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Abstract

In the social and health sciences, researchers often make causal inferences using

sensitive variables. These researchers, as well as the data holders themselves, may be

ethically and perhaps legally obligated to protect the confidentiality of study partici-

pants’ data. It is now known that releasing any statistics, including estimates of causal

effects, computed with confidential data leaks information about the underlying data

values. Thus, analysts may desire to use causal estimators that can provably bound

this information leakage. Motivated by this goal, we develop algorithms for estimat-

ing weighted average treatment effects with binary outcomes that satisfy the criterion

of differential privacy. We present theoretical results on the accuracy of several dif-

ferentially private estimators of weighted average treatment effects. We illustrate the

empirical performance of these estimators using simulated data and a causal analysis

using data on education and income.

Keywords: Causal; Confidentiality; Observational; Privacy; Propensity.
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1 Introduction

Many causal studies measure sensitive binary outcome variables that data stewards are

ethically, and sometimes even legally, obligated to keep confidential. As hypothetical but

realistic examples, the outcomes could be whether or not a patient is cured of a stigmatized

disease after treatment, a student passes or fails a test after receiving an intervention, or a

person is employed or unemployed after job training. In each of these cases, study partici-

pants would not want the data analyst to release information in a manner that reveals their

individual outcomes. Furthermore, causal studies typically include additional sensitive or

identifying variables that analysts want to use as covariates; these too may be confidential.

Data stewards routinely put controls in place to reduce risks of unintended disclosures.

For example, often they restrict access to the confidential data to vetted data analysts.

However, researchers in data privacy have shown that every statistic computed with confi-

dential data leaks information about that data (Dwork and Roth, 2014; Dwork et al., 2017).

Given enough released information of sufficient accuracy, ill-intentioned users may be able

to learn confidential information. Thus, data stewards and analysts may seek to bound the

information leakage when sharing results of confidential data analysis.

One way to do so is to require methods to provide formal guarantees of confidentiality

protection for any data release. Among such methods, algorithms that satisfy differential

privacy (Dwork, 2006) have become a gold standard. Differential privacy is a mathematical

criterion that encodes the idea that the released statistic should not be overly sensitive to

the presence or absence of any particular individual; see Section 2.2 for details. Researchers

have developed differentially private algorithms for a variety of estimation tasks, including

significance tests (e.g., Barrientos et al., 2019; Balle et al., 2020; Pensia et al., 2023), regres-

sion (e.g., Zhang et al., 2012; Wang et al., 2015; Fang et al., 2019; Gaboardi et al., 2019),

and machine learning (e.g., Mivule et al., 2012; Ji et al., 2014; Abadi et al., 2016; Triastcyn

and Faltings, 2020; Zheng et al., 2020; Blanco-Justicia et al., 2022), among many others.

The literature includes few approaches to differentially private causal inference, particu-

larly in observational studies. D’Orazio et al. (2015) present differentially private algorithms

for estimating the differences of two means in matched pairs designs, which are common
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in causal inference. Lee et al. (2019) construct a differentially private inverse-probability

weighting treatment effect estimator. They first fit a differentially private propensity score

model to determine the weights, and then add Gaussian noise under (ϵ, δ) differential pri-

vacy to perturb the resulting weighted treatment effect estimate. Their method does not

provide standard errors or interval estimates for the treatment effect. Niu et al. (2022) use

partitions of the data to estimate parts of machine learning algorithms that are used for

causal inference, and combine all the parts together at the end to arrive at a causal esti-

mate. Their method also does not provide standard errors or interval estimates. Finally,

Ohnishi and Awan (2023) show that plugging-in differentially private versions of parts of

causal estimators can result in biased estimates. They also provide a Bayesian version of

causal inference under the local differential privacy model, i.e., when individuals perturb

their own data before providing it to a central party that does computations.

In this article, we contribute to this literature by proposing differentially private algo-

rithms for causal inference with binary outcomes. The algorithms can be used with a variety

of weighted average treatment effect estimators. Unlike other approaches, they generate

standard errors and confidence intervals for these estimators. The basic idea is to split the

data into M disjoint groups, estimate causal effects and standard errors in each partition,

aggregate the results, and add differentially private noise to the aggregated results. We il-

lustrate the approach using simulation studies and an analysis of data from the 1994 U.S.

census in a study of the effect of education on earnings.

The remainder of this article is organized as follows. In Section 2, we review key con-

cepts from causal inference and differential privacy. In Section 3, we present the differentially

private treatment effect point and interval estimators. In Section 4, we present results of

simulation studies showing the performance of the proposed methodology in various scenar-

ios. In Section 5, we illustrate the methodology using the 1994 U.S. census data. Finally, in

Section 6, we conclude with a discussion.

2 Review of Causal Inference and Differential Privacy

In Section 2.1, we introduce the weighted average treatment effect (WATE) and methods for

estimating the WATE. In Section 2.2, we review differential privacy and several algorithms
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that satisfy it. Throughout the article, we suppose sample sizes to be large enough that

large sample approximations to sampling distributions are empirically valid.

2.1 Overview of WATE Estimation

We use the potential outcome framework for causal inference (Rubin, 1974). Let z = 1

and z = 0 indicate assignment to the treatment and control conditions, respectively. Let

y be an outcome variable. We seek to learn the causal effect of z on y. For any unit in

the study population, we conceive of two potential outcomes, y(1) and y(0), corresponding

to the outcome measured when z = 1 and z = 0, respectively. For any unit, we observe

only one of y(1) and y(0), which we write as y = zy(1) + (1 − z)y(0). We consider y(0)

and y(1) as binary outcomes, i.e., y(0), y(1) ∈ {0, 1}. We assume the stable unit treatment

value assumption (SUTVA) which contains two sub-assumptions, no interference between

units (i.e., the treatment applied to one unit does not affect the outcome for another unit)

and no different versions of a treatment (Rubin, 1974). We also define the p × 1 vector of

covariates x, which are variables unaffected by treatment assignment z. We assume that

P (z = 1|x) > 0, i.e., the probability of assigning treatment is positive for every unit. Finally,

we assume strong ignorability (Rosenbaum and Rubin, 1983) so that the vector of potential

outcomes (y(0), y(1)) is independent of z given x.

Many causal inference procedures utilize propensity scores P (z = 1|x), i.e., the probabil-

ity of assignment to the treatment group given the covariates x. As shown by Rosenbaum

and Rubin (1983), the treatment assignment is independent of x given P (z = 1|x) un-

der SUTVA and strong ignorability. Propensity scores are typically estimated using binary

regressions of z on x. These estimated scores are used in a variety of causal estimators,

especially in defining weighted sums of the outcomes as treatment effect estimators, as we

use here. In what follows, we refer to estimated propensity scores using e(x).

To compare outcomes under treatment and control, we define the conditional average

controlled difference for a given x,

τ(x) = E[y|z = 1,x]− E[y|z = 0,x]. (1)

Under strong ignorability, E[y(z)|x] = E[y|x, z], so that τ(x) in (1) becomes the average
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treatment effect conditional on x, i.e., τ(x) = E[y(1) − y(0)|x]. Typically, the (potential)

outcomes are compared not for a single x; rather, they are averaged over a hypothesized

target distribution of the covariates. The choice of the distribution corresponds to the

region of the covariate space for the target population of interest. For example, if one seeks

to estimate the effect of the treatment on the treated, the relevant covariate distribution is

that of the treated cases.

Let the marginal density of x be f(x), defined with respect to a base measure ∆(x) (a

product of counting measure for categorical variables and Lebesgue measure for continuous

variables). For many common target populations in causal inference, the distribution of the

covariates can be represented as g(x) = f(x)t(x), where t(·) is a pre-specified function of

x. Using this expression, we define a general class of estimands by the expectation of the

conditional average controlled difference over the target population,

τ =

∫
τ(x)t(x)f(x)∆(dx)∫
t(x)f(x)∆(dx)

. (2)

The class of estimators defined in (2) is referred to as the weighted average treatment

effect (WATE) for causal comparisons (Hirano et al., 2003). Specification of t(·) defines

the target population and WATE estimands. Here, we consider three different WATEs.

When t(x) = 1, the corresponding target population is the combined (treated and control)

population, and the estimand is the average treatment effect (ATE). When t(x) = e(x), the

target population is the treated subpopulation, and the estimand is the average treatment

effect for the treated (ATT). Finally, when t(x) = 1 − e(x), the target population is the

control subpopulation, and the estimand is the average treatment effect for the control

(ATC).

For any unit i in a study where i = 1, . . . , n, let their covariates be xi, their treatment

status zi, and their outcome yi = ziyi(1) + (1 − zi)yi(0). The observed data are D =

{(yi,xi, zi) : i = 1, . . . , n}. We refer to the sampled covariate values as X = {x1, . . . ,xn}.

For i = 1, . . . , n, let w1i = t(xi)/e(xi), and let w0i = t(xi)/(1−e(xi)). A consistent estimator
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τ (w0i, w1i) Estimator Estimated variance

ATE
(

1
1−e(xi)

, 1
e(xi)

) ∑n
i=1

ziyi
e(xi)∑n

i=1
zi

e(xi)

−
∑n

i=1
(1−zi)yi
1−e(xi)∑n

i=1
(1−zi)

1−e(xi)

∑n
i=1

{
v1(xi)

e(xi)
+

v0(xi)

1−e(xi)

}
n2

ATT
(

e(xi)
1−e(xi)

, 1
) ∑n

i=1 ziyi∑n
i=1 zi

−
∑n

i=1
(1−zi)yie(xi)

1−e(xi)∑n
i=1

(1−zi)e(xi)

1−e(xi)

∑n
i=1 e(xi)

2
{

v1(xi)

e(xi)
+

v0(xi)

1−e(xi)

}
[
∑n

i=1 e(xi))]
2

ATC
(
1, 1−e(xi)

e(xi)

) ∑n
i=1

ziyi(1−e(xi))

e(xi)∑n
i=1

zi(1−e(xi))

e(xi)

−
∑n

i=1(1−zi)yi∑n
i=1(1−zi)

∑n
i=1(1−e(xi))

2
{

v1(xi)

e(xi)
+

v0(xi)

1−e(xi)

}
[
∑n

i=1(1−e(xi))]
2

Table 1: The expressions for w0i, w1i, the estimated treatment effect and its estimated
variance for different choices of target population represented by t(xi). ATE is the average
treatment effect for everyone (t(x) = 1). ATT is the average treatment effect for the treated
(t(x) = e(x)). ATC is the average treatment effect for the controls (t(x) = 1− e(x)).

of τ for any target population represented by the function t(·) is given by

τ̂ =

∑n
i=1w1iziyi∑n
i=1 w1izi

−
∑n

i=1w0i(1− zi)yi∑n
i=1 w0i(1− zi)

. (3)

Expressions for w0i, w1i and τ̂ corresponding to the ATE, ATT and ATC are given in Table 1.

We denote the treatment effect estimators as τ̂ATE, τ̂ATT , τ̂ATC , respectively.

For any of these estimators, which we write generically as τ̂ , we can approximate the

variance V [τ̂ ] using the decomposition, V [τ̂ ] = ExV [τ̂ |X]+VxE[τ̂ |X]. Li et al. (2018) derive

the component of variation due to residual (model) variation conditional on X. Specifically,

if V[y(1)|X] = v1(x) and V[y(0)|X] = v0(x) denote the variances of the outcome given

the covariates for the treated and control groups, respectively, Li et al. (2018) show that

ExV [τ̂ |X] can be approximated by

V =
1

n

∫
t(x)2

{
v1(x)

e(x)
+

v0(x)

(1− e(x))

}
f(x)∆(x)/

{∫
t(x)f(x)∆(x)

}2

, (4)

when the sample size n is large. Imbens (2004) shows that ExV [τ̂ |X] is typically much

larger than VxE[τ̂ |X]. Therefore, the general strategy is to approximate V [τ̂ ] by (4). The
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expression in (4) can be empirically approximated by,

V̂ =

1
n

[
1
n

∑n
i=1 t(xi)

2
{

v1(xi)
e(xi)

+ v0(xi)
1−e(xi)

}]
[
1
n

∑n
i=1 t(xi))

]2 =

[∑n
i=1 t(xi)

2
[
v1(xi)
e(xi)

+ v0(xi)
1−e(xi)

]]
[
∑n

i=1 t(xi))]
2 . (5)

The estimated variance V̂ corresponding to τ̂ATE, τ̂ATT and τ̂ATC are denoted V̂ATE,

V̂ATT and V̂ATC , respectively. Their expressions are in Table 1. With large n, 95% confi-

dence intervals for τ are constructed based on a large-sample normal approximation, (τ̂ −

1.96
√
V̂ , τ̂ + 1.96

√
V̂ ).

In some settings, values of e(xi) can be close to zero or one, which can result in inflated

variances. In such cases, one remedy is to replace e(x) with a truncated propensity score,

given by

eT (x) =


1− a if e(xi) > 1− a

e(x) if a ≤ e(xi) ≤ 1− a

a if e(xi) < a

(6)

for some user-defined parameter a > 0. The value of a typically is chosen to be small, so

that truncation affects only the few units with e(xi) near zero or one. Inferences are based

on the expressions in Table 1 replacing e(xi) with eT (xi). We denote the causal estimators

based on truncated propensity scores as τ̂TATE, τ̂
T
ATT , and τ̂TATC , with corresponding variance

estimates V̂ T
ATE, V̂

T
ATT , and V̂ T

ATC .

Trimming estimated propensity scores is a common strategy in the causal inference lit-

erature, especially to avoid large variance and poor finite-sample performance due to large

values of w1i or w0i (Kang and Schafer, 2007). The idea was first discussed in medical ap-

plications (Vincent et al., 2002; Grzybowski et al., 2003; Kurth et al., 2006) and formalized

by Crump et al. (2009).

2.2 Differential Privacy: Overview of Key Concepts

Let P be a stochastic algorithm that takes a database D as input and outputs a quantity

q, i.e., P(D) = q. We call D and D′ neighboring databases if there exists only one record

{d} ∈ D and one record {d′} ∈ D′ such that d ̸= d′ and D − {d} = D′ − {d′}.
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Definition 1 (ϵ-Differential Privacy) An algorithm P satisfies ϵ−differential privacy (de-

noted as ϵ-DP), if for any pair of neighboring databases (D,D′), and any non-negligible

measurable set S ⊆ range(P), P (P(D)∈S)
P (P(D′)∈S) ≤ exp(ϵ).

Thus, P satisfies ϵ-DP when the distributions of its outputs are similar for any two neigh-

boring databases, where the factor exp(ϵ) defines the similarity. The ϵ, known as the privacy

loss budget, controls the degree of confidentiality protection provided by P , with greater pro-

tection guarantees implied by lower values. ϵ-DP is a strong criterion, because an attacker

who has access to all of D except any one row learns little from P(D) about the values in

that unknown row when ϵ is small (Barrientos et al., 2019).

The definition of ϵ-DP satisfies several desirable properties. Let P1 and P2 be ϵ1-DP and

ϵ2-DP algorithms. The first is sequential composition: for any database D, release of both

P1(D) and P2(D) satisfies (ϵ1 + ϵ2)-DP. This means that we are able to calculate the total

privacy leakage from releasing multiple statistics. The second is parallel composition. LetD1

and D2 be two data files on disjoint sets of individuals. Release of both P1(D1) and P2(D2)

satisfies max{ϵ1, ϵ2}-DP. The third is the post-processing property. For any algorithm P2,

releasing P2(P1(D)) for any D satisfies ϵ1-DP. In other words, post-processing the output

of an ϵ1-DP algorithm does not imply any additional privacy loss.

A commonly used method to ensure ϵ-DP is the Laplace mechanism. Let f(D) be a

function that takes D as an input and outputs some statistic in Rk. For example, f might

sum the elements of one of the columns in D. We define the global sensitivity s(f, || · ||) =

max
D,D′,d(D,D′)=1

||f(D)− f(D′)||, where d(D,D′) = 1 implies that the two databases differ by

only one row, and || · || is a norm specific to the context. The Laplace mechanism computes

LM(D) = f(D) + κ, where κ is a k × 1 vector of independent draws from a Laplace

distribution with density g(x|λ) = (1/2λ) exp(−|x|/λ), where λ = s(f, || · ||)/ϵ (Dwork,

2006). In Section 3, we use the Laplace mechanism to construct causal estimators and

associated 95% confidence intervals satisfying ϵ-DP.

As part of our developments in subsequent sections, we use the subsample and aggregate

algorithm (Nissim et al., 2007) to satisfy ϵ-DP. The algorithm consists of a sampling step

and an aggregating step. In the sampling step, we partition the confidential data D into

M disjoint subsets D1, . . . ,DM and compute f(Dm) in each Dm. In the aggregation step,
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we compute the average f(D1, . . . ,DM) =
∑M

m=1 f(Dm)/M . For many f , any single ob-

servation affects the output from at most one of the partitions, i.e., the one it is randomly

assigned to. For such f , the global sensitivity of f(D1, . . . ,DM) generally is 1/M times

that of f(D). Using this sensitivity, we apply the Laplace mechanism to f(D1, . . . ,DM)

to create the differentially private statistic. The reduced sensitivity decreases the variance

of the noise distribution, which in turn offers potential for increased accuracy of released

results.

3 Differentially Private Estimation of WATE

We now construct a differentially private estimator of τ and its associated 95% interval

estimate for the three target populations reviewed in Table 1. Our general strategy is to

(i) find expressions for global sensitivities of the point and variance estimators, (ii) use the

subsample and aggregate algorithm with these global sensitivities to generate noisy versions

of the point and variance estimates, and (iii) apply a Bayesian inferential procedure to turn

these noisy quantities into an interval estimate for τ .

We begin by finding a global sensitivity of τ̂ for binary outcomes. Determining a sharp

bound on the sensitivity is tricky, since changing any one data point can change not only

the outcomes but the propensity score estimation and hence weights for all individuals in

(3). Instead, we use the coarse bound shown in Lemma 3.1.

Lemma 3.1 For yi(0), yi(1) ∈ {0, 1}, if 0 < e(xi) < 1 for all i = 1, . . . , n, the global

sensitivity of τ̂ in (3) for the ATE, ATT and ATC is bounded by 2, i.e., s(τ̂ , | · |) ≤ 2.

Proof For any D, we have

|τ̂(D)| ≤
∣∣∣∣∑n

i=1w1iziyi(1)∑n
i=1 w1izi

−
∑n

i=1w0i(1− zi)yi(0)∑n
i=1 w0i(1− zi)

∣∣∣∣
≤ max{max

i=1:n
yi(1)− min

i=1:n
yi(0),max

i=1:n
yi(0)− min

i=1:n
yi(1)} ≤ 1, (7)

since yi(0), yi(1) ∈ {0, 1}, w0i > 0 for at least one zi = 0, and w1i > 0 for at least one zi = 1.

Thus, for any two neighboring datasets D and D′, we have s(τ̂ , | · |) ≤ |τ̂(D)|+ |τ̂(D′)| ≤ 2.

To ensure all 0 < w0i, w1i < ∞ for i = 1, . . . , n, we use truncated propensity scores for
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the differentially private WATE. The truncation limit a is set before looking at values in D,

so that a is not data-dependent. Under truncation, the global sensitivities for the estimated

treatment effects remain bounded by two. The truncation also facilitates bounding the

sensitivities for the estimated variances, as we now show.

Theorem 3.2 For yi(0), yi(1) ∈ {0, 1}, bounds on the global sensitivities for V̂ T
ATE, V̂

T
ATT

and V̂ T
ATC are as follows: s(V̂ T

ATE, | · |) ≤ 1
an
; s(V̂ T

ATT , | · |) ≤ 1
2a2n

; and s(V̂ T
ATC , | · |) ≤ 1

2a2n
.

Proof For any D, we have

V̂ T
ATE(D) =

∑n
i=1

[
v1(xi)
eT (xi)

+ v0(xi)
1−eT (xi)

]
n2

≤
n( 2

4a
)

n2
=

1

2an
, (8)

where the inequality follows because v0(xi), v1(xi) ≤ 1/4 and max{eT (xi), 1− eT (xi)} ≥ a.

Hence, for any two neighboring D and D′, we have s(V̂ T
ATE, |·|) ≤ |V̂ T

ATE(D)|+|V̂ T
ATE(D

′)| ≤
1
an
. Applying similar logic for V̂ T

ATT (D), we have

V̂ T
ATT (D) =

∑n
i=1 e

T (xi)
2
[
v1(xi)
eT (xi)

+ v0(xi)
1−eT (xi)

]
{
∑n

i=1 e
T (xi)}2

≤

∑
eT (xi)

[
1/4 + (1−a)

4a

]
{
∑n

i=1 e
T (xi)}2

=

[
1/4 + (1−a)

4a

]
[
∑n

i=1 e
T (xi)]

≤ 1

4na2
.

(9)

Hence, s(V̂ T
ATT , | · |) ≤ |V̂ T

ATT (D)|+ |V̂ T
ATT (D

′)| ≤ 1
2na2

. Likewise, for V̂ T
ATC(D), we have

V̂ T
ATC(D) =

∑n
i=1(1− eT (xi))

2
[
v1(xi)
eT (xi)

+ v0(xi)
1−eT (xi)

]
[
∑n

i=1(1− eT (xi))]
2 =

∑n
i=1(1− eT (xi))

[
v1(xi)(1−eT (xi))

eT (xi)
+ v0(xi)

]
[
∑n

i=1(1− eT (xi))]
2

≤

∑n
i=1(1− eT (xi))

[
1/4 + (1−a)

4a

]
[
∑n

i=1(1− eT (xi))]
2 =

[
1/4 + 1−a

4a

]
[
∑n

i=1(1− eT (xi))]
≤ 1

4na2
. (10)

Hence, s(V̂ T
ATC , | · |) ≤ |V̂ T

ATC(D)|+ |V̂ T
ATC(D

′)| ≤ 1
2na2

.

To avoid introducing a substantial bias in τ̂ , we should make a small, e.g., a ≤ 0.05.

However, with small a, the global sensitivities in Theorem 3.2 could be large enough that,

with small ϵ, the noise variance in the Laplace mechanism is large compared to V̂ itself,

which could lead to undesirably wide confidence intervals.
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Therefore, rather than use Laplace mechanisms for τ̂ and V̂ , we use the subsampling

and aggregation technique reviewed in Section 2.2. We split D into M disjoint subsets,

{D1, . . . ,DM}, of approximately equal size. In each Dm, we estimate propensity scores

using only the data in that subset, and truncate them as in (6). Using the truncated

propensity scores, in each Dm we compute the treatment effect estimate τ̂Tm of interest and

its approximated variance V̂ T
m using the expressions in Table 1, replacing each e(xi) with

its truncated version eT (xi). Finally, we average these estimates over the M partitions to

obtain, for the particular treatment effect estimate of interest,

τ̄T =
M∑

m=1

τ̂Tm/M, V̄ T =
M∑

m=1

V̂ T
m/M. (11)

The global sensitivities of τ̄T and V̄ T are 2/M and s(V̂ T , | · |)/M , respectively.

To complete the subsampling and aggregation algorithm, we add independent noise to

each of the quantities in (11) using Laplace mechanisms. Suppose the total privacy budget

is ϵ. For 0 < π < 1, we use (1 − π)ϵ privacy budget for the treatment effect estimate

and πϵ for the variance estimate. Specifically, we compute τ̄T,ϵ = τ̄T + η1, where η1 ∼

Laplace(0, 2/(Mϵ(1− π))) and V̄ T,ϵ = V̄ T + η2, where η2 ∼ Laplace(0, s(V̄ T , | · |)/(Mϵπ)).

While τ̄T,ϵ and V̄ T,ϵ are differentially private, they may not be readily usable to make

interpretable inferences about τ . In particular, τ̄T,ϵ is not guaranteed to lie in (−1, 1), and

V̄ T,ϵ could be negative. Therefore, we use a Bayesian post-processing algorithm to turn

the differentially private point and variance estimates into interpretable inferences about

τ . The basic idea is as follows. Since the data analyst only has (τ̄T,ϵ, V̄ T,ϵ), the analyst

treats (τ̄T , V̄ T ) as unknown quantities. The analyst draws many, say L, plausible values

of the unobserved (τ̄T , V̄ T ) from their posterior distribution, and from each plausible value

samples a value of τ . The L draws of τ can be summarized for inferences.

We now offer the details of this post-processing step. For clarity we introduce new nota-

tion (τ̄ , V̄ ) to represent the analyst’s random variables for the unknown values of (τ̄T , V̄ T ).
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We specify two models M1 and M2 independently, given by

(ModelM1) : τ̄T,ϵ = τ̄ + ζ2, ζ2 ∼ Laplace(0, 2/(Mϵ(1− π))),

(ModelM2) : V̄ T,ϵ = V̄ + ζ1, ζ1 ∼ Laplace(0, s(V̄ T , | · |)/(Mϵπ)). (12)

We assign τ̄ ∼ U(−1, 1) and V̄ ∼ U(0, s(V̄ T , | · |)/2) prior distributions, where s(V̄ T , | · |)/2

is the upper bound from Theorem 3.2 for the treatment effect of interest. We estimate the

posterior distributions of τ̄ and V̄ using elliptical slice sampling (Nishihara et al., 2014).

Importantly, we do not use the confidential values of τ̄T and V̄ T in the sampling algorithms;

we only use the differentially private statistics.

We obtain L post burn-in samples of τ̄ , denoted as τ̄ ∗(1), . . . , τ̄ ∗(L), and of V̄ , denoted

as V̄ ∗(1), . . . , V̄ ∗(L). For l = 1, . . . , L, we draw a sample τ̃ (l) ∼ N(τ̄ ∗(l), V̄ ∗(l)). These L

draws represent an approximate posterior distribution for τ . We use τ̃ ϵ =
∑L

l=1 τ̃
(l)/L as

the privacy-protected point estimator for τ . We construct the 2.5% and 97.5% empirical

quantiles τ̃ ϵlower and τ̃ ϵupper from τ̃ (1), . . . , τ̃ (L), and use (τ̃ ϵlower, τ̃
ϵ
upper) as the privacy-protected

95% interval estimate for τ .

In drawing values of τ , we rely on large-sample normality for the sampling distribution

of τ̄T as defined in (11), namely τ̄T ∼ N(τ, V̄ T ). With a diffuse prior on τ , we have τ ∼

N(τ̄T , V̄ T ), which we can sample from to summarize inferences about τ . This presumes the

sampling variability in V̄ T is negligible compared to V̄ T itself, which is generally reasonable

and typically assumed in large-sample inference (Rubin, 1987). In our setting, the analyst

does not know τ̄T and V̄ T ; rather, the analyst has plausible draws of each. Thus, we follow

the strategy described in Zhou and Reiter (2010) for Bayesian inference with plausible draws

of unknown values: for each plausible draw (τ̃ ∗(l), V̄ ∗(l)) of (τ̄T , V̄ T ), we sample a value of τ

from N(τ̄ ∗(l), V̄ ∗(l)), and concatenate the draws for inferences about τ .

The entire process for estimating τ is summarized in Algorithm 1. Theorem 3.3 formally

states and proves that Algorithm 1 is differentially private.

Theorem 3.3 Algorithm 1 satisfies ϵ−differential privacy.

Proof Since τ̄T has a global sensitivity of 2/M , defining τ̄T,ϵ = τ̄T + Laplace(0, 2/(Mϵ(1−

π))) is a (1− π)ϵ-DP algorithm. Using a similar argument, V̄ T,ϵ = V̄ T +Laplace(0, s(V̄ T , | ·
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|)/(Mϵπ)) is a πϵ-DP algorithm. The Bayesian inference steps rely entirely on (τ̄T,ϵ, V̄ T,ϵ). By

the post-processing property of differential privacy, they do not affect the privacy guarantee.

Hence, releasing τ̃ ϵ and (τ̃ ϵlower, τ̃
ϵ
upper) from Algorithm 1 is (1− π)ϵ+ πϵ = ϵ-DP.

3.1 Theoretical Study of the DP WATE

In this section, we discuss some asymptotic properties of τ̃ ϵ. Here, we presume any bias in

the treatment effect estimators introduced by truncating propensity scores is negligible. This

is reasonable when a is small and all e(xi) are bounded away from a. If the truncation does

produce a non-negligible bias, the results still support the statement that the differentially

private WATE has a similar distribution as the WATE based on the trimmed propensity

scores.

As discussed in Section 3, when the sample size n is large, the analyst’s draws from

N(τ̄ , V̄ ) are samples from the posterior distribution of τ , from which the analyst obtains

τ̃ ϵ. Let g̃ϵ denote this distribution, i.e., g̃ϵ = N(τ̄ , V̄ ). When n is large, the distribution

of the non-private estimator τ̂ is approximately g = N(τ, V ). To assess the discrepancy

between τ̃ ϵ and τ̂ , we develop an upper bound for the discrepancy between g and g̃ϵ, given

by P (KL(g̃ϵ, g) > c), for any c > 0, as a function of M , ϵ and V , as n → ∞. Here, KL

stands for Kullback-Leibler divergence.

For m = 1, . . . ,M , let nm be the number of observations in Dm; let DT,m, Du,m and

Dl,m denote the sets of observations with propensity scores between a and 1 − a, greater

than 1 − a, and less than a, respectively; and, let nT,m, nu,m and nl,m be the number of

samples in each of DT,m, Du,m and Dl,m, respectively. We make the following assumptions

about the sample sizes.

(A1) As n → ∞, nm → ∞ for all m = 1, . . . ,M .

(A2) As nm → ∞, nu,m/nm → 0 and nl,m/nm → 0.

Since nm = nT,m + nl,m + nu,m, assumptions (A1) and (A2) imply that nT,m/nm → 1 as

n → ∞.

Lemma 3.4 Under (A1) and (A2), the following results hold.

(i) P (|τ̄ − τ | > c) ≤ 2 exp(−Mϵ(1− π)c/6), as n → ∞, for any c > 0.
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Algorithm 1: Differentially Private WATE and its 95% Interval Estimate

Input: (1) D : Dataset {yi,xi, zi : i = 1, . . . , n} ; (2) M : Number of partitions;
(3) a : Truncation level; (4) ϵ : Privacy loss budget; (5) π : fraction of privacy loss
budget allocated to variance estimation.
Output: (1) DP WATE estimate τ̃ ϵ; (2) DP 95% interval (τ̃ ϵlower, τ̃

ϵ
upper) for WATE

1 begin
/* Step 1: Partition the data as a part of subsample and aggregation

step. */

2 Choose a random partition {D1, . . . ,DM} of D
/* Step 2: Compute WATE estimate and its estimated variance based on

truncated propensity scores in each subset. */

3 for m ∈ 1 : M do

4 Compute WATE estimate τ̂Tm and its approximated variance V̂ T
m using the

truncated propensity score defined in (6) from Dm.
5 end

/* Step 3: Add noise following Laplace mechanism. */

6 Compute the average of treatment effects τ̄T and its estimated average variance
V̄ T following (11).

7 Generate η1 ∼ Laplace(0, 2/(Mϵ(1− π))) and η2 ∼ Laplace(0, s(V̄ T , | · |)/(ϵπ)).
8 Compute noisy versions τ̄T,ϵ = τ̄T + η1 and V̄ T,ϵ = V̄ T + η2.

/* Step 4: Apply Bayesian post-processing steps. */

9 Fit models M1 and M2 independently, which are given by

(ModelM1) : τ̄T,ϵ = τ̄ + ζ2, ζ2 ∼ Laplace(0, 2/(Mϵ(1− π))),

(ModelM2) : V̄ T,ϵ = V̄ + ζ1, ζ1 ∼ Laplace(0, s(V̄ T , | · |)/(Mϵπ)), (13)

for l ∈ 1 : L do
10 Draw elliptical slice samples (Nishihara et al., 2014) for τ̄ and V̄ , denoted by

τ̄ (l) and V̄ (l), respectively.
11 Draw τ̃ (l) ∼ N(τ̄ (l), V̄ (l)).

12 end

13 Compute τ̃ ϵ =
∑L

l=1 τ̃
(l)/L and τ̃ ϵlower = 2.5% empirical quantile, τ̃ ϵupper = 97.5%

empirical quantile.
14 return τ̃ ϵ, (τ̃ ϵlower, τ̃

ϵ
upper).

15 end
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(ii) P (|V̄ − V | > c) ≤ 2 exp(−Mϵπc/6), as n → ∞, for any c > 0.

A proof of Lemma 3.4 is in the appendix. We use Lemma 3.4 to derive a bound on

P (KL(g̃ϵ, g) > c).

Theorem 3.5 Under (A1) and (A2), we have

P (KL(g̃ϵ, g) > c) ≤ 2 exp

(
−Mϵ(1− π)

√
2V c

6
√
3

)
+ 4 exp(−MϵπV c/9),

as n → ∞.

Theorem (3.5) shows that, as M or ϵ get large, the distance between the two quantities goes

to 0.

4 Simulation Studies

In this section, we illustrate repeated sampling properties of the differentially private

point, variance, and interval estimates of the ATE, ATT and ATC. We begin with simulations

that set M = 100 and a = 0.05 for data of size n = 10000 and privacy loss budget ϵ = 1.

We then vary simulation design parameters one at a time to investigate the sensitivity of the

findings. Section 4.2 varies M ; Section 4.3 varies a; Section 4.4 varies n; and, Section 4.5

varies ϵ.

4.1 Baseline Studies with M = 100, a = 0.05, n = 10000, ϵ = 1

To createD in any simulation run, we generate n = 10000 observations each measured on

p = 4 covariates, xi = (xi1, xi2, xi3, xi4). We simulate xi ∼ N(0, (1− ρ)I + ρJ), 0 ≤ ρ ≤ 1,

where J is a p × p matrix with each entry as 1. The covariance implies correlation of ρ

between any two predictors, and we set ρ = 0.2 in all simulations. For i = 1, . . . , n, we

generate a treatment status zi from a Bernoulli draw with probability P (zi = 1|xi), where

logit[P (zi = 1|xi)] = 0.1 + 0.2ηxi1 + 0.5ηxi2 − 0.25ηxi3 − 0.45ηxi4. (14)

We vary η ∈ {2, 4} to change the level of overlap in the treatment and control samples, as

shown in Figure 1. As η increases, we observe increasingly sparse overlap in the propensity
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Figure 1: Simulated propensity score distributions in the simulation of Section 4.1 for treated
(purple) and controls (pink). The propensity score distributions are shown for η = 2 and
η = 4. The propensity score distributions show much less overlap when η = 4.

score distribution.

For each (xi, zi), we simulate the potential binary outcomes, (yi(0), yi(1)), from Bernoulli

distributions with probabilities governed by

logit[P (y(z) = 1)] = β0 + β1x1 + β2x2 + β3x3 + β4x4 + γz. (15)

We set (β0, β1, β2, β3, β4) = (0.15,−0.2, 0.3,−0.4, 0.6). We also vary γ ∈ {0, 1, 2} to represent

different strengths of treatment effects. Thus, we have six simulation scenarios corresponding

to each combination of (η, γ) ∈ {2, 4} × {0, 1, 2}.

In each simulation, we compute the true treatment effects,

τATE = (1/n)
n∑

i=1

{P (yi(1) = 1 |xi)− P (yi(0) = 1 |xi)} (16)

τATT = (1/nT )
∑
i:zi=1

{P (yi(1) = 1 |xi)− P (yi(0) = 1 |xi)} (17)

τATC = (1/nC)
∑
i:zi=0

{P (yi(1) = 1 |xi)− P (yi(0) = 1 |xi)} , (18)

where the expressions for P (yi(1) = 1 |xi) and P (yi(0) = 1 |xi) are obtained from (15). The
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quantities nT and nC are the number of treated and control subjects, respectively.

For comparisons, in each simulation run, we compute estimated treatment effects τ̂ for

each causal estimand without privacy concerns, i.e., without the partitions, truncation, or

Laplace noise. We also compute the 95% confidence interval (CI) using (τ̂±1.96
√
V̂ ), where

V̂ is the estimated variance of the treatment effect calculated on the sample using (5) without

any privacy protections. We run 500 independent replications of each scenario, sampling a

new set of {(x1, z1, y1), . . . , (xn, zn, yn)} each time. We equally allocate privacy budget in

the WATE point and variance estimation, and set π = 0.5.

As evident in Table 2, the differentially private point estimates have small average errors,

indicating that they accurately estimate true treatment effects. For context, the values of

the various τ for scenarios with γ = 1, 2 tend to be around .20 to .30, so that RMSEs of

.01 to .02 are modest fractions of the true treatment effects. The average errors from the

differentially private estimates tend to be larger than those from the non-privacy protected

point estimates, reflecting the combined effects of the Laplace noise, truncation limits, and

subsampling. All methods are more accurate when there is greater overlap in the propensity

scores, as one would expect. The 95% CIs for the various τ without privacy protection cover

less often than the nominal 95% rate, whereas the 95% intervals based on the differentially

private algorithms tend to cover more often than the nominal 95% rate. The steps taken to

protect privacy result in increased average interval lengths, which seemingly is the price to

pay for the privacy protection.

4.2 Sensitivity to the Choice of M

The choice of M = 100 ensures that the standard deviation of the Laplace noise is much

smaller than V̄ T . In this section, we consider the effects on inference of changing M by

considering M ∈ {50, 100, 200}. In generating the data, we use the more challenging case of

less overlap between treatment and control propensity score distributions, setting η = 4 and

γ = 1. All other parameters are set at the values described in Section 4.1.

Figure 2 displays the RMSEs of the point estimators, and the coverage rates and average

lengths of the 95% intervals. In these simulations, we see little practical impact of changing

M on the properties of the differentially private WATE estimates. For all M considered, the
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differentially private WATE estimates generally are close to the corresponding non-private

treatment effect WATE estimates computed with D, and the coverage rates of the differ-

entially private intervals are all around 98%. The interval lengths also are unremarkably

different, with some suggestion that the interval lengths are smallest at M = 50. As M

increases, the intervals are subject to two countervailing effects. The variance of the Laplace

noise decreases thereby encouraging shorter intervals, and the uncertainty in the propensity

score estimates in each partition increases thereby encouraging longer intervals. We con-

firmed the latter fact by constructing 95% intervals from samples of τ ∼ N(τ̄T , V̄ T ), that is,

using partitioning without adding Laplace noise. We suggest a rule-of-thumb for selecting

M in Section 6.

4.3 Sensitivity to the Choice of Truncation Point

While a = .05 may be a reasonable cut-off for propensity scores in many contexts, it is

instructive to investigate the performance of the differentially private WATE inferences for

other realistic values of a. To this end, we also examine the differentially private WATE

inferences for a ∈ {0.03, 0.07, 0.1}. Let τ̃ ϵ,a correspond to the differentially private point

estimate for the WATE for truncation limit a. We present the absolute distance between the

non-private estimator on τ̂ computed usingD, i.e., without truncation or privacy protections,

and τ̃ ϵ,a. We write this difference as Dev(τ̃ ϵ,a) = |τ̃ ϵ,a − τ̂ |. We also present coverage rates

and average lengths for the 95% intervals using different choices of a. We set ϵ = 1, M = 100,

η = 4, and γ = 1.

As evident in Table 3, in these simulations the properties of the point estimate and

coverage rates for ATE, ATT and ATC are similar for all values of a investigated. This

is because the Laplace noise variances are of comparable magnitude for the values of a in

this range. However, if we decrease a to values near zero, say a = .001, the variance in the

Laplace mechanism applied to V̄ T is about 20 times higher compared to using a = 0.05.

As a result, the 95% intervals are much wider, and their coverage rate approaches 1. When

a = 0.001, the RMSE values are nearly 1.5 times higher than when a = 0.05.
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4.4 Sensitivity to the Sample Size

We next illustrate the effect of the sample size by repeating simulations with n = 100000

and n = 5000. We set ϵ = 1, M = 100, a = 0.05, η = 4, and γ = 1 for this simulation.

Table 4 displays the results. The point estimates from the differentially private WATE

estimators remain accurate, with RMSE values decreasing as n increases. When n = 5000,

the interval estimates widen substantially for both the non-private and differentially private

estimators. At n = 5000, the coverage rate for the differentially private interval is near 100%,

indicating that the inferential procedure at this sample size results in overly wide intervals.

4.5 Sensitivity to the value of ϵ

Finally, we consider the effects of changing ϵ. In general, the choice of ϵ is driven by

privacy desiderata, for example, as specified by the data holders. Ideally, the value of ϵ

also takes into account the likely usefulness of the outputs that could result from applying

the differentially private algorithm; that is, the process of setting ϵ considers a trade off

between risk and usefulness. Here, we examine results for ϵ ∈ {0.5, 1, 5}. As in Section 4.2,

to generate D in each of the 500 simulation runs, we set η = 4 and γ = 1.

Figure 3 displays the results. Changing ϵ in these simulations influences the estimated

variances and hence lengths of the interval estimates. For small values of ϵ, the differentially

private 95% intervals are wider and have larger coverage rates. As ϵ increases, the coverage

rates become closer to nominal.

5 Illustration with the Adult Income Data

We demonstrate the application of the differentially private WATE estimators using

the “Adult” data set (Becker and Kohavi, 1996), which we accessed via the UCI Machine

Learning Repository (https://archive.ics.uci.edu/). We emphasize that this example

serves to illustrate the methodology and is not intended to be a thorough causal analysis of

the effect of education on income.

The data comprise n = 30162 individuals with complete information on the following

variables: the age of the individual; the marital status, which includes seven categories -

married to a civilian spouse, married to a spouse in the armed forces, married but with an
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absentee spouse, never married, divorced, separated, or widowed; the race, which includes

five categories - white, black, American Indian Eskimo, Asian Pacific islander, and other;

the sex, which includes two categories - male and female; the individual’s occupation, which

spans across 15 categories including executive-managerial, farming, fishing, transportation,

sales, administrative-clerical, and more; and, an indicator of whether their native country is

the USA or not. We classify individuals as treated (z = 1) if they have earned a bachelor’s

degree or higher, and as controls (z = 0) if they have an education level lower than a

bachelor’s degree. We make a binary outcome from income as below $50000 (y = 0) or at

least $50000 (y = 1).

We estimate propensity scores using a logistic regression of z on age, marital status, race,

sex, occupation, and a binary indicator denoting whether the individual’s native country

is the USA. We use Algorithm 1 to make differentially private inferences about the effect

of education on income. Given the relatively large sample size, for this analysis, we set

M = 100. This M value is sufficiently large enough that the Laplace noise variance is

expected to be less than the within-partition variance of the WATE. We set a = 0.05 and

π = 0.5.

Table 5 presents results for two values of ϵ ∈ {0.5, 1}. For both the differentially private

WATE estimates and their non-privacy protected counterparts, the point estimates are posi-

tive and 95% confidence intervals exclude zero. These suggest a positive association between

years of education and income level. The differentially private WATE estimates and their

non-privacy protected analogues are close to one another. The 95% intervals constructed

from Algorithm 1 are wider than the corresponding intervals based on the full data.

6 Concluding Remarks

We present an approach to estimating weighted average treatment effects with binary

outcomes while ensuring differential privacy. Simulation and empirical results suggest that

the approach can result in accurate point estimates with conservative interval coverage rates.

To implement the approach, analysts need to select M and a. We now suggest some rule-of-

thumb guidance for these choices. We note that analysts can undertake simulation studies

akin to those presented here to facilitate choices tuned more closely to their settings.
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In determining appropriate values for M , we recommend analysts to opt for the smallest

feasible M while ensuring that, given the privacy parameter ϵ, the standard deviation of the

Laplace noise from the subsampling and aggregation process remains significantly smaller

than the sensitivity of the estimated variance of the WATE estimate obtained from the full

data. When such an M cannot be found, the noise from privacy protection can overshadow

the noise from sampling variability, thereby compromising the reliability of the ensuing

estimates.

In general, we recommend selecting a to be sufficiently small to minimize the likelihood

of truncating propensity scores, yet not so small as to inflate the sensitivity of the variance

estimators. In essence, a can be adjusted to ensure that the sensitivity of the variance

estimator is acceptable, particularly for the values of M under consideration.

7 Appendix

This section presents proofs of the theoretical results outlined in Section 3.1.

7.1 Proof of Lemma 3.4

We begin by proving part (i) of the lemma. Note that,

P (|τ̄ − τ | > c) ≤ P (|τ̄ − τ̄T,ϵ| > c/3)

+ P (|τ̄T − τ̄T,ϵ| > c/3) + P (|τ̄T − τ | > c/3). (19)

The first and second terms correspond to probabilities under the Laplace distribution. More

specifically,

P (|τ̄T − τ̄T,ϵ| > c/3) = Ey,x,zP (|τ̄T − τ̄T,ϵ| > c/3|D) = exp(−Mϵ(1− π)c/6)

P (|τ̄ − τ̄T,ϵ| > c/3) = Ey,x,zP (|τ̄ − τ̄T,ϵ| > c/3|D) ≤ exp(−Mϵ(1− π)c/6). (20)
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It remains to show the bound for P (|τ̄T − τ | > c/3). To this end, note that

(c2/9)P (|τ̄T − τ | > c/3) ≤ Ey,x,z[(τ̄
T − τ)2] ≤ 2V ar(τ̄T ) + 2{Ey,x,z[τ̄

T ]− τ}2

= (2/M2)
M∑

m=1

V ar(τ̂Tm) + 2{(1/M)
M∑

m=1

Ey,x,z[τ̂
T
m]− τ}2. (21)

LetDu,m,Dl,m,DT,m denote the samples within themth partitionDm with propensity score

greater than 1− a, less than a and between a and (1− a), respectively. Now observe that

1

nm

nm∑
i=1

w1iziyi(1) =
1

nm

∑
i∈DT,m

w1iziyi(1) +
1

nm

∑
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w1iziyi(1) +
1

nm

∑
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w1iziyi(1)

=
1

nm

∑
i∈DT,m

t(xi)

eT (xi)
ziyi(1) +

1

nm

∑
i∈Dl,m

t(xi)

eT (xi)
ziyi(1) +

1

nm

∑
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t(xi)

eT (xi)
ziyi(1)

=
1

nm

∑
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t(xi)

e(xi)
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1

nma

∑
i∈Dl,m

t(xi)ziyi(1) +
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i∈Du,m

t(xi)ziyi(1). (22)

By assumptions (A1) and (A2),

1

nm

∑
i∈DT,m

w1iziyi(1)
a.s.→ Ey,x,z[y(1)zt(x)/e(x)] = ExEz|xEy|z,x[y(1)zt(x)/e(x)]

= Ex[E[y(1)|x]t(x)] =
∫

E[(y(1)|x]t(x)f(x)∆(dx). (23)

Since |t(xi)ziyi(1)| ≤ 1, for all i, 1
nma

∑
i∈Dl,m

t(xi)ziyi(1)
a.s.→ 0 if nl,m is finite, and

1
nm(1−a)

∑
i∈Du,m

t(xi)ziyi(1)
a.s.→ 0 if nu,m is finite. When both nl,m and nu,m are infinite,

1

nma

∑
i∈Dl,m

t(xi)ziyi(1) =
nl,m

nm

1

nl,ma

∑
i∈Dl,m

t(xi)ziyi(1)
a.s.→ 0, (24)

as 1
nl,m

∑
i∈Dl,m

t(xi)ziyi(1)
a.s.→
∫
E[(y(1)|x]e(x)t(x)f(x)∆(dx) and

nl,m

nm
→ 0 by (A2). Using

the similar logic,

1

nm

∑
i∈Du,m

t(xi)ziyi(1)
a.s.→ 0. (25)
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From (22), (23), (24) and (25), we have

1

nm

nm∑
i=1

t(xi)ziyi(1) →
∫

E[(y(1)|x]t(x)f(x)∆(dx). (26)

Also,

1

nm

nm∑
i=1

w0i(1− zi)yi(0) =
1

nm

∑
i∈DT,m

w0i(1− zi)yi(0) +
1

nm
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+
1

nm
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Following the similar arguments as above,

1

nm
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i∈DT,m

w0i(1− zi)yi(0)
a.s.→ Ey,x,z[y(0)(1− z)t(x)/(1− e(x))] =
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We use the same argument as above to arrive at

1

nm

nm∑
i=1

w1izi
a.s.→ Ey,x,z[zt(x)/e(x)] = Ex[t(x)] =

∫
t(x)f(x)∆(dx)

1

nm

nm∑
i=1

w0i(1− zi)
a.s.→ Ey,x,z[(1− z)t(x)/(1− e(x))] = Ex[t(x)] =

∫
t(x)f(x)∆(dx). (29)

Hence, τ̂Tm
a.s.→

[∫
{E[y(1)|x]− E[y(0)|x]}t(x)f(x)∆(dx)

]
/
[∫

t(x)f(x)∆(dx)
]

= τ from

(26), (28) and (29). Given that each τ̂m is bounded between −1 to 1, dominated con-

vergence theorem leads to E[τ̂Tm] → τ , as n → ∞. Following the proof of Theorem 2 in Li

et al. (2018), we have
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T
m) =

1
nm

∑nm

i=1 v1(xi)ziw
2
1i

[ 1
nm

∑nm

i=1 ziw1i]2
+

1
nm

∑nm

i=1 v0(xi)(1− zi)w
2
0i

[ 1
nm

∑nm

i=1(1− zi)w0i]2

=
1
nm

∑nm

i=1 v1(xi)zit(xi)
2/eT (xi)

2

[ 1
nm

∑nm

i=1 zit(xi)/eT (xi)]2
+

1
nm

∑nm

i=1 v0(xi)(1− zi)t(xi)
2/(1− eT (xi))

2

[ 1
nm

∑nm

i=1(1− zi)t(xi)/(1− eT (xi))]2
.
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Note that

1

nm

nm∑
i=1

v1(xi)zi
t(xi)

2

eT (xi)2
=

1

nm

∑
i∈DT,m

v1(xi)zi
t(xi)

2

e(xi)2
+

1

nma2

∑
i∈Dl,m

v1(xi)zit(xi)
2

+
1

nm(1− a)2

∑
i∈Du,m

v1(xi)zit(xi)
2.

By assumptions (A1) and (A2), and using the arguments used before, 1
nm

∑
i∈Dl,m

v1(xi)zit(xi)
2 a.s.→

0 and 1
nm

∑
i∈Du,m

v1(xi)zit(xi)
2 a.s.→ 0, and Ex,z[

1
nm

∑
i∈DT,m

v1(xi)zi
t(xi)

2

e(xi)2
] →

∫
t(x)2 v1(x)

e(x)
f(x)∆(x).

Similarly,

1

nm

nm∑
i=1

v0(xi)
(1− zi)t(xi)

2

(1− eT (xi))2
=

1

nm

∑
i∈DT,m

v1(xi)
(1− zi)t(xi)

2

(1− eT (xi))2
+

1

nm(1− a)2

∑
i∈Dl,m

v1(xi)(1− zi)t(xi)
2

+
1

nma2

∑
i∈Du,m

v1(xi)(1− zi)t(xi)
2.

Hence, 1
nm

∑
i∈Dl,m

v0(xi)(1 − zi)t(xi)
2 a.s.→ 0 and 1

nm

∑
i∈Du,m

v0(xi)(1 − zi)t(xi)
2 a.s.→ 0, and

Ex,z[
1
nm

∑
i∈DT,m

v0(xi)(1−zi)
t(xi)

2

(1−e(xi))2
] →

∫
t(x)2 v0(x)

1−e(x)
f(x)∆(x). Using similar arguments,

1

nm

nm∑
i=1

zit(xi)/e(xi) →
∫

t(x)f(x)∆(x),
1

nm

nm∑
i=1

(1− zi)t(xi)/(1− e(xi)) →
∫

t(x)f(x)∆(x).

Using Slutsky’s theorem,

nmEx[V ar(τ̂Tm|x)] →
∫

t(x)2
{
v1(x)

e(x)
+

v0(x)

(1− e(x))

}
f(x)∆(x)/

{∫
t(x)f(x)∆(x)

}2

.

As nm → ∞ Ex[V ar(τ̂Tm|x)] → 0. Following Imbens (2004), typically, V arx(E[τ̂Tm|x)]) ≤

Ex[V ar(τ̂Tm|x)] → 0. Hence, V ary,x,z(τ̂
T
m) → 0.

Combining equations (19), (20), (21) and the result above, as n → ∞

P (|τ̄ − τ | > c) ≤ 2 exp(−Mϵ(1− π)c/6). (30)

which concludes the proof of (i).
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To prove (ii), note that

P (|V̄ − V | > c) ≤ P (|V̄ − V̄ T,ϵ| > c/3)

+ P (|V̄ T − V̄ T,ϵ| > c/3) + P (|V̄ T − V | > c/3).

The first and second terms are straightforward to bound following the Laplace distribu-

tion. More specifically,

P (|V̄ T − V̄ T,ϵ| > c/3) = Ey,x,zP (|V̄ T − V̄ T,ϵ| > c/3|D) = exp(−Mcϵπ/6)

P (|V̄ − V̄ T,ϵ| > c/3) = Ey,x,zP (|V̄ − V̄ T,ϵ| > c/3|D) ≤ exp(−Mcϵπ/6). (31)

Regarding the third term, note that V̄ T =
∑M

m=1 V̂
T
m/M and V̂ T

m
P→ V as nm → ∞, using

the above results. Hence, V̄ T P→ V which implies P (|V̄ T −V | > c/3) → 0 as n → ∞. Hence,

P (|V̄ T − V | > c/3) ≤ 2 exp(−Mϵπc/6) as n → ∞, proving (ii).

7.2 Proof of Theorem 3.5

We have

KL(g̃ϵ, g) =
(τ̄ − τ)2

2V
+

V̄

2V
− 1

2
− 1

2
log

V̄

V
= U1 + U2 + U3,

where U1 =
(τ̄−τ)2

2V
, U2 =

V̄
2V

− 1
2
and U3 = −1

2
log V̄

V
. Following Lemma 3.4, for any c > 0, as

n → ∞,

P (|U1| > c/3) = P

(
(τ̄ − τ)2

2V
> c/3

)
≤ 2 exp

(
−Mϵ(1− π)

√
2V c

6
√
3

)
(32)

P (|U2| > c/3) = P

(∣∣∣ V̄
2V

− 1

2

∣∣∣ > c/3

)
≤ 2 exp(−MϵπV c/9) (33)

P (|U3| > c/3) = P

(∣∣∣1
2
log

V̄

V

∣∣∣ > c/3

)
≤ P

(∣∣∣ V̄
2V

− 1

2

∣∣∣ > c/3

)
≤ 2 exp(−MϵπV c/9), (34)
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where last inequality uses the fact that log(h) ≤ h− 1, for any h > 0. Finally, for any c > 0,

P (KL(g̃ϵ, g) > c) ≤ P (|U1| > c/3) + P (|U2| > c/3) + P (|U3| > c/3)

≤ 2 exp

(
−Mϵ(1− π)

√
2V c

6
√
3

)
+ 4 exp(−MϵπV c/9),

as n → ∞, proving the result.
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η 2 2 2 4 4 4
γ 0 1 2 0 1 2

Avg. τATE 0 .204 .342 0 .204 .343

ATE

τ̂ATE

RMSE .011 .014 .012 .019 .019 .022
95% CI coverage 90.2 89.8 90.8 91.2 92.4 92.0
95% CI length .054 .058 .057 .171 .192 .187

τ̃ ϵATE

RMSE .016 .016 .015 .023 .021 .024
95% CI coverage 96.8 97.4 97.2 98.0 98.0 98.2
95% CI length .113 .134 .148 .281 .295 .316

Avg. τATT 0 .205 .345 0 .206 .348

ATT

τ̂ATT

RMSE .012 .012 .010 .022 .017 .019
95% CI coverage 89.8 90.8 91.6 91.0 91.8 92.0
95% CI length .059 .062 .062 .201 .229 .213

τ̃ ϵATT

RMSE .016 .014 .013 .026 .023 .021
95% CI coverage 96.6 96.8 97.4 97.0 98.2 98.0
95% CI length .136 .144 .169 .303 .324 .332

Avg. τATC 0 .202 .338 0 .202 .337

ATC

τ̂ATC

RMSE .015 .014 .010 .022 .020 .017
95% CI coverage 90.2 90.4 91.0 91.6 92.2 92.4
95% CI length .057 .065 .064 .215 .234 .219

τ̃ ϵATC

RMSE .018 .018 .015 .028 .025 .026
95% CI coverage 97.2 97.4 97.4 98.0 98.2 98.4
95% CI length .132 .159 .179 .310 .326 .341

Table 2: Results from 500 simulations with (M = 100, ϵ = 1, a = .05) for the ATE, ATT
and ATC. Results include the root of the average squared errors (RMSE) between the dif-
ferentially private WATE estimate and the corresponding true value based on (16) – (18);
the percentage of the five hundred 95% confidence intervals that cover the corresponding
treatment effect; and, the average length of the estimated 95% confidence intervals in paren-
thesis. These quantities are shown for both the privacy protected and non-privacy protected
estimation.
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Figure 2: Root mean squared error (RMSE) of the differentially private WATEs for the ATE
(Figure 2(a)), ATT (Figure 2(b)), and ATC (Figure 2(c)), for M ∈ {50, 100, 200}. In all
cases, n = 10000, ϵ = 1 and a = .05. RMSEs for WATE estimates with no privacy protection
are denoted by black dots. RMSEs for the differentially private WATE estimates are denoted
by red dots. “Cov” and “Len” stand for the coverage rate and average length of the 95%
intervals, both based on the differentially private algorithms.
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Dev(τ̃ ϵ,aATE) Dev(τ̃ ϵ,aATT ) Dev(τ̃ ϵ,aATC) Cov(τ̃ ϵ,aATE) Cov(τ̃ ϵ,aATT ) Cov(τ̃ ϵ,aATC)

a = 0.03 0.005 0.006 0.005 0.984 0.986 0.988

a = 0.07 0.005 0.006 0.006 0.978 0.978 0.982

a = 0.10 0.007 0.008 0.008 0.974 0.976 0.978

Table 3: Results for simulations for a ∈ {0.03, 0.07, 0.10}. Entries include the average
absolute difference in the differentially private WATE and the non-private WATE without
truncation, labeled Dev(τ̃ ϵ,a), and the coverage rate of the 95% intervals, labeled Cov(τ̃ ϵ,a).
In all cases, M = 100, n = 10000, and ϵ = 1.

n = 100000 n = 5000

Combined Treated Control Combined Treated Control

τ̂
RMSE 0.012 0.013 0.013 0.022 0.023 0.025
95% CI coverage 0.928 0.918 0.920 0.970 0.972 0.972
95% CI length 0.165 0.189 0.184 0.291 0.345 0.343

τ̃ ϵ

RMSE 0.017 0.018 0.018 0.028 0.029 0.031
95% CI coverage 0.972 0.976 0.978 0.996 0.998 0.998
95% CI length 0.254 0.271 0.276 0.648 0.729 0.742

Table 4: Results with sample sizes n = 100000 and n = 5000, with (M = 100, ϵ = 1, a = .05).
Here, τ̃ ϵ is the privacy protected treatment effect estimate. Results include coverage rates
and average lengths of the 95% intervals.
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Figure 3: Root mean squared error (RMSE) of the differentially private WATEs for the ATE
(Figure 3(a)), ATT (Figure 3(b)), and ATC (Figure 3(c)) for ϵ ∈ {0.5, 1, 5}. In all these
cases, M = 100, n = 10000, and a = 0.05. RMSEs for the WATE estimates with no privacy
protection are denoted by black dots. RMSEs for the differentially private WATE estimates
are denoted by red dots. “Cov” and “Len” stand for the coverage rate and average length
of the 95% intervals, both based on the differentially private algorithms.
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ϵ ATE ATT ATC
95% CI 95% CI 95% CI

τ̃ ϵ 1 0.271 0.258 0.236
(0.183, 0.361) (0.170, 0.344) (0.149, 0.324)

0.5 0.272 0.269 0.275
(0.144, 0.401) (0.136, 0.406) (0.151, 0.407)

τ̂ 0.263 0.271 0.260
(0.251, 0.275) (0.259, 0.283) (0.248, 0.272)

Table 5: Point estimates and 95% intervals for treatment effects from the analysis of the
Adult Income Data described in Section 5. Results include the differentially private infer-
ences based on Algorithm 1 in the panel indicated by τ̃ ϵ, as well as results based on the
full data with no privacy protection or truncation in the panel headed by τ̂ . Differentially
private results use M = 100 and a = 0.05.
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