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ABSTRACT 

 

A nonlinear three-dimensional finite element numerical code, called RISER3D, has been 

developed to perform the static, eigenvalue, and dynamic analyses for slender structures such as 

beams and marine risers. Distinction with the traditional cubic Hermite finite element method, 

such as CABLE3D program developed by Prof. J. Zhang and his former graduate students which 

employed cubic Hermite shape functions, RISER3D adopts quintic Hermite shape functions, six 

fifth-order polynomials, to interpolate the primary variables including the nodal displacement, 

slope and curvature. Hence, the new feature of RISER3D program is that it can guarantee the 

continuity of structure curvatures at the discretized nodes, which can help to make an improvement 

on the accuracy of numerical simulations. By far, no researcher has ever applied this new 

numerical scheme to perform finite element analysis for marine risers. Therefore, this dissertation 

has, for the first time, delved into the new finite element scheme and its application to marine riser 

problems. 

A simplified RISER3D, omitting the axial tension term for riser simulations, can be used 

to study the static and dynamic problems of Euler-Bernoulli beams which have analytical 

solutions. Therefore, solving Euler-Bernoulli beam problems, with simplified RISER3D, can not 

only verify the accuracy and validity of RISER3D, but can also study the effectiveness of the new 

program by comparing the results to those of by CALBE3D. 

Although RISER3D has larger size of element matrices, it shows great advantages over the 

traditional cubic Hermite finite element method. RISER3D simulation with coarse mesh can 

produce equivalent accuracy to CABLE3D simulation with fine mesh, which means that it has a 
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faster convergence speed and higher computational effectiveness, which can enhance the 

confidence for decision makers for the design and analysis of slender structures. 

In this dissertation, the validity, accuracy and robustness of RISER3D have been firstly 

benchmarked with analytical solutions of Euler Bernoulli beam problems. Moreover, they are 

double checked by making comparisons of the numerical simulation results among RISER3D, 

Orcaflex, and CALBE3D for marine riser problems. In summary, since RISER3D shows several 

better merits to traditional cubic Hermite finite element method and its simulation accuracy has 

been consistently verified by either analytical analysis or Orcaflex, it should be widely utilized for 

slender structures design and analyses to improve the simulation accuracy and save computational 

effort. 
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1 INTRODUCTION 

1.1 Marine Riser Overview 

1.1.1 Marine Riser Introduction 

Marine risers, as key structural components for connecting the subsea well bore and the 

surface host platform, are widely used in offshore drilling, production, and mining. The first riser 

was used in 1949 (Ertas and Kozik, 1987). Since then, marine risers have played a more and more 

important and irreplaceable role for offshore oil and gas resources exploitation and production.  

In recent years, as oil and gas drilling and production activities are continuously moving 

forward to deeper and deeper waters due to the depletion of these resources in shallow water areas, 

the design and analysis of marine riser systems are facing great challenge due to high pressure and 

high temperature environment in deep sea, together with higher nonlinearities in the structural 

mechanics due to large riser deformation under combined effect of ocean wave and current loads. 

Moreover, in deep waters, the long suspension length of riser between the floater and seabed can 

greatly increase the top tension of riser. Hence, buoyancy modules are usually designed and 

attached to certain section of suspended length which can drastically change the configuration and 

increase the geometric complexity of risers. Therefore, the steady state deformed equilibrium 

configuration of a marine riser in deep ocean usually takes a form of three-dimensional curve, 

which can add difficulty to its numerical simulation. Because when stiffness is combined with the 

strong nonlinearity of the problem, the convergence of any classical iterative technique is mostly 

a matter of chance (Konuk, 1981).  

All concepts of marine riser systems must show strong structural integrity and reliability 

during their whole designed lifetime. Hence, an accurate prediction of the response of the whole 

riser system under all possible combined loading scenarios is of paramount importance for a robust 
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and reliable design. As is known, any unexpected structural failure or riser system malfunction can 

incur significant and unaffordable financial loss and production deduction, together with potential 

risks of severe environmental pollution, which can definitely turn a riser loss incident into a real 

catastrophe. 

Although the riser is a simple structure, the effect of the waves, currents, and vessel motions 

makes its response so involved that it requires a complex analysis to predict its behavior (Ertas 

and Kozik, 1987). A safe, endurable and reliable riser design is deeply relying on the 

methodologies for riser study and research. From riser design to fabrication, installation, 

commissioning, operation, and maintenance, there are many combined load cases should be 

carefully and conservatively considered.  

Generally speaking, the methods for marine riser behavior analysis consist of laboratory 

experiments, field measurements, and mathematical model simulations. To perform riser model 

tests, a good laboratory, equipped with necessary facilities such as a water tank, riser samples, 

wave and current makers, data recording gauges, meters and computers etc., is indispensable. 

Hence, a large sum of budget is required to conduct varieties of riser model experiments. Similarly, 

the cost for the establishment of a field measurement system for recoding full-scale riser behaviors 

under real sea states could be even higher than laboratory tests. Therefore, the most feasible and 

economical approach for studying the behaviors of marine risers is to establish sound mathematical 

models by incorporating appropriate assumptions and reasonable simplifications, and then try to 

seek reasonable solutions of the mathematical models either analytically, numerically, or a 

combination of the two.  

A typical marine riser system mainly consists of top interface, bottom interface, riser pipes 

and riser components, which is shown in Figure 1.1. 
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Figure 1.1 Schematic of typical marine riser system 

Due to the complexity and nonlinearity of the whole riser system, there is actually no 

analytical solution which can exactly depict its behavior in the whole problem domain. The 

commonly used riser analytical approach is the catenary theory, a quite simplified riser model with 

neglected bending rigidity, which idealizes the riser as a hanging catenary under the effect of its 

apparent weight with supports at its extremities.  The catenary model is only suitable for simple 

compliant risers such as SCRs or free-hanging flexible risers.  

Fortunately, with the rapid development of the digital computer technology in the past 

decades, numerical solutions for complex mathematical riser model becomes a feasibility. The 

riser motion governing equations can be solved by either finite difference method, finite element 
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method, lumped mass method or any other possible numerical methods proposed by former 

researchers. The main advantages of numerical simulation lie in the possibility of taking all the 

involved features in a riser mathematical model into appropriate consideration, which include but 

not limit to the nonlinear boundary conditions, structural nonlinearities due to large bending or 

torsion, material complexity and nonlinearity, unsteady internal flow, high nonlinearities in 

external loads, etc. Of all the numerical methods, the finite element method is the most widely 

adopted technique for the marine riser simulations. The general procedures for the finite element 

analysis are briefly summarized in Figure 1.2.  

 

Figure 1.2 The general procedures of a finite element analysis 
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However, by far, a perfect numerical method or model for marine riser response prediction 

is nonsexist, which means there are always rooms for technique improvements of marine riser 

studies. No matter the improvements are obtained with new simulation models or modified 

techniques on the existing models. Two typical problems were still existing for marine riser 

studies. The first one is associated with the scarce of reliable prototypes or experimental data on 

riser motions and stresses in waves. This feature is generally accepted as a serious drawback to the 

credibility of the large number of finite element computational methods that are available. The 

second problem arises in the long computer times and large core storage required by the current 

generation of finite-element riser computations (Patel et al., 1984). 

For finite element analysis, the reliability, robustness and efficiency of the model are of 

paramount importance. A reliable and efficient finite element procedure can help to save 

computational effort with minimized error for the analysts. A finite element analysis without error 

is actually an ideal state and several procedures, as shown in Figure 1.2, could probably introduce 

some errors to the finite element simulations. For instance, procedures of finite element mesh, 

approximation of concerned dependent variable in an element domain, numerical computation of 

finite element coefficient matrices, and solving the assembled global system of equations could all 

introduce certain amount of error to the final numerical solutions. Therefore, to improve the 

accuracy of the final numerical solution by minimizing all potential errors forms a key part for the 

research of marine risers using finite element methods. 

The present research addresses the adoption of an improved finite element technique, i.e., 

by using quintic Hermite shape functions, to generate a higher-order approximation for the riser 

deflection function in an element domain, which can greatly reduce the error for the governed 

quantity approximation during finite element analysis. So, this dissertation can provide a strong 
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basis for a better understating, for other riser engineers or analysts, of the marine riser finite 

element simulation using quintic Hermite interpolation functions. 

1.1.2 Marine Riser Categories 

The key function of a riser is guaranteeing a safe transportation of fluids and gases between 

subsea facilities and ocean surface host platforms. Typical metallic riser configurations for 

different host platforms are shown in Figure 1.3 (DNV-OS-F201, 2010).  

 
Figure 1.3 Examples of metallic riser configurations and floaters (Reprinted from DNV, 2010) 

Consideration there are already so many types of risers, further subdivision of different 

risers usually depends on the categorizing perspectives that we emphasize on. For instance, risers 

can be categorized from their applications or functions, physical configurations, materials or even 

the ways they absorb the motions exerted by host platforms.  The following subsections will 

illustrate this statement one by one in great details (DNV-OS-F201, 2010 and Miller, 2017).  
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If divided by the riser applications, they can typically be grouped into:  

• Drilling riser: utilized during drilling and workover, the main function of which is to 

provide fluid transportation to and from the subsea wells. 

• Workover/completion riser: temporarily used for workover or completion operation. 

• Injection riser: transport fluid to the producing reservoir or a convenient disposal or 

storage formation. 

• Production riser: transport fluids, i.e. unprocessed oil or gas, produced from the 

reservoir. 

• Export riser: export processed oil and gas from the platform to subsea pipelines 

If divided by riser configurations, they can generally be categorized as: 

• Catenary riser: taking on a near catenary shape during service life 

• Top-tensioned riser (TTR): near vertical riser which is always kept in a tensile 

condition by an applied top tension 

•   Hybrid riser (HR): a combination of catenary riser and top-tensioned riser, which use 

a vertical riser tower as the main riser body and connect the top of which to the host 

floater by a flexible catenary shaped riser or jumper at the near surface area 

If divided by riser materials, they can be simply differentiated as: 

• Metallic riser: which are made of carbon steels such as X65,X70 etc. 

• Titanium riser: a new riser concept fits for ultra-deep waters which has a low modulus 

of elasticity and high yield stress 

• Flexible riser: which consists multiple functional layers by using different materials 

If divided by the mechanism how the riser absorbs the floater motions, risers can be 

distinguished as: 
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• Compliant riser: the floater motions are absorbed by changing of the geometry, with no 

heave compensation systems, and typical complaint riser configurations comprise of 

one or multiple free hanging catenaries like steel catenary riser (SCR), Steep-S riser, 

Lazy-S riser, Steep-wave riser, Lazy-wave riser and pliant wave riser, etc. 

• Top tensioned riser: vertical risers which allow for relative riser floater motions in the 

vertical direction; besides, the riser is constrained to follow the horizontal floater 

motion at one or several locations. 

More detailed characteristics on several high-frequently used riser types are summarized 

below, the contents of which have mainly referred to the public literatures (DNV-OS-F201, 2010 

and Sparks, 2007). 

The main characteristics about steel catenary riser (SCR) system, as shown in Figure 1.4, 

include: 

• Structurally simple, easy design and install and therefore can save costs from these 

aspects 

• Can work as production, export and injection risers 

• The touch down zone (TDZ) section suffers large tension fluctuations due to host 

platform movements and offsets, hence fatigue damage at the TDZ is a big issue for 

this type of riser 
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Figure 1.4 A schematic view of typical a SCR system 

The main characteristics about steel catenary riser (SLWR) system include: 

• Structurally more complex than the SCR, a middle buoyancy module section is required 

to provide extra net buoyancy which can form an arch bend in the riser, as illustrated 

in Figure 1.5. 

• Can reduce the riser top tension by attaching the buoyancy modules 

• Can isolate floater motion effect on the touch down zone (TDZ) and deduce the stress 

fluctuations in the TDZ section, which can thus extend the riser’s fatigue life 

• Suitable for more harsher environment than SCR but usually cost more due to the 

complexities involving of design, analysis and installation 
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Figure 1.5 A schematic view of a typical SLWR system 

The main characteristics of a TTR system mainly include: 

• TTR production and injection risers are designed to have direct access to the subsea 

well, leaving the wellhead on the host platform 

• A top tensioner or air can (for SPARs) is required to exert the top tension 

• Have a typical of 3 to 6m space gap among different riser centers to avoid potential 

interactions 

The main characteristics of a hybrid riser (HR) system, as shown in Figure 1.6, mainly 

include: 

• The free-standing riser tower is connected to the floater by a flexible catenary jumper 

• The buoyancy tank provides a top tension to keep the standing rigid section in tension 

• The bottom of the vertical riser tower is usually fixed by a suction pile 

• The surface floater motions and dominant wave kinematics can be avoided for the 

vertical riser part 
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• Bottom end of the standing rigid riser should be connected to the subsea foundation by 

a well-designed connector, such as a stress joint 

 
Figure 1.6 A schematic view of a typical HR system 

 

1.2 Research Objective and Scope of Work 

Large deformations on deep water risers are almost unavoidable due to its great length, 

which make them more vulnerable to failure during installation, operation and abandonment. 

Therefore, the importance of more accurate prediction of the response of marine risers, especially 

for deep waters, can never be over-exaggerated. Because any blunder or large simulation error 

over a certain acceptable limit may incur unexpected incidents, unbearable economical loss or 

even a great catastrophe for our natural environment. To be brief, the pursuit of a more efficient, 



 

12 

 

 

 

safe and reliable simulation method for deep water risers has always be a top concern for a riser 

engineering researcher in recent years. 

Previously, the cubic Hermite interpolation shape functions, normalized forms of which as 

plotted in Figure 1.7, have been widespreadly used in the finite element formulation for numerical 

simulation of slender structures such as rods, cables, moorings, pipelines and risers. For instance, 

the CALBE3D program, developed by Prof. J. Zhang and his previous graduate students for the 

static and dynamic simulations of moorings and risers, had adopted the cubic Hermite shape 

functions for the finite element scheme formulation.  

 

Figure 1.7 Normalized cubic Hermite shape functions 

Although cubic Hermite shape function finite element formulation can yield reasonable 

results by using an appropriate fine element size, some intrinsic shortcomings enrooted in this 

traditional method are gradually discovered during the research process of solving more tricky 

marine riser problems, which mainly include 
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• Only the structure displacement 𝒓 and slope 𝒓′ are continuous at nodes, the continuity 

of structure curvature 𝒓′′ cannot be guaranteed, which means a discontinuous bending 

stress distribution in the simulation results  

• One cannot apply Dirichlet (essential) boundary conditions in terms of the structure 

curvature 𝒓′′, which will result in a loosely restrained structural model on the 

boundaries. For instance, large error will occur for the eigenvalue analysis of the 

slender structures, especially for high vibration modes.  

• Since the structure shear force is a related to the rate change of the structure curvatures, 

it is difficult to be accurately postprocessed in the finite element analysis by only using 

nodal displacements and slopes. Hence, when slender structures subjected to 

distributed transverse load with large gradients, the traditional finite element simulation 

will yield poor shear force prediction in the problem domain. 

Therefore, the main objective of this research is to seek an improved numerical technique, 

especially aimed at a more accurate simulation of challenging marine riser problems, that can be 

of numerically feasible to overcome those downsides embedded in the traditional cubic Hermite 

finite element formulation as summarized above. This objective is fulfilled by incorporating the 

quintic Hermite shape functions to Galerkin’s finite element model, which can help to eliminate 

the mentioned drawbacks in the cubic Hermite finite element method. Therefore, a new finite 

element program, called RISER3D by using quintic Hermite shape functions, are developed in this 

research. RISER3D can be a powerful numerical tool for handling challenging engineering 

problems such as ultra-deep water riser deformation, nonlinearities due to transverse 

hydrodynamic loads with large gradient, flexible jumpers that are usually subject to large rotation 

angles, etc. The main reason that RSIER3D can do a better job for solving these tricky problems 
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lie in the new properties brought into the new finite element model by the six the quintic Hermite 

shape functions.  

In order to verify the validity, accuracy and consistency of RISER3D, static and dynamic 

benchmark cases of Euler-Bernoulli beam problems under different transversal loads are simulated 

with RISER3D, the results of which are compared to the exact analytical solutions by using Euler-

Bernoulli beam theory. And then, RISER3D program is adopted to solve varieties of static and 

dynamic marine riser problems, such as the deformation and response of steel catenary risers 

(SCRs), steel lazy wave risers (SLWRs), steep wave risers (SWRs), the flexible jumper sections 

of hybrid risers,  and the top-tensioned risers, to investigate the advantages of the new program 

over the previous CABLE3D program.  

The scope of work of this research mainly consists of three parts. The first part is 

developing a new finite element program, called RISER3D, by using quintic Hermite shape 

functions. This part of research work mainly includes 

• Derivation of the expressions of the quintic Hermite shape functions 

• Formulation of the new finite element scheme using quintic Hermite shape functions 

• Programming the new formulated scheme in both FORTRAN and MATLAB, called 

the RISER3D program 

• Explaining on how to correctly impose typical boundary conditions on the new finite 

element model 

• Proposing appropriate data post processing methods for RISER3D program 

The second part of the proposed study is firstly to verify the validity and accuracy of 

RISER3D program, and then deplore the convergence speed and effectiveness of the new program 

by  solving typical one-dimensional static and dynamic beam problems. The benchmark cases 
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focus on typical transverse loads types and classical boundary conditions for prismatic Euler 

Bernoulli beams, two examples of which as shown in Figure 1.8. The numerical results obtained 

from the RISER3D program are compared with those of obtained by either analytical analyses or 

CALBE3D program. Based on the comparison of the results among three different methods, we 

can easily identify whether RISER3D can show some beneficial merits over CABLE3D. 

 
Figure 1.8 Typical transverse load types for Euler Bernoulli beams 

For benchmark cases, the compared results mainly include 

• The Euler Bernoulli beam displacements and slopes at discrete nodes and within the 

element domains 

• The beam bending moment and shear force at discrete nodes and within the element 

domain 
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The third part of the research is the application of RISER3D to eigenvalue, static, and 

dynamic analyses of different marine riser problems, the objective of which is to seek the 

advantages of RISER3D over CABLE3D. The proposed study cases mainly include: 

• Natural frequency analysis for constant tensioned beams and top-tension risers (TTRs) 

• Static in-place analyses of the SCR, SLWR, and SWR 

• Static analysis of SLWR and SWR under steady current loads 

• Deep-water TTR under linear and nonlinear current loads 

• Dynamic analysis of a flexible riser subject to harmonic excitations at the top end 

• Parametric studies of concerned parameters for some riser types 

All these application cases are both simulated with CABLE3D and RISER3D, the results 

of which are also compared to those of obtained by Orcaflex (if applicable). The validity, accuracy 

and advantages of RISER3D should be identified through the results comparison with other 

numerical methods in these proposed studies.  

 

1.3 Literature Review on Marine Risers 

After the birth of the first riser in 1940s, a numerous number of marine risers were designed 

and installed from shallow waters to deep waters. Many journal papers have been published 

addressing on varieties of marine riser problems, a combined extensive and intensive reading of 

these literatures can drastically improve our understanding of the static and dynamic behavior of 

offshore risers. The main distinctions among these published literatures lie in different treatments 

on the following factors regarding marine riser design, modelling and analysis: 

• Study riser behaviors by either static analysis, dynamic analysis, eigenvalue analysis, 

scaled model tests at laboratories or full-scale field measurements 



 

17 

 

 

 

• Two-dimensional or three-dimensional simulations depending on the externally 

applied loads on the riser are in one plane or not 

• Small deformation or large deformation, usually based on the water depths 

• Axially inextensible or extensible 

• Riser torsion include or neglected 

• Internal flow considered or neglected, if considered, steady flow or unsteady flow 

• Unidirectional steady current or multi-directional steady currents or even unsteady 

currents 

• Treat the vertical current profile as uniformly, linearly, bi-linearly, in power-law 

distribution, or arbitrarily 

• Solving riser governing equations analytically by either simple catenary theory or 

Bessel functions with neglecting bending stiffness, or numerically by either finite 

element method (FEM), finite difference method (FDM) or lumped mass method 

(LMM) 

• Varieties of riser-soil interaction models, which include but limited to riser-seabed 

contact elastically or non-elastically, lateral and longitudinal pipe-soil interaction with 

friction or frictionless, riser-seabed penetration with small embedment or large 

embedment at the touch down zone (TDZ), the supporting soil strength with 

degradation or non-degradation, etc. 

• Top end of riser with horizontal offset or no offset 

• Take the lift forces induced by vortex-induced vibration (VIV) into consideration or 

just neglected 

• Take the riser fatigue assessment into consideration or neglected 
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• Hydrodynamic loads due to only current, or only wave, or a combination of wave and 

current 

• Hydrodynamic wave loads by using regular wave or irregular wave, linear wave or 

nonlinear wave 

• Riser and host platform interaction coupled or decoupled 

• Using rod, beam, hybrid beam or even three-dimension continuum elements 

• Treat the riser model nonlinearities, which may be caused by axial constitutive 

constraint, non-homogenous material, boundary conditions, external loads, large 

deformation, etc., as either with neglected, linearization or nonlinearly 

• Treat multi-layered riser with one equivalent layer or as what they are 

• Treat the riser top end with harmonic excitation boundary conditions or simply with 

classic boundary conditions such as pinned (hinged), fixed, free with tension, free with 

linear springs restraint, pinned with rotation springs restraint, etc. 

• Focus their analysis on one type or several types of marine risers, which include but 

not limited to flexible riser, drilling riser, steel catenary riser (SCR), steel lazy-wave 

riser (SLWR), Steep-S riser, Steep-wave riser, Lazy-S riser, top-tensioned riser (TTR), 

hybrid riser (HR), multi-layered composite flexible riser, flexible w-shape riser, 

flexible free-hanging riser (sometimes called flexible jumper), etc. 

• Riser analyses at different loading cases, such as during installation, in-plane service, 

abandonment during unbearable storm conditions, or recovery; as for riser installation, 

using S-lay method or J-lay method  

Considering such a large number of literatures exist, the dissertation cannot numerate all 

of them one by one. Some of the published literatures, either have a positive effect on this research 
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or have presented a good model or method for marine risers analysis, are briefly reviewed in the 

subsections one by one in a chronological sequence. 

R.P. Nordgren (1974) developed a computational method for the finite amplitude three-

dimensional motion of inextensible elastic rods with equal principal stiffness, which can also be 

applied to the two-dimensional motion of such rods with unequal principal stiffness. He devised 

the numerical solution of the formulation by incorporating a consistent finite difference 

approximation, correct to second order in increments of arc length and time, with a semi-explicit 

method. 

R.D. Young, et al. (1977) developed a computer program for economically predicting the 

dynamic response of marine risers to lateral forces from waves (regular and random) and currents 

(vortex shedding). In addition to a technical description of the model, they discussed the 

differences in response between long and short risers and which physical parameters should be 

scrutinized in analyzing each of these. They made a conclusion that the random wave provides a 

method of predicting maximum stresses for strength design and the regular wave provides data 

which is compatible with fatigue analysis. 

I. Konuk (1981) provided a general foundation for developing reliable and rigorous 

formulations for problems involving pipelines and risers with twist. A continuation technique was 

developed to solve convergence problems of three-dimensional pipelines. 

D.L. Garrett (1982) used a three-dimensional finite element method to model an 

inextensible elastic rod with equal principal stiffness. This model permits large deflections and 

finite relations and accounts for tension variation along length of the rod. The author demonstrated 

the accuracy of the spatial discretization and the stability of the time integration method by 

comparing the numerical results with exact solutions for certain nonlinear problems. 
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O. Egeland et al. (1981) performed theoretical analysis by utilizing four different computer 

programs, covering six different methods. The programs employed either linearized frequency 

domain solution or time integration techniques with varying degrees of non-linearities included 

and for either regular waves or irregular sea. The four program analysis results were compared 

with the field measurements data taken by CONOCO in 1975 on a drilling riser operated from a 

semisubmersible. They concluded that it was not understood why the irregular sea simulations 

gave inferior comparisons than those by the regular waves and suggested that this could be due to 

modelling deficiencies. 

M.H. Patel et al. (1984) employed a two-dimensional finite-element computational method 

for determining marine riser displacements and stresses due to self-weight, buoyancy, internal and 

external pressures, surface vessel motions and environmental forces arising from currents and 

waves. A dynamic analysis was performed in the frequency domain for regular waves by 

linearizing the hydrodynamic damping term. 

M.H. Patel and A.S. Jesudasen (1987) did a theoretical and experimental investigation of 

the lateral dynamics of free hanging marine risers during riser retrieval or in storm conditions. The 

riser is disconnected from the subsea well head and remains hanging freely from the surface vessel 

while being subjected to excitation by surface vessel motions, waves and current. They 

investigated the in-plane behavior of the riser pipe and its hydrodynamic loading by finite element 

analysis, and the results of which were compared with model test data at 1:28 scale from a specially 

designed deep-water tank. Some measurements of the out-of-plane behavior of the riser due to 

vortex shedding effects were also presented. 

R. Ghadimi (1988) used the lumped mass discretization method to derive the equations of 

motion of flexible risers in three-dimensional space. The nonlinear equations describing the riser 
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motions were solved in the time domain using the tangent stiffness incremental approach combined 

with the Wilson-theta numerical integration algorithm. Besides, the author also gave a 

consideration to natural periods and mode shapes for small oscillations about the static equilibrium 

position of the riser. 

J.F. McNamara et al. (1988) developed a method for the static and dynamic analysis of 

flexible risers and pipelines in the offshore environment under conditions of arbitrarily large 

motions due to wave loading and vessel movements. A mixed finite element formulation was 

adopted where the axial force was independently interpolated and only combined with the 

corresponding axial displacements via a Lagrangian constraint, which produced a hybrid beam 

element that could be applied to offshore components varying from mooring lines or cables with 

zero bending stiffness to pipelines with finite bending stiffness subjected to large motions. 

N. Vlahopoulos and M.M. Bernitsas (1988) developed a mathematical model of static, 

dynamic and eigen analysis of non-integral production risers, i.e. a bundle of component risers 

interconnected along their length by guide arms, based on a small deformation, two dimensional, 

structurally linear and hydrodynamically nonlinear single riser model. Typical non-integral 

production riser problems were solved, and results were compared to those of single risers. 

P.J. O'Brien and J.F. McNamara (1989) further developed their three-dimensional hybrid 

beam-column finite element model by addressing the issues of the use of a pre-processor program 

based on simple cable equations for locating the initial configuration, variable-step static and 

dynamic solution schemes, seabed contact algorithms and the modelling of finite three-

dimensional rigid body rotations. Based on the sample analyses carried out in the paper, they 

concluded that the model could work as an accurate and robust computational tool for the static 

and dynamic analysis of three-dimensional flexible riser systems. 
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M.C. Wu and J.Y.K. Lou (1991) developed a mathematical model for the lateral motion of 

a marine riser to examine the effect of the internal flow and bending rigidity of the pipe on the 

dynamic behavior of the riser. The mathematical model, with a relatively small elastic rigidity, 

included a steady flow inside the pipe together with other factors such as currents, wave excitation, 

rig motions, etc., which was solved with a singular perturbation technique. They found that the 

internal flow acts to reduce the effect of the top tension. However, its effect on riser dynamics was 

not significant when the top tension of the riser is relatively high. For small top tension cases, the 

perturbation technique is no longer valid and the effect of internal flow on riser dynamics remains 

to be investigated. 

F.B. Seyed and M.H. Patel (1992) presented their derivations for calculation of pressure 

and internal flow induced forces on flexible risers and other curved pipes using a mathematically 

rigorous approach. The mathematical identity of these equations with those for effective tension 

was also illustrated. Moreover, they mathematically showed that internal flow contributes a new 

term to the expression for effective tension. At the end of this literature, the authors tried to 

construct the rigorous mathematical model for typical compliant flexible risers, i.e. Steep-S, Steep-

wave, Lazy-S and Lazy-W risers. 

Ma et al. (1994) improved the finite element elastic rod model, as initially proposed by 

R.P. Nordgren in 1974, by simulating offshore risers under complex internal and external loading 

conditions.   

T. Sakamoto and R.E. Hobbs (1995) presented a new calculation technique for the static 

and dynamic analysis of flexible risers, using the Dynamic Relaxation method with a finite 

difference discretization. Two new features were introduced in the new technique, one was the 

governing equation was first derived in a local coordinate system, and then transformed into the 
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global coordinate system; the other one was the exact expressions for bending moments were 

employed in terms of the rotation angles at nodes. They figured out that these new features could 

solve efficiently the geometrically nonlinear problem without the very large number of loading 

steps and elements which the FEM must employ. 

C.P. Pesce et al. (1999) derived a simple formula for the natural frequencies and 

eigenmodes of a catenary riser under no current by WKB general solution. Compared to Bessel's 

approximations and to numerical results obtained by a standard Finite Element Method 

formulation, where extensibility was considered, they found that the present solution showed a 

rather good agreement for typical free-hanging catenary risers. 

Chen et al. and Prof. J. Zhang (2002) developed a three-dimensional finite element 

program, called CALBE3D, to simulate hybrid beam-column element with small axial elongation 

and mooring line cable element with large elongation by using appropriate constitutive constraint 

conditions respectively. Thus, in CABLE3D, the riser can be simulated as a hybrid beam-column 

element with small elongation by considering the external forces such as riser gravity, hydrostatic 

forces, and hydrodynamic forces. 

W. Raman-nair and R.E. Baddour (2003) formulated the equations of the three-

dimensional motion of a marine riser undergoing large elastic deformations using Kane’s 

formalism. The riser is modeled using lumped masses connected by extensional and rotational 

springs including structural damping. Besides, their model had taken the effects of vortex-induced 

lift forces and internal flow into consideration. 

Torres et al. (2003) used ANFLEX and POSFAL, and an in-house finite element based 

code for deterministic and random nonlinear time-domain analysis, to verify the structural integrity 
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of a SLWR attached to a turret-moored FPSO at a water depth of 1800m. The time domain 

nonlinear analysis was also performed for SLWR fatigue damage calculation. 

Y.T. Chai, K.S. Varyani (2006) presented a rather general absolute coordinate formulation 

for the analysis of flexible pipe structure. In their formulation, the structural response 

characteristics were expressed in terms of globally based position coordinate and its derivative to 

allow an accurate nonlinear description of the pipe kinematics, which could be capable of handling 

of bending-torsion coupling, axial-radial coupling, bend restriction effect, internal flow effect, 

irregular seabed with friction effect, and the Poisson’s ratio effect, thus allowing it a useful general 

tool to be developed for riser, pipeline and flexible hose analyses. 

Roveri et al. (2005) performed a parametric analysis, by using an in-house finite element 

computer tool, for SLWR by considering riser segment lengths variation and changing the 

buoyancy module design parameters. 

I. Senjanovic et al. (2006) analyzed the natural vibration of deep-water tensioned uniform 

risers. The riser was considered as both a cable and a beam due to the fairly weak flexural stiffness. 

The exact and asymptotic solutions of the cable differential equation were presented. The beam 

vibration was determined by modifying the cable solution for each halfwave of the natural mode, 

so called segments. They verified their analytical analysis results by the finite element method and 

presented very valuable conclusions on riser dynamic behavior in the lower and higher frequency 

domain. 

S.T. Santillan (2010) modelled flexible risers and pipelines as slender elastic structures. 

The theoretical formulation lead to a type of nonlinear boundary value problem that could be 

solved numerically by finite difference method with appropriate boundary conditions. Two-
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dimensional planar problem of steep-wave riser and free-vibration analysis of various deflected 

equilibrium configuration were considered. 

Sun and Qi (2011) studied the static and dynamic behavior of a steep wave flexible riser 

configuration by using the lumped mass method, in which the riser was divided into a series of 

massless line segments with loads lumped to nodes at the end of each line. 

J.L. Wang and M.L. Duan (2014) established the governing equations for a SLWR by 

consisting of conventional small deformation beam theory for the portion of pipeline lying on the 

seabed and a large deformation beam theory for the suspended section. The proposed model, 

numerically solved by finite difference method, with appropriate boundary conditions could 

simulate the nonlinear mechanical behavior of SLWR with the effect of pipe–soil interaction, 

ocean current and internal flow.  

Kim et al. (2014) investigated the dynamic behaviors of conventional SCR and Lazy-wave 

SCR for FPSOs in deep waters by using a hull/mooring/riser fully coupled dynamic analysis 

program. 

Ruan et al. (2016) established a mathematical model based on this elastic rod theory and 

using finite element method to simulate the dynamic response of SLWR by considering 

hydrodynamic loading and internal flow. 

D.H. Yoo et al. (2017) proposed practical and stable methods of ultimate-strength 

assessment for flexible pipes using 8-layered and 5-layered finite element models subjected to 

axial tensile and compressive loads, respectively. For the 5-layered model, four inner layers, i.e. 

carcass, pressure sheath, pressure armor, and anti-friction tape, are replaced by one equivalent 

pressure layer to simplify the model and improve numerical convergence. 
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C. Zhang et al. (2019) proposed a mechanical analysis model based on the absolute nodal 

coordinate formulation (ANCF) and the theories of continuum mechanics and finite element 

method to accurately analyze the statics and dynamics of deep-water flexible structures with large 

deformation. Based on the energy variation principle, the generalized elastic force and stiffness 

matrix of the element are derived, and the mass matrix and external load matrix of the element are 

combined to perform the element assembling using the finite element method. The static and 

dynamic characteristics of a SLWR are analyzed systematically, which verified the effectiveness 

and practicability of the mechanical model. 

Y. Cheng et al. (2020) presented a numerical model based on three-dimensional (3D) large 

deformation rod theory. The governing equations were established in terms of a global coordinate 

system, which involves the effects of vessel motion, wave- current loads, riser-seabed interaction 

and internal flow. The finite element method combined with an Adams-Moulton scheme is applied 

to discretize the governing equation and update the time integration. The numerical model was 

verified with the published results and numerical simulations of the SLWR. 

To make a clearer comparison among some good literatures regarding marine riser 

behavior study and analysis, a literature review summary is presented in Table 1.1 with highlights 

of each paper presented. 
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Table 1.1 Summary of some highlight literatures comparison among previous riser analyses 

 

Author Year  Riser Type Dimension Study and method Deformation Seabed friction Internal flow Torsion Sea loading 

R.P. Nordgren 1974 elastic rod 3D S./D. analysis4 using FDM finite-amplitude NA1 NA NA NO3 

D.L. Garrett 1982 elastic rod 3D S./D. analysis using FEM large deflection NA NA NO NO 

M.H. Patel et al. 1984 top tensioned risers 2D S./D. analysis using FEM large displacement NA NA NO wave and current 

M.H. Patel and 

A.S. Jesudasen 
1987 free hanging risers 2D 

S./D., eigenvalue analysis 

using FEM and model tests 
large deflection NA NA NA wave and current 

R. Ghadimi 1988 
catenary flexible riser 

and steep-S 
3D 

S./D. and eigenvalue 

analysis using LMM 
small strain NO NA NO wave and current 

J.F. McNamara et 

al. 
1988 

flexible risers such as 

catenary and HR 
2D 

S./D. analysis using a 

hybrid beam-column FEM 

Lagrangian restraint on 

the axial strain 
NA NA NA wave 

N. Vlahopoulos and 

M.M. Bernitsas 
1988 

non-integral production 

risers 
2D 

S./D. analysis and eigen 

analysis using FEM 
small deformation NA NO NO wave and current 

P.J. O'Brien and 

J.F. McNamara 
1989 flexible risers 3D 

S./D. analysis using a 

hybrid beam-column FEM 

Lagrangian restraint on 

the axial strain 
YES2 NO YES wave and current 

F.B. Seyed and 

M.H. Patel 
1992 

all flexible complaint 

risers 
2D 

Analytical analysis by a 

mathematically rigorous 

approach 

small strain NA considered NA NA 

T. Sakamoto and 

R.E. Hobbs 
1995 

flexible risers, steep-

wave riser 
3D 

S./D. analysis by dynamic 

relaxation method using 

FDM  

small strain NA NA NA wave and current 
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Table 1.1 Continued 

 

Author Year  Riser Type Dimension Study and method Deformation Seabed friction Internal flow Torsion Sea loading 

C.P. Pesce et al. 1999 catenary riser 2D 

 Eigenvalue analysis by 

Bessel functions and WKB 

approximation solution, 

standard FEM 

inextensible  NA NA NA NA 

A.C. Fernandes 2001 flexible jumpers of HR 3D 

Static analysis by 

consistent catenary and 

modal analysis, model tests 

inextensible  NA NA NA wind, wave and current 

M. Yazdchi and 

M.A. Crisfield 
2002 simple catenary and HR 3D 

Dynamic analysis by co-

rotational FEM 
large deformation NA not included NA wave and current 

M. Yazdchi and 

M.A. Crisfield 
2002 flexible pipes and risers 2D 

Dynamic analysis by co-

rotational FEM 
large deformation NA not included NA steady current 

W. Raman-nair and 

R.E. Baddour 
2003 riser and cantilever beam 3D 

Dynamic analysis by 

Kane's formulism using 

LMM 

large elastic deformation NA included NO 2nd-order Stoke's wave 

I. Senjanovic et al. 2006 tensioned risers 2D 

Natural vibration by 

analytical segmentation 

method 

NA NA NA NA NA 

Y.T. Chai and K.S. 

Varyani 
2005 

flexible jumper and 

pipeline on irregular 

seabed 

3D 

S./D. analysis by absolute 

coordinate formulation and 

Galerkin FEM  

mixed-field formation of 

stress strain and Poisson's 

ratio  

YES YES 
bending-torsion 

coupling 
wave and current 

S.T. Santillan et al. 2010 steep-wave flexible riser 2D 
S./D. analysis by elastica 

approach and FDM  
inextensible  NA NO NO steady current 

I.K. Chatjigeorgiou 2010 catenary riser 3D 

S./D. analysis by potential 

theory for internal flow and 

FDM  

small deformation NA YES YES NA 
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Table 1.1 Continued 

 

Author Year  Riser Type Dimension Study and method Deformation Seabed friction Internal flow Torsion Sea loading 

S.T. Santillan and 

L.N. Virgin 
2011 Lazy-S and steep-S 2D 

Static analysis by FDM and 

experiment 

inextensible or small 

deformation 
NA NA NA steady current 

J.L. Wang and 

M.L. Duan 
2014 SLWR 2D Static analysis FDM 

coupled small and large 

deformation 
axial friction YES NA steady Current 

D.H. Yoo, et al 2017 multi-layer flexible pipe 2D and 3D 
2D plain strain and 3D 

FEM by Ansys 

axial tensile and 

compression 
NA NA YES NA 

X.W. Zhen et al. 2018 HR with flexible jumper 2D 
S./D. analysis by analytical 

catenary and Orcaflex 
small deformation NA NA NA wave and current 

C. Zhang et al. 2019 
steel lazy-wave riser 

(SLWR) 
2D 

S./D. analysis by absolute 

nodal coordinate 

formulation FEM 

large deformation NA NA NA NA 

Y. Cheng et al. 2020 SLWR 3D 
S./D. analysis by absolute 

coordinate FEM 
NO linear friction YES NO wave and current 

C.T.P. 

Bomfimsilva, T.A. 

Netto 

2020 free standing and jumper 3D S./D. analysis by Orcaflex small deformation NA NA NA NA 

 

Notes for Table 1.1: 

1. NA denotes not applied to;  

2. YES denotes considered;  

3. NO denotes neglected;  

4. S./D. analysis denotes static and dynamic analysis. 
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For riser eigenvalue analysis, many previous researchers have developed different 

approaches to study the vibration of the marine risers. Slender marine risers are often subject to 

vortex-induced vibrations (VIV) and therefore require accurate eigenvalue modelling for 

prediction of natural frequencies, mode shapes and fatigue damage rate (Cheng et al., 2002). Shear 

7 (J. Kim Vandiver 1998), a program developed by Professor J. Kim Vandiver and his research 

team at MIT, can predict the riser response subjected to spatially varying current loads. By using 

mode superposition, it is able to evaluate which modes are likely to be excited due to vortex 

shedding and estimates the VIV response in uniform and sheared flows. For riser dynamic analysis, 

the determination of riser natural frequencies and mode shapes forms a critical step towards riser 

dynamic response prediction. Taking the natural frequency calculation of a typical drilling riser as 

an example, several literatures have proposed different methods. Initially, Dareing and Huang 

(1976) used an expanded power series to approximate the mode shapes of risers and presented the 

results of the first five natural frequencies of a drilling riser. Later, Cheng et al. (2002) employed 

a WKB-based dynamic stiffness method to numerically analyze the natural frequencies of the same 

drilling riser, it addressed that the first five natural frequencies are accurate to O (10-4) by only 

using five elements. And then, Chen et al. (2009 and 2015) adopted a differential transformation 

method and another variational iteration method (VIM) for reanalyzing the natural frequencies and 

mode shapes of the same drilling riser with different boundary conditions respectively.  

Nowadays, especially in offshore engineering industry, many engineering companies 

prefer using the commercial software Orcaflex for riser in-place and installation analyses. In 

Orcaflex, the riser is divided into a series of line elements which are modelled as straight massless 

segments with a node at each end. The segments are used for modelling the axial and torsional 

properties of the line. Other properties like riser mass, weight and buoyancy etc. are all lumped to 
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the nodes. Each node is like a straight rod that represents the two half-segments at either side of it. 

Forces and moments are all applied at the nodes (Orcina, 2011). In this research, the results of 

some static and dynamic cases by using RISER3D are also compared with those of obtained by 

Orcaflex. 

1.4 Dissertation Organization 

In this dissertation, it comprises a total of six chapters, the main content of each chapter is 

briefly described below. 

Chapter 1 starts with a general introduction of marine risers and the popular categories of 

marine risers, and then the main objective and the scope of work for this research are presented. 

Finally, the first chapter ended with the literature review of previous researches on marine risers. 

Chapter 2 starts with a brief introduction of the CABLE3D program, which has laid a good 

foundation for this research. After that, the expressions for the quintic Hermite shape functions are 

presented and their properties are discussed. Most importantly, the detailed derivation for the riser 

governing equation and the formulation of the new finite element model for riser static and 

dynamic analyses are presented. The main procedures for solving riser static and dynamic 

problems with RISER3D are discussed with flowcharts. Then the boundary conditions, especially 

for the parts different from traditional CABLE3D are addressed. Finally, the numerical integration 

methods for evaluating the coefficients in RISER3D finite element scheme are proposed and the 

main methods for data postprocessing of the research are also included. 

Chapter 3 starts with derivation of finite element formulation for Euler-Bernoulli beam 

problems with quintic Hermite shape functions. Then the analytical solutions of the static and 

dynamic beam problems are derived and presented. Finally, the static and dynamic Euler-Bernoulli 
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beam problems are simulated with both CABLE3D and RISER3D numerically, the results of 

which are compared with the exact solutions. 

Chapter 4 starts with presenting the analytical analyses on transverse vibration of constant 

tensioned beams and vertical risers, which is followed by cases study on solving the natural 

frequencies of slender beams/risers using both analytical analysis and numerical simulations with 

both CABLE3 and RISER3D. The results by three different methods are compared and useful 

conclusions are obtained. 

Chapter 5 starts with presenting hydrodynamic loads on marine risers, followed by a series 

of application of RISER3D to practical marine riser problems. Parametric studies are performed 

for some cases when the change of a parameter can exert a large effect on the riser response. The 

numerical results of RISER3D are compared to those of by both CABLE3D and Orcaflex. Finally, 

some useful conclusions are achieved with the application of RISER3D on marine risers. 

Chapter 6 makes a final summary of the whole research work. The advantages of RISER3D 

over the traditional CABLE3D are discussed and summarized. Some future work which can be the 

extensions of this research are proposed at the end of this dissertation. 
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2 FORMULATION FOR RISER3D 

2.1 Introduction of CABLE3D Program 

COUPLE program is a numerical code developed by Professor Jun Zhang and his previous 

graduate students, which incorporate Hybrid Wave Model for nonlinear wave kinematics for wave 

load computation. This program can solve the global six degrees of freedom (DoFs) motion of 

floaters with coupled mooring and riser constraints in both time domain and frequency domain. 

CABLE3D, mainly developed by X.H. Chen and Professor J. Zhang (2002), is a key 

module of COUPLE program, which is used to compute the static and dynamic mooring and riser 

load. The main theory of CABLE3D originates from early research work on slender rod by Love 

(1944), Nordgren (1974), Garrett (1982), and Ma and Webster (1994). CABLE3D is a Galerkin’s 

finite element method program which adopted cubic Hermite shape functions to derive the element 

equations in three-dimensional space. This finite element model has taken the structural 

displacements and slopes as nodal primary variables. Considering each beam element has two 

nodes with 12 degrees of freedom (DoFs), together with the Lagrange multiplier approximated 

with quadratic shape functions in an element domain with 3 DoFs, a total of 15 DoFs are employed 

for depicting a tension-varied beam element in CABLE3D.  

The main functions of CALBE3D comprise of two fold. The first is using small elongation 

constitutive constraint and nonzero bending stiffness for beam-type riser simulation, the second is 

using large elongation constitutive constraint and zero bending stiffness for wire-type mooring and 

cable simulation.  

The governing equations, from the dissertation of X.H. Chen (2002), for beam-type 

element simulation are briefly summarized as  

𝑴(𝑠, 𝑡)�̈�(𝑠, 𝑡) + [𝐸𝐼𝒓′′(𝑠, 𝑡)]′′ − [�̃�(𝑠, 𝑡)𝒓′(𝑠, 𝑡)]′ = 𝒒(𝑠, 𝑡)                         (2.1) 
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𝒓′(𝑠, 𝑡) ∙ 𝒓′(𝑠, 𝑡) = (1 +
�̃�(𝑠,𝑡)+𝑃𝑓𝐴𝑓−𝑃𝑖𝐴𝑖

𝐸𝐴
)                                      (2.2) 

The governing equations, from X.H. Chen (2002), for wire-type element simulation are 

briefly summarized as  

𝑴(𝑠, 𝑡)�̈�(𝑠, 𝑡) − [�̃�𝒓′(𝑠, 𝑡)]′ = 𝒒(𝑠, 𝑡)                                            (2.3) 

𝒓′(𝑠, 𝑡) ∙ 𝒓′(𝑠, 𝑡) = (
𝐸𝐴

𝐸𝐴−�̃�(𝑠,𝑡)
)
2

                                                (2.4) 

Those who are interested in the physical meaning in each term, omitted here for brevity, of 

equations from (2.1) to (2.4) can referred to Chen’s Ph.D. dissertation (2002). Although 

CALBE3D can accurately predict the deflection, rotation, and effective tension of slender rods, 

there are still some shortcomings in this program, which has described in detail in the section 1.2 

of the dissertation. 

To overcome these shortcomings in CABLE3D, a new finite element program, called 

RISER3D, by using quintic Hermite interpolation functions is proposed and developed in this 

research. RISER3D will dramatically mitigate the potential drawbacks in CALBE3D and provide 

a better alternative for static and dynamic simulation of slender structures such as beams, marine 

risers and subsea pipelines, especially for those problems which have large gradients in their 

solutions. 

2.2 RIER3D Finite Element Model Formulation and Flowcharts 

2.2.1 The Expression and Properties of Quintic Hermite Shape Functions 

The main characteristic of the finite element model formulation, using proposed quintic 

Hermite shape functions, lies in taking the structural curvatures at the two nodes of an element as 

primary nodal degrees of freedom (DoFs), i.e. primary variables. A one-dimensional beam 

element, with primary variables of beam displacement, slope and curvature at each end, can be 
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used to derive the expressions of quintic Hermite shape functions. In this section, the final 

expressions of the quintic Hermite shape functions are directly presented, the detailed procedures 

for the mathematic derivations are presented in Appendix A. 

The expressions for the normalized quintic Hermite interpolation functions 𝜙𝑖
𝑒(𝜉) (𝑖 =

1~6) ,for the 𝑒th element, in normalized local coordinate system are six fifth-order polynomials 

and can be written as 

𝜙1
𝑒(𝜉) = 1 − 10𝜉3 + 15𝜉4 − 6𝜉5 

𝜙2
𝑒(𝜉) = 𝜉 − 6𝜉3 + 8𝜉4 − 3𝜉5 

𝜙3
𝑒(𝜉) = 0.5(𝜉2 − 3𝜉3 + 3𝜉4 − 𝜉5) 

𝜙4
𝑒(𝜉) = 10𝜉3 − 15𝜉4 + 6𝜉5 

𝜙5
𝑒(𝜉) = −4𝜉3 + 7𝜉4 − 3𝜉5 

𝜙6
𝑒(𝜉) =

1

2
(𝜉3 − 2𝜉4 + 𝜉5)                                               (2.5) 

where the definition of 𝜉 is 𝜉 =
(𝑥 − 𝑥𝑎)

(𝑥𝑏 − 𝑥𝑎)
⁄ for the element within the domain of 𝑥 ∈

[𝑥𝑎, 𝑥𝑏] and the interval of 𝜉 is 𝜉 ∈ [0,1], 𝑥 is the global coordinate. 

The plotting for the six normalized quintic Hermite shape functions are shown in Figure 

2.1. 
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Figure 2.1 Plotting of normalized quintic Hermite shape functions 

To get a clearer view of the function 𝜙3(𝜉) and 𝜙6(𝜉), the plotting for the third and sixth 

normalized quintic Hermite shape functions are shown in Figure 2.2. 

 
Figure 2.2 Plotting of the third and sixth normalized quintic Hermite shape functions  
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The general quintic Hermite shape functions, used in the global coordinate system for weak 

formulation, are related to the normalized quintic Hermite shape functions in normalized local 

coordinate system by using Jacobian transformation coefficients as 

𝑎𝑖
𝑒(𝜉) = 𝐽𝑖𝜙𝑖

𝑒(𝜉)  (𝑖 = 1~6)                                            (2.6) 

where 𝐽𝑖 are the Jacobian transformation coefficients, relating the normalized local coordinate 

derivatives to the global coordinate derivatives, are defined by equation (2.7) as a function of the 

element length ℎ𝑒 of the eth element 

𝐽𝑖 = {

1 (𝑓𝑜𝑟 𝑖 = 1 𝑜𝑟 4)

ℎ𝑒 (𝑓𝑜𝑟 𝑖 = 2 𝑜𝑟 5)

ℎ𝑒2 (𝑓𝑜𝑟 𝑖 = 3 𝑜𝑟 6)

                                          (2.7) 

The main properties of the quintic Hermite shape functions, used for the finite element 

model development, are all summarized in equation (2.8) 

𝜙1(0) = 1, 𝜙𝑖(0) = 0 (𝑓𝑜𝑟 𝑖 = 1~6 and i ≠ 1) 

𝜙4(1) = 1,   𝜙𝑖(1) = 0 (𝑓𝑜𝑟 𝑖 = 1~6 and i ≠ 4) 

𝜙′2(0) = 1,   𝜙′𝑖(0) = 0  (𝑓𝑜𝑟 𝑖 = 1~6 and i ≠ 2) 

𝜙′5(1) = 1,   𝜙′𝑖(1) = 0  (𝑓𝑜𝑟 𝑖 = 1~6 and i ≠ 5) 

𝜙′′3(0) = 1,   𝜙′′𝑖(0) = 0  (𝑓𝑜𝑟 𝑖 = 1~6 and i ≠ 3) 

𝜙′′6(1) = 1,   𝜙′′𝑖(1) = 0  (𝑓𝑜𝑟 𝑖 = 1~6 and i ≠ 6)                             (2.8) 

2.2.2 The Derivation of the Mathematic Model of Marine Riser 

To derive the mathematic model for marine risers, the following assumptions have been 

implemented throughout this research 

• The riser is regarded as a slender thin-walled beam which has large length to diameter 

ratio 
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• The riser bending rigidity 𝐸𝐼 is assumed as constant through the overall length. If 

buoyancy modules are included in the model, the bending rigidity provided by 

buoyancy modules are neglected 

• The undeformed condition of the riser pipe is assumed to be perfect straight and round 

, with no initial residual stress or out-of-roundness 

• The material of riser is homogeneous, isotropic and linear elastic 

• The rotatory inertia and Poisson effect are neglected for this study 

• The internal flow effect is neglected 

• The seabed is treated as flat, frictionless and have elastic support in vertical direction 

The main parts of the following derivation for the mathematic model of marine riser have 

followed the previous work by Nordgren (1974), Garrett (1982), and X.H. Chen (2002). Since the 

marine riser element has small ratio of characteristic diameter to length, it can be also treated as a 

kind of slender rod. 

In order to appropriately describe the deformed configuration of a marine riser, a global 

three-dimensional Cartesian coordinate system is used as shown in Figure 2.3. The origin of the 

coordinate is located at the mean water level with global Y-axis points upward. The instantaneous 

deformed configuration of the riser can be expressed in terms of a space vector 𝒓(𝑠, 𝑡). In Figure 

2.3, the vectors �̂�, �̂� and �̂� are unit vectors in riser tangential, normal and binormal directions 

respectively, which form a right-handed orthonormal triad. 
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Figure 2.3 Cartesian coordinate system for marine riser 

Taking an infinitesimal differential segment ds of the riser, circled in Figure 2.3, as an 

object for analysis, the free body diagram of which can be drawn in Figure 2.4.  

 
Figure 2.4 Free body diagram of an infinitesimal riser segment 
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By conservation of linear momentum, the force equilibrium for the differential segment of 

riser can be established as 

   −𝑭 + 𝒒𝑑𝑠 + 𝑭 +
𝜕𝑭

𝜕𝑠
𝑑𝑠 = 𝜌𝑚�̈�(𝑠, 𝑡)𝑑𝑠                            (2.9) 

Further simplification of equation (2.9) leads to the riser motion equation as 

𝒒 +
𝜕𝑭

𝜕𝑠
= 𝜌𝑚�̈�(𝑠, 𝑡)                                              (2.10) 

where 𝑭 is the internal resultant force of riser,  𝒒(𝑠, 𝑡) is distributed external load per unit length, 

𝜌𝑚 is the mass of riser per unit length, 𝒓(𝑠, 𝑡) is the position vector of the deformed riser centerline 

curve in space, which is a function of arc length 𝑠 and time 𝑡, �̈�(𝑠, 𝑡) is the acceleration of riser, 

superposed double dot denotes differentiation with respect to time 𝑡 twice.  

Now taking the moments with respect to the point A, as shown in Figure 2.4, the following 

equilibrium equation can be obtained by using conservation of angular momentum 

−𝑴+𝑴+
𝜕𝑴

𝜕𝑠
𝑑𝑠 + �̂�𝑑𝑠 × (𝑭 +

𝜕𝑭

𝜕𝑠
𝑑𝑠) + 𝒒𝑑𝑠 ⋅

𝑑𝑠

2
+𝒎𝑑𝑠 

=
𝜕𝑴

𝜕𝑠
𝑑𝑠 + �̂�𝑑𝑠 × (𝑭 +

𝜕𝑭

𝜕𝑠
𝑑𝑠) + 𝒒𝑑𝑠 ⋅

𝑑𝑠

2
+𝒎𝑑𝑠 = 𝟎                        (2.11) 

Omitting the higher order terms including 𝑑𝑠2 and then equation (2.11) can be further 

simplified as: 

𝑴′ + �̂� × 𝑭 +𝒎 = 𝟎                                                 (2.12) 

where 𝑴 is internal resultant moment of riser, 𝒎 is the applied external moment per unit length, 𝑠 

is arc length of the deformed riser measured from the top end of riser. 

Bold type, superscript symbol ‘′’, superposed symbols ‘ ’̇ and symbol ‘ ’̂ denote tensor or 

vector, derivative with respect to deformed arc length 𝑠, derivative with respect to time 𝑡 and unit 

vector respectively throughout the dissertation unless otherwise specified. 
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The constitution relationship for bending and torsion of a slender rod is given by Love 

(1944) as 

𝑴 = 𝐵𝜅�̂� + 𝐻�̂� = �̂� × 𝐵𝜅�̂� + 𝐻�̂� = �̂� × 𝐵𝒓′′ + 𝐻�̂�                             (2.13) 

where 𝐵 = 𝐸𝐼 is the bending rigidity of riser, 𝐸 is the Young’s modulus, 𝐼 is the second moment 

of area, 𝜅 = |𝒓′′| is the curvature of the deformed riser curve, �̂� =
𝒓′′

𝜅
 is the unit vector in normal 

direction, �̂� is the unit vector in binormal direction, �̂� is the unit vector in tangential direction, 𝐻 

is the torsional moment (i.e. axial component of the resultant bending moment, which is 

proportional to the torsional rigidity and the angle of twist per unit length). 

Substitution of the expression of bending moment in Eq (2.13) into Eq (2.12), yields 

(�̂� × 𝐵𝒓′′ + 𝐻�̂�)′ + �̂� × 𝑭 +𝒎 = 𝟎                                        (2.14) 

Now by employing the Frenet-serret formula for unit vector manipulations 

�̂�′ = 𝜅�̂� 

�̂�′ = −𝜅�̂� + 𝜏�̂�                                                      (2.15) 

Equation (2.14) can be further simplified as 

𝜅�̂� × 𝐵𝜅�̂� + �̂� × (𝐵𝒓′′)′ + 𝐻′�̂� + 𝐻�̂�′+ �̂� × 𝑭 +𝒎 = 𝟎                       (2.16) 

Taking the scalar product of equation (2.14) with unit tangential vector �̂� yields 

�̂� ∙ [�̂� × (𝐵𝒓′′)′ + 𝐻′�̂� + 𝐻𝜅�̂� + �̂� × 𝑭 +𝒎] = 𝐻′ + �̂� ∙ 𝒎 = 𝟎                 (2.17) 

If the distributed term 𝒎 is zero, the torque 𝐻 becomes independent of deformed arc length 

𝑠. For this research, both 𝒎 and 𝐻 are neglected for simplicity of the model. Hence, equation 

(2.16) can be further simplified as 

�̂� × (𝐵𝒓′′)′ + �̂� × 𝑭 = �̂� × [(𝐵𝒓′′)′ + 𝑭] = 𝟎                             (2.18) 

Now taking the cross product of equation (2.18) by the unit tangential vector �̂�, we obtain 

the following equations with vector manipulations 
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�̂� × {�̂� × [(𝐵𝒓′′)′ + 𝑭]} = 𝟎 

[−𝐵𝜅2 + �̂� ∙ 𝑭]�̂� − [(𝐵𝒓′′)′ + 𝑭] = 𝟎                                      (2.19) 

Letting 𝑇 = �̂� ∙ 𝑭 as the local tangential tension,  𝜆 = 𝑇 − 𝐵𝜅2 as a Lagrange multiplier, 

then the internal force of riser can be expressed as 

𝑭 = −(𝐵𝒓′′)′ + 𝜆𝒓′                                                  (2.20) 

Plugging the expression of the internal force 𝑭 into the motion equation (2.10), the 

following governing motion equation for marine risers can be eventually obtained 

−(𝐵𝒓′′)′′ + (�̃�𝒓′)
′
+ 𝒒 = 𝜌𝑚�̈�                                       (2.21) 

For hydrodynamic analysis of marine riser, the added-mass effect should be taken into 

consideration. Therefore, the governing motion equation for marine riser dynamic analysis can be 

written as 

𝑴𝑚�̈� + (𝐵𝒓
′′)′′ − (�̃�𝒓′)

′
= 𝒒                                       (2.22) 

where 𝑴𝑚 is the virtual mass matrix, 𝒓(𝑠, 𝑡) is a space vector for expressing the instantaneous 

deformed configuration of the riser under external loads.  

The small elongation stretching restraint equation for a marine riser can be expressed as 

𝒓′ ∙ 𝒓′ = (1 + 휀)2 ≈ (1 +
�̃�−𝑃𝑓𝐴𝑓+𝑃𝑐𝐴𝑐

𝐸𝐴
)
2

                                        (2.23)     

where 𝒓′ is the riser slope vector, 휀 is the axial strain of the riser, 𝐸 is the Young’s Modulus of 

riser material, 𝐴 is the riser tube cross-sectional area, 𝐴𝑓 is the riser outer cross-sectional area, 𝐴𝑐 

is the riser internal cross-sectional area, 𝑃𝑓 is the local external pressure and 𝑃𝑐 is the local internal 

pressure.  
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2.2.3 RISER3D Finite Element Model Formulation 

The Galerkin’s method is adopted to discretize the partial differential equations (PDEs) of 

the riser motion equation (2.22) and constraint equation (2.23). For approximation of the unknown 

primary variables, two types of shape functions are employed in RISER3D. One is the general 

quintic Hermite shape functions 𝑎𝑖(𝑠) (i=1~6), as presented in equation (2.6), for approximating 

the deformed state of the riser configuration 𝒓(𝑠, 𝑡) in element domain; the other is the quadratic 

shape functions 𝑝𝑚(𝑠), as defined in equation (2.24) below, for discretizing remaining parameters 

of �̃�, 𝐵, 𝒒, 𝑴𝑚, etc. 

    𝑝𝑚(𝜉) = {

1 − 3𝜉 + 2𝜉2  𝑓𝑜𝑟 𝑚 = 1

4𝜉(1 − 𝜉) 𝑓𝑜𝑟 𝑚 = 2

𝜉(2𝜉 − 1) 𝑓𝑜𝑟 𝑚 = 3

                                        (2.24)                 

The weak form of the governing equation (2.22) can be obtained by pre-multiplying the 

equation with general quintic Hermite shape functions 𝑎𝑖(𝑠) (𝑖 = 1~6), integrating over a typical 

element domain from 0 to 𝐿 and then performing integration by parts three times to trade the 

differentiation from the dependent variable 𝒓 to the shape functions, which results in a weaken 

continuity of the dependent variable in the governing motion equation of marine risers as 

∫ [𝑴𝒎�̈�𝑎𝑖(𝑠) − (𝐵𝒓
′)𝑎𝑖

′′′(𝑠) + (�̃�𝒓′)𝑎𝑖
′(𝑠) − 𝒒𝑎𝑖(𝑠)]𝑑𝑠

𝐿

0
= 𝑎𝑖(𝑠)(−𝐵𝒓

′′′ + �̃�𝒓′)|
𝐿
0
+

𝑎𝑖′(𝑠)𝐵𝒓′′|
𝐿
0
−𝑎𝑖′′(𝑠)𝐵𝒓′|

𝐿
0

           (i=1~6)                                 (2.25) 

where 𝑎𝑖(𝑠) (𝑖 = 1~6) are the general non-normalized quintic Hermite interpolation functions in 

global coordinate system, as presented by equation (2.6), 𝐿 is the element length of marine risers.   

The right-hand side integrated terms in equation (2.25) are usually called the generalized 

forces, which are denoted as 𝑭𝑖 hereafter. The specification of the generalized forces at the riser 
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extremities, i.e. the riser top and bottom ends, constitutes the natural boundary conditions for the 

finite element model of a marine riser. 

𝑭𝑖 = 𝑎𝑖(𝑠)(−𝐵𝒓
′′′ + �̃�𝒓′)|

𝐿
0
+ 𝑎𝑖′(𝑠)𝐵𝒓′′|

𝐿
0
−𝑎𝑖′′(𝑠)𝐵𝒓′|

𝐿
0

   (i=1~6)                   (2.26)      

The riser deflection 𝒓(𝑠, 𝑡), effective tension �̃�, bending stiffness 𝐵, transverse distributed 

loading 𝒒(𝑠, 𝑡) and the virtual mass matrix 𝑴𝒎(𝑠, 𝑡) are approximated below by using vector or 

tensor summation rules as 

𝒓(𝑠, 𝑡) = 𝑢𝑘𝑛(𝑡)𝑎𝑘(𝑠)𝒆𝑛 

𝒓(𝒏)(𝑠, 𝑡) =
𝑑𝑛[𝑢𝑘𝑛(𝑡)𝑎𝑘(𝑠)]

𝑑𝑠𝑛
𝒆𝑛 = 𝑢𝑘𝑛(𝑡)𝑎𝑘

(𝑛)(𝑠)𝒆𝑛 

�̃�(𝑠, 𝑡) = �̃�𝑚(𝑡)𝑝𝑚(𝑠) 

𝐵(𝑠) = 𝐵𝑚𝑝𝑚(𝑠) 

𝑴(𝑠, 𝑡) = 𝑴𝑚(𝑡)𝑝𝑚(𝑠)                                                (2.27) 

By substituting all the approximated expressions in equation (2.27) into the weak form of 

the riser governing equation (2.25), the following set of algebraic equations can be obtained for a 

typical riser element in the global coordinate system as 

𝛾𝑖𝑘𝑚𝑀𝑛𝑗𝑚�̈�𝑘𝑗 − 𝛼𝑖𝑘𝑚𝐵𝑚𝑢𝑘𝑛 + 𝛽𝑖𝑘𝑚�̃�𝑚𝑢𝑘𝑛 = 𝑞𝑖𝑛 + 𝐹𝑖𝑛 

(𝑓𝑜𝑟 𝑖, 𝑘 = 1~6;𝑚, 𝑛, 𝑗 = 1~3)                                              (2.28) 

For the convenience of coding, the coefficients in equation (2.28) are usually transformed 

into the normalized local coordinate system 𝜉 by incorporating the Jacobian transformation 

coefficients as defined in equation (2.7), which can lead to the final finite element model of marine 

risers using quintic Hermite shape functions as 

𝐿𝛾
𝑖𝑘𝑚

𝑀𝑛𝑗𝑚 �̈̅�𝑘𝑗 −
1

𝐿3
𝛼𝑖𝑘𝑚𝐵𝑚�̅�𝑘𝑛 + 

1

𝐿
𝛽
𝑖𝑘𝑚

�̃�𝑚�̅�𝑘𝑛 = 𝐿𝑞𝑖𝑛 +
𝐹𝑖𝑛
𝐽𝑖
  

(𝑓𝑜𝑟 𝑖, 𝑘 = 1~6;𝑚, 𝑛, 𝑗 = 1~3)                                     (2.29) 



 

45 

 

 

where �̅�𝑘𝑛 = 𝐽𝑘𝑢𝑘𝑛(𝑘 = 1~6), 𝐽𝑘 are the Jacobian transformation coefficients.  

A similar derivation procedures can be applied to the riser constraint equation (2.23), 

omitted here for brevity, which can be finally discretized as three algebraic equations in a typical 

riser element domain 

     
1

𝐿
𝛽
𝑖𝑘𝑚

�̅�𝑖𝑛�̅�𝑘𝑛 −  𝐿𝜏�̅� − 2𝐿�̅�𝑙𝑚휀𝑙 − 𝐿�̅�𝑗𝑙𝑚휀𝑗휀𝑙 = 0   (𝑖, 𝑘 = 1~6; 𝑗, 𝑙, 𝑚 = 1~3)           (2.30) 

The riser axial strain in equation (2.30) is defined as  

휀𝑙 = (
𝑇

𝐸𝐴
)
𝑙
= (

�̃� + 𝜌𝑓𝑔𝑦𝐴𝑓 − 𝜌𝑐𝑔𝑦𝐴𝑐

𝐸𝐴
)
𝑙

=
�̃�𝑙
𝐸𝐴

+
𝜌𝑓𝑔𝐴𝑓 − 𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑙 

𝑦𝑙 = {

�̅�12   (𝑓𝑜𝑟 𝑙 = 1)
1

2
�̅�12 +

5

32
�̅�22 +

1

64
�̅�32 +

1

2
�̅�42 −

5

32
�̅�52 +

1

64
�̅�62   (𝑓𝑜𝑟 𝑙 = 2)

�̅�42   (𝑓𝑜𝑟 𝑙 = 3)

                      (2.31) 

where 𝜌𝑐 is the density of internal content of riser if any, 𝐴𝑐 is the internal cross-sectional area of 

riser, 𝜌𝑓 is the external fluid density, 𝐴𝑓 is the outer cross-sectional area of riser,  𝑦𝑙 is the vertical 

elevation of any point in a typical riser element domain, and the element starting point (𝑠 = 0), 

middle point (𝑠 = 𝐿/2)  and end point (𝑠 = 𝐿) correspond to the subscript 𝑙 = 1,2,3 respectively. 

All the coefficients in equations (2.29) and (2.30) can be summarized and evaluated in the 

normalized local coordinate system, with an overbar symbol of  "   ̅" over them. The reason for 

transforming the coefficients from global coordinate system to normalized local coordinate system 

is for the convenience of numerical coding for a program. All readers should pay attention to this 

point and know how to do the derivatives transformation with the help of Jacobian transformation 

coefficients. Because numerical calculations for the coefficients of the finite element model are 

seldom performed in global coordinate system due to element mesh uncertainty and complexity. 

𝛼𝑖𝑘𝑚 = ∫𝑎𝑖′′′(s)𝑎𝑘′(𝑠)𝑝𝑚(𝑠)𝑑𝑠

L

0

=
1

𝐿3
𝐽𝑖𝐽𝑘𝛼𝑖𝑘𝑚 =

1

𝐿3
𝐽𝑖𝐽𝑘∫𝜙𝑖

′′′(𝜉)𝜙𝑘
′ (𝜉)𝑝𝑚(𝜉)𝑑𝜉

1

0
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𝛽𝑖𝑘𝑚 = ∫𝑎𝑖
′(𝑠)𝑎𝑘

′ (𝑠)𝑝𝑚(𝑠)𝑑𝑠

L

0

=
1

𝐿
𝐽𝑖𝐽𝑘𝛽𝑖𝑘𝑚 =

1

𝐿
𝐽𝑖𝐽𝑘∫𝜙𝑖′(𝜉)𝜙𝑘′(𝜉)𝑝𝑚(𝜉)𝑑𝜉

1

0

 

𝛾𝑖𝑘𝑚 = ∫𝑎𝑖(𝑠)𝑎𝑘(𝑠)𝑝𝑚(𝑠)𝑑𝑠

𝐿

0

= 𝐿𝐽𝑖𝐽𝑘𝛾𝑖𝑘𝑚 = 𝐿𝐽𝑖𝐽𝑘∫𝜙𝑖(𝜉)𝜙𝑘(𝜉)𝑝𝑚(𝜉)𝑑𝜉

1

0

 

𝑞𝑖𝑛 = ∫𝑎𝑖(𝑠)𝑞𝑛(𝑠)𝑑𝑠 =

L

0

𝐿𝐽𝑖𝑞𝑖𝑛 = 𝐿𝐽𝑖∫𝜙𝑖(𝜉)𝑞𝑛(𝜉)𝑑𝜉

1

0

 

𝜇𝑖𝑚 = ∫𝑎𝑖(𝑠)𝑝𝑚(𝑠)𝑑𝑠 =

L

0

𝐿𝐽𝑖𝜇𝑖𝑚 = 𝐿𝐽𝑖∫𝜙𝑖(𝜉)𝑝𝑚(𝜉)𝑑𝜉

1

0

 

𝜏𝑚 =  𝐿∫𝑝𝑚(𝜉)𝑑𝜉 = 𝐿𝜏�̅�

1

0

 

𝜂𝑙𝑚 =  𝐿∫𝑝𝑙(𝜉)𝑝𝑚(𝜉)𝑑𝜉

1

0

= 𝐿�̅�𝑙𝑚 

 𝜙𝑗𝑙𝑚 =  𝐿 ∫ 𝑝𝑗(𝜉)𝑝𝑙(𝜉)𝑝𝑚(𝜉)𝑑𝜉
1

0
= 𝐿�̅�𝑗𝑙𝑚                                (2.32) 

Since the quintic Hermite shape functions are six fifth-order polynomials, the analytical 

integration for the coefficients of �̅�𝑖𝑘𝑚, �̅�𝑖𝑘𝑚, and �̅�𝑖𝑘𝑚, in the normalized local coordinate system, 

are quite complicated to perform. The Gaussian Legendre quadrature is adopted, the details of 

which can be referred to section 2.4. The detailed numerical values of these coefficient matrices 

are presented in compact matrices forms Appendix B. 
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2.2.4 Finite Element Analysis Procedures and Flowcharts for RISER3D 

The finite element analysis procedures in RISER3D have been decomposed into two 

modules: the first module is for marine riser static analysis, which should omit the unsteady term 

in the finite element model equation (2.29); the second module is for marine riser dynamic 

analysis, which should take the unsteady term in the finite element model equation (2.29) into 

consideration.  

For RISER3D static analysis, the discretized riser motion equation (2.29) and the constraint 

equation (2.30), together with equation (2.31), can be rewritten in two residual forms by omitting 

the inertia term as 

𝑹1 = −
1

𝐿3
𝛼𝑖𝑘𝑚𝐵𝑚�̅�𝑘𝑛 + 

1

𝐿
𝛽
𝑖𝑘𝑚

�̃�𝑚�̅�𝑘𝑛 − 𝐿𝑞𝑖𝑛 −
𝐹𝑖𝑛
𝐽𝑖

 

       (𝑓𝑜𝑟 𝑖, 𝑘 = 1~6;𝑚, 𝑛 = 1~3)                                                (2.33) 

𝑹2 =
1

𝐿
𝛽
𝑖𝑘𝑚

�̅�𝑖𝑛�̅�𝑘𝑛 − 𝐿𝜏�̅� − 2𝐿�̅�𝑙𝑚 (
�̃�𝑙
𝐸𝐴

+
𝜌𝑓𝑔𝐴𝑓 − 𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑙)

− 𝐿�̅�𝑗𝑙𝑚 (
�̃�𝑗

𝐸𝐴
+
𝜌𝑓𝑔𝐴𝑓 − 𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑗)(

�̃�𝑙
𝐸𝐴

+
𝜌𝑓𝑔𝐴𝑓 − 𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑙) 

(𝑖, 𝑘 = 1~6; 𝑗, 𝑙, 𝑚 = 1~3)                                                (2.34) 

To obtain the solution of the coupled unknown 21 primary degrees of freedom (DoFs), i.e. 

�̅�𝑘𝑛(6 × 3 = 18 entries, as 𝑘=1~6, 𝑛=1~3) and �̃�𝑙 (three entries as 𝑙=1~3), Newton-Raphson 

iteration method is used to solve the coupled nonlinear system of equations, for the  𝑟𝑡ℎ iteration 

step we have 

[

𝜕𝑹1,𝑟−1

𝜕𝑢

𝜕𝑹1,𝑟−1

𝜕�̃�

𝜕𝑹2,𝑟−1

𝜕𝑢

𝜕𝑹2,𝑟−1

𝜕�̃�

] {
𝛿�̅�𝑟

𝛿�̃�𝑟
} = {−𝑹

1,𝑟−1

−𝑹2,𝑟−1
}                                           (2.35) 
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By implementing equation (2.35) to equation (2.33) and (2.34) respectively, we obtain the 

rth step iteration algorithm with the obtained previous iteration step solutions as 

(−
1

𝐿3
𝛼𝑖𝑘𝑚𝐵𝑚 + 

1

𝐿
𝛽
𝑖𝑘𝑚

�̃�𝑚
(𝑟−1)

) 𝛿�̅�𝑘𝑛
(𝑟) + (

1

𝐿
𝛽
𝑖𝑘𝑚

�̅�𝑘𝑛
(𝑟−1))  𝛿�̃�𝑚

(𝑟)
=

1

𝐿3
𝛼𝑖𝑘𝑚𝐵𝑚�̅�𝑘𝑛

(𝑟−1) −

 
1

𝐿
𝛽
𝑖𝑘𝑚

�̃�𝑚
(𝑟−1)

�̅�𝑘𝑛
(𝑟−1) + 𝐿𝑞

𝑖𝑛
+
𝐹𝑖𝑛

𝐽𝑖
  (𝑓𝑜𝑟 𝑖, 𝑘 = 1~6;𝑚, 𝑛 = 1~3)          (2.36) 

[
1

𝐿
𝛽
𝑖𝑘𝑚

�̅�𝑖𝑛
(𝑟−1)] 𝛿�̅�𝑘𝑛

(𝑟) − 𝐿
𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
[�̅�𝑙𝑚 + �̅�𝑗𝑙𝑚 (

�̃�𝑗
(𝑟−1)

𝐸𝐴
+
𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑗
(𝑟−1))] 𝛿𝑦𝑙

(𝑟) −

𝐿

𝐸𝐴
[�̅�𝑙𝑚 + �̅�𝑗𝑙𝑚 (

�̃�𝑗
(𝑟−1)

𝐸𝐴
+
𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑗
(𝑟−1))] 𝛿�̃�𝑙

(𝑟)
=

1

2
[−

1

𝐿
𝛽
𝑖𝑘𝑚

�̅�𝑖𝑛
(𝑟−1)�̅�𝑘𝑛

(𝑟−1) + 𝐿𝜏�̅� +

2𝐿�̅�𝑙𝑚 (
�̃�𝑙
(𝑟−1)

𝐸𝐴
+
𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑙
(𝑟−1)) + 𝐿�̅�𝑗𝑙𝑚 (

�̃�𝑗
(𝑟−1)

𝐸𝐴
+
𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑗
(𝑟−1))(

�̃�𝑙
(𝑟−1)

𝐸𝐴
+

𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑙
(𝑟−1))] (𝑓𝑜𝑟 𝑖, 𝑘 = 1~6; 𝑗, 𝑙, 𝑚 = 1~3)        (2.37) 

where 𝛿𝑦𝑙 should be calculated based on equation (2.31) as 

𝑦𝑙 = {

𝛿�̅�12   (𝑓𝑜𝑟 𝑙 = 1)
1

2
𝛿�̅�12 +

5

32
𝛿�̅�22 +

1

64
𝛿�̅�32 +

1

2
𝛿�̅�42 −

5

32
𝛿�̅�52 +

1

64
𝛿�̅�62   (𝑓𝑜𝑟 𝑙 = 2)

𝛿�̅�42   (𝑓𝑜𝑟 𝑙 = 3)

 

According to the iteration algorithm presented in equation (2.36) and (2.37), the detailed 

finite element procedures for marine riser static analysis can be summarized as: 

Guess initial displacement and force vector as {�̅�𝑘𝑛
(0)} and {�̃�𝑙

(0)
} 

Loop r=1:itmax (itmax is the preset maximum iteration steps) 

Initialize the global stiffness matrix [GLK] and global force vector {GLF} as zeros 

Loop ie=1:ne (ne is the total element number) 

Initialize the element stiffness matrix [K(ie)] and the force vector {F(ie)}as zeros 

Calculate the stiffness matrix [K(ie)] and the force vector {F(ie)} for each element 
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Assemble all the element stiffness matrix and the force vector to global stiffness matrix 

[GLK] and global force vector {GLF} 

End loop ie 

Impose boundary conditions to the global system equations 

Solve the global system equations by using Gauss elimination for 𝛿�̅�𝑘𝑛
(𝑟) 𝑎𝑛𝑑 𝛿�̃�𝑙

(𝑟)
 

Update the displacement and force vectors using �̅�𝑘𝑛
(𝑟) = �̅�𝑘𝑛

(𝑟−1) + 𝜆𝑟𝛿�̅�𝑘𝑛
(𝑟)

 and 

�̃�𝑚
(𝑟)
= �̃�𝑚

(𝑟−1)
+ 𝜆𝑟𝛿�̃�𝑚

(𝑟)

, where 𝜆𝑟 is the relaxation coefficient, usually taken as 0.8 

Check if 𝑚𝑎𝑥{𝛿�̅�𝑘𝑛
(𝑟)} < 휀, here 휀 is a preset convergence limit; if the condition is satisfied, 

then the code is considered as convergent and write results to output files and exit the loop r, 

otherwise continue for the next iteration step 

End loop r 

If when r=itmax and condition 𝑚𝑎𝑥{𝛿�̅�𝑟 , 𝛿�̃�𝑟} < 휀 still does not satisfied, print divergence 

message and terminate the code.  

For RISER3D dynamic analysis, the riser dynamic motion equation (2.29) and constraint 

equation (2.30), together with equation (2.31),  can be rewritten in residual form as 

𝑹1 = 𝐿𝛾
𝑖𝑘𝑚

𝑀𝑛𝑗𝑚�̈̅�𝑘𝑗(𝑡) −
1

𝐿3
𝛼𝑖𝑘𝑚𝐵𝑚�̅�𝑘𝑛(𝑡) + 

1

𝐿
𝛽
𝑖𝑘𝑚

�̃�𝑚(𝑡)�̅�𝑘𝑛(𝑡) − 𝐿𝑞𝑖𝑛(𝑡) −
𝐹𝑖𝑛(𝑡)

𝐽𝑖
 

  (𝑓𝑜𝑟 𝑖, 𝑘 = 1~6;𝑚, 𝑛, 𝑗 = 1~3)                                                   (2.38) 

𝑹2 =
1

𝐿
𝛽
𝑖𝑘𝑚

�̅�𝑖𝑛(𝑡)�̅�𝑘𝑛(𝑡) − 𝐿𝜏�̅� − 2𝐿�̅�𝑙𝑚 (
�̃�𝑙
𝐸𝐴

+
𝜌𝑓𝑔𝐴𝑓 − 𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑙)

− 𝐿�̅�𝑗𝑙𝑚 (
�̃�𝑗

𝐸𝐴
+
𝜌𝑓𝑔𝐴𝑓 − 𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑗)(

�̃�𝑙
𝐸𝐴

+
𝜌𝑓𝑔𝐴𝑓 − 𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑙) 

(𝑖, 𝑘 = 1~6; 𝑗, 𝑙, 𝑚 = 1~3)                                                        (2.39) 
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By implementation of the Newmark-beta scheme for the dynamic time integration, 

applying the Newton-Raphson iteration scheme, as shown in equation (2.35), to equation (2.38) 

and (2.39), for the 𝑟th iteration step and 𝑠th time step, lead to 

(𝐿𝛾
𝑖𝑘𝑚

𝑀𝑛𝑗𝑚

1

𝛽ℎ2
) 𝛿�̅�𝑘𝑗

(𝑠,𝑟) + (−
1

𝐿3
𝛼𝑖𝑘𝑚𝐵𝑚 +

1

𝐿
𝛽
𝑖𝑘𝑚

�̃�𝑚
(𝑠,𝑟−1)

) 𝛿�̅�𝑘𝑛

(𝑠,𝑟)

+ (
1

𝐿
𝛽
𝑖𝑘𝑚

�̅�𝑘𝑛
(𝑠,𝑟−1)) 𝛿�̃�𝑚

(𝑠,𝑟)

= 𝐿𝑞
𝑖𝑛

(𝑠,𝑟)
+
𝐹𝑖𝑛

(𝑠,𝑟)

𝐽𝑖
−𝐿𝛾

𝑖𝑘𝑚
𝑀𝑛𝑗𝑚�̈̅�𝑘𝑗

(𝑠,𝑟−1)
+
1

𝐿3
𝛼𝑖𝑘𝑚𝐵𝑚�̅�𝑘𝑛

(𝑠,𝑟−1)

− 
1

𝐿
𝛽
𝑖𝑘𝑚

�̃�𝑚
(𝑠,𝑟−1)

�̅�𝑘𝑛
(𝑠,𝑟−1) 

(𝑖, 𝑘 = 1~6; 𝑗, 𝑙, 𝑚 = 1~3; 𝑠 = 1~𝑖𝑡𝑠𝑡𝑒𝑝)                                                (2.40) 

[
1

𝐿
𝛽
𝑖𝑘𝑚

�̅�𝑖𝑛
(𝑠,𝑟−1)] 𝛿�̅�𝑘𝑛

(𝑠,𝑟) − 𝐿
𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
[�̅�𝑙𝑚 + �̅�𝑗𝑙𝑚 (

�̃�𝑗
(𝑠,𝑟−1)

𝐸𝐴
+

𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑗
(𝑠,𝑟−1))] 𝛿𝑦𝑙

(𝑠,𝑟) −
𝐿

𝐸𝐴
[�̅�𝑙𝑚 + �̅�𝑗𝑙𝑚 (

�̃�𝑗
(𝑠,𝑟−1)

𝐸𝐴
+
𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑗
(𝑠,𝑟−1))] 𝛿�̃�𝑙

(𝑠,𝑟)
=

1

2
[−

1

𝐿
𝛽
𝑖𝑘𝑚

�̅�𝑖𝑛
(𝑠,𝑟−1)�̅�𝑘𝑛

(𝑠,𝑟−1) + 𝐿𝜏�̅� + 2𝐿�̅�𝑙𝑚 (
�̃�𝑙
(𝑠,𝑟−1)

𝐸𝐴
+
𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑙
(𝑠,𝑟−1)) +

𝐿�̅�𝑗𝑙𝑚 (
�̃�𝑗
(𝑠,𝑟−1)

𝐸𝐴
+
𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑗
(𝑠,𝑟−1))(

�̃�𝑙
(𝑠,𝑟−1)

𝐸𝐴
+
𝜌𝑓𝑔𝐴𝑓−𝜌𝑐𝑔𝐴𝑐

𝐸𝐴
𝑦𝑙
(𝑠,𝑟−1)) ] (𝑓𝑜𝑟 𝑖, 𝑘 =

1~6; 𝑗, 𝑙, 𝑚 = 1~3; 𝑠 = 1~𝑖𝑡𝑠𝑡𝑒𝑝)              (2.41) 

where the symbol 𝛿 represents the iteration incremental of the unknown primary variables for the 

𝑟th iteration step at the 𝑠th time step, ℎ is the discretized time step, 𝛽 and 𝛾 are the Newmark-beta 

scheme control parameters, different combinations of these two parameters yield different 

Newmark-beta schemes. For instance, the average constant acceleration scheme requires 𝛽 = 0.25 

and 𝛾 = 0.5, which is widely used due to its unconditional stability. 
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According to the time marching and iteration algorithm presented in equation (2.40) and 

(2.41), the detailed finite element procedures for marine riser dynamic analysis in RISER3D can 

be summarized as: 

Determine initial displacement, velocity and force vector as {�̅�𝑘𝑛
(0)} {�̅̇�𝑘𝑛

(0)
}  and {�̃�𝑚

(0)
} 

according to initial conditions, the initial acceleration vector {�̅̈�𝑘𝑛
(0)

} can be solved using the 

discretized governing motion equation (2.29) 

Loop s=1:itstep (itstep is the total time steps, which is determined by the total simulation time 

and time step increment ∆𝑡 ) 

Loop r=1:itmax (itmax is the preset maximum iteration steps, such as itmax=500) 

Initialize the global stiffness matrix [GLK] and global force vector {GLF} as zeros 

Loop ie=1:ne (ne is the total riser element number) 

If r=1 

If s=1 

Update the displacement vector by �̅�𝑘𝑛
(1,1) = �̅�𝑘𝑛

(0) + ℎ�̅̇�𝑘𝑛
(0)
+
ℎ2

2
�̅̈�𝑘𝑛

(0)
 (ℎ𝑒𝑟𝑒 ℎ =

∆𝑡)  

Update the velocity vector by �̅̇�𝑘𝑛
(1,1)

= �̅̇�𝑘𝑛
(0)
+ ℎ�̅̈�𝑘𝑛

(0)
 

Update the effective tension by {�̃�𝑚
(1,1)

}={�̃�𝑚
(0)

} 

Else 

Update the displacement vector by �̅�𝑘𝑛
(𝑠,1) = �̅�𝑘𝑛

(𝑠−1,𝑁𝑠−1) + ℎ�̅̇�𝑘𝑛
(𝑠−1,𝑁𝑠−1) +

ℎ2

2
�̅̈�𝑘𝑛

(𝑠−1,𝑁𝑠−1)
 

Update the velocity vector by �̅̇�𝑘𝑛
(𝑠,1)

= �̅̇�𝑘𝑛
(𝑠−1,𝑁𝑠−1) + ℎ�̅̈�𝑘𝑛

(𝑠−1,𝑁𝑠−1)
 

Update the effective tension by {�̃�𝑚
(𝑠,1)

}={�̃�𝑚
(𝑠−1,𝑁𝑠−1)

} 
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endif 

Endif  

Initialize the element stiffness matrix [K(ie)] and the force vector {F(ie)}as zeros 

Calculate the element stiffness matrix [K(ie)] and the force vector {F(ie)}  

Assemble the element stiffness matrix and the force vector to form the global stiffness matrix 

[GLK] and global force vector {GLF} 

End loop ie 

Impose boundary conditions to the assembled global system of equations 

Solve the global system of equations using a banded-matrix solver for 𝛿�̅�𝑘𝑛
(𝑠,𝑟) 𝑎𝑛𝑑 𝛿�̃�𝑚

(𝑠,𝑟)
 

Update the riser nodal displacement, velocity and acceleration by using formulas 

�̅�𝑘𝑛
(𝑠,𝑟+1) = �̅�𝑘𝑛

(𝑠,𝑟) + 𝜆𝑟𝛿�̅�𝑘𝑛
(𝑠,𝑟)   

�̅̇�𝑘𝑛
(𝑠,𝑟+1)

= �̅̇�𝑘𝑛
(𝑠,𝑟)

+
𝛾

𝛽ℎ
𝜆𝑟𝛿�̅�𝑘𝑛

(𝑠,𝑟)   

𝛿�̃�𝑚
(𝑠,𝑟+1)

= �̃�𝑚
(𝑠,𝑟)

+ 𝛿�̃�𝑚
(𝑠,𝑟)

 

If r=1 then 

�̅̈�𝑘𝑛
(𝑠,𝑟+1)

= �̅̈�𝑘𝑛
(𝑠−1,𝑁𝑠−1) +

1

𝛽ℎ2
𝜆𝑟𝛿�̅�𝑘𝑛

(𝑠,𝑟)   

Else  

�̅̈�𝑘𝑛
(𝑠,𝑟+1)

= �̅̈�𝑘𝑛
(𝑠,𝑟)

+
1

𝛽ℎ2
𝜆𝑟𝛿�̅�𝑘𝑛

(𝑠,𝑟)   

endif 

if 𝑚𝑎𝑥 {𝛿�̅�𝑘𝑛
(𝑠,𝑟), 𝛿�̃�𝑚

(𝑠,𝑟)
} < 휀 and 𝑟 < 𝑖𝑡𝑚𝑎𝑥 

The time step s is convergent, mark down the current iteration step 𝑟 = 𝑁𝑠, exit the iteration 

loop and start the simulation for the next time step s+1. Therefore, the convergent 
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displacement, velocity and acceleration for the time step s are �̅�𝑘𝑛
(𝑠,𝑁𝑠), �̅̇�𝑘𝑛

(𝑠,𝑁𝑠)
 and 

�̅̈�𝑘𝑛
(𝑠,𝑁𝑠)

 

if 𝑚𝑎𝑥 {𝛿�̅�𝑘𝑛
(𝑠,𝑟), 𝛿�̃�𝑚

(𝑠,𝑟)
} > 휀 and 𝑟 < 𝑖𝑡𝑚𝑎𝑥 

Continue for the next iteration loop until the convergent criteria for the time step s are 

satisfied 

if 𝑚𝑎𝑥 {𝛿�̅�𝑘𝑛
(𝑠,𝑟), 𝛿�̃�𝑚

(𝑠,𝑟)
} > 휀 and 𝑟 ≥ 𝑖𝑡𝑚𝑎𝑥 

print scheme divergence warning message to the computer screen for the analyst, check all 

the input data and code control parameters to restart the overall analysis 

endif 

End loop r 

End loop s 
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A flow chart for RISER3D static finite element analysis procedures by Newton Raphson 

iteration is shown in Figure 2.5 and the dynamic finite element analysis procedures by Newmark-

beta scheme is shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Static analysis flow chart for RISER3D 
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Figure 2.6 Dynamic analysis flow chart for RISER3D 
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2.3 RIER3D Boundary Conditions and Seabed Support Model 

2.3.1 Typical Beam Boundary Conditions of RISER3D 

By using finite element method for solving engineering problems of slender structures, 

specific boundary conditions (BCs) must be correctly specified and imposed. For boundary 

conditions of marine risers, it can be started with the generalized force equation (2.26). As a 

general rule for finite element analysis, the dependent unknowns 𝒓(𝑠, 𝑡) in the same form as the 

shape function 𝑎𝑖(𝑠) appearing in the generalized force expression (2.26) is termed as a primary 

variable (PV), and the specification of which constitutes the Dirichlet (essential) boundary 

conditions; the coefficients of the shape function 𝑎𝑖(𝑠) in the generalized force expression (2.26) 

are termed as a secondary variables (SVs), the specification of which constitutes the Neumann 

(natural) boundary conditions. And the primary and secondary variables always appear in pairs 

(J.N. Reddy, 2006). For riser finite element model by using quintic Hermite shape functions, there 

are a total of three pairs of primary and secondary variable𝑠 (𝑃𝑉𝑖, 𝑆𝑉𝑖) (𝑖 = 1~3), i.e. 

(𝑃𝑉1, 𝑆𝑉1) = (𝒓, −𝐵𝒓′′′ + �̃�𝒓′), (𝑃𝑉2, 𝑆𝑉2) = (𝒓′ , 𝐵𝒓′′), (𝑃𝑉3, 𝑆𝑉3) = (𝒓′′ , 𝐵𝒓′) respectively.  

As for the boundary conditions of internal elements of RISER3D, the continuity of the 

generalized displacements and balance of the generalized forces should be guaranteed, which is 

illustrated in Figure 2.7.  
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Figure 2.7 The boundary conditions for the internal nodes of RISER3D 

For typically supported beam elements at the end of the domain, the boundary conditions 

are summarized in Figure 2.8. With distinction to the cubic Hermite finite element method, the 

quintic Hermite finite element method has a third pair of the primary and secondary variable 

(𝑃𝑉3, 𝑆𝑉3) = (𝒓′′ , 𝐵𝒓′), which can help to impose Dirichlet boundary condition for the riser 

curvature and Neumann boundary condition for the bending slope of riser. This point is the key 

difference on boundary conditions part between the new RISER3D and traditional CABLE3D. 
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Figure 2.8 Typical boundary conditions for RISER3D 

Take the pinned end and the fixed end boundary condition as examples, the imposition of 

the classical boundary conditions in RISER3D is shown in Figure 2.9 below. 

 

Figure 2.9 Typical boundary condition examples for RISER3D 
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As for the beam or riser has a rotational stiffness restraint at the boundary, this type of 

boundary conditions is quite different from the traditional finite element method by using 

RISER3D. Now taking the one-dimensional beam element as an example, assuming that the beam 

is subject to a rotational stiffness 𝑘𝜃 restraint at the starting end (i.e. 𝜉 = 0) and we can express 

the generalized forces of the beam bending moment and beam slop as 

−𝐵𝑟′′= −𝑘𝜃(𝑟′ − 𝑟′0)                                                (2.42) 

𝐵𝑟′ = −𝑘𝜅(𝑟′′ − 𝑟′′0)                                               (2.43) 

where 𝐵 is the bending rigidity of the beam, 𝑟, 𝑟′ and 𝑟′′ are the nodal displacement, slope and 

curvature respectively, 𝑘𝜅is an assumed constant representing stiffness related to the curvature, 𝑟′0 

is a referred neutral angle where the external bending moment applied by the rotational stiffness 

is zero, 𝑟′′0 is a referred curvature which can be solved later. 

Now solving the expression of the beam slope 𝑟′ by equation (2.42) and substituting it to 

the left hand side of equation (2.43), the following two relationships hold  

  𝑘𝜅 = −
𝐵2

𝑘𝜃
                                                       (2.44) 

𝑘𝑘 𝑟′′0= 𝐵𝑟′0                                                   (2.45) 

Therefore, the related entries in the global stiffness matrix and force vector for the 

rotational stiffness boundary condition should be updated as  

𝐾22 𝐾22+ 𝑘𝜃 

𝐹2𝐹2+ 𝑘𝜃𝑟′0 

𝐾33 𝐾33 −
𝐵2

𝑘𝜃
     

𝐹3𝐹3+ 𝐵𝑟′0                                                  (2.46) 
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Form equation (2.46), it can be seen that, for RISER3D, all the equations related to the 

unknown beam slope and beam curvature should be updated if a rotational stiffness is applied to 

at the end of an element. This part is quite different to traditional finite element method by using 

cubic Hermite shape functions, analysts should pay great attention to this kind of boundary 

conditions to avoid mistakes for finite element analysis. 

2.3.2 Linear Spring-damper Seabed Model for RISER3D 

The seabed is modeled as a spring system in riser static analysis and a spring-damping 

system in riser dynamic analysis, this section has mainly followed the work of X.H. Chen (2002) 

with minor modifications to be consistent with this dissertation, reader can also refer to her 

dissertation if interested. 

The reaction force, in vertical direction, per unit length exerted by the elastic seabed on the 

riser can be modeled as 

𝑞𝑠𝑜𝑖𝑙 = {

𝑤𝑠𝑢𝑏

𝑅𝑓
[𝑅𝑓 − (𝒓 ∙ 𝒋̂ − 𝐻𝑏)]  , 𝑓𝑜𝑟 (𝒓 ∙ 𝒋̂ − 𝐻𝑏) < 𝑅𝑓

0                        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (2.47) 

where 𝑅𝑓 is the distance from the centerline of the riser to the outermost surface of the riser; 𝐻𝑏 is 

the vertical coordinate of seabed in three-dimensional riser coordinate system; 𝑤𝑠𝑢𝑏 is the 

submerged (also called apparent) weight of riser per unit length, which can be calculated by 

𝑤𝑠𝑢𝑏 = {
(𝜌𝑡𝐴𝑡 + 𝜌𝑖𝐴𝑖 − 𝜌𝑓𝐴𝑓) 𝑔  (𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑖𝑙𝑙𝑒𝑑)

(𝜌𝑡𝐴𝑡 − 𝜌𝑓𝐴𝑓) 𝑔        (𝑒𝑚𝑝𝑡𝑦 𝑝𝑖𝑝𝑒)
                   (2.48) 

The equivalent nodal force exerted by seabed support can be computed by multiplying both 

sides of equation (2.47) by quintic Hermite shape functions 𝑎𝑖(𝑠) (𝑖 = 1~6) and integrating with 

respect to arc length s from 0 to 𝐿 in an element domain 
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∫ 𝑞𝑠𝑜𝑖𝑙𝑎𝑖(𝑠) 𝑑𝑠 = ∫
𝑤𝑠𝑢𝑏

𝑅𝑓
[𝑅𝑓 − (𝒓 ∙ 𝒋̂ − 𝐻𝑏)]𝑎𝑖(𝑠) 𝑑𝑠

𝐿

0

𝐿

0
= 𝜇𝑖𝑚 (𝑤𝑠𝑢𝑏 +

𝐻𝑏

𝑅𝑓
)
𝑚

−

𝛾𝑖𝑘𝑚 (
𝑤𝑠𝑢𝑏

𝑅𝑓
)
𝑚

𝑢𝑘2                                           (2.49) 

where the integration coefficients 𝜇𝑖𝑚 and can 𝛾𝑖𝑘𝑚 be referred to equation (2.32). 

The distributed force due to soil damping is also considered in vertical direction 

𝑞𝑠𝑑 = {
−𝐶𝑠𝑑�̇� ∙ 𝒋̂         , 𝑓𝑜𝑟 (𝒓 ∙ 𝒋̂ − 𝐻𝑏) < 𝑅𝑓

0    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                             (2.50) 

where 𝐶𝑠𝑑 is the soil damping coefficient which can be calculated as  

𝐶𝑠𝑑 = 2√
𝑤𝑠𝑢𝑏𝜌𝑚

𝑅𝑓
                                                       (2.51) 

The nodal equivalent damping force can be evaluated by multiplying both sides of equation 

(2.50) by quintic Hermite shape functions 𝑎𝑖(𝑠) (𝑖 = 1~6) and integrating with respect to arc 

length s from 0 to 𝐿 in an element domain 

∫ 𝑞𝑠𝑑𝑎𝑖(𝑠) 𝑑𝑠 = ∫ (−𝐶𝑠𝑑�̇� ∙ 𝒋̂)𝑎𝑖(𝑠) 𝑑𝑠 = −
𝐿

0

𝐿

0
(𝐶𝑠𝑑)𝑚𝛾𝑖𝑘𝑚�̇�𝑘2             (2.52) 

2.4 Calculation of Coefficient Matrices Using Gaussian Legendre Quadrature 

The n-point Gauss Legendre quadrature approach is a numerical integration rule 

constructed to yield an exact result for a polynomial of degree 2n-1 or less by using corresponding 

nodes x𝑖  and weight w𝑖 (i=1~n).  In other words, a polynomial of degree p can be integrated exactly 

by employing [(p+1)/2] Gauss points, here the symbol ‘[ ]’ denotes taking integer.  

The n-point Gauss Legendre quadrature formula can be expressed as 

      ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓 (
𝑏−𝑎

2
𝑡 +

𝑏+𝑎

2
)

1

−1

𝑏

𝑎

𝑏−𝑎

2
𝑑𝑡 ≈

𝑏−𝑎

2
∑ 𝑓 (

𝑏−𝑎

2
𝑥𝑖 +

𝑏+𝑎

2
)𝑛

𝑖=1 𝑤𝑖            (2.53) 
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where the Gauss nodes x𝑖 in the formula are defined as the roots of the Legendre polynomial 

P𝑛(𝑥) , and the integration weights w𝑖 can be calculated by function: 

𝑤𝑖 =
2

(1−𝑥𝑖
2)[𝑃𝑛′(𝑥𝑖)]

2                                                          (2.54) 

In order to guarantee the accuracy of all the coefficients in equation (2.32), an eleven-point 

Gauss Legendre quadrature is adopted in RISER3D program. The nodes and weights are referred 

to data cited from the website https://pomax.github.io/bezierinfo/legendre-gauss.html, which are 

shown in the Figure 2.10. 

 

Figure 2.10 11-Point Gauss Legendre weights and nodes abscissa (Reprinted from Kamermans, 

2011) 

2.5 Data Postprocessing Methods for CABLE3D and RISER3D 

For CABLE3D, the riser deflection function within an element domain is a cubic 

polynomial function, whose second and third derivative are piecewise linear and constant within 

the element domain. Therefore, the calculation of riser bending moment (𝐵𝒓’’) and shear force 

(𝐵𝒓’’’), in an element domain, suffers considerable error by directly taking differentiations of the 

http://mathworld.wolfram.com/LegendrePolynomial.html
https://pomax.github.io/bezierinfo/legendre-gauss.html
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riser deflection function. A better alternative for bending moment and shear force computation is 

using the five-point finite difference method (marked as 5pFDM in the legend of figures in this 

dissertation), the formulas of which are summarized as three schemes from equation (2.55) to 

(2.57). 

Five-point forward asymmetric scheme for first and second derivative with uniform grid 

length ∆𝑥 is 

𝑓′(𝑥𝑖) =
−25𝑓𝑖 + 48𝑓𝑖+1 − 36𝑓𝑖+2 + 16𝑓𝑖+3 − 3𝑓𝑖+4

12∆𝑥
+ 𝜊(∆𝑥4) 

𝑓′′(𝑥𝑖) =
35𝑓𝑖−104𝑓𝑖+1+114𝑓𝑖+2−56𝑓𝑖+3+11𝑓𝑖+4

12∆𝑥2
+ 𝜊(∆𝑥3)                                 (2.55) 

where 𝑓𝑖 = 𝑓(𝑥𝑖), 𝑓𝑖+j = 𝑓(𝑥𝑖 + 𝑗∆𝑥)(𝑗 = 1~4). 

Five-point backward asymmetric scheme for first and second derivative with uniform grid 

length ∆𝑥 is 

𝑓′(𝑥𝑖) =
3𝑓𝑖−4 − 16𝑓𝑖−3 + 36𝑓𝑖−2 − 48𝑓𝑖−1 + 25𝑓𝑖

12∆𝑥
+ 𝜊(∆𝑥4) 

𝑓′′(𝑥𝑖) =
11𝑓𝑖−4−56𝑓𝑖−3+114𝑓𝑖−2−104𝑓𝑖−1+35𝑓𝑖

12∆𝑥2
+ 𝜊(∆𝑥3)                              (2.56) 

where 𝑓𝑖 = 𝑓(𝑥𝑖), 𝑓𝑖−j = 𝑓(𝑥𝑖 − 𝑗∆𝑥)(𝑗 = 1~4). 

Five-point central symmetric scheme for first and second derivative with uniform grid 

length ∆𝑥 is 

𝑓′(𝑥𝑖) =
𝑓𝑖−2 − 8𝑓𝑖−1 + 8𝑓𝑖+1 − 𝑓𝑖+2

12∆𝑥
+ 𝜊(∆𝑥4) 

𝑓′′(𝑥𝑖) =
−𝑓𝑖−2+16𝑓𝑖−1−30𝑓𝑖+16𝑓𝑖+1−𝑓𝑖+2

12∆𝑥2
+ 𝜊(∆𝑥4)                              (2.57) 

What is worth mentioning is that five-point uniform grid finite difference method works 

well for a lot of general cases. However, this approximation scheme cannot yield good prediction 

at the near boundary nodes if the function has large gradient there; besides, if the problem subjected 
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to harmonic type loads with very high frequencies, this scheme may also yield poor results for 

approximating the structure bending moment and shear force. 

For RISER3D program, the riser deflection function, in an element domain, is a fifth-order 

polynomial function, whose second and third derivatives are cubic and quadratic functions. For 

instance, the one-dimensional beam deflection function, in the normalized local coordinate system, 

of the eth element can be expressed as 

𝑟𝑒(𝜉) =∑𝑢𝑖
𝑒𝐽𝑖𝜙𝑖

𝑒(𝜉)

6

𝑖=1

= 𝐴𝑞5𝜉
5 + 𝐴𝑞4𝜉

4 + 𝐴𝑞3𝜉
3 + 𝐴𝑞2𝜉

2 + 𝐴𝑞1𝜉 + 𝐴𝑞0  

 𝑓𝑜𝑟 𝜉 ∈ [0,1]           (2.58) 

where the constant coefficients are calculated by the following expressions using the obtained 

nodal primary variable vector {𝑢1
𝑒 𝑢2

𝑒 𝑢3
𝑒 𝑢4

𝑒 𝑢5
𝑒 𝑢6

𝑒}𝑇, here 𝑢1
𝑒 and 𝑢4

𝑒 denotes 

the nodal displacements, 𝑢2
𝑒 and 𝑢5

𝑒 denotes the nodal slopes, 𝑢3
𝑒 and 𝑢6

𝑒 denotes the nodal 

curvatures. 

𝐴𝑞5 = −6𝑢1
𝑒 − 3ℎ𝑒𝑢2

𝑒 −
ℎ𝑒2

2
𝑢3

𝑒 + 6𝑢4
𝑒 − 3ℎ𝑒𝑢5

𝑒 +
ℎ𝑒2

2
𝑢6

𝑒 

𝐴𝑞4 = 15𝑢1
𝑒 + 8ℎ𝑒𝑢2

𝑒 +
3ℎ𝑒2

2
𝑢3

𝑒 − 15𝑢4
𝑒 + 7ℎ𝑒𝑢5

𝑒 − ℎ𝑒2𝑢6
𝑒  

𝐴𝑞3 = −10𝑢1
𝑒 − 6ℎ𝑒𝑢2

𝑒 −
3ℎ𝑒2

2
𝑢3

𝑒 + 10𝑢4
𝑒 − 4ℎ𝑒𝑢5

𝑒 +
ℎ𝑒2

2
𝑢6

𝑒 

𝐴𝑞2 =
ℎ𝑒2

2
𝑢3

𝑒 

𝐴𝑞1 = ℎ
𝑒𝑢2

𝑒 

𝐴𝑞0 = 𝑢1
𝑒                                                                   (2.59) 

The slope of the beam for eth element can be calculated by  

𝑑𝑟𝑒(𝑠)

𝑑𝑠
=

1

ℎ𝑒
𝑑𝑟𝑒(𝜉)

𝑑𝜉
=

1

ℎ𝑒
(5𝐴𝑞5𝜉

4 + 4𝐴𝑞4𝜉
3 + 3𝐴𝑞3𝜉

2 + 2𝐴𝑞2𝜉 + 𝐴𝑞1)       (2.60) 
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The bending moment of the beam for eth element can be calculated by  

𝑀𝑒(𝑠) = −𝐸𝐼
𝑑2𝑟𝑒(𝑠)

𝑑𝑠2
= −

𝐸𝐼

ℎ𝑒2
(20𝐴𝑞5𝜉

3 + 12𝐴𝑞4𝜉
2 + 6𝐴𝑞3𝜉 + 2𝐴𝑞2)        (2.61) 

The shear force of the beam for eth element can be calculated by  

𝑄𝑒(𝑠) = −𝐸𝐼
𝑑3𝑟𝑒(𝑠)

𝑑𝑠3
= −

𝐸𝐼

ℎ𝑒3
(60𝐴𝑞5𝜉

2 + 24𝐴𝑞4𝜉 + 6𝐴𝑞3)               (2.62) 

where ℎ𝑒 denotes the 𝑒th element length from equation (2.59) to (2.62) 

Therefore, equations from (2.58) to (2.62) form a very effective and easy method for 

postprocessing the riser deflection, slope, bending moment and shear force. This method is called 

quintic Hermite interpolation method, the bending moment and shear force can be directly 

obtained by taking differentiations of the riser deflection function within an element domain. 
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3 VALIDITY BENCHMARK AND EFFECTIVENESS STUDY FOR RISER3D 

3.1 Quintic Hermite Finite Element Model Formulation for Beam Problems 

The governing equation of transverse deflection of one-dimensional Euler Bernoulli beam 

with length 𝐿, subject to static transverse loads, is a fourth order differential equation as 

𝑑2

𝑑𝑥2
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
) + 𝐾𝑠𝑢 = 𝑞(𝑥)  𝑥 ∈ [0, 𝐿]                                        (3.1) 

where 𝐸 is modulus of elasticity of the beam material, 𝐼 is the second moment of area, 𝐾𝑠 is the 

elastic foundation stiffness if any, 𝑞(𝑥) is distributed transverse load and 𝑢 is transverse deflection 

of Euler Bernoulli beam (the governed dependent variable), the global positive 𝑥 direction is 

aligned with the axial center line of the beam. 

For problems in solid mechanics, the weak formulation derivation can be either by 

principle of virtual work or by weighted residual method, i.e. by integration of the governing 

equation with weight functions. For the present study, the second one is adopted. 

For weak form derivation for the differential equation (3.1), moving all terms to the left-

hand-side and multiplying with the general quintic Hermite shape functions (in global coordinate 

system) as 

[
𝑑2

𝑑𝑥2
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
) + 𝐾𝑠𝑢 − 𝑞(𝑥)] 𝑎𝑖(𝑥) = 0  𝑥 ∈ [0, 𝐿]                           (3.2) 

Taking integration of equation (3.2) over a typical beam element domain [𝑥𝑎, 𝑥𝑏] and 

performing integration by parts three times, lead to weak form equation as 

0 = ∫ [−(𝐸𝐼
𝑑𝑢

𝑑𝑥
) 𝑎′′′𝑖(𝑥) + 𝐾𝑠𝑢𝑎𝑖(𝑥) − 𝑞(𝑥)𝑎𝑖(𝑥)] 𝑑𝑥 + [𝑎𝑖(𝑥)

𝑑

𝑑𝑥
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
)] |
𝑥𝑏
𝑥𝑎
−

𝑥𝑏
𝑥𝑎

[𝑎𝑖′(𝑥) (𝐸𝐼
𝑑2𝑢

𝑑𝑥2
)] |
𝑥𝑏
𝑥𝑎
+ [𝑎𝑖′′(𝑥) (𝐸𝐼

𝑑𝑢

𝑑𝑥
)] |
𝑥𝑏
𝑥𝑎

                                  (3.3) 
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where 𝑎𝑖(𝑥) (𝑖 = 1~6) are the general quintic Hermite interpolation functions as presented in 

equation (2.6), and 𝑎𝑖′(𝑥), 𝑎𝑖′′(𝑥), 𝑎𝑖′′′(𝑥) are the first, second and third derivatives of the quintic 

Hermite shape functions respectively. 

Three integrated terms in the weak form equation (3.3) are due to integration by parts three 

times, which correspond to three primary variable and secondary variable pairs as 

(𝑢,
𝑑

𝑑𝑥
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
)  ),  (

𝑑𝑢

𝑑𝑥
, 𝐸𝐼

𝑑2𝑢

𝑑𝑥2
 )  𝑎𝑛𝑑 (

𝑑2𝑢

𝑑𝑥2
, 𝐸𝐼

𝑑𝑢

𝑑𝑥
  ). Therefore, the essential (Dirichlet) boundary 

conditions involve the specification of the beam primary variables, i.e. the beam deflection 𝑢, the 

beam rotation angle 
𝑑𝑢

𝑑𝑥
 and the beam curvature 

𝑑2𝑢

𝑑𝑥2
; the natural (Newman) boundary conditions 

involve the specification of the secondary variables, i.e. the beam shear force 
𝑑

𝑑𝑥
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
), the beam 

bending moment 𝐸𝐼
𝑑2𝑢

𝑑𝑥2
 and the beam slope 𝐸𝐼

𝑑𝑢

𝑑𝑥
. It is worth mentioning that the third natural 

boundary condition, which does not appear when cubic Hermite shape functions are adopted in 

traditional weak formulation. The physical meaning of this term is straightforward, it is the beam 

slope and can be denoted as 𝑆(𝑥) = 𝐸𝐼
𝑑𝑢

𝑑𝑥
. 

With the weak form equation (3.3), the generalized force vector , for the nth element, can 

be expressed as 

𝑓𝑖
𝑛 = − [𝑎𝑖(𝑥)

𝑑

𝑑𝑥
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
)] |
𝑥𝑏
𝑥𝑎
+ [𝑎𝑖

′(𝑥) (𝐸𝐼
𝑑2𝑢

𝑑𝑥2
)] |
𝑥𝑏
𝑥𝑎
− [𝑎𝑖

′′(𝑥) (𝐸𝐼
𝑑𝑢

𝑑𝑥
)] |
𝑥𝑏
𝑥𝑎
(𝑖 = 1~6)       

(3.4) 

The entries of the generalized force vector can be obtained by applying the quintic Hermite 

shape function properties, given in equation (2.8), to equation (3.4) as 

𝑓1
𝑛 = −[𝑎1(𝑥)

𝑑

𝑑𝑥
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
)] |

𝑥𝑏
𝑥𝑎
+ 0 + 0 =

𝑑

𝑑𝑥
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
) |

 
𝑥𝑎 
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𝑓2
𝑛 = 0 + [𝑎′2(𝑥) (𝐸𝐼

𝑑2𝑢

𝑑𝑥2
)] |

𝑥𝑏
𝑥𝑎
+ 0 = −(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
) |

 
𝑥𝑎 

𝑓3
𝑛 = 0 + 0 − [𝑎′′3(𝑥) (𝐸𝐼

𝑑𝑢

𝑑𝑥
)] |

𝑥𝑏
𝑥𝑎
= (𝐸𝐼

𝑑𝑢

𝑑𝑥
) |

 
𝑥𝑎 

𝑓4
𝑛 = − [𝑎4(𝑥)

𝑑

𝑑𝑥
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
)] |

𝑥𝑏
𝑥𝑎
+ 0 + 0 = −

𝑑

𝑑𝑥
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
) |

 
𝑥𝑏 

𝑓5
𝑛 = 0 + [𝑎′5(𝑥) (𝐸𝐼

𝑑2𝑢

𝑑𝑥2
)] |

𝑥𝑏
𝑥𝑎
+ 0 = (𝐸𝐼

𝑑2𝑢

𝑑𝑥2
) |

 
𝑥𝑏 

𝑓6
𝑛 = 0 + 0 − [𝑎′′6(𝑥) (𝐸𝐼

𝑑𝑢

𝑑𝑥
)] |
𝑥𝑏
𝑥𝑎
= −(𝐸𝐼

𝑑𝑢

𝑑𝑥
) |

 
𝑥𝑏                             (3.5) 

where the generalized force 𝑓1
𝑛

 and 𝑓4
𝑛

 denote the beam shear force of the nth element; 𝑓2
𝑛

 and 

𝑓5
𝑛

 denote the beam bending moment of the nth element; 𝑓3
𝑛

 and 𝑓6
𝑛

 denote the beam slope of the 

nth element.  

The function of the beam transverse deflection, for the nth element, can be approximated 

by employing general quintic Hermite shape functions as 

𝑢𝑛(𝑥) ≈ 𝑢𝑎𝑝
𝑛(𝑥) = ∑ 𝑢𝑗

𝑛𝑎𝑗
6
𝑗=1 (𝑥) 𝑓𝑜𝑟 (𝑗 = 1~6)                               (3.6) 

Substituting equation (3.6) into the beam weak form equation (3.3), we obtain 

∫ [−(𝐸𝐼
𝑑(∑ 𝑢𝑗

𝑛𝑎𝑗
6
𝑗=1 (𝑥))

𝑑𝑥
) 𝑎′′′𝑖(𝑥) + 𝐾𝑠 (∑ 𝑢𝑗

𝑛𝑎𝑗
6
𝑗=1 (𝑥)) 𝑎𝑖(𝑥) − 𝑞(𝑥)𝑎𝑖(𝑥)] 𝑑𝑥 =

𝑥𝑏
𝑥𝑎

𝑓𝑖
𝑛

  (3.7) 

Further simplification of equation (3.7) can yield the nth element finite element model, 

using quintic Hermite shape functions, for prismatic Euler Bernoulli beams as 

∑ 𝐾𝑖𝑗
𝑛𝑢𝑗

𝑛
=6

𝑗=1 𝑓𝑖
𝑛 + 𝑞𝑖

𝑛 (𝑖 = 1~6)                                         (3.8) 

where the beam element stiffness matrix and the external transverse load vector can be expressed 

as follow 

𝐾𝑖𝑗
𝑛 = ∫ [−𝐸𝐼𝑎′′′𝑖(𝑥)𝑎

′
𝑗(𝑥) + 𝐾𝑠𝑎𝑖(𝑥)𝑎𝑗(𝑥)]𝑑𝑥

𝑥𝑏
𝑥𝑎

                               (3.9) 
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 𝑞𝑖
𝑛 = ∫ [𝑞(𝑥)𝑎𝑖(𝑥)]𝑑𝑥

𝑥𝑏
𝑥𝑎

                                                   (3.10) 

By incorporating the Jacobian transformation coefficient, as defined in equation (2.7), the 

beam element stiffness matrix integration can be transformed from the global coordinate system 

to the normalized local coordinate system as  

𝐾𝑖𝑗
𝑛 = ∫ [−𝐸𝐼𝑎′′′𝑖(𝑥)𝑎

′
𝑗(𝑥) + 𝐾𝑠𝑎𝑖(𝑥)𝑎𝑗(𝑥)]𝑑𝑥

𝑥𝑏
𝑥𝑎

= ∫ [−𝐸𝐼𝑎′′′𝑖(𝜉)
𝐽𝑖

 (ℎ𝑛)3
𝑎′𝑗(𝜉)

𝐽𝑗

ℎ𝑛
+

1

0

𝐾𝑠𝐽𝑖𝐽𝑗𝑎𝑖(𝜉)𝑎𝑗(𝜉)] ℎ
𝑛 𝑑𝜉 = −

𝐸𝐼

 (ℎ𝑛)3
𝐽𝑖𝐽𝑗𝛼𝑖𝑗 + 𝐾𝑠ℎ

𝑛𝐽𝑖𝐽𝑗𝜂𝑖𝑗                   (3.11) 

where 𝜉 =
𝑥−𝑥𝑎

ℎ𝑛  
 and ℎ𝑛 is the element length of the nth beam element.  

By plugging in the analytical results of coefficient matrices of 𝛼𝑖𝑗 and 𝜂𝑖𝑗, the stiffness 

matrix of the Euler-Bernoulli beam using quintic Hermite shape functions becomes 

𝐾𝑖𝑗
𝑛 = −

1

70

𝐸𝐼

ℎ𝑛3
𝐽𝑖𝐽𝑗

[
 
 
 
 
 
−1200 −600
−600 −384
−30 −92

−30 1200
−22 600
−6 30

−600 30
−216 8
−8 −1

1200 600
−600 −216
30 8

30 −1200
−8 600
−1 −30

600 −30
−384 22
92 −6 ]

 
 
 
 
 

+

1

55440
𝐾𝑠𝐽𝑖𝐽𝑗

[
 
 
 
 
 
21720 3732
3732 832
281 69

281 6000
69 1812
6 181

−1812 181
−532 52
−52 5

6000 1812
−1812 −532
181 52

181 21720
−52 −3732
5 281

−3732 281
832 −69
−69 6 ]

 
 
 
 
 

     (3.12) 

where the stiffness matrix is unsymmetrical although it looks like symmetrical at first glance, 

analyst should pay attention to this point during programming using quintic Hermite shape 

functions because it cannot be stored or manipulated as symmetrical stiffness matrices. 

The evaluation of the distributed load vector in equation (3.10) can also be changed from 

global coordinate system to normalized local coordinate system as 

𝑞𝑖
𝑛 = ∫ [𝑞(𝑥)𝑎𝑖(𝑥)]𝑑𝑥

𝑥𝑏
𝑥𝑎

= ∫ [𝑞(𝜉)𝐽𝑖𝑎𝑖(𝜉)]ℎ
𝑛𝑑𝜉 = 𝐽𝑖

1

0
ℎ𝑛 ∫ 𝑞(𝜉)𝑎𝑖(𝜉)𝑑𝜉

1

0
    (3.13) 
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For instance, if a case 𝑞(𝜉) = 𝑞0, i.e. the load is uniformly distributed, the force vector can 

be evaluated as 

𝑞𝑖
𝑛 = 𝐽𝑖ℎ

𝑛𝑞0 ∫ 𝑎𝑖(𝜉)𝑑𝜉 = 𝐽𝑖ℎ
𝑛𝑞0𝜇𝑖

1

0
=

𝐽𝑖ℎ
𝑛𝑞0

120
{60 12 1 60 −12 1}𝑇   (3.14) 

where the superscript symbol ‘ 𝑇’ denotes the transpose of a vector or matrix in this dissertation. 

3.2 Analytical Solutions of Euler-Bernoulli Beam Problems 

3.2.1 Euler-Bernoulli Beam Subject to Static Transverse Load 

3.2.1.1 Static Polynomial Distributed Load 

For a one-dimensional prismatic Euler-Bernoulli beam, i.e. 𝐸𝐼 is a constant, with its axial 

direction oriented in positive 𝑥-axis, subjected to distributed polynomial load transversely, the 

governing equation is a fourth order differential equation as 

𝐸𝐼𝑢′′′′(𝑥) = 𝑞0 (
𝑥

𝐿
)
𝑛

 (𝑓𝑜𝑟 𝑥 ∈ [0, 𝐿])                                         (3.15) 

where 𝐸𝐼 is the beam bending rigidity, 𝑞0 is a constant indicating the magnitude of the distributed 

load intensity, 𝐿 is the length of the beam, 𝑛 is an integer indicates the order of the polynomial for 

loads (for instance, if 𝑛 = 0, the beam is subjected to uniform load; if 𝑛 = 1, the beam is subjected 

to linearly distributed load), 𝑢(𝑥) is the transverse deflection of the beam. 

Performing integration of equation (3.15) with respect to 𝑥 once yields beam shear force 

as 

𝑄(𝑥) = 𝐸𝐼𝑢′′′(𝑥) = 𝑞0
𝐿

𝑛+1
(
𝑥

𝐿
)
𝑛+1

+ 𝐶1                                    (3.16) 

Performing integration of equation (3.15) with respect to 𝑥 twice yields beam bending 

moment as 

𝑀(𝑥) = 𝐸𝐼𝑢′′(𝑥) = 𝑞0
𝐿2

(𝑛+1)(𝑛+2)
(
𝑥

𝐿
)
𝑛+2

+ 𝐶1𝑥 + 𝐶2                          (3.17) 
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Performing integration of equation (3.15) with respect to 𝑥 three times yields beam slope 

as 

𝑆(𝑥) = 𝐸𝐼𝑢′(𝑥) = 𝑞0
𝐿3

(𝑛+1)(𝑛+2)(𝑛+3)
(
𝑥

𝐿
)
𝑛+3

+ 𝐶1
𝑥2

2
+ 𝐶2𝑥 + 𝐶3                 (3.18) 

Performing integration of equation (3.15) with respect to 𝑥 four times yields beam 

transverse deflection as 

𝐸𝐼𝑢(𝑥) = 𝑞0
𝐿4

(𝑛+1)(𝑛+2)(𝑛+3)(𝑛+4)
(
𝑥

𝐿
)
𝑛+4

+ 𝐶1
𝑥3

6
+ 𝐶2

𝑥2

2
+ 𝐶3𝑥 + 𝐶4            (3.19) 

where the constant 𝑞0 is the load magnitude coefficient, 𝐶𝑖  (𝑖 = 1~4) are unknown integration 

constants which should be determined according to the four boundary conditions of the beam at 

both ends. 

There are many possible boundary condition combinations for Euler-Bernoulli beams, for 

simplicity, this research is only focused on addressing problems of three types of commonly-used 

Euler Bernoulli beams in engineering field, i.e. simply supported beam, cantilever beam (fixed-

free beam) and fixed-fixed beam hereafter, for both static analysis or dynamic analysis.  

For the simply supported beam case, the boundary conditions are shown in Figure 3.1 in 

global coordinate system. 

 

Figure 3.1 Schematic of boundary conditions for a simply supported beam 
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By imposing the simply supported beam boundary conditions, as shown in Figure 3.1, onto 

equation (3.17) and (3.19), the unknown constants 𝐶2 and 𝐶4 can be easily determined to be zeros, 

and the remaining unknown constants 𝐶1 and 𝐶3 can be calculated using equation (3.20) and (3.21) 

as 

𝐶1 = −
𝑞0𝐿

(𝑛+1)(𝑛+2)
                                                         (3.20) 

𝐶3 = −
𝑞0𝐿

3

(𝑛+1)(𝑛+2)(𝑛+3)(𝑛+4)
+

𝑞0𝐿
3

6(𝑛+1)(𝑛+2)
=

𝑞0𝐿
3(𝑛2+7𝑛+6)

6(𝑛+1)(𝑛+2)(𝑛+3)(𝑛+4)
             (3.21) 

When the polynomial order index 𝑛 for loads in equation (3.15) is designated to different 

values, the result of the integration constants 𝐶1 𝐶3 are summarized in Table 3.1. 
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Table 3.1 Integration constants for a simply supported beam 

Value of n 

Distributed 

load type 

𝑪𝟏 

 
𝑪𝟐 𝑪𝟑 𝑪𝟒 

0 Constant −
𝑞0𝐿

2
 

 
0 

𝑞0𝐿
3

24
 0 

1 Linear −
𝑞0𝐿

6
 

 
0 

7𝑞0𝐿
3

360
 0 

2 Quadratic −
𝑞0𝐿

12
 

 
0 

𝑞0𝐿
3

90
 0 

3 Cubic −
𝑞0𝐿

20
 

 
0 

𝑞0𝐿
3

140
 0 

5 Quintic −
𝑞0𝐿

42
 

 
0 

11𝑞0𝐿
3

3024
 0 

7 Septic −
𝑞0𝐿

72
 

 
0 

13𝑞0𝐿
3

5940
 0 

 

For the cantilever beam case, the boundary conditions of the beam are shown in Figure 3.2. 

 

Figure 3.2 Schematic of boundary conditions for a cantilever beam 
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By applying the boundary conditions, as shown in Figure 3.2, to equation (3.18) and (3.19), 

both the constants 𝐶3 and 𝐶4 can be easily determined to be zeros, and the remaining constants 𝐶1 

and 𝐶2 can be evaluated using equation (3.22) and (3.23) as 

𝐶1 = −
𝑞0𝐿

𝑛+1
                                                              (3.22) 

𝐶2 = −
𝑞0𝐿

2

(𝑛+1)(𝑛+2)
+
𝑞0𝐿

2

𝑛+1
=

𝑞0𝐿
2

𝑛+2
                                            (3.23) 

When the polynomial order 𝑛 in equation (3.15) is designated to different values, the result 

of the integration constants 𝐶1and 𝐶2 are summarized in Table 3.2 for the cantilever beam case. 

Table 3.2 Integration constants for a cantilever beam 

Value of n 

Distributed 

load type 

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 

0 Constant −𝑞0𝐿 
𝑞0𝐿

2

2
 0 0 

1 Linear −
𝑞0𝐿

2
 

𝑞0𝐿
2

3
 0 0 

2 Quadratic −
𝑞0𝐿

3
 

𝑞0𝐿
2

4
 0 0 

3 Cubic −
𝑞0𝐿

4
 

𝑞0𝐿
2

5
 0 0 

5 Quintic −
𝑞0𝐿

6
 

𝑞0𝐿
2

7
 0 0 

7 Septic −
𝑞0𝐿

8
 

𝑞0𝐿
2

9
 0 0 
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For the fixed-fixed beam case, the boundary conditions of the beam are shown in Figure 

3.3 below.  

 

Figure 3.3 Schematic of boundary conditions for a fixed-fixed beam 

By applying the boundary conditions, as shown in Figure 3.3, to equation (3.18) and (3.19), 

the constants 𝐶3 and 𝐶4 can be easily determined as zeros, and the remaining constants 𝐶1 and 𝐶2 

can be computed by using equation (3.24) as 

{
𝐶1 =

−6𝐴𝑛+12𝐵𝑛

𝐿

𝐶2 = 2𝐴𝑛 − 6𝐵𝑛
                                                   (3.24) 

where the constants 𝐴𝑛 =
𝑞0𝐿

2

(𝑛+1)(𝑛+2)(𝑛+3)
, 𝐵𝑛 =

𝑞0𝐿
2

(𝑛+1)(𝑛+2)(𝑛+3)(𝑛+4)
 

When the polynomial order 𝑛 in equation (3.15) is designated to different values, the result 

of the integration constants 𝐶1and 𝐶2 are shown in Table 3.3 for the fixed-fixed beam case. 
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Table 3.3 Integration constants for a fixed-fixed beam 

Value of n 

Distributed 

load type 

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 

0 Constant −
𝑞0𝐿

2
 

𝑞0𝐿
2

12
 0 0 

1 Linear −
3𝑞0𝐿

20
 

𝑞0𝐿
2

30
 0 0 

2 Quadratic −
𝑞0𝐿

15
 

𝑞0𝐿
2

60
 0 0 

3 Cubic −
𝑞0𝐿

28
 

𝑞0𝐿
2

105
 0 0 

5 Quintic −
𝑞0𝐿

72
 

𝑞0𝐿
2

252
 0 0 

7 Septic −
3𝑞0𝐿

440
 

𝑞0𝐿
2

495
 0 0 

 

 

Hence, for different types of Euler Bernoulli beams subject to nth degree polynomial load, 

by substitution of the results of the integration constants 𝐶1~𝐶4, summarized in the above three 

tables, back into equations (3.16-3.19), the analytical solutions for the beam shear force, bending 

moment, slope and deflection can be eventually obtained. 

3.2.1.2 Static Sinusoidal Distributed Load 

For a one-dimensional prismatic Euler-Bernoulli beam subjected to a transverse sinusoidal 

distributed load, the governing equation of the beam is a fourth order differential equation of 

𝐸𝐼𝑢′′′′(𝑥) = 𝑞0𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) (𝑓𝑜𝑟 n = 1,2,3, … ;  𝑥 ∈ [0, 𝐿])                      (3.25) 
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where 𝐸𝐼 is the beam bending rigidity, 𝑞0 is a constant of the sinusoidal load amplitude, 𝐿 is the 

length of the beam, 𝑛 is an integer indicates the shape of the sinusoidal load and the axial direction 

of the beam points in positive global 𝑥-axis. 

Taking integration of equation (3.25) with respect to 𝑥 once yields beam shear force as 

𝑄(𝑥) = 𝐸𝐼𝑢′′′(𝑥) = −𝑞0
𝐿

𝑛π
cos (

𝑛𝜋𝑥

𝐿
) + 𝐶1                               (3.26) 

Taking integration of equation (3.25) with respect to 𝑥 twice yields beam bending moment 

as 

𝑀(𝑥) = 𝐸𝐼𝑢′′(𝑥) = −𝑞0 (
𝐿

𝑛π
)
2

sin (
𝑛𝜋𝑥

𝐿
) + 𝐶1𝑥 + 𝐶2                      (3.27) 

Taking integration of equation (3.25) with respect to 𝑥 three times yields beam slope as 

𝑆(𝑥) = 𝐸𝐼𝑢′(𝑥) = 𝑞0 (
𝐿

𝑛π
)
3

cos (
𝑛𝜋𝑥

𝐿
) + 𝐶1

𝑥2

2
+ 𝐶2𝑥 + 𝐶3                  (3.28) 

Taking integration of equation (3.25) with respect to 𝑥 four times yields beam transverse 

deflection as 

𝐸𝐼𝑢(𝑥) = 𝑞0 (
𝐿

𝑛π
)
4

sin (
𝑛𝜋𝑥

𝐿
) + 𝐶1

𝑥3

6
+ 𝐶2

𝑥2

2
+ 𝐶3𝑥 + 𝐶4                      (3.29) 

For a simply supported beam case, by implementation of boundary conditions through 

equation (3.26) to (3.29), the four unknown integration constants can be easily determined as 

𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 0                                                 (3.30) 

Similarly, for a cantilever beam case and a fixed-fixed beam case, after implementation of 

the boundary conditions, the expressions of the four unknown integration constants can be solved 

out and summarized as shown in equation (3.31) and (3.32) respectively. 
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{
 
 

 
 𝐶1 = 𝑞0

𝐿

𝑛𝜋
  (𝑓𝑜𝑟 𝑛 = 2,4,6… ); 𝐶1 = −𝑞0

𝐿

𝑛𝜋
  (𝑓𝑜𝑟 𝑛 = 1,3,5… )

𝐶2 = −𝑞0
𝐿2

𝑛𝜋
  (𝑓𝑜𝑟 𝑛 = 2,4,6… ); 𝐶2 = 𝑞0

𝐿2

𝑛𝜋
  (𝑓𝑜𝑟 𝑛 = 1,3,5… )

𝐶3 = −𝑞0 (
𝐿

𝑛𝜋
)
3

                                                      (𝑓𝑜𝑟 𝑛 = 1,2,3, … )

𝐶4 = 0                                                                       (𝑓𝑜𝑟 𝑛 = 1,2,3, … )

               (3.31) 

{
  
 

  
 𝐶1 = −

12𝑞0

𝐿2
(
𝐿

𝑛𝜋
)
3

  (𝑓𝑜𝑟 𝑛 = 2,4,6… ); 𝐶1 = 0            (𝑓𝑜𝑟 𝑛 = 1,3,5… )

𝐶2 =
6𝑞0

𝐿
(
𝐿

𝑛𝜋
)
3

  (𝑓𝑜𝑟 𝑛 = 2,4,6… ); 𝐶2 =
2𝑞0

𝐿
(
𝐿

𝑛𝜋
)
3

  (𝑓𝑜𝑟 𝑛 = 1,3,5… )

𝐶3 = −𝑞0 (
𝐿

𝑛𝜋
)
3

                                                                   (𝑓𝑜𝑟 𝑛 = 1,2,3, … )

𝐶4 = 0                                                                                    (𝑓𝑜𝑟 𝑛 = 1,2,3,… )

           (3.32) 

Therefore, for the three different types of Euler Bernoulli beams mentioned above, by 

substitution of the results of the integration constants 𝐶1~𝐶4 back into equations (3.26-3.29), the 

analytical solutions for the beam shear force, bending moment, slope and deflection can be 

definitely obtained. 

3.2.2 Euler-Bernoulli Beam Subject to Dynamic Transverse Loads 

Now considering the transversal vibration of a prismatic Euler-Bernoulli beam 

(𝐸𝐼 =constant) excited by a distributed transverse dynamic force 𝑞(𝑥, 𝑡), the governing motion 

equation of the beam can be expressed as 

𝜌𝐴
𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4
= 𝑞(𝑥, 𝑡) (𝑥 ∈ [0, 𝐿])                                (3.33) 

where 𝐸 is modulus of elasticity of the beam material, 𝐼 is the second moment of area about 𝑦-axis 

of the beam, 𝜌 is the density of the beam material, 𝐴 is the beam cross-sectional area,  𝑞(𝑥, 𝑡) is 

distributed transverse dynamic load and 𝑦(𝑥, 𝑡) denotes transverse deflection of the beam in space 

and time, 𝐿 is the total length of the beam and the axial direction of the beam points in positive 

global 𝑥-axis. 

The homogeneous form of equation (3.33) can be obtained by omitting the external load 

term, i.e. 𝑞(𝑥, 𝑡) = 0, which can be written as 
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 𝜌𝐴
𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4
= 0                                                (3.34) 

By using the separation of variables approach, the solution of the homogenous equation 

can be assumed in form of 𝑦ℎ(𝑥, 𝑡) = 𝑋(𝑥)𝜑(𝑡). Substituting 𝑦ℎ(𝑥, 𝑡) into the equation (3.34) 

leads to 

       𝜌𝐴𝑋
𝑑2𝜑

𝑑𝑡2
+ 𝐸𝐼𝜑

𝑑4𝑋

𝑑𝑥4
= 0                                                    (3.35) 

Equation (3.35) can be further decomposed into two isolated equations by separation of 

variables, one is a function in time 𝑡 and the other one is a function in space 𝑥, as 

𝑑2𝜑

𝑑𝑡2
+ 𝜔𝑛

2𝜑 = 0                                                           (3.36) 

𝐸𝐼
𝑑4𝑋

𝑑𝑥4
− 𝜌𝐴𝜔𝑛

2𝑋 = 0                                                       (3.37) 

By solving these two separated equations mathematically, the general form of the solution 

for equation (3.36) is  

𝜑(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑛𝑡) + 𝐵𝑠𝑖𝑛(𝜔𝑛𝑡)                                               (3.38) 

where 𝐴 and 𝐵 are unknown constants which should be determined by initial conditions, 𝜔𝑛 is the 

nth mode natural frequency of the beam. 

The general form of the solution for equation (3.37) can be written as 

𝑋(𝑥) = 𝐶[cos(𝛼𝑥) + cosh(𝛼𝑥)] + 𝐷[cos(𝛼𝑥) − cosh(𝛼𝑥)] 

+𝐸[sin(𝛼𝑥) + sinh(𝛼𝑥)] + 𝐹[sin(𝛼𝑥) − sinh(𝛼𝑥)]                                (3.39) 

where 𝐶, 𝐷, 𝐸, 𝐹 are four unknown constants which should be determined by specific boundary 

conditions, 𝛼 are constants related to the natural frequencies by equation  

𝛼4 =
𝜌𝐴𝜔𝑛

2

𝐸𝐼
                                                           (3.40) 
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As mentioned early, this research only focuses on three types of Euler Bernoulli beams, 

i.e. the simply supported beam, fixed-free cantilever beam and fixed-fixed beam. The boundary 

conditions for these three scenarios can be summarized as 

Scenarios 1, Simply supported beam boundary conditions: 

𝑋(0) = 𝑋′′(0) = 0 

𝑋(𝐿) = 𝑋′′(𝐿) = 0                                                    (3.41) 

Scenarios 2, Fixed-free cantilever beam boundary conditions: 

𝑋(0) = 𝑋′(0) = 0         

𝑋′′(𝐿) = 𝑋′′′(𝐿) = 0                                               (3.42) 

Scenarios 3, Fixed-fixed beam boundary conditions: 

𝑋(0) = 𝑋′(0) = 0   

𝑋(𝐿) = 𝑋′(𝐿) = 0                                                  (3.43) 

Now taking the first, second and third derivatives of the general solution function 𝑋(𝑥) 

with respect to 𝑥 respectively, the following three expressions can be obtained straightforwardly 

𝑋′(𝑥) = 𝛼[𝐶(− sin(𝛼𝑥) + sinh(𝛼𝑥)) + 𝐷(−sin(𝛼𝑥) − sinh(𝛼𝑥)) + 𝐸(cos(𝛼𝑥) + cosh(𝛼𝑥))

+ 𝐹(cos(𝛼𝑥) − cosh(𝛼𝑥))] 

𝑋′′(𝑥) = 𝛼2[𝐶(− cos(𝛼𝑥) + cosh(𝛼𝑥)) + 𝐷(−cos(𝛼𝑥) − cosh(𝛼𝑥)) 

+ 𝐸(−sin(𝛼𝑥) + sinh(𝛼𝑥)) + 𝐹(−sin(𝛼𝑥) − sinh(𝛼𝑥))] 

𝑋′′′(𝑥) = 𝛼3[𝐶(sin(𝛼𝑥) + sinh(𝛼𝑥)) + 𝐷(sin(𝛼𝑥) − sinh(𝛼𝑥)) + 𝐸(−cos(𝛼𝑥) + cosh(𝛼𝑥))

+ 𝐹(−cos(𝛼𝑥) − cosh(𝛼𝑥))] 

(3.44) 

To solve the dynamic response 𝑋(𝑥) of the forced vibration of a Euler-Bernoulli beam in 

space, now considering equation (3.37) as an eigenvalue problem of (Some steps of the following 
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derivations in section 3.2.2 have mainly followed the work by Timoshenko, 1974. Readers can 

also find solutions of transverse vibrations of prismatic beams in the chapter 5 of his book.) 

𝑋′′′′ −
𝜌𝐴𝜔2

𝐸𝐼
𝑋 = 𝑋′′′′ − 𝛼4𝑋 = 0                                     (3.45) 

By letting 𝜆 = 𝛼4 and taking the two distinct subscripts n and m into consideration, where 

n and m are two integers, we have 

𝑋𝑛
′′′′ = 𝜆𝑛𝑋𝑛 (𝑓𝑜𝑟 𝑚𝑜𝑑𝑒 𝑛)                                           (3.46) 

𝑋𝑚
′′′′ = 𝜆𝑚𝑋𝑚 (𝑓𝑜𝑟 𝑚𝑜𝑑𝑒 𝑚)                                        (3.47) 

If multiplying equation (3.46) by 𝑋𝑚 and equation (3.47) by 𝑋𝑛 and performing integration 

over the domain of the beam, i.e. from 0 to the beam length 𝐿, we can reach 

∫ 𝑋𝑛
′′′′𝐿

0
𝑋𝑚 𝑑𝑥 = 𝜆𝑛 ∫ 𝑋𝑛

𝐿

0
𝑋𝑚 𝑑𝑥 (𝑓𝑜𝑟 𝑚𝑜𝑑𝑒 𝑛)                         (3.48) 

∫ 𝑋𝑚
′′′′𝐿

0
𝑋𝑛 𝑑𝑥 = 𝜆𝑚 ∫ 𝑋𝑚

𝐿

0
𝑋𝑛 𝑑𝑥(𝑓𝑜𝑟 𝑚𝑜𝑑𝑒 𝑚)                       (3.49) 

Integrating by parts twice for the left-hand sides of equation (3.48) and (3.49) respectively 

leads to 

(𝑋𝑛
′′′𝑋𝑚 ) |

𝐿
0
− (𝑋𝑛

′′𝑋′𝑚 ) |
𝐿
0
+ ∫ 𝑋𝑛

′′𝐿

0
𝑋′′𝑚 𝑑𝑥 = 𝜆𝑛 ∫ 𝑋𝑛

𝐿

0
𝑋𝑚 𝑑𝑥 (𝑓𝑜𝑟 𝑚𝑜𝑑𝑒 𝑛) (3.50) 

(𝑋𝑚
′′′𝑋𝑛 ) |

𝐿
0
− (𝑋𝑚

′′𝑋′𝑛 ) |
𝐿
0
+ ∫ 𝑋𝑚

′′𝐿

0
𝑋′′𝑛 𝑑𝑥 = 𝜆𝑚 ∫ 𝑋𝑚

𝐿

0
𝑋𝑛 𝑑𝑥(𝑓𝑜𝑟 𝑚𝑜𝑑𝑒 𝑚) (3.51) 

For all the three types of beams considered in this research, by applying the boundary 

conditions summarized in equation (3.41) to equation (3.43), it is easy to find out that the integrated 

terms in equation (3.50) and (3.51) are all zeros. Thus, the following relationship holds by 

subtracting of equation (3.51) from equation (3.50) 

(𝜆𝑛 − 𝜆𝑚) ∫ 𝑋𝑛
𝐿

0
𝑋𝑚 𝑑𝑥 = 0                                                 (3.52) 

If 𝑛 ≠ 𝑚, the eigenvalues 𝜆𝑛 ≠ 𝜆𝑚, an orthogonality relationship holds between the 

normal response functions, for three scenarios considered, as  
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∫ 𝑋𝑛
𝐿

0
𝑋𝑚 𝑑𝑥 = 0 (𝑓𝑜𝑟 𝑛 ≠ 𝑚)                                             (3.53) 

Besides, another two orthogonality relationships also hold straightforwardly as 

∫ 𝑋𝑛
′′′′𝐿

0
𝑋𝑚 𝑑𝑥 = ∫ 𝑋𝑛

′′𝐿

0
𝑋′′𝑚 𝑑𝑥 = 𝜆𝑛 ∫ 𝑋𝑛

𝐿

0
𝑋𝑚 𝑑𝑥 = 0 (𝑓𝑜𝑟 𝑛 ≠ 𝑚 )    (3.54) 

If 𝑛 = 𝑚, the integral in equation (3.52) can be an arbitrary constant, say 𝐶𝑛. Usually, the 

mode shapes are normalized to make 𝐶𝑛 = 1.0, i.e. 

∫ 𝑋𝑛
2𝐿

0
𝑑𝑥 = 𝐶𝑛 = 1                                           (3.55) 

Hence, the following functions hold 

∫ 𝑋𝑛
′′′′𝐿

0
𝑋𝑛 𝑑𝑥 = ∫ 𝑋𝑛

′′2𝐿

0
𝑑𝑥 = 𝜆𝑛 ∫ 𝑋𝑛

2𝐿

0
𝑑𝑥 = 𝜆𝑛 = 𝛼𝑛

4  (𝑓𝑜𝑟 𝑛 = 𝑚 )     (3.56) 

Considering the homogenous form of the Euler-Bernoulli beam motion equation (3.34), 

the homogenous solution can be superimposed in terms of the mode shape functions 𝑋𝑛(𝑥) and 

time functions 𝜑𝑛(t), i.e. 

𝑦ℎ(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)[𝐴𝑛𝑐𝑜𝑠(𝜔𝑛𝑡) + 𝐵𝑛𝑠𝑖𝑛(𝜔𝑛𝑡)] 
∞
𝑛=1  (𝑓𝑜𝑟 𝑛 = 1,2,3, … ,∞)   (3.57) 

The constants 𝐴𝑛 and 𝐵𝑛 can be easily derived using the orthogonality relationship equation 

(3.55) together with the beam initial conditions. For instance, if assuming the initial transverse 

displacement and velocity of a beam as given functions 𝑢0(𝑥) and 𝑣0(𝑥) respectively, i.e. 

𝑦ℎ(𝑥, 0) = ∑𝐴𝑛𝑋𝑛(𝑥) = 𝑢0(𝑥) 

∞

𝑛=1

 

�̇�ℎ(𝑥, 0) = ∑ 𝜔𝑛𝐵𝑛𝑋𝑛(𝑥) = 𝑣0(𝑥) 
∞
𝑛=1                                    (3.58) 

By using the orthogonality relationship, the constants 𝐴𝑛 and 𝐵𝑛  can be easily figured out 

as  

𝐴𝑛 = ∫ 𝑢0(𝑥)𝑋𝑛(𝑥)
𝐿

0

𝑑𝑥 

𝐵𝑛 =
1

𝜔𝑛
∫ 𝑣0(𝑥)𝑋𝑛(𝑥)
𝐿

0
𝑑𝑥                                             (3.59) 
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As for the non-homogenous form of the Euler-Bernoulli beam motion equation (3.33), the 

general solution can be assumed in form of  

𝑦(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)𝜑𝑛(t)
∞
𝑛=1  (𝑓𝑜𝑟 𝑛 = 1,2,3, … ,∞)                      (3.60) 

Substitution of the solution equation (3.60) into equation (3.33), we can have 

∑ [𝜌𝐴𝑋𝑛(𝑥)�̈�𝑛(𝑡) + 𝐸𝐼𝑋𝑛′′′′(𝑥)𝜑𝑛(t)] = 𝑞(𝑥, 𝑡)    (𝑥 ∈ [0, 𝐿])
∞
𝑛=1             (3.61) 

Multiplying this equation by normal function 𝑋𝑚(𝑥) and integrating over the whole 

domain of the beam, leads to 

∑ ∫ [𝜌𝐴𝑋𝑛(𝑥)�̈�𝑛(𝑡) + 𝐸𝐼𝑋𝑛′′′′(𝑥)𝜑𝑛(t)]
𝐿

0
𝑋𝑚(𝑥)𝑑𝑥 = ∫ 𝑞(𝑥, 𝑡)𝑋𝑚(𝑥)𝑑𝑥

𝐿

0
    (𝑥 ∈ [0, 𝐿])∞

𝑛=1  

(3.62) 

By implementation of the orthogonality properties, as presented in equation (3.54), of the 

beam normal functions to this equation, the non-homogenous motion equation can be transformed 

into a form of  

�̈�𝑛(𝑡) + 𝜆𝑛
𝐸𝐼

𝜌𝐴
𝜑𝑛(t) = ∫

𝑞(𝑥,𝑡)

𝜌𝐴
𝑋𝑛(𝑥)𝑑𝑥

𝐿

0
    (𝑥 ∈ [0, 𝐿])                      (3.63) 

By incorporation the relationship of 𝜆𝑛 = 𝛼𝑛
4 =

𝜌𝐴𝜔𝑛
2

𝐸𝐼
, the non-homogenous motion 

equation of the beam can be further simplified as 

�̈�𝑛(𝑡) + 𝜔𝑛
2𝜑𝑛(t) = ∫ �̅�(𝑥, 𝑡)𝑋𝑛(𝑥)𝑑𝑥

𝐿

0
    (𝑥 ∈ [0, 𝐿])                     (3.64) 

where  �̅�(𝑥, 𝑡) = 𝑞(𝑥, 𝑡) 𝜌𝐴⁄ . 

The transverse response of the nth mode can be found by applying the Duhamel integral as  

𝜑𝑛(t) =
1

𝜔𝑛
∫ 𝑋𝑛(𝑥)
𝐿

0
∫ �̅�(𝑥, 𝜏)sin (𝜔𝑛(𝑡 − 𝜏))𝑑𝜏𝑑𝑥
𝑡

0
                    (3.65) 

Hence, the total transverse response of the beam deflection under excitation can be 

expressed as 

𝑦(𝑥, 𝑡) = ∑
𝑋𝑛(𝑥)

𝜔𝑛
∫ 𝑋𝑛(𝑥)
𝐿

0
∫ �̅�(𝑥, 𝜏)sin (𝜔𝑛(𝑡 − 𝜏))𝑑𝜏𝑑𝑥
𝑡

0
∞
𝑛=1  (𝑓𝑜𝑟 𝑛 = 1,2,3, … ,∞)  (3.66) 
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3.2.2.1 Transverse Vibration of Simply Supported Beams 

Implementation of the left end boundary conditions, the first relationship of equation 

(3.41), onto the beam general form of solution in equation (3.39) leads to  

𝑋(0) =  𝐶 ∙ 2 + 𝐷 ∙ 0 + 𝐸 ∙ 0 + 𝐹 ∙ 0 = 0 

𝑋′′(0) =  𝛼2𝐶 ∙ 0 + 𝛼2𝐷 ∙ (−2) + 𝛼2𝐸 ∙ 0 − 𝛼2𝐹 ∙ 0 = 0                   (3.67) 

Thus, for a simply supported beam, the unknow constants 𝐶 and 𝐷 can be determined as 𝐶 = 𝐷 =

0. 

Implementation of the right end boundary conditions, the second relationship of equation 

(3.41), onto the beam general form of solution in equation (3.39) results in 

𝑋(𝐿) =  𝐸(𝑠𝑖𝑛(𝛼𝐿) + 𝑠𝑖𝑛ℎ(𝛼𝐿)) + 𝐹(𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)) = 0 

𝑋′′(𝐿) =    𝛼2𝐸(−𝑠𝑖𝑛(𝛼𝐿) + 𝑠𝑖𝑛ℎ(𝛼𝐿)) + 𝛼2𝐹(−𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)) = 0     (3.68a) 

Rewriting these two equations in equation (3.68a) into a compact matrix form as  

[
𝑠𝑖𝑛(𝛼𝐿) + 𝑠𝑖𝑛ℎ(𝛼𝐿) 𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)

−𝑠𝑖𝑛(𝛼𝐿) + 𝑠𝑖𝑛ℎ(𝛼𝐿) −𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)
] {
𝐸
𝐹
} = {

0
0
}                  (3.68b) 

For achieving a nontrivial solution, the determinant of the coefficient matrix in equation 

(3.68b) must be equal to zero, which requires that 

𝑠𝑖𝑛(𝛼𝐿)𝑠𝑖𝑛ℎ(𝛼𝐿) = 0                                                 (3.69) 

Considering 𝛼𝐿 ≠ 0, hence 𝑠𝑖𝑛ℎ(𝛼𝐿) ≠ 0. The only possible condition satisfying equation 

(3.69) is that 

𝑠𝑖𝑛(𝛼𝐿) = 0                                                       (3.70) 

Equation (3.70) is the, so called, frequency equation for transverse vibration of a simply 

supported beam. Obviously, there are infinite solutions to the frequency equation due to the 

periodical property of sine function, i.e.  

𝛼𝐿 = 𝑛𝜋 (𝑛 = 1,2,3, … ,∞)                                              (3.71) 
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Therefore, the following relationships hold for the simply supported beam case 

𝛼𝑛
4 =

𝜌𝐴𝜔𝑛
2

𝐸𝐼
= (

𝑛𝜋

𝐿
)
4

                                                (3.72) 

Finally, the natural frequencies of the simply supported Euler Bernoulli beam can be 

expressed as 

𝜔𝑛 = √
𝐸𝐼

𝜌𝐴
(
𝑛𝜋

𝐿
)
2

                                                       (3.73) 

The normal response function of the simply supported Euler Bernoulli beam can be further 

simplified as 

𝑋(𝑥) = 𝐸(𝑠𝑖𝑛𝛼𝑥 + 𝑠𝑖𝑛ℎ𝛼𝑥) + 𝐸(𝑠𝑖𝑛𝛼𝑥 − 𝑠𝑖𝑛ℎ𝛼𝑥) = 2𝐸𝑠𝑖𝑛𝛼𝑥 = 2𝐸𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
)      (3.74) 

By incorporating the orthogonality property, as shown in function (3.55), to normalize the 

expression for the function 𝑋(𝑥), we have 

2𝐸 = (
2

𝐿
)
0.5

                                                        (3.75) 

Therefore, we can eventually obtain the nth mode normal function for the transverse 

vibration of a simply supported Euler-Bernoulli beam as  

𝑋𝑛 = (
2

𝐿
)
0.5

𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
)                                                (3.76) 

First dynamic case for a simply supported beam: 

 For the first dynamic case of a simply-supported beam, let us consider a transversal 

dynamic load in form of 𝑞(𝑥, 𝑡) = 𝑓0𝑠𝑖𝑛
𝑛∗𝜋𝑥

𝐿
sin(𝜔𝑡) (𝑓𝑜𝑟 𝑛∗ = 1,3,5,7,9), where 𝑓0 is an 

arbitrary given constant which indicates the load amplitude, 𝜔 is a given excitation frequency. By 

utilizing Duhamel integral as shown in equation (3.65), the nth mode response function can be 

obtained as 
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𝜑𝑛(t) =
1

𝜔𝑛
∫ 𝑋𝑛(𝑥)
𝐿

0
∫

𝑓0𝑠𝑖𝑛
𝑛∗𝜋𝑥

𝐿
sin (𝜔𝜏)

𝜌𝐴
sin (𝜔𝑛(𝑡 − 𝜏))𝑑𝜏𝑑𝑥

𝑡

0
=

𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)] ∫ 𝑋𝑛(𝑥)𝑠𝑖𝑛

𝑛∗𝜋𝑥

𝐿

𝐿

0
𝑑𝑥                                 (3.77) 

The total transverse dynamic response of the beam deflection can be computed using 

equation (3.66) as 

𝑦(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)
𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)] ∫ 𝑋𝑛(𝑥)𝑠𝑖𝑛

𝑛∗𝜋𝑥

𝐿

𝐿

0
𝑑𝑥∞

𝑛=1 =

𝑠𝑖𝑛 (
𝑛∗𝜋𝑥

𝐿
)

𝑓0

𝜌𝐴𝜔𝑛∗
2H𝑛∗(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛∗
sin(𝜔𝑛∗𝑡)]   (for 𝑛∗ = 1,3,5,7,9)             (3.78) 

In equation (3.78), H𝑛∗(ω) =
1

1−𝜔2 𝜔n∗
2⁄
 is called the 𝑛∗th mode magnification factor, the 

plotting of which against excitation to natural frequency ratio is shown in Figure 3.4. 

 

Figure 3.4 The magnification factor of a forced vibration 

From Figure 3.4, it can be seen that when the ration of excitation frequency to the dominant 

natural beam frequency 𝜔1 approaches unity form left hand side, the amplitude of the response in 
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equation (3.62) will be amplified to positive infinity +∞, while the frequency ratio approaches 

unity form the right hand side, the amplitude of the response in equation (3.62) will be amplified 

to negative infinity −∞. If the frequency ratio equals to unity, the amplitude of the particular 

solution is infinity, which is known as the phenomenon of resonance for structural vibrations in 

engineering. 

The dynamic response of the beam bending moment can be calculated by 

𝑀(𝑥, 𝑡) = −𝐸𝐼𝑦′′(𝑥, 𝑡) = 𝐸𝐼 (
𝑛∗𝜋

𝐿
)
2

𝑠𝑖𝑛 (
𝑛∗𝜋𝑥

𝐿
)

𝑓0

𝜌𝐴𝜔𝑛∗
2
H𝑛∗(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛∗
sin(𝜔𝑛∗𝑡)] (for 𝑛

∗ = 1,3,5,7,9)   (3.79) 

The dynamic response of the beam shear force can be calculated by 

𝑉(𝑥, 𝑡) = −𝐸𝐼𝑦′′′(𝑥, 𝑡) = 𝐸𝐼 (
𝑛∗𝜋

𝐿
)
3

𝑐𝑜𝑠 (
𝑛∗𝜋𝑥

𝐿
)

𝑓0

𝜌𝐴𝜔𝑛∗
2H𝑛∗(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛∗
sin(𝜔𝑛∗𝑡)] (for 𝑛

∗ = 1,3,5,7,9)   (3.80) 

Second dynamic case for a simply supported beam: 

For the second simply-supported beam vibration case, considering a pulsating load 

𝑞(𝑥, 𝑡) = 𝑓0 δ(x − x0)sin(𝜔𝑡) applied at an arbitrary beam position 𝑥 = 𝑥0. By using Duhamel 

integral formulas as presented in equation (3.65), the nth mode response contribution can be 

integrated as  

𝜑𝑛(t) =
𝑋𝑛(𝑥=𝑥0)

𝜔𝑛
∫

𝑓0sin (𝜔𝜏)

𝜌𝐴
sin (𝜔𝑛(𝑡 − 𝜏))𝑑𝜏

𝑡

0
=

𝑋𝑛(𝑥=𝑥0)

𝜔𝑛

𝑓0

𝜌𝐴
H𝑛(ω) [

1

𝜔𝑛
sin(𝜔𝑡) −

𝜔

𝜔𝑛2
sin(𝜔𝑛𝑡)]                       (3.81) 

where 𝑓0 is a given constant indicating the amplitude the pulsating load, 𝜔 is the angular frequency 

of the pulsating load, 𝜔𝑛 is the natural frequency of the beam for the nth vibration mode. 
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The total dynamic transverse response of the beam deflection can be computed using 

equation (3.66) as 

𝑦(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)
𝑋𝑛(𝑥=𝑥0)

𝜔𝑛

𝑓0

𝜌𝐴
H𝑛(ω) [

1

𝜔𝑛
sin(𝜔𝑡) −

𝜔

𝜔𝑛2
sin(𝜔𝑛𝑡)]

∞
𝑛=1 =

2

𝐿
∑ 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑥0

𝐿
)

𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)]

∞
𝑛=1             (3.82) 

The dynamic responses of the beam bending moment and shear force can be computed by 

the following two equations respectively 

𝑀(𝑥, 𝑡) =
2𝐸𝐼

𝐿
(
𝑛𝜋

𝐿
)
2
∑ 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑥0

𝐿
)

𝑓0

𝜌𝐴𝜔𝑛2
𝐻𝑛(𝜔) [𝑠𝑖𝑛(𝜔𝑡) −

𝜔

𝜔𝑛
𝑠𝑖𝑛(𝜔𝑛𝑡)]

∞
𝑛=1  (3.83) 

𝑉(𝑥, 𝑡) =
2𝐸𝐼

𝐿
(
𝑛𝜋

𝐿
)
3
∑ 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑥0

𝐿
)

𝑓0

𝜌𝐴𝜔𝑛2
𝐻𝑛(𝜔) [𝑠𝑖𝑛(𝜔𝑡) −

𝜔

𝜔𝑛
𝑠𝑖𝑛(𝜔𝑛𝑡)]

∞
𝑛=1   (3.84) 

3.2.2.2 Transverse Vibration of Cantilever Beams 

By implementation of the four boundary conditions in equation (3.42), for a cantilever 

beam, to the general form of the solution in equation (3.39), the following four relationships hold 

𝐶 = 𝐸 = 0 

𝛼2𝐷(−𝑐𝑜𝑠(𝛼𝐿) − 𝑐𝑜𝑠ℎ(𝛼𝐿)) + 𝛼2𝐹(−𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)) = 0 

𝛼3𝐷(𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)) + 𝛼3𝐹(−𝑐𝑜𝑠(𝛼𝐿) − 𝑐𝑜𝑠ℎ(𝛼𝐿)) = 0                 (3.85) 

To achieve a nontrivial solution for the system of equations regarding the four unknown 

constants of equation (3.85), i.e. 𝐶, 𝐷, 𝐸 and 𝐹 should not be all equal to zero simultaneously. 

Hence, the following relationship must be held to avoid a trivial solution based on the related linear 

algebra theorem 

[−𝑐𝑜𝑠(𝛼𝐿) − 𝑐𝑜𝑠ℎ(𝛼𝐿)]2 − [𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)][−𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)] = 0    (3.86) 

Further simplification of equation (3.86) yields the frequency equation for the fixed-free 

cantilever beam as 

𝑐𝑜𝑠(𝛼𝐿) cosh(𝛼𝐿) = −1.0                                               (3.87) 
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Obviously, this frequency equation for a cantilever beam is a transcendental equation 

which should be solved numerically, for instance by using Newton-Raphson iteration method 

adopted in this dissertation. The smallest twenty-seven real positive roots of equation (3.87) are 

listed in Table 3.4 below. Many significant figures for the presented roots are kept due to the 

existence of a hyperbolic cosine term in the transcendental equation. For the remaining even larger 

real roots, they are not frequently used due to trivial contributions and are omitted here for brevity. 

Table 3.4 Frequency equation solutions for a fixed-free cantilever beam 

𝜶𝑳 Value Rn 𝜶𝑳 Value Rn 𝜶𝑳 Value Rn 

𝛼1𝐿 1.875104069 𝛼10𝐿 29.845130209 𝛼19𝐿 58.119464091 

𝛼2𝐿 4.694091133 𝛼11𝐿 32.986722863 𝛼20𝐿 61.261056745 

𝛼3𝐿 7.854757438 𝛼12𝐿 36.128315516 𝛼21𝐿 64.402649399 

𝛼4𝐿 10.995540735 𝛼13𝐿 39.269908170 𝛼22𝐿 67.544242052 

𝛼5𝐿 14.137168391 𝛼14𝐿 42.411500823 𝛼23𝐿 70.685834706 

𝛼6𝐿 17.278759532 𝛼15𝐿 45.553093477 𝛼24𝐿 73.827427359 

𝛼7𝐿 20.420352251 𝛼16𝐿 48.694686131 𝛼25𝐿 76.969020013 

𝛼8𝐿 23.561944902 𝛼17𝐿 51.836278784 𝛼26𝐿 80.110612667 

𝛼9𝐿 26.703537556 𝛼18𝐿 54.977871438 𝛼27𝐿 83.252205320 

 

 

By using the following relationship 

𝛼𝑛
4 = (

𝑅𝑛

𝐿
)
4

=
𝜌𝐴𝜔𝑛

2

𝐸𝐼
                                                         (3.88) 

The nth mode natural frequency for a fixed-free cantilever beam can be expressed as 
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𝜔𝑛 = √
𝐸𝐼

𝜌𝐴
(
𝑅𝑛

𝐿
)
2

                                                        (3.89) 

Now expressing the unknown constant F in terms of D as  

𝐹 = −𝐷
𝑐𝑜𝑠(𝛼𝐿)+𝑐𝑜𝑠ℎ(𝛼𝐿)

𝑠𝑖𝑛(𝛼𝐿)+𝑠𝑖𝑛ℎ(𝛼𝐿)
                                                  (3.90) 

Then the nth mode normal function of a fixed-free cantilever beam can be written as  

𝑋𝑛(𝑥) = 𝐷𝑛[(𝑐𝑜𝑠(𝛼𝑛𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥)) − 𝐶𝑐(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥))]    (3.91) 

where the coefficient 𝐶𝑐(𝛼𝑛𝐿) =
𝑐𝑜𝑠(𝛼𝑛𝐿)+𝑐𝑜𝑠ℎ(𝛼𝑛𝐿)

𝑠𝑖𝑛(𝛼𝑛𝐿)+𝑠𝑖𝑛ℎ(𝛼𝑛𝐿)
. 

Using the orthogonality relationship in equation (3.55) to normalize the normal function 

𝑋𝑛(𝑥) of the fixed-free cantilever beam, which leads to 

∫ 𝑋𝑛(𝑥)
2𝑑𝑥

𝐿

0
= 𝐷𝑛

2 ∫ [(𝑐𝑜𝑠(𝛼𝑛𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥)) − 𝐶𝑐(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥))]
2
𝑑𝑥

𝐿

0
=

𝐷𝑛
2 ∗ 𝐿 = 1                                                    (3.92) 

The unknown constant 𝐷𝑛 can be easily determined by the normalization relationship in 

equation (3.92) as  

𝐷𝑛 =
1

√𝐿
                                                                 (3.93) 

Finally, the nth mode normal function for the fixed-free cantilever beam becomes 

𝑋𝑛(𝑥) =
1

√𝐿
[(𝑐𝑜𝑠(𝛼𝑛𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥)) − 𝐶𝑐(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥))]     (3.94) 

The first five mode normal functions for a fixed-free cantilever beam are plotted in Figure 

3.5 below. 
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Figure 3.5 The first five mode shapes for the fixed-free cantilever beam 

First dynamic case for a fixed-free cantilever beam: 

 For the first transverse vibration case of a fixed-free cantilever beam, assuming that 

𝑞(𝑥, 𝑡) = 𝑓0𝑋𝑛∗(𝑥) sin(𝜔𝑡) (𝑓𝑜𝑟 𝑛
∗ = 1,3,5,7,9), here 𝑓0 is a given constant,  𝑋𝑛∗(𝑥) is the 

𝑛∗𝑡ℎnormalized normal function of the fixed-free beam, 𝜔 is a given excitation frequency. Taking 

the Duhamel integration for this case by using equation (3.65), we obtain the response contribution 

by the nth mode as 

𝜑𝑛(t) =
1

𝜔𝑛
∫ 𝑋𝑛(𝑥)
𝐿

0
∫

𝑓0𝑋𝑛∗(𝑥)sin (𝜔𝜏)

𝜌𝐴
sin (𝜔𝑛(𝑡 − 𝜏))𝑑𝜏𝑑𝑥

𝑡

0
=

𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)] ∫ 𝑋𝑛(𝑥)𝑋𝑛∗(𝑥)

𝐿

0
𝑑𝑥  (𝑛∗ = 1,3,5,7,9; 𝑛 = 1,2,3, …)             (3.95) 

The total transverse response of the beam deflection due to vibration, for the fixed-free 

cantilever beam, can be computed by using equation (3.66) as 
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𝑦(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)
𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)] ∫ 𝑋𝑛(𝑥)𝑋𝑛∗(𝑥)

𝐿

0
𝑑𝑥∞

𝑛=1 =

1

√𝐿
[(𝑐𝑜𝑠(𝛼𝑛∗𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛∗𝑥)) − 𝐶𝑐(𝛼𝑛∗𝐿)(𝑠𝑖𝑛(𝛼𝑛∗𝑥) −

𝑠𝑖𝑛ℎ(𝛼𝑛∗𝑥))]
𝑓0

𝜌𝐴𝜔𝑛∗
2H𝑛∗(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛∗
sin(𝜔𝑛∗𝑡)] (𝑛

∗ = 1,3,5,7,9)   (3.96) 

The total transverse response of the bending moment, for the fixed-free cantilever beam, 

can be calculated as 

𝑀(𝑥, 𝑡) = −𝐸𝐼𝑦′′(𝑥, 𝑡) = −
𝛼𝑛∗

2

√𝐿
[(−𝑐𝑜𝑠(𝛼𝑛∗𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛∗𝑥)) − 𝐶𝑐(𝛼𝑛∗𝐿)(−𝑠𝑖𝑛(𝛼𝑛∗𝑥) −

𝑠𝑖𝑛ℎ(𝛼𝑛∗𝑥))]
𝑓0

𝜌𝐴𝜔𝑛∗
2H𝑛∗(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛∗
sin(𝜔𝑛∗𝑡)] (𝑛

∗ = 1,3,5,7,9)    (3.97) 

The total transverse response of the shear force, for the fixed-free cantilever beam, can be 

calculated as 

𝑉(𝑥, 𝑡) = −𝐸𝐼𝑦′′′(𝑥, 𝑡) = −
𝛼𝑛∗

3

√𝐿
[(𝑠𝑖𝑛(𝛼𝑛∗𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛∗𝑥)) − 𝐶𝑐(𝛼𝑛∗𝐿)(−𝑐𝑜𝑠(𝛼𝑛∗𝑥) −

𝑐𝑜𝑠ℎ(𝛼𝑛∗𝑥))]
𝑓0

𝜌𝐴𝜔𝑛∗
2H𝑛∗(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛∗
sin(𝜔𝑛∗𝑡)] (𝑛

∗ = 1,3,5,7,9)     (3.98) 

where the coefficient 𝐶𝑐(𝛼𝑛∗𝐿) =
𝑐𝑜𝑠(𝛼𝑛∗𝐿)+𝑐𝑜𝑠ℎ(𝛼𝑛∗𝐿)

𝑠𝑖𝑛(𝛼𝑛∗𝐿)+𝑠𝑖𝑛ℎ(𝛼𝑛∗𝐿)
 (𝑛∗ = 1,3,5,7,9) applies throughout this 

subcase, H𝑛∗(ω) =
1

1−𝜔2 𝜔n∗
2⁄
. 

Second dynamic case for a fixed-free cantilever beam: 

For the second dynamic case study of the fixed-free cantilever beam, assuming the external 

excitation is a pulsating force  𝑞(𝑥, 𝑡) = 𝑓0 δ(𝑥 − 𝑥0)sin(𝜔𝑡) applied at the position of 𝑥 = 𝑥0, 

here 𝑓0 and 𝜔 are given data of the problem. By using Duhamel integral as presented in equation 

(3.65), we obtain the response contribution by the nth mode as 

𝜑𝑛(t) =
𝑋𝑛(𝑥=𝑥0)

𝜔𝑛
∫

𝑓0sin (𝜔𝜏)

𝜌𝐴
sin (𝜔𝑛(𝑡 − 𝜏))𝑑𝜏

𝑡

0
=

𝑋𝑛(𝑥=𝑥0)

𝜔𝑛

𝑓0

𝜌𝐴
H𝑛(ω) [

1

𝜔𝑛
sin(𝜔𝑡) −

𝜔

𝜔𝑛2
sin(𝜔𝑛𝑡)]                                                (3.99) 
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Thus, the total transverse dynamic response of fixed-free cantilever beam deflection can 

be computed using equation (3.66) as 

𝑦(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)
𝑋𝑛(𝑥=𝑥0)

𝜔𝑛

𝑓0

𝜌𝐴
H𝑛(ω) [

1

𝜔𝑛
sin(𝜔𝑡) −

𝜔

𝜔𝑛2
sin(𝜔𝑛𝑡)]

∞
𝑛=1 =

1

𝐿
∑ [(𝑐𝑜𝑠(𝛼𝑛𝑥) −
∞
𝑛=1

𝑐𝑜𝑠ℎ(𝛼𝑛𝑥)) − 𝐶𝑐(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥))][(𝑐𝑜𝑠(𝛼𝑛𝑥0) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥0)) −

𝐶𝑐(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥0) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥0))]
𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)]   (3.100) 

The total transverse response of the bending moment, for the fixed-free cantilever beam, 

can be calculated as 

𝑀(𝑥, 𝑡) = −
𝐸𝐼𝛼𝑛

2

𝐿
∑ [(−𝑐𝑜𝑠(𝛼𝑛𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥)) − 𝐶𝑐(𝛼𝑛𝐿)(−𝑠𝑖𝑛(𝛼𝑛𝑥) −
∞
𝑛=1

𝑠𝑖𝑛ℎ(𝛼𝑛𝑥))][(𝑐𝑜𝑠(𝛼𝑛𝑥0) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥0)) − 𝐶𝑐(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥0) −

𝑠𝑖𝑛ℎ(𝛼𝑛𝑥0))]
𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)]             (3.101) 

The total transverse response of the shear force, for the fixed-free cantilever beam, can be 

calculated as 

𝑉(𝑥, 𝑡) = −
𝐸𝐼𝛼𝑛

3

𝐿
∑ [(𝑠𝑖𝑛(𝛼𝑛𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥)) − 𝐶𝑐(𝛼𝑛𝐿)(−𝑐𝑜𝑠(𝛼𝑛𝑥) −
∞
𝑛=1

𝑐𝑜𝑠ℎ(𝛼𝑛𝑥))][(𝑐𝑜𝑠(𝛼𝑛𝑥0) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥0)) − 𝐶𝑐(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥0) −

𝑠𝑖𝑛ℎ(𝛼𝑛𝑥0))]
𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)]            (3.102) 

where the coefficient 𝐶𝑐(𝛼𝑛𝐿) =
𝑐𝑜𝑠(𝛼𝑛𝐿)+𝑐𝑜𝑠ℎ(𝛼𝑛𝐿)

𝑠𝑖𝑛(𝛼𝑛𝐿)+𝑠𝑖𝑛ℎ(𝛼𝑛𝐿)
 (𝑛 = 1,2,3, … ) applies throughout this case, 

H𝑛(ω) =
1

1−𝜔2 𝜔n2⁄
. 

 

3.2.2.3 Transverse Vibration of Fixed-Fixed Beams 

By implementation the four boundary conditions in equation (3.43) to the general form of the 

solution in equation (3.39), the following four relationships hold 
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𝐶 = 𝐸 = 0 

𝐷(𝑐𝑜𝑠(𝛼𝐿) − 𝑐𝑜𝑠ℎ(𝛼𝐿)) + 𝐹(𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)) = 0 

𝛼𝐷(−𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)) + 𝛼𝐹(𝑐𝑜𝑠(𝛼𝐿) − 𝑐𝑜𝑠ℎ(𝛼𝐿)) = 0               (3.103) 

To obtain a nontrivial solution for the four unknown coefficients in equation (3.103), the 

determinant of the coefficient matrix should be equal to zero according to the related linear algebra 

theorem, which leads to 

[𝑐𝑜𝑠(𝛼𝐿) − 𝑐𝑜𝑠ℎ(𝛼𝐿)]2 − [𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)][−𝑠𝑖𝑛(𝛼𝐿) − 𝑠𝑖𝑛ℎ(𝛼𝐿)] = 0     (3.104) 

Further simplification of equation (3.104) yields the frequency equation for the fixed-fixed 

beam as 

𝑐𝑜𝑠(𝛼𝐿) cosh(𝛼𝐿) = 1.0                                              (3.105) 

The frequency equation (3.105) is also a transcendental equation like the cantilever beam 

case, thus the same method is utilized for seeking the roots of the equation. The smallest twenty-

seven real positive roots of the equation are obtained and summarized in Table 3.5, and many 

significant figures are reserved here due to the existence of a hyperbolic cosine term in the 

frequency equation. For the remaining even larger positive roots, they are seldom used due to 

negligible contributions and are omitted here for brevity. 
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Table 3.5 Frequency equation solutions for a fixed-fixed Euler-Bernoulli beam 

𝜶𝑳 Value Rn 𝜶𝑳 Value Rn 𝜶𝑳 Value Rn 

𝛼1𝐿 4.730040745 𝛼10𝐿 32.986722863 𝛼19𝐿 61.261056745 

𝛼2𝐿 7.853204624 𝛼11𝐿 36.128315516 𝛼20𝐿 64.402649399 

𝛼3𝐿 10.995607838 𝛼12𝐿 39.269908170 𝛼21𝐿 67.544242052 

𝛼4𝐿 14.137165491 𝛼13𝐿 42.411500823 𝛼22𝐿 70.685834706 

𝛼5𝐿 17.278759657 𝛼14𝐿 45.553093477 𝛼23𝐿 73.827427359 

𝛼6𝐿 20.420352246 𝛼15𝐿 48.694686131 𝛼24𝐿 76.969020013 

𝛼7𝐿 23.561944902 𝛼16𝐿 51.836278784 𝛼25𝐿 80.110612667 

𝛼8𝐿 26.703537556 𝛼17𝐿 54.977871438 𝛼26𝐿 83.252205320 

𝛼9𝐿 29.845130209 𝛼18𝐿 58.119464091 𝛼27𝐿 86.393797974 

 

The nth mode natural frequency of the fixed-fixed Euler-Bernoulli beam can be calculated 

similarly as of the fixed-free beam by using equation (3.89), however the values of 𝑅𝑛 should be 

referred to Table 3.5. 

Based on equation (3.103), the unknown constant F can be expressed in terms of D as 

𝐹 = −𝐷
𝑐𝑜𝑠(𝛼𝐿)−𝑐𝑜𝑠ℎ(𝛼𝐿)

𝑠𝑖𝑛(𝛼𝐿)−𝑠𝑖𝑛ℎ(𝛼𝐿)
                                               (3.106) 

Then the nth mode normal function of the fixed-fixed beam can be written as  

𝑋𝑛(𝑥) = 𝐷𝑛[(𝑐𝑜𝑠(𝛼𝑛𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥)) − 𝐶𝑓(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥))]    (3.107) 

where the coefficient 𝐶𝑓(𝛼𝑛𝐿) =
𝑐𝑜𝑠(𝛼𝑛𝐿)−𝑐𝑜𝑠ℎ(𝛼𝑛𝐿)

𝑠𝑖𝑛(𝛼𝑛𝐿)−𝑠𝑖𝑛ℎ(𝛼𝑛𝐿)
. 

By normalization of the normal function 𝑋𝑛(𝑥) in terms of equation (3.55), we have 
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∫ 𝑋𝑛(𝑥)
2𝑑𝑥

𝐿

0
= 𝐷𝑛

2
∫ [(𝑐𝑜𝑠(𝛼𝑛𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥)) − 𝐶𝑓(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥))]

2
𝑑𝑥

𝐿

0
=

𝐷𝑛
2 ∗ 𝐿 = 1                                                        (3.108) 

Thus, the constant 𝐷𝑛 can be determined based on equation (3.108) as  

𝐷𝑛 =
1

√𝐿
                                                                    (3.109) 

Finally, the nth mode normal function for a fixed-fixed beam can be written as 

𝑋𝑛(𝑥) =
1

√𝐿
[(𝑐𝑜𝑠(𝛼𝑛𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥)) − 𝐶𝑓(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥))]  (3.110) 

The first five modes of the normal functions for the fixed-fixed Euler-Bernoulli beam are 

plotted in Figure 3.6 below. 

 

Figure 3.6 The first five mode shapes for a fixed-fixed Euler-Bernoulli beam 
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First dynamic case for fixed-fixed beams: 

 For the first vibration case study of a fixed-fixed beam, let the external load 𝑞(𝑥, 𝑡) =

𝑓0𝑋𝑛∗(𝑥) sin(𝜔𝑡) (𝑓𝑜𝑟 𝑛
∗ = 1,3,5,7,9), here 𝑋𝑛∗(𝑥) is the 𝑛∗𝑡ℎnormalized normal function of the 

fixed-fixed beam, 𝑓0 and 𝜔 are both given problem data. Taking the Duhamel integration for this 

case by utilizing equation (3.65), the nth mode response can be obtained as 

𝜑𝑛(t) =
1

𝜔𝑛
∫ 𝑋𝑛(𝑥)
𝐿

0
∫

𝑓0𝑋𝑛∗(𝑥)sin (𝜔𝜏)

𝜌𝐴
sin (𝜔𝑛(𝑡 − 𝜏))𝑑𝜏𝑑𝑥

𝑡

0
=

𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

ω

𝜔𝑛
sin(𝜔𝑛𝑡)] ∫ 𝑋𝑛(𝑥)𝑋𝑛∗(𝑥)

𝐿

0
𝑑𝑥                               (3.111) 

The total transverse response of the deflection, for a fixed-fixed beam, can be computed by 

using equation (3.66) as 

𝑦(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)
𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)] ∫ 𝑋𝑛(𝑥)𝑋𝑛∗(𝑥)

𝐿

0
𝑑𝑥∞

𝑛=1 =

1

√𝐿
[(𝑐𝑜𝑠(𝛼𝑛∗𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛∗𝑥)) − 𝐶𝑓(𝛼𝑛∗𝐿)(𝑠𝑖𝑛(𝛼𝑛∗𝑥) −

𝑠𝑖𝑛ℎ(𝛼𝑛∗𝑥))]
𝑓0

𝜌𝐴𝜔𝑛∗
2
H𝑛∗(ω) [sin(𝜔𝑡) −

ω

𝜔𝑛∗
sin(𝜔𝑛∗𝑡)] (𝑓𝑜𝑟 𝑛

∗ = 1,3,5,7,9)       (3.112) 

where the coefficient 𝐶𝑓(𝛼𝑛∗𝐿) =
𝑐𝑜𝑠(𝛼𝑛∗𝐿)−𝑐𝑜𝑠ℎ(𝛼𝑛∗𝐿)

𝑠𝑖𝑛(𝛼𝑛∗𝐿)−𝑠𝑖𝑛ℎ(𝛼𝑛∗𝐿)
. 

The dynamic response of the bending moment, for the fixed-fixed beam, can be easily 

calculated with the expression presented in equation (3.112) as 

𝑀(𝑥, 𝑡) = −𝐸𝐼𝑦′′(𝑥, 𝑡) = −
𝛼𝑛∗

2

√𝐿
[(−𝑐𝑜𝑠(𝛼𝑛∗𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛∗𝑥)) − 𝐶𝑓(𝛼𝑛∗𝐿)(−𝑠𝑖𝑛(𝛼𝑛∗𝑥) −

𝑠𝑖𝑛ℎ(𝛼𝑛∗𝑥))]
𝑓0

𝜌𝐴𝜔𝑛∗
2H𝑛∗(ω) [sin(𝜔𝑡) −

ω

𝜔𝑛∗
sin(𝜔𝑛∗𝑡)] (𝑓𝑜𝑟 𝑛

∗ = 1,3,5,7,9)         (3.113) 

The dynamic response of the shear force, for the fixed-fixed beam, can be easily calculated 

with the expression presented in equation (3.112) as 
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𝑉(𝑥, 𝑡) = −𝐸𝐼𝑦′′′(𝑥, 𝑡) = −
𝛼𝑛∗

3

√𝐿
[(𝑠𝑖𝑛(𝛼𝑛∗𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛∗𝑥)) − 𝐶𝑓(𝛼𝑛∗𝐿)(−𝑐𝑜𝑠(𝛼𝑛∗𝑥) −

𝑐𝑜𝑠ℎ(𝛼𝑛∗𝑥))]
𝑓0

𝜌𝐴𝜔𝑛∗
2H𝑛∗(ω) [sin(𝜔𝑡) −

ω

𝜔𝑛∗
sin(𝜔𝑛∗𝑡)] (𝑓𝑜𝑟 𝑛

∗ = 1,3,5,7,9)         (3.114) 

where the coefficient 𝐶𝑓(𝛼𝑛∗𝐿) =
𝑐𝑜𝑠(𝛼𝑛∗𝐿)−𝑐𝑜𝑠ℎ(𝛼𝑛∗𝐿)

𝑠𝑖𝑛(𝛼𝑛∗𝐿)−𝑠𝑖𝑛ℎ(𝛼𝑛∗𝐿)
 applies throughout the equations in this 

case, H𝑛∗(ω) =
1

1−𝜔2 𝜔n∗
2⁄
. 

Second dynamic case fixed-fixed beams: 

For the second dynamic case study, a pulsating load 𝑞(𝑥, 𝑡) = 𝑓0𝛿(𝑥 − 𝑥0) sin(𝜔𝑡) is 

applied at the position of 𝑥 = 𝑥0 of a fixed-fixed beam, here 𝑓0 and 𝜔 are given problem data. By 

using Duhamel integral, the response contribution by nth mode can be calculated as 

𝜑𝑛(t) =
𝑋𝑛(𝑥=𝑥0)

𝜔𝑛
∫

𝑓0sin (𝜔𝜏)

𝜌𝐴
sin (𝜔𝑛(𝑡 − 𝜏))𝑑𝜏

𝑡

0
=

𝑋𝑛(𝑥=𝑥0)

𝜔𝑛

𝑓0

𝜌𝐴
H𝑛(ω) [

1

𝜔𝑛
sin(𝜔𝑡) −

𝜔

𝜔𝑛2
sin(𝜔𝑛𝑡)]                                   (3.115) 

The total transverse response of the deflection, for the fixed-fixed beam, can be computed 

by using equation (3.66) as 

𝑦(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)
𝑋𝑛(𝑥=𝑥0)

𝜔𝑛

𝑓0

𝜌𝐴
H𝑛(ω) [

1

𝜔𝑛
sin(𝜔𝑡) −

𝜔

𝜔𝑛2
sin(𝜔𝑛𝑡)]

∞
𝑛=1 =

1

𝐿
∑ [(𝑐𝑜𝑠(𝛼𝑛𝑥) −
∞
𝑛=1

𝑐𝑜𝑠ℎ(𝛼𝑛𝑥)) − 𝐶𝑓(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥))][(𝑐𝑜𝑠(𝛼𝑛𝑥0) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥0)) −

𝐶𝑓(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥0) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥0))]
𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)] (𝑓𝑜𝑟 𝑛 = 1,2,3, … )    

(3.116) 

The response of the bending moment, for the fixed-fixed beam, can be calculated with the 

expression presented in equation (3.116) as 
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𝑀(𝑥, 𝑡) = −
𝐸𝐼𝛼𝑛

2

𝐿
∑ [(−𝑐𝑜𝑠(𝛼𝑛𝑥) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥)) − 𝐶𝑓(𝛼𝑛𝐿)(−𝑠𝑖𝑛(𝛼𝑛𝑥) −
∞
𝑛=1

𝑠𝑖𝑛ℎ(𝛼𝑛𝑥))][(𝑐𝑜𝑠(𝛼𝑛𝑥0) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥0)) − 𝐶𝑓(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥0) −

𝑠𝑖𝑛ℎ(𝛼𝑛𝑥0))]
𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)] (𝑓𝑜𝑟 𝑛 = 1,2,3, … )            (3.117) 

The response of the shear force, for the fixed-fixed beam, can be calculated with the 

expression presented in equation (3.116) as 

𝑉(𝑥, 𝑡) = −
𝐸𝐼𝛼𝑛

3

𝐿
∑ [(𝑠𝑖𝑛(𝛼𝑛𝑥) − 𝑠𝑖𝑛ℎ(𝛼𝑛𝑥)) − 𝐶𝑓(𝛼𝑛𝐿)(−𝑐𝑜𝑠(𝛼𝑛𝑥) −
∞
𝑛=1

𝑐𝑜𝑠ℎ(𝛼𝑛𝑥))][(𝑐𝑜𝑠(𝛼𝑛𝑥0) − 𝑐𝑜𝑠ℎ(𝛼𝑛𝑥0)) − 𝐶𝑓(𝛼𝑛𝐿)(𝑠𝑖𝑛(𝛼𝑛𝑥0) −

𝑠𝑖𝑛ℎ(𝛼𝑛𝑥0))]
𝑓0

𝜌𝐴𝜔𝑛2
H𝑛(ω) [sin(𝜔𝑡) −

𝜔

𝜔𝑛
sin(𝜔𝑛𝑡)] (𝑓𝑜𝑟 𝑛 = 1,2,3, … )         (3.118) 

where the coefficient 𝐶𝑓(𝛼𝑛𝐿) =
𝑐𝑜𝑠(𝛼𝑛𝐿)−𝑐𝑜𝑠ℎ(𝛼𝑛𝐿)

𝑠𝑖𝑛(𝛼𝑛𝐿)−𝑠𝑖𝑛ℎ(𝛼𝑛𝐿)
 applies throughout this case, H𝑛(ω) =

1

1−𝜔2 𝜔n2⁄
. 

3.3 Static Benchmark Cases Study for RISER3D 

For Euler Bernoulli beam static benchmark cases, two types of transverse loads are used 

for simply supported and fixed-fixed beam finite element simulation respectively. One type is high 

degrees polynomial distributed load, the other type is sinusoidal load with high frequencies. The 

results of the beam deflection, slope, bending moment and shear force are compared among 

RISER3D, CALBE3D and analytical analysis. 

3.3.1 Static Benchmark Cases Subjected Transverse Polynomial-type Loads 

For transverse polynomial-type distributed loads, the governing equation for a prismatic 

Euler Bernoulli beam with linear foundation is a fourth order differential equation as 

𝐸𝐼𝑢′′′′ + 𝐾𝑎𝑢 = 𝑞0 (
𝑥

𝐿
)
𝑛

 𝑓𝑜𝑟 𝑥 ∈ [0, 𝐿]                               (3.119) 

where the constants 𝐾𝑎is the linear foundation stiffness.    
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   The first static benchmark case is for one-dimensional simply supported beam with zero 

foundation stiffness and subjected to a fifth-order polynomial distributed load (n=5), the main 

properties of the beam are summarized in Table 3.6. A total of eight elements are adopted for the 

discretization of the beam domain. The concerned results of this cases, including the simply-

supported beam deflection, slope, bending moment and shear force, are presented from Figure 3.7 

to Figure 3.10. 

In the plotted figures of this study, the legend ‘QH FEA’ denotes Quintic Hermite Finite 

Element Method, ‘CH FEA’ denotes Cubic Hermite Finite Element Method, ‘Analytical’ denotes 

results calculated based on the Euler Bernoulli beam theory as presented in section 3.2, ‘5PFDM 

CH FEA’ denotes using five-point finite difference method for postprocessing the concerned 

results based on nodal information obtained by Cubic Hermite Finite Element analysis. Unless 

otherwise specified, these legend titles are applied throughout all study cases in this dissertation. 

For the first benchmark case, with 1m element mesh, the maximum bending moment 

computed by Analytical, QH FEA and 5PFDM CH FEA methods are 46.9727Nm, 46.9764Nm 

and 47.1967Nm respectively. The relative difference of the maximum bending moment between 

Analytical and QH FEA method is 0.0081%, while the relative difference between Analytical and 

5PFDM is 0.4771%.  As of the maximum shear force, the corresponding value are -57.1429N, -

57.0381N and -50.2645N respectively. The corresponding relative differences become -0.1833% 

and -12.0371% respectively. 
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Table 3.6 Case data for simply supported beam with no foundation 

Designate Symbol Value  Unit 

Beam length L 8 m 

Beam width W 0.05 m 

Beam height H 0.02 m 

Young's Modulus E 2.07E+11 N/m2 

Bending rigidity EI 6.90E+03 Nm2 

Axial stiffness EA 2.07E+08 N 

Lateral load factor q0 50.0 N/m 

 

 

Figure 3.7 Simply supported beam deflection for case n=5 
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Figure 3.8 Simply supported beam slope for case n=5 

 

Figure 3.9 Simply supported beam bending moment for case n=5 
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Figure 3.10 Simply supported beam shear force for case n=5 

   The second static benchmark case is for a fixed-fixed beam with zero foundation 

stiffness, subjected to a cubic polynomial distributed load n=3, the case input data are the same 

with the first benchmark case except using a larger load factor 𝑞0 = 2000𝑁/𝑚. A total of eight 

elements are adopted for meshing the problem domain. The concerned results of this cases, 

including the fixed-fixed beam deflection, slope, bending moment and shear force, are plotted form 

Figure 3.11 to Figure 3.14. 

For the second benchmark case, the maximum bending moment computed by Analytical, 

QH FEA and 5PFDM CH FEA are -3047.6190Nm, -3047.5122Nm and -3017.9315Nm 

respectively. The relative difference of the maximum bending moment between Analytical and 

QH FEA method is -0.0035%, while the relative difference between Analytical and 5PFDM is -

0.9741%.  As of the maximum shear force, the corresponding critical value are -3428.5714N, -

3426.4330N and -3303.3110N respectively. And the corresponding relative differences become as 

-0.0624% and -3.6534% respectively. 
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Figure 3.11 Fixed-fixed beam deflection for case n=3 

 

Figure 3.12 Fixed-fixed beam slope for case n=3 
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Figure 3.13 Fixed-fixed beam bending moment for case n=3 

 

Figure 3.14 Fixed-fixed beam slope for case n=3 

A third case is studied for the fixed-fixed beam with linear elastic foundation, i.e. 𝐾𝑎 =

1.0e4N/m/m , subjected to fifth-order polynomial distributed load n=5. The case input data are 
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the same with the first benchmark case except using a larger load factor 𝑞0 = 2000𝑁/𝑚. A total 

of eight elements are utilized for meshing the problem domain. The concerned results of this case, 

including the fixed-fixed beam deflection, slope, bending moment and shear force, are plotted form 

Figure 3.15 to Figure 3.18 respectively. 

 

Figure 3.15 Fixed-fixed beam deflection for case n=5 with linear foundation 

 

Figure 3.16 Fixed-fixed beam slope for case n=5 with linear foundation 
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Figure 3.17 Fixed-fixed beam bending moment for case n=5 with linear foundation 

 

Figure 3.18 Fixed-fixed beam shear force for case n=5 with linear foundation 
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3.3.2 Static Benchmark Cases Subjected Transverse Sinusoidal-type Loads 

For transverse sinusoidal-type loads, the governing equation for a prismatic Euler Bernoulli 

beam (𝐸𝐼=constant) with linear foundation is a fourth order differential equation as 

𝐸𝐼𝑢′′′′ + 𝐾𝑎𝑢 = 𝑞0𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) (𝑓𝑜𝑟 n = 1,2,3, … ;  𝑥 ∈ [0, 𝐿])                (3.120) 

   For this type of loads, the first benchmark case is for a simply supported beam with zero 

foundation stiffness (𝐾𝑎 = 0𝑁/𝑚/𝑚), the particulars of which are also presented in Table 3.6.  

Case specific data include n=7 and 𝑞0 = 6.0𝑒3𝑁/𝑚. A total of 16 equal size elements are used for 

the problem domain meshing. The results of RISER3D, including the deflection, slope , bending 

moment and shear force of the simply-supported beam, are compared to those of obtained by 

analytical analysis and CABLE3D program from Figure 3.19 to Figure 3.22 respectively. 

For this benchmark case, the bending moments, at the middle point of the beam, computed 

by Analytical, QH FEA and 5PFDM CH FEA method are -794.0272Nm, -791.4754Nm and -

718.6285Nm respectively. The relative difference of the bending moment between Analytical and 

QH FEA method is -0.3214%, while the relative difference between Analytical and 5PFDM is -

9.4957%.   
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Figure 3.19 Simply supported beam deflection for case n=7 

 

Figure 3.20 Simply supported beam slope for case n=7 
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Figure 3.21 Simply supported beam bending moment distribution for case n=7 

 

Figure 3.22 Simply supported beam shear force distribution for case n=7 

   For the same beam with zero foundation but fixed-fixed boundary conditions, the second 

static benchmark case for sinusoidal-type load is studied with specific case data n=9 and 𝑞0 =
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6.0𝑒3𝑁/𝑚. A total of 16 equal size elements are used for the problem domain meshing. The main 

results of RISER3D for this case, including the deflection, slope, bending moment and shear force 

of the fixed-fixed beam, are compared to those of by analytical analysis and CABLE3D program 

from Figure 3.23 to Figure 3.26 respectively. 

For this benchmark case, the maximum bending moments predicted by Analytical, QH 

FEA and 5PFDM CH FEA methods are -513.9441Nm, -515.8828Nm and -378.3928Nm 

respectively. The relative difference of the bending moment between Analytical and QH FEA 

method is 0.3772%, while the relative difference between Analytical and 5PFDM is -26.3747%.   

 

Figure 3.23 Fixed-fixed beam deflection for case n=9 
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Figure 3.24 Fixed-fixed beam slope for case n=9  

 

Figure 3.25 Fixed-fixed beam bending moment distribution for case n=9  
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Figure 3.26 Fixed-fixed beam shear force distribution for case n=9  

Based on the plotted results of above static benchmark cases, it can be seen that both the 

traditional method, i.e. the cubic Hermite finite element method, and the new quintic Hermite finite 

element method can yield good simulation results for the beam deflection and slope. However, for 

the bending moment and shear force prediction, especially at the section where the solution 

gradient is large, the new method can yield much higher accuracy than the traditional method. 

3.4 Dynamic Benchmark Cases Study for RISER3D 

For dynamic benchmark cases study of Euler Bernoulli beams, forced transverse vibration 

of simply supported beam, cantilever beam and fixed-fixed beam are studied respectively. For 

brevity, only a few selected cases are presented in the dissertation. Two types of loads are 

considered since the analytical responses can be derived using Duhamel integral. The first dynamic 

load type is pulsating load exerted at arbitrary position 𝑥 = 𝑥0 (𝑥0 ∈ [0, 𝐿]) with load amplitude 

𝑓0 
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𝜌𝐴
𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4
= 𝑓0𝛿(𝑥 − 𝑥0)𝑠𝑖𝑛(𝜔𝑡)                              (3.121) 

The second dynamic load type is a distributed varying force in form of the beam’s natural 

mode shape functions, say 𝑛∗th mode, with load amplitude of 𝑓0 

𝜌𝐴
𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4
= 𝑓0𝑋𝑛∗(𝑥)𝑠𝑖𝑛 (𝜔𝑡)                                  (3.122) 

If taking the three types of beam and two types of dynamic loads into consideration, a total 

of six dynamic cases have to be performed in this section. For simplicity, only three dynamic cases 

are studied here. 

The first dynamic benchmark case is a simply supported beam subjected to a transverse 

excitation load in form of 𝑞(𝑥, 𝑡) = 200𝑠𝑖𝑛 (
5𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (182𝑡). The beam particulars for this 

dynamic benchmark case are summarized in Table 3.7. 

Table 3.7 The Euler Bernoulli beam particulars for the dynamic benchmark cases 

Designate Symbol Value  Unit 

Beam length L 4 m 

Beam width W 0.02 m 

Beam height H 0.01 m 

Young's Modulus E 2.07E+11 N/m2 

Bending rigidity EI 345 Nm2 

Axial stiffness EA 4.14E+07 N 

 

 

For this case study, a total of 12 equal size elements are used for the domain mesh. The 

main results for the first dynamic cases, including the time series of the beam middle point 
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deflection, the beam middle point bending moment, the local zoom in of the beam middle point 

bending moment, and the beam left end shear force , are presented from Figure 3.27 to Figure 3.30 

respectively. The time series selected for comparison among RISER3D, CALBE3D and analytical 

analysis mainly consist of the beam middle point deflection, middle point bending moment and 

left end point shear force. 

 

Figure 3.27 Time series of the middle point deflection of the simply supported beam  

 

Figure 3.28 Time series of the middle point bending moment of the simply supported beam  
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Figure 3.29 Time series of the SSB middle point bending moment with local zoom in 

 

Figure 3.30 Time series of the left end shear force of the simply supported beam  

The second dynamic benchmark case is a fixed-free cantilever beam subjected to a 

pulsating load, in form of 𝑞(𝑥, 𝑡) = 200𝛿(𝑥 − 2.05)𝑠𝑖𝑛 (148𝑡), at the point 𝑥0=2.05m closing to 

the middle point of the beam. The analytical results of the beam deflection, bending moment and 
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shear force are derived by Duhamel integral and summarized in equation (3.100) to (3.102) 

respectively, which are truncated high to 27th mode for this case. 

For the second case study, a total of 12 equal size elements are used for the domain mesh. 

The concerned time series, including the time series of the beam deflection at the right free end, 

the bending moment at the left fixed end, the local zoom in the bending moment, the shear force 

at the left end and the local zoom in the shear force, are plotted from Figure 3.31 to Figure 3.35 

respectively. The Figure 3.33 and Figure 3.35 are the local zoom in plots for an amplified view of 

the response differences among the three different methods. 

 

Figure 3.31 Comparison of the time series of free end deflection of the cantilever beam 
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Figure 3.32 Time series of the cantilever beam bending moment at left end 

 

Figure 3.33 Time series of local zoom in of the cantilever beam bending moment at left end 
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Figure 3.34 Time series of the shear force of the cantilever beam at left fixed end 

 

Figure 3.35 Time series of the local zoom in of the cantilever beam shear force at left end 

The third dynamic benchmark case is for the beam, with fixed-fixed boundary conditions, 

subjected to a dynamic pulsating load in form of 𝑞(𝑥, 𝑡) = 100𝛿(𝑥 − 2.05)𝑠𝑖𝑛 (89𝑡). The 

analytical results for the beam transverse deflection, bending moment and shear force are 
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calculated based on equation (3.116), (3.117) and (3.118) respectively, which are truncated high 

to 27th mode in this study. 

For this case, a total of 12 uniform length elements are used for the beam mesh. The time 

series of the deflection at the middle point of the beam, the bending moment at the middle point 

of the beam and the shear force at the left end of the beam are plotted from Figure 3.36 to Figure 

3.40. Figure 3.38 and 3.40 are the local zoom in plots for getting a better view of the response 

differences among the three different approaches, i.e. RISER3D, CALBE3D and Analytical 

analysis. 

 

Figure 3.36 Time series of the fixed-fixed beam transverse deflection at the middle point 
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Figure 3.37 Time series of the fixed-fixed beam bending moment at the middle point 

 

Figure 3.38 Local room in for fixed-fixed beam bending moment at the middle point 
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Figure 3.39 Time series of the fixed-fixed beam shear force at left fixed end 

 

Figure 3.40 Time series of the local zoom in of the fixed-fixed beam shear force at left end 

Based on the results of all the static and dynamic benchmark cases, several conclusions can 

be drawn as below 
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• For the traditional cubic Hermite finite element analyses, such as CABLE3D, they can 

produce good accuracy for the simulation of the beam deflection and beam slope. 

However, the beam bending moment and shear force always have discernable difference 

to the analytical results either postprocessed by using the cubic Hermite interpolation 

method or the five-point finite difference method, especially for cases subjected to 

transverse high-orders of polynomial loads and high-modes of sinusoidal loads.  

• For the new quintic Hermite finite element analysis, it can not only produce good 

accuracy for the simulation of the beam deflection and beam slope, but also for the 

simulation of the beam bending moment and shear force within the whole problem 

domain. 

• For the quintic Hermite finite element analysis, the results of the bending moment 

curves are continuous piecewise cubic-polynomial functions in the whole problem 

domain, which can dramatically facilitate the identification of the maximum bending 

moment position and magnitude. On the contrary, the results by cubic Hermite finite 

element analysis are not continuous and the maximum bending moment are either 

underestimated or overestimated, the error which is depending on the mesh size. 

3.5 The Effectiveness Study of RISER3D 

In this section, the effectiveness study of the new finite element method is performed by 

using different element mesh sizes for several simply-supported beam problems. The numerical 

simulation results obtained by CABLE3D, i.e. by cubic Hermite finite element method, and the 

new method RISER3D are compared to those of obtained by analytical solution.  

A total of three subcases for a simply-supported beam subject to different transverse loads 

or restraints are analyzed in this section. The beam properties used for the effectiveness study are 
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shown in Table 3.6. The governing differential equation for these subcases is the equation (3.119). 

The objective of each subcase is to identify the beam maximum bending moment (denoted as 

MBM), the position of the maximum bending moment (denoted as MBMPos) and the beam 

maximum shear force(denoted as MSF) with both finite element methods, i.e. cubic Hermite finite 

element method (CH) and quintic Hermite finite element method (QH), using three types of 

element mesh, i.e. 1.0m, 0.5m and 0.33m respectively.  

The first subcase assumes that the beam is subjected to a static cubic polynomial-type 

distributed load with problem data 𝑓0 = 50𝑁/𝑚, 𝑛 = 3, and 𝐾𝑎 = 0𝑁/𝑚/𝑚 in equation (3.119). 

The concerned results are summarized and compared in Table 3.8 and Table 3.9 respectively. 

Table 3.8 The comparison of the beam MBM and its position for subcase1 

SSB_

FEM 

Eleme

nt No. 

Mesh 

Size 

(m) 

MBM_

ANA 

(Nm) 

MBM 

(Nm) 

MBM_

Rdif 

(%) 

MBMPo

s_ANA 

(m) 

MBMPo

s (m) 

MBMPo

s_Rdif 

(%) 

CH 

8 1 85.5988 84.8389 -0.8877 5.3499 5.0000 -6.5403 

16 0.5 85.5988 85.4323 -0.1945 5.3499 5.5000 2.8057 

24 0.33 85.5988 85.5980 -0.0009 5.3499 5.3333 -0.3103 

QH 

8 1 85.5988 85.5989 0.0001 5.3499 5.3504 0.0093 

16 0.5 85.5988 85.5987 -0.0001 5.3499 5.3499 0.0000 

24 0.33 85.5988 85.5988 0.0000 5.3499 5.3499 0.0000 
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Table 3.9 The comparison of the beam MSF for subcase1 

SSB_FE

M 

Element 

No. 

Mesh Size 

(m) 

MSF_AN

A (N) 
MSF (N) 

MSF_Rdif 

(%) 
GDoFs 

CH 

8 1 80 76.8685 -3.9144 18 

16 0.5 80 79.5601 -0.5499 34 

24 0.33 80 79.8649 -0.1689 50 

QH 

8 1 80 79.9659 -0.0426 27 

16 0.5 80 79.9956 -0.0055 51 

24 0.33 80 79.9987 -0.0016 75 

Notes applied for all the effectiveness study cases in section 3.5:  

SSB= simply-supported beam; Ana=analytical;  

Rdif= relative difference;  

GDoFs= global degrees of freedom;  

Ana= analytical solutions; 

Best= the solutions of the 0.33 element size case using RISER3D program. 

The second subcase assumes that the simply supported beam is subjected to a static septic 

polynomial-type distributed load with problem data 𝑓0 = 50𝑁/𝑚, 𝑛 = 7, and 𝐾𝑎 = 0𝑁/𝑚/𝑚 in 

equation (3.119). The concerned results are summarized and compared in Table 3.10 and Table 

3.11 respectively. 

Table 3.10 The comparison of the beam MBM and its position for subcase2 

SSB_

FEM 

Eleme

nt No. 

Mesh 

Size 

(m) 

MBM_

ANA 

(Nm) 

MBM 

(Nm) 

MBM_

Rdif 

(%) 

MBMPo

s_ANA 

(m) 

MBMPo

s (m) 

MBMPo

s_Rdif 

(%) 

CH 

8 1 30.0182 30.2731 0.8492 6.0787 6.0000 -1.2947 

16 0.5 30.0182 30.0127 -0.0183 6.0787 6.0000 -1.2947 

24 0.33 30.0182 29.9995 -0.0623 6.0787 6.0000 -1.2947 

QH 

8 1 30.0182 30.0172 -0.0033 6.0787 6.0727 -0.0987 

16 0.5 30.0182 30.0181 -0.0003 6.0787 6.0786 -0.0016 

24 0.33 30.0182 30.0182 0.0000 6.0787 6.0788 0.0016 
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Table 3.11 The comparison of the beam MSF for subcase2 

SSB_FE

M 

Element 

No. 

Mesh Size 

(m) 

MSF_AN

A (N) 
MSF (N) 

MSF_Rdif 

(%) 
GDoFs 

CH 

8 1 44.4444 34.6261 -22.0912 18 

16 0.5 44.4444 42.3829 -4.6384 34 

24 0.33 44.4444 43.7201 -1.6297 50 

QH 

8 1 44.4444 44.2451 -0.4484 27 

16 0.5 44.4444 44.4165 -0.0628 51 

24 0.33 44.4444 44.4359 -0.0191 75 

 

 

The third subcase assumes that the simply supported beam is subjected to a static septic 

polynomial-type distributed load with problem data 𝑓0 = 50𝑁/𝑚, 𝑛 = 7, and 𝐾𝑎 = 1.0𝑒4𝑁/𝑚/

𝑚 in equation (3.119). The concerned results are summarized and compared in Table 3.12 and 

Table 3.13 respectively. 

Table 3.12 The comparison of the beam MBM and its position for subcase3 

SSB_

FEM 

Eleme

nt No. 

Mesh 

Size 

(m) 

MBM_

Best 

(Nm) 

MBM 

(Nm) 

MBM_

Rdif 

(%) 

MBMPo

s_Best 

(m) 

MBMPo

s (m) 

MBMPo

s_Rdif 

(%) 

CH 

8 1 7.8935 8.6720 9.8625 7.2145 7.0000 -2.9732 

16 0.5 7.8935 7.6295 -3.3445 7.2145 7.0000 -2.9732 

24 0.33 7.8935 7.7854 -1.3695 7.2145 7.3333 1.6467 

QH 

8 1 7.8935 7.8833 -0.1292 7.2145 7.2180 0.0485 

16 0.5 7.8935 7.8938 0.0038 7.2145 7.2149 0.0055 

24 0.33 7.8935 7.8935 0.0000 7.2145 7.2145 0.0000 
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Table 3.13 The comparison of the beam MSF for subcase3 

SSB_FE

M 

Element 

No. 

Mesh Size 

(m) 

MSF_Best 

(N) 
MSF (N) 

MSF_Rdif 

(%) 
GDoFs 

CH 

8 1 24.5121 9.1803 -62.5479 18 

16 0.5 24.5121 21.3997 -12.6974 34 

24 0.3333 24.5121 23.5183 -4.0543 50 

QH 

8 1 24.5121 24.2792 -0.9501 27 

16 0.5 24.5121 24.5061 -0.0245 51 

24 0.3333 24.5121 24.5121 0.0000 75 

 

 

According to the effectiveness studies in this section, it can be seen that, compared to 

traditional cubic Hermite finite element method, the new quintic Hermite finite element method 

can: 

• show better effectiveness by converging to the true solutions with large mesh size 

• yield much more accurate results, especially for the coarse element cases 

• save computational effort by produce more accurate simulation results while solving 

even smaller global system of equations 
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4 RISER3D APPLICATION TO EIGENVALUE PROBLEMS OF RISERS 

Another typical problem that frequently encountered in structural engineering filed is that 

a governing differential equation which governs the dependent variable also contains unknown 

parameters. Both the dependent variable and the unknown parameters in the equation should be 

determined simultaneously such that all involved boundaries are also satisfied. This type of 

engineering problem is the called eigenvalue problem. As for marine risers, the study of the axial 

and transverse vibrations, triggered by three-dimensional host platform translational movements 

under combined effect of the wind, wave and current, is of great importance for a better 

understanding of riser dynamics. The riser transverse vibrations are also known as vortex-induced 

vibrations (VIVs), which are widely researched and analyzed in recent decades because they can 

cause severe fatigue damage to the risers. 

This chapter mainly address on the application of RISER3D on the transverse modal 

vibrations of near vertical marine risers, i.e. top-tensioned risers (TTRs). To validate the accuracy 

and robustness of the eigenvalue module of RISER3D program, the transverse vibration of  simple 

Euler Bernoulli beams subject to a constant tension are firstly studied, which consist of analytical 

results that can help to verify the numerical simulation results. The essential difference between 

the simple beam mathematical model and the vertical riser mathematical model is that the tension 

in the former is a constant while varies with respect to the vertical elevation for the latter.  

4.1 Analytical Natural Frequency Analysis on a Constant Tension Beam 

This section studies the transverse vibration of a simple prismatic Euler Bernoulli beam 

subject to a constant tension. The free-body diagram of the problem is illustrated in Figure 4.1. 
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Figure 4.1 The free-body diagram of a tensioned beam subject to dynamic load 

Assuming the constant tension 𝑇 is in the axial direction of the beam and the positive beam 

slopes at point A and point B are denoted as 
𝜕𝑦

𝜕𝑥
 and 

𝜕𝑦

𝜕𝑥
+

𝜕

𝜕𝑥
(
𝜕𝑦

𝜕𝑥
)𝑑𝑥 respectively. For an 

infinitesimal element 𝑑𝑥 in the beam, as shown in Figure 4.1, the following force equilibrium 

equation can be established in the vertical direction by assuming the transverse deflection is small. 

−𝑉 + (𝑉 +
𝜕𝑉

𝜕𝑥
𝑑𝑥) − 𝑇

𝜕𝑦

𝜕𝑥
+ 𝑇 [

𝜕𝑦

𝜕𝑥
+

𝜕

𝜕𝑥
(
𝜕𝑦

𝜕𝑥
) 𝑑𝑥] − 𝑚

𝜕2𝑦

𝜕𝑡2
𝑑𝑥 = 0 (𝑥 ∈ [0, 𝐿])        (4.1) 

where 𝑉 is the beam shear force, 𝑇 is the constant axial tension, 𝑦(𝑥, 𝑡) is the transverse 

displacement of the beam, 𝑚 is mass of the beam per unit length, 𝐿 is the total length of the beam. 

Besides, implementing the conservation of angular momentum can lead to the following 

equilibrium equation  

−𝑀 +𝑀 +
𝜕𝑀

𝜕𝑥
𝑑𝑥 − (𝑉 +

𝜕𝑉

𝜕𝑥
𝑑𝑥) 𝑑𝑥 + 𝑚

𝜕2𝑦

𝜕𝑡2
𝑑𝑥 ∙ 𝑑𝑥 = 0                      (4.2) 

Further simplification of equation (4.1) by omitting higher order terms yields 

𝜕𝑉

𝜕𝑥
+ 𝑇

𝜕

𝜕𝑥
(
𝜕𝑦

𝜕𝑥
) − 𝑚

𝜕2𝑦

𝜕𝑡2
= 0                                                (4.3) 
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Further simplification of equation (4.2) by omitting higher order terms yields 

𝜕𝑀

𝜕𝑥
= 𝑉                                                                 (4.4) 

According to structural mechanics in Euler Bernoulli beam theory, together with the shear 

force and bending moment sign convention as shown in Figure 4.1, the bending moment of a 

simple beam with constant bending stiffness 𝐸𝐼 can be expressed as 

𝑀 = −𝐸𝐼
𝜕2𝑦

𝜕𝑥2
                                                            (4.5) 

Substitution of equation (4.4) and (4.5) into equation (4.3) can generate the governing 

differential equation of the small deflection transverse free vibration of the beam as 

𝜕2

𝜕𝑥2
(−𝐸𝐼

𝜕2𝑦

𝜕𝑥2
) + 𝑇

𝜕

𝜕𝑥
(
𝜕𝑦

𝜕𝑥
) − 𝑚

𝜕2𝑦

𝜕𝑡2
= 0                                   (4.6) 

When the beam vibrates in one of its natural modes, the transverse deflection of beam 

varies harmonically with time in the beam domain as 

𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝜑(𝑡) = 𝑋(𝑥)(𝐴𝑐𝑜𝑠𝜔𝑡 + 𝐵𝑠𝑖𝑛𝜔𝑡)                             (4.7) 

where the subscript n for the 𝑛th mode has been omitted for brevity, 𝐴, 𝐵 are unknown constants 

here, 𝜔 is the beam vibration natural frequency, 𝑋(𝑥) is the mode shape function. 

Plugging equation (4.7) into equation (4.6) leads to 

𝐸𝐼𝑋′′′′ − 𝑇𝑋′′ −𝑚𝜔2𝑋 = 0                                               (4.8) 

By letting 𝑆 =
𝑇

2𝐸𝐼
 and 𝑈2 =

𝑚𝜔2

𝐸𝐼
, equation (4.8) can be rewritten as 

𝑋′′′′ − 2𝑆𝑋′′ − 𝑈2𝑋 = 0                                                  (4.9) 

Hence, the general form of the solution of equation (4.9) can be solved mathematically as  

𝑋(𝑥) = 𝐶𝑠𝑖𝑛ℎ(𝛼𝑥) + 𝐷𝑐𝑜𝑠ℎ(𝛼𝑥) + 𝐸𝑠𝑖𝑛(𝛽𝑥) + 𝐹𝑐𝑜𝑠(𝛽𝑥)                    (4.10) 
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where 𝛼 = √𝑆 + √𝑆2 + 𝑈2, 𝛽 = √−𝑆 + √𝑆2 +𝑈2 are positive real parameters, parameters 

𝐶, 𝐷, 𝐸, 𝐹 are unknown constants which can be determined by the four boundary conditions at both 

ends of the beam. 

Now taking a simply-supported beam as an example, the four boundary conditions at the 

ends of the beam can be expressed as 

𝑋(0) = 0; 𝑋(𝐿) = 0; 𝑋′′(0) = 0; 𝑋′′(𝐿) = 0                                (4.11) 

Substitution of the beam general solution function (4.10) into the four the boundary 

conditions in equation (4.11) respectively, the following system of equations can be obtained 

[

0 1 0 1
𝛼 0 𝛽 0

𝑠𝑖𝑛ℎ (𝛼𝐿) 𝑐𝑜𝑠ℎ (𝛼𝐿) 𝑠𝑖𝑛(𝛽𝐿) 𝑐𝑜𝑠(𝛽𝐿)

𝛼𝑐𝑜𝑠ℎ (𝛼𝐿) 𝛼𝑠𝑖𝑛ℎ (𝛼𝐿) 𝛽𝑐𝑜𝑠(𝛽𝐿) −𝛽𝑠𝑖𝑛(𝛽𝐿)

]{

𝐶
𝐷
𝐸
𝐹

} = {

0
0
0
0

}                   (4.12) 

To achieve a set of nontrivial solution for the four unknown constants, the determinant of 

the four by four coefficient matrix in equation (4.12) must be equal to zero, which leads to  

(𝛼4 + 2𝛼2𝛽2 + 𝛽4)𝑠𝑖𝑛 ℎ(𝛼𝐿)𝑠𝑖𝑛(𝛽𝐿) = 0                                     (4.13) 

Considering that the parameters 𝛼, 𝛽 and 𝐿 are all real and positive numbers, the following 

relationship must be held 

𝑠𝑖𝑛(𝛽𝐿) = 0                                                        (4.14) 

Equation (4.14) is called the frequency equation of the transverse vibration of a simply-

supported constant-tension beam. Therefore, all the positive roots of the parameter 𝛽 can be 

obtained by solving the frequency equation as 𝛽𝑛 =
𝑛𝜋

𝐿
 (𝑛 = 1,2,3, … ). By incorporation of the 

expressions for 𝛽, 𝑆 and 𝑈2 mentioned above, the final expression for the beam natural frequencies 

can be written as 

𝜔𝑛 =
𝑛𝜋

𝐿
√
𝑇∗

𝑚
  (𝑛 = 1,2,3, … )                                             (4.15) 
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where 𝑇∗ = 𝑇 + 𝐸𝐼 (
𝑛𝜋

𝐿
)
2

. 

Therefore, if the beam bending stiffness 𝐸𝐼 is zero, the beam model will descend to a cable 

or wire model subject to constant tension with fixed boundary conditions, the natural frequencies 

of which can be simply obtained as  

𝜔𝑛 =
𝑛𝜋

𝐿
√
𝑇

𝑚
  (𝑛 = 1,2,3, … )                                          (4.16) 

Back substitution of equation (4.14) into equation (4.12), it can be obtained that, among 

the four unknown constants, the only nonzero constant is 𝐸; 𝐶, 𝐷 and 𝐹 are all zeros. Hence, the 

solution of the simply-supported beam mode shape function (4.9) can be simplified as 

𝑋(𝑥) = 𝐸𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥)                                                    (4.17) 

Finally, by superposition of the solution for different vibrational modes of the differential 

governing equation, the response of the simply-supported Euler Bernoulli beam can be expressed 

as 

𝑦(𝑥, 𝑡) = 𝐸𝑛𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥) (𝐴𝑛𝑐𝑜𝑠𝜔𝑛𝑡 + 𝐵𝑛𝑠𝑖𝑛𝜔𝑛𝑡) (𝑛 = 1,2,3, … )              (4.18) 

where the constants 𝐸𝑛 can be obtained by normalization of the product of two distinct mode shape 

functions to unity, unknown constants 𝐴𝑛 and 𝐵𝑛 should be determined according the initial 

conditions of the beam, i.e. the initial beam position and velocity before the start of the vibration. 

4.2 Analytical Analysis on Transverse Vibration of Vertical Marine Risers 

4.2.1 Bessel Function Approximation of a Vertical Riser  

For the analytical analysis of a tensioned near-vertical marine riser subject to transverse 

vibration, we can start with the free-body diagram as illustrated in Figure 4.2. 
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Figure 4.2 The free body diagram for a vertical riser in the global coordinate system 

From Figure 4.2, the riser element under free vibration is subject to shear force, axial 

effective tension, submerged weight and inertial force, denoted as 𝑉, 𝑇, 𝑤 and 𝑚�̈� respectively. By 

application of the conservation of linear momentum, the following force equilibrium equation can 

be established for an infinitesimal length 𝑑𝑥 as 

−𝑉 + (𝑉 +
𝜕𝑉

𝜕𝑥
𝑑𝑥) + 𝑤𝑑𝑥 ∙ 𝑠𝑖𝑛𝜃 − (𝑇 + 𝛿𝑇) sin(−𝛿𝜃) − 𝑚𝑑𝑥 ∙ �̈� = 0              (4.19) 

By assuming the rotation angle 𝜃 is a small for the riser model, then the two relationships 

of 𝜃 ≈ 𝑠𝑖𝑛𝜃 ≈ 𝑡𝑎𝑛𝜃 =
𝑑𝑦

𝑑𝑥
, 𝛿𝜃 =

𝜕𝜃

𝜕𝑥
𝑑𝑥 ≈

𝜕

𝜕𝑥
(
𝜕𝑦

𝜕𝑥
)𝑑𝑥 can hold straightforwardly. Incorporating 

these two relationships, together with relationships in equation (4.4) and (4.5), to equation (4.19) 

and omitting the higher order terms, the governing motion equation can be obtained for a vertical 

riser as 

𝜕2

𝜕𝑥2
(−𝐸𝐼

𝜕2𝑦

𝜕𝑥2
) + 𝑇

𝜕

𝜕𝑥
(
𝜕𝑦

𝜕𝑥
) + 𝑤

𝑑𝑦

𝑑𝑥
−𝑚

𝜕2𝑦

𝜕𝑡2
= 0                                  (4.20) 

For the case without bending rigidity, i.e. 𝐸𝐼 = 0, equation (4.20) descends to  
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𝑇
𝜕

𝜕𝑥
(
𝜕𝑦

𝜕𝑥
) + 𝑤

𝑑𝑦

𝑑𝑥
−𝑚

𝜕2𝑦

𝜕𝑡2
= 0                                              (4.21) 

The subsequent derivations in section 4.2 have mainly followed previous literature work 

of Senjanovic et al. (2006) and Sparks (2007), for a linearly varied effective tension TTR, by letting 

𝑧𝑥 =
2√𝑚𝑇𝑥

𝑤
𝜔𝑛                                                     (4.22) 

𝑦(𝑥, 𝑡) = 𝑌𝑥𝑠𝑖𝑛(𝜔𝑛𝑡)                                                (4.23) 

where 𝑚 is the mass of the riser per unit length in air, 𝑤 is the submerged weight of riser per unit 

length, 𝑇𝑥 = 𝑇𝑏 + 𝑤𝑥 is the effective tension at elevation 𝑥, 𝜔𝑛 are the natural frequencies of 

transverse modal vibration, 𝑌𝑥 is the mode shape function of the riser. 

By substitution of equation (4.22) and (4.23) into the equation (4.21), the follow equation 

can be obtained after some math derivation 

𝑑2𝑌𝑥

𝑑𝑧𝑥2
+

1

𝑧𝑥

𝑑𝑌𝑥

𝑑𝑧𝑥
+ 𝑌𝑥 = 0                                                   (4.24) 

Obviously, the equation (4.24) has the form of the Bessel differential equation. Therefore, 

its solution can be written as 

𝑌𝑥 = 𝐴𝐽0(𝑧𝑥) + 𝐵𝑌0(𝑧𝑥)                                               (4.25) 

where 𝐽0(𝑧𝑥) and 𝑌0(𝑧𝑥) are zero-order Bessel functions of the first and second kind for order zero. 

𝐴 and 𝐵 are unknown constants which should be determined by the boundary conditions at the 

riser extremities. 

Although equation (4.25) is exactly the analytical solution of equation (4.21), this equation 

has little practical application due to the complexity of evaluating the Bessel functions (Sparks, 

2007). 
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4.2.2 Simple Cable Analysis Method for a Vertical Riser 

For simplicity, a simplified simple cable analysis method, compared to the Bessel cable 

analysis, is introduced by a minor modification of the second term in equation (4.21).  The 

modification is halving the second term which will not take a great hit the final solution. The valid 

reasons to make this modification include 

• Compared to the length of the near-vertical riser, the amplitude of the modal vibration is 

very small; Hence, 𝑑𝑦/𝑑𝑥 is very small 

• The second term changes sign at the crest of the modal wave, i.e. at the antinodes as 

illustrated in Figure 4.2, when integrated over adjacent nodes, the results is zero. 

After this modification, equation (4.21) can be simplified as 

𝑇
𝜕2𝑦

𝜕𝑥2
+
𝑤

2

𝑑𝑦

𝑑𝑥
−𝑚

𝜕2𝑦

𝜕𝑡2
= 0                                                     (4.26) 

Substitution of equation (4.22) and (4.23) into equation (4.26) can yield 

𝑑2𝑌𝑥

𝑑𝑧𝑥2
+ 𝑌𝑥 = 0                                                          (4.27) 

The general solution of equation (4.27) can be written as 

𝑌𝑥 = 𝑌𝑎𝑠𝑖𝑛(𝑧𝑥 − 𝑧𝑏)                                                     (4.28) 

where 𝑌𝑎 is the amplitude of modal shape (a constant), 𝑧𝑏 is the value of 𝑧𝑥 at the bottom end of 

the riser. 

Compared to equation (4.25), the solution in equation (4.28) is much simpler with constant 

amplitudes at the antinodes, while for equation (4.25), the amplitude at antinodes decrease from 

the bottom end to top end. Since experimental data show that under VIV lock-in conditions, the 

riser amplitude auto-limited to about one diameter, the simple cable analysis method can be a better 

approach to illustrate this point than the Bessel cable analysis method (Sparks, 2007). 
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For the 𝑛th mode, both the top and bottom end of the riser are node points, i.e. 𝑌𝑥 = 0; 

Hence, the following relationship can be obtained straightforwardly 

𝑧𝑡 − 𝑧𝑏 =
2√𝑚𝑇𝑡

𝑤
𝜔𝑛 −

2√𝑚𝑇𝑏

𝑤
𝜔𝑛 = 𝑛𝜋                                          (4.29) 

where 𝑇𝑡 and 𝑇𝑏 are the riser top and bottom end effective tension, which satisfies the relationship 

of  𝑇𝑡 − 𝑇𝑏 = 𝑤𝐿. 

Therefore, the 𝑛th mode natural frequency can be computed by equation (4.29) as 

𝜔𝑛 =
𝑛𝜋𝑤

2√𝑚(√𝑇𝑡−√𝑇𝑏)
                                                              (4.30) 

The 𝑛th mode natural period can be computed by 

𝑇𝑛 =
2𝜋

𝜔𝑛
=

4√𝑚(√𝑇𝑡−√𝑇𝑏)

𝑛𝑤
=

4𝐿/𝑛

√𝑇𝑡/𝑚+√𝑇𝑏/𝑚
                                        (4.31) 

4.2.3 Simple Beam Analysis Method for a Vertical Riser with Bending Rigidity 

In section 4.2.1 and 4.2.2, the bending rigidity are assumed to be zero, this section takes 

the bending rigidity of the riser into consideration. For a vertical uniformly varied tension marine 

riser, the differential motion equation can be obtained by adding the bending term to equation 

(4.26) as 

𝜕2

𝜕𝑥2
(−𝐸𝐼

𝜕2𝑦

𝜕𝑥2
) + 𝑇𝑥

𝜕2𝑦

𝜕𝑥2
+
𝑤

2

𝑑𝑦

𝑑𝑥
−𝑚

𝜕2𝑦

𝜕𝑡2
= 0                                      (4.32) 

By comparing the natural frequencies as shown in equation (4.15) and (4.16), it can be 

concluded that, from cable model to beam model, the effect of bending rigidity is an increment of 

cable tension by an amount of (𝑛𝜋 𝐿⁄ )2𝐸𝐼 . By similarity, we can assume that  

−𝐸𝐼
𝜕4𝑦

𝜕𝑥4
= 𝑄𝑥

𝜕2𝑦

𝜕𝑥2
                                                         (4.33) 

𝑇𝑥
∗ = 𝑇𝑥 + 𝑄𝑥                                                            (4.34) 

where 𝑄𝑥 is an unknown mean constant effective tension to be determined. 

By substitution of equation (4.33) and (4.34) into equation (4.32) lead to  
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𝑇𝑥
∗ 𝜕

2𝑦

𝜕𝑥2
+
𝑤

2

𝑑𝑦

𝑑𝑥
−𝑚

𝜕2𝑦

𝜕𝑡2
= 0                                               (4.35) 

which has exactly the same form of equation (4.26). In order to be distinguish with the results of 

the simple cable analysis method, all relevant parameters, in this section, are superscripted with a 

star symbol ‘*’ for the simple beam analysis method. 

By analogy to the simple cable analysis results, it can be assumed that the solution between 

the kth and (k+1)th node of equation (4.35) has a form of  

𝑦(𝑥, 𝑡) = 𝑌𝑎𝑠𝑖𝑛(𝑧𝑥
∗ − 𝑧𝑘

∗)𝑠𝑖𝑛(𝜔𝑛
∗𝑡)                                      (4.36) 

where 𝑧𝑥
∗ =

2√𝑚𝑇𝑥
∗

𝑤
𝜔𝑛

∗, 𝑌𝑎 is the mode shape amplitude. 

Integrating equation (4.33) twice with respect to 𝑥 can lead to  

−𝐸𝐼
𝜕2𝑦

𝜕𝑥2
= 𝑄𝑥𝑦                                                         (4.37) 

By integrating both sides of equation (4.37) with respect to 𝑥 over the interval [𝑧𝑘
∗, 𝑧𝑘+1

∗], 

which can be expressed as 

∫ (−𝐸𝐼
𝜕2𝑦

𝜕𝑥2
)𝑑𝑥 =

𝑧𝑘+1
∗

𝑧𝑘
∗ ∫ (𝑄𝑥𝑦)𝑑𝑥

𝑧𝑘+1
∗

𝑧𝑘
∗                                   (4.38) 

For uniformly varied tension riser, the following differentiation relationship hold 

𝑑𝑧𝑥
∗

𝑑𝑥
=

2

𝑎∗𝑧𝑥∗
                                                        (4.39) 

where 𝑎∗ =
𝑤

𝑚(𝜔𝑛∗)2
. 

Substituting equation (4.36) and (4.39) into equation (4.38) and performing the integration 

lead to  

2𝑌𝑎𝐸𝐼

𝑎∗
𝑧𝑘
∗+𝑧𝑘+1

∗

𝑧𝑘
∗𝑧𝑘+1

∗
𝑠𝑖𝑛(𝜔𝑛

∗𝑡) =
𝑌𝑎𝑄𝑥𝑎

∗

2
(𝑧𝑘

∗ + 𝑧𝑘+1
∗)𝑠𝑖𝑛(𝜔𝑛

∗𝑡)                 (4.40) 

Hence, 𝑄𝑥 can be evaluated by equation (4.40) as 

𝑄𝑥 =
4𝐸𝐼

𝑧𝑘
∗𝑧𝑘+1

∗𝑎∗2
= (

2𝑚𝜔𝑛
∗2

𝑤
)
2

𝐸𝐼

𝑧𝑘
∗𝑧𝑘+1

∗
= 𝑚𝜔𝑛

∗2 𝐸𝐼

√𝑇𝑘
∗𝑇𝑘+1

∗                    (4.41) 
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Since the transmission time between adjacent nodes is equal to half of the modal period, 

the following relationship hold 

𝑡∗𝑘,𝑘+1 =
𝐿∗𝑘,𝑘+1

𝑐𝑘
∗ =

𝑇𝑛
∗

2
=

𝜋

𝜔𝑛∗
                                               (4.42) 

where 𝐿∗𝑘,𝑘+1is the riser length between the kth and k+1th node, 𝑐𝑘
∗is the mean celerity between 

the 𝑘th and 𝑘 + 1th node, 𝑇𝑛
∗is the 𝑛th mode natural modal period. 

Therefore, by equation (4.42), the nth mode natural frequency can be expressed as 

𝜔𝑛
∗ =

𝜋𝑐𝑘
∗

𝐿∗𝑘,𝑘+1
=

𝜋(√𝑇𝑘
∗ 𝑚⁄ +√𝑇𝑘+1

∗ 𝑚⁄ )

2𝐿∗𝑘,𝑘+1
                                      (4.43) 

Substitution of equation (4.43) into equation (4.41) leads to 

𝑄𝑥 =
(√𝑇𝑘

∗+√𝑇𝑘+1
∗)
2

4√𝑇𝑘
∗𝑇𝑘+1

∗ 𝐸𝐼 (
𝜋

𝐿∗𝑘,𝑘+1
)
2

                                      (4.44) 

The mean celerity between adjacent nodes can therefore be expressed as 

𝑐𝑘
∗ =

√𝑇𝑘+𝑄𝑥+√𝑇𝑘+1+𝑄𝑥

2√𝑚
=

2𝐿∗𝑘,𝑘+1

𝑇𝑛
∗                                     (4.45) 

The total riser length can be computed by 

𝐿 = ∑ 𝐿∗𝑘,𝑘+1
𝑛
𝑘=1 = ∑

𝑐𝑘
∗𝑇𝑛

∗

2

𝑛
𝑘=1 =

𝑇𝑛
∗

2
∑ 𝑐𝑘

∗𝑛
𝑘=1                          (4.46) 

Finally, the nth mode natural period can be computed as 

𝑇𝑛
∗ =

2𝐿

∑ 𝑐𝑘
∗𝑛

𝑘=1

=
2𝐿

∑
√𝑇𝑘+𝑄𝑥+√𝑇𝑘+1+𝑄𝑥

2√𝑚
𝑛
𝑘=1

                                (4.47) 

The length between adjacent node can be computed as 

𝐿∗𝑘,𝑘+1 =
𝑐𝑘
∗𝑇𝑛

∗

2
=

√𝑇𝑘+𝑄𝑥+√𝑇𝑘+1+𝑄𝑥

∑ (√𝑇𝑘+𝑄𝑥+√𝑇𝑘+1+𝑄𝑥)
𝑛
𝑘=1

𝐿                          (4.48) 

Although the simple beam analysis can yield reasonable accuracy, it is involved of great 

complexity due to there is no explicit expressions for either the mean constant tension 𝑄𝑥 and 
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length 𝐿∗𝑘,𝑘+1, two key parameters are need to be solved by a iteration procedure by using their 

coupled relationship as given by equation (4.44) and (4.48). 

4.3 Comparison of Analytical Solutions with both CALBE3D and RISER3D 

4.3.1 Eigenvalue Finite Element Model Formulation for Tensioned Beam and Riser 

For a prismatic Euler Bernoulli beam under a constant tension, the weak form of the 

equation (4.8), for a typical element with length ℎ, can be derived by using Galerkin’s finite 

element method and the general quintic Hermite shape functions 𝑎𝑖(𝑥) (𝑖 = 1~6) as 

∫ (𝐸𝐼𝑋′′′′ − 𝑇𝑋′′ −𝑚𝜔2𝑋)
ℎ

0
𝑎𝑖(𝑥)𝑑𝑥 = 0                                     (4.49) 

Integration by parts three times for the first term of the integrand and once for the second 

term, leads to 

∫ [−𝐸𝐼𝑋′𝑎𝑖
′′′(𝑥) + 𝑇𝑋′𝑎𝑖

′(𝑥) − 𝑚𝜔2𝑋𝑎𝑖(𝑥)]𝑑𝑥
ℎ

0
= {[−𝐸𝐼𝑋′′′ + 𝑇𝑋′]𝑎𝑖(𝑥) + 𝐸𝐼𝑋′′𝑎𝑖

′(𝑥) −

𝐸𝐼𝑋′𝑎𝑖
′′(𝑥)} |

ℎ
0

         (4.50) 

For Galerkin’s finite element model, the beam transverse mode shape function can be 

approximated using the general quintic Hermite shape functions as 

𝑋(𝑥) = ∑ 𝑢𝑗𝑎𝑗(𝑥)
6
𝑗=1  (𝑗 = 1~6)                                     (4.51) 

where 𝑎𝑗(𝑥) are non-normalized quintic Hermite shape functions. 

By substitution of equation (4.51) into the weak form equation (4.50), the quintic Hermite 

finite element model for the beam natural frequency analysis can be written in a compact form of 

[𝐾𝑖𝑗]{𝑢𝑗} − 𝜔𝑛
2[𝑀𝑖𝑗]{𝑢𝑗} = {𝐹𝑖}                                           (4.52) 

where the element matrices are defined by the following equations 

𝐾𝑖𝑗 = −𝐸𝐼𝛼𝑖𝑗 + 𝑇𝛽𝑖𝑗                                                 (4.53) 

𝑀𝑖𝑗 = 𝑚𝜂𝑖𝑗                                                         (4.54) 
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𝛼𝑖𝑗 = ∫ 𝑎𝑖
′′′(𝑥)

ℎ

0
𝑎𝑗(𝑥)𝑑𝑥 =

𝐽𝑖𝐽𝑗

ℎ3
∫ 𝜙𝑖

′′′(𝜉)
1

0
𝜙𝑗(𝜉)𝑑𝜉 =
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�̅�𝑖𝑗                   (4.55) 

𝛽𝑖𝑗 = ∫ 𝑎𝑖
′(𝑥)

ℎ

0
𝑎′𝑗(𝑥)𝑑𝑥 =

𝐽𝑖𝐽𝑗

ℎ
∫ 𝜙𝑖

′(𝜉)
1

0
𝜙′𝑗(𝜉)𝑑𝜉 =

𝐽𝑖𝐽𝑗

ℎ
�̅�𝑖𝑗                    (4.56) 

𝜂𝑖𝑗 = ∫ 𝑎𝑖(𝑥)𝑎𝑗(𝑥)𝑑𝑥 =
ℎ

0
𝐽𝑖𝐽𝑗ℎ ∫ 𝜙𝑖(𝜉)𝜙𝑗(𝜉)𝑑𝜉

1

0
= 𝐽𝑖𝐽𝑗ℎ�̅�𝑖𝑗                     (4.57) 

After obtaining the typical element matrices, they are assembled to form the global stiffness 

matrix GLK and mass matrix GLM. Apply the specified boundary conditions to the finite element 

model and solving the assembled system of equations using an eigen-solver, the natural 

frequencies 𝜔𝑛 (𝑛 = 1,2,3, … ) of the beam can be obtained. By substituting each natural 

frequency to the assembled global system of equations, the eigenvectors corresponding to each 

natural frequency can be computed, which can be used to compute the corresponding mode shapes 

of the beam. 

For natural frequency computation of a near-vertical riser using quintic Hermite finite 

element method, it is analogy to the procedures for the constant tension beam. For example, the 

governing motion equation of a Top-tensioned Riser (TTR), a schematic hinged-hinged model as 

illustrated in Figure 4.3, with a linearly varying effective tension can be written as  

𝑚
𝜕2𝑦

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑦

𝜕𝑥4
−

𝜕

𝜕𝑥
[(𝑇𝑐 + 𝑇𝐿𝑥)

𝜕𝑦

𝜕𝑥
] = 𝑞(𝑥, 𝑡)                                    (4.58) 

where 𝑦(𝑥, 𝑡) is the riser lateral deflection, virtual mass 𝑚 = 𝜌𝑠(𝐴𝑒 − 𝐴𝑖) + 𝜌𝑖𝐴𝑖 + 𝐶𝑎𝜌𝑓𝐴𝑒, 𝑇𝑐 =

𝑇𝑏 + 𝐿𝑔(𝜌𝑓𝐴𝑒 − 𝜌𝑖𝐴𝑖), 𝑇𝐿 = 𝑤 + 𝑔(𝜌𝑖𝐴𝑖 − 𝜌𝑓𝐴𝑒),  𝜌𝑠, 𝜌𝑖 and 𝜌𝑓 are the density of the riser pipe, 

the density of the internal content, the density of sea water respectively, 𝐶𝑎is the added-mass 

coefficient, 𝐴𝑒and 𝐴𝑖 are the external and internal cross-sectional area respectively, 𝑇𝑏 is the TTR 

bottom tension at the ball joint, 𝑔 is the gravitational constant, 𝑤 is the effective weight of riser 

per unit length, 𝐿 is the total length of the TTR, 𝑡 is time, 𝑞(𝑥, 𝑡) is the external transverse loads. 
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Figure 4.3 A schematic finite element model for a hinged-hinged TTR 

Following the same procedures from equation (4.49) to (4.52), the final finite element 

model for the TTR natural frequency analysis can be written as  

[𝐾𝑖𝑗]{𝑢𝑗} − 𝜔
2[𝑀𝑖𝑗]{𝑢𝑗} = {𝐹𝑖}                                                (4.59) 

where the element matrices for this equation are defined as 

𝐾𝑖𝑗 = 𝐸𝐼𝛼𝑖𝑗 + 𝛽𝑖𝑗
∗
                                                            (4.60) 

𝑀𝑖𝑗 = 𝑚𝜂𝑖𝑗                                                                  (4.61) 

𝛽𝑖𝑗
∗ = ∫ (𝑇𝑐 + 𝑇𝐿𝑥)𝑎𝑖

′(𝑥)
𝐿

0
𝑎′𝑗(𝑥)𝑑𝑥 =

𝐽𝑖𝐽𝑗

ℎ
∫ [𝑇𝑐 + 𝑇𝐿(𝑖𝑒 − 1 + 𝜉)ℎ]𝜙𝑖

′(𝜉)
1

0
𝜙′𝑗(𝜉)𝑑𝜉 =

𝐽𝑖𝐽𝑗

ℎ
�̅�𝑖𝑗 

(4.62) 

𝛼𝑖𝑗 and 𝜂𝑖𝑗 are defined in equation (4.55) and (4.57) respectively. 

The same procedures of the constant-tension beam eigenvalue problem can be followed to 

compute the natural frequencies of the TTR, which are omitted here for brevity. 
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4.3.2 Constant Tension Beam Natural Frequencies Analysis by RISER3D 

The key objective of this case study is to benchmark the simulation results for the 

eigenvalue problem module of RISER3D program. The natural frequencies of a prismatic Euler 

Bernoulli beam, subject to a constant tension in axial direction, are computed with both analytical 

analyses and two numerical methods, i.e. CABLE3D and RISER3D. 

Two cases are studied in this section. The first case is for the computation of the natural 

frequencies of a short prismatic rectangular Euler Bernoulli beam, the properties of which are 

summarized in Table 4.1. The second case is for the computation of the natural frequencies of a 

long steel wire, the properties of which are summarized in table 4.2. In both cases, the slender 

structures are subject to constant tension 𝑇 and pinned-pinned boundary conditions at the 

boundaries. 

Table 4.1 The properties of a constant tension beam 

Designation Value Unit 

Beam Length L 3.00 m 

Beam Width bw 0.02 m 

Beam Height bh 0.015 m 

Cross Sectional Area Ab 3.00E-04 m2 

Young's Modulus E 2.07E+11 N/m2 
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Table 4.1 Continued 

Designation Value Unit 

Second moment Inertia I 5.625-09 m4 

Bending rigidity B 1164.375 Nm2 

Material density 𝜌 7850.0 kg/m3 

Axial tensile force T 2.00E+02 N 

 

Table 4.2 The properties of a constant tension steel cable 

Designation Value Unit 

Steel cable Length L 100.0 m 

Cable diameter D 0.01 m 

Cross-sectional Area Ab 7.8540E-05 m2 

Young's Modulus E 2.07E+11 N/m2 

Second moment Inertia I 4.9087E-10 m4 

Bending rigidity B 101.61 Nm2 

Material density 𝜌 7850.0 kg/m3 

Mass per unit length m 0.6165 Kg/m 

Axial tensile force T 3.00E+02 N 

 

For the first case, two types of element size are used, the first one is using a total of 6 

uniform length elements to mesh the 3m length beam, with an element length of 0.5m; the second 

one is using a total of 12 uniform length elements with an element length of 0.25m. The natural 

frequencies for the first ten vibrational modes by two types of mesh size are presented in Table 4.3 
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and Table 4.4 respectively. Analytical results are calculated by using equation (4.15), CALBE3D 

denotes the traditional finite element method by using cubic Hermite shape functions, RISER3D 

denotes the new finite element method by using quintic Hermite shape functions. 

Table 4.3 0.5m mesh size results for the beam case 

Natural 

Frequencies 

(1/sec) 

Analytical CABLE3D RISER3D 
Dif_CABLE3D 

(%) 

Dif_RISER3D 

(%) 

ω1 26.2244 26.2256 26.2244 0.0045 0.0000 

ω2 99.4281 99.5056 99.4281 0.0780 0.0000 

ω3 221.3591 222.2186 221.3593 0.3883 0.0001 

ω4 392.0520 396.6446 392.0566 1.1714 0.0012 

ω5 611.5113 627.6541 611.5609 2.6398 0.0081 

ω6 879.7382 976.0617 880.3645 10.9491 0.0712 

ω7 1196.7331 1319.3502 1198.0724 10.2460 0.1119 

ω8 1562.4962 1813.3711 1566.6355 16.0560 0.2649 

ω9 1977.0276 2450.6669 1987.2820 23.9571 0.5187 

ω10 2440.3273 3243.2130 2462.2271 32.9007 0.8974 
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Table 4.4 0.25m mesh size results for the beam case 

Natural 

Freq. (1/sec) 

Analytical CABLE3D RISER3D Dif_CABLE

3D (%) 

Dif_RISER3

D (%) 

ω1 26.2244 26.2245 26.2244 0.0003 0.0000 

ω2 99.4281 99.4330 99.4281 0.0050 0.0000 

ω3 221.3591 221.4156 221.3591 0.0255 0.0000 

ω4 392.0520 392.3664 392.0520 0.0802 0.0000 

ω5 611.5113 612.6925 611.5114 0.1932 0.0000 

ω6 879.7382 883.1961 879.7391 0.3931 0.0001 

ω7 1196.7331 1205.2451 1196.7377 0.7113 0.0004 

ω8 1562.4962 1580.9236 1562.5150 1.1794 0.0012 

ω9 1977.0276 2013.0896 1977.0932 1.8241 0.0033 

ω10 2440.3273 2505.0160 2440.5261 2.6508 0.0081 

 

For the second cable case, two types of element size are used, the first one is using a total 

of 10 uniform length elements to mesh the 100m length steel cable, with an element length of 10m; 

the second one is using a total of 25 uniform length elements to mesh the problem domain, with 

an element length of 4m. The natural frequencies for the first eighteen modes by two types of mesh 

size are presented in Table 4.5 and Table 4.6 respectively. 
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Table 4.5 10m mesh size results for the steel cable case 

Natural 

Freq. (1/sec) 

Analytical CABLE3D RISER3D Dif_CABLE

3D (%) 

Dif_RISER3

D (%) 

ω1 0.6931 0.6931 0.6931 0.0000 0.0000 

ω2 1.3869 1.3869 1.3869 0.0001 0.0000 

ω3 2.0821 2.0821 2.0821 0.0011 0.0000 

ω4 2.7794 2.7795 2.7794 0.0051 0.0000 

ω5 3.4794 3.4800 3.4794 0.0168 0.0000 

ω6 4.1829 4.1847 4.1829 0.0428 0.0000 

ω7 4.8905 4.8951 4.8905 0.0926 0.0001 

ω8 5.6030 5.6130 5.6030 0.1784 0.0004 

ω9 6.3208 6.3408 6.3209 0.3155 0.0016 

ω10 7.0448 7.1159 7.0455 1.0092 0.0090 

ω11 7.7756 7.8449 7.7764 0.8916 0.0109 

ω12 8.5138 8.6317 8.5157 1.3852 0.0226 

ω13 9.2599 9.4557 9.2638 2.1137 0.0415 

ω14 10.0147 10.3313 10.0217 3.1608 0.0697 

ω15 10.7788 11.2760 10.7906 4.6132 0.1094 

ω16 11.5526 12.3034 11.5715 6.4983 0.1635 

ω17 12.3369 13.4012 12.3659 8.6269 0.2356 

ω18 13.1321 14.4850 13.1754 10.3021 0.3299 
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Table 4.6 4m mesh size results for the steel cable case 

Natural 

Freq. (1/sec) 

Analytical CABLE3D RISER3D Dif_CABLE

3D (%) 

Dif_RISER3

D (%) 

ω1 0.6931 0.6931 0.6931 0.0000 0.0000 

ω2 1.3869 1.3869 1.3869 0.0000 0.0000 

ω3 2.0821 2.0821 2.0821 0.0000 0.0000 

ω4 2.7794 2.7794 2.7794 0.0001 0.0000 

ω5 3.4794 3.4794 3.4794 0.0002 0.0000 

ω6 4.1829 4.1829 4.1829 0.0005 0.0000 

ω7 4.8905 4.8906 4.8905 0.0013 0.0000 

ω8 5.6030 5.6031 5.6030 0.0028 0.0000 

ω9 6.3208 6.3212 6.3208 0.0055 0.0000 

ω10 7.0448 7.0455 7.0448 0.0100 0.0000 

ω11 7.7756 7.7769 7.7756 0.0170 0.0000 

ω12 8.5138 8.5161 8.5138 0.0275 0.0000 

ω13 9.2599 9.2639 9.2599 0.0426 0.0000 

ω14 10.0147 10.0211 10.0147 0.0636 0.0000 

ω15 10.7788 10.7887 10.7788 0.0921 0.0000 

ω16 11.5526 11.5676 11.5526 0.1298 0.0001 

ω17 12.3369 12.3589 12.3369 0.1785 0.0002 

ω18 13.1321 13.1636 13.1321 0.2404 0.0003 
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Based on the results of natural frequencies obtained by different methods from Table 4.3 

to 4.6, it can be summarized that: 

• For both type of element mesh, CABLE3D can give good prediction only for the natural 

frequencies of several lower modes, but not for the higher modes. Besides, the error 

increases rapidly as modes go higher. 

• For the coarse mesh size of the short beam case, CABLE3D can cause large error as shown 

in Table 4.3, which means by using CALBE3D to predict the natural frequencies of short 

slender structures, especially for very modes vibrations, very fine mesh size is 

indispensable to improve the simulation accuracy. 

• RISER3D can converge to the true values of the natural frequencies much faster than 

CABLE3D. Even for the cases of coarse mesh size, RISER3D can still produce 

unbelievably accurate results for the natural frequencies of all presented modes. 

•  It can be reasonable to predict that for slender structures, RISER3D can always yield good 

numerical simulation results for the evaluation of their natural frequencies. Moreover, if 

the same element size is used in the simulation, results by RISER3D are much more reliable 

than those of by CABLE3D.  

• Compared to traditional CABLE3D, RISER3D can solve much smaller global system of 

equations to obtain equivalent accuracy, which can, therefore, save computational effort of 

our computers. 

4.3.3 Shallow Water Drilling Riser Natural Frequencies Calculation by RISER3D 

In this section, the eigenvalue problem of a TTR drilling riser, the problem data of which 

originated from (Dareing and Huang, 1976), has been solved using two finite element methods, 
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i.e. cubic Hermite FEM and quintic Hermite FEM. The original data are in US units, which are 

converted to SI units in Table 4.7. 

Table 4.7 TTR parameters for natural frequency analysis (Dareing and Huang, 1976) 

Riser Particulars Value  US Unit Value 

Converted 

SI Unit 

TTR Length L 500 ft 152.40050 m 

Effective weight per unit length w 214 lb/ft 3123.08525 m 

External cross section area Ae 3.14 ft2 0.29172 m 

Internal cross-sectional area Ai 2.99 ft2 0.27778 m2 

Young's Modulus E 3.00E+07 psi 2.06843E+11 N/m2 

Second moment Inertia I 3136.9 in4 1.30568E-03 m4 

TTR bottom tension Tb 2.86E+05 lb 1.27219E+06 Nm2 

Fluid density 𝜌𝑓 64.8 pcf 1037.99640 kg/m3 

Internal fluid density 𝜌𝑖 85.0 pcf 1361.56936 N 

Virtual mass per unit length m 20.8 slugs/ft 9.95906E+02 kg/m 

Flexural rigidity EI 9.41E+10 lb∙in2 2.70070E+08 Nm2 

 

For the finite element analysis, only 7 elements are used for the discretization of the riser 

domain. The simulation results of the two numerical finite element simulations, compared with 

the results by previous literatures using different methods, are summarized in Table 4.8. 
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Table 4.8 The comparison of the TTR natural frequencies with other literatures 

NFs 

(1/s) 

Power 

series 

(Dareing, 

1976) 

WKB_DS

M (Cheng 

et al. 2002, 

5 elements) 

Differential 

Transform

ation (Chen 

et al. 2009) 

VIM (Chen 

et al., 2015) 

Cubic 

Hermite 

FEA (7 

elements) 

Quintic 

Hermite 

FEA (7 

elements) 

ω1 0.8150 0.8150 0.8150 0.8150 0.8150 0.8150 

ω2 1.8036 1.8037 1.8038 1.8038 1.8040 1.8038 

ω3 3.0876 3.0878 3.0879 3.0879 3.0909 3.0879 

ω4 4.7375 4.7377 4.7377 4.7377 4.7561 4.7377 

ω5 6.7890 6.7896 6.7899 6.7899 6.8615 6.7896 

 

Based on the results shown in Table 4.8, the following conclusions can be made for the 

first five modal frequencies: 

• Power series method (1976) gives good prediction for the fundamental natural frequency, 

but not for the higher modes. 

• WKB_DSM (2002) yields very good results for the first, forth and fifth mode, but a little 

bit errors exist for the second and third modes for some reason. 

• Both differential transformation (2009) and VIM (2014) yields good prediction for the first 

four modal natural frequencies, but a tiny error starts to occur for the fifth mode. 

• Cubic Hermite FEA (based on 7 element mesh) gives good prediction for the fundamental 

natural frequency, but not the higher modes. Besides, the errors increase as the modes go 

higher. 
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• Quintic Hermite FEA (based on 7 element mesh) can already give excellent prediction of 

the natural frequencies for the first five modes, at least all accurate to four decimal places. 

To compare the convergent speed between CABLE3D and RIASER3D, more natural 

frequencies were studied and the results of which are presented in Table 4.9. Two types of mesh 

size were used, one is 7 uniform-length elements and the other is 14 uniform-length elements. Due 

to the lack of analytical results, the best results of natural frequencies, as highlighted with bold 

type, are used for benchmark. The results by CALBE3D and coarse mesh case by RISER3D are 

compared to the benchmark natural frequencies. 

Table 4.9 The comparison of TTR natural frequencies between CABLE3D and RISER3D 

NFs (1/s) CABLE3

D_7 

CABLE3

D_14 

RISER3

D_7 

RISER3

D_14 

Dif_CAB

LE3D7 

(%) 

Dif_CAB

LE3D14 

(%) 

Dif_RIS

ER3D7 

(%) 

ω1 0.8150 0.8150 0.8150 0.8150 0.0004 0.0000 0.0000 

ω2 1.8040 1.8038 1.8038 1.8038 0.0120 0.0007 0.0000 

ω3 3.0909 3.0881 3.0879 3.0879 0.0967 0.0061 0.0000 

ω4 4.7561 4.7389 4.7377 4.7377 0.3882 0.0251 0.0002 

ω5 6.8615 6.7944 6.7896 6.7895 1.0601 0.0717 0.0015 

ω6 9.4706 9.2768 9.2624 9.2617 2.2551 0.1629 0.0080 

ω7 13.2512 12.2023 12.1707 12.1636 8.9411 0.3178 0.0581 

ω8 16.7713 15.5867 15.5132 15.5003 8.1998 0.5571 0.0829 

ω9 21.6926 19.4485 19.3108 19.2747 12.5442 0.9013 0.1869 
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Table 4.9 Continued 

NFs 

(1/sec) 

CABLE3

D_7 

CABLE3

D_14 

RISER3

D_7 

RISER3

D_14 

Dif_CAB

LE3D7 

(%) 

Dif_CAB

LE3D14 

(%) 

Dif_RIS

ER3D7 

(%) 

ω10 27.8282 23.8102 23.5726 23.4887 18.4747 1.3690 0.3572 

ω11 35.3978 28.6985 28.3145 28.1435 25.7761 1.9720 0.6078 

ω12 44.2138 34.1373 33.5579 33.2404 33.0123 2.6985 0.9552 
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4.3.4 Deep-water TTR Natural Frequencies Calculation by RISER3D 

In this section, the natural frequencies of a deep water 2000m TTR, the problem data of 

which are cited from (C.P. Sparks, 2007), has been solved numerically by using two finite element 

methods, i.e. cubic Hermite FEM (CABLE3D) and quintic Hermite FEM (RISER3D). The key 

input data are summarized in Table 4.10, all of which are referred to (C.P. Sparks, 2007) except 

those highlighted with note 1. 

Table 4.10 2000m length riser data 

Riser Particulars Value [Sparks 2007] Units 

Riser length, L 2000 m 

Bending stiffness, EI 318,600 kNm2 

Top tension, Tt 7553.7 kN 

Total apparent weight, wL 6,867.0 kN 

Mass with added mass included, m 1.2 tonnes/m 

Amplitude of vibrations, Ya 1.0 m 

Bottom tension1, Tc 6.867e5 N 

Tension increment1, TL 3.4335e3 N/m 

Note 1: These parameters are calculated based on the riser data provided by Sparks (2007) in 

order to be consistent with the finite element model as presented in preceding section 4.4.1. 

The finite element model in equation (4.59) is used as the programming basis for both finite 

element methods. The calculated natural modal periods are summarized in Table 4.11. Only two 

decimal places are kept in order to make a comparison with the results presented by Sparks (2007).  
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Table 4.11 2000m TTR modal periods comparison among different methods 

Modal 

periods (s) 

Bessel 

cable 

[Sparks 

2007] 

Simple 

cable 

[Sparks 

2007] 

Simple 

beam 

[Sparks 

2007] 

Numerical 

[Sparks 

2007] 

CABLE3

D_40 

RISER3D

_40 

1 78.79 77.47 77.45 78.71 78.71 78.71 

2 38.92 38.74 38.69 38.84 38.84 38.84 

3 25.88 25.82 25.75 25.78 25.78 25.78 

4 19.39 19.37 19.26 19.27 19.27 19.27 

5 15.51 15.49 15.36 15.37 15.37 15.37 

10 - 7.75 7.52 7.52 7.52 7.52 

20 - 3.87 3.54 3.55 3.54 3.54 

30 - 2.58 2.21 2.21 2.18 2.21 

40 - 1.94 1.54 1.55 1.50 1.54 

50 - 1.55 1.15 1.15 1.08 1.15 

 

From the results shown in Table 4.11, the following conclusions can be made: 

• First five modal periods by Bessel cable analytical method are a little bit larger than all 

the numerical simulation results. Typically, the relative differences are less than 1%. 

• Simple cable method yields the largest error to the true values among all the methods 

• Simple beam method yields a good prediction for the high modal periods, but some 

errors exist for the lower modes, especially for the fundamental mode. 
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• Numerical results of CABLE3D by utilizing a forty uniform length element mesh, 

marked as CABLE3D_40 in Table 4.11, produce good predictions for the previous 20 

modal periods, but errors start to occur for the higher modes, i.e. over 30 modes. 

• Numerical results of RISER3D by utilizing a forty uniform length element mesh, 

marked as RISER3D_40 in Table 4.11, can produce very good predictions for all the 

modal periods. Therefore, RISER3D shows great merits to both simplified analytical 

method and traditional CABLE3D for accurately predicting the natural frequencies of 

beams and marine risers, no matter for lower or higher modes. 
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5 RISER3D APPLICATIONS TO MARINE RISRES PROBLEMS 

For marine riser system design and analysis, accurate prediction for the riser configuration 

and internal forces is of utmost importance. In this chapter, the RISER3D program are applied to 

static and dynamic problems of several commonly-used marine risers, which mainly include some 

compliant risers, such as steel catenary riser (SCR), steel lazy wave riser (SLWR), steep wave riser 

(SWR); steel top-tensioned risers (TTRs) and free-hanging flexible risers. The main objective of 

this chapter is to address the validity and accuracy of the RISER3D for numerical simulation of 

marine risers and identify the advantages of RISER3D over the traditional CABLE3D. The 

RISER3D simulation results are either compared and verified with previous literature results or 

other alternative numerical methods such as CABLE3D and Orcaflex. For some cases, the 

hydrodynamic loads include linear or nonlinear current are considered, the theory of which are 

presented in section 5.1 below.  

5.1 Hydrodynamic Loads on Marine Risers 

Generally speaking, the hydrodynamic loadings can be categorized as 

• Inertia forces, proportional to the acceleration of the water particles 

• Nonlinear drag forces, proportional to the square of the water particle velocity 

• Oscillating lift forces on the riser when the vortex shedding frequency of the passing 

flow is close enough to one of the natural frequencies of the designed riser system 

These listed hydrodynamic loadings are highly dependent on the riser dimensions; water 

depth, wave related parameters such as wave height, wave period and wave direction; current 

velocity and direction along the riser section from surface to sea bottom. In the subsequent sections 

of this work, only the drag force due to steady current load is taken into consideration, and the 



 

157 

 

 

oscillating lift force are excluded in all the case studies. The wave force derivation is presented 

below but not considered in the case studies of this research. 

5.1.1 Steady Current Loads on Fixed Marine Risers 

For static analysis, the current load can be calculated using a modified Morison equation, 

the detailed formulation is presented hereafter. For marine riser analysis by using RISER3D, the 

equivalent nodal forces due to steady current can be evaluated by  

𝑭𝑖 = ∫ 𝑎𝑖(𝑠)𝒒(𝑠)𝑑𝑠
𝐿

0
 (𝑖 = 1~6, 𝑛 = 1,3)                                      (5.1) 

where 𝑎𝑖(𝑠) are the general quintic Hermite shape functions, 𝒒(𝑠) is the transverse distributed 

current load, 𝑠 is the arc length of the deformed riser, measured form the top end of riser to the 

bottom extremity. 

According to Morison equation, the expression for three dimensional steady current load  

𝒒(𝑠) on a differential arc length of riser can be written as 

𝒒(𝑠) =
1

2
𝜌𝑓𝐶𝑑𝑛𝐷𝑓(𝑠)|𝑵𝒗𝑓(𝑠)|𝑵𝒗𝑓(𝑠)+ 

1

2
𝜌𝑓𝐶𝑑𝑡𝐷𝑓(𝑠)|𝑻𝒗𝑓(𝑠)|𝑻𝒗𝑓(𝑠)                  (5.2) 

where 𝜌𝑓 is the seawater fluid density, 𝐶𝑑𝑛 is the normal drag coefficient for cylindrical pipe of 

riser, 𝐶𝑑𝑡 is the tangential drag coefficient for cylindrical pipe of riser, 𝐷𝑓 is local outer diameter 

of the riser (the buoyancy module effect should be taken into consideration if exists), 𝑵 is a 

transformation matrix which can transfer the current velocity to riser normal direction, 𝑻 is a 

transformation matrix which can transfer the current velocity to riser tangential direction, 𝒗𝑓(𝑠) is 

the column vector of local current velocity expressed in global GXYZ coordinate system, which 

is placed on the mean water level with X-axis points to the right hand side, Y-axis points upward 

in vertical direction and Z-axis is the cross-product direction of the positive vectors in X and Y 

axis direction.  

 The tangential transformation matrix 𝑻 can be calculated by  
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𝑻 = (�̂�)𝑇�̂� = [

𝑡1𝑡1 𝑡1𝑡2 𝑡1𝑡3
𝑡2𝑡1 𝑡2𝑡2 𝑡2𝑡3
𝑡3𝑡1 𝑡3𝑡2 𝑡3𝑡3

] = [

𝑡11 𝑡12 𝑡13
𝑡21 𝑡22 𝑡23
𝑡31 𝑡32 𝑡33

]                                  (5.3) 

where the superposed symbol   ̂ denotes unit vector, the superscript 𝑇 denotes vector or matrix 

transpose, �̂� = 𝑡1�̂� + 𝑡2𝒋̂ + 𝑡3�̂� = (𝑡1, 𝑡2, 𝑡3) is the three-dimensional riser tangential vector for eth 

element, which is, for small elongation risers, related to the nodal slope by  

�̂� =
𝒓′𝑒

|𝒓′|
=

𝒓′𝑒

1+𝜀
=

1

1+𝜀
(𝑟′𝑒1, 𝑟

′
𝑒2, 𝑟

′
𝑒3) = (𝑡1, 𝑡2, 𝑡3)   (𝑒 = 1~𝑖𝑒)                    (5.4) 

where 휀 =
𝑇

𝐸𝐴
 is the axial strain of riser subject to local axial tension 𝑇 , 𝐸𝐴 is the riser stretching 

rigidity, the subscript 𝑒 denotes the eth element, the number 𝑖𝑒 denotes the total number of 

discretized elements. 

The local tangential and normal particle velocity for marine riser due to steady current can 

be calculated by 

𝒗𝑓𝑡(𝑠) = (𝒗𝑓(𝑠) ∙ �̂�)�̂� = 𝑻𝒗𝑓(𝑠) 

𝒗𝑓𝑛(𝑠) = 𝒗𝑓(𝑠) − 𝒗𝑓𝑡(𝑠) = (𝑰3×3 − 𝑻)𝒗𝑓(𝑠) = 𝑵𝒗𝑓(𝑠)                              (5.5) 

where the local current velocity vector is expressed in the global GXYZ coordinate system as 

𝒗𝑓(𝑠) = (𝑣𝑓1(𝑠), 𝑣𝑓2(𝑠), 𝑣𝑓3(𝑠))
𝑇 and 𝑣𝑓1(𝑠), 𝑣𝑓2(𝑠) and 𝑣𝑓3(𝑠) are the components of the local 

current velocity vector in global X, Y and Z direction respectively, 𝑰3×3 is a three by three identity 

matrix. 

Therefore, the entries of the transformation matrix 𝑵 is related to three dimensional riser 

nodal slopes by 

𝑵 = [

𝑛11 𝑛11 𝑛11
𝑛21 𝑛22 𝑛23
𝑛31 𝑛32 𝑛33

] =

[
 
 
 
 1 −

𝑟′𝑒1

1+𝜀

𝑟′𝑒1

1+𝜀
−
𝑟′𝑒1

1+𝜀

𝑟′𝑒2

1+𝜀
−
𝑟′𝑒1

1+𝜀

𝑟′𝑒3

1+𝜀

−
𝑟′𝑒2

1+𝜀

𝑟′𝑒1

1+𝜀
1 −

𝑟′𝑒2

1+𝜀

𝑟′𝑒2

1+𝜀
−
𝑟′𝑒2

1+𝜀

𝑟′𝑒3

1+𝜀

−
𝑟′𝑒3

1+𝜀

𝑟′𝑒1

1+𝜀
−
𝑟′𝑒3

1+𝜀

𝑟′𝑒2

1+𝜀
1 −

𝑟′𝑒3

1+𝜀

𝑟′𝑒3

1+𝜀]
 
 
 
 

                 (5.6) 
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For example, if the steady current flows only in positive X-direction and the horizontal 

component of X-direction of the velocity at arbitrary elevation can be calculated by equation  

𝑣𝑓1(𝑦) = (𝑣𝑢 − 𝑣𝑏) (
𝑦−𝑦𝑏

𝑦𝑢−𝑦𝑏
)
1/𝑛𝑐

 (𝑦 ∈ [𝑦𝑏 , 0])                                  (5.7) 

where 𝑦 is the global Y-coordinate of the deformed riser, 𝑦𝑢 is elevation of sea surface, 𝑦𝑏 is the 

elevation of the sea bottom, 𝑣𝑢 is the upper surface current velocity, 𝑣𝑏 is current velocity at 

seabed, 𝑛𝑐 is an integer index for current velocity distribution (for instance 𝑛𝑐 =

0 for uniform distribution, 1 for linear distribution, 4 for one forth decay distribution, etc. ). 

5.1.2 Combined Wave and Current Loads on Marine Risers 

For riser dynamic analysis, the hydrodynamic loads on riser pipe due to combined wave 

and current can be calculated by using a modified Morison equation, the expression of the 

distributed external load intensity  𝒒(𝑠, 𝑡) on a differential arc length 𝑑𝑠 in three-dimensional space 

can be expressed as 

𝒒(𝑠, 𝑡) =
1

2
𝜌𝑓𝐶𝑑𝑛𝐷𝑓(𝑠)|𝑵(𝒗𝑓(𝑠, 𝑡) − �̇�(𝑠, 𝑡))|𝑵(𝒗𝑓(𝑠, 𝑡) − �̇�(𝑠, 𝑡))+ 

1

2
𝜌𝑓𝐶𝑑𝑡𝐷𝑓(𝑠)|𝑻(𝒗𝑓(𝑠, 𝑡) −

�̇�(𝑠, 𝑡))|𝑻(𝒗𝑓(𝑠, 𝑡) − �̇�(𝑠, 𝑡)) + (𝑰 + 𝐶𝑎𝑛𝑵+ 𝐶𝑎𝑡𝑻)𝑚𝑑𝑤𝒂𝑤(𝑠, 𝑡)                      (5.8) 

where 𝒗𝑓(𝑠, 𝑡) = 𝒗𝑐(𝑠, 𝑡) + 𝒗𝑤(𝑠, 𝑡) is a column vector by adding the velocity vector of wave 

𝒗𝑤(𝑠, 𝑡) to that of current 𝒗𝑐(𝑠, 𝑡), 𝐶𝑎𝑛 and 𝐶𝑎𝑡 are the normal and tangential added-mass 

coefficient,  𝑚𝑑𝑤 = 𝜌𝑓𝐴𝑓 ∙ 1 = 𝜌𝑓
𝜋

4
𝐷𝑓

2 is the mass of water displaced by unit length of riser, 

𝒂𝑤(𝑠, 𝑡) is the local water particle acceleration vector induced by wave. 

If the external load intensity 𝒒(𝑠, 𝑡)  on a differential length is decomposed into wave and 

current loading respectively, it can be expressed as  

𝒒(𝑠, 𝑡) = 𝒒𝑐(𝑠, 𝑡) + 𝒒𝑤(𝑠, 𝑡)                                             (5.9) 

where 
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                            𝒒𝑐(𝑠, 𝑡) =
1

2
𝜌𝑓𝐶𝑑𝑛𝐷𝑓(𝑠)|𝑵(𝒗𝑐(𝑠, 𝑡) − �̇�(𝑠, 𝑡))|𝑵(𝒗𝑐(𝑠, 𝑡) −

�̇�(𝑠, 𝑡))+ 
1

2
𝜌𝑓𝐶𝑑𝑡𝐷𝑓(𝑠)|𝑻(𝒗𝑐(𝑠, 𝑡) − �̇�(𝑠, 𝑡))|𝑻(𝒗𝑐(𝑠, 𝑡) − �̇�(𝑠, 𝑡))                                                   

(5.10) 

𝒒𝑤(𝑠, 𝑡) =
1

2
𝜌𝑓𝐶𝑑𝑛𝐷𝑓(𝑠)|𝑵(𝒗𝑤(𝑠, 𝑡) − �̇�(𝑠, 𝑡))|𝑵𝒗𝑤(𝑠, 𝑡) −

�̇�(𝑠, 𝑡)+ 
1

2
𝜌𝑓𝐶𝑑𝑡𝐷𝑓(𝑠)|𝑻(𝒗𝑤(𝑠, 𝑡) − �̇�(𝑠, 𝑡))|𝑻(𝒗𝑤(𝑠, 𝑡) − �̇�(𝑠, 𝑡)) + (𝐶𝑚𝑛𝑵+

𝐶𝑚𝑡𝑻)𝑚𝑑𝑤𝒂𝑤(𝑠, 𝑡)               (5.11) 

where 𝐶𝑚𝑛 and 𝐶𝑚𝑡 are the riser normal and tangential inertia coefficient, which are related to the 

normal and tangential added-mass coefficient by relationships of 

𝐶𝑚𝑛 = 1 + 𝐶𝑎𝑛 

𝐶𝑚𝑡 = 𝐶𝑎𝑡                                                               (5.12) 

According to some previous literatures on hydrodynamic coefficients, the approximated 

ranges for the values of hydrodynamic coefficients are summarized based on experiment results 

of some published literatures as 

𝐶𝑑𝑛 ∈ [1.0,1.9] 

𝐶𝑑𝑡 ∈ [0.03,0.25] 

𝐶𝑎𝑛 ∈ [1.0,1.5] 

𝐶𝑎𝑡 ∈ [0.0,0.1]                                                         (5.13) 

For dynamic finite element analysis, the major steps for riser hydrodynamic force updating 

can be summarized as 

• Determine the instantaneous water particle velocity and acceleration in space-fixed 

global coordinate system GXYZ 
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• According to the riser configuration at instant time t, calculate the transformation 

matrix 𝑵 and 𝑻 by the unit tangential vector �̂� of the riser element in space-fixed global 

coordinate system GXYZ 

• Using the transform matrix 𝑵 and 𝑻 to calculate the components of riser normal and 

tangential water particle velocity and accelerin, which are functions of deformed riser 

arc length 𝑠 and time 𝑡  

• Compute the equivalent nodal force for each element 
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5.2 Application of RISER3D to Compliant Risers 

5.2.1 Typical SCR Static In-place Analysis 

In this section, a deep-water 1800m water depth 8’’ SCR static analysis is performed with 

RISER3D. The main particulars of the SCR are referred to the literature (Celso, 2006) and 

summarized in the Table 5.1. The related environmental parameters for this case are presented in 

Table 5.2. 

Table 5.1 8’’ 1800 water depth SCR Particulars 

Designation Symbol Value SI Unit 

Outer diameter 𝐷𝑜 0.2032 m 

Internal diameter 𝐷𝑖 0.1651 m 

Young’s modulus 𝐸 2.100E+11 Pa 

Outer cross-sectional area 𝐴𝑓 3.2429E-02 m2 

Internal cross section 𝐴𝑖 2.1408E-02 m2 

Weight in air 𝑊𝑎𝑖𝑟 85.434 kg/m 

Buoyancy B 325.97 N/m 

Steel density 𝜌𝑠 7752 kg/m3 

Moment of inertia I 4.7216E-05 m4 

Bending stiffness EI 9.9154E+06 Nm2 

Axial stiffness EA 2.3144E+09 N 

Internal fluid density 𝜌𝑖 1250.00 kg/m3 

Submerged weight 𝑊𝑠𝑢𝑏 727.0 N/m 

Riser total length 𝐿𝑟 3200.00 m 
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Table 5.2 Environmental parameters for the 1800m water depth SCR 

Designation Value Unit 

Sea water density 1025 kg/m3 

Water depth 1800.0 m 

Seabed soil stiffness 35.216 kN/m/m2 

 

The following assumptions, unless otherwise specified, are employed for all marine riser 

analysis in this dissertation  

• The steel pipe of marine riser is thin-walled, perfect round and homogenous pipe, no 

damage, no initial residual stress 

• The material of marine riser is assumed to isotropic within elastic deformation range 

• The seabed axial and lateral friction is neglected due to small contribution 

• The Poisson ratio effect is neglected for the simplicity of the mathematical model 

• The structural damping effect, VIV suppress auxiliaries, and riser torsion are neglected 

• Corrosion allowance, water absorption and marine growth effect are neglected 

• The seabed is assumed to be a flat and linear elastic foundation  

• No consideration of the internal flow effect 

• Small axial extensibility has been employed  

The results extracted from the RISER3D numerical simulation, including the SCR 

configuration, the horizontal component of riser slope, the distribution of the riser effective 

tension, the distribution of the riser bending moment, the local zoom in of the maximum bending 

moment section, the local zoom in of the bending moment section at the TDP, and the riser shear 
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force distribution, are illustrated from Figure 5.1 to Figure 5.7 respectively. These results by 

RISER3D are compared to those of obtained by two alternative numerical methods, one is 

CABLE3D and the other is Orcaflex (Orcina, 2019).  

For this case, a total number of 400 uniform-length elements are utilized to discretize the 

whole riser length of 3200m, so each element has a length of 8m. For Newton iteration method, 

the relaxation coefficient adopted is 0.7. The riser is assumed to be water filled during the analysis, 

and a top tension of 1986.9kN are exactly matched among the three different numerical methods.  

The touch down tension predicted by CABLE3D and RISER3D is 680.5kN, which is a 

little bit higher than that of by Orcaflex 679.7kN.  The top departure angle predicted by CABLE3D 

and RISER3D are both 20.03deg, which is close to Orcaflex result of 20.05deg.  

 

Figure 5.1 The 8’’ SCR configuration 
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Figure 5.2 The 8’’ SCR horizontal component of slope 

 

Figure 5.3 The 8’’ SCR effective tension distribution  
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Figure 5.4 The 8’’ SCR overall bending moment distribution 

 

Figure 5.5 The 8’’ SCR critical bending moment section zoom in 
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Figure 5.6 The 8’’ SCR TDZ bending moment zoom in 

 

Figure 5.7 The 8’’ SCR shear force distribution 

As shown in Figure 5.1 to 5.3, the resulting curves of riser configuration, slope in horizontal 

direction, the effective tension by three different numerical methods agree very well with each 

other. From Figure 5.4 to 5.7, it can be seen that the bending moment distribution within the whole 
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domain predicted by CABLE3D and Orcaflex are piecewise discontinuous linearly distributed 

functions, while by using the new RISER3D program, the bending moment distribution are 

piecewise continuous cubic polynomial functions within the whole problem domain. The 

maximum bending moment predicted by CALBE3D are about 1% higher than RISER3D and 

Orcaflex for this element mesh. As for the shear force simulation, the shear force at the top end of 

the riser predicted by RISER3D are larger than CABLE3D and Orcaflex since RISER3D can apply 

the Dirichlet boundary conditions at the boundary of riser, which can produce more accurate 

bending moment and shear force at the near boundary sections. 

5.2.2 SLWR Static In-place Analysis by RISER3D 

In this section, a deep-water 1847.9m water depth 8’’ SLWR static analysis is performed 

with RISER3D. The key parameters of the SLWR are referred to the literature (J.L. Wang, 2014) 

and summarized in Table 5.3. The non-available input data, such as the buoyancy module segment 

particulars, from the referred literature are assumed according to engineering experience and 

summarized in Table 5.4. The environmental conditions for this case are listed in Table 5.5. 

Table 5.3 8’’ 1847.9m water depth SLWR particulars of steel pipe segment 

Designation Symbol Value SI Unit 

Outer diameter  𝐷𝑜 0.2032 m 

Internal diameter  𝐷𝑖 0.1650 m 

Young’s modulus  𝐸 2.060E+11 Pa 

Outer cross-sectional area  𝐴𝑓 3.24293E-02 m2 

Internal cross section  𝐴𝑖 2.13825E-02 m2 

Mass per unit length in air  𝑚𝑎𝑖𝑟 86.717 kg/m 
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Table 5.3 Continued 

Designation Symbol Value SI Unit 

Buoyancy  B 325.652 N/m 

Steel Density 𝜌𝑠 7850.0 kg/m3 

Moment of Inertia  I 4.73047E-05 m4 

Bending Stiffness  EI 9.74477E+06 Nm2 

Axial Stiffness  EA 2.27564E+09 N 

Internal Fluid Density 𝜌𝑖 0.00 kg/m3 

Submerged Weight  𝑊𝑠𝑢𝑏 524.75 N/m 

Hang-off segment 𝑠ℎ𝑜 1690 m 

Buoyancy Module segment 𝑠𝑏𝑚 520 m 

Touch down segment 𝑠𝑡𝑑 590 m 

Riser Total Length  𝐿𝑟 2800.00 m 

 

Table 5.4 8’’ 1847.9m water depth SLWR particulars of BM segment 

Designation Symbol Value SI Unit 

Outer diameter of steel pipe 𝐷𝑜 0.2032 m 

Internal diameter of steel pipe 𝐷𝑖 0.1650 m 

Buoyancy module diameter 𝐷𝑏𝑚 0.519422 m 

Buoyancy module thickness 𝑡𝑏𝑚 0.158111 m 

Buoyancy module density 𝜌𝑏𝑚 427.69395 kg/m3 

Young’s modulus  𝐸 2.060E+11 Pa 
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Table 5.4 Continued 

Designation Symbol Value SI Unit 

Outer cross-sectional area  𝐴𝑓 3.24293E-02 m2 

Internal cross section  𝐴𝑖 2.13825E-02 m2 

Weight in air  𝑊𝑎𝑖𝑟 163.476 kg/m 

Buoyancy  B 2127.828 N/m 

Steel density 𝜌𝑠 7850.0 kg/m3 

Moment of inertia  I 4.73047E-05 m4 

Bending stiffness  EI 9.74477E+06 Nm2 

Axial stiffness  EA 2.27564E+09 N 

Internal fluid density 𝜌𝑖 0.00 kg/m3 

Submerged weight BM 𝑊𝑠𝑢𝑏 -524.73 N/m 

 

Table 5.5 Environmental conditions for the 1800m water depth SLWR 

Designation Symbol Value Unit 

Sea water density 𝜌𝑠𝑤 1024 kg/m3 

Water depth 𝐻𝑤𝑑 1847.9 m 

Seabed soil stiffness 𝐾𝑠 22.5 kN/m/m2 

 

The results extracted from the RISER3D numerical analysis, including the SLWR 

configuration, the riser horizontal slope, the effective tension distribution, the riser bending 
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moment distribution, the local zoom in of the bending moment at TDZ, the local zoom in of the 

bending moment at TDP, and the riser shear force distribution, are presented from Figure 5.8 to 

Figure 5.14 respectively. These results are compared to the two other numerical methods, i.e. 

CABLE3D and Orcaflex (Orcina, 2019).  

For this case, a total number of 280 uniform-length elements are utilized to discretize the 

whole riser length of 2800m, so each element has a length of 10.0m. For Newton iteration method, 

the relaxation coefficient adopted is 0.8. The riser pipe is assumed to be empty during the analysis, 

and a top tension of 820.75kN are exactly matched among the three different numerical methods.  

The touch down tension predicted by CABLE3D and RISER3D are both 78.14kN, which 

is a little bit higher than that of by Orcaflex 77.53kN.  The top departure angle predicted by 

CABLE3D and RISER3D are 5.4717deg and 5.4714deg respectively, which is very close to 

Orcaflex result of 5.4415deg.  

 

 

Figure 5.8 The 8’’ SLWR overall configuration 
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Figure 5.9 The 8’’ SLWR horizontal component of slope 

 

Figure 5.10 The 8’’ SLWR effective tension distribution 
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Figure 5.11 The 8’’ SLWR overall bending moment distribution 

 

Figure 5.12 The 8’’ SLWR peak bending moment at TDZ local zoom in 
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Figure 5.13 The 8’’ SLWR bending moment at TDP local zoom in 

 

Figure 5.14 The 8’’ SLWR shear force distribution 

5.2.3 SLWR Static Analysis by RISER3D under Linear and Tidal Current Load 

In this section, the same SLWR in section 5.2.2 are adopted for current load analyses. Two 

types of current load are considered here, the first one is a linearly distributed current with surface 
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velocity of 1.52m/s, linearly decreased to 0.0m/s at the sea bottom; the second one is a one-fifth 

power law decaying tidal current with surface velocity of 1.05m/s. The current velocity at arbitrary 

elevation can be evaluated based on equation (5.7). The current velocity profile related parameters 

for these two cases are summarized in Table 5.6, in which positive y-axis points vertically upward. 

The riser pipe normal and tangential drag coefficient for two types of current are summarized in 

Table 5.7. 

Table 5.6 Current parameters for static SLWR analysis 

Current Type 𝒗𝒖 (m/s) 𝒗𝒃 (m/s) 𝒚𝒖 (m) 𝒚𝒃 (m) 𝒏𝒄 

Linear current 1.52 0.0 0.0 1847.9 1 

Tidal current 1.05 0.0 0.0 1847.9 5 

 

Table 5.7 Assumed drag coefficients for static SLWR analysis 

Drag Coefficient Linear Current Tidal Current 

Normal direction 𝐶𝑑𝑛 1.5 1 

Tangential direction 𝐶𝑑𝑡 0.1 0.05 

 

A total of three subcases are studied for the SLWR in this section, the first one is the riser 

subjected to positive linear current load as relevant parameters depicted in Table 5.6 and Table 

5.7; the second one is the riser subjected to positive tidal current load as relevant parameters 

depicted in Table 5.6 and Table 5.7; the third one is a parametric study for the riser subjected to 

current load in three different directions with the base case presented in section 5.2.2.  
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For positive linear current load case, i.e. subcase1, a total number of 280 uniform-length 

elements are utilized to discretize the whole riser length of 2800m, with element length of 10.0m. 

For Newton iteration method, the relaxation coefficient adopted is 0.5. The riser tube is assumed 

to be empty during the analysis, and a top tension of 843.7kN are exactly matched among the three 

different numerical methods, i.e. RISER3D, CABLE3D and Orcaflex.  

The key results for subcase1 are presented from Figure 5.15 to Figure 5.22. Figure 5.15 is 

the SLWR configuration in equilibrium state and Figure 5.16 is the local room in of the riser 

configuration at around 400m water depth. The SLWR bending moment distribution and local 

zoom in plots are shown from Figure 5.17 to Figure 5.19 respectively. The SLWR shear force, 

critical shear force local zoom in and the effective tension are presented from Figure 5.20 to Figure 

5.22 respectively. The tension at the touch down point predicted by CABLE3D and RISER3D is 

114.52kN, which is a little bit larger than that of by Orcaflex 113.84kN.  The riser top departure 

angle predicted by CABLE3D and RISER3D are 7.3685deg and 7.3665deg respectively, which is 

a little bit larger than Orcaflex result of 7.2755deg.  

 

Figure 5.15 The SLWR configuration for subcase1  
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Figure 5.16 The SLWR configuration local zoom in for subcase1 

 

Figure 5.17 The SLWR bending moment distribution for subcase1 
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Figure 5.18 The SLWR peak bending moment at TDZ local zoom in for subcase1 

 

Figure 5.19 The SLWR bending moment at TDP local zoom in for subcase1 
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Figure 5.20 The SLWR shear force distribution for subcase1 

 

Figure 5.21 The SLWR critical shear force position local zoom in for subcase1 
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Figure 5.22 The SLWR effective tension distribution for subcase1 

For subcase2, a total number of 280 uniform-length elements are also employed to 

discretize the whole riser length of 2800m, so each element has a length of 10.0m. For Newton 

iteration method, the relaxation coefficient adopted is 0.6. The riser tube is assumed to be empty 

during the analysis, and a top tension of 848.5kN are exactly matched among the three different 

numerical methods, i.e. RISER3D, CABLE3D and Orcaflex.  

For subcase2, the key results for positive tidal current load case are presented from Figure 

5.23 to Figure 5.29. Figure 5.23 is the riser configuration in equilibrium state and Figure 5.24 is 

the local room in of the riser configuration form surface to about 700m water depth. The riser 

bending moment distribution and local zoom in plots are shown from Figure 5.25 to Figure 5.27 

respectively. The shear force and the effective tension of riser are presented in Figure 5.28 and 

Figure 5.29 respectively. The touch down tension predicted by CABLE3D and RISER3D is 

131.28kN, which is a little bit larger than that of by Orcaflex 130.10kN.  The riser top departure 
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angle predicted by CABLE3D and RISER3D are 1.9460deg and 1.9454deg respectively, which is 

a little bit larger than Orcaflex result of 1.8146deg.  

 

Figure 5.23 The SLWR configuration for subcase2 

 

Figure 5.24 The SLWR configuration local zoom in for subcase2 



 

182 

 

 

 

Figure 5.25 The SLWR bending moment distribution for subcase2 

 

Figure 5.26 The SLWR maximum bending moment local zoom in for subcase2 
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Figure 5.27 The SLWR bending moment TDP local zoom in for subcase2 

 

Figure 5.28 The SLWR shear force distribution for subcase2 
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Figure 5.29 The SLWR effective tension distribution for subcase2 

The third case is a parametric study on the influence of the current direction on the riser 

configuration and internal forces. The directions of the current load are set as -180deg, 0deg and 

180deg respectively. The 180deg subcase denotes the SLWR subjected to positive linear current 

load, the parameters of which are already presented in Table 5.6 and Table 5.7; the 0deg subcase 

is the base with no current load; the -180deg subcase denotes the SLWR subjected to the same 

current loading but with an opposite direction to the 180deg subcase.  

For this sensitivity analysis, a uniform mesh size is 10m are used for the domain mesh. The 

riser top end and bottom anchor point are assumed to be pinned with no horizontal offset under 

the influence the of current load. The results of the SLWR riser configuration, riser slope, bending 

moment distribution, shear force distribution and effective tension distribution are shown from 

Figure 5.30 to Figure 5.34 respectively. 
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Figure 5.30 The SLWR configuration for current sensitivity analysis 

 

Figure 5.31 The SLWR horizontal slope component for current sensitivity analysis 
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Figure 5.32 The SLWR bending moment distribution for current sensitivity analysis 

 

Figure 5.33 The SLWR shear force distribution for current sensitivity analysis 
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Figure 5.34 The SLWR axial effective tension distribution for current sensitivity analysis 

From the current sensitivity analysis plots from Figure 5.30 to 5.34, it can be seen that the 

changes in current direction take a great hit on the riser configuration and internal force. Compared 

to the base case, positive current load will push the whole SLWR downward and increase both the 

top and TDP effective tension, while the peak bending moments can drop about 30% for this case; 

while the negative current load will push the whole SLWR configuration upward and decrease 

both the top and TDP effective tension, and the riser will suffer much larger curvature and the 

bending moment as shown in Figure 5.32. Especially at the touch-down zone (TDZ), the maximum 

bending moment has almost increased for about 60% for this case. Hence, during the design for 

the SLWR, the current loads, especially the current direction relative to the riser configuration 

plane should be paid great attention to. 

5.2.4 SWR Static Analysis by RISER3D under Tidal Current Load 

In this section, a deep-water 1500m water depth Steep Wave Riser (SWR) static analysis 

is performed by RISER3D. Compared to SCRs and SLWRs, SWR is a riser configuration that is 

suitable for deep water by connecting the bottom end directly to a subsea base. Therefore, there is 
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no touch down zone and pipe soil interaction section for this type of riser. Previous research work 

on this type of riser is very limited, which make this study on the SWR configuration and internal 

force subject to hydrodynamic load meaningful. Two cases are studied in this section, one is the 

base case, i.e. the SWR subject a positive tidal current load; the other one is the parametric study 

on the current load direction change. Moreover, the simulation results of the base case by 

RISER3D are also compared to that of by Orcaflex. 

The main problem data of the SWR analysis are referred to a previous published paper 

(H.D. Qiao, et al., 2006), as listed in Table 5.8. The remaining input data not available in the 

referred literature are assumed according to engineering experience, as summarized in Table 5.9. 

The current loads and involved parameters are summarized in Table 5.10. 

Table 5.8 Referred input data for 1500m water depth SWR analysis 

Designation Symbol Value SI Unit 

Outer diameter  𝐷𝑜 0.220 m 

Bending stiffness  EI 4.736E+05 Nm2 

Axial stiffness  EA 1.652E+09 N 

Sea water density 𝜌𝑤 1025.0 kg/m3 

Water depth 𝐻𝑤𝑑 1500.0 m 

Internal fluid density 𝜌𝑖 0.00 kg/m3 

Submerged weight  𝑊𝑠𝑢𝑏 501.7 N/m 

Submerged weight of BM segment 𝑊𝑏𝑚 -785.87 N/m 
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Table 5.9 Assumed input data for 1500m water depth SWR analysis 

Designation Symbol Value SI Unit 

Outer diameter of BM 𝐷𝑏𝑚 0.57296 m 

Buoyancy module material density 𝜌𝑏𝑚 427.7 Kg/m3 

Mass per unit length in air of pipe 𝑚𝑟 90.1227 kg/m 

Mass per unit length in air of BM section 𝑚𝑏𝑚 184.1396 kg/m 

Upper hang-off segment 𝐿𝑢𝑠 1080 m 

Buoyancy module segment 𝐿𝑏𝑚 675 m 

Lower segment 𝐿𝑙𝑠 450 m 

Riser total length  𝐿𝑟 2205.00 m 

 

Table 5.10 Assumed input data of the tidal current load for the base case 

Designation Symbol Value Unit 

Surface current velocity 𝑣𝑢 1.1 m/s 

Seabed current velocity 𝑣𝑏 0.0 m/s 

Current profile decay index 𝑛𝑐 3 - 

Normal drag coefficient 𝐶𝑑𝑛 0.7 - 

Tangential drag coefficient 𝐶𝑑𝑡 0.07 - 

 

For the base case, a total number of 490 uniform-length elements are utilized to discretize 

the whole riser length of 2205m, with an element length of 4.5m. For Newton iteration method, 
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the relaxation coefficient adopted is 0.15, considering this case is a nonlinear current and large 

deformation problem, large relaxation coefficient will have convergence problem. The riser tube 

is assumed to be empty during the analysis, i.e. with no internal fluid during the analysis.  

For the key concerned simulation results of the base case, the top end tensions predicted 

by CABLE3D and RISER3D are both 459.66kN, and the bottom end tension predicted by 

CABLE3D and RISER3D are both 240.91kN. The top and bottom tension of the riser simulated 

by Orcaflex are 459.96kN and 241.22kN respectively. The top departure angle predicted by 

CABLE3D and RISER3D are 1.3521deg and 1.3533deg respectively, which is smaller than the 

Orcaflex result of 1.5564deg. The plots of the results for the base case, including the riser 

configuration, the local configuration zoom in, the riser horizontal slope, the riser bending moment 

, the maximum bending moment local zoom in, the riser shear force and the riser effective tension, 

are presented from Figure 5.35 to Figure 5.41 respectively. 

 

Figure 5.35 The SWR configuration for the base case analysis 
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Figure 5.36 The SWR configuration local zoom in for the base case analysis 

 

Figure 5.37 The SWR horizontal component of slope for the base case analysis 
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Figure 5.38 The SWR bending moment distribution for the base case analysis 

 

Figure 5.39 The SWR maximum bending moment local zoom in for the base case 
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Figure 5.40 The SWR shear force distribution for the base case analysis 

 

Figure 5.41 The SWR effective tension distribution for the base case analysis 

For the current parametric study case, three scenarios are considered: the first scenario is 

exactly the same with the base case, i.e. the SWR subjected to positive current loads; the second 

scenario is the SWR subject to the same current velocities profile, but opposite direction to the 
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base case; the third scenario is the SWR subject to no current load. The simulation is performed 

with both CABLE3D and RISER3D. The main results of the parametric study, including the riser 

configuration, the horizontal riser slope, the riser bending moment, the riser shear force and the 

riser effective tension, are plotted from Figure 5.42 to Figure 5.46 respectively. 

 

Figure 5.42 The SWR configuration for the parametric study case 

 

Figure 5.43 The SWR horizontal component of slope distribution for parametric study 
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Figure 5.44 The SWR bending moment distribution for the parametric study case 

 

Figure 5.45 The SWR shear force distribution for the parametric study case 
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Figure 5.46 The SWR effective tension distribution for the parametric study case 

According to the plotted results of the SWR parametric study case, the following 

conclusions, for the 4.5m element mesh, can be made: 

• The difference between CABLE3D and RISER3D is very small, all the results 

between the two programs match well with each other 

• The current load will drastically change the SWR configuration, declination angles 

along the riser arc length, and internal bending moment distribution 

• The top and bottom effective tension does not change dramatically with the change 

of current direction and velocity 

5.3 Application of RISER3D for Top Tension Risers (TTRs) 

5.3.1 Deep-water Drilling Riser Subjected to Steady Current Load 

When deep water drilling risers encounter the high external lateral current load, they will 

suffer large nonlinear deformation. Accurate prediction of the lateral deformation and internal 

force is of great importance for drilling riser design and analysis. Considering the high cost and 
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complexity of scaled model experiments for deep water drilling risers, the numerical finite element 

method becomes a feasible and cost-effective alternative for the prediction of their behaviors. 

Considering the current load on deep water drilling riser is deformation dependent, i.e. the 

current load will initiate the deformation of riser. Moreover, the current load is a function of the 

local orientation of the deformed riser elements, the current loading and the riser deformation are 

coupled at all iteration step. Therefore, an initial vertical configuration will be guessed at the 

beginning of the analysis for vertical drilling riser, the current load at the first iteration will be 

computed according to the initial configuration. After solving the system of equations with current 

load by Newton iteration, a new equilibrium riser configuration will be obtained. And then the 

current load will be recalculated based on the newly obtained riser configuration. After 

recalculation, the system of equations with updated loads should be solved to achieve another new 

equilibrium riser configuration. These procedures will be repeated as much as required until the 

final equilibrium configuration has hit the preset convergence limit, which is usually a small 

positive number such as 10-6. At this point, the analysis is considered as converged and can be 

terminated.  

In this section, a previous three-dimensional drilling riser deformation study under current 

loads performed by Bernitsas et al. (1985) is reevaluated with both CABLE3D and RISER3D, the 

results of which are compared to those of published in one of his journal papers. All the three sub-

cases in the literature are reanalyzed with RISER3D. The particulars of the riser are summarized 

in Table 5.11. 
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Table 5.11 The particulars of the riser for analysis 

Designation Symbol Value SI Unit 

Outer Diameter  𝐷𝑜 0.610 m 

Internal Diameter  𝐷𝑖 0.575 m 

Young’s Modulus  𝐸 2.070E+11 Pa 

Outer Cross-sectional Area  𝐴𝑓 2.92247E-01 m2 

Internal Cross Section  𝐴𝑖 2.59672E-01 m2 

Weight in Air  𝑊𝑎𝑖𝑟 400.0873 kg/m 

Buoyancy  B 5975.4818 N/m 

Steel Density 𝜌𝑠 7850.0 kg/m3 

Moment of Inertia  I 1.43067E-03 m4 

Bending Stiffness  EI 2.96148E+08 Nm2 

Axial Stiffness  EA 6.74290E+09 N 

Drilling Internal Fluid Density 𝜌𝑖 1250.323 kg/m3 

Submerged Weight  𝑊𝑠𝑢𝑏 1132.0 N/m 

Density of steel pipes 𝜌𝑠 8200.0 kg/m3 

Density of water 𝜌𝑓 1025 kg/m3 

Density of Buoyancy Module material 𝜌𝑏𝑚 440 kg/m3 

Buoyancy Module Diameter 𝐷𝑏𝑚 0.870 m 

Offset of riser upper end 𝑑0 0.0 m 

Riser Total Length  𝐿𝑟 2000.00 m 

Gravitational constant 𝑔 9.80665 m/s2 
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Table 5.11 Continued 

Designation Symbol Value SI Unit 

Hydrodynamic coefficient 𝐶𝑑 1.0 or 0.7 - 

Top tension load factor 𝐶𝑙𝑓 1.2 - 

Applied top tension 𝑇𝑡 𝐶𝑙𝑓 ∗ 𝑊𝑠𝑢𝑏 ∗ 𝐿𝑟 N 

 

For the first subcase, the riser is subject to a shear current load, which linearly decreases 

from the surface velocity 1.5m/s to the seabed velocity 0 m/s in positive global X-direction; for 

the second subcase, the riser is subject to a tidal current profile which decays proportionally to the 

one-seventh root of the water depth from the surface velocity 1 m/s to the sea bottom velocity 0m/s 

in positive global X-direction; for the third subcase, the riser is subject to both current profiles 

simultaneously as depicted in the first and second subcase, with shear current in global X-direction 

and tidal current in global Z-direction. The case matrices are summarized in Table 5.12. 

Table 5.12 The current load case matrices 

Case No 𝒗𝒖 (m/s) 𝒗𝒃 (m/s) 𝒚𝒖 (m) 𝒚𝒃 (m) 𝒏𝒄 𝑪𝒅𝒏 𝑪𝒅𝒕 

Subcase 1 1.5 0.0 0.0 2000.0 1 1.0 0.0 

Subcase 2 1.0 0.0 0.0 2000.0 7 1.0 0.0 

Subcase 3 

Combined subcase 1 current in X-direction and Subcase 

2 current in Z-direction 

0.7 0.0 
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For the first subcase, a total of 80 uniform-length elements are employed to discretize the 

whole riser length of 2000m, with a uniform element length of 25m. The main simulation results 

of RISER3D and CABLE3D,consisting of deformed riser configuration, horizontal component of 

riser slope, riser bending moment, local zoom-in of the maximum bending moment (BM) section, 

riser shear force and effective tension, are compared from Figure 5.47 to Figure 5.52 respectively. 

After deformation, the top end riser effective tension is 2771.3kN and the bottom end effective 

tension is 520.2kN for both RISER3D and CABLE3D. 

 

Figure 5.47 Deformed riser configuration for 2000m TTR subcase1 

 

Figure 5.48 Deformed riser horizontal slope component for 2000m TTR subcase1 
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Figure 5.49 Riser bending moment distribution for 2000m TTR subcase1 

 

Figure 5.50 Riser maximum BM local zoom in for 2000m TTR subcase1 
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Figure 5.51 Riser shear force distribution for 2000m TTR subcase1 

 

Figure 5.52 Riser effective tension distribution for 2000m TTR subcase1 

Form Figure 5.47 to Figure 5.52, the riser lateral deflection, the riser x-component of slope 

and the riser effective tension match very well between RISER3D and CABLE3D respectively. 

As for the bending moment, RISER3D can accurately predict the distribution of bending moment 

at the neighborhood of the maximum bending moment point, while CALBE3D can only 

approximately predict the distribution of bending moment at that section. For the shear force 
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prediction, the shear forces predicted at both ends of riser by RISER3D are larger than those of by 

CALBE3D as illustrated in Figure 5.51, especially at the top end of the riser. 

The comparison of riser deflection and slope between the results published by Bernitsas 

(1985) and by RISER3D are shown in Table 5.13 and 5.14 respectively. In the last column of 

tables in this section, the difference between RISER3D results, highlight in green color,  and the 

best results provided by Bernitsas (1985), highlight in blue color, is presented. 

Table 5.13 The comparison of the riser lateral deflection 

z/L RISER3D 

deflection (m) 

Linear3 

(m) 

Nonlinear3 

WODD1 (m) 

Nonlinear3 

WTDD2 (m) 

Diff. to the 

best (%) 

0.000 0.000 0.00 0.00 0.00 - 

0.125 37.637 40.45 40.04 36.89 2.02 

0.250 62.802 66.46 66.01 61.63 1.90 

0.375 78.867 82.62 82.21 77.45 1.83 

0.500 86.041 89.51 89.11 84.53 1.79 

0.625 83.320 86.28 85.84 81.88 1.76 

0.750 69.193 71.47 70.79 67.99 1.77 

0.875 41.964 43.35 42.88 41.22 1.80 

1.000 0.000 0.00 0.00 0.00 - 

Notes applied to all tables in section 5.3.1:  

1. WODD= without deformation dependency;  

2. WTDD=with deformation dependency; 

3. Columns of result cited from the journal paper by Bernitsas (1985). 



 

204 

 

 

Table 5.14 The comparison of the riser horizontal slope 

z/L RISER3D 

slope (rad) 

Linear 

(rad) 

Nonlinear 

WODD1 (rad) 

Nonlinear 

WTDD1 

(rad) 

Diff. to the 

best (%) 

0.000 0.1804 0.1979 0.1939 0.1759 2.56 

0.125 0.1216 0.1275 0.1270 0.1194 1.84 

0.250 0.0817 0.0832 0.0832 0.0803 1.74 

0.375 0.0469 0.0464 0.0465 0.0462 1.52 

0.500 0.0098 0.0081 0.0081 0.0097 1.03 

0.625 -0.0326 -0.0350 -0.0352 -0.0320 1.87 

0.750 -0.0816 -0.0846 -0.0848 -0.0802 1.75 

0.875 -0.1374 -0.1417 -0.1410 -0.1350 1.78 

1.000 -0.1968 -0.2038 -0.2010 -0.1937 1.60 

 

For the second subcase, a total of 80 uniform-length elements are employed to discretize 

the whole riser length, with an element length of 25m. The same numerical simulation results as 

the first subcase are presented from Figure 5.53 to Figure 5.58 respectively. After deformation, the 

top end riser effective tension is 2756.2kN and the bottom end effective tension is 517.8kN for 

both RISER3D and CABLE3D. 
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Figure 5.53 Deformed riser configuration for 2000m TTR subcase 2 

 

Figure 5.54 Deformed riser slope of x component for 2000m TTR subcase 2 
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Figure 5.55 Riser bending moment distribution for 2000m TTR subcase 2 

 

Figure 5.56 Riser maximum absolute BM local zoom in for 2000m TTR subcase 2 
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Figure 5.57 Riser shear force distribution for 2000m TTR subcase 2 

 

Figure 5.58 Riser effective tension distribution for 2000m TTR subcase 2 

For the second subcase, the comparison of riser deflection and slope, between the results 

presented in the literature by Bernitsas (1985) and those of by RISER3D, are shown in Table 5.15 

and 5.16 respectively. 
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Table 5.15 The comparison of the riser lateral deflection for subcase 2 

z/L RISER3D 

deflection (m) 

Linear3 Nonlinear3 

WODD1 

Nonlinear3 

WTDD2 

Diff. to the 

best (%) 

0.000 0.000 0.00 0.00 0.00 - 

0.125 72.423 78.91 75.71 70.74 2.38 

0.250 108.106 114.97 112.2 105.9 2.08 

0.375 120.150 126.1 124 117.9 1.91 

0.500 115.824 120.62 118.9 113.7 1.87 

0.625 99.360 102.98 101.6 97.54 1.87 

0.750 73.443 75.9 74.83 72.1 1.86 

0.875 39.889 41.15 40.53 39.16 1.86 

1.000 0.000 0.00 0.00 0.00 - 

Notes applied to all tables in section 5.3.1:  

1. WODD denotes without deformation dependency, applying to all tables in this section; 

2. WTDD denotes with deformation dependency, applying to all tables in this section; 

3. Columns of results cited from the paper by Bernitsas (1985). 
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Table 5.16 The comparison of the riser horizontal slope for subcase 2  

z/L RISER3D 

slope (rad) 

Linear3 Nonlinear3 

WODD1 

Nonlinear3 

WTDD2 

Diff. to the 

best (%) 

0.000 0.3713 0.4204 0.3890 0.3603 3.05 

0.125 0.2051 0.2130 0.2122 0.2014 1.84 

0.250 0.0891 0.0868 0.0895 0.0881 1.14 

0.375 0.0119 0.0075 0.0095 0.0121 -1.65 

0.500 -0.0438 -0.0485 -0.0470 -0.0428 2.34 

0.625 -0.0862 -0.0909 -0.0896 -0.0846 1.89 

0.750 -0.1199 -0.1246 -0.1231 -0.1178 1.78 

0.875 -0.1476 -0.1525 -0.1504 -0.1449 1.86 

1.000 -0.1700 -0.1753 -0.1728 -0.1672 1.67 

 

For the subcase 3, a total of 80 elements are employed to discretize the whole riser length, 

with an element length of 25m. After deformation, the top end riser effective tension is 2801.5kN 

and the bottom end effective tension is 567.9kN for both RISER3D and CABLE3D. 

For subcase 3, the comparison of riser deflections in x and z direction, between M. 

Bernitsas et al. (1985) and RISER3D, are shown in Table 5.17 and 5.18 respectively. 
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Table 5.17 The comparison of the riser lateral deflection in x direction for subcase 3 

s/L 2D3 

WODD1 

x (m) 

3D3 

WODD x 

(m) 

2D3 

WTDD2 x 

(m) 

3D3 

WTDD x 

(m) 

Cable3D 

x (m) 

Riser3D 

x (m) 

Cable3D 

Diff. (%) 

Riser3D 

Diff. (%) 

0 0 0 0 0 0.00 0.00 0.00 0.00 

0.125 45.49 43.94 42.19 38.65 39.65 39.65 2.58 2.58 

0.250 73.36 71.74 68.86 64.13 65.61 65.61 2.31 2.31 

0.375 88.78 87.3 84.03 79.07 80.76 80.76 2.14 2.14 

0.500 93.35 92.01 88.91 84.19 85.93 85.93 2.07 2.07 

0.625 87.27 86.05 83.55 79.41 81.03 81.03 2.04 2.04 

0.750 70.15 69.11 67.45 64.23 65.54 65.54 2.04 2.04 

0.875 41.31 40.63 39.86 37.98 38.77 38.77 2.08 2.08 

1.000 0 0 0 0 0.00 0.00 0.00 0.00 
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Table 5.18 The comparison of the riser lateral deflection in z direction for subcase 3 

s/L 2D3 

WODD z 

(m) 

3D3 

WODD z 

(m) 

2D3 

WTDD z 

(m) 

3D3 

WTDD z 

(m) 

Cable3d 

z(m) 

Riser3D 

z(m) 

Cable3D 

Diff. (%) 

Riser3D 

Diff. (%) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.125 65.33 64.2 60.89 56.65 58.21 58.21 2.76 2.76 

0.250 98.45 97.19 92.76 87.32 89.45 89.45 2.44 2.44 

0.375 111.2 110 105.6 100.2 102.45 102.45 2.25 2.25 

0.500 109.4 108.2 104.5 99.6 101.77 101.77 2.18 2.18 

0.625 95.93 94.86 92.07 88.01 89.89 89.89 2.14 2.14 

0.750 72.58 71.62 69.93 66.9 68.32 68.32 2.13 2.13 

0.875 40.37 39.7 39.03 37.3 38.09 38.09 2.13 2.13 

1.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

5.3.2 Shallow Water TTR Parametric Studies by RISER3D 

In this section, three sets of sensitivity analyses have been performed using RISER3D and 

CABLE3D to identify the influence of some dominant parameters on the TTR configuration and 

internal force. The parameters chosen for sensitivity analysis including the uniform current 

velocity, the top tension of TTR and the Flex Joint stiffness at both end of the TTR. 

The main properties of the shallow water TTR are referred to a previous literature published 

by M. Yazdchi and M.A. Crisfiled (2002). The referred and calculated particulars of the TTR are 

summarized in Table 5.19.  
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Table 5.19 Particulars for the shallow water TTR 

Designation Symbol Value SI Unit 

Outer diameter  𝐷𝑜 0.25 m 

Internal diameter  𝐷𝑖 0.21 m 

Young’s Modulus  𝐸 2.00E+11 Pa 

Outer cross-sectional area  𝐴𝑓 0.0490874 m2 

Internal cross section  𝐴𝑖 0.0346361 m2 

Weight in air  𝑊𝑎𝑖𝑟 111.2752 kg/m 

Buoyancy  B 503.146 N/m 

Steel density 𝜌𝑠 7700.0 kg/m3 

Internal fluid density 𝜌𝑖 800.0 kg/m3 

Density of water 𝜌𝑓 1025 kg/m3 

Moment of inertia  I 9.6282E-05 m4 

Bending stiffness  EI 1.92564E+07 Nm2 

Axial stiffness  EA 2.89027E+09 N 

Submerged weight  𝑊𝑠𝑢𝑏 886.695 N/m 

Riser total length  𝐿𝑟 320.00 m 

Gravitational constant 𝑔 10.0 m/s2 

Normal hydrodynamic drag coefficient 𝐶𝑑𝑛 1.0 - 

Tangential hydrodynamic drag coefficient 𝐶𝑑𝑡 0.01 - 

Top tension load factor 𝐶𝑙𝑓 1.0 - 

Applied top tension 𝑇𝑡 510.0 kN 
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For the first sensitivity analysis, the TTR is subject to three different magnitudes of uniform 

current velocities, i.e. 1.0m/s, 1.5m/s and 2.0m/s. The tension load factor of 1.0 is adopted for this 

parametric study, which indicates the base case top tension 510.0kN is applied. A total of 32 equal 

size elements are used for the mesh of the whole TTR domain, with an element length of 10m. The 

main results compared between RISER3D and CABLE3D, including the riser horizontal 

deflection, the horizontal component of the riser slope and the distribution of riser bending 

moment, shear force and effective tension along the arc length, are plotted from Figure 5.59 to 

Figure 5.63 respectively.  

 

Figure 5.59 The 320m TTR horizontal deflection for current sensitivity analysis 
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Figure 5.60 The 320m TTR horizontal slope for current sensitivity analysis 

 

Figure 5.61 The 320m TTR bending moment distribution for current sensitivity analysis 
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Figure 5.62 The 320m TTR shear force distribution for current sensitivity analysis 

 

Figure 5.63 The 320m TTR effective tension distribution for current sensitivity analysis 

According to the highlight data shown in the above sensitivity analysis figures, it can be 

concluded that with the increase of current velocity a (an arbitrary constant) times, the amplitude 

of the riser horizontal deflection, the maximum bending moment and shear force in the riser will 
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be amplified to about a2 times, which is well consistent with the relationship between force and 

current velocity in the Morison equations.  

For the second sensitivity analysis, the TTR is subject to varied top tensions by applying 

different top tension load factors, i.e. 0.75𝑇𝑡, 1.0𝑇𝑡 and 1.25𝑇𝑡. The current velocity adopted for 

this parametric study is uniform 2.0m/s current from sea surface to seabed. A total of 32 equal size 

elements are used for the mesh of the whole TTR domain, with an element length of 10m. The 

main results extracted and compared between RISER3D and CABLE3D, including the riser 

horizontal deflection, the horizontal component of the riser slope and the distribution of riser 

bending moment, shear force and effective tension along the riser arc length, are plotted from 

Figure 5.64 to Figure 5.68 respectively.  

 

Figure 5.64 The 320m TTR horizontal deflection for top tension sensitivity analysis 
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Figure 5.65 The 320m TTR horizontal slope for top tension sensitivity analysis 

 

Figure 5.66 The 320m TTR bending moment distribution for top tension sensitivity analysis 
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Figure 5.67 The 320m TTR shear force distribution for top tension sensitivity analysis 

 

Figure 5.68 The 320m TTR effective tension distribution for top tension sensitivity analysis 

According to the highlight results shown in the above figures, it can be concluded that with 

the increase of top tension, the amplitude of the riser horizontal deflection, the maximum bending 

moment and shear force in the riser will not decrease proportionally. Therefore, a large set of top 

tension sensitivities should be performed to identify an optimum top tension for a specific TTR. 
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Because if the designed top tension is too low, the riser deflection will rapidly increase with the 

loss of tension under current load; while if the tension is too high, it will not dramatically affect 

the riser deflection and bending moment, which makes the extra over-tension in the riser 

meaningless for riser deformation.  

For the third sensitivity analysis, the TTR is subject to different magnitudes of linear 

rotational stiffnesses at both end of the riser, i.e. 0.0𝑒6Nm/rad, 1.0𝑒6Nm/rad and 2.0𝑒6Nm/rad. 

Zero rotational stiffness case means no flex-joint (FJ) effect is applied to the TTR. For this set of 

parametric study, the top tension load factor is set as 1.0 with uniform current velocity 2.0m/s. A 

total of 32 equal size elements are used for the mesh of the whole TTR domain, with an element 

length of 10m. The main results extracted and compared between RISER3D and CABLE3D, 

including the riser horizontal deflection, the horizontal component of the riser slope and the 

distribution of riser bending moment, shear force and effective tension along the riser arc length, 

are plotted from Figure 5.69 to Figure 5.73 respectively.  

 

Figure 5.69 The 320m TTR horizontal deflection for Flex Joint sensitivity analysis 
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Figure 5.70 The 320m TTR horizontal slope for Flex Joint sensitivity analysis 

 

Figure 5.71 The 320m TTR bending moment distribution for Flex Joint sensitivity analysis 
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Figure 5.72 The 320m TTR shear force distribution for Flex Joint sensitivity analysis 

 

Figure 5.73 The 320m TTR effective tension distribution for Flex Joint sensitivity analysis 

In Figure 5.69, the maximum TTR horizontal deflection  with no rotational stiffness 

restraint is 17.82m. By increasing the linear rotational stiffness from 0Nm/rad to 1.0e6 Nm/rad 

and 2.0e6 Nm/rad respectively, the maximum deflection will slightly drop to 17.36m and 17.10m, 

which means the bending restraint by rotational stiffness at both ends will not drastically changed 
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the whole deformation of the TTR. Similarly, the top and bottom tension, as illustrated in Figure 

5.73 will not change much after applying different rotational stiffness. However, the applied 

rotational stiffnesses at both ends of the TTR will dramatically change the distribution of the riser 

internal bending moment and shear force, as shown in Figure 5.71 and 5.72. The magnitude of the 

top and bottom bending moment is equal to the product of the linear rotational stiffness and the 

corresponding riser slope. Therefore, a properly designed rotational stiffness at the ends of a TTR 

can help to prevent local overbending by introducing an appropriate magnitude of bending moment 

to the riser, which can balance the unexpected locally applied large bending moments. 

5.4 Application of RISER3D to Free Hanging Flexible Risers 

For some riser systems, jumpers are an indispensable part for either used at the near surface 

zone or at the sea bottom flowline connection. Near surface jumper is usually in a catenary shape 

and is flexible, it can provide a flexible connection between submerged buoy or hybrid riser tower 

and surface FPSO or other types of platform.  A view example of jumper’s deployment is shown 

in Figure 5.74, the jumper is hung over the top of the hybrid riser tower to the FPSO.  
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Figure 5.74 Multiple jumper connection between HR and FPSO (Reprinted from 

www.orcina.com) 

Subsea rigid jumpers are mainly used as a connection between seabed flowlines and bottom 

end of risers. Jumpers should be flexible enough to accommodate the translation motions either 

comes from the flowline or riser. The loads which should be taken into consideration for subsea 

rigid jumper design consist of (B. Toleman, et al., OMAE 2019) 

• Thermal and pressure load 

• Environmental load such as strong bottom currents 

• Slugging 

• Interaction load between riser and flowline 

http://www.orcina.com/
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A schematic view of a M-shape rigid jumper finite element model can be seen in Figure 

5.75 (B. Toleman, et al., OMAE 2019) 

 

Figure 5.75 Finite element model of M-shape jumper (Reprinted from Toleman et al. 2019) 

This research has only focused on the study of flexible jumpers and not performed any case 

study on subsea rigid jumpers due to the lack of detailed problem data. The rigid jumper analysis 

by using RISER3D is left for future research. 

5.4.1 Analysis of a Catenary Flexible Jumper by RISER3D  

In this section, a catenary jumper is simulated with both RISER3D and CABLE3D, the 

data of which, referred to a previous journal paper published by Connaire, et al. (2015), are 

summarized in Table 5.20. 
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Table 5.20 The properties of the 45m length catenary jumper 

Designation Symbol Value SI Units 

Jumper length 𝐿𝑟 45 m 

Outer diameter 𝐷𝑜 0.15 m 

Inner diameter 𝐷𝑖 0.09 m 

Bending rigidity 𝐸𝐼 4000 Nm 

Stretching rigidity 𝐸𝐴 3.0e8 N 

Mass per unit length 𝑀𝑎𝑖𝑟 200 Kg/m 

 

The other required data for the analysis, not included in Table 5.20, are assumed and listed 

in Table 5.21. 

Table 5.21 Assumed data for the 45m length catenary jumper 

Designation Symbol Value SI Units 

Water depth 𝐻𝑤𝑑 1000 m 

Water density 𝜌𝑤 1025.0 Kg/m3 

Inner fluid density 𝜌𝑖 0.0 Kg/m3 

Gravitational constant 𝑔 9.80665 m/s2 
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For static analysis, a total of 45 uniform-length elements are used to mesh the jumper, with 

an element length of 1.0m. Newton iteration are adopted for the static equilibrium iteration. The 

concerned results of the jumper from both CABLE3D and RISER3D static simulations, including 

the jumper configuration, horizontal component of slope, the distribution of the jumper bending 

moment, shear force and effective tension, are presented from Figure 5.76 to 5.80 respectively. 

 

Figure 5.76 Static configuration of the catenary jumper 

 

Figure 5.77 Jumper horizontal component of slope 
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Figure 5.78 The bending moment distribution of the catenary jumper 

 

Figure 5.79 The shear force distribution of the catenary jumper 
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Figure 5.80 The effective tension distribution of the catenary jumper 

The jumper top end offset analysis is also studied to compare the convergence speed 

between RISER3D and CALBE3D. For this analysis, the top end of the jumper is displaced from 

the static equilibrium place, as shown in Figure 5.76, to the positive global X-direction by a 

horizontal offset of 15m in a quasi-static manner, i.e. the top end will be displaced exactly above 

the lower end.  

For the base case, a total of 90 uniform elements are used for domain mesh and each 

element has a length of 0.5m. The results of the jumper top end offset analysis, consisting of the 

deformed jumper configuration, the horizontal component of jumper slope, the bending moment 

distribution, the critical bending moment zone local zoom in, the distribution of jumper shear force 

and effective tension, are presented from Figure 5.81 to 5.86 respectively. 
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Figure 5.81 Jumper configuration of top end offset analysis 

 

Figure 5.82 Jumper horizontal component of slope for top end offset analysis 
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Figure 5.83 Jumper bending moment distribution for top end offset analysis 

 

Figure 5.84 Critical bending moment local zoom in for top end offset analysis 
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Figure 5.85 Jumper shear force distribution for top end offset analysis 

 

Figure 5.86 Jumper effective tension distribution for top end offset analysis 

In order to test the convergence speed of the jumper top end offset analysis, a parametric 

study is performed by employing different element sizes while keeping the remaining input data 
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the same. The main concerned results are shown in Table 5.22 for the obtained maximum bending 

moment (BM) and Table 5.23 for the obtained maximum shear force (SF).  

Table 5.22 The comparison of RISER3D and CABLE3D for BM convergence speed 

Mesh 

Size 

BM_Q

H 

(kNm) 

BM_C

H 

(kNm) 

BM_F

DM 

(kNm) 

BMQH

_ 

Dif (%) 

BMCH

_ 

Dif (%) 

BMFD

M_Dif2 

(%) 

CH_ 

Time1 

(s) 

QH_ 

Time 

(s) 

1m -4.3161 -4.5238 -3.5924 -0.314 4.483 -17.029 0.9103 1.4878 

0.5m -4.3281 -4.4734 -4.2596 -0.037 3.319 -1.619 1.7882 2.7241 

0.25m -4.3295 -4.3703 -4.3241 -0.005 0.938 -0.129 3.4799 5.2866 

0.125m -4.3297 -4.3401 -4.3292 - 0.240 -0.012 6.9276 10.644 

Table notes in this section:  

1. Time denotes the approximated CPU time for running the code on a laptop of Processor 

Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz, 2904 Mhz, 2 Core(s), 4 Logical 

Processor(s). 

2. Dif denotes the relative difference to the best obtained solution. 

Table 5.23 The comparison of RISER3D and CABLE3D for SF convergence speed 

Mesh 

Size 

SF_QH 

(kN) 

SF_CHFD

M (kN) 

SFQH_Dif 

(%) 

SFCH_Dif2 

(%) 

CH_Time1 

(s) 

QH_Time 

(s) 

1m -2.0336 -1.8114 1.079 -9.966 0.9103 1.4878 

0.5m -2.0078 -1.9629 -0.204 -2.436 1.7882 2.7241 

0.25m -2.0117 -1.9928 -0.010 -0.949 3.4799 5.2866 

0.125m -2.0119 -2.0116 - -0.015 6.9276 10.644 
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In Table 5.22, the bending moment of -4.3297 kNm is regarded as the best obtained 

solution by using the finest element size of 0.125m and RISER3D program. All the remaining 

bending moments are compared with this value by utilizing a relative difference percentage. From 

the fifth to seventh column, regardless of the mesh size adopted, the  percentage of bending 

moment does not change much for RISER3D program. However, for CALBE3D program, if a 

course element size is adopted, the bending moment will have a large percentage difference to the 

best obtained solution.  

From the data shown in Table 5.22, RISER3D can achieve equivalent accuracy to 

CABLE3D by using fewer element numbers, which can therefore save CPU time and 

computational effort.  The same conclusion can be exactly drawn from Table 5.23 for the shear 

force results. Therefore, for flexible jumpers subject to large rotational deformation, RISER3D can 

converge much faster to the true solution than CALBE3D. Moreover, to achieve equivalent 

accuracy of concerned results, RISER3D cost less CPU time to CABLE3D by using larger size of 

mesh. 
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5.4.2 Static and Dynamic Analysis of a Free-hanging Flexible Riser by RISER3D  

In this section, the static and dynamic analysis of a free-hanging flexible riser is performed 

with RISER3D. The problem data of which, referred to a previous paper published by Y.M. Low 

and R.S. Langley (2006), are listed in Table 5.24. 

Table 5.24 The properties of the free-hanging flexible riser 

Designation Symbol Value SI Units 

Riser length 𝐿𝑟 170 m 

Outer diameter 𝐷𝑜 0.396 m 

Density of water 𝜌𝑤 1000 Kg/m3 

Bending rigidity 𝐸𝐼 1.208e5 Nm 

Stretching rigidity 𝐸𝐴 5.0e8 N 

Mass per unit length 𝑀𝑎𝑖𝑟 165 Kg/m 

Gravitational acceleration 𝑔 9.807 m/s2 

 

The other required data for the analysis, not included in Table 5.24, are assumed and listed 

in Table 5.25. The riser top end is positioned at 5m below mean water level and the riser bottom 

end is positioned at 55m below the mean water level, the horizontal distance between the both end 

of the riser is 100m (Low and Langley, 2006). 
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Table 5.25 Assumed data for the free-hang flexible riser analysis 

Designation Symbol Value SI Units 

Water depth 𝐻𝑤𝑑 1000 m 

Inner fluid density 𝜌𝑖 0.0 Kg/m3 

Top offset 𝑈𝑡 0.0 m 

 

For the jumper static in-place analysis, a total of 68 uniform-length elements are used to 

mesh the jumper, with an element length of 2.5m. Newton iteration are adopted for the static 

equilibrium iteration and the relaxation coefficient is set as 0.8 for static analysis. The concerned 

results of the free-hanging flexible riser extracted from both CABLE3D and RISER3D static 

simulations, including the deformed jumper configuration, the horizontal component of jumper 

slope, the distribution of jumper bending moment, shear force and effective tension, are presented 

from Figure 5.87 to 5.91 respectively. 

 

Figure 5.87 The equilibrium configuration of the free-hanging flexible riser 
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Figure 5.88 The horizontal component of the slope of the free-hanging flexible riser 

 

Figure 5.89 The bending moment distribution of the free-hanging flexible riser 
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Figure 5.90 The shear force distribution of the free-hanging flexible riser 

 

Figure 5.91 The effective tension of the free-hanging flexible riser 

The top and bottom end of the effective tension are both 47.11kN and 26.60kN by 

RISER3D and CABLE3D, which exactly matches with the results presented in the published paper 

(Y.M. Low and R.S. Langley, 2006). By using the fine 2.5m element mesh, it can be seen from 
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Figure 5.89 and Figure 5.90 that both the bending moment and shear force predicted by RISER3D 

and CABLE3D matches well for this case study. 

For the decoupled dynamic analysis, two top end excitation cases are simulated by 

RISER3D. For simplicity, no wave kinematics are considered for this study. The first case is the 

riser top end subjected to a harmonic surge motion (in global X-direction) and the second case is 

the riser top end subjected to a harmonic sway motion (in global Z-direction). For both cases, the 

amplitude of the imposed harmonic excitations is 10m and the periods of oscillation is 27s (Low 

and Langley, 2006). 80s of simulation is run and the load is ramped up in the first period for the 

dynamic analysis. The time series of the top end effective are compared between RISER3D and 

Orcaflex, which are shown in Figure 5.92 and Figure 5.93 below. 

 

Figure 5.92 Time series of top end effective tension under surge motion 
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Figure 5.93 Time series of top end effective tension under sway motion 

From the dynamic time series in Figure 5.92 and Figure 5.93, it can be seen that RISER3D 

can exactly match the response of riser to that of by Orcaflex. Due to time limitation for this 

research, more dynamic analysis cases using RISER3D program will be studied and published 

with journal papers in future research. 
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6 SUMMARY AND CONCLUSION 

This research has placed on an emphasis on an improved numerical technique for marine 

riser strength analysis, i.e. by using quintic Hermite shape functions. A powerful and effective 

marine riser analysis tool called RISER3D, is formulated, developed using quintic Hermite shape 

functions, which has been verified to be applicable to almost all riser configurations, such as SCR, 

SLWR, Steep-wave riser, TTRs, HRs, free-hang flexible risers, etc. in this dissertation. RISER3D 

can, so far, handle well with three-dimensional nonlinear static and dynamic riser problems under 

steady linear or nonlinear currents and top end motion excitations. As for the linear wave loads, it 

is formulated in chapter 5 but no case is performed due to time limitation for this research. 

6.1 Comparison of CALBE3D and RISER3D Program 

Based on this research, for traditional CABLE3D, a gradually refined element mesh must 

be adopted for slender structures with large curvature gradient to improve the numerical simulation 

accuracy. Otherwise, analysts may fail to pinpoint the exact position of the peak curvatures in the 

whole problem domain, which will result in either an over conservative structural design or a non-

conservative structural design. However, by doing so, twofold of drawbacks will occur, the first 

one is that more nodal degrees of freedom (DoFs) will be introduced to the finite element model, 

which will definitely increase the total number of the global system of equations and then the 

capacities of the computer storage, memory and the running time; the other one is an increased 

complexity for numerically postprocessing for the riser nodal bending moments. Because for 

CABLE3D, only nodal displacement and slope information are solved, and the nodal curvature of 

the riser shall be evaluated by either cubic Hermite interpolation method or five-point finite 

difference method based on the obtained nodal DoFs. If the multi-point finite difference method 

is used to approximate the riser nodal bending moments, a gradually refine element mesh 
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necessitate a non-uniform element mesh for segments with high curvatures, which can greatly 

increase the complexity for results postprocessing. What is worth mentioning is that if the element 

size is sharply changed during the element mesh process, a potential of ill-conditioning problem 

may be introduced into the riser global system of equations in CABLED3D program, and then the 

numerical divergence may be another headachy problem, which is definitely unacceptable for 

numerical simulations. Therefore, it is quite tricky for element mesh process by performing marine 

riser simulation with CALBE3D program, i.e. cubic Hermite interpolation functions finite method. 

Because too fine meshes mean improved accuracy but increased computational effort and 

complexity, while too coarse meshes suffers significant loss of the simulation accuracy and 

unacceptable simulation results. 

On the contrary, with the excellent properties brought into RISER3D by the quintic 

Hermite shape functions. The beam or riser curvatures at discrete nodes can be directly handled as 

the nodal degrees of freedom (DoFs) and solved straightforwardly. For RISERED, at each internal 

node, the structure curvatures are continuous. Besides, by the application of the quintic Hermite 

interpolations with obtained nodal DoFs, the deformed deflection curves of slender structures in 

RISER3D are piecewise quintic polynomial functions in each element domain. Hence, the 

curvature curves, the second derivative of the deflection curves, are piecewise cubic polynomial 

functions and the rate change of curvatures with respect to arc length, i.e. the third derivative of 

the deflection curves,  are piecewise quadratic polynomial functions. As is known by structural 

mechanics, the magnitudes of second and third derivative of the deflection curves are proportional 

to the structural bending moment and shear force in the element domain respectively. Therefore, 

the riser bending moment predicted with RISER3D are piecewise continuous cubic polynomial 

functions in the whole problem domain. Moreover, by examining the third derivatives of the 
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deflection curves in each element domain, if a zero point can be identified in an element, then there 

must be a peak value for the bending moment in that element, i.e. either the maximum bending 

moment or the minimum bending moment. With the existence of these properties for the deflection 

curves predicted by RISER3D in the problem domain, analysts can adopt uniform and relatively 

large size of elements for computing the distribution of the bending moment and shear force in 

slender structures without worrying the loss of accuracy at all. Which means the foregoing twofold 

drawbacks enrooted in CALBE3D do not exist in RISER3D anymore. 

One may intuitively think that RISER3D has a total of 21 DoFs per element for riser, which 

is more than the 15 DoFs per element for CABLE3D; hence, RISER3D will definitely need more 

CUP time and computational effort than CABLE3D for marine riser simulation. This argument is 

straightforwardly true if both programs utilize the same element size for the same problem domain. 

And according to experience of running CABLE3D and RISER3D, the RISER3D program usually 

cost about an extra 30% of simulation time than CALBE3D. Nevertheless, for the same problem, 

to achieve equivalent accuracy, RISER3D does not need so many of element numbers as required 

by CALBE3D, especially for segments where the expected solutions have large gradients. From 

this perspective, RISER3D can actually decrease the total required DoFs by using a smaller 

number of meshed elements, and therefore can save simulation time when compared to 

CABLE3D.  

6.2 Research Summaries 

By comparison between CABLE3D and RISER3D, i.e. by comparison of traditional cubic 

Hermite finite element method with the new quintic Hermite finite element method,  the following 

bullet points can be summarized according to all the studies performed in this dissertation. 
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• RISER3D can guarantee the continuity of the curvatures of the slender structures, such as 

beams, risers, etc.,  at the discrete nodes while CALBE3D cannot. 

• RISER3D can accurately pinpoint the critical bending moment position in an element 

domain with a relatively large size elements while CABLE3D cannot. CABLE3D has to 

dramatically refine element mesh to achieve a closer solution to the critical bending 

moment by bringing about issues for increased computational effort and difficulties for 

data postprocessing. If locally refine the element size, ill-conditioning of the global matrix 

may be of another problem for CABLE3D, especially for high nonlinear three-dimensional 

problems. 

• For pinned or hinged boundary conditions, RISER3D can yield more accurate results for 

the internal bending moment and shear force at the near boundary sections, while 

CALBE3D cannot. This is because RISER3D can apply essential boundary conditions on 

the curvatures at the boundary points while CALBE3D cannot. 

• For dynamic beam vibration problems, RISER3D can produce more accurate dynamic time 

series of the internal bending moment and shear force than CALBE3D, especially for the 

shear force response of structures. 

• For eigenvalue problems, by using the same element mesh, RISER3D can yield much more 

accurate natural frequencies than CABLE3D. As modes go higher, CABLE3D could yield 

a considerable amount of error while RISER3D will not. 

• RISER3D can show better effectiveness for flexible jumper simulation, especially for those 

jumpers subjected to large rotation angles 



 

244 

 

 

• RISER3D can produce more accurate prediction for bending moment and shear force for 

slender structure subjected to transverse loads with large gradient, such as high-order 

polynomial load and high frequency harmonic loads 

To be brief, compared to traditional cubic Hermite finite element methods, RISER3D has 

been proved to be an effective general tool for numerical simulations of slender Euler-Bernoulli 

beams and almost all configurations of marine risers. It can use less elements to achieve much 

better accuracy and it can easily identify the position of the maximum bending moment and stress 

in the slender structure problem domain, which can greatly enhance the confidence of analysts and 

designers before making big decisions. Therefore, the quintic Hermite finite element method are 

highly recommend other researches or scholars for performing finite element analysis of almost 

all of slender structures, no matter it is static, dynamic or eigenvalue analyses. 

Although RISER3D can have so many advantages over the traditional finite element 

methods (utilizing cubic Hermite shape functions), it should be confessed that this new method is 

much more complicated to implement than traditional cubic Hermite finite element method. No 

matter it is from the perspectives of math formulation or numerical programming. Besides, 

RISER3D admits smaller rooms of error during the whole procedures of finite element analysis 

because the fifth-order polynomials can easily amplify any mistakes to numerical divergence. 

Therefore, analysts should make sure the math formulation and boundary conditions are exactly 

correct to get high accurate solutions to practical slender structure problems by RISER3D. 

Moreover, a point should be emphasized is that RISER3D can handle problems with continuous 

curvatures in the finite element domain. If the problem domains have non-continuous curvatures 

physically, special treatments or measures must be taken to avoid any potential mistakes, such as 

problems with sudden change of cross sectional area or with internal concentrated moments, etc. 



 

245 

 

 

A reasonable judgment is that quintic Hermite shape functions shall show great advantages 

for solving more and more complicated slender structural problems and a lot of future research 

shall be performed to explore the great benefits that quintic Hermite shape functions can bring us 

for finite element simulations. 

6.3 Topics for Future Research 

 Due to time limitations for this research, some of the less important factors are neglected 

and some of the riser topics are not covered. However, for some of special problems, these 

neglected factors and topics may have to be considered. For the sake of completeness, the 

following topics are recommended for future research by using quintic Hermite shape functions 

for RISER3D: 

• Problems of riser deformation with torque 

• Problems of riser with steady and unsteady internal flow 

• Riser seabed lateral and longitudinal frictional forces 

• Simulate the fluctuational lift forces caused by riser VIV 

• Coupled riser and host platform dynamic finite element analysis 

• Riser fatigue analysis 

• Flexible Steep-S and W-shape riser finite element analysis 

• M-shaped rigid jumper finite element analysis 

• Multi-layer composite riser finite element analysis  

• Titanium riser finite element analysis  
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APPENDIX A 

DERIVATION OF QUINTIC HERMTIE SHAPE FUNTIONS 

For the implementation of quintic Hermite shape functions for finite element model 

establishment, a total of six conditions have to be considered in a one-dimensional two-node beam 

element (three primary variables per end, i.e. the beam displacement r, slope r’ and curvature r’’). 

Therefore, a complete six-parameter polynomial must be chosen to perform the interpolation, 

which takes a form of 

𝑟𝑞ℎ(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3 + 𝑐4𝑥
4 + 𝑐5𝑥

5                                  (A.1) 

where 𝑐i (𝑖 = 0~5) are unknown coefficients. 

What is worth mentioning it that a total 18 degrees of freedom, for a three-dimensional 

beam element, have to be considered for one element. A schematic figure for three dimensional 

beam element, consisting of 18 degrees of freedom, are shown in Figure A.1 below. 

 
Figure A.1 Primary variables for typical three dimensional beam element 

The derivation of the expressions of the quintic Hermite shape functions can be simply 

based on the one-dimensional beam problem. The approximation function of the transverse 
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deflection at eth beam element, assuming that the interval for 𝑒th element being 𝑥 ∈ [𝑥𝑎, 𝑥𝑏], can 

be written as 

𝑟(𝑥) ≈ 𝑟𝑎𝑝
𝑒(𝑥) = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥

2 + 𝐶3𝑥
3 + 𝐶4𝑥

4 + 𝐶5𝑥
5 = ∑ 𝑢𝑖

𝑒𝑎𝑖
𝑒6

𝑖=1 (𝑥)     (A.2) 

This approximated function must satisfy the quintic Hermite interpolation properties, i.e. 

satisfying the following essential boundary conditions in the element, which form the basis for 

derivation of the quintic Hermite shape functions. 

𝑢1
𝑒 = 𝑟𝑎𝑝

𝑒(𝑥𝑎), 𝑢2
𝑒 = 𝑟′𝑎𝑝

𝑒(𝑥𝑎), 𝑢3
𝑒 = 𝑟′′𝑎𝑝

𝑒(𝑥𝑎) 

𝑢4
𝑒 = 𝑟𝑎𝑝

𝑒(𝑥𝑏), 𝑢5
𝑒 = 𝑟′𝑎𝑝

𝑒
(𝑥𝑏), 𝑢6

𝑒 = 𝑟′′𝑎𝑝
𝑒
(𝑥𝑏)                            (A.3) 

where 𝑢1
𝑒 and 𝑢4

𝑒are the beam displacement at the left and right end respectively, 𝑢2
𝑒 and 𝑢5

𝑒are 

the beam slope at the left and right end respectively, and 𝑢3
𝑒 and 𝑢6

𝑒are the beam curvature at the 

left and right end respectively; 𝑥𝑎 and 𝑥𝑏 are the starting and end x-coordinate of the  eth beam 

element, the simple ‘′’ denotes taking derivative with respect to x-coordinate. 

Substitution the approximation function expression in equation (A.2) into the equation 

(A.3), leads to 

𝑢1
𝑒 = 𝑟𝑎𝑝

𝑒(𝑥𝑎) = 𝐶0 + 𝐶1𝑥𝑎 + 𝐶2𝑥𝑎
2 + 𝐶3𝑥𝑎

3 + 𝐶4𝑥𝑎
4 + 𝐶5𝑥𝑎

5 

𝑢2
𝑒 = 𝑟′𝑎𝑝

𝑒
(𝑥𝑎) = 𝐶1 + 2𝐶2𝑥𝑎 + 3𝐶3𝑥𝑎

2 + 4𝐶4𝑥𝑎
3 + 5𝐶5𝑥𝑎

4 

𝑢3
𝑒 = 𝑟′′𝑎𝑝

𝑒
(𝑥𝑎) = 2𝐶2 + 6𝐶3𝑥𝑎 + 12𝐶4𝑥𝑎

2 + 20𝐶5𝑥𝑎
3 

𝑢4
𝑒 = 𝑟𝑎𝑝

𝑒(𝑥𝑏) = 𝐶0 + 𝐶1𝑥𝑏 + 𝐶2𝑥𝑏
2 + 𝐶3𝑥𝑏

3 + 𝐶4𝑥𝑏
4 + 𝐶5𝑥𝑏

5                  (A.4) 

𝑢5
𝑒 = 𝑟′𝑎𝑝

𝑒
(𝑥𝑏) = 𝐶1 + 2𝐶2𝑥𝑏 + 3𝐶3𝑥𝑏

2 + 4𝐶4𝑥𝑏
3 + 5𝐶5𝑥𝑏

4 

𝑢6
𝑒 = 𝑟′′𝑎𝑝

𝑒
(𝑥𝑏) = 2𝐶2 + 6𝐶3𝑥𝑏 + 12𝐶4𝑥𝑏

2 + 20𝐶5𝑥𝑏
3 

For further simplicity, the coefficients for quintic Hermite shape functions can be derived 

in a normalized local coordinate system 𝜉, here 𝜉 =
𝑥−𝑥𝑎

𝑥𝑏−𝑥𝑎
 . Obviously, if 𝑥 = 𝑥𝑎, 𝜉 = 0 and 
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if 𝑥 = 𝑥𝑏 , 𝜉 = 1. Therefore, equation (A.4) can be expressed in the normalized local coordinate 

system can be simply expressed as 

𝑢1
𝑒 = 𝑟𝑎𝑝

𝑒(0) = 𝐶0 + 𝐶10 + 𝐶20
2 + 𝐶30

3 + 𝐶40
4 + 𝐶50

5 

ℎ𝑒𝑢2
𝑒 = 𝑟′𝑎𝑝

𝑒
(0) = 𝐶1 + 2𝐶20 + 3𝐶30

2 + 4𝐶40
3 + 5𝐶50

4 

ℎ𝑒2𝑢3
𝑒
= 𝑟′′𝑎𝑝

𝑒
(0) = 2𝐶2 + 6𝐶30 + 12𝐶40

2 + 20𝐶50
3 

𝑢4
𝑒 = 𝑟𝑎𝑝

𝑒(1) = 𝐶0 + 𝐶11 + 𝐶21
2 + 𝐶31

3 + 𝐶41
4 + 𝐶51

5                       (A.5) 

ℎ𝑒𝑢5
𝑒
= 𝑟′𝑎𝑝

𝑒
(1) = 𝐶1 + 2𝐶21 + 3𝐶31

2 + 4𝐶41
3 + 5𝐶51

4 

ℎ𝑒2𝑢6
𝑒
= 𝑟′′𝑎𝑝

𝑒
(1) = 2𝐶2 + 6𝐶31 + 12𝐶41

2 + 20𝐶51
3 

where ℎ𝑒 = 𝑥𝑏 − 𝑥𝑎 is the element length of eth beam element. 

Rewrite equation (A.5) in a compact matrix form as 

[
 
 
 
 
 
1 0 0
0 1 0

0 0 0
0 0 0

0 0 2
1 1 1

0 0 0
1 1 1

0 1 2
0 0 2

3 4 5
6 12 20]

 
 
 
 
 

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

=

{
  
 

  
 

𝑢1
𝑒

ℎ𝑒𝑢2
𝑒

ℎ𝑒2𝑢3
𝑒

𝑢4
𝑒

ℎ𝑒𝑢5
𝑒

ℎ𝑒2𝑢6
𝑒
}
  
 

  
 

                                  (A.6) 

Since the coefficient matrix in equation (A.6) is invertible, the six constant unknowns can 

be solved in terms of the inverse coefficient matrix and the nodal degrees of freedom, i.e. the 

primary variables as  

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0.5 0 0 0
−10 −6 −1.5 10 −4 0.5
15 8 1.5 −15 7 −1
−6 −3 −0.5 6 −3 0.5]

 
 
 
 
 

{
  
 

  
 

𝑢1
𝑒

ℎ𝑒𝑢2
𝑒

ℎ𝑒2𝑢3
𝑒

𝑢4
𝑒

ℎ𝑒𝑢5
𝑒

ℎ𝑒2𝑢6
𝑒
}
  
 

  
 

=

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

                           (A.7) 
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Therefore, the eth beam deflection can be expressed in terms of the nodal primary variables 

as 

𝑟𝑎𝑝
𝑒(𝜉) = 𝐶0 + 𝐶1𝜉 + 𝐶2𝜉 + 𝐶3𝜉

3 + 𝐶4𝜉
4 + 𝐶5𝜉

5

= 𝑢1
𝑒 + ℎ𝑒𝑢2

𝑒𝜉 +
1

2
ℎ𝑒2𝑢3

𝑒
𝜉2

+ (−10𝑢1
𝑒 − 6ℎ𝑒𝑢2

𝑒 −
3

2
ℎ𝑒2𝑢3

𝑒
+ 10𝑢4

𝑒 − 4ℎ𝑒𝑢5
𝑒 +

1

2
ℎ𝑒2𝑢6

𝑒
) 𝜉3

+ (15𝑢1
𝑒 + 8ℎ𝑒𝑢2

𝑒 +
3

2
ℎ𝑒2𝑢3

𝑒
− 15𝑢4

𝑒 + 7ℎ𝑒𝑢5
𝑒 − ℎ𝑒2𝑢6

𝑒
) 𝜉4

+ (−6𝑢1
𝑒 − 3ℎ𝑒𝑢2

𝑒 −
1

2
ℎ𝑒2𝑢3

𝑒
+ 6𝑢4

𝑒 − 3ℎ𝑒𝑢5
𝑒 +

1

2
ℎ𝑒2𝑢6

𝑒
) 𝜉5 

(A.8) 

Now by collecting the coefficients of the same primary variable together in equation (A.8), 

the beam deflection function can be eventually written as 

𝑟𝑎𝑝
𝑒(𝜉) = (1 − 10𝜉3 + 15𝜉4 − 6𝜉5)𝑢1

𝑒 + (𝜉 − 6𝜉3 + 8𝜉4 − 3𝜉5)ℎ𝑒𝑢2
𝑒 +

1

2
(𝜉2 − 3𝜉3 + 3𝜉4 − 𝜉5)ℎ𝑒2𝑢3

𝑒
+ (10𝜉3 − 15𝜉4 + 6𝜉5)𝑢4

𝑒 + (−4𝜉3 + 7𝜉4 − 3𝜉5)ℎ𝑒𝑢5
𝑒 +

1

2
(𝜉3 − 2𝜉4 + 𝜉5)ℎ𝑒2𝑢6

𝑒
= ∑ 𝑢𝑖

𝑒𝑎𝑖
𝑒(𝜉)6

𝑖=1                       (A.9) 

According to the results obtained in equation (A.9), the expressions of the quintic Hermite 

interpolation functions 𝑎𝑖
𝑒(𝜉) for the eth beam element becomes 

𝑎1
𝑒(𝜉) = 1 − 10𝜉3 + 15𝜉4 − 6𝜉5 

𝑎2
𝑒(𝜉) = ℎ𝑒(𝜉 − 6𝜉3 + 8𝜉4 − 3𝜉5) 

𝑎3
𝑒(𝜉) =

ℎ𝑒2

2
(𝜉2 − 3𝜉3 + 3𝜉4 − 𝜉5) 

𝑎4
𝑒(𝜉) = 10𝜉3 − 15𝜉4 + 6𝜉5 

𝑎5
𝑒(𝜉) = ℎ𝑒(−4𝜉3 + 7𝜉4 − 3𝜉5) 
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𝑎6
𝑒(𝜉) =

ℎ𝑒
2

2
(𝜉3 − 2𝜉4 + 𝜉5)                                            (A.10) 

which are functions of the eth beam element length and normalized local coordinate 𝜉 =

𝑥−𝑥𝑎

ℎ𝑒
 (𝑥 ∈ [𝑥𝑎, 𝑥𝑏] and 𝜉 ∈ [0,1]). 
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APPENDIX B 

NUMERICAL RESULTS OF FINITE ELEMENT MODEL COEFFICIENTS FOR 

RISER3D 

The key coefficient matrices  in equation (2.29) by quintic Hermite finite element method 

have relatively large dimensions, i.e. 6x6x3. Besides, the integrand of the integration formulas for 

quantifying these coefficients are very high order polynomials. Therefore, it is time-consuming 

and complicated to get the analytical results of these coefficients.  

Hence, the coefficient matrices are numerically evaluated with the Gaussian Legendre 

quadrature and the numerical results of these  matrices are presented here in Fortran language 

matrix storing format in double precision. 

The numerical values of the coefficient of �̅�𝑖𝑘1, �̅�𝑖𝑘2, 𝑎𝑛𝑑 �̅�𝑖𝑘3 are summarized in data 

block (B.1), (B.2) and (B.3) respectively: 

 

 

 

  (B.1) 

  

 

                                                                                                                        

                                                                                                                                            (B.2) 
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                                                                                                                                            (B.3) 

 

 

 

The numerical values of the coefficient of �̅�𝑖𝑘1, �̅�𝑖𝑘2, 𝑎𝑛𝑑 �̅�𝑖𝑘3 are summarized in data 

block (B.4), (B.5) and (B.6) respectively: 

 

 

          

                                                                                                                              (B.4) 

 

 

 

                                                                                                                    

 

(B.5) 
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(B.6) 

 

 

 

The numerical values of the coefficient of �̅�𝑖𝑘1, �̅�𝑖𝑘2, 𝑎𝑛𝑑 �̅�𝑖𝑘3 are summarized in data block 

(B.7), (B.8) and (B.9) respectively: 
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                                                                                                                 (B.9) 


