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ABSTRACT

Over the past decades, the benefits of segmentation and fragmentation has started gaining the

interest of researchers of engineering design community. Fragmented materials in which the indi-

vidual segments are held together not using a binder or adhesive, but simply through the geometry

of constituting shapes and their arrangement are called topologically interlocking materials. Such

materials has proven to have distinctive properties like energy absorption, fracture toughness and

structural integrity compared to monolithic solids. The geometric design space of the existing

topologically interlocking shapes has remained limited and we observe that there is no system-

atic design methodology to design and explore topologically interlocking shapes. We note that

this problem is better understood using the conceptual framework of space-filling shapes because

it helps us create both water-tight (or void-free shapes) and repeatable shapes (that are easy to

mass produce). So the aim of our research was to develop a systematic methodology to design

and explore potentially new topologically interlocking shapes that are repeating and fill-space in

a water-tight way.

We inspire our approach from a novel topological shape called ‘Scutoid’ that are found in

skin cells. The presence of this shape minimizes the tissue energy and stabilizes the 3D packing.

Scutoids are important to us because they are both watertight and showed some potential for topo-

logical interlocking. Scutoids are constructed by a layer-by-layer Voronoi decomposition. We use

this fact to generalize and develop an elegant design methodology to design a new class of shapes

that did not exist before called ‘Delaunay Lofts’. Specifically, the ‘Topology shift’ or bifurcation

that makes Scutoids interesting, happens when a Voroni edge collapses to a four valency Voronoi

vertex and splits back to a Voronoi edge. We show that if we use a quad grid as a reference and

define control line segments passing through the quad grid, we automatically obtain the bifurca-

tion. Subsequently, we describe how we can use Wallpaper symmetry groups to create repeatable

shapes. However, the algorithmic limitations of Delaunay Lofts restricts free-form exploration of

control curves and the shapes fails to show significant topological interlocking capabilities.
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To overcome this, we developed an algorithm for Voronoi decomposition with higher dimen-

sional Voronoi sites. Further, we take inspiration from Abeille’s Vault design from 1699 and pro-

pose the design of interlocking shapes by finding a visual correspondence with weave symmetry.

Then we do a structural analysis and compare the results of three such topologically interlocking

assemblies we get using predefined Voronoi sites. The results show that the tiles have a well-

defined stress patterns and stress magnitudes are comparable to that of the equivalent monolothic

solid. This research also shows a great potential in the areas of 3D printing in-fills, metamaterial

designs, packaging and education applications.
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1. INTRODUCTION

Naturally occurring materials are fundamentally made of basic components such as proteins,

minerals and lipids. These basic components repeat and group together through the process of self-

assembly as controlled by living cells to become materials with remarkable functional properties.

Also in the macroscopic level, division into a series of repeating segments gives a higher degree of

flexibility and mechanical functionalities. Over the past decades, the benefits of segmentation and

fragmentation has started gaining the interest of researchers of engineering design community [4].

Fragmented materials in which the individual segments are held together not using a binder or

adhesive, but simply through the geometry of constituting shapes and their arrangement are called

topologically interlocking materials. This design concept enables taking advantage of flexibility

provided by segmentation while maintaining the overall structural integrity of the material using

interlocking.

According to Estrin et al. [5], “topological interlocking is a design principle by which elements

(blocks) of special shape are arranged in such a way that the whole structure can be held to-

gether by a global peripheral constraint, while locally the elements are kept in place by kinematic

constrains imposed through the shape and mutual arrangement of the elements.”. Topological

interlocking materials has proven to have distinctive properties like energy absorption, fracture

Figure 1.1: Understanding topological interlocking by comparing a cubical assembly (right) with
an interlocking assembly generated using our design algorithm (right). The brown tape around the
assembly is an elastic band that holds the assembly together.
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Figure 1.2: Hand-drawn illustrations of 1738 Drawings of top views of Abeille and Truchet vaults
by Frezier [1] (left) Top View of flat Abeille vault, (middle) Top View of Abeille vault with circular
edges and (right) Top View of a Truchet vault.

toughness and structural integrity compared to monolithic solids [6]. In the research front, the

concept of topological interlocking has advanced the design of hybrid materials [4] and materi-

als with adaptive mechanical properties [7]. Shown in Figure 1.1 is an example of topologically

interlocking material developed in this research work.

We note that such mechanical properties have only been explored with a limited geometric

design space of interlocking shapes. Also, to our knowledge, there is no unified systematic design

methodology to create topologically interlocking shapes. Specifically, the geometry of the existing

designs are either based on Joseph’s Abeille Vault (figure 1.2) or Osteomorphic blocks restrict-

ing the design space shapes that can be explored. Particularly, we note that most of the designs

have gaps or voids in-between which typically lead to mechanical instabilities as the elements are

loosely packed. For this reason, we choose to explore topologically interlocking blocks that are

space-filling. A space filling shape is a shape that can simply be repeated and packed together to

fill the entire 3D domain [8, 9] without having any gaps or overlaps in-between them. Space-filling

shapes have applications in a wide range of areas from chemistry and biology to engineering and

architecture [8]. Using space filling shapes, we can compose and decompose complicated shelled

and volumetric structures for design and construction. Furthermore, if a given shape can be uni-

formly repeated to fill space, it is easier to mass produce using faster methods such as casting and

injection molding instead of machining and additive manufacturing several unique shapes.
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To date, most widely known space filling shapes are essentially regular prisms (e.g. rectangular

bricks) since they are relatively easy to manufacture and are widely available. Reliance on regular

prisms, on the other hand, significantly constrains our design space for obtaining reliable and robust

structures [10, 11, 12, 13, 14]. Architects currently investigate many other types of space filling

modules, but their investigations are not usually systematic and focus on only a small number of

known building blocks [15]. We also recognize a need for formal approaches that enable the design

and intuitive control of a wide variety of modular and tile-able building blocks.

In summary, we aim to develop a systematic methodology to design and explore (potentially

new) topologically interlocking shapes that are repeating and fill-space in a water-tight way.

1.1 Approach

We inspire our approach from a novel topological shape called ‘Scutoid’ that are found in skin

cells. It was found that the presence of Scutoid minimizes the tissue energy and stabilizes the 3D

packing. Scutoids are important to us because they are both watertight and showed some potential

for topological interlocking. Scutoids are constructed by a layer-by-layer Voronoi decomposition.

We use this fact to generalize and develop an elegant design methodology to design a new class of

shapes that did not exist before called ‘Delaunay Lofts’. Specifically, we show that the ‘Topology

shift’ or bifurcation that makes Scutoids interesting, happens when a Voroni edge collapses to a

four valency Voronoi vertex and splits back to a Voronoi edge. We show that if we use a quad grid

as a reference and define control line segments passing through the quad grid, we automatically

obtain the bifurcation. Subsequently, we describe how we can use Wallpaper symmetry groups to

create repeatable shapes. Then, with the help of FEA of assemblies of Delaunay Lofts, we make

two suggestions for designing interlocking shapes. One, the control lines that describe the shape

should not be co-planar. Second, grouping of adjacent Delaunay Lofts together may give better

topological interlocking.

Inspired from the idea of grouping multiple shapes together, we explore a new class of assem-

blies called ‘Generalized Abeille Tiles’ that are ensured to be topologically interlocking. In this

effort, we observe a correspondence between structures proposed by Abeille and the symmetries
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exhibited by woven fabrics. By configuring these new Voronoi sites based on weave symme-

tries, we provide a method for constructing topologically interlocking shapes. To construct these

shapes, we propose an algorithm for Voronoi decomposition with higher dimensional Voronoi

sites. Subsequently, we present a comparative structural analysis of these shapes for three different

representative fabric patterns and show the existence of a relationship between the choice of fabric

symmetries and the corresponding distribution of stresses in the assembly. Through FEA, we also

show the lack of structural stability in the Abeille Vault as opposed to good interlocking capability

in the Generalized Abeille Tiles.

Finally, we also a show a rich possibility of future directions that can be inspired by our research

in the areas of in-fill design for 3D printing, metamaterial designs, design of reciprocal frames,

geometric interlocking, architectural design, heat transfer, air-flow control and education. In the

future, our overarching goal is to develop a inverse design system where the user provides force

and kinematic conditions and our algorithm generates the geometry automatically. We believe our

methodology helps new design space of in-fills and additive manufactured materials in general

with adjustable mechanical properties.

1.2 Thesis Overview

The thesis is organized as follows. In Chapter 2 we discuss the existing research work on

designing topologically interlocking shapes, its applications in mechanics and architecture and

highlight how our research overcomes the limitations. We also provide the necessary mathemati-

cal preliminaries in this chapter. In Chapter 3, we introduce Delaunay Lofts, describe the method

to create space-filling shapes. Subsequently, we do the structural analysis of assemblies of these

Lofts and end by highlighting the limitations of Delaunay Lofts. In Chapter 4, we explain how we

can make use of 3D Voronoi partitioning to overcome the limitations of Delaunay Lofts. We then

describe how to make use of weave symmetries to create better interlocking shapes that are vali-

dated, again, using a structural evaluation. Finally, in Chapter 5, we summarize our contributions,

highlight the limitations and discuss the broad future directions of this research pursuit.
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2. LITERATURE AND THEORETICAL FOUNDATIONS

2.1 Topological Interlocking

Topological Interlocking assemblies can be held together by boundary or peripheral constraints

while locally the elements are kept in place by kinematic constrains imposed through the shape and

arrangement of the elements. We find that the idea has been introduced earlier in the context of

vault design in architecture more than three centuries ago. But only after it was formally introduced

by Dyskin, Estrin and others in the year 2001 [16], this concept started gaining the attention in the

mechanics and architecture community. In this section we will provide an overview of the methods

used to design these shapes (Section 2.1.1), and highlight the use of these shapes in architecture

(Section 2.1.3) and mechanics (Section 2.1.2).

2.1.1 Geometry of Topological Interlocking Blocks

Geometry of topologically interlocking blocks are typically derived starting from the assem-

bly of interlocked tetrahedron-shaped blocks [16]. Assuming a monolayer structure, a research

showed that blocks with the outer geometry of any of the five platonic bodies (tetrahedron, cube,

octahedron, dodecahedron, and icosahedron) are interlockable [17]. These arrangements can be

truncated using a number of planes parallel to the middle plane are the shape are still interlock-

able [18]. Another range of interlocking blocks can be obtained from these basic ones using

transformation [19, 20]. There are also a number of other design that are merely a parametric vari-

ation of these designs with curved and other polygonal surfaces. For example, a research showed

circle-based and octagon-based interlocking shapes [21]. We note that all these blocks are not

space-filling and the tiled assembly of these blocks have voids or unevenness in the assembly.

The first class of space-filling topologically interlocking blocks were discovered in the early

2000s are are called ‘osteomorphic’ blocks (that derives its name because of similarities with a

bone). The ability of these blocks to be interlocking within a structure is because of their matching

concavo-convex contact surfaces [22]. These blocks are studied extensively in mechanics (see sec-
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tion 2.1.2) and are used for range of applications from space shuttle [23] to road construction [24].

we note that the increase study of these blocks is due to fact that they are space-filling and offer

a neat way to decompose a solid block into segments unlike the interlocking shpaes based on pla-

tonic solids. But geometrically, the design of these blocks are parametric and thus the design space

of these blocks are limited.

Thus, we observe that the true potential of Topological Interlocking has not been completely

realized in the context of geometric modeling and design of complex structures. This is because

there seems to be no systematic way to discover similar building blocks. Moreover, most of these

structures are not space-filling. There is, therefore, a need for formal approaches that enable intu-

itive design and control of a wide variety of modular and tileable building blocks. Our motivation

is to cater to this need by developing and investigating a methodology to expose the vast design

space of topological interlocked space-filling shapes.

2.1.2 Significance in Mechanics

In the Section 2.1.1 we noted that decomposition of a monolithic block into segments will

give us void-free packing of the segments. Here, we highlight that such topological interlocking

materials have came out to be materials with properties that are not ordinarily found in a monolithic

solids [6]. Segmenting a monolithic block into individual blocks has a number of advantages

including energy absorption, fracture toughness and structural integrity.

Segmenting a monolithic solid may, in fact, lead to better mechanical properties (especially

toughness). This is known as the inverse scale effect. This is confirmed by the Weibull statistics

which says that the probablity of survival of a solid is inversely affected with increasing vol-

ume [25]. Also, Ashby and Bréchet [4] showed that with increasing brittleness of the material,

the effect of segmentation increases. Since, any method that we use to create topologically in-

terlocking shapes can be seen as a segmentation if the shapes are space-filling, our designs will

automatically have these mechanical properties.

Another interesting mechanical property of these materials is the controlability of bending

stiffness of the material simply by varying the magnitude of peripheral load (that we give in the
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elastic band in Figure 1.1. Intuitively, the force required to pull the block out of the assembly

will become increasingly tougher if you tighter the elastic band that holds together the boundary

of assembly. In fact, an empirical relation for the force necessary to remove a block from the

assembly was developed where the required force is proportional to the constraining force from

the elastic band [26]. So, the bending stiffness of the assembly can be controlled by changing

the constraining load over time. Researchers have developed different ways of implementing the

peripheral load including a lateral load using built frames and tension cables [27, 28].

Perhaps the most useful property of Topologically Interlocking Assemblies that are is exten-

sively studies is to resist the growth of cracks. In a topological interlocked assembly, since the

blocks are not bonded to each other, boundaries between them are able to hinder crack propaga-

tion. While in a monolithic solid crack propagates all the way to the boundary simply because it is

a continuous region. This inherently increases the fracture toughness of topologically interlocking

solids. The mechanism of controlled crack propagation in segmented solids was experimentally

verified and studies in a number of research works [22, 29, 30, 31, 32, 33].

2.1.3 Significance in Architecture

The primary inspiration to explore Topological Interlocking came from Joseph Abeille’s ‘Abeille

vaults’ that was discovered during the late 17th Century [34] (See Figures 4.2b). Abeille vaults

are stones, generated by truncating two opposite edges of a tetrahedron, that can be assembled in a

two-directional pattern to form self-supporting structures [35, 36]. Since then, several variants of

these structures have been invented and studied under the name of topological interlocking assem-

blies (TIA) [16, 37, 38, 5]. These assemblies typically consist of a single unit element that can be

repeatedly arranged in such a way that the assembled structure composed of this element can be

held together by boundary constraints. Furthermore, each element itself is kept in place by local

kinematic constrains imposed through the shape and mutual arrangement of the elements [16].

Medieval building masters have employed assemblies similar to Abeille’s vaults. Early exam-

ples of similar assemblies, which are usually referred as stereotomy, can be found in Villard de

Honnecout’s fylfot grillage assemblies, Leonardo da Vinci’s spatial structures, Sebastiano Serlio’s
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planar floors, and John Wallis’s scholarly work [39]. In these constructions a discrete load-bearing

element supports two neighboring components, and is mutually supported by two others to span

distances longer than their length [40, 41]. Abeille’s vault was patented at the end of the 17th cen-

tury as a class planar assemblies that could overcome the structural instability under the application

of loads that are perpendicular to planar surface [42]. Other related terms topological interlocking

are stereotomy [43, 35] and reciprocal frames or nexorades [44], which are used to refer ancient

Asian forms of timber construction [45].

Sébastien Truchet discovered and patented another topologically interlocked module as a vari-

ant of Abeille’s vault again using identical blocks in early 18th century [46, 15]. One of the

advantages of both Abeille’s and Truchet’s patents is their ability to sustain loads and control the

displacement of the blocks [47]. Both of these structural systems are capable of tolerating or-

thogonal and transverse forces [48]. However, for these assemblies to work the whole assembly

process must be completed. Moreover, these assemblies require strong boundary support provided

by structures such as buttresses or hefty walls [47]. Therefore, Abeille’s shapes and their derived

versions never really gained much popularity [49, 41] and were primarily used to build only a few

flat vaults in Spain during late 18th and early 19th century [50]. It is only in recent literature that

Abeille’s creations received a renewed attention mainly in material design and architecture com-

munities [51, 15]. Even then, most current research has only focused on either analyzing existing

building blocks already proposed by Abeille and Truchet or creating curved structures from origi-

nally known blocks [46, 15]. As a result, even the physical evaluation of such structures remains

limited to the original Abeille blocks.

2.2 Space Filling Shapes

A space filling shape is a cellular structure whose replicas together can fill all of space wa-

tertight, i.e. without having any voids between them [8]. Equivalently, a space filling shape is a

cellular structure that can be used to generate a tessellation of space [9]. While 2D tessellations

and space filling shapes are relatively well-understood, problems related to 3D tessellations and

space filling shapes are interesting and have applications in a wide range of areas from chemistry
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and biology to engineering and architecture [8].

A well-known anecdote to demonstrate the difficulty of 3D tessellations is that Aristotle claimed

that the tetrahedron can fill space. Several efforts were made to prove his claim [52] only to find

that cube is the only space filling Platonic solid [53]. Goldberg exhaustively catalogued many of

known space-filling polyhedra with a series of papers from 1972 to 1982 such as [54, 55, 56].

There are only eight space-filling convex polyhedra and only five of them have regular faces,

namely the triangular prism, hexagonal prism, cube, truncated octahedron [57, 58], and Johnson

solid gyrobifastigium [59, 60]. It is also interesting that five of these eight space filling shapes are

"primary" parallelohedra [61], namely cube, hexagonal prism, rhombic dodecahedron, elongated

dodecahedron, and truncated octahedron.

There have been many works in interpolations of tilings in 2D space[62, 63, 64, 65]. Recently,

there has been interest in the mechanical characterization of 3D printed 2D tilings in the context

of “sheet materials” as well [66]. In this case, the sheet material is only a thin extrusion of a two-

dimensional tiling. Two interesting cases of 2D tilings relevant to our approach are those presented

by Kaplan [67] showing a wide variety of artistic patterns using specific Voronoi site configurations

and Rao [68] that show a systematic construction of 2D pentagonal tilings. In fact our work, in a

sense, expands on these two works to move beyond tilings in 2D space to a rich design space of

tilings in 3D space.

2.3 Theoretical Foundations

In this section, we provide the basic foundations for our approach. All the information in this

section is well known. We only provide it to establish a context for our approach. This background

will also provide a foundation for the development of algorithms to construct space-filling tiles in

3D space.

2.3.1 Voronoi Diagrams

Voronoi diagrams are well known geometric structures that are used for diverse applications.

Given a set of sites in a domain, voronoi diagram partitions the plane into separate regions based
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Figure 2.1: Voronoi diagram is a partitioning of a plane into regions based on points (marked as
voronoi sites) in a way such that each points take the area closest to it when compared with the
neighboring sites. The boundary edges that are formed are called voronoi edges and the points
where the edges intersect are called voronoi vertices. An important characteristics of Voronoi
vertices is the valency associated with it. Valency of a vertex is the number of edges intersecting
at the vertex. In this example, we have a random distribution of Voronoi points and all the vertices
have a valency of 3.

on the distance to these sites. The voronoi diagram of n Voronoi sites, is a partition of the domain

into n regions where each site in the domain is associated to a region that contains all the points

in the plane that are closer to site itself than to any other site. This simple idea of site-based

segmentation of a given domain finds its use in wide ranging application ranging from biology (for

modelling cells and bone micro-architecture [69]) hydrology (calculating rainfall of an area) in

Natural Sciences, to polymer physics (representing free volumes of polymers), aviation (oceanic

plotting charts) and architecture in Engineering to name a few.

Considering complete generality, we can extend our thinking to a set of objects in a n-dimensional

space and find its Voronoi partitioning of n-d space based some generalized metric. For practical

applications such as CAD, shape recognition, topological skeleton, medial axis, volume segmen-

tation [70] or any other computer graphics application, we mostly deal with 3D objects. Although

the idea behind creating Voronoi diagrams is simple, it decomposes the domain into shape that
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Point P1 and a Point P2
Point P and a Line l

A Line l1 and a Line l2

P1

P2
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Figure 2.2: Locus of points equidistant to different combinations of points and line. (i) point and
point (top left) which is basically a plane perpendicular to the line joining them. (ii) Point and Line
(top right) - we get a cylindrical paraboloid with the point as the focus and the line as the directrix
(iii) For a general case of two non-intersecting Skew lines (bottom two) - we get a Hyperbolic
Paraboloid which has the famous saddle point at the middle of the closest line segment between
the two line l1 and l2. All these figures are created using MATLAB R2017b

have very interesting surfaces.

2.3.2 Boundaries Voronoi Regions in 3D

Voronoi diagrams can also be constructed in 3D space (or even N-D space). These result in

polyhedral cells in higher dimensions. The boundary of the Voronoi cells is basically the locus of

all points that are equidistant from the two cells shared by the boundary. Figure 2.2 shows locus of

equidistant points created in the 3D space for the corresponding geometric entities.

Clearly the interesting shape occurs when we have two lines in 3D. If the two lines are co-
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Figure 2.3: The two lines l1 and l2 assumed in a Cartesian coordinate reference and its equidistant
surface shown in the right the equation of the surface is given by Z = cXY , where c is a constant
depending on the variable ‘a’. All the figures are created using MATLAB R2017b

planar and intersecting - the Voronoi surface is basically a plane that is the angle bisector of the

two lines. Also, if the two lines are parallel, the Voronoi surface is a perpendicular plane to the

plane containing the two line and which passes exactly through the middle of the two lines.

Now consider two non-intersecting skew lines in 3D represented by l1 and l2. Without loss

of generality, we can transform and scale the 2 lines such that it is parallel to the x-y plane and

reoriented such that the closest line segment between l1 and l2 is coinciding with the z-axis (Refer

Figure 2.3).

The bisector of two lines l1 and l2 is the set of points p whose perpendicular distance is same

from the the lines l1 and l2. Let P1 and P2 be the points in line l1 and l2 and let n̂1 and n̂2 be their

corresponding normals.

Equating the square of distance from the point P to the two lines l1 and l2, we have

||(P − P1)× n̂1||2 = ||(P − P2)× n̂2||2 (2.1)

where P is point (x, y, z) equidistant from the two lines.

For the lines given in Figure 2, we have P1 = (0, 0, 1) and P2 = (0, 0,−1).

The normals are n̂1 = ( 1√
1+a2

, a√
1+a2

, 0) and n̂2 = ( 1√
1+a2

, −a√
1+a2

, 0).
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Substituting these in equation 2.1, we obtain,

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

x y z − 1

1 a 0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

x y z + 1

1 −a 0

∣∣∣∣∣∣∣∣∣∣
After expanding and rearranging, we will get the following equation.

z = − a

1 + a2
xy (2.2)

Equation 2.2 describe a surface that is commonly called a saddle shape. Specifically, the shape

described by this equation is known as hyperbolic paraboloid which is a type of bi-linear surface.

Thus, generally speaking, the locus of all points equidistant between two skew lines given in 3-

space will be a right hyperbolic paraboloid. This means that we can conclude that the nature of

every boundary formed in Voronoi region a set of skew lines in 3D space would is a hyperbolic

paraboloid. We will use these results later in the Chapter 3 to explain how using Voronoi decom-

position helps creating topologically interlocking shapes.

2.3.3 Voronoi Partitioning with Higher Dimensional Sites

It can be interesting to create the Voronoi diagram of other objects, such as lines, polygons or

even polyhedra. Various people have already created algorithms for the exact Voronoi diagram of

lines and areas in 2D [71]. The 3D JFA algorithm by Rong and Tan [72], is able to create a discrete

3D Voronoi diagram, however, it does this by creating several 2D Voronoi diagrams, and adding

them together to form a 3D Voronoi diagram.

While there are algorithms for Voronoi decomposition of points in 3D, little is known about

Voronoi of higher dimensional sites (lines, surfaces and volumes) in 3-space. A recent paper by

Franz Aurenhammer et al. [73] proposes a space sweep algorithm to compute voronoi diagram

for parallel half-lines at logarithmic time per face. Hazel Everett et al. devoted a separate paper

to investigate the topology and studied the voronoi diagram of 3 arbitrary pair-wise skewed line
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segments [74]. They also presented some algorithms for determining a rational test for querying

which Voronoi cell a corresponding Voronoi site belonds to.

It is interesting to note that complex shapes from conics can be constructed simply by finding

the voronoi tessellations between skewed line segments. However, the difficulty increases when

we have more than 2 lines in the space. However, several subproblems derived from this has been

used for wide applications. Debasish Dutta et al [75] examined a number of specific cases in which

voronoi surface has a simple geometric structure. The somewhat reverse problem is to finding the

set of line segments that would give a particular surface contour. This is widely known as Medial

axis for any given object that is basically the set of all points having more than one closest point

on the object’s boundary [76].

Recently, Vladlen Koltun et al [77] showed that combinatorial complexity of Euclidean voronoi

diagram of n lines in 3-Space that have at most c orientations is O(c4n2+ε) for any given ε > 0.

He believes this is a step towards proving that the problem of solving the 3D Voronoi with line

segments has a near-quadratic complexity. This conjecture has been there only for 3D Voronois

with lines with Euclidean metric. The case of Vornoi based segmentation in Euclidean space

is harder than Polyhedral metric (distance functions). The reason is that, in Euclidean metric

the surfaces assume quadratic form and it becomes harder to calculate the intersection. Under

polyhedral metric distance, a tight upper bound has been studied extensively and a tight upper

bound of O(n2) has been established [78] simply by invoking the properties of involved geometric

structures.

This general problem of 3D Voronoi for line segments in Euclidean Metric has also been

listed as Problem 3 in the list of Open Problems Project in computational geometry, published

by Mitchell and ORourke. In this work, we present two potential algorithms to obtain approximate

solutions of Voronoi partitioning of line segment, curves and higher-dimensional Voronoi sites.

The construction algorithm we present in Chapter 3 runs with a time complexity of O(k n logn)

where k varies is level of discretization of the region in-between the two planes and n is the number

of Voronoi entities that we use to partition the space. The algorithm presented in Chapter 4 runs
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with a time complexity of O((k n) log(k n)) where n is the number of input Voronoi sites, and k

is the number of samples in every Voronoi site.
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3. DELAUNAY LOFTS
∗

3.1 Introduction

The biological community modelled cells that packed together to form thin structures (such as

organ skin) as primarily prism-like shapes (see Figure 3.1). This view was recently updated through

the discovery of “scutoids” — shapes that frequently occur in animal skin-cells [2]. The formation

of these thin (2.5D) structures can be viewed as a topology changing interpolation through edge-

collapse or vertex-split operations between quadrilaterals, pentagons and hexagonal faces of any

given tessellation.

Inspired by this new discovery, we first offer a view that provides a dual version of this expla-

nation. We observe that scutoids could be formed by a Voronoi partitioning of a shell into regions

based on distance to a set curves along the thickness of the shell. This dual explanation is theo-

retically useful since (1) it provides a well-defined process to compute the boundaries of resulting

structures; and (2) it is able to naturally create curved boundaries that is expected for resulting

structures.

Figure 3.1: Difference between prism-like shapes and Scutoid. The highlighted topology shift
in the middle of the two faces is what makes Scutoids different from others. The skin cells are
typically modelled using prism structures. And the bending of skin cells are usually explained
modelling cells as frustums.

∗Part of the data reported in this chapter is reprinted with permission from “Delaunay Lofts: A Biologically In-
spired Approach for Modeling Space Filling Modular Structures” by Sai Ganesh Subramanian, Mathew Eng, Vinayak
R. Krishnamurthy, Ergun Akleman, 2018. Computers & Graphics, 82, Page range 73-83 including figures 3.2, 3.4,
3.6, 3.10, 3.11, 3.12, 3.14 and 3.15
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(b)(a) (c)

Figure 3.2: A comparison of the original scutoid discovered by Gomel-Gomez et al. [2] (a) with the
one generated by our method (b) shows the difference between the interfacing boundaries between
two different blocks. Note that not more than 4 of these shapes can be fit together which means
these structures are not repeatable and cannot fill the space (c). The shapes generated using our
design method are repeatable and fill the 3D space.

From the shape modeling point of view, this dual explanation provides a simple yet powerful

conceptual framework that can be used to model and design a wide variety of modular shell struc-

tures. Users can simply provide a set of control curves as Voronoi sites to obtain a decomposition

of a thin plate. Even straight lines can result in interesting structures with curved boundaries.

Based on this explanation, we have developed a set of simple and intuitive procedures to design a

wide variety of unconventional — and also non-intuitive — building blocks.

Figures 3.4 and 3.11 show examples of such non-intuitive space filling tiles that are designed

using our procedure. In Figure 3.4, one way to reason regarding the extremal tilings is to view the

bottom layer as a translated version of regular square grid in the top layer. Sweeping of a square

profile through translation is normally expected to result in a prism with planar parallelogram faces.

However, tilings are not standard single objects. We can obtain a rigid body transformation of a

tiling in more than one way. Figure 3.4(b) shows how the tiling is interpolated in this particular

case.

As it can be seen in Figure 3.4(b), the motion of Voronoi sites produces hexagonal grids, which

causes a change of 1D topology from quadrilateral to hexagon and back to quadrilateral. This

topological change is clearly visible in the 2.5D tilings shown in Figure 3.4 by triangles resulting
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Bifurcation caused by change in valency of voronoi vertex

Figure 3.3: Figure showing topology shift happening in a Delaunay Loft. This representations
shows a transition of a 3-Valency Voronoi vertex in the middle layer to 4-valency Voronoi vertex
and vice versa.

from edge collapse — a change that is also noted by the researches on biological cell packing [2].

Further, note that these triangles are not planar since they are naturally created as a by-product of

Voronoi decomposition. Since the top and bottom tilings are rigid transformation of each other,

these are 3D space filling shapes as shown in Figures 3.4 and 3.11.

Figure 3.4: The process of construction of Delaunay Lofts. We first creates a set of control curves
shown on the left. Note that the control curves that interpolates Voronoi sites are shown in green
and the Voronoi sites are black dots. The construction of Delaunay Lofts is demonstrated in a four
step process as shown in the right.
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(a) (b)

Figure 3.5: (a) Pentagonal Delaunay Lofts — this is got by interpolating between two regular
pentagonal tiling with a quad layer in the middle (b) Quad Delaunay Lofts — interpolation between
three different quad layers.

3.2 Mathematical Foundations

In this section, we provide the basic foundations for our approach. All the information in this

section is well-known. We only provide it to establish a context for our approach. This background

will provide a foundation for the development of algorithms to construct space-filling tiles in 3D

space.

3.2.1 Fundamental Domain

In this paper, we present our approach as the decomposition of a 3-torus that is given as a

repeated cubical domain, [0, 1]3 [79] as its fundamental domain. In other words, x ≡ x − bxc,

y ≡ y − byc, and z ≡ z − bzc where the floor operator (bac) gives the greater integer less than

or equal to a. This gives us a regular tessellation of 3D space. We usually assume that z does

not repeat and 0 ≤ z ≤ 1 represents a shell, i.e. a 2.5D structure. We further assume that curved

shapes are obtained by a deformation of this domain such as a tensor product free-form volume that

19



is defined on this cubical domain [80, 81]. Such deformations are, of course, not straightforward,

but we purposely provide our presentation using this simple domain to simplify our explanation

without loss of generality.

3.2.1.1 Domain Decomposition using Control Curves

Given the fundamental domain, our approach is simply to compute a Voronoi decomposition

of this cubical domain into the regions based on distance to a set of curves given in the form of

(xi = fi,x(z), yi = fi,y(z)), where i = 0, 1. . . , n. Since these curves intersect any given z = c

constant plane only once, with a well-defined distance function, the decomposition of the 3D

domain can be simplified as a sequence of 2D Voronoi decomposition at each planar layer, z = c,

based on the distance to a set of points (xi = fi,x(c), yi = fi,y(c)) (See subsection 3.2.2).

3.2.1.2 Interpolation Curves

We further assume that each of these control curves are interpolations of a set of control points

given z = cj as (xi,j, yi,j, cj). We simply choose these points to obtain any desired Voronoi

decomposition in any given planar layer. Using these points as control points of the curves we can

obtain any desired Voronoi decomposition. For interpolation, there is really no preference. We can

even simply use piece-wise linear interpolation.

3.2.2 Distance Functions

We observe that scutoids could be viewed as shapes constructed from 2D Voronoi diagrams that

are stacked on top of each other. The shapes of the scutoids result from changes of the polygonal

topology of the 2D Voronoi diagrams as we move along each interpolated plane (z = c). In

particular, edges of Voronoi cell polygons in different layers either collapse or split by changing

vertex valences. To formalize this observation, we need to show that there actually exists a formal

distance function that can produce such layer by layer 2D Voronoi diagrams. In this part, we

demonstrate that this distance function actually exists.
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3.2.2.1 Generalized Distance Function

Let v be a vector between two points and Lm(v) be any linear function withm = 0, 1, . . . ,M−

1. It has been shown that the following generalization of Minkowski distance functions can be used

to compute distance between any two points [82]:

d(v) =

(
M−1∑
m=0

||Lm(v)||p
) 1

p

(3.1)

where M is the number linear functions. To simplify the discussion, we assume that the linear

function Li takes the form:

Li(v) =
nm · v
sm

(3.2)

Here, nm is a unit vector and sm > 0.

3.2.2.2 Circular Disk Distance Function

Let us now consider a specific distance function in 3D where L0(v) = x, L1(v) = y, L2(v) =

z/s, and p = 2, which gives us

d(x, y, z) = lim
s→0

√
x2 + y2 +

z2

s2
(3.3)

In this case, the implicit shape d(x, y, z) = 1 is an ellipsoid that will ultimately go to an

infinitely thin circular disk as s tends to zero. Unfortunately, s = 0 will not lead to a valid distance

function since d(0, 0, 0) must be zero for a norm and z/s is undefined when both z and s are zero.

On the other hand, if s is arbitrarily close to zero, z/s is still zero when z = 0.

An important interpretation of this circular disk distance is that any two points in the same

layer are closer to each other than to points in layers above or below s amount since d(0, 0, z) >

d(x, y, 0) for (x, y) ∈ [0, 1]2 and |z| > s. This is a big advantage since we now can reduce the

problem of searching for equidistant boundaries in thin rectangular layers bounded by s in z and 0

and 1 in x and y. Assume that the domain consists of N layers in z direction and s = 1/N . Then,
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every layer will be given by an implicit equality as is ≥ z ≥ (i + 1)s with i = 0, 1, . . . , N − 1.

We also assume that the intersection of each curve with any given layer will always be confined

by a circle with radius
√
2s. This can easily be obtained by choosing the tangent direction never

makes more than 450 with z direction. We also assume that highest frequency of the control curves

never exceeds Nyquist limit [83]. Then, we can safely sample the curves at z = s(k + 0.5) to use

xi = fi,x(s(k+0.5)), yi = fi,y(s(k+0.5)) as 2D Voronoi sites and we can view this decomposition

as a discretization of the cubical domain into N number of 2D domains given as z = s(k + 0.5).

In other words, under the assumption that the 3D structure is thin (as characterized by the dis-

cussion above), the 3D Voronoi decomposition reduces to 2D Voronoi decomposition of points.

These assumptions can be safely imposed in a scenario where a user is designing the interpolat-

ing curves and the number of samples. This distance function significantly simplifies especially

the construction of the resulting 3D shapes by converting the computation of 3D Voronoi decom-

position of lines into 2D Voronoi composition of points. Based on this distance function, the

construction can be done in real time during interactive design. In order to develop an intuitive

design methodology for shape design, we use Delaunay diagrams.

3.2.3 Delaunay Diagram

It has been shown that the computation of a Voronoi diagram can be greatly simplified by

working with its dual, which is known as the Delaunay diagram of the given sites [84, 85, 86].

Figure 3.6 shows the construction of a Voronoi diagram using the Delaunay diagram. Delaunay

diagrams also turn out to be useful for designing the proposed Delaunay Lofts since the problem of

interpolations of polygons simplifies into that of merely interpolating points along a set of control

curves. With Delaunay diagrams we can precisely design the control curve as an interpolation

curve that goes through a set of critical points that defines exact locations where the polygonal

topology changes.
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Figure 3.6: An example to demonstrate how to design single polygon tilings as dual meshes of
regular or semi-regular tilings. Note that each polygon in semi-regular Delaunay diagram is regu-
lar, and therefore, cyclic. (c) shows a Delaunay diagram that is a semi-regular mesh with the same
vertex figure, which is 3.4.3.4.3. The corresponding Voronoi Diagram in (d) is a tiling that consists
of the same polygons, which are pentagons. This property holds for all semi-regular tilings.

3.2.3.1 Cyclic Polygons

The key idea behind Delaunay diagram are cyclic polygons. To precisely control polygonal

topology changes, we use the fact that when n-number of points forms are inscribed in a circle,

they form a convex cyclical polygon and their n-perpendicular bisectors to the sides are always

concurrent and the common point is always the center of the circle (Figure 3.6(b)). This property

helps us to design desired control curves by directly controlling the number of sides and vertex

valances of a Voronoi tessellation in every layer. We basically create the desired Delaunay dia-

grams in some layers and interpolate their vertex positions. The only issue is to keep the number

of vertices identical.

3.2.3.2 Diagram vs. Triangulation

We want to point out that Delaunay diagrams are not exactly Delaunay triangulations. Specif-

ically, a triangulation of n ≥ 2 sites is Delaunay if and only if the circumcircle of every interior

triangle is point-free [86]. One well-known but misleading property of Delaunay triangulations is

that when four or more points are on the same circle, we can still create a formal Delaunay triangu-

lation by triangulating these faces since any of these non-unique triangulations still satisfy the two

properties of Delaunay triangulations. Delaunay diagrams are the real dual structures of Voronoi
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diagrams wherein a face becomes a vertex and a vertex becomes a face (Figures 3.6(c) and 3.6(d)).

In a Delaunay diagram, we draw only one polygon per unique circle. Not only does this

eliminate any ambiguity but also simplifies the design process since the number of sides of the

polygon directly defines the valence of corresponding Voronoi vertex. In the rest of this section,

we discuss a few strategies to design Delaunay triangulations.

An important implication of this observation is explicit controlling topology changes. In a

Delaunay triangulation, if more than one triangle share the same circle, the corresponding trian-

gulation is not unique since it means more than three Delaunay vertices form a cyclic polygon.

The number of vertices of these cyclic polygons directly determines the valance of corresponding

vertex in Voronoi structure. Therefore, by controlling how many triangles share the same circle in

every layer, we can change mesh topology in any desired layer.

3.3 Contruction Methodology

Here, we describe the algorithm to create Delaunay lofts. The important aspect of the algo-

rithm is to achieve vertex-split and edge-collapse operations that occurs during the topology shift

(Figure 3.3).

3.3.1 Pre-processing input line segments

1. Obtain the input line segments between two layers.

2. Sample a number of layers between these two extreme layers

3. Now for every layer i between 0 to n− 1 where n is the number of layers

4. Find the Voronoi Decomposition of the points we get intersecting the line segments with the

layers i and layer i+ 1

5. For a given line find the two Voronoi cells in layer i and i+1 and evaluate the side boundary

faces

Note that the two voronoi polygons may have different number of vertices and edges. We are

looking some sort of mapping between the two polygons.
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Figure 3.7: Possible mapping between two polygonal faces out of which some result in self-
intersecting shapes.

3.3.2 Finding the Side boundary faces

Assume two polygons of sides M and N . We basically need a way to connect the vertices of

one polygon to the other polygon to construct the side faces of the loft. Out of all the possible

mappings of vertices, there are several valid and several invalid mappings. Invalid configurations

are those that gives us non-manifold edges and surfaces — our algorithm should not give raise to

these shapes (Figure 3.7). And out of the valid configuration, there exists only one mapping that

creates the right faces. We find that configuration using the following steps.

1. First find the closest two pairs of vertices between the two polygons.

2. Assuming these two points as reference, assign two parameters u and v ranging from [0, 1]

along the perimeter of the each polygon which serves as the parametric position to each

corner of the cell.

3. Then follow the pseudo-code to insert the edges between the vertices.

This method can also be extended to create lofts with curved control lines — this allows for a

wider range of tilings in the design space.
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After iteratively adding the 

edges using our algorithm

Figure 3.8: The algorithm for creating the shape of a single Delaunay Loft in parameter domain.

Algorithm 1: Pseudocode for Single Delaunay Loft
n = 0; m = 0;
while (n ≤ N and m < M ) or (n < N and m ≤M ) do

if (n <N) then
n = n++;

if (|un − vm| ≤ |un − vm+1|) then
InsertEdge(un, vm);

else
InsertEdge(un, vm+1);
if (m <M) then

m++;
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1 2

3 4

Figure 3.9: Status of the generated shape at different stages of algorithm for a Delaunay Loft.

3.3.3 A Note on Time complexity

Given n line segments, the time complexity of the algorithm is dependent on the number of

layers we discretize the line segments into. Let us assume we divide the region into D equidis-

tant layer. Now, the algorithm with the best time complexity that we can use to obtain the voronoi

decomposition of any 2D layer is O(n logn) (Fortune’s algorithm for example). This Voronoi com-

putation is repeated in every layers (assume ’d’ number of layers). Thus, the overall combinatorial

time complexity of this approach would be O(d n logn).

3.4 Designing Control Lines

3.4.1 Based on Quad Layer

The topology shift that makes Scutoids interesting (see Figure 3.1 happens when a voronoi

edge that gets collapsed to a four-valency vertex and then splits back into an edge. We saw that

how this happens automatically if we use Voronoi partitioning in every layer. However, we do not

yet have a control where the topology is changing since it is primarily dependent on the Voronoi

polygons on the top and bottom that we are interpolating. So, one of the methods to get control
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over the topology shift is that if we arrange points in rectangular grid, the Voronoi decomposition

will automatically create Voronoi vertices with four valency. So if we enforce the line segments to

pass through a quad layer in the middle, the topology shift is ensured to happen in that layer.

3.4.2 Based on Wallpaper Patterns

In order to get repeating tiles we need the point distribution in every layer to adhere to some sort

of symmetry or pattern. There exist seventeen distinct symmetries in 2D plane, called wallpaper

patterns. In literature, these periodic symmetry groups are called as p1, p2, p4, pm, pmm, p4m,

p4m, cm, cmm, pg, pmg, pgg, p4g, p3, p6, p3m1, p31m and p6m [87]. Each one of these symmetry

groups is a collection of isometric operations, which preserve the distance of any two points, i.e.

translation, rotation, reflection and glide reflection. The rotations can have periods two, three, four

or six. The complete list of the 17 symmetry groups in plane can be classified in two categories:

rectangular and hexagonal. Namely, 12 of these 17 groups have rectangular symmetries, i.e. their

natural fundamental domain is a rectangle. The remaining 5 have hexagonal symmetries, i.e. their

natural fundamental domain is a hexagon.

It has been shown that we can use rectangle as the fundamental domain for hexagonal symme-

tries [3]. In other words, regardless of the symmetry group, any symmetric tiles can be represented

by a simple rectangular fundamental domain, which can be embedded over a toroidal surface.

Thus, we can construct any wallpaper by symmetry operations that is constrained in fundamental

domain.

This property is not just practically useful for our application, it also provides the theoretical

support to use cubical fundamental domain for Delaunay Lofts. Because of this property, we can

obtain any 2D wallpaper symmetrical Voronoi decomposition that can be obtained using points as

Voronoi sites in any layer. Control curves can simply be obtained by interpolating Voronoi sites

(i.e. Delaunay vertices).

Another important property of wallpaper patterns, which we use, is that all semi-regular tilings

can be constructed using wallpaper symmetry operations. In a semi-regular tiling the vertices being

“the same” means that for every pair of vertices there is a symmetry operation. For instance, in
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semi-regular mesh 3.4.3.4.3 has the wallpaper symmetry p4g.

The only caveat in this approach in terms of the design is that the number of Voronoi sites in

every layer has to be the same. Using a rectangle as our regular domain also provides a solution

to that problem. Note that the regular rectangular domain in Figure 3.10 actually consists of two

hexagons, one full (blue), and a second one that is decomposed into four pentagons (two yellow

and two red). This means that if we create points in hexagonal symmetry, we need to multiply the

number of points by two. Also note that the symmetries always have periods of either two, three,

four or six. Using this information, we obtain the same number of points using their least common

multiples (LCM). For instance, if we want to connect symmetries with four or six, 12 points will

be sufficient. One will be created as three random points with four period. Another will be created

as one random point with period six in two hexagons. Some of the symmetry patterns in 2D were

also inspired from Kaplan’s work on Ornamental design using Voronoi diagram [67].

Figure 3.10: Rectangle can also be used as a fundamental domain for the five wallpaper symmetries
whose natural fundamental domain is a regular hexagon [3].
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Figure 3.11: The three patterns (left to right) show the Voronoi diagrams from the bottom, middle
and the top layer of interpolation. In the first row we show the 464 Delaunay Lofts and second row
shows the Delaunay Lofts obtained by interpolating 3.4.3.4.3 patterns.

3.5 Results of Delaunay Lofts

The construction algorithm allows for exploring and investigating a vast variety of shapes that

are possible now. The only constraint is to have the total number of points to be equal in the

two layers we intend to interpolate. To ensure repeatability of the Delaunay Lofts, we should

have geometric regularity in the tilings we interpolate. In the following sub-sections, we explore

different strategies for achieving the geometric regularities. Furthermore, for a few selective cases,

we also conducted preliminary finite element analysis (FEA) to better understand the potential

advantages of Delaunay Lofts over prisms.

3.5.1 Delaunay Lofts of Scutoids

Our approach when applied to the original scutoid discovered by Gomel-Gomez et al. (map-

ping Hexagon to Pentagon) [2] produces curved surfaces which is different from the common

description of scutoids with planar surfaces (Figure 3.2). In our approach, the interface between

any two shapes are naturally curved due to Voronoi-based interpolation ensuring that the tiling is

space-filling. The important this to note is that not more than 4 of these shapes can fit together to

create a repeatable block. We shall now explore shapes that are space-filling.
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(a)

(b)

(c)

(d)

(e)

Figure 3.12: This figure shows five more Delaunay Lofts got by applying wallpaper symmetry
patterns to the control curves in 3D. In each row, we show the transition of Voronoi from the
bottom layer, middle layer and the top layer followed by the corresponding tiling we get. We
specifically leave small gaps between the Delaunay Lofts to appreciate how nicely the shape fit
well with each other. Figure (a) shows a transition from Pentagon in the Top and bottom layer with
a Triangle in the middle. (b) shows Triangle on top and bottom with a Pentagonal Middle layer.
The Delaunay Lofts (c), (d) and (e) however go through a series of transitions within Triangle,
Quadrilateral and Pentagonal layers. This is the reason for the intricate shapes of these Lofts.
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Figure 3.13: 3D Prints of the three types of Delaunay lofts with quad layer in the middle. Notice
the bifurcation that happens mid way between the top and bottom planes. We have printed an
hollow version of pentagonal lofts to show the inner surface contour.

3.5.2 Delaunay Lofts with Quad Layer

Since any regular polygon is also a cyclic polygon, we start with regular polygon tilings as

they are good candidates to design Delaunay diagrams. We will then extend and generalize this

idea to Semi-regular and Regular tilings with Wallpaper patterns. We start our exploration with a

simple Hexagonal tiling, which is one of the three Euclidean tilings of the space (apart from square

and triangle). With the longer axis of the hexagon aligned vertically, we move alternate rows of

hexagon tiling in opposite directions. We displace the Hexagon by an amount equal to half the

horizontal distance between two subsequent cells in a row. Half way through the process, every

hexagon changes to a quadrilateral. Similar interpolation pattern was also suggested by Kaplan

[67] in his work on Voronoi Diagrams and ornamental design.

3.5.3 Delaunay Lofts with without the enforced Quad layer

Although we have enforced the importance of quad layer to generate Delaunay lofts with en-

sured topology shift, we can remove the constraint to explore symmetries based on interpolating

one of the 17 wallpaper groups. We start with p4 symmetries wherein we take a subdivide a unit

square into 4 equal square pieces and sample points with 4 rotational symmetry. By extending this

symmetry to the control curves in 3D space (achieved simply by mirroring the selected control

curves about the z direction), we can simply repeat the unit domain in 3D space to construct the
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tilings. Most of the Delaunay Lofts we get using these symmetry patterns have highly curved in-

terfacing between two adjacent tiles and may offer better interlocking capabilities when compared

with its prism counterparts. We can also extend the tilings to semi-regular tilings. Figure 3.12

shows a number of results with the interpolation between different patterns (apart from quad grid)

that we obtain from wallpaper symmetry.

3.5.4 Delaunay Lofts with Non-linear Curved Control lines

Extending our method to non-linear control curves, such as circular, cosine, or Hermitian, is

especially promising for creating more unusual free-form tilable shapes. We specifically experi-

mented with Hermitian interpolation (Figure 3.14) since it is possible to extend this to multiple

control layers and more control in derivatives. Note that we do not have to be careful to keep the

curves in the rectangular prism domain since the curves are conceptually drawn in 3-torus.

Figure 3.14: A space filling Delaunay Loft obtained by Hermitian curves.

3.6 FEA on individual Delaunay Lofts

We conducted a preliminary FEA on the 464 Delaunay Loft with the hypothesis that since the

central layer (z = 0.5 in parametric domain) is enforced to be a regular quadrilateral tiling, we will

observe some interesting effects at this layer when compression, tension and torsion are applied in-
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dividually to a single 464-Loft (Figure 3.15). This indeed turned out to be true. The analysis shows

that the stress levels are lower in the regions where the topology changes (vertex-split and edge-

collapse occurs). We suspect that these mechanical properties are likely as scutoids are proved to

stabilize the three-dimensional packing and minimize the tissue-energy based on biophysical argu-

ments as proposed by Gomel-Gomez et al [2]. A detailed and systematic investigation is needed

to confirm this hypothesis.

(a) Min: 3.2121e6  

Max: 1.5717e8
(c) Min: 7.6954e6 

Max: 1.0641e10

(d) Min: 1.5791e7

Max: 5.98e8 
(e) Min: 0.01738

Max: 10.995

(f) Min: 1.53e7

Max: 1.6443e10

(b) Min: 1.2 

Max: 14.99

Max*

Min*

* Range is adjusted for every FEA to make the stress distribution visible 

0.00

1.00 (cm)

* All the Min and Max values are in Pascal

Figure 3.15: Contour-Maps of Equivalent Stress (von-Mises) of two Delaunay Lofts (Pent-Quad-
Pent on top row, Hex-Quad-Hex on bottom row) are shown for three loading conditions, namely,
torsion (a, d), compression (b, e), and shear (c, f). In all cases, the stress distribution decreases
around the critical points where the topology changes. The torque and compression stress were 1
Nm and 1 Pa respectively. The Lofts were sheared by displacing the top layer by 0.1 mm with a
fixed bottom layer. All simulations were done using ANSYS 2019 R1.
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3.7 Topological Interlocking in DL

From the shape and packing of Delaunay Lofts, we notice a potential for Topological Interlock-

ing. This is mainly because some faces of Delaunay Lofts are curves that resembles the concavo-

convex contact surfaces of an Osteomorphic block (see Section 2.1.1). Thus, we seek to study the

extent of topological interlocking for different shapes of Delaunay Lofts. The hope is that this will

lead us to a generalized methodology for designing control curves whose shapes are ensured to be

topologically interlocking.

3.7.1 Evaluation Methodology

We create assemblies of individual shapes where the peripheral tiles are fixed. We displace the

central tile of the plane by 1e− 4 mm uniformly across all the simulations. Specifically the values

of stress and strain are observed for different assemblies. All the analysis were static structural and

was performed in ANSYS Workbench 2019 R1. The simulations were done using a PLA material

to base our understanding with the 3D prints. All contacts were made friction-less because we

wanted to see the effect purely due to Topological interlocking.

3.7.2 Interlocking in Hexagonal Delaunay Lofts

We created an 8x8 assembly of the Hexagonal Delaunay Lofts and performed the simulation

under the conditions mentioned in Section 3.7.1 (see figure 3.16). We expected this simulation to

converge to a solution where the displaced tile would distribute the stress around the contacting

tiles. However, to our surprise we found that the solution failed to converge. This means that there

are some sliding contacts in the solution and simply fixing the peripheral tiles does not ensure that

the tiles are topologically interlocking.

Subsequently, we tried running a smaller 3x3 version of the hexagonal assembly where there is

a lower possibility of sliding due to reduced number of blocks. We found that the stress propagates

to all blocks around, except for one (see figure 3.17). Notice this happens because, in the assembly

the block with zero stress induced is directly below the block that is displaced, thus not transferring
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Figure 3.16: This is the 8x8 assembly of hexagonal Delaunay loft that was used for simulation.
The yellow arrow in the middle tile highlights the direction of out of plane displacement given to
the individual face. This simulated failed to converged to a solution.

the force or stress across. This suggests that the existence of planar surfaces in the shape of the

repeating shape potentially causes lack of transfer for forces in one direction. So, if a planar face

is shared by two blocks in an assembly, the resistance will only be offered if the tile removed is

below the adjacent tile. In other words, the component of normal force from the block on the other

side of the planar face should be downwards to transfer the forces across. This shows that planar

faces transfer the forces only unidirectionally.

From section 2.3.2 we note that if we any two co-planar line segment, we will get a planar face.

In the case of hexagonal Delaunay Loft, the lines that belong to the same row are parallel and are

thus co-planar. We believe that two non-intersecting lines that create a bilinear surface (that are

curved in both directions) are important for creating interlocking shapes. In fact, it can be clearly

seen from the simulation results (see Figure 3.17) that the stress is easily transferred across. To

further validate this idea, we performed simulation for pentagonal Delaunay lofts.
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3.7.3 Interlocking in Pentagonal Delauany Lofts

The control lines that define a pentagonal Delaunay loft is non co-planar. So, based on our

observation made with the simulation of hexagonal Delaunay lofts, we can expect that the simu-

lation of displacing a tile in a pentagonal assembly would converge to a solution since the surface

contacts are curved and it would distributes the forces across the assembly. The simulation results

did show that the pentagonal lofts converged to a solution supporting our hypothesis that bi-linear

surfaces create allow for increased interlocking.

This intuition is also mathematically validated. Bilinear surfaces — the type of surface that

we obtain between two skewed line segments (see 2.3.2) — are known to have negative non-zero

Gaussian curvature . This means that at any point in the contact surface between the two blocks,

we will have two curvatures that are opposing each other. We believe a rigorous mathematical

analysis of the force applied by the contacting surfaces and its effect in the block may lead to a

general theory of creating Topologically interlocking space-filling shapes.

3.7.4 Grouping

By carefully choosing the lofts that we want to group, we can combine more than one tiles

which can together fill space. We found that this has the potential to augment interlocking capabil-

ities of the individual lofts. We considered the hexagonal Delaunay loft and combined two adjacent

shapes together. FEA shows that the lack of stress propagation in one direction of the assembly in

the 3x3 simualtion (figure 3.17) here is overcome by the stress induced by the adjacent hexagonal

loft joint together. See figure 3.19 for the result of the FEA simulation. Note that the simulation

converges and the stress propagates all the way to the boundary.

3.8 Summary of Delaunay Lofts

3.8.1 Geometric Properties & Tilings

Broadly speaking, there are two main geometric requirements that was needed from the 3D

shapes that we intended to create. First, we wanted to be able to compose water-tight shapes.

Second, we hoped for the pattern to be composed of ideally a single (or at least a finite set of)
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Figure 3.17: 8x8 assembly Hex-Quad-Hex assembly does not converge because it is not completely
topologically interlocking in both dimensions. Here you can see that the 3x3 assembly when
subjected to a normal displacement outside the plane of the assembly, fails to transfer the load
across the adjacent shape in the front. It is because the nature of the contacting surface is planar
and the front shape is completely below the displaced shape. Note that the boundary surfaces are
always fixed.

Figure 3.18: A pentagonal assembly is subjected to a lateral displacement out of the plane of
assembly. The figure shows the contour plot of the strain across the assembly. The boundary
surfaces are fixed. We can see the the shape distributes the load in both directions leading to a
stable interlocking.
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Figure 3.19: This the FEA result of an 8x8 assembly of Hex-Quad-Hex delaunay lofts. The shapes,
however are not individual, but grouped pair wise. The simulation converges and we see that the
load is distributed throughout the assembly in both directions. Note that the boundary surface are
always fixed.
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repeatable shapes. Here, our approach offered a unique advantage. The first condition is naturally

satisfied by the strategy to use Voronoi partitioning (since any such partitioning is guaranteed to

void-free for any given dimension). Therefore, the watertight condition is satisfied regardless of

how the Voronoi sites are distributed on each of the extremal surfaces (as long as we can establish

a on-to-one correspondences between the sites on each surface). We then addressed the second

condition of repeatability through our method of construction and design based on wallpaper sym-

metries. Combining these two components resulted in a simple yet powerful methodology.

Ours is probably the first to apply geometric reasoning to describe a bio-physical phenomenon

in order to apply it to 2.5D tiling design in a systematic manner. Our approach provides a possible

explanation for the occurrence of scutoids in skin cells [2] and demonstrates the construction of

many other shapes similar to scutoids.

Having said this, we would also like to point out that it is still to be completely tested that the

method that we propose here for constructing Delaunay Lofts can indeed also be used to model

the original scutoids. The key gap that needs to be addressed for this is to compare the actual

geometry (and not the idealized model shown in Figure 3.2) that is experimentally obtained with

one constructed using our approach with the same initial conditions as the bio-physical case.

3.8.2 Geometric Design Space

The design space of shapes that can be composed using our approach is unusually rich. This

is due to three facts. First, the construction algorithm does not assume any specific shape of the

control curves — as long as they intersect each slicing plane at a unique point thus maintaining the

number of sites per slice. This alone provides many possibilities in terms of obtaining seemingly

complex geometries. Second, the 17 wallpaper symmetries result in several possibilities in terms

of the tiling configurations that may be possible with our approach. Finally, the distance functions

utilized in all our examples are only L2-norms. Generalizing to Lp-norms will lead to even more

unusual shapes that we have currently demonstrated. Having said this, we have currently exposed

only a limited set of repeatable tiles as examples in the paper. We are currently developing a

more systematic geometric kernel and interactive software to explore the complete design space of
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Delaunay Lofts.

3.9 Limitations of the 2.5D algorithm

Although the input for creating Delaunay Lofts are line segments, the shapes are merely com-

puted by 2D Voronoi partitioning with points in every layer. There are some shortcomings of this

approach that restricts us to explore Voronoi decomposition with free-form Voronoi sites. The pri-

mary disadvantage of this approach is that the number of Voronoi sites in every layer needs to be

same. In other words, all the line segments should start from the bottom plane and end at the top

plane. Line segments that are not touching the top and bottom plane will be considered as invalid

inputs to the algorithm. Moreover, the line segments that define the Voronoi partitioning cannot

be intersecting. That is, the assumptions posed on the line segments that we give as input to the

Voronoi algorithm does not allow for tree-like or branch-like voronoi sites. In the next chapter, we

will see how we can overcome this limitation using 3D Voronoi based algorithm. This freedom

allows for designing shapes that are more topologically interlocking.

3.10 Conclusion and Future Work

We presented an approach to construct and eventually design a new class of tilings in 3D

space. We have developed an algorithm that takes as input two planes containing Voronoi tessella-

tions based on some distribution of points and interpolates the tilings between these given planes.

The volumetric structures obtained through this interpolation result in the occurrence of Delaunay

Lofts. There are several variations of how this interpolation can lead to a variety of such Lofts.

The future work is to investigate the power of shapes that are created by our bio-inspired design

approach in terms of withstanding stress, torsion or fatigue. If these approaches can create powerful

shapes in terms of withstanding stress , torsion and fatigue, this approach could be arguably applied

to come up with completely new designs and structures that could have greater strength. An

advantage of our approach is that it can easily be used in combinatorial optimization. Therefore,

this approach could take the industry to the next level of material optimization and unveil endless

possibilities of geometric designs with Delaunay Lofts.
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Figure 3.20: Table summarizing the properties of Delaunay Lofts

In the context of topological interlocking, Delaunay Lofts fails to show a reliable interlocking

capability. While operations like ‘grouping’ shows some potential for for better interlocking, the

simulations carried out for shapes generated individually does not guarantee interlocking. In the

next chapter we propose an algorithm using 3D Voronoi decomposition that overcomes the limita-

tions of layer-by-layer algorithm proposed in this Delaunay lofts that allows for free-form explo-

ration of shapes with higher dimensional voronoi sites. We use this freedom to create Voronoi sites

based on the canonical topologically interlocking Abeille vault to design space-filling shapes that

are guarenteed to be topologically interlocking.
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4. GENERALIZED ABEILLE TILES
∗

In the previous chapter, we saw how we can use a number of line segments between two

parallel plane as controlling entities to create an shapes that are space-filling using 2D Voronoi

partitioning layer-by-layer. Specifically, we showed the vast design space of repeating shapes can

be generated using Wallpaper symmetry groups to points in the top and bottom planes. Finally, we

highlighted the limitations of 2.5D construction algorithm to create free-form shapes and also the

lack of significant topological interlocking for the shapes generated.

In this work, we extend the exploration beyond simply considering line segments as control

curves by allowing allow control curves to be have branches and surfaces. To achieve this, we

use the concept of 3D Voronoi decomposition with higher dimensional Voronoi sites. We then

tune the control curves based on the symmetry of fabric weaves. In this chapter we will first see

the 3D Voronoi algorithm that we use to construct the shapes from the control curves. Then, we

will see how to design control curves inspiring from the current topologically interlocking shapes

leveraging on our algorithm.

Figure 4.1: 3D Voronoi boolean Algorithm

∗Part of the data reported in this chapter is reprinted with permission from “Generalized Abeille Tiles: Topo-
logically Interlocked Space-Filling Shapes Generated Based on Fabric Symmetries” by Akleman, Ergun, et al, 2020.
Computers & Graphics, 89, Page range 156-166 including figures 4.2, 4.3, 4.4, 4.6 and 4.7
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(a) A tetrahedron for ob-
taining flat Abeille vault.

(b) Flat Abeille vault. (c) Two flat Abeille
vaults.

(d) Assembly of flat
Abeille vaults.

(e) Two Abeille vaults
with circular edges.

(f) Space filling assembly
of 4.2e.

(g) Two Abeille type dis-
crete elements.

(h) Assembly of 4.2g.

Figure 4.2: (Hand-Drawn Illustrations) Abeille tiles are mirror symmetric structures obtained by
placing two identical shapes placed on top of each other with a relative rotation of 900. Each
elemental shape is generated by truncating two opposite edges of a tetrahedron. Notice that yellow
and blue tiles have identical shapes. We added 4.2h to visually demonstrate that these assemblies
can be achieved using symmetry operations of plain woven fabrics as shown in 4.2g.

4.1 3D Boolean Voronoi Algorithm

Using 3D Voronoi decomposition is a simple and intuitive way to extend our Delaunay Lofts

algorithm to higher dimensional Voronoi sites. In Delaunay Lofts algorithm, we essentially com-

bined all 2D convex polygons obtained after performing Voronoi decomposition in every layer. 3D

Voronoi decomposition with points as Voronoi sites would give us convex polyhedras. Now, the

algorithm basically is to take the union of convex polyhedra resulted from 3D Voronoi decompo-

sition of 3D points. We also need to consider only a fundamental domain.

Taking union of all Voronoi regions belonging to the same guide shape (Voronoi site) to obtain

desired space filling tile can be implemented as a set of face removal operations. Specifically, the

shared faces of two consecutive convex polyhedra coming from two consecutive sample points
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on the curve are deleted. Note that these faces will always have the same vertex positions with

opposing order. If underlying mesh data structure provides consistent information, this operation

is guaranteed to provide a 2-manifold mesh. Even if the underlying data structure does not pro-

vide consistent information, the operation creates a disconnected set of polygons that can still be

fabricated through additive manufacturing.

4.2 Redesigning Control Curves

We designed several specific types of tiles by choosing Voronoi sites from basic property of

Abeille tiles: two mirrored and 900 rotated shapes that are placed top of each other as shown in

Figure 4.2g. These Voronoi sites can simply be a shape that connects two perpendicular lines as

shown in Figure 4.3.

(a) Two mirrored and 900 rotated triangles. (b) Two mirrored and 900 rotated T shapes.

Figure 4.3: (Hand-Drawn Illustrations) Front, side and 3D perspective view of the basic Voronoi
sites we have initially used to obtain space filling Abeille tiles.

The Voronoi site shown in Figure 4.3a consists of two triangles that can be converted into a GAT

by using layer-by-layer 2D Voronoi decomposition. When we use 3D Voronoi decomposition, it is

possible to simplify Voronoi sites into a T-shaped configuration as shown in Figure 4.3b. Section

4.1 discuss 3D Voronoi decomposition to create the GATs. These basic structures are assembled

using symmetry operations of two-way two-fold woven structures.
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(a) Two mirrored and 900 rotated concave
hexagons.

(b) Two mirrored and 900 rotated V shapes.

Figure 4.4: (Hand-Drawn Illustrations) Front, side and 3D perspective view of V shaped Voronoi
sites we have used.

4.3 Structural Evaluation

The mechanics and geometry of Abeille-type structures are closely connected as shown earlier

by Brocato et al. [49, 41, 45]. These mechanical investigations are primarily focused on the inter-

action between the faces in contact between two adjacent pieces — what Brocato et al. refer to

as Abeille-bond. Therefore, the overarching topology of the structure/assembly composed of the

Abeille-shaped “bricks” has a major effect on the mechanical behavior of the structure. Our aim

was to observe how different weave symmetries induce different mechanical behavior compared

to the flat Abeille vault. For this, we conducted several simulations of GAT assemblies using finite

element analysis (FEA) and compared them with Abeille’s original flat vault as well as a solid

object as our benchmark.

4.3.1 Evaluation Rationale

Consider a solid continuous rectangular block of some finite thickness fixed to an inertial frame

on the boundaries. Now, let us suppose that the center of this block is displaced by some load

along the thickness of the block. In the context of topological interlocking, the stress distribution

induced by such a displacement on this block represents our absolute benchmark. Therefore, in our

evaluation, we seek to investigate the inter-locking properties of GAT assemblies by comparing the

magnitude and concentration of stresses induced by a displacement of one tiles (say the central tile
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without the loss of generality). We further note that high stress regions will occur at the interacting

surfaces between two neighboring tiles. With this in view, we make three main observations: (1)

higher magnitude of interface stress will imply better inter-locking; (2) the regularity of distribution

and concentration of stress will imply better stability against perturbations in loading conditions.

Block Equivalent: In order to compare with our benchmark scenario, our first step was to con-

duct FEA simulations on a solid block of dimensions identical to the assemblies (box equivalent).

The mechanical properties of this box equivalent would serve as a reference for us to compare the

degree of tightness of inter-connectivity in between the unit GATs.

Flat Abeille vault: We further wanted to evaluate Abeille’s original vault design. Abeille’s

original flat tiles are parametric structures which can be arranged together to form an assembly

(Figure 4.2d). This assembly, though not space filling, can be held together simply by fixing the

tiles in the perimeter. Khandelwal et al. [88] showed that the force–displacement response for

topologically interlocked structures, specifically based on Abeille’s flat vaults, exhibited an ideal

softening response even though the individual blocks (tiles) were made out of brittle material. We

study the mechanical response of these tiles separately and also compare it with the results we

obtain for GATs.

Generalized Abeille Tiling: The shape of a unit GAT depends on two key factors. The first

is the construction methodology (layer-wise 2D or 3D Voronoi decomposition). The second is

the shape of the Voronoi sites. While the construction methodology results in minor differences

between the shapes (in terms of continuity and smoothness of the contact surfaces), it is the config-

uration of the Voronoi sites that fundamentally affects the shape of each unit tile and consequently

the interactions between those unit tiles in a given assembly of tiles. Furthermore, notice that

the configuration of the Voronoi sites is based on the symmetries of the fabric weaving patterns.

Therefore, in order to explore the relationship between the weave symmetries and the correspond-

ing GATs, we considered two commonly known plain and twill weaves and analyzed their response

to basic mechanical loading conditions. We specifically investigated the following cases:

1. PA2D: Plain-Abeille tiles generated with T-shaped Voronoi sites.
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Figure 4.5: Resulting shapes obtained for three specific cases. There are two variables to choose
from. One, the choice of weave pattern. Two, the choice of control curve — V-shape or T-shape.

2. TW2D: Twill-Abeille tiles generated with T-shaped Voronoi sites.

3. PA3D: Plain-Abeille tiles generated using with V-shaped Voronoi sites.

4.3.2 Evaluation Methodology

We assembled a 7 × 7 grid of the three GAT cases without any gaps between the parts. The

contacts between the tiles are assumed to have zero friction. A displacement of 2mm was assumed

to act vertically upwards out of the plane of the assembly. The border tiles in the assemblies were

assigned as fixed supports. All possible contact regions between were made friction-less. This

ensures that the stress induced in the assembly is solely due to the geometry of the tile itself. Mesh

quality was set to default (0.5). The von-mises stress [89] and the total deformation color plots

are then computed for each case (Figure 4.6). We conducted a static structural analysis for all

simulations using the ANSYS Workbench 2019 R1.

Assumptions: The volume of each of the unit shapes is assumed (and modeled) to be equal.

This, allows to make a fair comparison of the behaviour of these shapes when subjected to loading.

Appropriate end faces were assumed as fixed support for every simulations and all the forces and

moments were applied on the faces directly. All the simulations are done by assuming appropriate

faces of central tile displaced by a constant distance of 2mm. All materials were assumed to be

Polylactic acid (PLA) (density = 1250 kg/m3, Young’s modulus E = 3.45× 103MPa, Poisson’s
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Ratio ν = 0.39).

4.3.3 Results and Observations

4.3.3.1 GATs vs Box equivalent

Since the block essentially represents a continuous connected version of the assembly it would

offer the highest resistance to external disturbances. This can be be seen from the maximum value

of average stress (20.35 Pa). We find that the average stress induced in the 3 cases PA2D, TW2D,

and PA3D is of the same order of the Block equivalent.

The block has three regions of displacement: (1) constant region at the center, (2) a linearly

decreasing region from the center to periphery, and (3) fixed periphery (Figure 4.6). Interestingly,

the TW2D pattern exhibits similar displacement profile. On the other hand, the PA2D and PA3D

cases exhibit a decreasing continuity in the displacement profile. PA3D specifically shows a highly

local displacement profile suggesting a higher interlocking ability again owing to the V-shaped

Voronoi site. Finally, we note that the average displacement for the GAT assemblies are all lesser

(albeit marginally) than the solid block. This, again, indicates good inter-locking ability.

4.3.3.2 GATs vs Flat Abeille Vault

The values of stresses found in the flat Abeille vault, however, are orders of magnitude lesser

than any of the GATs tested (Table 4.1). This clearly shows that the Abeille tiling may not of-

fer high resistance to external disturbances compared to GATs. The implication is that GATs are

tightly topologically interlocked when compared to flat Abeille vaults. The second crucial obser-

vation we made was that lack of symmetry in stress distributions for Abeille’s flat vaults despite the

fact that the assembly follows plain woven weave symmetry aking to some of our own assemblies.

To investigate this further, we performed additional tests wherein we displaced different combi-

nations of faces on the central element of the tiling. The resulting stress distributions still do not

exhibit any observable symmetry or even consistency with respect to the other loading variations.

This strongly indicates the lack of structural stability meaning that small perturbations in load can

lead to large variations in how stresses are distributed to neighboring elements. We believe that the
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Block PA2D TW2D PA3D Abeille
Stress (MPa)

Min. 3.11e-11 1.15e-6 7.28e-1 9.45e-10 1.81e-14
Avg. 20.35 7.78 9.97 7.87 2.75e-9
Max. 94.18 232.2 404.82 153.02 2.86e-7

Displacement (m)
Min. 0.00 0.00 0.00 0.00 0.00
Avg. 4.69e-4 3.46e-4 3.71e-4 3.15e-4 3.51e-4
Max. 2e-3 2e-3 2e-3 2e-3 2e-3

Table 4.1: Minimum, maximum and average stresses and displacements for tile assemblies when
the center tile is subjected to a displacement of 2mm.

primary reason for this is the planar interface between two Abeille elements as opposed to curved

convex-concave interfaces in GATs. This geometric property of GATs allows for a smoother prop-

agation of contact stresses between neighboring elements resulting in a topologically consistent

stress distribution.

4.3.3.3 Stress distribution patterns in GATs

Each of the three GAT cases exhibit distinct stress distribution patterns. Our goal is to compare

these with the solid cuboidal block that exhibits a radially smooth variation of stress with concen-

tration near the boundary which is fixed. In case of PA2D, we observe that the stress distribution

is separated in two mutually perpendicular directions corresponding to the two axes of the bi-axial

plain weaves. What is interesting is that the stresses on the top and bottom layers alternates be-

tween tiles aligned along the same direction, This is because a majority of stress transfer between

two orthogonal tiles primarily takes place in the neck region of the tiles. For TW2D, we notice that

the stress on the top and bottom layers is more uniformly distributed. However, this too alternates

across orthogonal tiles. The stress distribution for PA3D is the most sparse distribution shaped as

two rings induced on either side of the V-shape. We also observe an outer octagonal ring. This

is likely due to the inter-tile interactions between the shapes induced by the V-shaped Voronoi

sites. Unlike GATs, the flat Abeille vault does not have any distribution pattern or symmetry as

previously noted.
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Figure 4.6: (Simulation) This shows the stress distribution on a 7x7 assembly of various generated
shapes. This can all be compared with the single block equivalent of these assemblies. The top
and side view are shown such that the forced displacement can be seen. A displacement of 2mm
was forced on the center tile. All stress values are in MPa.
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Figure 4.7: (Simulation) This shows the stress distribution on a 7x7 assembly of Abeille tiles with
different amounts of faces with forced displacement. In the first case the top face and the two
larger side faces were forced with a displacement of 2mm. The third case shows when the top face
and the two smaller side faces have a forced displacement. All stress values are in Pa. This means
there is very little force needed to get a displacement of 2mm.
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Figure 4.8: Comparison of Generalized Abeille Tiles with Delaunay Lofts

4.3.3.4 Comparison across GATs

We observe a dissimilar behavior between PA2D and PA3D assemblies in terms of the maxi-

mum stresses (232.2 MPa and 153.02 MPa respectively). However, the average stresses are similar

(7.78 MPa and 7.87 MPa) for these two cases when compared to TW2D (9.97 MPa). The most

noticable observation is that the TW2D tiles experience the highest extremal stresses (7.28e-1 MPa

and 404.82 MPa) in comparison to the other two cases. This is likely because of the high curvature

neck regions in the TW2D tiles.

4.4 Summary of Generalized Abeille Tiles

The primary limitation of the shapes that we obtained from Delaunay Lofts is that it failed

to show considerable topological interlocking. In this chapter, we showed how we can overcome

the limitation by leveraging a visual correspondence between the Abeille vault and the symme-

try of fabric weaves. Then, inspired from the symmetry of fabric weaves, we developed control

curves that generate shapes that are ensured to be topologically interlocking. We used a Boolean

of 3D Voronoi partitions to obtain the corresponding Generalized Abeille Tile. We validated the

interlocking capabilities of the GATs by doing a structural evaluation using FEA. We also showed

that Generalized Abeille Tiles have a distinct stress distribution pattern compared to an inconsis-

tent stress distribution with respect to loading variations in Abeille vault. The magnitude higher
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stress magnitude induced in the assembly were also ordered of magnitude higher in GATs com-

pared to Abeille vault suggesting the better interlocking capabilities of GATs. We believe that the

emergence of the interesting stress patterns has a strong relation with the choice of the controlling

Voronoi sites.

4.5 Comparision with Delaunay Lofts

To obtain these shapes, the Voronoi sites typically need to be made of branches and surfaces as

opposed to line segments in Delaunay Lofts. This is made possible using 3D Voronoi partitioning

algorithm and ‘grouping’ together the Polyhedrons (or convex volumes) that belong to a control

curve. Note that this is similar to the grouping experiment that we did in section 3.7.4 except

that we did not have rationale for choosing the entities that we are going to group together in

section 3.7.4. The fundamental difference that makes this approach better is that we group the

entities based on the control curve that every belongs to and not intuitively. Figure 4.8 shows the

comparison of GATs with Delaunay Lofts across different factors.
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5. CONCLUSIONS

This chapter is organized as follows. In section 5.1, we summarize the contributions of this

research. Then we highlight the limitations (section 5.2), future directions (section 5.3) and broad

implication (section 5.4) of this work and finally end with concluding remarks. (section 5.5)

5.1 Summary of Contributions

5.1.1 Methodology for Creating Void-Free Shapes

We are the first to take the notion of Scutoids that occurs in a particular situation in nature

and converted it into an elegant design methodology to create shapes that we didn’t even know

existed before. We present a simple and intuitive approach for designing space filling tiles in

3D space. ‘Scutoid’ shapes were recently reported to occur in epithelial cells due to topological

changes between the extremal (apical and basal) surfaces of epithelia. Drawing from this discovery,

we develop the theoretical and computational foundations leading to a generalized procedure for

generating Delaunay Lofts — a new class of scutoid-like shapes. Given two extremal surfaces,

both with Delaunay diagrams, Delaunay Lofts are shapes that result from Voronoi tessellation of

all intermediate surfaces along the curves joining the vertices of Delaunay diagrams that defines

the extremal tessellations. We show that two algorithms for computing the Voronoi partitioning

with higher dimensional sites (lines instead of points) in 3D space. Thus, we show that the shapes

thus obtained by our methods are guaranteed to be watertight or void-free.

5.1.2 Methodology for Creating Repeating Shapes

Secondly, we proposed two concepts for create repeatable tiles — wallpaper symmetry groups

and the symmetry of fabric weaves.

5.1.2.1 Wallpaper symmetry groups

We apply the symmetry of Wallpaper groups on points to obtain a pattern of points in 2D. Using

Wallpaper symmetry groups allowed us to exhaustively characterize all possible 2D patterns. We
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modify the position of points to obtain two sets of points in in two layers. The line segments joining

the corresponding points between the two plane will serve as the input for obtaining the voronoi

decomposition. We show that the resulting shapes repeat and fill the 3D space individually (regular

tiles) or sometimes combined with adjacent shapes in the decomposition (semi-regular tiles).

5.1.2.2 Fabric weave symmetry

Drawing a visual analogy between symmetries of plain woven fabrics and assembly of trun-

cated tetrahedra (and their variants) that are used in topological interlocking, we leverage this

correspondence to develop a methodology based on symmetry of fabric weave to design control

curves whose Voronoi decomposition are ensured to create topologically interlocking shapes.

5.1.3 Better Topologically Interlocking shapes

Thirdly, we ensured that our method does create stronger topologically interlocking shapes by

performing a comparative structural evaluation of three specific tiles generated by plain and twill

woven fabric symmetries. The finite element analyses (FEA) of the unit tiles and their assemblies

under different loading conditions reveal that weaving allows distribution of planar and normal

loads across tiles through the contact surfaces, generated with our methodology. We describe

the qualitative relationship between the symmetries induced by the weave patterns to the stress

distribution in the tiled assemblies. Through FEA, we also show that flat Abeille does not offer

high resistance to external disturbances.

5.2 Limitations

5.2.1 Generalized Abeille Tiles

There are several limitations of our design methodology for generalzied Abeille tiles. First, in

the current work, we focus on only symmetries of 2-way 2-fold fabrics to simplify our explorations.

Even simply considering the symmetries of 3-way 2-fold fabrics can significantly extend the de-

sign space [90]. Second, although the resulting tiles will still be space-filling (owing to Voronoi

partitioning), the connections in z-direction are not really interesting: they are flat. For true 3D

space filling tiles, the symmetries must go beyond 2.5D symmetries that are extended from 2D
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wall paper symmetries such as symmetries of 2-fold fabrics. Third, we considered decomposition

of only 2.5D flat shell structures. In order to construct curved shell structures, one may need more

than one unique shape for a tile. Generating GATs for curved boundaries needs to be explored

in detail. Finally, and most importantly, our work currently allows only for the forward design of

space-filling tiles. However, what would be more interesting for structural applications is to be

able to specify desired physical characteristics to automatically configure the weave-symmetries

and Voronoi sites to create GATs. While we initiated structural characterization in this work, we

believe that a much deeper analysis of geometry-to-structure relationship needs to be developed

for inverse design of GATs.

5.2.2 Geometric Modeling Methodology

The smoothness of resulting shapes in both of our algorithms are sensitive to disretization of

control curves. In Delaunay Lofts, we were essentially discretizing the region in between the two

parallel planes to obtain a number of layer that would serve as a reference for finding and stitching

our Voronoi polygons. In the algorithm presented in Generalized Abeille Tiles, the approximation

of the shape is directly dependent on the sampling along the control curve. Note that increasing

the sampling rate always comes at the cost of increasing time complexity given that we are using

3D Voronoi for computation.

5.2.3 Physical Evaluation

In physical evaluations of the generalized Abeille tiles we have only considered 3 specific

shapes and compared the results with a monolithic block and assemblies made of Abeille vault.

While this helps us highlight the potential of our method to create better interlocking shapes, an

even more rigorous analysis is necessary to characterize the mechanical behavior of entire design

space. We believe that there are interesting properties that can be discovered based on the stress

patterns and the corresponding mechanical properties. Also, the individual blocks when considered

as rigid bodies would help in understanding the nature of force transfer in a simpler and faster

way. Effect of properties like tolerances and friction in the surface of the block also need to
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be included in the simulation setting to make the simulation more real-world and practical. A

simple alternative to simulation would be to do the physical testing of assemblies of interlocking

shapes. The shortcomings of FEA can easily be overcome by performing physical testing since it

automatically incurs the real world constraints.

Also, in Section 3.7 and 4.3 we made predictions on degree of interlocking of different types

of repeating shapes. Currently, our strategy for characterizing the degree of interlocking is based

on the magnitude of maximum, average and minimum stress and strain in the assembly. In the

future we need a more robust methodology to characterize the degree of topological interlocking

more precisely. Finally, our comparison with other topologically interlocking tiles in this work

has been limited to just Abeille’s fault vault, however, this comparison needs to be extended other

assemblies like Osteomorphic blocks in the future.

5.3 Future Directions

5.3.1 In-fills for 3D Printing

A recent research [91], proposed a geometric modeling methodology for generating a new

class of infills for additive manufacturing. They showed that an infill pattern can simply be instan-

tiated using a 2D point distribution according to a chosen wallpaper symmetry and performing 2D

Voronoi partitioning. In fact, some of the common extruded infills (hexagonal, square, and dia-

mond) are essentially special cases of wallpaper-infills generated by specific point arrangements

in the plane. They also conducted a detailed experimental evaluation of the of these four cases to

study their mechanical behavior under tensile loading and showed that the designed infills provide

a wide range of elongation that depends on the degree-of-freedom associated with the space-filling

polygon generated by a given wallpaper symmetry. We believe that there is a rich design space of

new in-fills that we can obtain by changing the orientation, point distribution and varying angles

of the controlling line segments by using 2.5D Voronoi algorithm described in Chapter 3.
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5.3.2 Generalization with Knots and Links

2-fold fabric structures are much richer than just 2-way genus-1 fabrics. Their real power can

be best understood with extended graph rotation systems (EGRS) that was introduced in early

2010’s [92, 93]. EGRS allows us to use orientable 2-manifold meshes as guide shapes to represent

knots and links. The guide shapes help us to classify the fabrics. For instance, the guide shapes

for 2-fold 2-way fabrics are regular grids embedded on genus-1 surfaces. For 2-fold 3-way fabrics,

we need regular hexagonal or regular triangular grid embedded on genus-1 surfaces [92]. This

is useful since some of the Leonardo grid designs are based on also 3-way woven patterns [94].

Using regular maps [95, 96], it is also possible to obtain hyperbolic tiling. Using the regular maps

that correspond to hyperbolic tiles as guide shapes, 2-fold k-way genus-n fabrics can be obtained.

From these fabrics, one can also obtain space filling shapes. For practical applications, there is a

need for a significant amount theoretical work.

5.3.3 Metamaterials designs

An interesting application using the space decomposition algorithm is the designing of Meta-

materials designs — materials that have properties that are not found in naturallu occurring ma-

terials. Cell, frame and lattice-based structures are extensively used to design materials with con-

trollable mechanical properties. Our algorithm of space decomposition provides divides a given

domain into regions. The boundary shared by these regions are defined by the position of the

Voronoi sites that we provide as input. In 3D, these boundaries are typically surfaces that are

formed as a result of equidistant relation between the Voronoi sites. We created algorithm to gen-

erate material by thickening these boundary surfaces. The algorithm, builds on the layer-by-layer

2.5D Voronoi algorithm described in Section 3.3. For every convex Voronoi polygon in every

layer, we offset the polygon inside that eventually creates a shell of the surface. Finally, we bound

the top and bottom shell regions to obtain a water-tight manifold mesh (see Figure 5.1)

The advantage of using the method of Voronoi decomposition to generate the material is that

we have a direct control over Voronoi sites. This allows us to tune and spatially vary parameters
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Figure 5.1: Pentagonal and Hexagonal metameterial generated using our algorithm. The line seg-
ments in the middle of every hole (in place of the shape) are the corresponding Voronoi sites.

of the line segments, to easily obtain materials with spacially varying properties. We created an

example of with the hexagonal Delaunay lofts by varying the relative angle in every row of the

loft assembly. In Figure 5.2 we show a linear interpolation of the line angle with the plane of

the assembly. However, such parameters can also be varied based on any desired function to

create functionally graded materials. The challenge however, is to explore and characterize the

mechanical behavior of metamaterial of the pure lofts, so that we can interpolate between them.

5.4 Implications

5.4.1 Geometric Interlocking

In a similar work, we use the 3D Voronoi algorithm with the weave based control curves that

followed the wefts and warps. These tiles show some potential for geometric interlocking. Cer-

tain configurations structures can even create loops that are self interlocking. The advantage of

self-interlocking or geometrical interlocking of shapes is that there is no necessity for external or

peripheral loads to support the interlocking of tiles together. For these cases, we at least one flex-

ible piece to lock the pieces together [97]. In the future, an interesting problem is to identify the

number and position of these flexible pieces that is required to assemble the shapes together. Also,

these flexible elements can be places inside the assembly at selected patterns at our will to allow

60



Figure 5.2: Material generated for hexagonal Delaunay lofts with varying angles across the rows.
Note that the nature of the lofts changes from being close to a prism in the left to being the canonical
hexagonal Delaunay lofts in the right.

for different mechanical properties of the assembly.

5.4.2 Chirality

Chirality is a key aspect of further investigation in this research. A recent work discovered how

to produce handedness in auxetic unit cells that shear as they expand by changing the symmetries

and alignments of repeating unit cells [98]. A similar work on designing geometrically interlock-

ing shapes has explored the aspect of chirality in their shapes [97] more elaborately. Using the

symmetry and alignment rules we can potentially expand our woven tiles to develop a new class

of rigid and compliant structures [99, 100, 101]. Recent works on knot periodicity in reticular

chemistry [102] and tri-axial weaves (also known as mad weaves) [103] are fundamental examples

of how the geometry and physics of chirality are connected. Thus, identifying any fundamental

multi-physical behavior of the assemblies shown in this work and beyond would allow us to con-

struct assemblies with several practical applications such as mechanically augmented structures in

mechanical, architectural, aerospace [104, 105], and materials [106] engineering. The main gap
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that must first be filled, however, is a complete characterization of chirality of woven tiles including

and beyond plain, twill, and satin varieties.

5.4.3 Reciprocity

Pugnale and Sassone [107] define the principle of reciprocity to be based on “load-bearing

elements which, supporting one another along their spans and never at the extremities, compose a

spatial configuration with no clear structural hierarchy”. The idea of reciprocal frames dates back

to ancient Indian, Chinese, and Japanese structures in the east as well as in the works of prominent

designers of the west including Leonardo’s. These have recently been studied and generalized in

several works [108, 107, 6] from a structural standpoint. One of the most important observations

here is that reciprocal frames are essentially characterized by the topological connectivity of the

constitutive load-bearing beams — a trait also present in our own framework for generating GATs.

One of the main outcomes of our structural analysis is the correspondence between fabric weave

symmetries and the distribution of stresses on GAT assemblies. Specifically, our analyses indicate

that the mechanical properties of a given fabric woven using a specific strand pattern can provide

fundamental insights regarding GAT assemblies whose shape is generated using the same weave

pattern. We believe that there is an even deeper connection across weave patterns, GATs, and

reciprocal frames that may lead to a systematic framework for structural analyses of such systems.

5.4.4 Inverse Design

The unique stress patterns that emerge in our FEA results indicate that the weave parameters

and the choice of line segment parameters (angle, length, etc.) affects the mechanical response

directly. This raises the inverse question that if we are given with the mechanical characteristics

whether we can find the parameters that define the geometry. Although our overarching goal

throughout this effort was to see how geometry affects the mechanical behavior, our ultimate goal

is to have a system where a designer come and give some kinematic or force constraints, and

we generate the geometry automatically.
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5.5 Concluding Remarks

An important problem with the current CAD software packages is representing and modigying

complex geometries. The existing methods like B-rep and CSG forces the user to imagine how the

geometry of the design should look explicitly, before starting to designing these shapes. This does

not allow for intuitive, hand-drawn and free-form implicit control of the shapes. To this effect, our

research provides a framework to translate the designer’s intent (in the form of control curves or

surfaces) to geometry of the resulting shape. This allows intuitive exploration of the shapes that

are useful for early-stage design ideation.

Design optimization also requires that geometry remains topologically valid as parameters are

perturbed while preserving the designer’s intent [109]. So, simply by placing hard and soft con-

straints on the controlling entities that are representative of the shape, we explore a design space

of shapes to optimize and best satisfy the user’s objective. In this way, our techniques also hold a

great potential to reduce the time and space complexity of optimization algorithms. To this end,

we believe using our simpler shape representation techniques for a complex range of geometric

surfaces will help developing more intuitive, creative and optimized designs.
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