

Taylor - Couette System for Superimposed -shear Cavitation Experiments

Purpose & Motivation of Research

Figure 1. CT scan of a traumatic brain injury (TBI).

Laboratory Details

The Taylor-Couette systems were fitted, assembled, function-tested, and utilized for graduate research in Dr. Justin Wilkerson's Laboratory for Nonequilibrium Phenomena, located on Texas A&M University's main campus in College Station, Texas.

High-Level Summary

The newly developed superimposed shear cavitation experiment is applied to study soft material response under complex stress states. The experiment is developed based on research in Taylor-Couette flow and conventional needle-induced cavitation experiment.

Relevant Publications

Ji, Karber, Byrd, Wilkerson. (2022, October) Cavitation of Soft Tissue Surrogates Under Complex Stress States [Paper Presentation]. Society of Engineering Science, College Station, Texas, USA.

Lopez-Pamies, Oscar, et al. "Cavitation in Elastomeric Solids: II-Onset-of-Cavitation Surfaces for Neo-Hookean Materials." Journal of the Mechanics and Physics of Solids, vol. 59, no. 8, Jan. 2011, pp.1488–505.EBSCOhost, doi.org/10.1016/j.jmps.2011.04.016. CT scan showing cerebral contusions, hemorrhage within the hemispheres and skull fractures (Rehman, 2008)

•Develop an experimental apparatus to validate a general theory of the onset of cavitation in any nonlinear elastic isotropic material under an arbitrary stress state.

•Through experiments on an ultra-soft triblock copolymer (PMMA-PnBA-PMMA), induce different stress states by controlling the rotation of the inner cylinder in a coaxialcylinder (Taylor-Couette) system.

Figure 2. Impact causing a traumatic brain injury (TBI).

View my 2-minute presentation: tx.ag/VRS23karb

College of Engineering – Department of Mechanical Engineering

Christopher J. Karber, Yuan Ji, Travis Byrd, Justin W. Wilkerson

¹christopher.karber@tamu.edu, ²yuan.ji@tamu.edu, ³travisb02@tamu.edu, ⁴wilkerson@tamu.edu

I. Need and Methodology

Time

Figure 3. Original experimental set-up.

III. Impact of New System

Figure 6. Time-lapse of cavitation under a superimposed shear stress state (60° fixed rotation).

• Low-profile angular locking mechanism allowed induced shear stress to be fixed throughout experiments.

• Single housing and locking gears accommodated multiple inner cylinders that allowed for a variable annular gap to control the induced shear stress state profile.

• Repeatable experiments for satisfactory data collection and analysis.

- loading.
- and other soft tissue damage.

Figure 7. Taylor-Couette Rotation

II. Final Design Concept and Assembly Modeling

Figure 5. Exploded assembly.

IV. Next Steps and Future Applications

Significant value in the development of simple benchtop experiments to probe the nonlinear, large deformation response of various materials under various types of high-rate

> $\mathbf{T}(\mathbf{e}_1)$ $\mathbf{T}(\mathbf{e}_2)$ Figure 8. 3D Stress Tensor

Further applications to understand other mechanical phenomena that contribute to TBIs

