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ABSTRACT

A novel solution to conditionally tensile member modeling with conditional, comprehensive,

body interactions is used to simulate the dynamic interactions of a body with a net made of con-

nected strings. The modeling solution is used to study the capture dynamics of a rigid body using

a network of masses. High performance computing implementation of the modeling solutions

are discussed to simulate the capture dynamics. Practical implementation considerations includ-

ing control of the network of masses to ensure optimal coverage of the tumbling rigid body are

discussed. To do so, several methods are to be used to give a more developed control theory.
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1. Introduction

1.1 Motivation

Since the advent of spacecraft, the number of objects in Low Earth Orbit (LEO) have increased

substantially [1]. While this has greatly improved life here on Earth, there is a danger of too many

LEO bodies. The danger is, as Kessler and Cour-Palais described in 1978, the ”Kessler Syndrome”

[2], where there reaches a time where no more spacecraft can be sent into space safely. In order

to prevent this threshold, either fewer objects need to be added and/or more objects must be re-

moved. According to a study conducted in 2012, a net of at least 5 large LEO debris objects must

be removed each year in order to prevent the Kessler Syndrome [3]. With this project, one method

can be used to solve this problem: capture and deorbit. This research aims to develop an accurate

model for a net, made of connected strings, capturing a body. The proposed method will have the

advantage of reducing a orbiting body’s velocity without destroying it, preventing the creation of

dangerous debris in orbit.

1.2 History of the Problem

There are many research projects focused on space debris removal. Many include single mis-

sions to remove multiple objects [4, 5]. However, for large bodies in tumbling motion, the diffi-

culty arises in how to rendezvous with them. For example, a harpoon solution, where a projectile

is launched at the tumbling body, [6] will run the risk of breaking up an object or failing to get a

proper hold on it. Especially in the case where the body is brittle or in fast rotation [7]. To address

these complexities, this research proposes to catch the body by fully encompassing it with a net-

work of masses (net). While the net’s momentum can help reduce the object’s rotational angular

momentum, the primary reason for the net will be to enable effective deorbiting of the rigid body.

There has been interest in doing exactly this by the European Space Agency [8] along with other

organizations around the world that are interested in the same topic.
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1.3 Research Objective

The goal of this research is to derive equations of motion for an arbitrary number and configu-

ration of masses (net) capturing an arbitrary convex body. In addition to the utility in clearing space

debris, there are many possible uses for this dynamical model. One use may be to incorporate this

method into an existing method of designing structures, Tensegrity [9] paradigm is a method of

using only tensile (strings) and compressive (bars) members to design a structure. This proposed

model could be used to more accurately model these structures by considering when the strings are

not in tension.

1.4 Implementation Details

One final feature planned for this research is the specification of design of imposed force dis-

tribution on the net to drive it to a desired configuration. This is accomplished using principles

from control theory. Doing so would allow for greater accuracy and efficiency in capturing an

object in addition to providing a design problem of the best approach to developing the net. Also

once captured, the captured object could then be further manipulated with these additional control

points. One notable advantage to this proposed method compared to other net models is that no

assumptions are made to what additional forces act on the masses; as such, it takes no additional

work to incorporate control thrusters onto the masses.

1.5 Outline

The first technical chapter, Chapter 2, in this thesis describes the mathematical model of a

multibody system, i.e. the net/body system. In it, the exact derivation of the model is gone

through, along with definition of terms and variables. Chapter 2 is used as a foundation for the

implementation found in the next chapter. The computational implementation of the mathemat-

ics is described in Chapter 3. It discussed issues caused by ordinary differential equation solvers,

along with a solutions to correct them. In Chapter 4, two primary control methods, optimal con-
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trol and error stabilization, are derived and implemented. Some simulations are shown along with

some discussion of the utility of both.
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2. Modeling

2.1 Multibody System Dynamics

An important aspect to many robotic, manufacturing, deployment, mobility, and automation

systems is the use of multibody systems. Multibody dynamic systems, as the name implies, are

systems that model the interaction of multiple, usually rigid, bodies. They have a multitude of

uses ranging from design to mechanical actuation. As such, there are many methods to analyse

multibody dynamics [10].

These methodologies include, but are not limited to, recursive methods [11, 12, 13, 14] and or-

der N formulations [15, 16, 17, 18]. New considerations are emerging, such as flexible bodies, to

address the pervasive and useful nature of these systems. In order to deal with the complex nature

of theses types of problems, automatic model generation based on a Newton-Lagrange formula-

tions solution have been developed. These models have focused primarily efficient data structures

in order to deal with the model generation. Order N dynamics and others are current ways of

solving multibody problems. None of these consider inequality constraints associated with the

generalized coordinates. Inequality constraints are studied in this work because of their great util-

ity in fields such as tensegrity. Tensegrity system models currently have no ability to consider

conditionally taut strings. Giving these models the ability to have strings only when they are need-

ing to be taught is a great advantage in structures that need a greater range of motion or to have

minimal control actuators. This would be particularly helpful in deployable structures. Mathemat-

ical modeling of systems governing the configuration of multiple rigid and flexible bodies plays an

important role in the design, actuation and effective operation of mechanical and aerospace engi-

neering systems [10]. In engineering literature this subject is called multibody dynamics. Various

applications in science and engineering find great use of multibody system dynamics. As a result,

it is the basis for a thriving research field with a multitude of methods and theories.

This research will consider the equations of motion for a net of an arbitrary number of points
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connected by strings that can become slack when the distance between a given two points are

below the specified value for the string of interest. In addition, this research will include a set of

inequality constraints to determine dynamics of the net’s collision with a convex body. A convex

body is used for two reasons; 1) most structures in space are convex, and 2) strings in a network

used for coverage applications will stretch across a concavity and the dynamics remain mostly the

same. Convex polytopes will be used to approximate any body needing to be analyzed.

2.2 Method Approach

To simulate the dynamics of both the net and its interaction with the body, an unconstrained

dynamic model is calculated first and a Lagrange multiplier is added to the acceleration of the

points to constrain the dynamics within the inequality constraints. Then, to find the Lagrange

multiplier, one need only substitute the unconstrained dynamics in the second derivative of the

constraint equation. In order to consider the effects the net has on the body, the same reaction

force will need to be added to the body’s acceleration.

To accurately model the complex interactions in this thesis, a set of definitions for the individual

dynamics of a set of points will be needed first. A set of unconstrained points can be written as:

ṙi = vi i = 1, 2, . . . , Np (2.1)

miv̇i = f(r,v, t) (2.2)

where ri is a vector describing the position of the ith point and vi is a vector describing the velocity

of the ith point; f is an arbitrary force vector that can be a function of time and any point’s position

and velocity; and mi is the mass of the ith point.

Stacking the vectors vertically, we obtain a set of differential equations describing unconstrained

point mass dynamics.
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Ṙ = V (2.3)

M V̇ = F (R,V , t) (2.4)

where R is a stacked set of point mass positions and V is the same for velocity. Similarly, F is a

stacked force function and M is a diagonal mass matrix:

Mi =


mi 0 0

0 mi 0

0 0 mi

 M =



M1 0 . . . 0

0 M2 . . . 0

...
... . . . ...

0 0 . . . MNp



R =



r1

r2
...

rNp


V =



v1

v2
...

vNp



2.3 Dynamics Modeling Formulation

In order to hold a set constraints, a set of Lagrange multipliers will be added as reaction forces:

M V̇ = F (R,V , t) + ΘRΛ (2.5)

where ΘR is the partial of a vector Θ, which is a vector of all active constraints, with respect to the

stacked point position vector R.

6



2.3.1 String Constraint

For only a set of string constraints, Φ will be used for the constraint vector instead of Θ; and λ

will be used as the string Lagrance multipliers instead of Λ:

M V̇ = F (R,V , t) + ΦRλ (2.6)

where ΦR is the partial of a vector Φ with respect to the stacked point position vector R.

Next, a definition is needed for a slack string assumption. The string condition can be stated as

follows:

φi = STi Si − L2
i i = 1, 2, . . . , Ns (2.7) φi < 0 slack

φi = 0 taut
(2.8)

where Li is the length of the unloaded string. Ns is the total number of strings. It is assumed that

the string has no effect on the dynamics when it is slack.

Si is the vector connecting two points where a string is attached,

Si = CiR (2.9)

where Ci is matrix filled with only 1,−1, 0 such that the resultant row is the difference between

the points that are connected by a string.

For convenience a new variable is created for a derivative later:

Qi = 2CT
i Ci (2.10)
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With this, the string constraint looks like:

φi =
1

2
RTQiR− L2

i (2.11)

From here, an important thing to realize is that φi, defined in Equation (2.11), is zero when the

constraint is active. This also implies that φ̇i is also zero when on the constraint. In fact, any sub-

sequent time derivative, φ̈i,
...
φ i, . . . , is also zero when on the constraint. This can be used to find

the dynamics of the points while the constraint is active. It can then be used to find the λ’s. Hence:

φ̇i =
∂φ

∂R

T ∂R

∂t
= 0 (2.12)

= (QiR)TV = 0 (2.13)

Stacked, this can be written for all string constraints:

Φ̇ = ΦT
RV = 0 (2.14)

Taking another derivative:

Φ̈ = ΦT
RV̇ + Φ̇T

RV = 0 (2.15)

where:

ΦR =

[
Q1R Q2R . . . QNsR

]
(2.16)

Φ̇R =

[
Q1V Q2V . . . QNsV

]
(2.17)
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Substituting V̇ from Equation (2.6) into Equation (2.15) gives:

Φ̈ = ΦT
R(M−1F (R,V , t) +M−1ΦRλ) + Φ̇T

RV = 0 (2.18)

= ΦT
RM

−1F (R,V , t) + ΦT
RM

−1ΦRλ+ Φ̇T
RV = 0 (2.19)

= (ΦT
RM

−1ΦR)λ+ ΦT
RM

−1F (R,V , t) + Φ̇T
RV = 0 (2.20)

Solving for λ gives:

λ = −(ΦT
RM

−1ΦR)−1(ΦT
RM

−1F (R,V , t) + Φ̇T
RV ) (2.21)

This, with the constrained dynamics (2.6), gives the full dynamics of a net. An important note is

that λ is zero when not at the constraint, meaning that (2.21) gives only the values of λ that are at

the constraint. One additional consideration would be that λ becomes undefined as (ΦT
RM

−1ΦR)

becomes singular, which only happens when at least two points exist at the same position. Having

described the modeling of the network of strings, the rigid body constraint specification are now

discussed.

2.3.2 Rigid Body Constraint

In order to simulate a net capturing a body, a body constraint must be added to the equations of

motion. First some definitions are presented to assist in the derivation. The fact that the network

of points cannot penetrate the rigid body can be described by:

ψj = r(ρj)
2 − ρTj ρj j = 1, 2, . . . , Np (2.22)

ρj = Rj − P (2.23)

9



 ψj < 0 free

ψj = 0 collision
(2.24)

where Rj is the position of any given point on the net and P is the position of the center of mass

of the body, as seen in Fig. 2.1. Np is the total number of points in the net.

Figure 2.1: Rigid Body Constraint Visualized

It is important to note that r(ρj) is a function describing the distance from the center of mass to

the surface of the object. Since most objects do not have a simple equation describing its surface,

a discretized planar solution will be presented in the next section. Here, though, it will simply be

assumed that a r(ρj) is known.
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ψ̇j =
∂ψj
∂ρj

T ∂ρj
∂t

(2.25)

∂ψj
∂ρj

= 2r(ρj)
∂r(ρj)

∂ρj
− 2ρj (2.26)

∂ρj
∂t

= V j − Ṗ (2.27)

(2.28)

It is important to note that for this derivation the body is assumed to be not rotating. Later when

convex polytopes are used, this assumption will be relaxed.

Stacking all the partials it can be redefined as such.

Ψρ =



2r(ρ1)
∂r(ρ1)
∂ρ1
− 2ρ1 0 . . . 0

0 2r(ρ2)
∂r(ρ2)
∂ρ2
− 2ρ2 0

...
... 0

. . . 0

0 . . . 0 2r(ρNp)
∂r(ρNp )

∂ρNp
− 2ρNp


(2.29)

Ψ̇ = ΨT
ρ (V − ˙̃P ) (2.30)

P̃ =



P

P

...

P


=⇒ ˙̃P =



Ṗ

Ṗ

...

Ṗ


=⇒ ¨̃P =



P̈

P̈

...

P̈


(2.31)

Ψ̈ = ΨT
ρ (V̇ − ¨̃P ) + Ψ̇T

ρ (V − ˙̃P ) (2.32)

= ΨT
ρ V̇ + Ψ̇T

ρV + B̃ (2.33)

Since both the rigid body assumption and the slack string assumption can be active at the same

time, they will be stacked and treated as one list of constraints.
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Θ =

Φ

Ψ

 (2.34)

Θ̈ = ΘT
RV̇ + Θ̇T

RV +B (2.35)

B =

 0

B̃

 (2.36)

ΘR =

[
ΦR Ψρ

]
(2.37)

Additionally a new set of Lagrange multipliers will need be added.

M V̇ = F (R,V , t) + ΦRλ+ Ψρµ (2.38)

M V̇ = F (R,V , t) + ΘRΛ (2.39)

Substituting (2.39) into (2.35) gives a solution for all Lagrange multipliers.

Θ̈ = ΘT
R(M−1F (R,V , t) +M−1ΘRΛ) + Θ̇T

RV +B = 0 (2.40)

= ΘT
RM

−1F (R,V , t) + ΘT
RM

−1ΘRΛ + Θ̇T
RV +B = 0 (2.41)

Λ = −(ΘT
RM

−1ΘR)−1(ΘT
RM

−1F (R,V , t) + Θ̇T
RV +B) (2.42)

Λ becomes undefined as (ΘT
RM

−1ΘR) becomes singular, which only happens when at least two

points exist at the same position or a point exist at the center of mass of the colliding body.

Since this solution requires one to know an exact function r(ρj), there needs to be a way to find it.

In the following section, a discretized solution, called a convex polytope, is presented to generate

this function.
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2.4 Convex Polytopes and Planar Constraint

To simplify any given shape of the captured body, it can be estimated as a convex polytope, a

set of intersecting planes. Therefore, if the body constraint were done assuming a planar body, all

that need be done is to track which plane a point may intersect.

To begin, a discussion on planar intersection is presented.

Figure 2.2: Planar Intersection

The scalar distance between the center of mass of the object and the surface of the plane, be-

tween the point of interest and the center of mass, can be found as follows.

The definition of a plane can be written as:
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P = ax+ by + cz = 1 (2.43)

= ATX = 1 (2.44)

A =


a

b

c

 X =


x

y

z

 (2.45)

where A can be thought of as the normal vector of the plane from the center of mass of the body

to the plane.

For this problem, X is a vector from the center of mass of the object to a point on the plane along

the vector ρj . It can be written as a scalar multiplied by the ρj vector:

X = wρj (2.46)

where w is a scaling term such that X reaches the plane. This value is is known as a function of

r(ρj), since X needs to have a magnitude of r(ρj):

w =
r(ρj)

‖ρj‖
(2.47)

From here r(ρj) can be found:

ATρjw = 1 (2.48)

r(ρj) =
‖ρj‖
ATρj

(2.49)

Substituting into the body constraint and rearranging:
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ψj =
ρTj ρj

ρTj AA
Tρj
− ρTj ρj (2.50)

ψjρ
T
j AA

Tρj

ρTj ρj
= 1− ρTj AATρj (2.51)

ψ′j = 1− ρTj AATρj (2.52)

It can be seen that the scaling factor multiplying ψj in (2.51) is always positive, because the magni-

tude of A is constant and ρj is only zero when a point mass exists at the center of mass. Therefore,

the constraint can be redefined as (2.52). From here ψ′j will simply be written as ψj for conve-

nience. A new set of Lagrange multipliers can be derived while allowing the body to rotate.

bp = CTAp (2.53)

ψ̇j = −2(ρTj bpb
T
p ρ̇j + bTp ρjρ

T
j ḃp) (2.54)

where C is a transformation matrix, allowing for rotational dynamics, and the subscript p denoting

the closest plane to a given point, i.
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Following past derivations:

ψ̈j =ψ̇Tρ ρ̇j + ψTρ ρ̈j + B̄j (2.55)

ψ̇ρ = −2
[
bpb

T
p ρ̇j + (bpḃ

T
p + ḃpb

T
p )ρj

]
(2.56)

ψρ = −2bpb
T
p ρj (2.57)

B̄j = −2
[
ḃTp ρjρ

T
j ḃp + bTp (ρj ρ̇

T
j + ρ̇jρ

T
j )ḃp + bTp ρjρ

T
j b̈p

]
(2.58)

Ψ̈ =ΨT
ρ (V̇ − ¨̃P ) + Ψ̇T

ρ (V − ˙̃P ) + B̄ (2.59)

Ψρ =



−2bpb
T
p ρ1 0 . . . 0

0 −2bpb
T
p ρ2 0

...
... 0

. . . 0

0 . . . 0 −2bpb
T
p ρNp


(2.60)

B̄ = −2



ḃTp ρ1ρ
T
1 ḃp + bTp (ρ1ρ̇

T
1 + ρ̇1ρ

T
1 )ḃp + bTp ρ1ρ

T
1 b̈p

ḃTp ρ2ρ
T
2 ḃp + bTp (ρ2ρ̇

T
2 + ρ̇2ρ

T
2 )ḃp + bTp ρ2ρ

T
2 b̈p

...

ḃTp ρNpρ
T
Np
ḃp + bTp (ρNp ρ̇

T
Np

+ ρ̇Npρ
T
Np

)ḃp + bTp ρNpρ
T
Np
b̈p


(2.61)

Simplifying to isolate V̇ :

Ψ̈ =ΨT
ρ V̇ + Ψ̇T

ρV + B̃ (2.62)

B̃ = B̄ −ΨT
ρ

¨̃P − Ψ̇T
ρ

˙̃P (2.63)

Combining with Φ and solving with newB:
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Θ̈ = ΘT
RV̇ + Θ̇T

RV +B (2.64)

Θ̈ = ΘT
R(M−1F (R,V , t) +M−1ΘRΛ) + Θ̇T

RV +B = 0 (2.65)

= ΘT
RM

−1F (R,V , t) + ΘT
RM

−1ΘRΛ + Θ̇T
RV +B = 0 (2.66)

Λ = −(ΘT
RM

−1ΘR)−1(ΘT
RM

−1F (R,V , t) + Θ̇T
RV +B) (2.67)

While (2.42) looks the same as (2.67), it is important to note that ΘR,Θ̇R, and B contain many

additional terms.

One notable limitation to this solution is that no consideration was given to the effect the net has

on the dynamics of P̃ or bp. However, this consideration is included in the next sections.

2.5 Body Interactions

For a rigid body, there are only two types of movement: translation and rotation. To accu-

rately simulate the network interacting with the body, both types must be considered. While its

is relatively simple to just add the forces and torques that the points caused by interacting with

the surface of the rigid body, it crucially ignores how this changes the the effect of the Lagrange

multipliers. Moreover, the body and the network are a system largely determined by the con-

straints being held. This means that, in order to accurately capture the dynamics of the system, the

Lagrange multipliers must be resolved for both types of rigid body movement.
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2.5.1 Translation

Starting from equation (2.59) and a definition of P̈ :

Ψ̈ =ΨT
ρ (V̇ − ¨̃P ) + Ψ̇T

ρ (V − ˙̃P ) + B̄ (2.68)

P̈ =
1

mP

fP (P, Ṗ , t)− 1

mP

ΣΨρHΛ (2.69)

Σ =

[
I3 I3 . . . I3

]
(2.70)

H =

[
0Np×Ns INp

]
(2.71)

where mP is the mass of the object and fP is the sum of forces applied on the object from other

sources. Here Σ acts to sum all of the reaction force vectors from the points onto the body.

Resolving for Λ:
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Ψ̈ =ΨT
ρ [V̇ − (

1

mP

f̃P (P, Ṗ , t)− F̄RΛ)] + Ψ̇T
ρ (V − ˙̃P ) + B̄ (2.72)

F̄R =
1

mP



ΣΨρH

ΣΨρH

...

ΣΨρH


(2.73)

Ψ̈ =ΨT
ρ V̇ + Ψ̇T

ρV + F̃RΛ + B̃ (2.74)

B̃ = B̄ − 1

mP

ΨT
ρ f̃P (P, Ṗ , T )− Ψ̇T

ρ
˙̃P (2.75)

F̃R = ΨT
ρ F̄R (2.76)

Θ̈ =ΘT
RV̇ + Θ̇T

RV + FRΛ +B (2.77)

FR =

 0

F̃R

 (2.78)

Θ̈ =ΘT
R(M−1F (R,V , t) +M−1ΘRΛ) + Θ̇T

RV + FRΛ +B = 0 (2.79)

= ΘT
RM

−1F (R,V , t) + ΘT
RM

−1ΘRΛ + FRΛ + Θ̇T
RV +B = 0 (2.80)

Λ =− (ΘT
RM

−1ΘR + FR)−1(ΘT
RM

−1F (R,V , t) + Θ̇T
RV +B) (2.81)

2.5.2 Rotation

The next derivation will introduce the effects of the net on the body’s rotation. It will start with

a simple application of the transport theorem on the vectors that define the planes[19].
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ḃp =ω × bp = ω×bp (2.82)

ω× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.83)

b̈p =(ω̇× + 2ω×ω×)bp (2.84)

where bp is a vector whose coordinates are expressed in the body frame. It can be seen that the

dynamics of all bp’s are only dependent on a single ω since all planes are part of the same rigid

body. Hence, the dynamics of ω are governed by that of the rigid body interacting with the net.

h =Jω (2.85)

ḣ =Jω̇ + ω×(Jω) (2.86)

ḣ =l = (−FP )×ρ = ρ×(ΨρHΛ) (2.87)

ρ×j =


0 −ρjz ρjy

ρjz 0 −ρx

−ρjy ρjx 0

 (2.88)

ρ× =

[
ρ×1 ρ×2 . . . ρ

×
Np

]
(2.89)

Note that FP is the reaction force of the net acting on the body and here is only comprised of the

normal component from the constraint force (ΨρHΛ) and ρi is the position vector of the ith particle

expressed in the inertial frame. Here ρ× acts to both take a cross product of each force vector and

also to sum all of the torques acting on the body.

Isolating ω̇ and substituting in b̈p, the interaction dynamics are written as:
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ω̇ = J−1(ρ×ΨρHΛ− ω×Jω) (2.90)

b̈p = −b×p ω̇ + 2ω×ω×bp (2.91)

= −b×p J−1(ρ×ΨρHΛ− ω×Jω) + 2ω×ω×bp (2.92)

b̈p = −b×p J−1ρ×ΨρHΛ + b×p J
−1ω×Jω + 2ω×ω×bp (2.93)

From equation (2.59):

Ψ̈ =ΨT
ρ (V̇ − ¨̃P ) + Ψ̇T

ρ (V − ˙̃P ) + ΨT
b b̈+ B̄ (2.94)

Ψb =



−2ρ1ρ
T
1 bp 0 . . . 0

0 −2ρ2ρ
T
2 bp 0

...
... 0

. . . 0

0 . . . 0 −2ρNpρ
T
Np
bp


(2.95)

B̄ = −2



ḃTp ρ1ρ
T
1 ḃp + bTp (ρ1ρ̇

T
1 + ρ̇1ρ

T
1 )ḃp

ḃTp ρ2ρ
T
2 ḃp + bTp (ρ2ρ̇

T
2 + ρ̇2ρ

T
2 )ḃp

...

ḃTp ρNpρ
T
Np
ḃp + bTp (ρNp ρ̇

T
Np

+ ρ̇Npρ
T
Np

)ḃp


(2.96)

where b̈ is a stacked list of each point’s associated plane vector, meaning that it is the same size as

R. From equation (2.74)
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Ψ̈ =ΨT
ρ (V̇ − ¨̃P ) + Ψ̇T

ρ (V − ˙̃P ) + ΨT
b L̄RΛ + B̄ (2.97)

B̄ =− 2



ḃTp ρ1ρ
T
1 ḃp + bTp (ρ1ρ̇

T
1 + ρ̇1ρ

T
1 )ḃp + bTp ρ1ρ

T
1 (b×p J

−1ω×Jω + 2ω×ω×bp)

ḃTp ρ2ρ
T
2 ḃp + bTp (ρ2ρ̇

T
2 + ρ̇2ρ

T
2 )ḃp + bTp ρ2ρ

T
2 (b×p J

−1ω×Jω + 2ω×ω×bp)

...

ḃTp ρNpρ
T
Np
ḃp + bTp (ρNp ρ̇

T
Np

+ ρ̇Npρ
T
Np

)ḃp + bTp ρNpρ
T
Np

(b×p J
−1ω×Jω + 2ω×ω×bp)


(2.98)

L̄R =



−b×p J−1ρ×ΨρH

−b×p J−1ρ×ΨρH

...

−b×p J−1ρ×ΨρH


(2.99)

Ψ̈ =ΨT
ρ V̇ + Ψ̇T

ρV + F̃RΛ + L̃RΛ + B̃ (2.100)

L̃R = ΨT
b L̄R (2.101)

Resolving for Λ:

Λ =− (ΘT
RM

−1ΘR + FR + LR)−1(ΘT
RM

−1F (R,V , t) + Θ̇T
RV +B) (2.102)

LR =

 0

L̃R

 (2.103)

These equations need to be interpreted along with the dynamics of the array of particles.

2.6 Summary

While modeling multibody dynamic systems is not a new field of study, increasing computa-

tional resources enable new models to emerge. Many already exist, however none in the literature

address the complex nature of nonholonomic constraints. This research shows one method for

modeling inequality constraints in the form of a set of interconnected strings and a rigid body.
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While this research is by no means all encompassing, it is greatly suited for modeling a net deor-

biting a rigid body. It can be seen that this method also has a unique property, it is well suited for

open loop control laws to be fed into F (t, R, V ) in (2.4). These methods also consider the inter-

action of the point masses on the body, implicitly. While there are many more things to consider,

such as computation, control, and observation, this chapter provides a framework for subsequent

developments. The following chapter will deal with the implementation of this theory in the form

of a set of simulations.
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3. High Performance Computing Implementation

3.1 Motivation

The dynamic models developed in Chapter 2 take the form of a set of conditional nonlinear

differential equations. While these models are theoretically robust to describe the system, they are

mostly meaningless without computational implementation. As will be seen later in this chapter,

implementation of the dynamic model has unique problems that the mathematical model does not

implicitly have. In order to use this model, it must be solved for computationally.

These simulations made from these models should capture the physical process in order to be

considered viable for implementation. They should also hold the modeling principles to be true.

In other words, the simulated system must both be a reflection of the real world processes and hold

the constraints of the problem to be true.

3.2 Structure

To demonstrate the veracity of this work a Matlab code was written. This code uses an ordinary

differential equation solver, "ode45," to solve for the state time history of the net dynamics using

this method’s differential equation. The solver was chosen for its efficient computation and ro-

bustness for solving complex nonlinear differential equations. In order to implement this method,

several computation specific problems need to be addressed. These are, in order of implemen-

tation, computational overshoot, convex polytopes, Lagrange multiplier omissions, and collision

detection and holding.

The code is a fully functional dynamic simulation that can be set to demonstrate a certain aspect

of the dynamic model. To start this code, a definition of basic parameters and initial conditions

is needed. For most simulations seen here, the net starts with all point masses being at the same

point and having velocities that send it towards the desired target. Also defined at the start of the

code are the specifics of the net/body configuration. One important parameter is the definition of

Ci in equation (2.9). For simplicity, except for the simple two point problem, all dynamics were
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simulated with a square grid of points with strings connecting laterally and transversely. Then the

initial velocity required to fully deploy the net is calculated for each point.

The rigid body has two types of information needing to be defined or found in order to model

the object. The first are the degrees of freedom, and the initial conditions associated, namely three

for position, three for velocity, three (or four in the case of quaternions) for attitude, and three for

angular velocity. The second is information about the shape of the structure. Since it is assumed

that the object is modeled as a convex polytope, all that is needed is to find the parameters that

define each plane of the polytope. The details of this is discussed in the convex polytope section,

but it primarily consists of defining at least three points on each plane. They can then be rotated to

an initial attitude using equation (2.53).

After all of these values are generated or defined, they are all stored in a data structure and fed

into the main dynamics function. The dynamics function takes the initial states and parameters and

runs an "ode45" solver to generate time histories of the states. The solver requires a differential

equation to define the dynamics. This sub-function is implemented using equations (2.39, 2.69,

2.90), along with the detection logic associated with the constraints. All necessary variables are

explicitly defined and detailed later on in this chapter. The output of this dynamics function is a

time history of position and velocity of the set of discrete points and the rigid body, along with

the attitude and angular velocity of the rigid body. Trajectories obtained from representative sim-

ulations are shown in plots. Separate plots are used to show constraint subfunction time histories.

Final position of the net and body are shown in a geometrical plot shown in three dimensions (3D)

separately. Then a video is generated to show the simulation in real time. All of these are helpful

in seeing that this model, and simulation, work. Since video cannot be shown here, snapshots will

used to show time progression.
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3.3 Error Correction

The first thing to address is best seen in a simple problem, two masses joined by a single

string, i.e. a bola. Bolas have their own history and uses in fields ranging from hunting to law

enforcement. The following example uses the equations derived in Chapter 2 and compares the

dynamics to an analytical solution derived in Appendix I. The bola starts with the two points

separated by a distance smaller than the length of the string. Both points move in the x-direction,

but the bottom point mass has 15% more velocity. This is done to demonstrate the bola’s ability to

be taut while rotating.

Figure 3.1: Analytical Solution (See Appendix I)

Figure 3.2 show the correct dynamics of a bola with a coefficient of restitution of 0.15 or, in
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other words, only 15% of the energy is conserved after the string becomes taut. These dynam-

ics are made by calculating the time of impact and solving for the velocity instantaneously after

the impact. There are no dynamics simulating the taut string, it is assumed that the impact was

instantaneous. This is then compared to Fig. 3.2.

Figure 3.2: Proposed Model without Correction

In Fig. 3.2, it can be seen that while the constraint function is active, it is not enough to force

the constraint back down. This failure to hold the constraint is due to the fact that the solution

is discritized in the solver. Since the constraint function goes from φ < 0 to φ > 0, passing the

constraint in a single step, the constraint is violated during numerical simulation. Nothing in the

derivation accounts for this. To solve this overshoot problem, another term will need to be added

into the solution to Λ. This solution is best shown in Junkins (2001) [19]. From equation (2.64) a
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stabilizing control term ν is added such that:

Λ = −(ΘT
RM

−1ΘR)−1(ΘT
RM

−1F (R,V , t) + Θ̇T
RV +B − ν) (3.1)

This is Baumgarte’s (1983) [20] method for constraint stabilization, where:

ν = −2ξωnΘ̇− ω2
nΘ (3.2)

This additional term acts to stabilize the constraint violation. It introduces dynamics for when the

constraint is violated. These dynamics take the form of a spring damped system, adjusted by two

vectors ξ and ωn. Because this constraint is modeling a string, a spring damped system is very

apt. These two vectors describe the damping ratio, ξ, and the natural frequency, ωn of each string.

When introducing a body, these vectors will be lengthened to include coefficients to model an elas-

tic body. Applying this method to the simple bola dynamics gives the following results:
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Figure 3.3: Proposed Model with Correction

Here the dynamics closely model the true solution, never deviating more than %1. This was

done by carefully choosing ξ = 0.5 and ωn = 10 to match e = 0.15. While there are more accurate

values for both in order to more closely match the model, this is only to demonstrate the veracity

of the model.

To better understand the constraint stabilization dynamics, below is a visual demonstration of

Baumgarte’s method seen in the constraint at the first collision.
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Figure 3.4: Constraint Stabilization Dynamics

Based on the values chosen for the stabilization, a smaller magnitude constraint violation can

be attained, but the vales ξ and ωn also determine the energy lost in the string becoming taut,

making them very important to carefully consider based on the strings one would want to model.

Comparing this small dynamics to the impact analytical solution shows:
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Figure 3.5: Analytical Solution at Constraint

This demonstrates the difference in the two models. Theoretically, the constraint should never

be violated, however in attempting to mathematically model the constraint holding dynamics, a

more physical system is revealed. One where the string can stretch and have taut dynamics. In the

analytical solution, the constraint is never violated; it meets the constraint exactly and comes off it

immediately.

This same method is also applied to the body constraint, with ξ and ωn chosen differently to

more accurately model elastic bodies. In the following section a better demonstration of this con-

straint holding is shown.
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3.4 Convex Polytope in Simulation

An important aspect of this research is an approximation of the rigid bodies by using convex

polytopes. Thus, generation and usage of them are addressed in the following section.

The generation method needs to take some information about the body. While there are nu-

merous ways to generate a set of planes from a defined body, this research uses an approach for

visualization purposes. This method is not unique, however, and there may be more efficient ways

to generate polytopic approximations. It is important to note that once these planes are generated

for a body, they need only be saved and fed into the dynamics of the problem. Therefore, the

efficiency of this step is only worth considering if the body has a large number of planes required

to represent it.

Once a set of planes is represented, an automated means to determine which plane a point may

collide with is necessary. Since each plane is theoretically infinite, the point should only collide

where a plane exists on the body. This section gives one solution to this problem. It is important

to consider the computational efficiency in this process since it will need to be done at each instant

Ψ is being calculated.

3.4.1 Polytope Generation

No matter what shape one would need to simulate, an approach to generate theAp vectors from

equation (2.44) is needed. While there are many ways to do this, one consideration is made to de-

termine the method. In order to visualize the dynamics, a video is created in Matlab. To represent

the body’s planes the function "fill3" is used. This function takes a set of points and fills in a plane

section. This allows only the desired section of each plane to be shown, making a fully connected

set of planes making up the body. Therefore it is useful to use vertices of a convex polytope to

define the Ap vectors. The "fill3" function fills inside a set of points on the corners of each plane.

In this way, vertices are defined first and will be used in both the generation of the Ap vectors.

Since each set of vertices lay on its associated plane, a simple system of linear equations can be

used to solve for the Ap vector:
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apxi + bpyi + cpzi = 1 (3.3)
x1 y1 z1

x2 y2 z2

x3 y3 z3

Ap = 1 (3.4)

From any three vertices an Ap vector can be found.

To show this method of vector generation, consider an the example where it is desired to ap-

proximate cylinder with a convex polytope. An N sided regular polygon is used to represent the

circular cross section, making it an N sided prism. For N = 8, an octagonal prism, can be gener-

ated.

Figure 3.6: Octagonal Prism
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Fig. 3.6 is generated using the intersection of a octagon with a circle of radius r = 1 and finding

the vertices. These define the coordinates of the vertices in the x-y plane. To get the vertices in the

z direction, add and subtract half the length of the cylinder, L = 2, to get each side.

Since these vertices are also used to create a visualization, when the body translates or rotates, they

will need to be adjusted accordingly. To address translation, simply add P to each vertex vector.

For rotation, multiply each vertex by the rotation transformation matrix; similar to equation (2.53).

Any convex shape can be modeled in this way. For other shapes, vertices will need to be defined

or solved for first, then each Ap will be solved for and fed into the solver. Further research may

include a automatic generation of these vertices from an arbitrary body input.

3.4.2 Finding Appropriate Plane

After the planes themselves are defined, a consideration is needed in the differential equations

that has, up to this point, not been addressed. A solution is needed to determine which bp is

associated with each point. This needs to be determined at each instant of time, since it can change,

even after a point has collided with the body. The solution presented in this research addresses the

issue without needing to calculate plane intersections or any new calculations. Since each ρi has

a rp(ρi) for each plane, the smallest positive rp(ρi) is the plane corresponding to ρi. This method

only works for convex polytopes, the body can have no concave sections, else this logic does not

give the correct plane. The logic here has a computation cost for each plane and for each point at

every instant of time. Below is a visual representation of this logic.
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Figure 3.7: Convex Plane Finding

In the Fig. 3.7, the dark black lines represent the planes the defined the body. The dotted black

lines are the parts of the planes that are not part of the defined body. Since each plane is infinite,

only one plane can to be active at a time for each point. It can be seen that r1(ρi) is the correspond-

ing plane to ρi because it is the smallest positive r(ρi) between the three planes.

3.5 Summary

Mathematical dynamic models are somewhat meaningless without a form of implementation.

As such, this chapter explored a way to implement the dynamics models formulated in Chapter 2.

The implementation takes the form of a differential equation solver in Matlab. The ODE solver

used was chosen for its robustness and utility. This code addresses complications not seen in the

mathematical models. After resolving these issues, successful and accurate simulations can then

be used in the following chapter.
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4. Control

4.1 Motivation

One aspect that separates this method to some other slack string methods [21, 22], is the ability

to introduce control laws into the model. This control is introduced in the term F (R,V , t). By

including thrust vectors to some or all of the points, the system as a whole can be controlled. The

following sections are two methods to control this system with demonstrations of the utility of the

control law. The two methods are a simple optimal control law for the free points and an error

stabilization for the system.

4.2 Optimal Control

The most ideal control law for any system would be one that is mathematically proven to be

optimal. This method uses criteria for optimization and solves for the optimal control. These

criteria are by no mean unique, but this section will demonstrate some simple solutions and some

greater issues with this approach.

First, a cost function will need to be defined in order to determine what is optimal. Since one

of the best uses for this method is a net capturing a piece of space debris, a cost function that

penalized the total thrust over time is best used. In orbit, thrust is expensive due to the mass of the

fuel, which translates directly into monetary expense. Therefore, the following cost function will

be used for this problem:

J =
1

2

∫ tf

t0

UTUdt (4.1)

whereU is a stacked set of thrust vectors applied to the set of points. Ideally, four separate control

laws can be written: one for no active constraints, one for at least one active string constraint, and

one for at least one body constraint is active, and one where at least one of each string on body

constraints are active. The following subsection deals with the case where neither the string nor
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the body constraints are active.

4.2.1 No Constraints Optimal Control

Ṙ = V (4.2)

M V̇ = F (R,V , t) = W +U (4.3)

=⇒ Ẋ =

Ṙ
V̇

 =

 V

M−1(W +U)

 (4.4)

Here, W is the sum of all external forces on the set of points. Using another Lagrange multiplier,

a Hamiltonian can be defined:

H =
1

2
UTU + νTẊ (4.5)

ν =

ν1
ν2

 (4.6)

The ν vector acts to enforce the dynamics when minimizing the cost function. Finding the set of

conditions will give a solution for U :

Ẋ =
∂H

∂ν
=

 V

M−1(W +U)

 (4.7)

ν̇ =

ν̇1
ν̇2

 = − ∂H
∂X

= −

 (∂W
∂R

)TM−1ν2

ν1 + (∂W
∂V

)TM−1ν2

 (4.8)

0 =
∂H

∂U
= M−1U + ν2 (4.9)
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If this system is supposed to model a net capturing a body in orbit or in deep space, it can be

assumed that W is simply zero. Alternatively, if air resistance is ignored while using a constant

gravity, the result is the same. Taking either of these assumptions, the solution for U is greatly

simplified:

ν̇ =

ν̇1
ν̇2

 = − ∂H
∂X

= −

0

ν1

 (4.10)

0 =
∂H

∂U
= M−1U + ν2 (4.11)

=⇒ U = −M(−ν1t+ ν20) (4.12)

The initial conditions and final conditions are as follows:

R(0) = R0 (4.13)

V (0) = V 0 (4.14)

R(tf ) = Rf (4.15)

V (tf ) = V f (4.16)

Substituting this solution into equations (2.4) and using the initial and final conditions, as well as

the set final time gives:

M V̇ = −M(−ν1t+ ν20) (4.17)

V = −ν1
t2

2
+ ν20t+ V 0 (4.18)

R = −ν1
t3

6
+ ν20

t2

2
+ V 0t+R0 (4.19)

38



Solving for ν1 and ν20:

V (tf ) = V f = −ν1
t2f
2

+ ν20tf + V 0 (4.20)

R(tf ) = Rf = −ν1
t3f
6

+ ν20
t2f
2

+ V 0tf +R0 (4.21)− t2f
2
INp tfINp

− t3f
6
INp

t2f
2
INp


 ν1
ν20

 =

 V f − V 0

Rf − V 0tf −R0

 (4.22)

=⇒

 ν1
ν20

 =

− 6
t2f
INp

12
t3f
INp

− 2
tf
INp

6
t2f
INp


 V f − V 0

Rf − V 0tf −R0

 (4.23)

This gives a closed form solution to the optimal control problem. Choosing values that drive the

net to be fully expanded state just before it collides with the body gives the following figures:
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Figure 4.1: Final State of Optimal Control Solution

Here the final state is exactly at the surface of the body and the strings are fully extended. This

is meant to show the ability to be controlled when the strings are not active. In the next subsection

it will be shown the difficulty in writing a control law for when either the string or body constraints

are active.
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Figure 4.2: Final State of Optimal Control Solution

It can be seen that all string constraints follow the exact same path. This is due to the linear

symmetric nature of the control law. The string constraints also all end at exactly zero, meaning

that the control law sends all string to be taut by the end of the dynamics.
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Figure 4.3: Final State of Optimal Control Solution

In the body constraint, the path splits and rejoins itself by the end of the controlled time. This

is due to the fact that three points are headed directly to the center plane and the others are headed

to other planes. Again, the constraint ends at exactly zero because this was the desired condition.

Between these figures, it can be demonstrated that the optimal control law can deal with the system

all the way up to the constraints. Theoretically, a separate control law would take over to control

the active system. The following subsection will show the difficulty in implementing that.

4.2.2 Active Constraints Optimal Control Law

Starting with the same cost function (4.1), initial conditions (4.13-4.16), and assumptions, a

new control law can be developed. Starting from equations (2.6) and (2.21) to address the concept:
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M V̇ = F (R,V , t) + ΦRλ (4.24)

= U − ΦR(ΦT
RM

−1ΦR)−1(ΦT
RM

−1U + Φ̇T
RV ) (4.25)

= −ΦR(ΦT
RM

−1ΦR)−1Φ̇T
RV + [INp − ΦR(ΦT

RM
−1ΦR)−1ΦT

RM
−1]U (4.26)

When moving to finding the costates, ν1 and ν2, a difficulty arises:

ν̇ =

ν̇1
ν̇2

 = − ∂H
∂X

(4.27)

ν̇1 =
∂

∂R

[
νT2

(
ΦR(ΦT

RM
−1ΦR)−1Φ̇T

RV + [INp − ΦR(ΦT
RM

−1ΦR)−1ΦT
RM

−1]U
)]

(4.28)

ν̇2 = ν1 +
∂

∂V

[
νT2

(
ΦR(ΦT

RM
−1ΦR)−1Φ̇T

RV
)]

(4.29)

By just including one active string constraint, finding the costates becomes unpractical. There-

fore a more reliable and simple solution is more desirable. The next section shows a much more

manageable method of controlling the system when the constrains are active.

4.3 Error Stabilization

A common method for dealing with particularly difficult nonlinear differential equations is an

error stabilization procedure. The idea is to define an error that can be sent to zero and define

convenient dynamics to send it there.

E = R−Rf (4.30)

Ė = V − V f (4.31)

Ë = V̇ (4.32)
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The desired dynamics can be defined and solved for U :

Ë = −2ζωnĖ − ω2
nE (4.33)

V̇ = M−1(W +U) +M−1ΘRΛ = −2ζωnĖ − ω2
nE (4.34)

Substituting Λ from the most general case to get a function of U :

V̇ =M−1(W +U)−M−1ΘRG
−1
R (ΘT

RM
−1(W +U) +BV ) (4.35)

GR = ΘT
RM

−1ΘR + FR + LR (4.36)

BV = Θ̇T
RV +B (4.37)

=GU +GW +BE (4.38)

BE = −M−1ΘRG
−1
R BV (4.39)

G = M−1 −M−1ΘRG
−1
R ΘT

RM
−1 (4.40)

Solving for U :

GU +GW +BE = −2ζωnĖ − ω2
nE (4.41)

U = −G−1(2ζωnĖ + ω2
nE +GW +BE) (4.42)

Using the same conditions as the previous section, this control law can be used to envelope an

octagonal prism:
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Figure 4.4: Final State of Error Stabilization Solution

Above is the final state of the implemented control law. The net stayed with the body for around

of third of the total simulation time. It also moves with the body for a short distance, while the

body constraint is active. This control law sends the net to the body significantly faster than the

optimal control law. However this was due to the values of ζ = 1 and ωn = 1. Choosing these

values differently will cause the control law to behave in a variety of desirable ways. Below is the

string constraint:
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Figure 4.5: Final State of Error Stabilization Solution

Since the final positions for the points is a fully extended net encompassing the body, the simu-

lation ends when all constraints reach zero. Based on the values chosen for the error stabilization,

it happens that the string constraints are the last to reach zero. In the following figure it can be seen

that the body constraint reach ed zero much earlier:
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Figure 4.6: Final State of Error Stabilization Solution

Just like the optimal control solution, the body constraints split into two because the center

three points are closer to their final positions on the body from the start than the other six. Once

the net fully reaches the body, it travels along the edge of the body to get to its desire location.

Given different chosen values of ζ and ωn this control law would do the same with the string

constraint; spending time fully extended before hitting the body.

4.4 Summary

In order to make full use of the mathematical models and the computational implementation, a

set of control laws were written and implemented in this chapter. First an optimal control law that

was derived with reduced complexity. Then a more impractical, but more comprehensive, optimal

control law was described, but due to its unwieldiness, it was not simulated in the code. Instead, a

more versatile nonlinear control law was shown, known as error stabilization. Although being less

optimal, it incorporated the inherently nonlinear dynamics. While these methods are by no means

unique, they demonstrate the utility of the method and the computational implementation.
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5. Conclusion

In an effort to address the increasing need to reduce hazardous objects in space, this thesis

provides one multibody dynamic model, along with a system for simulation and control.

5.1 Results

This thesis explores a method of multibody dynamics that is used to simulate a network of

points (net) colliding with a rigid body. The method was derived with the use of Lagrange multi-

pliers to hold constraints. It was then simulated using a Matlab code that used a method created

by Baumgarte in 1983 [20]. An optimal control law was shown for the system, along with its

limitations. Error stabilization was also used as a more applicable control law for such a nonlinear

system. Altogether, it was shown that this method, along with its implementation, was a viable and

efficient method of simulated the capture of a tumbling rigid body by a net.

5.2 Future Work

The most promising use for future work with this model would be its use in other multibody

dynamics such as tensegrity. Tensegrity is a structural design method that uses only axial loaded

members. For the tensile members (strings) this method lends itself to being incorporated into the

analysis of tensegrity.

Additionally, this work would be greatly improved by some real world tests of its physical

simulation. These experiments should serve to both test the methods’ veracity as well as its com-

putational efficiency when used as part of a control law. Further development on these methods

could include a more computationally efficient code to be used in real time control laws.
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6. APPENDIX I: ANALYTICAL BOLA DERIVATION

Assumptions:

1. Point masses

2. Inertia of connecting string can be ignored, i.e. massless string

3. Impact collisions

4. Constant gravity for simplicity

The point masses will continue in a analytically determined trajectory, given the initial conditions,

until the string constraint is met:
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r1(0) = r10 ; r2(0) = r20 ;v1(0) = v10 ;v2(0) = v20 (6.1)

(r2(ti)− r1(ti))T (r2(ti)− r1(ti)) = L2 (6.2)

Where L is the length of the string connecting the two masses.

The trajectories will be as follows:

v1(t) = gt+ v10 (6.3)

v2(t) = gt+ v20 (6.4)

r1(t) = g
t2

2
+ v10t+ r10 (6.5)

r2(t) = g
t2

2
+ v20t+ r20 (6.6)

From here the position, velocity and gravity vectors will be collected into single vectors for sim-

plicity:

v(t) = gt+ v0 (6.7)

r(t) = g
t2

2
+ v0t+ r0 (6.8)

r =

r1
r2

v =

v1
v2

 g =

g
g

 (6.9)

The position of both particles are known for all time before the first impact, where the string will

become taught and cause the masses to bounce back at each other. Therefore, the first impact time,

position, and velocity can be found.

53



C =

[
I3 −I3

]
(6.10)

(Cr(ti))
T (Cr(ti))− L2 = 0 (6.11)

For a constant gravity term, this gives a quadratic equation in ti. In a no gravity or large velocity

case, it is a simple quadratic.

This equation has a solution if the constraint is not already met or violated and as long as the initial

velocities aren’t the same vector.

Infinitesimally before the impact, a velocity can be found.

v1(t
−
i ) = gt+i + v10 (6.12)

v2(t
−
i ) = gt+i + v20 (6.13)
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The impact will only effect the components of the velocities along the direction of the string:

l = Cr = r1(ti)− r2(ti) (6.14)

v1n(t+i ) =
(vT1 l)l

||l||2
(6.15)

v2n(t+i ) =
(vT2 (−l))(−l)
||l||2

(6.16)

A1 =

m1I3 m2I3

−I3 I3

 (6.17)

A2 =

m1I3 m2I3

eI3 −eI3

 (6.18)

vn(t+i ) = A−11 A2

v1n
v2n

 (6.19)

v(t+i ) = v(t−i )− vn(t−i ) + vn(t+i ) (6.20)

Where e is the coefficient of restitution and it determines the energy lost in the impact. When

e = 1, the impact looses no energy and rebounds at equal and opposite normal velocities. In this

case, the cycle repeats and new impact times are repeatedly found until a final time or position is

set. In the case where 0 ≤ e < 1, energy is lost and the time in between impacts and decreases

until the impact times are so small it can be considered that the two masses are constantly meeting
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the constraint. When this happens, a new set of dynamic equations is needed:

l = Cr (6.21)

lT l = L2 (6.22)

d

dt
(lT l) = 0 (6.23)

l̇
T
l + lT l̇ = 0 = 2lT l̇ (6.24)

l̇
T
l̇ + lT l̈ = 0 (6.25)

−l̇T l̇ = lT l̈ (6.26)

l̈ = −(lT )+l̇
T
l̇ (6.27)

l̈ = − 1

L2
ll̇
T
l̇ (6.28)

R =
1

m1 +m2

[
m1I3 m2I3

]
r (6.29)

R̈ = g (6.30)
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