporating a semiparametric regression framework. Such explorations will enhance the

versatility and applicability of our method to a wider range of data scenarios and research

questions.
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Appendix A

The full conditional distributions for the model parameters are given by:

• τ 2 | − ∼ IG
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n

2
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1

2
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l=1 x
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)2
)
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l=1 A

(l)β(l)),
τ 2

n

)
, where A(l) is a n×V (V −1)/2 matrix with

its ith row given by x
(l)T
i , and y = (y1, ..., yn)

T is a n-dimensional vector of continuous

outcomes over all samples.
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1
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ΛūT
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T
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−vZ
T
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Here ū−v is a (V − 1)×R matrix given by [ū1 : · · · : ūv−1 : ūv+1 : · · · : ūV ]
T , ỹv is a

n-dimensional vector with its ith element given by:
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Finally, Zv is a n× (V − 1) dimensional matrix with its ith row is given by
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v ỹ(l)
v . Here u

(l)
−v is a (V − 1)×R matrix given by [u

(l)
1 : · · · :

u
(l)
v−1 : u

(l)
v+1 : · · · : u

(l)
V ]T , ỹ(l)
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• ξ
(l)
v |− ∼ Ber(π̃

(l)
v ), where
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• (πr,1, πr,2, πr,3)|− ∼ Dir(1+I(λr = 1), rη+I(λr = 0), 1+I(λr = −1)), for r = 1, .., R,

where I(B) takes value 1 when B occurs and is 0 otherwise.
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obtained by setting λr = s, for r = 1, ..., R; s = 0, 1,−1; l = 1, ..., L.
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The posterior distribution is obtained by running a Markov Chain Monte Carlo (MCMC)

with Gibbs sampler using the full conditional posterior distributions provided above.

Appendix B

The following trace plots were produced using the simulation setting corresponding to

Scenario 1, outlined in Section 4. For the simulation, the parameters were set as µ∗ = 0.5,

τ ∗2 = 0.1, R∗ = 3, 1 − π∗
1 = 0.8, 1 − π∗

2 = 0.6, 1 − π∗
3 = 0.7 and 1 − π∗

4 = 0.7. To obtain

the 2000 post burn-in samples, 15000 MCMC iterates were taken, the first 11000 were

discarded as burn-in, and thinning of size 2 was done.
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Figure 5: Trace plots for representative parameters.
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