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Abstract

This article proposes a novel statistical network methodology to examine the rela-

tionship between brain stimulation and regional brain activation. Using a generalized

linear modeling framework, we can predict binary outcomes, such as whether a region

of interest, a node in a brain network, is activated during an external stimulus. Our

proposed Bayesian Multiplex Graph Classifier (BMGC) model is based on multiplex

graphs where each layer of the graph captures interactions among the brain network

nodes. Popular regression methods utilizing multiplex graph predictors often face lim-

itations in effectively harnessing information within and across graph layers, leading to

potentially less accurate inference and predictive accuracy, especially for smaller sample

sizes. To overcome this challenge, our method models edge coefficients at each network

layer using bilinear interactions between the latent effects associated with the two nodes

connected by the edge. This approach also employs a variable selection framework on

node-specific latent effects from all networks layers to identify influential nodes linked

to observed outcomes. Crucially, the proposed framework is computationally efficient

and quantifies the uncertainty in node identification, coefficient estimation, and bi-

nary outcome prediction. Simulation studies demonstrate the superior inferential and

BMGC performance compared against alternative methods. An additional BMGC val-

idation was completed using an fMRI study of brain networks in adults. Specifically,
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the BMGC technique identified that sensory motor brain network obeys certain lateral

symmetries, whereas the default mode network exhibits significant brain asymmetries

associated with early aging.

Keywords:Aging; Bayesian Statistics; Functional Connectivity; Multiplex Graph Classifica-

tion; Variable Selection

1 Introduction

In recent years, the study of cognitive control among aging adults has gained significance

as a prominent and essential research focus. With the ongoing aging of the population, there

is a growing need to comprehend the nuances of cognitive functions in older individuals. This

understanding is crucial not just because of the healthcare costs involved but also due to

the significant economic and social consequences linked with an aging populace. The field of

cognitive neuroscience stands to acquire valuable insights into the aging brain by examining

functional connectivity in the human brain during cognitive control tasks. This paper uti-

lizes brain imaging data, representing functional connectivity graphs derived from functional

magnetic resonance imaging (fMRI) Richiardi et al. [2011], Dinov [2023], to investigate the

interplay between cognitive decline and brain regions. The fMRI study focused on two dis-

tinct cognitive task conditions: inhibition and initiation Rieck et al. [2021a]. Inhibition is

broadly conceptualized as the ability to suppress or countermand a thought, action, or feel-

ing. Initiation, on the other hand, refers to engaging in purposeful goal-directed activities.

For each participant, there are two graphs with nodes as brain regions of interest (ROIs),

each corresponding to one of these task conditions. This dual perspective enables us to

uncover how aging affects functional connectivity across various cognitive control scenarios,

shedding light on the nuanced differences in brain network interactions between inhibition

and initiation tasks in aging adults. Using the Schaefer 200 network of fMRI connectivity

Yang et al. [2023] for two task conditions (Z-transformed correlation matrices input), we ex-

amined the left and right hemisphere network differences in the brains of normal and aging

adults, as quantified by the Mini-Mental State Examination score (outcome).

From a statistical standpoint, the main challenge lies in devising a regression framework

that incorporates a binary outcome alongside a two-layer multiplex graph as the predictor.
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Our primary objective is to achieve classification of the binary outcome, identify the graph

nodes significantly associated with the outcome, and estimate the regression impact of each

layer of the multiplex graph on the outcome. The modeling framework proposed in this article

enables us to tackle these challenges simultaneously. Although literature on generalized

linear models involving a multiplex graph predictor is limited, some previous studies have

addressed unsupervised modeling of multiplex graphs. However, these existing approaches

do not adequately meet all our inferential objectives, as outlined below.

In regression involving a single-layer graph predictor, commonly used methods often

entail transforming the graph into a high-dimensional set of edge weights [Craddock et al.,

2009, Richiardi et al., 2011]. Subsequent inference is drawn utilizing developments in generic

high-dimensional regression architectures [Tibshirani, 1996, Park and Casella, 2008, Carvalho

et al., 2010], or neural network (NN) models [Polson and Ročková, 2018, Dinh and Ho, 2020,

Dinov and Velev, 2021]. While these approaches can be extended to handle multiplex graphs

straightforwardly, restructuring the multiplex graph using these methods might inadequately

capture the effects of intricate interconnections among nodes within different layers on the

outcome. This potential limitation could compromise the precision and interpretability of

the regression model.

Recent advancements in the realm of object regressions, featuring a scalar outcome and

a single-layer graph predictor, have demonstrated promising capabilities in leveraging the

graph’s structural information. Specifically, Guha and Rodriguez [2021, 2023] have intro-

duced innovative Bayesian shrinkage priors designed to estimate the effects of nodes and

edges within the graph on the scalar outcome. By exploiting the topology of the graph

predictor, these proposed methods exhibit accurate outcome prediction, robust parameter

inference, and precise uncertainty estimates, especially in identifying influential graph nodes

and edges. More recently, there has been a growing body of work on interpretable graph

neural network approaches that provide theoretically guaranteed predictions for scalar out-

comes based on graph inputs. These approaches differ from earlier literature on graph neural

networks (GNN) [Zhou et al., 2020, Liu and Zhou, 2022] in their ability to offer statistical

interpretability for the constructed GNN [Zhou et al., 2023]. Despite their successes, these

approaches are tailored for single-layer graph predictors. Extending them to handle interac-
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tions between nodes within different layers for a multiplex graph predictor to offer inference

on influential nodes presents nontrivial modeling challenges.

An alternative strategy involves the aggregation of graphs from different layers to form

a tensor, which is then employed to construct a regression framework with a scalar outcome

and the tensor predictor. This approach can leverage recent advancements in tensor re-

gression, encompassing penalized optimization [Zhou et al., 2013, Fan et al., 2019], low-rank

methods [He et al., 2018, Ahmed et al., 2020], and the Bayesian multiway shrinkage literature

[Guhaniyogi et al., 2017, Spencer et al., 2022]. However, these approaches do not explicitly

account for the symmetry constraint in individual layers of the multiplex graph. Moreover,

their primary emphasis is on prediction and identifying significant edges or interconnections,

rather than specifically identifying crucial nodes in each layer that influence the outcome.

Within the current body of literature, multiplex graphs are often regarded as random

variables rather than being utilized as predictors in a regression framework. In this literature,

researchers predominantly concentrate on establishing appropriate relationships among edges

and various types of connections defining the multiple layers [Gollini and Murphy, 2016,

Han et al., 2015, Heaney, 2014]. These advancements have expanded the use of exponential

random graph models [Holland and Leinhardt, 1981, Frank and Strauss, 1986] and latent

variable models [Nowicki and Snijders, 2001, Hoff et al., 2002, Airoldi et al., 2008], initially

designed for a single graph, to facilitate inference in multiplex graphs. Furthermore, these

frameworks have been extended to handle time-varying or dynamic multiplex graphs. In

such scenarios, stochastic processes are employed to leverage information across edges and

over time, as noted in previous research [Durante et al., 2017, Snijders et al., 2013, Hoff,

2015]. Additionally, these frameworks have also been adapted to accommodate multiplex

graphs with covariates associated with the graph nodes, as demonstrated in prior studies

[Contisciani et al., 2020, Zhang et al., 2022, Xu et al., 2023]. Nevertheless, these methods

for multiplex graphs are fundamentally unsupervised and do not align with our specific

inferential goals.

This article presents Bayesian Multiplex Graph Classifier (BMGC), which is a novel

generalized linear modeling framework tailored for a binary outcome and a multiplex graph

predictor. Within our framework, an edge coefficient within each layer is expressed as a func-
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tion of latent effects associated with the nodes linked by that specific edge. Specifically, these

edge coefficients are modeled as a bilinear interaction between node-specific latent effects,

resulting in a low-rank structure for the coefficients corresponding to the multiplex graph at

each layer. This low-rank structure achieves parsimony, particularly beneficial when dealing

with multiplex graphs defined on a large number of nodes. To facilitate the identification

of network nodes significantly associated with the outcome, we propose a variable selection

framework that operates jointly on latent effects across all layers corresponding to a par-

ticular node. This structured approach not only ensures simplicity but also enables precise

classification of the binary outcome, facilitates inference on network nodes and edges relevant

to the outcome, and provides well-calibrated uncertainties for both inference and classifica-

tion. We choose the Bayesian framework for inference due to its natural ability to provide

uncertainty in inference, especially in identifying influential nodes. This is particularly es-

sential when dealing with a moderate sample size, with the number of graph edges exceeding

the sample size by a significant margin. While our research originates from a neuro-scientific

study, its versatility extends beyond this domain, making it broadly applicable in various

scenarios involving multiplex graphs, such as genomics data.

The rest of the article proceeds as follows. Section 2 discusses functional connectivity

data during different tasks on cognitive control. Section 3 provides a detailed description of

the regression framework with a multiplex graph predictor and prior formulation on model

coefficients. Section 4 discusses posterior computation. Simulation studies in Section 5.1

and the neuroimaging data in Section 5.2 demonstrate superior performance of the proposed

approach compared to its competitors. Finally, Section 6 offers concluding remarks and

possible future extensions. Appendix A describes full conditional posterior distributions for

all the model parameters. They are employed to construct Markov Chain Monte Carlo for

model computation.
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2 Functional Connectivity Data during Cognitive Con-

trol for an Adult Lifespan Sample

In this section, we describe the functional connectivity data, derived from functional

magnetic resonance imaging (fMRI) of healthy aging adults, recorded under different cog-

nitive tasks [Rieck et al., 2021b]. In this study, 144 individuals (ages 20–86) were recruited

from the greater Toronto area to participate in a study focusing on functional activity during

cognitive control. The participants underwent scanning using a Siemens 3T MRI scanner as

they performed cognitive control tasks designed to gauge functional activity during inhibition

and initiation. Throughout the scanning process, participants reclined on the scanner bed

with a mirror positioned in front of their face, reflecting a computer screen displaying the

experimental stimuli. Participants used earplugs and wore headphones to mitigate scanner

noise, and communication with the experimenter between scans was facilitated through a

microphone. Holding a response box in their right hand, participants used their index and

middle fingers to respond to stimuli presented on the screen (specific finger responses were

counterbalanced among participants). In all tasks, letters were displayed in the center of

the computer screen using the Courier New font against a dark gray background. Inhibition

and initiation were measured employing a go/no-go paradigm, wherein participants were

exposed to a sequence of uppercase letters. Their instruction was to respond (termed “go”)

when encountering the letter “X” and refrain from responding (termed “no-go”) for all other

letters. Non-X stimuli (i.e., “no-go” stimuli) were selected randomly from a pool of 20 other

letters: A, B, C, D, E, F, G, H, I, J, L, M, N, O, P, Q, R, S, T, and U. The task was divided

into an “inhibition” block, characterized by a higher number of go trials than no-go trials

(120 go, 40 no-go), and a shorter “initiation” block, where there were more no-go trials than

go trials (20 go, 60 no-go). The sequence of these two blocks was randomized among partic-

ipants. Letter stimuli were displayed for a duration of 400 ms, accompanied by an average

inter-stimulus interval (marked by a fixation cross) of 1200 ms, with random jittering ranging

between 900 and 1500 ms. The overall duration of the go/no-go task amounted to 6 minutes

and 24 seconds. Blood-oxygen-level dependent (BOLD) fMRI data were collected with a

12-channel head coil using an echo-planar imaging sequence with 40 axial slices acquired
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parallel to the anterior-posterior commissure. A total of 216 volumes were collected for the

go/no-go task. High resolution anatomical scans used for warping the BOLD images to MNI

space were acquired with a T1-weighted MP-RAGE sequence in which 160 axial slices were

collected. Functional data for each task were preprocessed with a mix of AFNI functions

as well as Octave and MATLAB scripts using the Optimizing of Preprocessing Pipelines for

NeuroImaging software package (OPPNI) [Churchill et al., 2017]. For the current dataset,

a fixed pipeline for all participants was conducted with the following steps: (1) rigid-body

alignment of the timeseries to correct for movement; (2) removal and interpolation of outlier

volumes; (3) correction for physiological (i.e., cardiac and respiratory) noise; (4) slice timing

correction; (5) spatial smoothing with a 6 mm smoothing kernel; (6) temporal detrending;

(7) regression of six motion parameter estimates (X, Y, and Z translation and rotation) on

the timeseries; (8) regression of signal in tissue of no interest (white matter, vessels and

cerebrospinal fluid) on the time-series; and finally (9) warping to MNI space and resampling

to 4 mm 3 isotropic voxel.

For each participant, there are two correlation matrices corresponding to the two distinct

task conditions: inhibition and initiation. Assessment of functional connectivity (quantified

with time-series correlations between different brain regions) were computed using the Schae-

fer 200 parcel 17 network atlas [Schaefer et al., 2018, Yeo et al., 2011]. Functional connectivity

was computed for the fMRI task using the CONN toolbox in MATLAB [Whitfield-Gabrieli

and Nieto-Castanon, 2012]. Functional time courses for each task condition were extracted

from the 200 parcel nodes that comprised 17 networks, resulting in 200 × 200 connectivity

matrices. We used the bilateral 100 brain regions of interest (ROIs) collectively representing

200 nodes covering 17 different known brain-networks. Z-transformed functional connectivity

correlation matrices were computed for these Schaefer-100 nodes to examine the underlying

neurobiology of aging.

The Mini-Mental State Examination (MMSE) score [Mega et al., 1996, Moon et al., 2023]

represents the binary cognitive outcome measure of interest we want to predict using the our

novel Bayesian multiplex graph modelling framework. In this supervised prediction study,

the outcome variable represents the integer-valued MMSE measure binarized into normal

(0 ≤ MMSE ≤ 29) and aging (30 = MMSE) cohorts.
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3 Model and Prior Formulation

3.1 Bayesian Multiplex Graph Classifier

For each subject, we observe a binary outcome y ∈ {0, 1}, a p-dimensional predictor x,

and a L-layer multiplex graph predictor {Gα}Lα=1. A L-layer multiplex graph is defined as a

sequence of L graphs: {Gα}Lα=1 = {(Nα, Eα)}Lα=1, with the αth graph consisting of nodes Nα

and edges Eα ⊂ Nα × Nα. We assume that the node sets are same across different layers,

i.e., Nα = Nα′ = N , for any 1 ≤ α ̸= α′ ≤ V . This common set of nodes is denoted by

N = {N (1), ...,N (V )}, where |N | = V represents the number of nodes. The graph predictor

at the α-th layer, Gα, is represented by a V × V adjacency matrix W (α) ∈ RV×V , where

the entry at position (v, v′) signifies the strength of association between nodes N (v) and

N (v′), v, v′ = 1, ..., V . This article concentrates specifically on undirected graphs without

self-relationships within each layer, a characteristic considered scientifically meaningful in

the adult lifespan data. This implies that the adjacency matrix W(α) is symmetric, and its

diagonal entries are zero. In what follows, we represent the L-layer multiplex graph by the

sequence of adjacency matrices W =
¶
W (α)

©L

α=1
.

For each subject, the proposed high-dimensional generalized linear model representing

the relationship between the binary outcome y and the multiplex graph predictor is given

by,

P (y = 1|x,W ) = G−1

(
µ+ xTβx +

1

2

L∑
α=1

⟨W (α)|Γ(α)⟩

)
. (1)

Here, G(·) represents the link function, with popular choices being logit, probit, or log-

log functions. Here, µ is the intercept. The coefficient βx is the p-dimensional vector

corresponding to x, Γ(α) is the coefficient matrix of dimension V × V corresponding to

the α-th layer of the graph adjacency matrix W (α), and ⟨W (α)|Γ(α)⟩ = Trace(Γ(α)TW (α))

denotes the Frobenius inner product of the matrices W (α) and Γ(α). The Frobenius inner

product serves as an extension of the dot product, transitioning from vector spaces to matrix

spaces, and it naturally represents the inner product in the space of matrices. Similar to

W (α), we presume that the coefficient matrix Γ(α) is symmetric and has zero entries along
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its diagonal.

To achieve flexible modeling of the effect of the multiplex graph on the outcome, each

graph edge coefficient is expressed as an interaction between the nodes connected by the

specific edge. More precisely, let ξ(α)v ∈ RH denote the H-dimensional coordinate in the

latent space, representing the latent effect of the node N (v) specific to the αth layer, 1 ≤

v ≤ V . The coefficient corresponding to the (v, v′)th edge at the α-th layer is modeled

as a weighted inner product of latent effects for nodes N (v) and N (v′), given by, γ
(α)
v,v′ =

⟨ξ(α)v |ξ(α)v′ ⟩Θ(α) = ξ(α)Tv Θ(α)ξ
(α)
v′ , 1 ≤ v ̸= v′ ≤ V, α = 1, ..., L. This mechanism allows nodes

with coordinates aligned in the same direction to positively impact the outcome, whereas

nodes with coordinates in opposite directions exert a negative influence on the outcome.

The interaction effect is dependent on the H ×H weighing matrix Θ(α) which is a diagonal

matrix with the h-th diagonal entry θ
(α)
h ∈ {−1, 0, 1}. The diagonal elements indicate the

effect of the h-th dimension of the latent effect ξ(α)v on the graph coefficients. A value of

0 for θ
(α)
h signifies that the h-th dimension of the latent effect specific to the α-th layer

is not informative of the outcome. The aforementioned modeling of the graph coefficient

leads to a low-order spectral decomposition of Γ(α), given by, Γ(α) = Ξ(α)TΘ(α)Ξ(α), where

Ξ(α) = [ξ
(α)
1 : · · · : ξ(α)V ] denotes a H×V matrix which constitutes node-specific latent effects

at the αth layer. The assumed low-order spectral representation massively reduces the count

of estimable parameters from LV (V − 1)/2 to LV H +HL = HL(V + 1), with the typical

condition that H ≪ V .

3.2 Prior Distribution on Coefficients

Given that one of the primary focuses of inference is the identification of influential nodes

within N for predicting the outcome, we employ a variable selection framework on the node-

specific latent effects. Node N (v) has no effect from any of the layers on the outcome if

all coefficients corresponding to the edges connected to the node N (v) are uninformative

about the outcome, i.e., γ
(α)
v,v′ = 0 for all v′ ̸= v and α = 1, ..., L. Given the bi-linear

representation of γ
(α)
v,v′ , this is achieved when the vth node specific latent effects at all layers

are not informative about the outcome, which leads to ξv = (ξ(1)Tv , ..., ξ(L)Tv )T = 0. In order

to infer on the influential nodes, a spike-and-slab mixture distribution prior [Ishwaran and
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Rao, 2005] is assigned on ξv. More specifically, we set

ξv
iid∼ ηvN(0,K) + (1− ηv)∆(0), ηv ∼ Ber(δ), (2)

where ∆(0) is the Dirac-delta function at 0 and K is a LH × LH covariance matrix. The

parameter δ corresponds to the probability of the nonzero mixture component and ηv is

a binary indicator set to 0 if ξv = 0. Thus, the posterior distributions of ηv’s enable

identification of nodes related to the outcome. To account for multiplicity in multiple variable

selection, we assign δ ∼ Beta(a, b), following the popular literature [Scott and Berger, 2010].

The covariance matrix is assigned K ∼ IW (ν, ILH) where IW (ν, ILH) denotes an Inverse-

Wishart distribution with a LH × LH identity matrix ILH and degrees of freedom ν.

To learn which components of ξ(α)v are informative, we assign a hierarchical prior on θ
(α)
h

given by,

θ
(α)
h = ∆(1)π

(α)
h,1 +∆(0)π

(α)
h,2 +∆(−1)π

(α)
h,3 , α = 1, ..., L, h = 1, ..., H,

(π
(α)
h,1 , π

(α)
h,2 , π

(α)
h,3 ) ∼ Dir(1, hζ , 1), ζ > 1.

The hyper-parameters of the Dirichlet distribution are chosen to introduce increasing shrink-

age on θ
(α)
h as h grows to prevent overfitting due to choice of a large H. Specifically,

Ĥ(α) =
∑H

h=1 |θ
(α)
h | estimate the dimensions of ξ(α)v needed for effective modeling, also re-

ferred to as the effective dimension for ξ(α)v . The prior specification is completed by setting

βx ∼ N(0, Ip) and setting a non-informative prior on µ.

4 Posterior Inference

Let w(α) and γ(α) denote the upper triangular vectors of dimension V (V − 1)/2 × 1

extracted from W (α) and Γ(α), respectively. Considering that both w(α) and γ(α) are sym-

metric matrices with zero diagonal entries, the Frobenius inner product between W (α) and

Γ(α) can be simplified as ⟨W (α)|Γ(α)⟩ = 2w(α)Tγ(α). This simplification enables us to estab-

lish a connection between the modeling framework with a multiplex graph predictor in (1)
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and a binary regression framework, as represented by the following equation,

P
Ä
y = 1|{w(α)}Lα=1,x

ä
= G−1

(
µ+ xTβx +

L∑
α=1

w(α)Tγ(α)

)
. (3)

This article concentrates on employing the logit link function for G(·) to implement Markov

chain Monte Carlo (MCMC) sampler for posterior inference on parameters. We utilize the

result discussed in Theorem 1 of Polson et al. [2013] to obtain

p(y|x, {w(α)}Lα=1) =
exp

¶
y(µ+ xTβx +

∑L
α=1w

(α)Tγ(α))
©

1 + exp
¶
µ+ xTβx +

∑L
α=1w

(α)Tγ(α)
©

= exp

{
(y − 0.5)

(
µ+ xTβx +

L∑
α=1

w(α)Tγ(α)

)}
×

∫
exp

Ñ
−ω

2

(
µ+ xTβx +

L∑
α=1

w(α)Tγ(α)

)2
é

p(ω)dω, (4)

where p(ω) is the density of PG(1,0) distribution. With the outcome, ordinary vector pre-

dictor and multiplex graph predictor obtained for n subjects, {{yi,xi,W i} : i = 1, ..., n},

we use (4) and the data augmentation approach outlined in Polson et al. [2013] for effective

posterior computation. For subjects i = 1, ..., n, we introduce latent variables ω1, ..., ωn in

the likelihood. More precisely, the augmented likelihood function comes in the following

form,

p(y |βx,Γ
(1), · · · ,Γ(L),ω) ∝

n∏
i=1

p(yi |βx,Γ
(1), · · · ,Γ(L), ωi)

∝
n∏

i=1

exp

(yi − 0.5)

(
µ+ xT

i βx +
L∑

α=1

w
(α)T
i γ(α)

)
− ωi

2

(
µ+ xT

i βx +
L∑

α=1

w
(α)T
i γ(α)

)2


∝
n∏

i=1

exp

−ωi

2

[
(yi − 0.5)

ωi

−

(
µ+ xT

i βx +
L∑

α=1

w
(α)T
i γ(α)

)]2 .

While the original conditional posterior distributions for the parameters are not available

in closed forms, the augmented full conditional distributions belong to standard families.

11



Appendix A provides details of the full conditional distributions of the parameters.

Let ηv,1, ..., ηv,S be the S post burn-in MCMC samples corresponding to ηv. The posterior

probability of node N (v) being significantly associated with the outcome can be empirically

estimated as ¤�P (ηv = 1|y) = 1
S

∑S
s=1 ηv,s. In what follows, we cluster logit-transformed poste-

rior probabilities into three groups using a Bayesian mixture model [Fraley et al., 2012]. The

nodes in the cluster with the highest and lowest cluster means are considered as influential

and uninfluential with respect to the outcome, respectively. We classify these nodes as “acti-

vated” and “inactivated” nodes, respectively. The analysis is less conclusive about the nodes

in the third cluster, which are referred to as “inconclusive.” These estimated probabilities

also provide insight into the uncertainty surrounding node inference, implying that nodes

with posterior probabilities of being influential close to 0 or 1 are associated with less uncer-

tainty in inference. Estimating uncertainty is vital in neuroscientific settings, particularly in

presence of moderate sample sizes (n) and low signal-to-noise ratios. Moreover, the proposed

framework is utilized for the classification of an unobserved binary outcome.

Let Γ
(α)
1 , ...,Γ

(α)
S , βx,1, ...,βx,S and µ1, ..., µS be the S post burn-in MCMC samples for

Γ(α), βx and µ, respectively, obtained after suitable burn-in and thinning. To classify an un-

observed outcome y∗ ∈ {0, 1} associated with a newly observed L-layer multiplex graph pre-

dictor W ∗, and with predictor x∗ ∈ Rp, we compute the estimated classification probability

given a post burn-in iterate {µs,βx,s,Γ
(1)
s , ...,Γ(L)

s }, denoted by ¤�P (y∗ = 1|µs,βx,s,Γ
(α)
s ,W ∗,x∗),

from (1) using G(·) as the logit link function, for s = 1, ..., S. The unobserved outcome y∗ is

predicted to be 1 or 0 if 1
S

∑S
s=1

¤�P (y∗ = 1|µs,βx,s,Γ
(α)
s ,W ∗,x∗) is greater than or less than a

selected cut-off tc, respectively. To judge sensitivity to the choice of the cut-off, we compute

ROC curves constructed with True Positive Rates (TPR) and False Positive Rates (FPR)

of classification corresponding to a range of cut-off values tc. We present area under the

ROC curve (AUC) which ranges between 0.5 to 1. A value of 0.5 signifies random classifi-

cation, while 1 signifies perfect classification. A higher AUC denotes superior classification

performance by a method.
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5 Results

In this section, we apply the proposed Bayesian Multiplex Graph Classifier (BMGC)

method to perform inference on nodes and classification on multiplex graphs using both

simulated data and real biomedical imaging data (brain fMRI study).

5.1 Simulation Study

First, we investigate the performance of the BMGC technique through simulation and

compare it against other classification methods. Our evaluation involves examining BMGC’s

capability to identify influential nodes and then comparing its performance in coefficient

estimation and predictive inference with competing models. These competitors encompass

penalized optimization, Bayesian shrinkage methods and deep neural networks. In each

simulation scenario, the number of layers (L) is fixed at 2, mirroring the number of layers in

the neuroimaging dataset under evaluation.

5.1.1 Simulated Data Generation

For the ith sample, i = 1, ..., n, we generate a multiplex graph W i by simulating sym-

metric adjacency matrices W
(1)
i , ...,W

(L)
i for L layers. The upper triangular vector w

(α)
i of

W
(α)
i is independently drawn from the normal distribution N(0, I), and all diagonal entries

of W
(α)
i are set to 0. Let the true intercept and the true multiplex graph coefficient be given

by µ0 and Γ0, respectively. The response yi for the ith sample is generated according to

model (1) with G(·) as the logit link function. No predictor xi is included in these simu-

lations. In all scenarios, we set µ0 = 0.5. We use n = 400 samples for model fitting and

reserve n∗ = 50 samples for prediction.

Let δ0 be the probability of a node being influential w.r.t. the outcome. We refer

to (1 − δ0) as the node sparsity. For the purpose of generating the true activation pat-

tern of nodes in relation to the outcome, we simulate node-specific activation indicators

η1,0, ..., ηV,0
i.i.d.∼ Ber(δ0). To simulate the αth layer of the multiplex graph coefficient Γ

(α)
0 ,

we first simulate the LH0-dimensional latent effects corresponding to each of the V nodes,

ξv,0 = (ξ
(1)
v,0, ..., ξ

(L)
v,0 )

T , from ξv,0
ind.∼ ηv,0N(0, ILH0) + (1 − ηv,0)∆(0), for v = 1, ..., V . Using

these latent effects for nodes, the true coefficients corresponding to the (v, v′)th edge at the

13



αth layer is constructed using the low-rank formulation γ
(α)
v,v′,0 = ξ

(α)T
v,0 ξ

(α)
v′,0, for v < v′. We set

γ
(α)
v,v′,0 = γ

(α)
v′,v,0 and γ

(α)
v,v,0 = 0 to satisfy the symmetry and zero diagonals the graph coefficient

at each layer, respectively. In using this setup, we assume that both the fitted and true

graph coefficients have a low-rank structure. This assumption allows us to evaluate how

well the proposed method captures and represents the underlying relationships between the

graph nodes and the outcome variable. With this setup, we simulate data with V = 20, at

five different different levels of node sparsity, setting δ0 = 0.2, 0.3, 0.4, 0.5, 0.6, respectively.

5.1.2 Competing Methods and Performance Metrics

We compare the performance of the proposed BMGC model vis-a-vis competitors that

treat the edges between nodes in the multiplex graph predictor as a “long vector of predic-

tors” and perform binary regression of the outcome yi on the vector
Ä
w

(α)T
i : α = 1, ..., L

äT
of dimension LV (V − 1)/2. This approach overlooks the relational nature of the multi-

plex graph predictor, potentially limiting the ability of such models to capture the effect

of intricate interconnections between nodes on the outcome. To this end, we employ the

horseshoe prior [Carvalho et al., 2010] and the Bayesian Lasso [Park and Casella, 2008] on

the regression coefficients due to their state-of-the-art empirical performance in regressions

with a high-dimensional predictor vector. We refer to these competitors as BHS and BLasso,

respectively, and implement them using our own codes. As a frequentist high-dimensional

binary regression competitor, we adopt a penalized optimization framework with the Lasso

penalty on the predictor coefficients [Tibshirani, 1996]. The Lasso is implemented using the

glmnet (Friedman et al. [2010]) package in R, with the penalty parameter chosen through

ten-fold cross-validation. Finally, we also implement a two-layer neural net (NN) as a com-

petitor. NN models are fit using the tensorflow [Allaire and Chollet, 2023] and keras

[Allaire and Tang, 2023] packages in R. The inputs to the NN models are composed of the

upper-triangular entries of each graph layer, which are concatenated to create an input vec-

tor of dimension LV (V − 1)/2. The models are fit with two hidden layers, each having the

Rectified Linear Unit (ReLU) activation function [Nair and Hinton, 2010]. The first of these

two hidden layers includes L1 and L2 regularization to perform shrinkage on the coefficients

from the input layer. The output layer of each model uses the sigmoid activation function
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[Narayan, 1997]. The L1 and L2 regularization parameters and learning rate for the models

are tuned through five-fold cross validation. For training each NN, 90 percent of the training

samples are used to fit the model, while 10 percent are used for validation. The batch size

is equal to half of the number of samples used to fit the model. We were not able to fit a

binary tensor regression competitor due to not having readily available codes.

To infer on the performance of BMGC in terms of identifying nodes significantly asso-

ciated with the outcome, we present the estimated posterior probability of a node being

influential across the layers, i.e., ¤�P (ηv = 1|Data). The performance of the competitors in

estimating multiplex graph coefficient Γ is evaluated using the scaled mean squared error

(MSE). The MSE is defined as ||Γ̂−Γ0||2
||Γ0||2 , where Γ̂ represents a suitable point estimate of Γ.

For instance, we use the frequentist point estimate for Lasso, while BMGC, BHS and BLasso

employ the posterior mean of Γ. To assess predictive power of the competitors, we use the

held-out test samples to compute the AUC of the predicted probabilities, ¤�P (y∗ = 1|W ∗),

of each model compared against the ground truth labels, y∗,1, ...y∗,n∗ . For the Lasso, this

quantity corresponds to the point estimate from the fitted model, while for the Bayesian

competitors, this is computed using the mean of the posterior predictive distribution. All

comparisons presented are averaged over five simulation replicates.

5.1.3 Simulation Results

Accuracy of Influential Node Identification

Table 1 displays a matrix corresponding to five different simulation settings under different

true node sparsity (1−δ0) levels for V = 20. In each matrix, the colored and white cells in the

lth column represent the truly influential and truly uninfluential nodes for the lth simulation

scenario, respectively, for l = 1, .., 5. Overlaid on these matrices are the estimated posterior

probabilities ¤�P (ηv = 1|Data) for v = 1, · · · , 20.

Table 1 shows remarkably accurate identification of truly influential nodes, with the

estimated posterior probabilities of all influential nodes in most simulations being above 0.5

in all five simulation scenarios. With high-node sparsity (δ0 = 0.2), the estimated posterior

probabilities tend to be very close to 1 or 0, correctly classifying nodes as influential or

not, with very minimal uncertainty. However, as sparsity decreases, the uncertainty in node
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identification deteriorates. In fact, when δ0 = 0.6, the estimated posterior probabilities of a

few influential nodes becomes close to 0.5 and a few un-influential nodes becomes close to

0.25, displaying more uncertainty in node identification.

Node δ0 = 0.2 δ0 = 0.3 δ0 = 0.4 δ0 = 0.5 δ0 = 0.6
1 0.9800 0.8737 0.8553 0.7837 0.6230
2 0.1003 0.3243 0.1480 0.2700 0.2357
3 0.9807 0.9283 0.8143 0.8997 0.7960
4 0.0343 0.0617 0.1280 0.2030 0.2227
5 0.0380 0.9307 0.5587 0.7590 0.8277
6 0.0250 0.1157 0.0740 0.2440 0.2267
7 0.0653 0.0330 0.0757 0.2343 0.2047
8 0.9770 0.8007 0.9263 0.6573 0.6943
9 0.0083 0.0400 0.3840 0.7753 0.3637
10 0.0090 0.8343 0.9260 0.6807 0.6743
11 0.0087 0.0937 0.8603 0.7623 0.5460
12 0.9697 0.8960 0.8763 0.9057 0.7413
13 0.0107 0.0290 0.0307 0.0950 0.0933
14 0.0047 0.0113 0.0487 0.1620 0.8287
15 0.0060 0.0170 0.0367 0.1313 0.8203
16 0.0110 0.0307 0.0223 0.8750 0.6587
17 0.0143 0.0173 0.1127 0.5250 0.7757
18 0.0077 0.0567 0.0477 0.1003 0.0993
19 0.0073 0.0580 0.1203 0.1797 0.1130
20 0.0073 0.0213 0.0720 0.0683 0.1397

Table 1: Node selection results across five simulation scenarios, each depicted in a separate
column, with varying probabilities of node inclusion (δ0). Every column displays the posterior
probability of the V = 20 nodes in the simulation setup being active, corresponding with
various levels of node-sparsity in the truth. White and colored cells denote uninfluential
and influential nodes, respectively. BMGC excels in identifying nodes, as indicated by high
probabilities in colored cells and low probabilities in white cells.

It is crucial to underscore that one of BMGC’s key strengths in inference lies in its ca-

pability to identify significant nodes in multiplex graphs, considering the interactions across

layers while quantifying uncertainty. This feature directly aligns with the inferential goals of

our scientific study, which revolves around identification of brain regions of interest associ-

ated with accelerated aging. In contrast, prevalent frequentist or Bayesian high-dimensional

regression techniques or neural networks lack the capability for node identification with

uncertainty in the current context. For the assessment of point estimation in multiplex
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graph coefficients, Table 2 showcases the scaled Mean Squared Error (MSE) for each of the

competitors across the five simulation scenarios. In all instances, the results consistently

highlight the superior performance of BMGC. The performance gap between BMGC and

its competitors is substantial with high-node density (e.g., smaller values of δ0). As node

sparsity decreases, the performance of BMGC deteriorates and it becomes close to Lasso

when δ0 = 0.6.

Method δ0 = 0.2 δ0 = 0.3 δ0 = 0.4 δ0 = 0.5 δ0 = 0.6
BMGC 0.9207 0.9693 0.9859 0.9910 0.9946
Lasso 1.2514 1.0781 1.0306 1.0150 1.0082
BHS 2.6233 1.6423 1.5982 1.8199 1.8967

BLasso 1.5864 1.2707 2.5810 1.5385 1.3124

Table 2: Scaled mean squared error (MSE) of estimating multiplex graph coefficients for
all competitors under all five simulation scenarios. Deep neural network (NN) only offers
predictive inference, hence the results from NN are not shown in the table. The result
corresponding to the best performer under all simulation scenarios is boldfaced.

To assess the out-of-sample predictive performance of the different models, Figure 1 dis-

plays the area under the receiver operating characteristic curves (AUCs) obtained using

various classification thresholds tc (as discussed in Section 4). With very high-node spar-

sity (small values of δ0), the graph structure is weak, and all competitors essentially follow

the behavior similar to penalized regression. Thus, with high-node sparsity, all competitors

show similar out-of-sample classification performance. As sparsity decreases, classification

performance of all competitors deteriorates with BMGC maintaining an edge over its com-

petitors. This suggests that exploiting the multiplex graph structure of the predictor in

BMGC can influence the accuracy of classification. Among the methods that disregard the

graph structure associated with the predictor, NN exhibits inferior performance.
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Figure 1: Comparison of the performance of the BMGC method (blue) against alternative
classification techniques (different color lines) using the area under the ROC curve (AUC)
across different levels of the sparsity parameter δ0.

5.2 Functional Magnetic Resonance Imaging (fMRI) Study

Next, we will apply the BMGC technique to the functional magnetic resonance imaging

(fMRI) brain dataset. Figure 2 shows a heatmap of the initial correlations between the ROI

nodes in the left (columns) and right (rows) hemispheres.

Figure 2: Heatmap of the correlations between the ROI nodes in the left and right hemi-
spheres.
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Figure 3 illustrates a partial brain connectogram indicating specific associations between

some of the left hemisphere brain areas. Clearly some brain regions are highly connected,

whereas other are more isolated. For simplicity, we only show a fragment of connectogram

reflecting the following 10 left hemisphere (LH) central and peripheral (striatal and extras-

triatal) visual cortex brain regions, see Table 3.

Figure 3: Connectogram showing partial correlations between several different brain regions
in the left hemisphere.

Figure 4 shows a scatter plot of the derived tripartite class labels, {“inactivated”, “in-

conclusive”, or “activated”} computed by our algorithm. The glyph colors and shapes of
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Region Acronym Region Name
LH.VisCent.ExStr.1.VisCent Left-Hemisphere Extrastriatal Central Visual Cortex Region 1
LH.VisCent.ExStr.2.VisCent Left-Hemisphere Extrastriatal Central Visual Cortex Region 2
LH.VisCent.Striate.1.VisCent Left-Hemisphere Striatal Central Visual Cortex Region 1
LH.VisCent.ExStr.3.VisCent Left-Hemisphere Extrastriatal Central Visual Cortex Region 3
LH.VisCent.ExStr.4.VisCent Left-Hemisphere Extrastriatal Central Visual Cortex Region 4
LH.VisCent.ExStr.5.VisCent Left-Hemisphere Extrastriatal Central Visual Cortex Region 5
LH.VisPeri.ExStrInf.1.VisPeri Left-Hemisphere Extrastriatal Inferior Peripheral Visual Cortex Region 1
LH.VisPeri.ExStrInf.2.VisPeri Left-Hemisphere Extrastriatal Inferior Peripheral Visual Cortex Region 2
LH.VisPeri.ExStrInf.3.VisPeri Left-Hemisphere Extrastriatal Inferior Peripheral Visual Cortex Region 3
LH.VisPeri.StriCal.1.VisPeri Left-Hemisphere Striatal Caudal Peripheral Visual Cortex Region 1

Table 3: The 10 left-hemisphere (LH) central and (striatal and extrastriatal) peripheral visual
cortex brain regions in Figure 3.

scatter points represent the respective probabilities of the left (x-axis) and right (y-axis)

regions of interest (i.e., nodes in the brain graph network). The point 2D Cartesian coordi-

nates represent the corresponding probabilities that the left (x-axis) and right (y-axis) brain

hemispherical regions are in one of the three derived class labels. Points along near line

bisecting the plane first-quadrant correspond to ROIs with identical derived class labels for

the left and right region. Hence, these ROIs correspond to brain symmetries, i.e., bilaterally

synchronously associations with memory decline (according to the MMSE outcome binary

label). Conversely, scatter points off the main diagonal correspond to brain asymmetries;

left and right brain regions whose derived labels are inconsistent.
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Figure 4: Bivariate plot of the derived tripartite class labels computed by the multilayer
network method. The glyph colors and shapes of each scatter point represent the regions of
interest (nodes in the brain graph network). The point locations represent the corresponding
probabilities that the left (x-axis) and right (y-axis) brain hemispherical regions are in one
of the three derived class labels (“inactivated”, “inconclusive”, or “activated”).

Some of these brain asymmetries have been previously reported in normal aging, mild

cognitive impairment, and dementia Thompson et al. [1998], Lubben et al. [2021], Mandal

et al. [2012]. For instance, we observed brain symmetries involving networks with left and

right somatosensory motor area (ROI: SomMotA.3), where both left and right probabilities

are high. This indicates that in aging, sensory motor brain function obeys certain lateral

symmetries. On the other hand, in the default mode network (ROI: DefaultC.Rsp.1) the

difference in the derived class labels for the left (inactivated) and right (activated) suggest

significant brain asymmetries associated with pathological aging.

In this fMRI study, to evaluate the BMGC classification performance against alternative

methods, we computed the probability of the outcome being 1 (normal aging) (Jose: The way

I encoded it, 1 is indicative of aging) for each sample (inputs are the individual correlation

matrices of participants’ brain networks). This allowed us to construct ROC curves based on

pairs of True Positive Rate (TPR) and False Positive Rate (FPR) values, obtained by varying
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the threshold of these estimated probabilities. The AUC estimated for each competitor

corresponds to the area under their respective ROC curve. Table 4 presents a comparison

of the classification performance between the new BMGC technique and various alternatives

(described in Section 5.1.2).

BMGC demonstrates superior performance compared to all other competitors perhaps

because it leverages the multiplex graph architecture within the modeling framework. Al-

though Neural Networks (NN) enable capturing complex non-linear relationships between the

outcome and the multiplex graph, Bayesian Horseshoe (BHS) and Bayesian Lasso (BLasso)

exhibit slightly improved performance over NN, indicating the presence of sparsity in the

data structure. Lasso, on the other hand, yields an AUC close to 0.5, suggesting nearly

random classification of the outcome. It is worth mentioning that none of the competitors

have the capability for node selection, a feature exclusive to BMGC.

Model BMGC Lasso BHS BLasso NN
AUC 0.6623 0.5315 0.6035 0.5993 0.5708

Table 4: The predictive performance, as measured by the AUC, of BMGC and its competitors
on the fMRI data. The best performer is highlighted in bold.

6 Conclusion and Future Work

This article introduces an innovative Bayesian framework designed to address a classifica-

tion problem characterized by a binary outcome and a multiplex graph predictor, with each

layer representing an undirected graph. We model an edge coefficient in a specific layer using

a bilinear interaction of latent effects corresponding to nodes connected by that particular

edge. A group variable selection framework is employed on node-specific latent effects for all

layers to identify nodes influential in the classification of the binary outcome. A Bayesian

framework is adopted to allow uncertainty quantification in inference and prediction, espe-

cially in the identification of influential nodes. Our empirical results, derived from simulation

studies, establish the superiority of our method in scenarios where the regression coefficients

indeed exhibit a multiplex graph structure.

Our functional magnetic resonance imaging (fMRI) study suggests that the proposed

BMGC technique may be useful to identify brain-network asymmetries involving left and
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right cortical regions according to their BMGC posterior predictive class probabilities. For

each brain area, these likelihoods yield explicit derived class labels of association with any

(binary, categorical, or continuous) clinical outcome of interest, which can be used to identify,

confirm, or explore various pathological states.

As an immediate extension of the proposed framework, we aim to accommodate non-

linear regression relationships between the outcome variable and the multiplex graph by

incorporating a semiparametric regression framework.

Future studies may take a further step in examining the posterior probability distri-

butions, specifically for brain asymmetry related to differences between the left and right

hemispheres. Since the brain networks are the inputs, not the outputs of the BMGS model

for classifying ROIs as inactive, borderline, or actively participating in the binary classifica-

tion (output) of participants into normal and accelerated aging. This can facilitate drawing

inference about connectivity pattern different cohorts does not appear feasible. For instance,

it may be interesting to explore bilaterally the ROIs and brain networks (Schaefer-17) that

are most probabilistically distinct between the two cohorts of normal (MMSE=30) and aging

(MMSE ≤ 30).

As firm supporters of open, reproducible and trustworthy scientific discovery, we have

provided data, software tools, protocols, interactive charts, and supplementary materi-

als on these websites: https://socr.umich.edu/docs/uploads/2024/fMRI_Corr_Pilot.

html and https://github.com/jeroda7105/Classification-with-Multi-Layer-Graphs.
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Appendix A

Below we present the full conditional posterior distributions for all parameters within

the generalized linear model detailed in Section 3. These distributions are utilized for imple-

menting a Markov Chain Monte Carlo (MCMC) algorithm via Gibbs sampling. The samples

derived from the MCMC algorithm yield samples from the complete posterior distributions

for the model parameters jointly, facilitating posterior inference as elaborated in Section 4.

Let κi = (yi − 0.5)/ωi, and Ω = diag
Ä

1
ω1
, ..., 1

ωn

ä
. Assuming X to be an n× p matrix with

its ith row as xi, and A(α) to be an n × V (V − 1)/2 dimensional matrix with its ith row

given by w
(α)
i . Consequently, the full conditional distributions for the model parameters are

expressed as:

• µ|− ∼ N
(

1T
nΩ−1(κ−Xβx−

∑L
α=1 A

(α)γ(α))

1T
nΩ−11n

, 1
1T
nΩ−11n

)
, where κ = (κ1, ..., κn)

T is an n-

dimensional vector of continuous outcomes over all samples.

• βx|− ∼ N(µβ,Σβ), where

Σγ = (XTΩ−1X + Ip)
−1, µγ = ΣγX

TΩ−1(κ− µ1n −
L∑
l=1

A(α)γ(α)).

• ξv|− ∼ ηvN(µv,Σv) + (1− ηv)∆(0), where

Σv = (ZT
vΩ

−1Zv +K−1)−1, µv = ΣvZ
T
vΩ

−1κ̃v.

Here Zv is an n× LH matrix whose ith row is given by(∑
k<v

w
(1)
i,(k,v)ξ

(1)T
k Θ(1) +

∑
v<k

w
(1)
i,(v,k)ξ

(1)T
k Θ(1), ...,

∑
k<v

w
(L)
i,(k,v)ξ

(L)T
k Θ(L) +

∑
v<k

w
(L)
i,(v,k)ξ

(L)T
k Θ(L)

)

and κ̃v is an n dimensional vector with its ith entry

κ̃i = κi − µ−Xβx −
∑

k<k′:k,k′ ̸=v

L∑
α=1

w
(α)
i,(k,k′)ξ

(α)T
k Θ(α)ξ

(α)
k′ .
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• ηv|− ∼ Ber(η̃v), where

η̃v =
δN(κ̃v|0,ZvKZT

v +Ω)

δN(κ̃v|0,ZvKZT
v +Ω) + (1− δ)N(κ̃v|0,Ω)

.

• δ|− ∼ Beta(a+
∑V

v=1 ηv, b+ V −
∑V

v=1 ηv).

• K|− ∼ IW
Ä
ν +#{v : ηv = 1}, ILH +

∑
{v:ηv=1} uvu

T
v

ä
, where uv = (u

(1)T
v , ...,u

(L)T
v )T .

•

θ
(α)
h | − ∼


1 w.p. p

(α)
h,1

0 w.p. p
(α)
h,2

−1 w.p. p
(α)
h,3

where

p
(α)
h,1 =

π
(α)
h,1N(κ|µ1n +Xβx +A(α)(γ(α))(θ

(α)
h =1) +

∑
α′ ̸=αA

(α′)(γ(α′)),Ω)

S
,

p
(α)
h,2 =

π
(α)
h,2N(κ|µ1n +Xβx +A(α)(γ(α))(θ

(α)
h =0) +

∑
α′ ̸=αA

(α′)(γ(α′)),Ω)

S
,

p
(α)
h,3 =

π
(α)
h,3N(κ|µ1n +Xβx +A(α)(γ(α))(θ

(α)
h =−1) +

∑
α′ ̸=α A

(α′)(γ(α′)),Ω)

S
, where,

S =
∑

s∈{0,1,−1} π
(α)
h,sN(κ|µ1n +Xβx +A(α)(γ(α))(θ

(α)
h =s) +

∑
α′ ̸=α A

(α′)γ(α′),Ω)

• ωi| − PG(1, µ+ xT
i βx +

∑L
α=1w

(α)T
i γ(α)), for i = 1, ..., n.
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