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ABSTRACT 

An approach for self-sensing is proposed for voice-coil actuators that have an invertible, position-

dependent inductance. Actuators with these properties are denoted as position-invertible, variable-

inductance (PIVI) actuators. The self-sensing methodology is based on tracking the inductance of 

a PIVI actuator from the oscillation frequency of a modified Pierce oscillator. By extension, the 

oscillation frequency provides a measurement of the actuator position without an external position 

sensor. 

 

An electrical model for PIVI voice-coil actuators is first derived to aid in analysis. Oscillator theory 

is then introduced and applied to the analysis of a typical Pierce oscillator. The modified Pierce 

oscillator is then introduced and analyzed under the assumption of low-frequency actuator motion 

and driving current relative to the oscillation frequency. The effects of parasitic capacitance from 

the actuator current source are then discussed along with a mitigation method. A test circuit, 

including the modified Pierce oscillator and a transconductance amplifier, is then presented. Due 

to time constraints, the modified Pierce oscillator was constructed with a variable inductor rather 

than an actual PIVI actuator. This was considered acceptable since the variable inductor mimics a 

PIVI actuator operating under the low-frequency assumption. Modifications to the 

transconductance amplifier were presented that allowed parasitic impedance to be increased by a 

minimum factor of three. 

 

The modified Pierce oscillator circuit was tested under conditions that simulated a powered PIVI 

actuator. Results showed the oscillation frequency was an invertible function of the core-insertion 

distance of the variable inductor. It was also observed that the oscillation frequency varied less 
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than 3% in the presence of various disturbance currents through the variable inductor. The tested 

conditions simulated a powered PIVI actuator, so it was considered likely that these two behaviors 

would also be observed if the modified Pierce oscillator was used with an actual PIVI actuator. 

While these results are not definitive, they suggest that the modified Pierce oscillator could be used 

as a self-sensing methodology for PIVI type voice-coil actuators. However, more work will be 

needed to verify this behavior with an actual PIVI type voice-coil actuator. 
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1. INTRODUCTION 

1.1 Overview 

In many applications, voice-coil actuators offer a simple and compact solution for linear motion. 

The footprint of voice-coil actuators often includes a separate position sensor for feedback control. 

The elimination of this position sensor, with the application of a self-sensing methodology, can 

help to produce an actuator with a smaller footprint and greater mechanical reliability. A particular 

subset of voice-coil actuators is of interest for self-sensing applications. This subset is defined by 

two primary requirements. First, the inductance of the actuator must vary with position over a 

useful range of the actuator’s motion. Second, the functional relationship between inductance and 

position must be strictly monotonic over this range of motion. The result of these two requirements 

is that the position of a voice-coil actuator in this subset can be uniquely determined from its 

inductance. For both simplicity and consistency, voice-coil actuators within this subset are referred 

to as position-invertible, variable-inductance (PIVI) actuators. 

 

The self-sensing methodology being presented is based on the behavior of a Pierce oscillator with 

a source of variable-inductance. As is discussed in more detail in Section 3, this class of oscillators 

has a useful property in that the fundamental oscillation frequency can be controlled by a single 

inductor. If the structure of the Pierce oscillator is slightly modified and the inductor is replaced 

with a PIVI type actuator, the fundamental frequency of oscillation will theoretically be dependent 

on the position of the actuator.  
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1.2 Literature Review 

Many of the current self-sensing methodologies employed with voice-coil or solenoid actuators 

are based on measuring the inductance of the actuator since it is, typically, dependent on the 

position of the actuator. There are innumerable ways of measuring the inductance of the actuator 

during operation, but a couple are reviewed here. Rahman et al. [1] discussed a method by which 

the inductance of a solenoid actuator was estimated from the current rise due to an applied pulse-

width-modulation (PWM) voltage. This estimated inductance was then compared to a lookup table 

of the solenoid inductance as a function of current and position. As long as the current through the 

actuator was known, the position of the actuator could be estimated every PWM cycle.  

 

Wu and Chen [2] presented a solenoid valve actuator which was modified by the addition of an 

external capacitor. An excitation signal, near the expected natural frequency of the LC circuit, was 

injected during operation. Assuming the external capacitance remained constant, the inductance 

was estimated by measuring the phase angle of the capacitor voltage compared to the input voltage. 

This estimated inductance was then compared to a position-calibration table for the actuator. 

Measurement during powered operation was achieved by using two of these solenoids and 

delegating position estimation to the unpowered solenoid. 

 

Moore and Moheimani [3] described a very similar methodology to the one presented in this thesis, 

but applied to a micro-electro-mechanical systems (MEMS) comb actuator. The comb actuator 

was placed within the resonant circuit of a Pierce oscillator. Because the capacitance of the comb 

actuator is position-dependent, the fundamental oscillation frequency of the Pierce oscillator was 

dependent on position. Therefore, the position of the actuator could be estimated from the 
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fundamental oscillation frequency. This methodology is not entirely comparable with the 

methodology presented in this thesis since their actuator is capacitive and operates on an entirely 

different scale. This allows the oscillator to work in the MHz frequency range, and also allows the 

use of a voltage source to power the actuator. However, the range of motion and force output are 

necessarily limited by the size of the actuator. By comparison, the modified Pierce oscillator 

presented in this thesis is applied to inductive, voice-coil actuators that operate on a much larger 

scale. While both the force output and range of motion are larger in these types of actuators, the 

modified Pierce oscillator can only operate in the kHz frequency range due to core losses. A current 

source, in the form of a transconductance amplifier with modifications for parasitic capacitance 

mitigation, is also required to ensure the oscillator is not affected by the impedance of the actuator 

power source.  

1.3 Contributions of this Thesis 

The primary contribution of this thesis is the development of a potential methodology for precision 

position self-sensing in voice-coil actuators. Self-sensing is achieved by placing a voice-coil 

actuator within the resonant feedback path of a modified Pierce oscillator. The inductance of the 

actuator is directly related to the position of the actuator and controls the oscillation frequency of 

the modified Pierce oscillator. Therefore, the oscillation frequency can be used to determine the 

actuator position.  

 

A secondary contribution of this thesis is the development of a parasitic capacitance compensation 

methodology for the transconductance amplifier used in this research. Passive compensation 

components are placed between the isolated ground connections of the push-pull stages and allow 

the output impedance of the amplifier to be increased in certain frequency-bands. This 
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methodology can be adapted for use in typical transconductance amplifiers by placing the 

compensation components in series with the output. 
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2. ELECTRICAL MODEL FOR PIVI VOICE-COIL ACTUATORS 

2.1 Section Overview 

Since the position of PIVI actuators can theoretically be determined from the inductance, it is 

possible to develop a self-sensing methodology based on measuring the inductance during 

operation. However, before a methodology can be considered, a representative electrical model is 

needed for PIVI actuators. To this end, an example actuator is analyzed. The resulting electrical 

model is then generalized for PIVI actuators. 

2.2 Planar E-Core Actuator 

A planar E-core voice-coil actuator, shown in Figure 2.1, is analyzed to find a representative 

electrical model for PIVI actuators. Note that the actuator has depth 𝑑 into the page.  

 

 

Figure 2.1: Diagram of a planar E-core actuator. 
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The core, shown in green, has permeability 𝜇𝑐. The core has a gap on both sides of the center with 

length 𝐿 and thickness 𝑔𝑚 + 𝑔𝑎. The windings, shown in red, have 𝑁𝑇 evenly distributed turns 

that fit within the gap. Note that both the gap and windings have the same length 𝐿. An excitation 

current 𝐼 flows through the windings. The windings can only move relative to the core along the 

horizontal axis of the diagram. This relative displacement is referred to as the actuator position 

and is denoted by 𝑥. The permanent magnets, shown in blue, have a magnetization intensity of 𝑀 

and permeability 𝜇𝑚. The space surrounding the actuator is assumed to have the permeability of 

free space 𝜇0. 

2.2.1 Magnetoquasistatic Approximations 

Several assumptions are made in the analysis of this actuator. Primary among these are the 

magnetoquasistatic (MQS) approximations [4]. First, it is assumed that the electric fields in the 

actuator are negligible, and that the magnetic fields in the actuator are significant. For this actuator, 

there are no significant sources of charge or electric field, and the magnetic fields produced by the 

permanent magnets and windings are significant. Therefore, the electric fields are ignored, and 

only the magnetic fields are modeled in the analysis. 

 

Second, it is assumed that the product of the operating frequency and characteristic length of the 

actuator is much smaller than the speed of light [4] 

𝜔𝐿𝑐 ≪ 𝑐 (2.1) 

where 𝜔 is the operating frequency of the actuator in rad/s, 𝐿𝑐 is the characteristic length of the 

actuator in meters, and 𝑐 is the speed of light in m/s. If the condition of (2.1) is met, then 

propagation effects can be ignored. For this actuator, if a maximum operating frequency of 100 
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kHz (628×103 rad/s) and maximum characteristic length of 10 cm are assumed, then the resulting 

product is 62.8×103 m/s. This is much less than the speed of light, so the quasistatic approximation 

is valid. 

 

The MQS approximations result in the quasistatic form of Maxwell’s equations for magnetic fields 

with an added continuity constraint [4] 

∮𝑯 ∙ 𝑑𝒍

𝐶

= ∫𝑱 ∙ 𝑑𝒂

𝑆

= 𝐼𝑛𝑒𝑡 (2.2) 

∮𝑩 ∙ 𝑑𝒂

𝑆

= 0 (2.3) 

∮𝑱 ∙ 𝑑𝒂

𝑆

= 0 (2.4) 

where (2.2) is the static form of Ampere’s law, and (2.3) is Gauss’s law for magnetic fields. 

Equation (2.4) requires zero current flux through the surface of a closed volume. This eliminates 

the possibility of charge collection within the system and therefore violation of the MQS 

approximations. The flux density in (2.3) is defined by (2.5) 

𝑩 = 𝜇𝑚𝑎𝑡(𝑯 + 𝑴)  (2.5) 

where 𝜇𝑚𝑎𝑡 is the magnetic permeability of the material, 𝑯 is the magnetic field intensity, and 𝑴 

is the magnetization of the material. 

2.2.2 Additional Assumptions 

In addition to the MQS approximations, several other simplifying assumptions are made in this 

analysis. The first major assumption is that the core material has an infinite magnetic permeability 
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compared to vacuum. For materials like ferrite and silicon steel, the relative permeability can be 

as much as 5,000, so this assumption is not entirely unrealistic. If the material is magnetically soft, 

as is typically the case with highly permeable materials, the magnetization of the material can be 

assumed to be negligible. This results in (2.5) simplifying to 

𝑩 = 𝜇𝑚𝑎𝑡𝑯. (2.6) 

In the limit of infinite permeability, (2.6) requires that the magnetic field intensity go to zero in 

order for the flux density to be finite. Therefore, because the permeability of the core is assumed 

to be effectively infinite, the magnetic field intensity inside the core is assumed to be zero. 

 

This infinite permeability leads to several underlying assumptions that must be addressed. Primary 

among these is that the core does not saturate. If core saturation does occur, then the permeability 

can decrease significantly, and the resulting field intensity inside the core can be non-negligible. 

In addition to this, the behavior of the core is assumed to be both frequency-invariant and lossless. 

If either of these conditions are violated, it would mean a non-negligible field intensity exists 

within the core.  

 

The second major assumption is that the depth 𝑑 and distance 𝐿 are much larger than the gap 

formed by 𝑔𝑎 and 𝑔𝑚. If this is the case, the magnetic fields within the gap will be much stronger 

than the fringing fields at the edges of the core. Therefore, it is assumed that the magnetic fields 

are concentrated within the gap, and that the fringing fields are negligible. 

 

The last major assumption is that the actuator position, 𝑥, is always much smaller than 𝐿. The 

result of this assumption is that the majority of the windings are always concentrated within the 
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gap. Consequently, these windings will be the most significant contributor to the magnetic field 

within the gap and, by extension, both the inductance and force output of the actuator. In contrast, 

the windings outside of the gap will not contribute as significantly to the actuator’s characteristic 

since the magnetic fields produced by these windings are not as concentrated. Additionally, 

modeling the magnetic field outside of the core gap is not a trivial process due to the lack of a 

well-defined flux path. Therefore, so long as 𝑥 ≪ 𝐿, the modelling is simplified by assuming that 

the windings outside of the core gap have a negligible effect on the characteristics of the actuator. 

2.2.3 Magnetic Analysis 

An Ampere loop is defined through the actuator core, permanent magnet, and air gap as shown in 

Figure 2.2. The left vertical leg of the Ampere loop exists at a horizontal distance 𝑥’ from the left 

end of the core. The remaining legs of the loop reside along the center of the core. 

 

 

Figure 2.2: Depiction of the Ampere loop through the core.  
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Three magnetic field intensities are defined around the loop. 𝐻1 is the field intensity inside the air 

gap, 𝐻2 is the field intensity inside the permanent magnet, and 𝐻𝑐 is the field intensity inside the 

core. 𝐻1 and 𝐻2 are assumed to be constant over their respective vertical distances, and 𝐻𝑐 is 

assumed to be constant over a mean core length 𝐿𝑚𝑐. Applying the static form of Ampere’s law in 

(2.2) results in (2.7). 

∮𝑯 ∙ 𝑑𝒍

𝐶

= 𝐻1(𝑥, 𝑥′)𝑔𝑎 + 𝐻2(𝑥, 𝑥′)𝑔𝑚 + 𝐻𝑐𝐿𝑚𝑐 = 𝐼𝑛𝑒𝑡 (2.7) 

The field inside the core is assumed to be zero from the infinite permeability assumption, so (2.7) 

simplifies to (2.8). 

𝐻1(𝑥, 𝑥′)𝑔𝑎 + 𝐻2(𝑥, 𝑥′)𝑔𝑚 = 𝐼𝑛𝑒𝑡 (2.8) 

In order to define 𝐼𝑛𝑒𝑡, the number of windings enclosed by the loop must be known as a function 

of 𝑥 and 𝑥’. This winding function is defined in (2.9). 

𝑁(𝑥, 𝑥′) = {

𝑁𝑇

𝐿
 ((𝐿 − 𝑥) − 𝑥′); 0 ≤ 𝑥′ ≤ (𝐿 − 𝑥)

0; (𝐿 − 𝑥) < 𝑥′ ≤ 𝐿
 (2.9) 

where 𝑁𝑇 is the total number of tuns in the solenoid. Note that the winding function ignores the 

windings outside of the core gap due to the implications of the assumption that 𝑥 ≪ 𝐿: It is 

assumed that the windings outside of the core gap have a negligible effect on the behavior of the 

actuator. 𝐼𝑛𝑒𝑡 is now redefined in (2.8) as 

𝐻1(𝑥, 𝑥′)𝑔𝑎 + 𝐻2(𝑥, 𝑥′)𝑔𝑚 = 𝑁(𝑥, 𝑥′)𝐼. (2.10) 

Gauss’s law is now applied to the volume enclosed by the air gap. 

∮𝑩 ∙ 𝑑𝒂

𝑆

= −𝜇0𝑑 ∫ 𝐻1(𝑥, 𝑥′)𝑑𝑥′
𝐿

0

+ 𝜇𝑚𝑑 ∫ (𝐻2(𝑥, 𝑥′) − 𝑀)𝑑𝑥′
𝐿

0

= 0 (2.11) 
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Simplifying (2.11) results in (2.12). 

𝜇0

𝜇𝑚
∫ 𝐻1(𝑥, 𝑥′)𝑑𝑥′

𝐿

0

= ∫ (𝐻2(𝑥, 𝑥′) − 𝑀)𝑑𝑥′
𝐿

0

. (2.12) 

The integrands cancel on both sides of (2.12). Solving for 𝐻2(𝑥, 𝑥’) results in 

𝐻2(𝑥, 𝑥′) =
𝜇0

𝜇𝑚
𝐻1(𝑥, 𝑥′) + 𝑀. (2.13) 

Substituting (2.13) into (2.10) and solving for 𝐻1(𝑥, 𝑥’) yields 

𝐻1(𝑥, 𝑥′) =
𝑁(𝑥, 𝑥′)𝐼 − 𝑔𝑚𝑀

𝑔𝑎 +
𝜇0

𝜇𝑚
𝑔𝑚

. (2.14) 

The flux linkage is defined as 

𝜆(𝑥, 𝐼) = ∫𝑁𝑩 ∙ 𝑑𝒂

𝑆

= 𝜇0𝑑 ∫𝑁(𝑥, 𝑥′)𝐻1(𝑥, 𝑥′)𝑑𝑥′

𝐿

0

. (2.15) 

Substituting (2.14) into (2.15) yields (2.16). 

𝜆(𝑥, 𝐼) =
𝜇0𝑑

𝑔𝑎 +
𝜇0

𝜇𝑚
𝑔𝑚

(𝐼 ∫𝑁2(𝑥, 𝑥′)𝑑𝑥′

𝐿

0

− 𝑔𝑚𝑀 ∫𝑁(𝑥, 𝑥′)𝑑𝑥′

𝐿

0

) (2.16) 

Substituting (2.9) into (2.16) results in (2.17). 

𝜆(𝑥, 𝐼) =
𝑑

𝑔𝑎

𝜇0
+

𝑔𝑚

𝜇𝑚

(
𝑁𝑇

2𝐼

𝐿2
(∫ ((𝐿 − 𝑥) − 𝑥′)

2
𝑑𝑥′

𝐿−𝑥

0

+ ∫ 0 ∙ 𝑑𝑥′

𝐿

𝐿−𝑥

)

−
𝑔𝑚𝑀𝑁𝑇

𝐿
(∫  ((𝐿 − 𝑥) − 𝑥′)𝑑𝑥′

𝐿−𝑥

0

+ ∫ 0 ∙ 𝑑𝑥′

𝐿

𝐿−𝑥

)) 

(2.17) 
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Integrating (2.17) yields (2.18). 

𝜆(𝑥, 𝐼) =
𝑁𝑇𝑑

𝐿 (
𝑔𝑎

𝜇0
+

𝑔𝑚

𝜇𝑚
)
(
𝑁𝑇𝐼

𝐿
((𝐿 − 𝑥)2𝑥′ − (𝐿 − 𝑥)𝑥′2 +

1

3
𝑥′3)

− 𝑔𝑚𝑀 ((𝐿 − 𝑥)𝑥′ −
1

2
𝑥′2)) |

𝐿 − 𝑥
0

 

(2.18) 

Simplifying (2.18) results in the final equation for the flux linkage 

𝜆(𝑥, 𝐼) =
𝑁𝑇𝑑

𝐿 (
𝑔𝑎

𝜇0
+

𝑔𝑚

𝜇𝑚
)
(
𝑁𝑇

3𝐿
(𝐿 − 𝑥)3𝐼 −

𝑔𝑚𝑀

2
(𝐿 − 𝑥)2). (2.19) 

The terminal voltage is now found by taking the derivative of the flux linkage with respect to time. 

𝑉 =
𝑑𝜆(𝑥, 𝐼)

𝑑𝑡
=

𝑁𝑇𝑑

𝐿 (
𝑔𝑎

𝜇0
+

𝑔𝑚

𝜇𝑚
)
(
𝑁𝑇

3𝐿
(3(𝐿 − 𝑥)2𝐼(−�̇�) + (𝐿 − 𝑥)3𝐼)̇

−
𝑔𝑚𝑀

2
(2(𝐿 − 𝑥)(−�̇�))) 

(2.20) 

Collecting the like terms of (2.20) results in 

𝑉 =
𝑁𝑇𝑑

𝐿 (
𝑔𝑎

𝜇0
+

𝑔𝑚

𝜇𝑚
)
(
𝑁𝑇

3𝐿
(𝐿 − 𝑥)3𝐼̇ + (𝑔𝑚𝑀(𝐿 − 𝑥) −

𝑁𝑇

𝐿
(𝐿 − 𝑥)2𝐼) �̇�). (2.21) 

Two new terms are now defined from (2.21) 

𝐿𝑎(𝑥) ≜
𝑁𝑇

2𝑑(𝐿 − 𝑥)3

3𝐿2 (
𝑔𝑎

𝜇0
+

𝑔𝑚

𝜇𝑚
)
 (2.22) 

𝐾𝑒(𝑥, 𝐼) ≜
𝑁𝑇𝑑(𝐿 − 𝑥)

𝐿 (
𝑔𝑎

𝜇0
+

𝑔𝑚

𝜇𝑚
)
(𝑔𝑚𝑀 −

𝑁𝑇

𝐿
(𝐿 − 𝑥)𝐼) (2.23) 

where (2.22) defines the inductance of the actuator, and (2.23) defines the back emf of the actuator. 
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It is clear from (2.22) that the E-core actuator has a position-dependent inductance that is strictly 

monotonic over the range of actuator motion. Therefore, the E-core actuator meets the PIVI 

actuator requirements. If the winding resistance is included, then the full electrical model of this 

actuator can be written as 

𝑉(𝑥, �̇�, 𝐼, 𝐼)̇ = 𝑅𝐼 + 𝐿𝑎(𝑥)𝐼̇ + 𝐾𝑒(𝑥, 𝐼)𝑥.̇  (2.24) 

While (2.22) and (2.23) are specific to the E-core design, (2.24) can be more generally applied to 

PIVI actuators. That is to say, the terminal voltage of a PIVI actuator can typically be modelled by 

the series combination of a winding resistance, position-varying inductance, and back emf voltage 

source.  

2.2.4 Challenges for Self-Sensing 

Equation (2.24) clearly shows that the terminal voltage of PIVI actuators is not purely described 

by a variable-inductance. Indeed, both the series winding resistance and back emf affect the 

terminal voltage. While the effect of the series winding resistance can typically be accounted for 

or neglected, the back emf can dominate the terminal voltage if the motion of the actuator is fast 

enough. A further complication arises when the power source for the actuator is considered. Both 

the impedance and signal output of the power source can affect the ability to measure the 

inductance. Therefore, a potential self-sensing method needs to measure the inductance while 

rejecting the effects of both the back emf and the power source used to drive the actuator. The 

following section discusses the theoretical background for a modified Pierce oscillator that meets 

these requirements under certain constraints. 
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3. ANALYSIS OF A MODIFIED PIERCE OSCILLATOR FOR SELF-SENSING 

3.1 Section Overview 

As was discussed in the previous section, the strictly monotonic inductance of PIVI actuators 

makes it theoretically possible to uniquely determine an actuator’s position by measuring its 

inductance. In this section, a modified Pierce oscillator is discussed that can be used for self-

sensing with PIVI actuators. The modifications in this circuit allow the effects of the back emf and 

a power source to be ignored under certain operating constraints. The result is an oscillator with a 

fundamental frequency that depends on the inductance of a PIVI actuator.  

 

Before the modified Pierce oscillator is considered, an overview of oscillator fundamentals is 

presented to aid in the analysis. These fundamentals then are applied to the analysis of a typical 

Pierce oscillator to show the benefits of this topology. The modified Pierce oscillator is then 

discussed and analyzed to show how it can be used for self-sensing. The effect and mitigation of 

parasitic capacitance in the modified Pierce oscillator is then discussed. 

3.2 Oscillator Fundamentals 

A generic oscillator feedback loop is shown in Figure 3.1 [5]. 𝐴(𝑗𝜔) is the amplifier voltage gain, 

and 𝐵(𝑗𝜔) is the feedback gain that describes the transfer function of the feedback network. The 

closed-loop transfer function for this positive feedback loop is defined by (3.1). 

𝑉𝑜

𝑉𝑖
=

𝐴(𝑗𝜔)

1 − 𝐴(𝑗𝜔)𝐵(𝑗𝜔)
 (3.1) 

Where the term 𝐴(𝑗𝜔)𝐵(𝑗𝜔) is commonly known as the loop gain. For oscillation to occur, the 

closed-loop system must have a nonzero output signal with zero input signal.  
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Figure 3.1: A generic oscillator feedback loop. 

 

Consequently, if 𝑉𝑖 = 0, it follows that the denominator must be zero for a finite 𝑉𝑜 to exist. For 

this condition to be met, the loop gain must be unity. This condition is known as the Barkhausen 

criterion and is summarized in (3.2) [5]. 

𝐴(𝑗𝜔)𝐵(𝑗𝜔) = 1 (3.2) 

Separating (3.2) into real and imaginary parts results in the rectangular form of the Barkhausen 

criterion. Equations (3.3) and (3.4) summarize this relationship. 

𝑅𝑒(𝐴(𝑗𝜔)𝐵(𝑗𝜔)) = 1 (3.3) 

𝐼𝑚(𝐴(𝑗𝜔)𝐵(𝑗𝜔)) = 0 (3.4) 

For illustrative purposes, the amplifier voltage gain is assumed to be a real constant. This condition 

is typical of an amplifier working well below its maximum output voltage and bandwidth 

limitations [5]. 

𝐴(𝑗𝜔) = 𝐴𝑣𝑜 (3.5) 

The feedback gain is now described as the sum of its real and imaginary parts 

𝐵(𝑗𝜔) = 𝐵𝑟(𝜔) + 𝑗𝐵𝑖(𝜔). (3.6) 
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Substituting (3.5) and (3.6) into (3.3) and (3.4) results in: 

𝐴𝑣𝑜 =
1

𝐵𝑟(𝜔)
 (3.7) 

𝐵𝑖(𝜔) = 0 (3.8) 

Equation (3.7) is known as the gain condition [5]. It describes the gain required for the closed-loop 

system to oscillate, though it does not predict the stability of the oscillation. A separate stability 

test will be required to determine if the closed-loop system will sustain oscillation for a given 

amplifier gain. Typically, the amplifier gain will need to be larger than the gain condition in order 

for oscillation to be self-starting. This means that the gain will need to be adjusted between starting 

and sustaining oscillation in order to avoid saturating behavior in the amplifier [5]. Automatic gain 

control can be used to shift the gain dynamically, though it is not pursued here. 

 

Equation (3.8) is known as the frequency of oscillation condition [5]. It predicts the frequency 

when the phase shift around the closed-loop is 0º or a multiple of 360º. Since the system poles 

cannot be precisely placed on the imaginary axis, the frequency of oscillation will tend to vary as 

the poles shift. This will cause the output of the oscillator to have a narrow spectrum of frequencies 

centered around the fundamental frequency. The frequency of oscillation condition can be used to 

estimate this fundamental frequency. 

3.3 Analysis of a Typical Pierce Oscillator 

The Barkhausen criterion is now applied to the analysis of a typical Pierce oscillator. Figure 3.2 

shows a typical Pierce oscillator based on an op amp [5]. In this circuit, the feedback network of 

an inverting amplifier is modified by a capacitive voltage divider and inductor. 
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Figure 3.2: Circuit diagram of a typical Pierce oscillator. 

 

If the op amp is well within its operating limits, then the inverting amplifier can be replaced with 

a voltage-controlled voltage source model [5]. This modification is shown in Figure 3.3. 

 

 

Figure 3.3: Depiction of a typical Pierce oscillator circuit using a voltage-controlled voltage 

source model for the op amp. 
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The amplifier gain from Figure 3.3 is defined by (3.9). 

𝐴𝑣𝑜 ≜ −
𝑅2

𝑅1
 (3.9) 

For convenience, the circuit in Figure 3.3 is rearranged in Figure 3.4. 

 

 

Figure 3.4: Rearranged circuit from Figure 3.3. 

 

The impedance of 𝑅𝑓 is typically much greater than the impedance of 𝐶1. Therefore, 𝑅𝑓 is treated 

as an open circuit and excluded from the analysis [5]. Assuming 𝑅𝑓 and 𝐶1 are directly in parallel, 

𝑉𝑓 is redefined as the voltage across 𝐶1. 

3.3.1 Barkhausen Criterion 

The feedback gain is found by analyzing the circuit elements on the right side of 𝐶2 [5]. These 

elements are shown in the circuit in Figure 3.5. The feedback gain of the circuit in Figure 3.5 is 

defined by (3.10) [5]. 

𝐵(𝑗𝜔) ≜
𝑉𝑓

𝑉𝑜
 (3.10) 
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Figure 3.5: Feedback gain elements from Figure 3.4. 

 

The current output from voltage source 𝑉𝑜 is found by applying Ohm’s law for reactive circuits: 

𝐼 =
𝑉𝑜

𝑍𝑇
 (3.11) 

where the total impedance of the leg is defined by (3.12). 

𝑍𝑇 ≜ 𝑍𝐿𝐴
+ 𝑍𝐶1

 (3.12) 

The voltage across 𝐶1 is found by substituting (3.11) into Ohm’s law for 𝐶1. 

𝑉𝐶1
= 𝐼𝑍𝐶1

=
𝑉𝑜𝑍𝐶1

𝑍𝑇
 (3.13) 

Since the voltage across 𝐶1 is equivalent to 𝑉𝑓, the feedback gain is found by substituting (3.13) 

into (3.10). 

𝐵(𝑗𝜔) =
𝑉𝑓

𝑉𝑜
=

𝑉𝑜𝑍𝐶1

𝑉𝑜𝑍𝑇
=

𝑍𝐶1

𝑍𝑇
 (3.14) 

The amplifier voltage gain for the circuit in Figure 3.4 is defined by (3.15) [5]. 

𝐴(𝑗𝜔) ≜
𝑉𝑜

𝑉𝑓
 (3.15) 
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The amplifier output current is found through application of Ohm’s law for reactive circuits. 

𝐼𝑜 =
𝐴𝑣𝑜𝑉𝑓

𝑅𝑜 + 𝑍𝐵
 

(3.16) 

Where the total feedback network impedance is defined by (3.17). 

𝑍𝐵 ≜
𝑍𝑇𝑍𝐶2

𝑍𝑇 + 𝑍𝐶2

 (3.17) 

The output voltage 𝑉𝑜 is found by substituting (3.16) into Ohm’s law for the total feedback 

network. 

𝑉𝑜 = 𝐼𝑜𝑍𝐵 =
𝐴𝑣𝑜𝑉𝑓𝑍𝐵

𝑅𝑜 + 𝑍𝐵
=

𝐴𝑣𝑜𝑉𝑓

𝑅𝑜

𝑍𝐵
+ 1

 
(3.18) 

Substituting (3.17) into (3.18) results in: 

𝑉𝑜 =
𝐴𝑣𝑜𝑉𝑓

𝑅𝑜(𝑍𝑇 + 𝑍𝐶2
)

𝑍𝑇𝑍𝐶2

+ 1

 
(3.19) 

Rearranging (3.19) results in the amplifier voltage gain. Note that (3.20) collapses to 𝐴𝑣𝑜 if the 

output impedance 𝑅𝑜 is ideally zero. 

𝐴(𝑗𝜔) =
𝐴𝑣𝑜𝑍𝑇𝑍𝐶2

𝑅𝑜(𝑍𝑇 + 𝑍𝐶2
) + 𝑍𝑇𝑍𝐶2

 (3.20) 

The loop gain is found by multiplying (3.14) and (3.20). 

𝐴(𝑗𝜔)𝐵(𝑗𝜔) =
𝐴𝑣𝑜𝑍𝐶1

𝑍𝐶2

𝑅𝑜(𝑍𝑇 + 𝑍𝐶2
) + 𝑍𝑇𝑍𝐶2

 (3.21) 

It is worth pointing out that the structure of (3.21) will not change if elements are added in series 

with the inductor. This means that (3.21) can be adapted for use on modified versions of this 

oscillator, so long as only the impedance 𝑍𝑇 changes. The impedance of each circuit element is 
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now defined as a function of reactance: 

𝑍𝐶1
≜ 𝑗𝑋𝐶1

 (3.22) 

𝑍𝐶2
≜ 𝑗𝑋𝐶2

 (3.23) 

𝑍𝐿𝐴
≜ 𝑗𝑋𝐿𝐴

 (3.24) 

Substituting (3.22)–(3.24) into (3.12) and (3.21) results in (3.25). 

𝐴(𝑗𝜔)𝐵(𝑗𝜔) =
𝐴𝑣𝑜𝑗

2𝑋𝐶1
𝑋𝐶2

𝑅𝑜𝑗(𝑋𝐿𝐴
+ 𝑋𝐶1

+ 𝑋𝐶2
) + 𝑗2(𝑋𝐿𝐴

+ 𝑋𝐶1
)𝑋𝐶2

 (3.25) 

Simplification of (3.25) results in (3.26). 

𝐴(𝑗𝜔)𝐵(𝑗𝜔) =
𝐴𝑣𝑜𝑋𝐶1

𝑋𝐶2

(𝑋𝐿𝐴
+ 𝑋𝐶1

)𝑋𝐶2
− 𝑗𝑅𝑜(𝑋𝐿𝐴

+ 𝑋𝐶1
+ 𝑋𝐶2

)
 (3.26) 

The loop gain is separated into its real and imaginary parts. 

�̅� = (𝑋𝐿𝐴
+ 𝑋𝐶1

)𝑋𝐶2
+ 𝑗𝑅𝑜(𝑋𝐿𝐴

+ 𝑋𝐶1
+ 𝑋𝐶2

) (3.27) 

𝐴(𝑗𝜔)𝐵(𝑗𝜔) =
𝐴𝑣𝑜𝑋𝐶1

𝑋𝐶2

(𝑋𝐿𝐴
+ 𝑋𝐶1

)𝑋𝐶2
− 𝑗𝑅𝑜(𝑋𝐿𝐴

+ 𝑋𝐶1
+ 𝑋𝐶2

)
×

�̅�

�̅�
 (3.28) 

Simplification of (3.28) results in the loop gain as a sum of its real and imaginary parts. 

𝐴(𝑗𝜔)𝐵(𝑗𝜔) =
𝐴𝑣𝑜𝑋𝐶1

𝑋𝐶2
((𝑋𝐿𝐴

+ 𝑋𝐶1
)𝑋𝐶2

+ 𝑗𝑅𝑜(𝑋𝐿𝐴
+ 𝑋𝐶1

+ 𝑋𝐶2
))

((𝑋𝐿𝐴
+ 𝑋𝐶1

)𝑋𝐶2
)
2

+ (𝑅𝑜(𝑋𝐿𝐴
+ 𝑋𝐶1

+ 𝑋𝐶2
))

2  (3.29) 

The imaginary part of (3.29) is set to zero to find the frequency of oscillation condition. This is 

shown in (3.30). 

𝐼𝑚(𝐴(𝑗𝜔)𝐵(𝑗𝜔)) =
𝐴𝑣𝑜𝑋𝐶1

𝑋𝐶2
(𝑅𝑜(𝑋𝐿𝐴

+ 𝑋𝐶1
+ 𝑋𝐶2

))

((𝑋𝐿𝐴
+ 𝑋𝐶1

)𝑋𝐶2
)
2

+ (𝑅𝑜(𝑋𝐿𝐴
+ 𝑋𝐶1

+ 𝑋𝐶2
))

2 = 0 (3.30) 
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Rearranging (3.30) results in 

𝑋𝐿𝐴
+ 𝑋𝐶1

+ 𝑋𝐶2
= 0. (3.31) 

The reactances of the circuit elements are now defined as: 

𝑋𝐿𝐴
≜ 𝜔𝐿𝐴 (3.32) 

𝑋𝐶1
≜

−1

𝜔𝐶1
 (3.33) 

𝑋𝐶2
≜

−1

𝜔𝐶2
 (3.34) 

Substituting (3.32)–(3.34) into (3.31) results in (3.35). 

𝜔𝐿𝐴 =
1

𝜔𝐶1
+

1

𝜔𝐶1
 (3.35) 

Equation (3.35) is rearranged to solve for the frequency of oscillation condition. 

𝜔 = √
𝐶1 + 𝐶2

𝐿𝐴𝐶1𝐶2
 (3.36) 

An important feature of this oscillator is illustrated in (3.36). That is to say, the fundamental 

frequency of this oscillator can be changed by varying the inductance of a single inductor. 

Additionally, assuming the output of (3.36) is always positive, (3.36) is a strictly monotonic 

function of 𝐿𝐴. The result of this is that the inductance can be uniquely determined from the 

fundamental frequency of the oscillator. This is the primary reason why a modified version of this 

oscillator is discussed for self-sensing.  
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The real part of (3.29) is set to unity to find the gain condition. 

𝑅𝑒(𝐴(𝑗𝜔)𝐵(𝑗𝜔)) =
𝐴𝑣𝑜𝑋𝐶1

𝑋𝐶2
((𝑋𝐿𝐴

+ 𝑋𝐶1
)𝑋𝐶2

)

((𝑋𝐿𝐴
+ 𝑋𝐶1

)𝑋𝐶2
)
2

+ (𝑅𝑜(𝑋𝐿𝐴
+ 𝑋𝐶1

+ 𝑋𝐶2
))

2 = 1 (3.37) 

Rearranging (3.37) and Substituting (3.31) results in 

𝐴𝑣𝑜𝑋𝐶1
𝑋𝐶2

= ((𝑋𝐿𝐴
+ 𝑋𝐶1

)𝑋𝐶2
). (3.38) 

Rearranging (3.38) results in 

𝐴𝑣𝑜𝑋𝐶1
= 𝑋𝐿𝐴

+ 𝑋𝐶1
. (3.39) 

Equation (3.31) can be rewritten as 

𝑋𝐿𝐴
= −𝑋𝐶1

− 𝑋𝐶2
. (3.40) 

Substituting (3.40) into (3.39) results in 

𝐴𝑣𝑜𝑋𝐶1
= −𝑋𝐶2

. (3.41) 

Substituting (3.9), (3.33), and (3.34) results in the gain condition. 

𝑅2

𝑅1
=

𝐶1

𝐶2
 (3.42) 

3.3.2 Stability Analysis 

If the transient response of the op amp can be ignored, then the state space dynamics of the typical 

Pierce oscillator are described by (3.43). 

�̇� = 𝐹𝑋 ⇒ [

�̇�𝐶1

�̈�𝐶1

�̇�𝐶2

] =

[
 
 
 
 

0 1 0
−1

𝐿𝐴𝐶1
0

1

𝐿𝐴𝐶1

𝐴𝑣𝑜

𝑅𝑜𝐶2
−

𝐶1

𝐶2

−1

𝑅𝑜𝐶2]
 
 
 
 

[

𝑉𝐶1

�̇�𝐶1

𝑉𝐶2

] (3.43) 
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The characteristic equation for this system is defined by 

𝑃(𝑠) ≜ 𝑑𝑒𝑡(𝑠𝐼 − 𝐹). (3.44) 

Substituting (3.43) into (3.44) results in (3.45). 

𝑃(𝑠) = 𝑠3 + (
1

𝑅𝑜𝐶2
) 𝑠2 + (

𝐶1 + 𝐶2

𝐿𝐴𝐶1𝐶2
) 𝑠 + (

1 − 𝐴𝑣𝑜

𝑅𝑜𝐿𝐴𝐶1𝐶2
) (3.45) 

Two factors are defined for convenience. 

𝜔𝑓
2 ≜ 

𝐶1 + 𝐶2

𝐿𝐴𝐶1𝐶2
 (3.46) 

𝜏 ≜ 𝑅𝑜𝐶2 (3.47) 

The characteristic equation is now rewritten by substituting (3.46) and (3.47) into (3.45). 

𝑃(𝑠) = 𝑠3 + (
1

𝜏
) 𝑠2 + (𝜔𝑓

2)𝑠 + (
1 − 𝐴𝑣𝑜

𝜏𝐿𝐴𝐶1
) (3.48) 

The roots of (3.48) represent the eigenvalues of this autonomous system. Instead of finding the 

roots directly, the stability of the system is analyzed with the Routh-Hurwitz stability criterion [6]. 

Equation (3.49) shows the completed Routh array for this system 

𝑠3 1 𝜔𝑓
2

𝑠2
1

𝜏

1 − 𝐴𝑣𝑜

𝜏𝐿𝐴𝐶1

𝑠 𝑏1 0
1 𝑏2 0

 (3.49) 

where 𝑏1 is defined by (3.50) and 𝑏2 is defined by (3.51). 

𝑏1 ≜
−(1) (

1 − 𝐴𝑣𝑜

𝜏𝐿𝐴𝐶1
) + (

1
𝜏) (𝜔𝑓

2)

1
𝜏

=
1

𝐿𝐴𝐶1
(
𝐶1

𝐶2
+ 𝐴𝑣𝑜) (3.50) 
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𝑏2 ≜
−(

1
𝜏)

(0) + (
1 − 𝐴𝑣𝑜

𝜏𝐿𝐴𝐶1
) (𝑏1)

𝑏1
=

1

𝐿𝐴𝐶1
(
1 − 𝐴𝑣𝑜

𝑅𝑜𝐶2
) 

(3.51) 

The first column of the Routh array must have all positive elements for the system to be stable [6]. 

Since 𝜏 is positive by definition, only the inequalities in (3.52) and (3.53) need to be satisfied for 

stability. 

1

𝐿𝐴𝐶1
(
𝐶1

𝐶2
+ 𝐴𝑣𝑜) > 0 (3.52) 

1

𝐿𝐴𝐶1
(
1 − 𝐴𝑣𝑜

𝑅𝑜𝐶2
) > 0 (3.53) 

Equations (3.52) and (3.53) simplify to: 

𝐶1

𝐶2
>

𝑅2

𝑅1
 (3.54) 

1 +
𝑅2

𝑅1
> 0 (3.55) 

The left-hand side of (3.55) is greater than zero by definition. Therefore, the deciding factor for 

stability of the closed-loop system is (3.54). Since self-sustained oscillation is the desired behavior 

of the oscillator, the inverse of (3.54) can be used as a design requirement for the oscillator. This 

is combined with the gain condition in (3.42) to yield the gain design constraint for this oscillator. 

𝑅2

𝑅1
≥

𝐶1

𝐶2
 (3.56) 

3.4 Modified Pierce Oscillator 

The Barkhausen criterion is now applied to the modified Pierce oscillator shown in Figure 3.6. The 

fixed inductor in the typical Pierce oscillator is replaced with the electrical model of a PIVI voice-
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coil actuator. A current source, 𝐼𝐴, is added to simulate a power source for driving the actuator. 

Capacitors 𝐶𝑏1 and 𝐶𝑏2 are added to DC isolate the op amp from both the actuator and current 

source. 

 

 

Figure 3.6: Circuit diagram of a modified Pierce oscillator. 

 

3.4.1 Simplifying Assumptions 

Two main assumptions are made to simplify the analysis of the modified Pierce oscillator. First, 

the maximum operating frequency of the actuator and current source, 𝐹𝐴 𝑀𝑎𝑥, is assumed to be 

much lower than the lowest fundamental frequency of the oscillator 𝐹𝑂 𝑀𝑖𝑛. In other words, the 

motion of the actuator is slow enough that the back emf can be treated as DC on the time scale of 

the oscillator’s lowest fundamental frequency. The same also goes for the current source. That is 
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to say, the current output is at a low enough frequency to be considered DC on the time scale of 

the oscillator’s lowest fundamental frequency. Due to the impedance of capacitors 𝐶𝑏1 and 𝐶𝑏2, 

the low-frequency back emf and current source signals will be attenuated relative to the oscillator 

feedback signal. Therefore, the back emf and the signal output of the current source can be ignored 

in this analysis. The result of this assumption is that the frequency-bands of the actuator and 

oscillator are separated by a buffer band. The size of this buffer band, shown in Figure 3.7, is 

chosen to ensure that the low-frequency assumption is valid. 

 

 

Figure 3.7: Depiction of the actuator and oscillator frequency-bands. Frequencies 𝐹𝐴 𝑀𝑎𝑥 and 

𝐹𝑂 𝑀𝑖𝑛 are chosen such that the buffer band sufficiently separates the two frequency-bands. This 

separation ensures that the impedances of capacitors 𝐶𝑏1 and 𝐶𝑏2 are much higher at 𝐹𝐴 𝑀𝑎𝑥 than 

at 𝐹𝑂 𝑀𝑖𝑛. 

 

Second, the impedance of the current source is assumed to be practically infinite. So, it is assumed 

to be an open circuit and is removed from the model. The validity of this assumption will be 

revisited when parasitic capacitance from the current source is considered. The result of these two 

assumptions is that, in this modified circuit, the PIVI actuator behaves as a variable inductor with 

series winding resistance. This is shown in Figure 3.8. 
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Figure 3.8: Simplified circuit model of the modified Pierce oscillator. 

 

3.4.2 Barkhausen Criterion 

The circuit in Figure 3.8 is modeled in the same manner as the typical Pierce oscillator by replacing 

the op amp with a voltage-controlled voltage source. The updated circuit model is shown in Figure 

3.9. Note that, again, the input impedance is assumed to be very large, so it is neglected in this 

analysis. The amplifier gain was defined previously in (3.9). Repeated here for convenience: 

𝐴𝑣𝑜 ≜ −
𝑅2

𝑅1
 (3.9) 

If the circuit in Figure 3.9 is compared with the circuit in Figure 3.4, it can be seen that the modified 

Pierce oscillator circuit only differs by the elements in series with the inductor. 
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Figure 3.9: Updated circuit model of the modified Pierce oscillator. The op amp is replaced with 

a voltage-controlled voltage source model, and the circuit diagram is rearranged for clarity. 

 

Therefore, the loop gain of the typical Pierce oscillator can be reused for the modified Pierce 

oscillator. Equation (3.21) is repeated here for convenience. 

𝐴(𝑗𝜔)𝐵(𝑗𝜔) =
𝐴𝑣𝑜𝑍𝐶1

𝑍𝐶2

𝑅𝑜(𝑍𝑇 + 𝑍𝐶2
) + 𝑍𝑇𝑍𝐶2

 (3.21) 

𝑍𝑇 is redefined for the modified circuit. In the same manner as before, it is defined as the total 

impedance for the right half of the feedback network: 

𝑍𝑇 ≜ 𝑍𝐿𝐴
+ 𝑍𝐶1

+ 𝑍𝐶𝑏1
+ 𝑍𝐶𝑏2

 (3.57) 

The impedance of each circuit element is now defined as a function of reactance and resistance. 

𝑍𝐿𝐴
≜ 𝑅𝐴 + 𝑗𝑋𝐿𝐴

 (3.58) 

𝑍𝐶1
≜ 𝑗𝑋𝐶1

 (3.59) 

𝑍𝐶2
≜ 𝑗𝑋𝐶2

 (3.60) 

𝑍𝐶𝑏1
≜ 𝑗𝑋𝐶𝑏1

 (3.61) 

𝑍𝐶𝑏2
≜ 𝑗𝑋𝐶𝑏2

 (3.62) 
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Substituting (3.57)–(3.62) into (3.21) results in (3.63). 

𝐴(𝑗𝜔)𝐵(𝑗𝜔) = 𝐺𝐿 =
𝑗2𝐴𝑣𝑜𝑋𝐶1𝑋𝐶2

𝑅𝑜(𝑅𝐴+𝑗(𝑋𝐿𝐴
+𝑋𝐶1+𝑋𝐶2+𝑋𝐶𝑏1

+𝑋𝐶𝑏2
))+(𝑅𝐴+𝑗(𝑋𝐿𝐴

+𝑋𝐶1+𝑋𝐶𝑏1
+𝑋𝐶𝑏2

))𝑗𝑋𝐶2

  
(3.63) 

The term 𝐺𝐿 is now defined as the loop gain and (3.63) is separated into its real and imaginary 

components. 

𝐺𝐿 =
−𝐴𝑣𝑜𝑋𝐶1𝑋𝐶2((𝑅𝑜𝑅𝐴−(𝑋𝐿𝐴

+𝑋𝐶1+𝑋𝐶𝑏1
+𝑋𝐶𝑏2

)𝑋𝐶2)−𝑗(𝑅𝐴𝑋𝐶2+𝑅𝑜(𝑋𝐿𝐴
+𝑋𝐶1+𝑋𝐶2+𝑋𝐶𝑏1

+𝑋𝐶𝑏2
)))

(𝑅𝑜𝑅𝐴−(𝑋𝐿𝐴
+𝑋𝐶1+𝑋𝐶𝑏1

+𝑋𝐶𝑏2
)𝑋𝐶2)

2
+(𝑅𝐴𝑋𝐶2+𝑅𝑜(𝑋𝐿𝐴

+𝑋𝐶1+𝑋𝐶2+𝑋𝐶𝑏1
+𝑋𝐶𝑏2

))
2   (3.64) 

The imaginary part of (3.64) is set to zero to solve for the frequency of oscillation condition. 

𝐼𝑚(𝐺𝐿) =
𝐴𝑣𝑜𝑋𝐶1𝑋𝐶2(𝑅𝐴𝑋𝐶2+𝑅𝑜(𝑋𝐿𝐴

+𝑋𝐶1+𝑋𝐶2+𝑋𝐶𝑏1
+𝑋𝐶𝑏2

))

(𝑅𝑜𝑅𝐴−(𝑋𝐿𝐴
+𝑋𝐶1+𝑋𝐶𝑏1

+𝑋𝐶𝑏2
)𝑋𝐶2)

2
+(𝑅𝐴𝑋𝐶2+𝑅𝑜(𝑋𝐿𝐴

+𝑋𝐶1+𝑋𝐶2+𝑋𝐶𝑏1
+𝑋𝐶𝑏2

))
2 = 0  (3.65) 

Simplifying (3.65) results in 

𝑅𝐴𝑋𝐶2
+ 𝑅𝑜(𝑋𝐿𝐴

+ 𝑋𝐶1
+ 𝑋𝐶2

+ 𝑋𝐶𝑏1
+ 𝑋𝐶𝑏2

) = 0. (3.66) 

The reactances of the circuit elements are now defined as: 

𝑋𝐿𝐴
= 𝜔𝐿𝐴 (3.67) 

𝑋𝐶1
≜

−1

𝜔𝐶1
 (3.68) 

𝑋𝐶2
≜

−1

𝜔𝐶2
 (3.69) 

𝑋𝐶𝑏1
≜

−1

𝜔𝐶𝑏1
 (3.70) 

𝑋𝐶𝑏2
≜

−1

𝜔𝐶𝑏2
 (3.71) 
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Substituting (3.67)–(3.71) into (3.66) results in (3.72). 

−
𝑅𝐴

𝜔𝐶2
+ 𝑅𝑜 (𝜔𝐿𝐴 −

1

𝜔
(

1

𝐶1
+

1

𝐶2
+

1

𝐶𝑏1
+

1

𝐶𝑏2
)) = 0 (3.72) 

Solving (3.72) for the frequency yields (3.73). 

𝜔 = √
𝑅𝐴

𝑅𝑜𝐿𝐴𝐶2
+

1

𝐿𝐴𝐶𝑇
 (3.73) 

where the total capacitance is defined by (3.74). 

𝐶𝑇 ≜ (
1

𝐶1
+

1

𝐶2
+

1

𝐶𝑏1
+

1

𝐶𝑏2
)
−1

=
𝐶1𝐶2𝐶𝑏1𝐶𝑏2

𝐶1𝐶2𝐶𝑏1 + 𝐶1𝐶2𝐶𝑏2 + 𝐶1𝐶𝑏1𝐶𝑏2 + 𝐶2𝐶𝑏1𝐶𝑏2
 (3.74) 

Equation (3.73) shows that this modified circuit behaves in a similar manner to the typical Pierce 

oscillator. That is to say, the fundamental frequency of the modified circuit can be changed by 

varying the inductance of a single inductor. Additionally, assuming the output of (3.73) is always 

positive, (3.73) is a strictly monotonic function of 𝐿𝐴. However, in this case, a PIVI actuator serves 

as the inductor in the circuit. Therefore, since the inductance of a PIVI actuator is defined to be a 

strictly monotonic function of the position, the fundamental frequency of the modified circuit is 

also a strictly monotonic function of the position. The result of this is that the position of the 

actuator can be uniquely determined from the fundamental frequency of this modified Pierce 

oscillator. 

 

The real part of (3.64) is set to unity to solve for the gain condition. 

𝑅𝑒(𝐺𝐿) =
−𝐴𝑣𝑜𝑋𝐶1𝑋𝐶2(𝑅𝑜𝑅𝐴−(𝑋𝐿𝐴

+𝑋𝐶1+𝑋𝐶𝑏1
+𝑋𝐶𝑏2

)𝑋𝐶2)

(𝑅𝑜𝑅𝐴−(𝑋𝐿𝐴
+𝑋𝐶1+𝑋𝐶𝑏1

+𝑋𝐶𝑏2
))

2

+(𝑅𝐴𝑋𝐶2+𝑅𝑜(𝑋𝐿𝐴
+𝑋𝐶1+𝑋𝐶2+𝑋𝐶𝑏1

+𝑋𝐶𝑏2
))

2 = 1  (3.75) 
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Substituting (3.66) into (3.75) results in (3.76). 

𝐴𝑣𝑜𝑋𝐶1
𝑋𝐶2

= −𝑅𝑜𝑅𝐴 + (𝑋𝐿𝐴
+ 𝑋𝐶1

+ 𝑋𝐶𝑏1
+ 𝑋𝐶𝑏2

)𝑋𝐶2
 (3.76) 

Rearranging and substituting (3.67)–(3.71) into (3.76) results in 

𝐴𝑣𝑜 = −𝜔2𝑅𝑜𝑅𝐴𝐶1𝐶2  − 𝜔𝐶1 (𝜔𝐿𝐴 −
1

𝜔
(
1

𝐶1
+

1

𝐶𝑏1
+

1

𝐶𝑏2
)). (3.77) 

Rearranging (3.77) results in 

𝐴𝑣𝑜 = −𝜔2𝐶1(𝑅𝑜𝑅𝐴𝐶2 + 𝐿𝐴) + 𝐶1 (
1

𝐶1
+

1

𝐶𝑏1
+

1

𝐶𝑏2
). (3.78) 

Substituting (3.73) and (3.74) into (3.78) yields 

𝐴𝑣𝑜 = −(
𝑅𝐴𝐶𝑇 + 𝑅𝑜𝐶2

𝑅𝑜𝐿𝐴𝐶2𝐶𝑇
)𝐶1(𝑅𝑜𝑅𝐴𝐶2 + 𝐿𝐴) + 𝐶1 (

1

𝐶𝑇
−

1

𝐶2
). (3.79) 

Simplifying and substituting (3.9) into (3.79) results in the gain condition. 

𝑅2

𝑅1
= 𝐶1𝑅𝐴 (

𝑅𝐴

𝐿𝐴
+

1

𝑅𝑜𝐶2
+

𝑅𝑜𝐶2

𝐿𝐴𝐶𝑇
) +

𝐶1

𝐶2
 (3.80) 

3.4.3 Stability Analysis 

Ignoring the transient behavior of the op amp, the state space dynamics of the modified circuit are 

described by (3.81). 

�̇� = 𝐹𝑋 ⇒

[
 
 
 
 
 
 
�̇�𝐶1

�̇�𝐶2

�̇�𝐶𝑏1

�̇�𝐶𝑏1

𝐼�̇� ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 0 0 0 0

1

𝐶1

𝐴𝑣𝑜

𝑅𝑜𝐶2

−1

𝑅𝑜𝐶2
0 0

−1

𝐶2

0 0 0 0
1

𝐶𝑏1

0 0 0 0
1

𝐶𝑏2

−1

𝐿𝐴

1

𝐿𝐴

−1

𝐿𝐴

−1

𝐿𝐴

−𝑅𝐴

𝐿𝐴 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑉𝐶1

𝑉𝐶2

𝑉𝐶𝑏1

𝑉𝐶𝑏2

𝐼𝐴 ]
 
 
 
 
 

  (3.81) 
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The characteristic equation for this system is defined by (3.44). Restated here for convenience 

𝑃(𝑠) ≜ 𝑑𝑒𝑡(𝑠𝐼 − 𝐹). (3.44) 

Substituting (3.81) into (3.44) results in (3.82). 

𝑃(𝑠) = 𝑠5 + (
1

𝑅𝑜𝐶2
+

𝑅𝐴

𝐿𝐴
) 𝑠4 + (

𝑅𝐴

𝐿𝐴𝑅𝑜𝐶2
+

1

𝐿𝐴𝐶𝑇
) 𝑠3 + (

𝐶𝑏1+𝐶𝑏2

𝐶𝑏1𝐶𝑏2

+
1−𝐴𝑣𝑜

𝐶1
)

1

𝐿𝐴𝑅𝑜𝐶2
𝑠2  (3.82) 

The two zero roots of the characteristic equation are factored out and the reduced order 

characteristic equation is used to form the Routh array in (3.83). 

𝑠3 1 (
𝑅𝐴

𝐿𝐴𝑅𝑜𝐶2
+

1

𝐿𝐴𝐶𝑇
)

𝑠2 (
1

𝑅𝑜𝐶2
+

𝑅𝐴

𝐿𝐴
) (

𝐶𝑏1
+ 𝐶𝑏2

𝐶𝑏1
𝐶𝑏2

+
1 − 𝐴𝑣𝑜

𝐶1
)

1

𝐿𝐴𝑅𝑜𝐶2

𝑠 𝑏1 0
1 𝑏2 0

 (3.83) 

Where: 

𝑏1 ≜

−(1) (
𝐶𝑏1

+ 𝐶𝑏2

𝐶𝑏1
𝐶𝑏2

+
1 − 𝐴𝑣𝑜

𝐶1
)

1
𝐿𝐴𝑅𝑜𝐶2

+ (
𝑅𝐴

𝐿𝐴𝑅𝑜𝐶2
+

1
𝐿𝐴𝐶𝑇

) (
1

𝑅𝑜𝐶2
+

𝑅𝐴

𝐿𝐴
)

(
1

𝑅𝑜𝐶2
+

𝑅𝐴

𝐿𝐴
)

 (3.84) 

𝑏2 ≜

−(0) (
1

𝑅𝑜𝐶2
+

𝑅𝐴

𝐿𝐴
) + (𝑏1) (

𝐶𝑏1
+ 𝐶𝑏2

𝐶𝑏1
𝐶𝑏2

+
1 − 𝐴𝑣𝑜

𝐶1
)

1
𝐿𝐴𝑅𝑜𝐶2

𝑏1
 

(3.85) 

The first two elements of the Routh array are positive by definition, so (3.86) and (3.87) are the 

only inequalities that must be satisfied for stability. 

−(1) (
𝐶𝑏1

+ 𝐶𝑏2

𝐶𝑏1
𝐶𝑏2

+
1 − 𝐴𝑣𝑜

𝐶1
)

1

𝐿𝐴𝑅𝑜𝐶2
+ (

𝑅𝐴

𝐿𝐴𝑅𝑜𝐶2
+

1

𝐿𝐴𝐶𝑇
) (

1

𝑅𝑜𝐶2
+

𝑅𝐴

𝐿𝐴
) > 0 (3.86) 

(
𝐶𝑏1

+ 𝐶𝑏2

𝐶𝑏1
𝐶𝑏2

+
1 − 𝐴𝑣𝑜

𝐶1
) > 0 (3.87) 
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Substituting (3.9) and simplifying (3.87) results in (3.88). 

1 +
𝑅2

𝑅1
> −𝐶1

𝐶𝑏1
+ 𝐶𝑏2

𝐶𝑏1
𝐶𝑏2

  (3.88) 

The inequality in (3.88) is true by definition, so the deciding factor for stability is (3.86). 

Rearranging (3.86) results in 

𝐶1𝑅𝐴 (
𝑅𝐴

𝐿𝐴
+

1

𝑅𝑜𝐶2
+

𝑅𝑜𝐶2

𝐿𝐴𝐶𝑇
) +

𝐶1

𝐶𝑇
> 𝐶1 (

1

𝐶𝑏1

+
1

𝐶𝑏2

) + 1 − 𝐴𝑣𝑜 . (3.89) 

Substituting (3.74) and (3.9) into (3.89) results in (3.90). 

𝐶1𝑅𝐴 (
𝑅𝐴

𝐿𝐴
+

1

𝑅𝑜𝐶2
+

𝑅𝑜𝐶2

𝐿𝐴𝐶𝑇
) +

𝐶1

𝐶2
>

𝑅2

𝑅1
 (3.90) 

Equation (3.90) is the deciding factor for stability, so the inverse of this equation is used as a design 

requirement for the oscillator to sustain oscillation. Combining (3.80) and (3.90) yields the gain 

design constraint for this oscillator. 

𝑅2

𝑅1
 ≥ 𝐶1𝑅𝐴 (

𝑅𝐴

𝐿𝐴
+

1

𝑅𝑜𝐶2
+

𝑅𝑜𝐶2

𝐿𝐴𝐶𝑇
) +

𝐶1

𝐶2
 (3.91) 

3.5 Parasitic Capacitance 

In reality, most high-power current sources have non-negligible parasitic capacitance in parallel 

with their output terminals. This is shown in the modified Pierce oscillator in Figure 3.10. At high 

frequencies, this parasitic capacitance violates the high-impedance assumption for the current 

source. Therefore, the impedance of the current source will have a non-negligible effect on the 

fundamental frequency of the modified Pierce oscillator. Additionally, although it is assumed to 

be bounded, the parasitic capacitance need not be constant. This means that the strictly monotonic 

relationship between the modified Pierce oscillator’s fundamental frequency and actuator position 
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cannot be guaranteed. 

 

 

Figure 3.10: Circuit diagram of the modified Pierce oscillator with parasitic capacitance from the 

current source. 

 

3.5.1 Mitigating Parasitic Capacitance 

The effect of the parasitic capacitance can be mitigated if the impedance of the current source is 

modified. It can be seen Figure 3.10 that the current source is in parallel with the variable inductor 

and series resistance. If the impedance of the current source is increased well above the impedance 

of the inductor, then it can be treated as an open circuit, and the effect of the parasitic capacitance 

will be negligible. This increase in impedance need only occur within the expected band of 

oscillation frequencies, so it should be possible to compensate for the parasitic capacitance with 
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the addition of passive components. To this end, further modifications are made to the modified 

Pierce oscillator. Shown in Figure 3.11, inductor 𝐿𝑞 with series resistance 𝑅𝑞 and capacitor 𝐶𝑞 are 

used to modify the impedance of the current source.  

 

 

Figure 3.11: Circuit diagram of the modified Pierce oscillator with a compensated current source. 

 

Analysis of this circuit with the Barkhausen Criterion is not trivial due to the possibility of multiple 

fundamental frequencies. Instead, the impedance of the compensated current source is analyzed. 

Figure 3.12 shows the isolated components of the current source. Note that the DC impedance of 

the current source is still considered to be practically infinite, so only the parasitic capacitance is 

considered.  
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Figure 3.12: Isolated components of the compensated current source. 

 

The impedance of the compensated current source is defined by (3.92). 

𝑍𝑇𝑃 ≜ 𝑍𝐶𝑝
+ (

1

𝑍𝐶𝑞

+
1

𝑍𝐿𝑞

)

−1

 (3.92) 

Rearranging (3.92) results in (3.93). 

𝑍𝑇𝑃 = 𝑍𝐶𝑝
+

𝑍𝐿𝑞
𝑍𝐶𝑞

𝑍𝐿𝑞
+ 𝑍𝐶𝑞

=
𝑍𝐶𝑝

(𝑍𝐿𝑞
+ 𝑍𝐶𝑞

) + 𝑍𝐿𝑞
𝑍𝐶𝑞

𝑍𝐿𝑞
+ 𝑍𝐶𝑞

 (3.93) 

The impedance of each component is now defined: 

𝑍𝐶𝑝
≜

1

𝑗𝜔𝐶𝑝
 (3.94) 

𝑍𝐶𝑞
≜

1

𝑗𝜔𝐶𝑞
 (3.95) 

𝑍𝐿𝑞
≜ 𝑅𝑞 + 𝑗𝜔𝐿𝑞 (3.96) 

Substituting (3.94)–(3.96) into (3.93) results in the total impedance of the compensated current 

source. 

𝑍𝑇𝑃 =

1
𝑗𝜔𝐶𝑝

(𝑅𝑞 + 𝑗𝜔𝐿𝑞 +
1

𝑗𝜔𝐶𝑞
) + (𝑅𝑞 + 𝑗𝜔𝐿𝑞)

1
𝑗𝜔𝐶𝑞

𝑅𝑞 + 𝑗𝜔𝐿𝑞 +
1

𝑗𝜔𝐶𝑞

 (3.97) 
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Equation (3.97) is rearranged into standard Bode form [6]. 

𝑍𝑇𝑃 = 𝐾0(𝑗𝜔)−1
(
𝑗𝜔
𝜔𝑧

)
2

+ 2𝜁𝑧 (
𝑗𝜔
𝜔𝑧

) + 1

(
𝑗𝜔
𝜔𝑝

)
2

+ 2𝜁𝑝 (
𝑗𝜔
𝜔𝑝

) + 1

 (3.98) 

Where: 

𝐾0 ≜
1

𝐶𝑝
 (3.99) 

𝜔𝑧
2 ≜

1

𝐿𝑞(𝐶𝑝 + 𝐶𝑞)
 (3.100) 

𝜁𝑧 ≜
𝑅𝑞(𝐶𝑝 + 𝐶𝑞)

2√𝐿𝑞(𝐶𝑝 + 𝐶𝑞)

 
(3.101) 

𝜔𝑝
2 ≜

1

𝐿𝑞𝐶𝑞
 (3.102) 

𝜁𝑝 ≜
𝑅𝑞𝐶𝑞

2√𝐿𝑞𝐶𝑞

 (3.103) 

Equation (3.98) shows that the total impedance of the compensated circuit contains a pole at DC, 

complex-conjugate zeros at corner frequency 𝜔𝑧, and complex-conjugate poles at corner frequency 

𝜔𝑝. Damping ratios 𝜁𝑧 and 𝜁𝑝 control the peak magnitude and bandwidth at the complex-conjugate 

zeros and poles. A normalized magnitude plot of the total impedance and the parasitic capacitance 

is shown in Figure 3.13.  

 

In the region between 𝜔𝑧 and 𝜔𝑝, the magnitude of the total impedance is increased significantly 

above that of the parasitic capacitance alone. If the oscillator frequency-band is placed within this 
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region, then, depending on the selection of components 𝐿𝑞 and 𝐶𝑞, it should be possible to increase 

the impedance of the current source well above that of the actuator’s variable-inductance. In this 

case, as discussed previously, the effect of the parasitic capacitance on the fundamental frequency 

of the oscillator will be reduced significantly. Therefore, this compensation circuit can be used to 

mitigate parasitic capacitance in a non-ideal current source. 

 

 

Figure 3.13: Comparison of the normalized magnitude of impedance of the compensated current 

source and the parasitic capacitance alone. The parasitic capacitance is shown in blue. The 

compensated current source is shown in black. A damping ratio of 0.01 is used for both second-

order terms. 

 

While the increase in impedance afforded by this compensation circuit is desirable, two important 

caveats should be considered. First, at excitation frequencies near 𝜔𝑧, the impedance decreases 

significantly. This behavior can be detrimental to the performance of either the current source or 
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the oscillator. Therefore, the selection of 𝐿𝑞 and 𝐶𝑞 should be done in a manner that places the 

complex-conjugate zeros within the buffer band between the actuator and oscillator frequency-

bands. Second, variation in parasitic capacitance will shift the overall impedance of the 

compensated current source. This can be seen in (3.99)–(3.101), where the location of the DC pole, 

the location of the second-order zero, and the damping ratio of the second order zero are all 

dependent on the parasitic capacitance. It is assumed that variations in parasitic capacitance are 

bounded. Therefore, the selection of 𝐿𝑞 and 𝐶𝑞 should also be based on the worst case parasitic 

capacitance within expected bounds. 
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4. EXPERIMENTAL VALIDATION OF THE MODIFIED PIERCE OSCILLATOR 

4.1 Section Overview 

In the previous section, a modified Pierce oscillator was analyzed for use in a self-sensing 

application. In this section, an implementation of the modified Pierce oscillator is presented. A test 

procedure for this circuit, used to simulate the conditions of a powered PIVI actuator, is then 

discussed. The results of this test procedure are then presented along with a brief discussion of 

practical limitations for this self-sensing methodology. 

4.2 Experimental Apparatus 

Figure 4.1 shows an overview of the circuit used to implement and test the performance of the 

modified Pierce oscillator. In this circuit, the current source is implemented with a push-pull 

transconductance amplifier. The circuit implementation itself is shown in Figure 4.2. Note that the 

transconductance amplifier and modified Pierce oscillator are placed on the same circuit board for 

manufacturing convenience. Three separate power supplies are used in the test circuit to reduce 

capacitive coupling between the oscillator and transconductance amplifier stages. This power 

supply arrangement is shown in Figure 4.3. 



 

 

4
2
 

 

Figure 4.1: Diagram of the test circuit. The modified Pierce oscillator is on the right side of the diagram. The current source, 

implemented as a transconductance amplifier, is on the left side of the diagram. Power supplies P1, P2, and PS do not share common 

rails or a common ground. 
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Figure 4.2: Implementation of the test circuit in Figure 4.1. The protoboards on the right-hand 

side of the picture are current sense amplifiers used for the transconductance amplifier stages. 

These elements were placed on separate boards because they were neglected in the original 

circuit design.



 

 

 

4
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Figure 4.3: Power supply arrangement. The open enclosure contains both of the fixed, linear power supplies used for the 

transconductance amplifier. The programmable power supply is used to power the modified Pierce oscillator.
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4.2.1 Oscillator 

Figure 4.4 shows a detailed view of the oscillator portion of the circuit in Figure 4.1. Pins +A and 

−A connect to the transconductance amplifier portion of the overall circuit. All component values 

in Figure 4.4 are nominal. A Texas Instruments OPA227 was used for the oscillator op amp. Better 

choices do exist for this application, but the low-noise performance, high bandwidth, and wide 

supply range of the OPA227 make it a reasonable choice for a proof of concept. From the data 

sheet, the OPA227 has a nominal output impedance of 27 Ω. The implementation of the modified 

Pierce oscillator is shown within the red box in Figure 4.5. 

 

 

Figure 4.4: Detailed view of the modified Pierce oscillator portion of Figure 4.1. Pins +A and −A 

connect to the transconductance amplifier portion of the test circuit. 

  



 

46 

 

 

Figure 4.5: Implementation of the modified Pierce oscillator. The red boxed area includes the 

modified Pierce oscillator components. Note that the potentiometer is on the other side of the 

circuit board. 

 

4.2.1.1 Variable Inductor 

A variable inductor was used in place of a PIVI actuator. Ideally, an actuator would have also been 

used to test the modified Pierce oscillator. However, a significant amount of development time 

was spent on mitigating parasitic capacitance in the transconductance amplifier. Because of this, 

there was not sufficient time to test the system with an actual actuator as well. The variable 

inductor, shown in Figure 4.6, consists of a solenoid with a movable permeable core.  

 

The solenoid is a single-layer, cylindrical winding formed on a paperboard tube. The winding is 

made with 237 turns of 30-gauge enamel copper wire and measures 69 mm long and 24 mm in 
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diameter. The series resistance of the solenoid was measured at 6.8 ±0.3 Ω. 

 

 

Figure 4.6: Image of the variable inductor. The core position markings are not visible. 

 

The core is made of a MnZn ferrite rod that is 75 mm long and 12 mm in diameter. This material 

was chosen because of its high relative permeability, approximately 600, and low conductivity. 

Low conductivity was considered desirable for reducing eddy current losses at high frequencies. 

The core is marked at 5 mm increments along its length. The insertion distance of the core is 

set/measured by aligning these markings with the left edge of the paperboard tube. The edge of 

the paperboard tube is offset from the edge of the solenoid windings by 7 mm, so the 0 mm position 

of the core markings is offset by 7 mm in order to align the edges of the solenoid and core. The 

result of this is that the position range of the core is from 0 mm to 65 mm. This is shown in Figure 

4.7.  
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Figure 4.7: Depiction of the core-insertion-distance measurement methodology. The core-

insertion distance markings are shown in white on the core. The paperboard tube is shown in 

gray. Top: The core is set at 0 mm insertion distance. This is considered to be the minimum 

position because the right edge of the core and the left edge of the solenoid are aligned. Bottom: 

The core is set to 65 mm insertion distance. This is considered to be the maximum position 

because this is the last mark available with 5 mm spacing. 

 

Unlike the E-core actuator example, this variable inductor cannot be easily modeled primarily due 

to the lack of a well-defined magnetic circuit in the design. For simplicity, the inductance was 

instead measured experimentally. This was achieved by constructing a low-pass filter with the 

variable inductor and studying its frequency response. The methodology used for this process can 

be found in Appendix A. The resulting regression equation between inductance and core-insertion 

is shown in (4.1). A fourth-order regression equation was used because it was the lowest-order 

polynomial regression that offered a reasonable residual error. 

𝐿𝐴(𝑥) = (−9.127 × 10−5)𝑥4 + (5.899 × 10−3)𝑥3 + (45.56)𝑥 + 440.7 (4.1) 

where 𝑥 is the core-insertion distance in millimeters and 𝐿𝐴(𝑥) is the inductance in microhenries. 

Note that (4.1) is only valid for insertion positions from 0 mm to 65 mm. Figure 4.8 shows a plot 
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of (4.1) as a function of core-insertion position. As discussed in Section 3.4.1, under the low-

frequency assumption, a PIVI actuator can be modeled as a variable inductor with a strictly 

monotonic relationship between inductance and actuator position. 

 

 

Figure 4.8: Plot of inductance vs. core-insertion distance for the variable inductor. This plot is 

constructed from (4.1). 

 

From Figure 4.8, it is clear that the constructed variable inductor has a strictly monotonic 

relationship between inductance and core-insertion position. Therefore, under the low-frequency 

assumption, the constructed variable inductor serves as an analog of a PIVI actuator. 

Consequently, while not an ideal test specimen, the variable inductor was considered good enough 

for proof of concept tests of the modified Pierce oscillator. 

4.2.1.2 Fundamental Frequency and Gain 

The component values for the oscillator circuit are summarized in Table 4.1. The measurement 
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uncertainty is derived from the specifications of the Fluke 179 multimeter used to measure the 

component values. 

 

Table 4.1: Summary of oscillator component values. 

Component Nominal Measured Unit 

𝑅𝑎 n/a 6.8 ±0.3 Ω 

𝑅𝑜  27 n/a Ω 

𝐶1 33 34 ±2 nF 

𝐶2 33 35 ±2 nF 

𝐶𝑏1 100 100 ±3 nF 

𝐶𝑏2 100 102 ±3 nF 

𝑅1 1k 0.994k ±10 Ω 

𝑅2 10k 9.47k ±86 Ω 

𝑅3 22k 21.86k ±210 Ω 

 

The measured component values in Table 4.1 and (3.73), (3.74), and (4.1) are used to estimate the 

predicted fundamental frequency of the oscillator as a function of core position. This relationship 

is plotted in Figure 4.9. Figure 4.9 shows that, as expected from Section 3.4.2, the predicted 

relationship between fundamental oscillation frequency and core position is strictly monotonic. 

From Figure 4.9, the predicted oscillator frequency-band can be estimated to be approximately 30 

kHz to 70 kHz over the expected range of inductance. 

 

The gain condition in (3.91) is modified to include the potentiometer resistance. The result is (4.2). 

𝑅2 + 𝑅3

𝑅1
= −𝐴𝑣𝑜 ≥ 𝐶1𝑅𝐴 (

𝑅𝐴

𝐿𝐴
+

1

𝑅𝑜𝐶2
+

𝑅𝑜𝐶2

𝐿𝐴𝐶𝑇
) +

𝐶1

𝐶2
 (4.2) 

The measured component values in Table 4.1 and (3.74) and (4.2) are used to estimate the required 

feedback gain. The required gain varies with inductance, but the maximum gain is calculated from 
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the minimum inductance as 1.26. This does provide a theoretical estimate for the minimum 

required feedback gain. However, in practice, the gain was set to a much higher value: 31.5. Such 

a high value was required because oscillations were not found to be self-sustaining at all core 

positions when a lower gain was used. It is unknown exactly why such a high gain value was 

required to ensure self-sustaining oscillations at all core positions. However, it is possible that the 

op amp dynamics, which were not included in the analysis of the modified Pierce oscillator, played 

a significant role in the disagreement of between prediction and implementation. Other possible 

culprits include the lack of automatic gain control and the capacitive load at the output of the 

OPA227. The former likely led to nonlinear behavior in the oscillator while the latter may have 

altered the dynamic response of the op amp.  

 

 

Figure 4.9: Predicted fundamental oscillation frequency of the modified Pierce oscillator as a 

function of core-insertion distance. 

 



 

52 

 

4.2.2 Transconductance Amplifier 

Figure 4.10 shows a detailed view of the transconductance amplifier. Pins +A and −A connect to 

the oscillator portion of this circuit. The implementation of this circuit is shown in Figure 4.11.  

 

 

Figure 4.10: Detailed view of the transconductance amplifier portion of Figure 4.1. Pins +A and 

−A connect to the modified Pierce oscillator portion of the test circuit. 

 

The complexity of this design stemmed from the use of the Apex PA12A power op amp. This 

particular component was chosen for two primary reasons. First, the use of this component, or 
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indeed any power op amp, greatly simplified the design of the transconductance amplifier by 

eliminating the design of the power amplifier stage. Second, this particular power op amp was 

already available, so it would have been more expensive to order a different power op amp. In 

spite of those reasons, the PA12A is not an ideal choice for this application due to the existence of 

significant parasitic capacitance between its output pin and power supply rails. When disconnected 

from the power supply and the power supply decoupling capacitors, this parasitic capacitance was 

measured at 3 ±2 nF between the positive rail and OUT and 13 ±2 nF between the negative rail 

and OUT. 

 

 

Figure 4.11: Implementation of the transconductance amplifier. The PA12A amplifiers and heat 

sinks have been removed to better show the circuit elements. The external circuit boards contain 

the current sense amplifiers. Note that the modified Pierce oscillator is located on the opposite 

side of the board.  
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This capacitance is of a similar order of magnitude to the capacitance of the capacitors used for 

the oscillator circuit. So, this parasitic capacitance can affect the fundamental frequency of the 

oscillator. This effect is best demonstrated in the conventional transconductance amplifier shown 

in Figure 4.12. 

 

 

Figure 4.12: Depiction of a conventional transconductance amplifier with parasitic capacitance. 

 

Where capacitors 𝐶𝑝+ and 𝐶𝑝− represent the parasitic capacitance of the PA12A, and capacitors 

𝐶𝑑 are the power supply decoupling capacitors. The power supply decoupling capacitors are 

included in this circuit because they are the primary reason the parasitic capacitance is an issue. If 

the high-impedance components of the circuit are removed, as shown in Figure 4.13, it can clearly 

be seen that the power supply decoupling capacitors provide a link to ground for the parasitic 

capacitance. If it is assumed that the capacitance of each power supply decoupling capacitor is 

much larger than the parasitic capacitance, then the series capacitance will be dominated by the 

parasitic capacitance. As a result, the parasitic capacitance is effectively placed in parallel with the 
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load of the amplifier. It is clear that, if this conventional transconductance amplifier was used with 

the modified Pierce oscillator, the parasitic capacitance would affect the fundamental frequency 

of the oscillator. 

 

 

Figure 4.13: Parallel circuit elements from Figure 4.12. The sense resistor 𝑅𝑠 is assumed to have 

a resistance less than or equal to 1 Ω. This is small enough to be considered negligible when 

analyzing the parasitic capacitance. 

 

Additionally, since there is no guarantee that the parasitic capacitance will be constant with varying 

amplifier excitation, it is possible that the relationship between the fundamental frequency of the 

oscillator and the position of the inductor core would be dependent on the state of the 

transconductance amplifier.  

 

Therefore, in order to reduce the effect of this parasitic capacitance, the transconductance amplifier 

in Figure 4.10 was constructed with two transconductance amplifiers in a push-pull configuration. 

This push-pull configuration uses two separate power supplies, one for each stage, that are 

connected through their grounds. The result of this design is that the parasitic capacitance is halved 
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to 8 nF in parallel with the load. Further mitigation of parasitic capacitance was achieved by linking 

the grounds of the separate push-pull stages through the compensation circuit described in Section 

3.5.1. As discussed previously, the impedance of the compensated path, formed by the series 

combination of 𝐿𝑞, 𝐶𝑞, and the parasitic capacitance, can be increased above that of the parasitic 

capacitance alone within the oscillator frequency-band by proper selection of components. Proper 

selection of components also allows the impedance of the compensated path to be increased well 

above that of the actuator’s inductance. This behavior is shown in Figure 4.14, where the 

magnitude of the theoretical impedance of the parasitic capacitance, compensated path, and 

variable inductor are compared.  

 

The magnitude of the theoretical impedance of the parasitic capacitance was computed from the 

magnitude of the impedance of a capacitor, 
1

𝜔𝐶
, and a nominal parasitic capacitance of 8 nF. Half 

of the total parasitic capacitance was used due to the mitigation effect of the push-pull topology. 

The magnitude of the theoretical impedance of the compensated path was computed from the 

magnitude of (3.98), a nominal value of 15 mH and measured value of 0.15 ±0.2 Ω for 𝐿𝑞, a 

nominal value of 1 pF for 𝐶𝑞, and a nominal parasitic capacitance of 8 nF. The magnitude of the 

theoretical impedance of the variable inductor was computed from the magnitude of the impedance 

of an inductor and series resistance √(𝑅𝑎)2 + (𝜔𝐿𝑎)2. A measured value of 6.8 ±0.3 Ω was used 

for 𝑅𝑎. Since the inductance of the variable inductor controls the oscillation frequency, and is 

therefore not constant, the maximum measured inductance, 2.5 mH, and the minimum measured 

inductance, 441 µH, were used to calculate the impedance at the bounds of the oscillator 

frequency-band. That is to say, the maximum inductance provides the impedance at 30 kHz and 

the minimum inductance provides the impedance at 70 kHz . 
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Figure 4.14: Comparison of the magnitude of theoretical impedance of the parasitic capacitance, 

compensated path, and variable inductor. The predicted frequency-band of the oscillator is 

enclosed between the vertical lines at 30 kHz and 70 kHz. The MATLAB script used to generate 

this plot can be found in Appendix B. 

 

It is clear from Figure 4.14 that the theoretical impedance of the compensated path is greatly 

increased above that of the parasitic capacitance alone. Additionally, due to the selection of 𝐿𝑞 and 

𝐶𝑞, the theoretical impedance of the compensated path is increased greatly above that of the 

variable inductor within the oscillator frequency-band. This increase in theoretical impedance at 

the bounds of the oscillator frequency-band is summarized in Table 4.2. As discussed in Section 

3.5.1, the result of this increased impedance is a theoretical reduction of the effect of parasitic 

capacitance on the fundamental frequency of the modified Pierce oscillator.  
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Table 4.2: Summary of theoretical impedances at the oscillator frequency-band boundaries. 

Frequency Parasitic Capacitance 

Impedance (8 nF) 

Compensated 

Path Impedance 

Variable Inductor 

Impedance 

30 kHz 663 Ω 2.16 kΩ 471 Ω 

70 kHz 285 Ω 6.31 kΩ 194 Ω 

 

A consequence of this amplifier design is the potential for nonuniformity in the amplifier gain due 

to component mismatch between the separate transconductance amplifier stages. This issue was 

observed in the implementation of the overall circuit. Figure 4.15 shows the measured DC gain 

and the 4 A/V design gain.  

 

 

Figure 4.15: Comparison of design gain with measured transconductance amplifier gain. 

 

The deadband and offset seen in the third quadrant are likely a result of both amplifiers not 
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conducting at the same time. This can likely be attributed to the existence of a bias voltage in one 

or more of the INA105 differential amplifiers or either of the PA12A amplifiers used in this design. 

This distortion could be improved with the addition of trimming components, the use of 

proportional-integral (PI) feedback, or even the use of an application-made amplifier. However, 

the measured gain is reasonably linear and close to the design gain. Therefore, it was considered 

good enough for a proof of concept. 

4.3 Experimental Procedure 

The overall test setup is shown in Figure 4.16. In order to show the viability of the modified Pierce 

oscillator for self-sensing applications, the test circuit was tested under conditions that approximate 

an actively powered PIVI voice-coil actuator. This was achieved by using the transconductance 

amplifier to apply disturbance currents through the variable inductor in order to simulate a powered 

actuator. The relationship between oscillation frequency and core-insertion distance was then 

determined over the range of core positions. The primary objective of these disturbance tests was 

to show that the oscillator’s fundamental frequency is not affected by disturbance current through 

the variable inductor as long as the disturbance current obeys the low-frequency assumption. The 

implication of this behavior is that the core-insertion distance of the variable inductor can still be 

determined from oscillation frequency even when a disturbance current is applied to the variable 

inductor. 

4.3.1 Test Conditions 

The transconductance amplifier was controlled with input from a function generator. The function 

generator was built into the Keysight DSOX1102G digital storage oscilloscope used for data 

collection. Four excitation inputs were tested with the transconductance amplifier. The first test 
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used a 0-V input to the transconductance amplifier. This quiescent-output test was conducted to 

provide a comparison baseline for all other tests since it represents a realistic calibration condition 

for the system. 

 

 

Figure 4.16: View of full test setup. 

 

The remaining disturbance tests were conducted with the following inputs: A DC input of 100 mV, 

a 100-mV sine-wave input at 100 Hz, and a 100-mV square-wave input at 100 Hz. These inputs 

were chosen to provide a variety of disturbance currents through the variable inductor.  
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A special case was also tested with the circuit where the modified Pierce oscillator was separated 

from the transconductance amplifier. This was done by removing the PA12A amplifiers from their 

sockets, disconnecting the power supplies of the transconductance amplifier stages, and 

disconnecting components 𝐿𝑞 and 𝐶𝑞. This test was conducted both to determine the effect of 

parasitic capacitance on the oscillation frequency and to provide a more direct comparison with 

the theoretical prediction. 

4.3.2 Data Collection 

The data collection process was the same for every test case. First, the core-insertion position of 

the variable inductor was adjusted to the 0-mm position. Then, the output waveform of the 

modified Pierce oscillator was recorded with the Keysight DSOX1102G digital storage 

oscilloscope. Next, the core-insertion distance was increased by 5 mm, and the output of the 

modified Pierce oscillator was recorded again. This process was repeated for every 5 mm step from 

0 mm to 65 mm of core-insertion.  

 

The core-insertion distance was manually aligned during each run. With a resolution of one mark 

per 5 mm, the position uncertainty during the core position sweep could theoretically be as high 

as ±2.5 mm. This level of uncertainty is not ideal, but it was considered good enough for a proof 

of concept. The digital storage oscilloscope was setup to save 5000 data points for each capture. 

This was the maximum data capture size available for the Keysight DSOX1102G. Additionally, 

the horizontal scale of the oscilloscope was adjusted to ensure that at least thirteen complete 

oscillation cycles were visible before the data was captured. This was done to ensure a constant 

number of cycles were available for frequency determination regardless of oscillation frequency. 
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The captured oscilloscope data was analyzed in MATLAB. The scripts used to analyze the data 

can be found in Appendix C. For each tested position, a zero-crossing detector algorithm was 

applied to the captured oscillator waveform. The oscillation frequency was then determined at 

every full cycle in the captured waveform. That is to say, the oscillation frequencies were measured 

from both the period between every adjacent negative to positive transition and the period between 

every adjacent positive to negative transition. This was done because the measured waveform was 

not uniform over a full cycle. Therefore, measuring frequency from every half cycle would have 

resulted in a bimodal distribution of measured frequencies for a given position. Next, all measured 

frequencies outside of a 25 kHz to 75 kHz frequency-band were rejected. This was done to remove 

high-frequency spikes from the ends of the oscillator waveform. The 25 kHz to 75 kHz band was 

chosen to allow for variations outside of the expected oscillator frequency-band. Finally, the 

average was taken from the remaining measured frequencies. This average frequency was 

considered to be the oscillation frequency for a given position. The standard error was also 

estimated from the remaining measured frequencies using the sample standard deviation. 

4.4 Results 

4.4.1 Disturbance Rejection 

The results of the excitation tests are shown in Figure 4.17. Note that the error bars are computed 

from the estimated standard error. As expected, the relationship between oscillation frequency and 

core-insertion distance was strictly monotonic in all excitation tests. Additionally, the variation in 

oscillation frequency between the excitation tests was quite low. This is quantified in Figure 4.18, 

where the percentage error of each excitation test from the quiescent-output test is plotted. At 

maximum, the percentage error of any of the excitation tests from the quiescent-output test was 
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less than 3%. The consistency between the excitation tests suggests that the disturbance current 

through the variable inductor had little effect on the oscillation frequency of the modified Pierce 

oscillator. 

 

 

Figure 4.17: Comparison of oscillation frequency as a function of core-insertion distance from all 

four excitation tests. 

 

Consequently, it should be possible to determine the insertion distance of the core from the 

oscillation frequency of the modified Pierce oscillator even in the presence of disturbance currents 

through the variable inductor. These conditions simulated a PIVI actuator both under the low-

frequency assumption and powered by a current source. It is therefore considered likely that this 

modified Pierce oscillator could be used for self-sensing with a PIVI actuator that is both operated 

within the low-frequency assumption and powered by a current source. However, while these 

results are promising, they are not definitive. Further tests with an actual PIVI actuator will be 

needed to determine the effectiveness of this self-sensing methodology.  
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Figure 4.18: Comparison of the percentage error of the DC, sine-wave, and square-wave 

excitation tests from the quiescent-output test. 

 

4.4.2 Prediction Accuracy 

The results of the free-oscillation and quiescent-output tests are compared with the predicted free-

oscillation frequency in Figure 4.19. It is clear that there was significant disagreement between the 

prediction and both the free-oscillation and quiescent-output tests. This is quantified in Figure 

4.20, which plots the percentage error of both tests from the predicted oscillation frequency. This 

significant discrepancy suggests that the analysis of the modified Pierce oscillator was not detailed 

enough to accurately predict the behavior in the free-oscillation test, and that the transconductance 

amplifier dynamics had a significant effect on the oscillation frequency in the quiescent-output 

test. Prediction accuracy could be further improved with the addition of both the op amp dynamics 

and transconductance amplifier dynamics. However, the increased complexity from adding these 

dynamics into the modeling process would likely preclude an analytical solution to the Barkhausen 

criterion. This is more specifically the case when the transconductance amplifier dynamics are 
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considered. A numerical analysis of the circuit may therefore be necessary if a more accurate 

prediction is needed. 

 

 

Figure 4.19: Comparison of oscillation frequency as a function of core-insertion distance from 

the free-oscillation test, quiescent-output test, and predicted fundamental oscillation frequency.  

 

4.5 Practical Limitations 

While the modified Pierce oscillator performed well in the tested configuration, it should be 

acknowledged that this self-sensing methodology is not without limitations. There are several 

issues that can arise when this modified Pierce oscillator, or indeed any derivative of this design, 

is used with a real PIVI voice-coil actuator. One particularly important issue stems from the effect 

of core saturation in a real PIVI voice-coil actuator. That is to say, a high enough current through 

the PIVI actuator windings can lead to a decrease in the permeability of the actuator core due to 

magnetic saturation. This will affect the inductance relationship of the actuator and, by extension, 
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the fundamental frequency of the oscillator. Therefore, use of the modified Pierce oscillator for 

self-sensing would likely require a derating factor on the maximum control current applied to the 

actuator. This would help prevent saturation of the core and ensure the oscillation frequency is 

invariant to the control current. Alternatively, if the current through the actuator is monitored 

during operation, a lookup table, like the one discussed in [1], could be developed and used to 

account for shifts in the frequency-band due to saturation. The effectiveness of this strategy would 

likely depend on the effect of saturation on the resolution of the frequency vs. position relationship. 

 

 

Figure 4.20: Comparison of the percentage error of the quiescent-output test and free-oscillation 

test from the predicted fundamental oscillation frequency.  

 

Another important issue arises from the frequency-dependent properties of the actuator core. Most 

real voice-coil actuators, PIVI or otherwise, have cores that exhibit complex permeability behavior 

and experience eddy current losses. Both of these behaviors tend to be more pronounced at higher 

frequencies, so they tend to place an upper limit on the oscillation frequency that can be achieved 
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with a real actuator. Depending on the type of PIVI voice-coil actuator, this limit may severely 

restrict the amount of bandwidth available for the oscillator and actuator. Therefore, use of the 

modified Pierce oscillator for self-sensing would likely be restricted to actuators with both low 

eddy current losses and fairly constant core permeability in the oscillator frequency-band. Even 

with this restriction, the control current and actuator bandwidth would still need to be constrained 

by the low-frequency assumption. Both of these limitations, and the issues that require them, are 

all the more reason why this self-sensing methodology requires further testing with a real PIVI 

voice-coil actuator. 
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5. SUMMARY AND CONCLUSIONS 

5.1 Summary 

A generalized electrical model of PIVI actuators was first derived to motivate the development of 

a self-sensing methodology. Basic oscillator theory was then presented and applied to a typical 

Pierce oscillator. A modified Pierce oscillator was then introduced for self-sensing applications. 

The low-frequency assumption, a constraint on the maximum frequency of motion and current 

input, was defined in order to simplify the analysis of the modified Pierce oscillator. The predicted 

behavior of this modified Pierce oscillator, a fundamental oscillation frequency that is a strictly 

monotonic function of actuator inductance, was presented as the motivating reason for using this 

oscillator for self-sensing. The effects of parasitic capacitance in the actuator current source were 

then discussed along with a mitigation method. A test circuit, including the modified Pierce 

oscillator and a transconductance amplifier, was presented. Due to time constraints, the modified 

Pierce oscillator was constructed with a variable inductor rather than an actual PIVI actuator. This 

was considered acceptable since the variable inductor mimics a PIVI actuator operating under the 

low-frequency assumption. Modifications to the transconductance amplifier were presented that 

allowed parasitic impedance to be increased by a minimum factor of three. The test circuit was 

tested under conditions that simulated the disturbance currents of a powered PIVI actuator in order 

to determine the performance of the modified Pierce oscillator. Finally, some practical limitations 

of the modified Pierce oscillator were discussed. 

5.2 Conclusions 

Experimental validation with the test circuit showed that the oscillation frequency of the modified 

Pierce oscillator was a strictly monotonic function of the core-insertion distance of the variable 
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inductor. The result of this behavior was that the core-insertion distance could be uniquely 

determined from the oscillation frequency of the modified Pierce oscillator. Since the variable 

inductor simulated a PIVI actuator under the slow motion assumption, it was considered likely that 

this behavior would also have been observed with a PIVI actuator operating within the low-

frequency assumption. It was also observed that the oscillation frequency of the modified Pierce 

oscillator was fairly consistent in the presence of disturbance current through the variable inductor. 

In the presence of DC, sine-wave, and square-wave disturbance current, the oscillation frequency 

stayed with 3% of the quiescent oscillation frequency over the range of motion of the actuator. 

These conditions simulated a powered PIVI actuator, so it is conceivable that the oscillation 

frequency would also be fairly consistent if the modified Pierce oscillator was used with an actual 

PIVI actuator. While these results are not definitive, they suggest that the modified Pierce 

oscillator, or indeed a derivative of it, could be used as a self-sensing methodology for PIVI type 

voice-coil actuators. However, more work will be needed to verify this behavior with an actual 

PIVI type voice-coil actuator. 
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6. FUTURE WORK 

In order to validate the performance of the modified Pierce oscillator, the system should be tested 

with an actual PIVI voice-coil actuator under power and motion. This will allow the observation 

of the effects of back emf and core losses in a more realistic setting. Inversion of the frequency-

position curve should also be pursued with the ultimate goal being full position-feedback control 

using the oscillator output. 

 

A simpler transconductance amplifier topology should be developed for a more practical 

implementation. This could be achieved by using a single transconductance amplifier stage, rather 

than the push-pull design used here, with the parasitic-capacitance-mitigation components in series 

with the actuator. This would greatly reduce the complexity of the design, and reduce the required 

power supplies to two. A better implementation of the modified Pierce oscillator should also be 

pursued. The inclusion of dynamic gain control could significantly improve the predictability and 

frequency stability of the oscillator. Additionally, if frequency stability can be improved, then a 

much smaller frequency-band could be used for the oscillator without affecting position resolution. 
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APPENDIX A: EXPERIMENTAL MEASUREMENT OF INDUCTANCE 

A.1 Analysis 

The inductance of the variable inductor was estimated from the frequency response of a low-pass 

filter. This filter is shown in Figure A.1. 

 

 

Figure A.1: Circuit diagram of the low-pass filter used to determine inductance. 

 

Where 𝑅𝑠 is the series resistance of the inductor and 𝐿(𝑥) is the inductance as a function of core 

position. The impedance of the loop is defined by (A.1). 

𝑍𝑇 ≜ 𝑍𝑅𝑠
+ 𝑍𝐿 + 𝑍𝑅 = (𝑅𝑠 + 𝑅) + 𝑗𝜔𝐿(𝑥) (A.1) 

The current through the loop due to 𝑉𝑖𝑛 is found by applying Ohm’s law for reactive circuits. 

𝐼 =
𝑉𝑖𝑛

𝑍𝑇
=

𝑉𝑖𝑛

(𝑅𝑠 + 𝑅) + 𝑗𝜔𝐿(𝑥)
 (A.2) 
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The output voltage is described by (A.3). 

𝑉𝑜𝑢𝑡 = 𝐼𝑍𝑅 = 𝐼𝑅. (A.3) 

Substituting (A.2) into (A.3) and solving for the transfer function yields (A.4). 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 𝐺𝑓 =

𝑅

(𝑅𝑠 + 𝑅) + 𝑗𝜔𝐿(𝑥)
 (A.4) 

Equation (A.4) is rearranged into standard Bode form [6]. 

𝐺𝑓 = 𝐾𝑜  
1

𝑗
𝜔

𝜔𝑏(𝑥)
+ 1

 (A.5) 

where the corner frequency and DC gain are defined by (A.6) and (A.7). 

𝜔𝑏(𝑥) ≜
𝑅𝑠 + 𝑅

𝐿(𝑥)
 (A.6) 

𝐾𝑜 ≜
𝑅

𝑅𝑠 + 𝑅
  (A.7) 

From (A.6), the corner frequency is inversely proportional to the inductance of the variable 

inductor. Therefore, if the corner frequency of the filter can be experimentally determined, then 

the inductance can be calculated. 

 

The corner frequency of the filter is most easily found by studying the magnitude and phase angle 

of the frequency response. To simplify this process, (A.5) is rewritten in terms of its real and 

imaginary parts. 

𝐺𝑓 = 𝐾𝑜  
1 − 𝑗

𝜔
𝜔𝑏(𝑥)

(
𝜔

𝜔𝑏(𝑥)
)
2

+ 1

 (A.8) 
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The magnitude is now defined as [7] 

𝑀 ≜ √𝑅𝑒(𝐺𝑓)
2
+ 𝐼𝑚(𝐺𝑓)

2
 (A.9) 

Substituting the real and imaginary parts of (A.8) into (A.9) yields (A.10). 

𝑀(𝜔, 𝑥) = √

(

 
𝐾𝑜

(
𝜔

𝜔𝑏(𝑥)
)
2

+ 1
)

 

2

+

(

 
−𝐾𝑜

𝜔
𝜔𝑏(𝑥)

(
𝜔

𝜔𝑏(𝑥)
)
2

+ 1
)

 

2

 (A.10) 

Equation (A.10) simplifies to (A.11). 

𝑀(𝜔, 𝑥) =
|𝐾𝑜|

√(
𝜔

𝜔𝑏(𝑥)
)
2

+ 1

 

(A.11) 

Applying the field power definition [6] to (A.11) yields (A.12). 

𝑀𝑓(𝜔, 𝑥) = 20 log10

(

 
 
 

|𝐾𝑜|

√(
𝜔

𝜔𝑏(𝑥)
)
2

+ 1
)

 
 
 

 (A.12) 

 

The real part of (A.8) is positive by definition, so the phase angle of the frequency response can 

be defined in terms of the arctangent function rather than the two-argument arctangent function 

[7]. 

𝜙 ≜ tan−1 (
𝐼𝑚(𝐺𝑓)

𝑅𝑒(𝐺𝑓)
) (A.13) 

  



 

75 

 

Substituting the real and imaginary parts of (A.8) into (A.13) yields (A.14). 

𝜙(𝜔, 𝑥) = tan−1

(

 
−𝐾𝑜

𝜔
𝜔𝑏(𝑥)

(
𝜔

𝜔𝑏(𝑥)
)
2

+ 1

(
𝜔

𝜔𝑏(𝑥)
)
2

+ 1

𝐾𝑜

)

  (A.14) 

Equation (A.14) simplifies to (A.15). 

𝜙(𝜔, 𝑥) = − tan−1 (
𝜔

𝜔𝑏(𝑥)
) (A.15) 

Equation (A.12) and (A.15) describe the theoretical frequency response of the filter. In the case 

where 𝜔 = 𝜔𝑏(𝑥), (A.12) and (A.15) yield the following identities. 

𝑀𝑓 = 20 log10 (
|𝐾𝑜|

√2
) = 20 log10 (

𝑅

√2(𝑅𝑠 + 𝑅)
) (A.16) 

𝜙 = − tan−1(1) = −45° (A.17) 

If the frequency response of the filter is known experimentally, then the corner frequency can be 

estimated from the excitation frequency that satisfies either (A.16) or (A.17). The inductance is 

then found by solving (A.6) with the estimated corner frequency. 

 

In reality, a discrete set of excitation frequencies is tested, so the excitation frequency will never 

exactly match the corner frequency of the filter. This limits the usefulness of (A.16) and (A.17), 

so the experimental frequency response of the filter must be related to (A.12) or (A.15). All things 

being equal, the phase angle is a much simpler relationship than the Magnitude. Equation (A.15) 

is rewritten as (A.18). 

𝜔𝑏(𝑥) =
−𝜔

tan(𝜙𝑒(𝜔, 𝑥))
 (A.18) 

where 𝜙𝑒(𝜔, 𝑥) is the experimentally determined phase response. Substituting (A.6) and solving 
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for the inductance yields (A.19). 

𝐿(𝑥) =
− tan(𝜙𝑒(𝜔𝑒 , 𝑥)) (𝑅𝑠 + 𝑅)

𝜔𝑒
=

− tan(𝜙𝑒(𝜔𝑒 , 𝑥)) (𝑅𝑠 + 𝑅)

2𝜋𝑓𝑒
 (A.19) 

Equation (A.19) can be used to relate the experimental phase response of the filter to the inductance 

of the inductor. It is theoretically possible to find the inductance from the experimental phase 

response using an arbitrary excitation frequency. However, on an x-axis, semi-log plot, the phase 

angle versus excitation frequency is most sensitive near the point where the condition in (A.15) is 

met. It will therefore be better to use (A.19) with excitation frequencies that result in a phase angle 

close to −45º. 

A.2 Experimental Procedure and Measured Inductance 

The low-pass filter in Figure A.1 was constructed with the variable inductor. The series resistance 

of the inductor was measured at 6.8 ±0.05 Ω. The filter resistor was set to a nominal value of 100 

Ω and had a measured value of 100 ±0.05 Ω.  

 

The core of the variable inductor was marked at 5 mm increments from 0 mm of insertion to 65 

mm of insertion. This was the same marking system shown in Figure 4.7. Starting at 0 mm core-

insertion, the filter was excited with a 0.5-Vpp sine-wave. The phase response of the filter was 

then recorded over a frequency sweep from 100 Hz to 10 kHz at 50 points per decade. From the 

discrete test points, an excitation frequency was chosen that resulted in a phase angle as close to 

−45º as possible. This excitation frequency and phase angle were then used to find the inductance 

from (A.19). This process was repeated for each 5 mm increment of core-insertion. The results are 

shown in Table A.1.  
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The air core inductance was also determined to be 427 µH using the same test procedure with the 

core removed. From [8], the self-inductance of a cylindrical, single-layer, air-core solenoid is 

described by (A.20). 

𝐿𝑎 = 𝐾
𝜇0𝑁

2𝐴

𝐿
 (A.20) 

Where 𝑁 is the number of turns, 𝐴 is the cross sectional area of the solenoid, 𝐿 is the length of the 

solenoid, and 𝐾 is the Nagaoka coefficient. For a diameter to length ratio of 0.348, the Nagaoka 

coefficient is approximately 0.866 [8]. This results in an estimated air-core inductance of 401 µH. 

The measured value was within 7% of this estimated value, so the experimental results were 

considered to be reasonable. 

 

Table A.1: Summary of experimental inductance data. 

Core Insertion 

(mm) 

Excitation 

Frequency (kHz) 

Phase Angle 

(Deg) 

Calculated 

Inductance (µH) 

0 38.0 −44.61 441.0 

5 36.3 −44.82 465.2 

10 33.1 −44.98 513.0 

15 28.8 −45.02 589.8 

20 25.1 −45.58 690.5 

25 20.0 −44.78 845.5 

30 16.6 −44.84 1018 

35 14.5 −45.36 1191 

40 12.0 −44.56 1393 

45 10.5 −44.89 1617 

50 91.2 −45.00 1864 

55 79.4 −44.38 2094 

60 72.4 −44.51 2307 

65 69.2 −45.48 2499 

 

Using the experimental data in Table A.1, a fourth-order polynomial regression was applied to the 
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relationship between the calculated inductance, in microhenries, and the core-insertion distance, 

in millimeters. The resulting regression equation is shown in (A.21). Note that (A.21) is the same 

as (4.1). 

𝐿𝐴(𝑥) = (−9.127 × 10−5)𝑥4 + (5.899 × 10−3)𝑥3 + (45.56)𝑥 + 440.7 (A.21) 

A polynomial regression was pursued because both the analysis in Section 2 and earlier finite 

element analysis indicated that the relationship may be polynomial in nature. A fourth-order 

regression was chosen because it was the lowest-order polynomial regression that offered a 

reasonable residual error. Figure A.2 shows a comparison plot of the regression equation and the 

discrete test data. 

 

 

Figure A.2: Comparison of regression equation with test data from Table A.1. 
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APPENDIX B: THEORETICAL IMPEDANCE PLOT GENERATION 

% Parameters 

Cp=8e-9; 

q=length(Cp); 

Lq=15e-3; 

Rq=0.15; 

Cq=1e-12; 

b=10000; 

f1=3; 

f2=7; 

f=logspace(f1,f2,b); 

w=2*pi.*f; 

  

% Impedance Calculation 

Z_Cp=zeros(q,b); 

Z_TR=zeros(q,b); 

Z_OL=zeros(q,b); 

Z_OH=zeros(q,b); 

for k=1:q 

    Z_Cp(k,:)=1./(1j.*w.*Cp(k)); 

    Z_TR(k,:)=((1j.*w).^2.*Lq.*(Cq+Cp(k))+(1j*w).*Rq.*(Cq+Cp(k))+1)./((1j*w.* 

C p(k)).*((1j*w).^2.*Lq.*Cq+(1j*w).*Rq.*Cq+1)); 

    Z_OL=6.8+1j.*w.*2.5e-3; 

    Z_OH=6.8+1j.*w.*441e-6; 

end 

  

% Magnitude Calculation 

M_Cp=Bode_P(Z_Cp); 

M_TR=Bode_P(Z_TR); 

M_ZOL=Bode_P(Z_OL); 

M_ZOH=Bode_P(Z_OH); 

  

% Plotting 

close all 

semilogx(f,20*log10(M_Cp),'Color','k','LineStyle','--') 

hold on 

semilogx(f,20*log10(M_TR),'Color','k','LineStyle','-') 

semilogx(f,20*log10(M_ZOL),'Color','b','LineStyle','-') 

semilogx(f,20*log10(M_ZOH),'Color','r','LineStyle','-') 

plot(30e3.*ones(1,b),linspace(-50,200,b),'Color','b','LineStyle','-.') 

plot(70e3.*ones(1,b),linspace(-50,200,b),'Color','r','LineStyle','-.') 

xlabel('Excitation Frequency (Hz)') 

ylabel('|Z| (dB)') 

ylim([-50,200]) 

legend({'C_p','Compensated','Max Inductance','Min 

Inductance'},'location','northwest') 

set(gca,'Fontsize',20) 

  

% Magnitude and Phase Angle Function 

function [M,P]=Bode_P(G) 

    M=sqrt(real(G).^2+imag(G).^2); 

    P=atan2d(imag(G),real(G)); 

end 
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APPENDIX C: MATLAB DATA REDUCTION SCRIPT 

% Data Loading 

close all 

if exist('D','var')~=1 

    clear 

    load Run_Data.mat 

end 

%Data Reduction Loop 

q=size(D); 

Avg=zeros(q(1),14); 

err=zeros(q(1),14); 

for p=1:q(1) 

    for i=2:15 

        %Zero-Crossing Detector 

        k=length(D(p,i,:,:))-1; 

        c=0; 

        for j=1:length(D(p,i,:,:))-1 

            if (D(p,i,j,2)==0) || (D(p,i,j,2)>0 && D(p,i,j+1,2)<0) || 

(D(p,i,j,2)<0 && D(p,i,j+1,2)>0) 

                c=c+1; 

                k(c)=D(p,i,j,1); 

            end 

        end 

        k=k(1:c); 

         

        %Frequency Determination 

        A=zeros(c-1,1); 

        for j=2:c-1 

            A(j)=1/(1*(k(j+1)-k(j-1))); 

            %Frequency calculated between every two zero-crossings 

        end 

         

        %Cutoff Window 

        Ac=zeros(c-1,1); 

        cf=0; 

        for j=1:c-1 

            if A(j)<75e3 && A(j)>25e3 

                cf=cf+1; 

                Ac(cf)=A(j); 

            end 

        end 

         

       %Frequency Average and Standard Error 

        Avg(p,i-1)=sum(Ac)/(cf); 

        err(p,i-1)=std(Ac(1:cf))/sqrt(cf); 

            %Used for error bars in plots 

    end 

end 




