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ABSTRACT 

 

Disasters affect every aspect of society, causing significant losses and 

interruptions to our way of life. Timely and reliable disaster information retrieval and 

exchange is key to efficiently implementing disaster mitigation, preparedness, response, 

and recovery. While aerial surveys of disaster-affected areas is one of the most effective 

ways for disaster reconnaissance, they are still costly, slow, and resource-intensive. The 

research presented in this dissertation investigates the use of artificial intelligence (AI) to 

augment current capacities in aerial footage processing, object localization and mapping, 

and quantification of disaster damage. This framework can provide relatively fast and 

accurate disaster impact information to first responders, affected people, governments 

and authorities, non-governmental organizations (NGOs), and other stakeholders, 

ultimately improving the quality and timeliness of decisions made to increase disaster 

resiliency. To enable visual recognition of the extent of disaster damage, two fully 

annotated, multi-class video datasets, Volan2018 and Voaln2019, are created. 

Convolutional neural network (CNN) architectures including you-only-look-once 

(YOLO), RetinaNet, Mask-RCNN, and PSPNet which are pre-trained on COCO, VOC, 

and ImageNet datasets, are then trained and tested on both Volan2018 and Voaln2019 

datasets. Several experiments including object detection, projection, mapping, and 

quantification are carried out. Key performance factors including CNN architecture, 

viewpoint altitude, pre-trained weights, data balance, projection mechanism, and object 

sizes are also investigated. Findings of this work are sought to complement current 
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practices in disaster response, while also laying the foundation for future work in the 

general area of human-AI partnership for the social good.  
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1. INTRODUCTION 

This Chapter presents an overview of key concepts in disaster management, and 

reviews the extent of disaster impact and the types of information needed to respond to 

and recover from natural disasters. Next, various computer vision algorithms together 

with example applications are introduced. Finally, a short description of the organization 

of forthcoming Chapters is provided. 

1.1. Disaster management 

1.1.1. Disaster impact  

The term “disaster” refers to a sudden (unexpected) event that results in property 

damage, human injury or death, and economic loss [1]. A natural disaster is caused by 

geophysical, meteorological, and hydrological changes which in turn impact humans and 

the society. Different types of natural disasters include but are not limited to earthquake, 

volcanic eruption, storm, extreme heat or cold, flood, landslide, drought, and wildfire. 

Beside natural disasters, there are technological and biological disasters. Examples of 

technological disasters are industrial (e.g., chemical spill, explosion, gas leak, oil spill) 

[2] and transportation (e.g., plane, car, and train crashes) accidents [3]. Biological 

disasters include epidemic diseases, insect infestation, and animal accidents [4].  

In the year of 2018 alone, the Center for Research on the Epidemiology of 

Disasters (CRED) reported 315 natural disasters worldwide which affected 68.5 million 

people, claimed 11,840 lives and cost $132 billion in economic damage [5]. The United 

Nations Office for Disaster Risk Reduction (UNISDR) compiled an emergency events 

database (EM-MDAT) for the period of 1998-2017, as summarized in Table 1 [6]. 
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According to this report, the economic loss of disasters that occurred in this 20-year 

period was $2,908 billion, and approximately 1.3 million people lost their lives to 

disasters. In the coming years and decades, it is expected that the number and frequency 

of disasters by on the rise around the world [7]. According to the EM-MDAT 1998-2017 

in Table 1, flood (3,148 times) and storm (2,049 times) are the most frequent natural 

disasters, followed by earthquake (563 times) and extreme temperature (405 times).  

 

Table 1. Numbers of disasters per type (1998-2017) [6]. 

Disaster type Occurrence Percentage (%) 

Flood 3,148 43.39 

Storm 2,049 28.24 

Earthquake 563 7.76 

Extreme temperature 405 5.58 

Landslide 378 5.21 

Drought 347 4.78 

Wildfire 254 3.50 

Volcanic activity 99 1.36 

Mass movement (dry) 12 0.17 

 

As shown in Table 2, the most costly types of disasters are water-related events 

such as floods and storms, according to EM-MDAT. In particular, hurricanes Harvey, 

Irma, and Maria in 2017 are the second to fourth most costly disasters in the last two 

decades with a total loss of $2,455 billion. Although the absolute economic loss of such 

large-scale disasters is difficult to quantify due to cascading impact on people’s lives, 

jobs, education, and health, numbers show that low-income communities around the 

world suffer disproportionately in natural disasters. During the period from 1998-2017 

[6],  high-income countries reported disaster related losses of 0.41% of their annual 
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gross domestic product (GDP), compared to disaster losses recorded in low-income 

regions reached average 1.8% of their GDP.  

 

Table 2. Top 10 disasters for absolute losses 1998-2017 [6]. 

Disaster Date Regions affected 
Total damage 

(billion $) 

Hurricane 

Katrina 
September, 2005 

U.S. 

 
156.3 

Hurricane 

Harvey 
August, 2017 U.S. 95.0 

Hurricane 

Irma 
September, 2017 U.S., Caribbean islands 80.8 

Hurricane 

Maria 
September, 2017 U.S., Caribbean islands  69.7 

Hurricane 

Sandy 
October, 2012 U.S., Caribbean islands 53.5 

Flood July-August, 1998 China 44.9 

Flood 
August, 2011-

Janurary, 2012 
Thailand 43.4 

Hurricane 

Ike 
September, 2008 U.S., Caribbean islands 36.3 

Hurricane 

Ivan 
September, 2004 

U.S., Caribbean islands, 

Venezuela 
29.9 

Hurricane 

Wilma 
October, 2005 

U.S., Mexico, Belize, 

Honduras, Caribbean islands 
25.0 

 

1.1.2. Phases of disaster management  

Disaster management refers to a series of activities that organize, deploy, and 

manage available resources to reduce disaster impact [8]. Typically, disaster 

management consists of four interconnected and collaborative phases of mitigation, 

preparedness, response, and recovery, as shown in Figure 1, which may involve ordinary 

citizens and communities, first responders, urban planners, building designers, local and 
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federal governments, non-governmental organizations (NGOs), insurance firms, and law 

enforcement agencies [9]. 

 

 
Figure 1. Disaster management phases. 

 

The goal of mitigation and preparedness phases is to ensure physical and social 

robustness through effective urban planning, establishing building codes, disaster 

education, disaster prediction system, and environmental protection. Different countries 

and jurisdictions enforce building codes tailored to their specific geographical region, 

performance specifications, and building materials, to ensure buildings and facilities can 
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withstand disaster loads. In Japan, for example, the government has established a 

nationwide public disaster education system to improve the resiliency of the country as a 

whole [10]. In the U.S., states and local governments utilize the guidelines of the Federal 

Emergency Management Agency (FEMA) [11] to design and implement their own 

mitigation and preparedness plans to cater to the needs and overall wellbeing of their 

constituents. For example, the Texas Community Development Block Grant (CDBG) 

action plan [12] defines procedures, cost assessment, and funding resources to cope 

frequent disaster types such as storm and drought. Florida State mitigation plan regulates 

the plan maintenance, risk assessment, and funding to address local disasters [13]. In 

addition to disaster response strategies, researchers are also working on technologies to 

predict disasters in advance to help people evacuate in a timely and orderly manner. For 

example, China is building a massive typhoon alarm system to protect the residents of 

the southern sea region [14]. Similarly, Japan built early warning systems for tsunamis 

and earthquakes, in order to mitigate those frequent local disasters [15]. In Europe, 

researchers have developed seasonal water related early warning system to detect water 

flooding, debris flow, mud flow, and landslides [16]. 

In the response phase, depending on the severity of the disaster, neighborhoods 

and local government, state government, FEMA, and NGOs provide assistance to the 

victims. Such assistance can be in the form of providing search and rescue (SAR) 

specialties, temporary shelters, transportation, utilities, medical care, financial support, 

and insurance coverage. Following reconnaissance missions in affected areas, the type 
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and amount of assistance will be determined and coordinated. For example, an area 

which has lost gas stations may be in need of immediate gasoline supply.  

The last phase of disaster management is the recovery which aims at helping the 

affected communities and local economy to bounce back to normal conditions. This can 

be achieved by helping victims rebuild their homes and businesses, family structure, 

social network, public services, recover from injuries, minimize psychological 

influences, and restore the economy. The rebuild process also serves to enhance the 

future resiliency. During this long-term endeavor, it is critical to pay special attention to 

social equity given the disproportionate extent of damage to vulnerable communities and 

underserved populations. If done properly and effectively, by the end of the recovery 

period, communities and local jurisdictions should be sufficiently prepared for the next 

disaster event.  

1.1.3. Disaster information  

Among the many factors that affect the success of disaster management, timely 

access to accurate data describing the severity, quantity, and location of the damage with 

sufficiently high spatiotemporal resolution is of utmost importance [17, 18]. Such 

information can significantly improve the quality and timeliness of related decisions 

with respect to SAR operations [19], evacuation [20], infrastructure repair, zoning 

improvement, building code amendment, public disaster education [21], debris cleanup, 

victim resettling, and processing insurance claims [22].  

According to FEMA [23] and the American Red Cross (ARC) [24], local or 

county assessment is the most critical step for both individual assistance (IA) and public 



 

7 

 

assistance (PA). The information submitted by local or county emergency management 

needs to be verified by the state or tribal government through preliminary damage 

assessment (PDA). If the damage exceeds a certain amount, further assistance will be 

provided by FEMA (Stafford Act declaration [25]). Thereby, damage assessment 

conducted by local authorities needs to be prompt, accurate, efficient, and consistent.  

In addition to IA and PA, the outcome of PDA may also directly inform short-

term disaster response, according to FEMA National Urban Search & Rescue (US&R)  

Response System rescue field operations guide [26]. Information used for US&R range 

from location and type of impacted areas, people, and debris, as well as building 

configuration and collapse type. Table 3 lists work types and relevant information for 

PA operations. For instance, in debris removal, the assessment information includes road 

location, debris location and amount, debris type (e.g., vegetation, concrete, or steel), 

and removal cost per cubic yard. 
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Table 3. Information and work examples for public assistance (PA) [23]. 

Work type Work example Information type 

Debris removal 
Removal of debris from public or 

private property and right-of-ways 

Road and debris location, 

debris amount and type, cost 

Emergency 

protective 

measures 

Protecting public health and safety, 

and property 

Infrastructure cracks, 

failures, or unstable 

working statues, cost 

Roads and 

bridges 

Restoring roads (paved, gravel, and 

dirt), bridges, and their components 

Surface, bases, shoulder, 

and ditch working 

conditions, cost 

Water control 

facilities 

Flood control, maintenance of fish 

and wildlife, storm water 

management 

Channel alignment, flood 

location and amount, cost 

Buildings and 

equipment 

Restoring damaged buildings and 

equipment 

Building and equipment 

working conditions and 

performance, cost 

Utilities 

Replacing water storage facilities, 

treatment plants, and delivery 

systems, natural gas transmission and 

distribution facilities 

damaged system 

components, cost 

Parks, 

recreation 

facilities, and 

other 

Restoring facility needed for erosion 

control, replanting trees, shrubs, and 

other vegetation 

Location of damaged trees, 

required labor, cost 

 

Similarly, Table 4 shows information needs for IA operations. According to this 

Table, damaged homes are counted in clusters (5-100 homes per cluster) with occupancy 

status, household insurance, cause of damage, and damage degree (destroyed, major, 

minor, or inaccessible). Notably, homes located on flooded roads are counted as 

inaccessible, making it necessary to reflect the location of flooded areas and roads in 

those assessments. Altogether, this information is used to determine if disaster survivors 

are eligible for FEMA or state assistance. Moreover, insurance companies and NGOs 

deliver their aid packages based on this information.  
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Table 4. Individual assistance (IA) information category and detail [23]. 

Information  category Information detail 

Concentration of damage 
Damaged house amount by cluster (5 to 

100 homes) 

Ownership status 
single-family residence, multi-family 

residence, manufactured homes 

Occupancy status Owner, renter 

Households with insurance coverage 
Homeowners insurance, flood insurance, 

renters insurance, 

Number of homes impacted and degree of 

damage 
Destroyed, major, minor, and inaccessible 

Estimated cost of assistance Uninsured damage to homes 

Impact to populations with greater need 

The percentage of the population living 

under poverty thresholds, or 65 years and 

older 

Mass care/emergency assistance-feeding 

operations information 

Number and location of fixed feeding 

sites (by county), number of vehicles 

providing mobile feeding 

Emergency sheltering information Shelter with family, dorms, ships, tents 

 

Figure 2 illustrates the traditional information flow in disaster reconnaissance. As 

shown in this Figure, first responders investigate the damage and status of victims, and 

implement the most effective rescue plan. Meanwhile, they report the situation to the 

jurisdiction coordinator and other decision-makers. Based on the available resources, the 

coordinator either dispenses resources to the victims or reach out for more resources. In 

the meantime, providers exchange resource information with the responders to better 

meet the requirement. Lastly, disaster-related information is shared with the public, 

media, and other stakeholders. In this time-compressed period [27], any latency in 

information collection and exchange process can lead to drastic delays in delivering 

assistance. In addition, this process is prone to social inequality due to the presence and 

influence of social stereotypes and bureaucracy, and the fact that affected communities 
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are mostly on the receiving end of assistance, rather than being actively involved in the 

process.  

 

Figure 2. Disaster information flow. 

 

Current PDA methods consist of self-reporting, fly-over, windshield surveys, and 

door-to-door site assessment. While aerial reconnaissance is more suitable when damage 

is visible from the air, follow-up ground surveys may be needed to sample and verify the 

results. Collected data is compiled and presented in a format interpretable by geographic 

information system (GIS)-based computer tools that use the U.S. National Grid (USNG) 

for damage quantification, mapping, and analysis. However, this type of assessment 

requires analysts to manually process a large volume of collected heterogeneous data 

from many sources. 
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Fly-over survey (aerial reconnaissance) is one of the most effective methods for 

locating victims, assessing the overall damage, and documenting the progress of 

recovery efforts, especially in the aftermath of large-scale natural disasters such as 

hurricanes, tornados, earthquakes, and wildfires. Traditionally, such reconnaissance is 

performed using helicopters to observe and record the impact across a large area [28]. In 

recent years, the advent of unmanned aerial vehicles (UAVs; a.k.a., drones) has created 

new opportunities to adopt this technology for aerial data collection mainly due to its 

flexibility, lower cost, and ease of use [29]. According to the U.S. Federal Aviation 

Administration (FAA) estimation, by the year 2022, there will be more than 2.4 million 

drones in the U.S. [30], which equates to 1 out of every 140 Americans flying a drone by 

that year. As FAA safety regulations concerning among other, temporary flight 

restriction (TFR), are being amended and evolve over time, it is not hard to imagine that 

the widespread ownership and use of drones can lead to the generation of large volumes 

of volunteered geographic information (VGI) [31] in natural disasters and during the 

recovery period. Having said that, regardless of the type of aerial data acquisition 

platform (helicopter or drone), the current practice is heavily dependent on skilled 

personnel, heavy manual effort for data cleaning and processing, and expensive 

equipment for data storage and exchange [32]. In natural disasters, when municipalities 

and first responders are overwhelmed with limited personnel and large quantities of 

work to be done, such limitations can hinder their ability to take timely actions based on 

appropriate data and resulting information, and deliver necessary resources to disaster-

affected areas. 
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In this Dissertation, informed by the limitations of the current practice in disaster 

management, and the need for timely collection and exchange of disaster information 

particularly in large-scale disasters, aerial data collection and artificial intelligence (AI) 

in the form of computer vision are used to extract and map the location and extent of 

damage to ground objects. Combining the outcome of this work with the promise of 

widespread crowdsourcing applications in the future, it is envisioned that in the long-

term, ordinary citizens will be more meaningfully involved in all phases of disaster 

management, leading to more transparency, and better social equity and fairness. 

1.2. Artificial intelligence  

1.2.1. Machine learning and neural network 

AI refers to a system that can perceive and interpret external data and 

independently perform actions to achieve their goals [33]. As a category of AI methods, 

machine learning (ML) uses algorithms and mathematical models including support 

vector machine (SVM), decision tree, Bayesian network, and deep learning (DL) in 

supervised, unsupervised, or reinforcement learning schemes to improve task 

performance on given data [34]. In supervised ML, data with known input and output is 

used to optimize the model. The input and output signals could be a combination of 

arrays, vectors, or matrices. Once the learning process is completed, the model is capable 

of predicting accurate output with new input data [35]. In unsupervised ML, algorithms 

take unlabeled data, identify the commonalities in the data, and output separated data 

clusters [36]. In reinforcement ML, agents are created to complete particular tasks 

without prior knowledge and by setting up several policies to reward or penalize agents 
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depending on their performance. The final goal for the agents is to maximize its reward 

[37]. 

DL is based on artificial neural networks (ANNs) [38] with multiple hidden 

layers. Each layer has multiple neurons, as shown in Figure 3. Each neuron takes its 

input from the previous layer, applies a mathematical calculation with the weight in the 

connection, and passes the output to the next layer. Based on the network structure, there 

are several types of ANNs, including feedforward neural network (FNN) [39], recurrent 

neural network (RNN) [40], convolutional neural network (CNN) [41], and modular 

neural network (MNN) [42].  

 

Figure 3. Artificial neural networks (ANNs) structure. 

 



 

14 

 

The first ANN proposed by psychologist Rosenblatt in 1958 was designed as a 

mathematical model to mimic human brain with multiple neurons and recreate brain 

responses to random environmental stimulations [43]. Since then, many researchers 

developed other variations of ANN and implemented them in a host of DL applications. 

For example, Arel et al. [44] created multiple traffic light control agents using Q-

learning [45] (reinforcement learning) to reduce delay times in a simulation environment 

comprising eight intersections with a steady traffic pattern. Agents controlling traffic 

lights were rewarded (from -1 to 1) with a reward policy (function) such that reducing 

delay time would result in a positive reward and vice versa. After 20,000 iterations, 

agents learned to control the traffic lights collaboratively and outperformed conventional 

isolated control system.  

Unlike typical ANNs, autoencoder networks have the same size of output as the 

input with the smallest bottleneck layers in the middle of the network [46]. This structure 

uses unsupervised learning to encode the input (layers to the left of the bottleneck) and 

reconstruct less noisy representation (layers to the right of the bottleneck) with close 

resemblance to the input. Autoencoders are used in applications that require noise 

removal, such as speech recognition [47], image noise control [48], and semantic 

information extraction [49].  

In another study, Amodei et al. [50] presented an end-to-end approach using 

RNNs to recognize both English and Mandarin in one generative algorithm. Since 

supervised RNNs use internal memory to store information from previous timestamps 

and process continuous sequence, they are suitable choices for sequential data such as 
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speech recognition. Other ANN structures such as FNN and autoencoders are also 

adopted in voice recognition to reduce input noise and model speech pattern using both 

supervised and unsupervised learning. 

1.2.2. Computer vision and CNN applications  

Computer vision (CV) is a field in computer science that aims to interpret visual 

information embedded in digital imagery (photos and videos) [51]. A grayscale digital 

image can be described as a matrix (i.e., pixel grid) in which cells (i.e., pixels) contain 

an integer (ranging from 0 to 255) indicating the level of brightness of that cell [52]. The 

image resolution is reflected in the dimensions of the matrix. If the image is in color, 

three overlapping matrices (or channels) corresponding to the three basic colors of red, 

green, and blue (a.k.a., RGB) can be used to describe the image [53]. Together, these 

channels represent all visible colors to the human eye. A digital video can be 

deconstructed to its building blocks (i.e., frames). When played sequentially at a specific 

speed (expressed in frames per second, or FPS), the output is perceived by the human 

eye as a continuous scene. The FPS for modern real-time videos is 30 and above [54].  

CV methods broadly cover image acquisition, pre-processing, feature extraction 

[55], detection [56], and segmentation [56]. CNN is one of the most popular forms of 

neural network architectures that have been successfully used for a variety of CV 

applications [57] such as image classification (general image content), object detection 

(object types and locations in an image), and instance segmentation (pixel-level object 

boundaries in an image). Figure 4 demonstrates examples of CNN outputs in the context 

of this research. In these examples, a classification CNN takes an input image and 
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produces a binary output indicating the presence or absence of a damaged roof in the 

image. By combining this model with sliding boxes, one can try to determine the 

location (i.e., localize) of the damaged roof. However, since the sliding box method is 

extremely slow [58], object detection CNNs are instead developed to produce bounding 

boxes for localizing and classifying multiple objects simultaneously. Finally, 

segmentation CNNs are capable of predicting pixel-level boundaries (a.k.a., masks) of 

detected objects with classification information.  

   

 

Figure 4. CNN model outputs: classification, classification and localization, object 

detection, and instance segmentation.   

 

The convolution computation defined in Equation 1 is often implemented in 

image processing to achieve effects including blurring, sharpening, edge detection, and 

more [59]. In this Equation, 𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗) represents the pixel value in the input image, 

𝑜𝑢𝑡𝑝𝑢𝑡(𝑚, 𝑛) indicates the output pixel value, and K is the filter kernel. The symbol × 

denotes convolution computation which multiplies each value in the input matrix with 

similar local values (weights) in the kernel and then sums them to generate the output. 
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As the example in Figure 5 shows, a 3×3 kernel is applied on a 5×5 input matrix and is 

slid over all positions, resulting in a 3×3 output matrix. The sliding interval (e.g., 1 pixel 

in this example) is termed stride [60]. By definition, convolution computations reduce 

the size of the input matrix, as evidenced by the example shown in Figure 5. Therefore, 

to ensure that the output matrix maintains the exact same dimensions of the input matrix, 

extra pixels (with 0 values) are added on the outside of the output matrix, in a process 

referred to as padding [61].  

𝑜𝑢𝑡𝑝𝑢𝑡(𝑚, 𝑛) = ∑ 𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗) × 𝐾(𝑚 − 𝑖, 𝑛 − 𝑗)

∞

𝑖,𝑗=−∞

 (1) 

 

 

Figure 5. Convolution computation example.  
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CNN models apply convolution computations on RGB input grid to extract 

useful features (e.g., object edges, shapes, and patterns), followed by multiple max 

pooling [62], regression, and optimization calculations, and ultimately output results in 

the form of image classification, object detection, or instance segmentation. Figure 6 

demonstrates a sample CNN architecture which contains multiple max pooling and 

convolution layers. Each convolution layer consists of serval kernels with separate 

weights. Adjusting the values of each of the many parameters of a CNN (e.g., weights in 

convolution kernels) is key to successfully understanding input and generating an 

accurate output. To obtain these weights, a CNN must be first trained on ground truth 

data, that often comes in the form of a carefully annotated dataset. Multiple iterations of 

training process lead to minimizing the error between ground truth and prediction. The 

optimized parameters and layer structure (i.e., CNN architecture) are referred to as a 

fully trained model. Researchers are developing different CNN architectures, with 

varying number of layers, kernel sizes, and loss functions, that can handle different input 

and output formats and diverse object classes, with best possible accuracy and 

processing speed.  
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Figure 6. Convolutional neural network (CNN) structure.  

 

The very first CNN “neocognitron” published by Fukushima [63] was designed 

to recognize the patterns of a given black and white digital image. This CNN output has 

only 10 categories corresponding to numbers 0 to 9 with probabilities. Later, Lecun et al. 

[64] proposed a CNN with denser layers and expanded output classes including numbers 

and all English letters in MNIST dataset. Beyond document analysis, some CNN 

applications aim at image content search and captioning, facial recognition, and video 

processing. Table 5 lists examples of such CNN applications with their corresponding 

learning type, input and output data type, and speed.  
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Table 5. Summary of CNN applications in different domains. 

CNN 

application 

Learning 

type 
Input Output Speed 

Facial 

recognition 
Supervised 

Facial images 

or videos 

Emotion, identity, 

facial features (e.g., 

lips) 

>30 

FPS 

Document 

analysis 
Supervised Images Text N/A 

Self-driving Supervised 

First person 

driving 

stream 

Object location, 

distance, and meaning 

(e.g., traffic signs) 

>250 

FPS 

Drug discovery Supervised 
3-D medicine 

vectors 
New 3-D drug models N/A 

Language 

processing 
Supervised Audio Text N/A 

Gaming Reinforcement 
Game 

features 
Gaming operation 

>30 

FPS 

GAN Unsupervised Images Images N/A 

Disaster 

reconnaissance 
Supervised 

Aerial fly-

over visual 

input 

GIS of damage and 

victim 

>30 

FPS 

 

In recent years, self-driving vehicles have utilized CNN to process visual input 

from cameras for recognizing and localizing traffic lanes, traffic lights, pedestrians, road 

signs, and other vehicles [65, 66]. The output of these CNNs is used to control driving 

operations such as start, stop, steer, brake, and accelerate. Considering that a driving 

vehicle needs to make decisions in a split of a second, processing speed is a critical 

factor in this domain and currently, an FPS of up to 250 has been achieved [67]. Besides 

cameras input, self-driving vehicles normally integrate multiple sensors such as radar, 

global position system (GPS), and light detection and ranging (LiDAR) to generate 

accurate traffic information. Similarly, facial recognition uses CNNs to locate human 

faces in image or video input, followed by classifying emotion, identity, or facial 
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features such as lips and eyebrows for various applications including entertainment and 

security [68, 69].  

Although CNNs have convolution kernels that are designed to process two-

dimensional matrices, with proper pre-processing such as Fourier transformation [70], 

CNNs can also process data of one or multiple dimensions. For instance, in speech 

recognition, time and frequency data input can be transformed into two-dimensional 

matrices to be processed by CNNs [71]. In medical and chemical discovery, three-

dimensional models of molecules are created as training data to automatically generate 

new chemical combinations [72, 73]. CNNs are also implemented in gaming to create 

agents that outperform human players. For example, alpha GO uses visual representation 

of the game features such as location and color of stones to extract gaming information. 

The game agent further utilizes reinforcement learning to learn strategies by playing 

with itself for millions of games. To date, alpha GO has defeated the best human GO 

player by a large lead [74]. Goodfellow et al. [75] proposed a generative adversarial 

network (GAN) which integrates autoencoder and CNN to create new data with the same 

statistical attributes of the original training data. Applications for GAN include 

animation creation [76], video game development [77], and data augmentation [77].  

1.3. Organization of this Dissertation 

There is a tremendous amount of aerial visual data collected during and after 

disasters. This data, however, is often processed manually which is a resource intensive 

and error-prone process, leading to inefficiencies and bottlenecks in disaster 

management practices. The goal of the research presented in this Dissertation is to utilize 
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CNNs to automate the processing and mapping of disaster impact data. In particular, two 

fully annotated video datasets, namely Volan2018 and 2019 are created to train, validate, 

and test customized CNNs for disaster reconnaissance. Altogether, Volan2018 

(bounding box annotation) and Volan2019 (pixel-level annotation) contain 255,458 

instances of key disaster damage categories including building roofs (damaged and 

undamaged), flooded area, car, boat, people, debris, road, and vegetation. The term 

“Volan” is singular for Volans (short form of Piscis Volans), which is a constellation in 

the southern sky, representing a flying fish that can jump out of the water and glide 

through the air on wings. Volans was one of twelve constellations created by Petrus 

Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman 

[78]. 

First, CNN architectures you-only-look-once (YOLO) [79] and RetinaNet [80] 

are applied to investigate bounding box detection. Next, pixel segmentation architectures 

Mask-RCNN [81] and PSPNet [82] are implemented to pursue more accurate prediction 

and mapping. Detailed analysis considering the effect of viewpoint altitude, data 

balance, pre-trained weights, error matrix, and CNN model selection are carried out to 

improve the efficiency and reliability of the developed methods. Moreover, predicted 

objects and their corresponding locations are further projected on a geocoded map to 

quantify, locate, and communicate the disaster impact with response teams and other 

stakeholders. Experiments are conducted to investigate moving object projection, object 

tracking and counting, and reference point updating and calibration. Results suggest that 

the designed mapping technique is capable of projecting disaster information from 
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perspective aerial views onto an orthogonal coordinate system with high accuracy and 

speed.  

The remainder of this Dissertation is organized as follows: In Chapter 2, a 

thorough review of the literature is conducted. Chapter 3 explains the methodology for 

building the video datasets and training CNN models. Next, bounding box detection 

experiments and results (Chapter 4) and pixel segmentation detection experiments and 

results (Chapter 5) are presented. In Chapter 6, the developed mapping technique is 

described with the help of several experiments. Finally, Chapter 7 will conclude the 

work conducted in this research with a summary of findings and potential direction for 

future work. 
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2. LITERATURE REVIEW 

This Chapter reviews hurricane categories, and studies relevant literature in big 

data remote sensing, artificial intelligence (AI) structures, large imagery datasets, GPS-

free mapping techniques, and social vulnerability within the context of natural disasters. 

2.1. Hurricane impact 

The Saffir-Simpson Hurricane Scale [83] groups hurricanes into five major 

categories. Table 6 shows the category specifications with a recent example. Category 1-

4 are hurricanes that have the wind speed from 119 KPH (74 MPH) to 252 KPH (155 

MPH). Category 5 hurricanes have a wind speed greater than 252 KPH (156 MPH) [84].  

 

Table 6. Saffir-Simpson Hurricane Scale.  

Hurricane scale KPH MPH Example (year) 

Category 1 119-152 74-95 Lorena (2019)  

Category 2 154-177 96-110 Humberto (2019) 

Category 3 178-209 111-130 Miriam (2018) 

Category 4 210-252 131-155 Lorenzo (2019) 

Category 5 >252 >156 Dorian (2019) 

 

Hurricanes cause strong winds and heavy rainfall, and can cause catastrophic 

damage before gradually slowing down and losing energy as they move over land. 

Hurricanes Harvey, Irma, and Maria in the 2017 hurricane season are among the costliest 

water-related disasters in recent history which led to $125 billion in damages [85]. In 

2018, two major hurricanes, Florence [86] and Michael [87], struck the U.S. coastal 

areas and left behind approximately $50 billion in damages. More recently, in 2019, two 

category 5 hurricanes, Lorenzo (developed from category 4) [88] and Dorian, along with 

16 other named storms affected parts of U.S., Canada, U.K., and west Africa. More 
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hurricanes are forecasted to impact coastal communities due to a global rise in sea 

temperatures [89].  

Considering the severity of hurricane damage and cascading effects that follow, 

particularly as experienced by communities along the U.S. Gulf Coast, the main focus of 

this Dissertation is to explore the extent to which current capacities in disaster 

management can be augmented with a special focus on hurricane damage. 

2.2. Big data, remote sensing, and disaster information retrieval 

The digital technology has been reshaping information acquisition, exchange, 

and delivery for decades. With more prevailing personal mobile devices producing 

various forms of data such as text, audio, photo, video, blogs, and tweets, numerous 

data-driven applications are continuously developed [90]. With respect to disasters, big 

data can help better understand and document vulnerability, degree of preparedness, 

social equity and risk, as well as the quality of SAR and recovery [91-93]. Previous 

research has focused on mining social media data during disasters. Craglia et al. [94] 

mapped VGI using user-generated content (UGC) from Facebook and Twitter. Kim and 

Hastak [95] extracted disaster information using ML from online social networks. Yuan 

et al. [96] analyzed semantic meanings in tweets during hurricane Matthew. Goodchild 

and Glennon [97] crowdsourced disaster information collection to the public. Zou et al. 

[98] mined tweets during hurricane Harvey to provide an indication of geographical 

disparities in recovery. Lastly, in order to achieve a faster disaster inspection, a Monte-

Carlo searching algorithm for post-disaster search using drones was tested by Baker et 

al. [99] and found to be more efficient than conventional sweeping search. However, 
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mining the data contributed by a large number of people often involves issues such as 

noise, bias, and authenticity. 

Aerial remote sensing capacity is crucial in many domains including disaster 

management, agriculture, ecology, marine industry, mining, construction, transportation, 

and urban design [29, 100]. CV and 3D photogrammetry modeling are often integrated 

with aerial surveys to generate GIS data. Radovic et al. [101] explored using YOLO to 

detect ground airplanes in satellite images. Region-based CNN (R-CNN) and kernelized 

correlation filter (KCF) were used by Han et al. [102] to build a real-time human 

tracking system from drones. In lieu of an onboard computer, Narayanan et al. [103] 

tried high-performance cloud computing to achieve real-time drone detection of 

everyday objects. Guirado et al. [104] tracked and monitored sea whales from satellite 

imagery using Faster R-CNN and an in-house whale dataset. Friedel et al. [105] utilized 

self-organizing map (SOM) of the aerial spectral information to map soil and vegetation 

in drone footage. On a mining site, Suh and Choi [106] integrated ground control points 

(GCPs) and drones to produce maps of site terrain with a 14-cm error. Ventuna et al. 

[107] used drone cameras and GCPs to remodel the nursery environment for coastal fish 

with a high accuracy (89.1%). Cunliffe et al. [108] used images captured by drones and 

structure-from-motion (SfM) to produce accurate grain biophysical data. While past 

work has successfully extracted information from publicly available big data and aerial 

footage, there is still a lack of research on aerial remote sensing for real-time disaster 

information extraction.  
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Table 7 demonstrates examples of previous work in aerial detection of disaster-

related object classes. As shown in this Table, Rahnemoonfar et al. [109] proposed a 

method that uses their own CNN architecture, followed by an RNN to detect flooded 

area from an aerial angle with 96% pixel accuracy. Ghaffarian and Kerle [110] explored 

histogram of the oriented gradients to identify debris types in drone and satellite 

imagery, but did not locate the debris automatically. Li et al. [111] built a CNN using the 

VGG-19 architecture [112] to quantify and localize damage on a map with 95.5% 

accuracy from social media images. However, this model only described ground-level 

damage information since almost all social media images are taken on the ground. Liu et 

al. [113] compared SVM, FNN, and CNN for wet-land classification from images 

acquired from drones, and achieved a 88% accuracy in classifying wetland using the best 

performing CNN model. Chen and Li [114] created a framework to detect building roofs 

with a 75% precision using Mask R-CNN for post-earthquake recovery and PDA. Rao et 

al. [115] utilized a fully connected network (FCN) to detect single roads from satellite 

images with 92.5% accuracy. While this approach provides good accuracy, it costs 6.32 

seconds to process one image due to the dense layers in the FCN. Ghaffarian et al. [116] 

proposed CNN models to update post-disaster reconstruction data over time from 

OpenStreetMap [117], and extracted information such as building edge, damage, and 

rebuild progress. While this framework captures the recovery progress with 84.1% 

precision, it heavily relies on the accuracy of the third party data provided by 

OpenStreetMap.  
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Table 7. Current aerial disaster detection examples. 

A
u

th
o
rs

 

T
a
rg

et
s 

P
re

ci
si

o
n

 

(%
)  

Detection Examples 

 

R
ah

n
em

o
o
n
fa

r 
et

 a
l.

 

F
lo

o
d
 a

re
a 

9
6
 

 

G
h
af

fa
ri

an
 a

n
d
 K

er
le

 

D
eb

ri
s 

9
5
.5

 

 

L
i 

et
 a

l.
 

G
ro

u
n
d
 d

am
ag

e 

9
5
.5

 

 
 



 

29 

 

Table 7. Continued.  
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Table 7. Continued.  
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2.3. CNN architectures  

With the development of new graphics processing unit (GPU) technology, the 

application domain of CNN has been rapidly expanding. Alex et al. [118] proposed 

denser AlexNet with 8 layers (60 million parameters) achieving 47.1% precision on 



 

31 

 

ImageNet dataset. Simonyan and Zisserman [112] designed VGGNet with 11-19 layers, 

which outperformed AlexNet by linking more network parameters. GoogLeNet 

proposed by Szegedy et al. [119] included inception modules that integrate convolution 

computations and max-pooling, thus outperformed VGGNets. The more complex 

ResNet [120] architecture linked multiple layers with residual networks leading to a 

CNN model that can outperform an average human by 3.57%. 

However, the above architectures are designed for image classification, and 

cannot produce output that describes the types (i.e., multiple object classes) and 

locations of detected objects in the image. As the information carried through CNN 

layers contain features that lead to more accurate candidate regions proposals, several 

researchers have focused on more efficient architectures for object detection. For 

example, R-CNN introduced by Girshick et al. [121] used region proposal and achieves 

a 53.3% mean average precision  (mAP) on VOC dataset. Girshick et al. [122] later 

introduced Fast R-CNN with region of interest (RoI) to improve prediction speed. Ren et 

al. [123] proposed region proposal network (RPN) forming Faster R-CNN, which 

achieved a 73.2% mAP on VOC 2007 datasets [124]. Dai et al. [125] investigated pre-

processing input with a 3✕3 position-sensitive map, resulting in region-based fully 

convolutional networks (FRCN) that process images 2.5-20 times faster, with similar 

precision as Faster-RCNN.  

One-stage architectures process images with a higher speed since they generate 

candidate regions and classify them at the same time, albeit with lower precision. For 

instance, YOLO introduced by Redmon et al. [126] accomplished  63.4% mAP on VOC 
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2007 dataset with the processing speed of 45 FPS. Liu et al. [127] proposed single shot 

multibox detector (SSD) based on MobileNet which achieves real-time speed (more than 

30 FPS) and 76.8% mAP on VOC 2007. Lin et al. [80] suggested a CNN architecture 

called RetinaNet with focal loss function, which can better learn hard examples, yielding 

37.8% average precision (AP) on COCO dataset.  

Considering pixel segmentation, He et al. [81] created Mask-RCNN which 

produces pixel-level segmentation by adding one more 1×1 convolution layer on top of 

the predicted bounding boxes [81]. Badrinarayanan et al. [128] introduced SegNet which 

consists of encoder and decoder layers with bottleneck layers in between. SegNet is 

capable of producing pixel level semantic segmentation at 90.40% pixel precision on 

CamVid dataset. Zhao et al. [82] contributed PSPNet which replaced the bottleneck 

layer with a pyramid pooling module (PPM) which consist of four parallel convolution 

network. This PPM is proven to outperform SegNet especially on small objects.  

2.4. CNN training datasets 

In order to design and test CNN architectures for better performance (i.e., speed, 

accuracy, output type), it is essential to have large-scale annotated datasets. To this end, 

several challenges and corresponding datasets were created in the past to solicit 

innovative solutions. The ImageNet large scale visual recognition challenge (ILSVRC) 

was created by Russakovsky et al. [129] for image classification with a dataset called 

ImageNet. ImageNet contains 14,197,122 images with 27 classes, each consisting of 

several sub-categories. For example, the class sport has subcategories such as racing, 

contact sports, and water sports. The PASCAL challenge [130] was initiated by 
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Everingham et al. resulting in dataset called visual object classes (VOC) for object 

detection. VOC covers 20 classes with 11,530 images containing 27,450 annotated 

objects. Common objects in context (COCO) challenge was introduced by Lin et al. 

[131] with a dataset of the same name for segmentation. COCO contains 80 object 

categories with 330,000 images and 1.5 million object instance segmentation. While 

ImageNet, VOC, and COCO datasets were originally created for classification, object 

detection, and segmentation tasks, respectively, the current versions of these datasets 

support all three tasks. 

The majority of large datasets to date portray everyday objects such as animals, 

computers, furniture, food, and trains, and there are few remote sensing datasets. AID 

[132] contains 10,000 images retrieved from Google Earth and it is annotated for 

classification. Bounding box annotated dataset PatternNet [133] consists of 38 classes 

with images obtained from satellites. Collected from a lower altitude, drone-captured 

images in Minidrone [134] are annotated for classes people and car mainly for 

considering intended applications for surveillance. Ritwik et al. [135] built a satellite 

imagery dataset named xBD consisting of 850,736 building annotations with damage 

description. However, xBD contains only a single class, building, and lacks other 

classes. To the author’s best knowledge, there is a dearth of large fully annotated aerial 

visual datasets for applications in disaster information retrieval. 

2.5. GPS-denied object localization and mapping  

The output (i.e., bounding-boxes, segmentation) of a CNN model can be used to 

localize, quantify, and map detections for end users, depending on their needs and 
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expected levels of access to information. To obtain the position of captured images (and 

subsequently, using this position information to calculate the absolute locations of 

detected objects), the most trivial solution is to equip the data collection platform 

(helicopter or drone) with a GPS sensor that continuously transmits the global 

coordinates of the device. However, GPS data is not always available when timely 

disaster information is needed the most. In urban settings, for instance, GPS signals can 

be intermittent due to signal loss or multipath effect (i.e., signals reflected off buildings 

or other obstacles) [136]. During times of major disasters, it has been reported that real-

time kinematic (RTK) tower failures caused by disasters heavily reduced the accuracy of 

GPS signal down to 16 feet or worse [136]. Additionally, if visual data collection is 

crowdsourced, some users may not have the will or knowledge to share their GPS 

location (due to privacy issues, for example). In other domains such as defense, indoor 

navigation, and underwater exploration where operations are carried out in unfamiliar or 

unfriendly environments, open access to GPS signals may not be even possible. 

Therefore, enabling GPS-denied localization and mapping is of major importance in the 

work conducted in this Dissertation. 

To obtain the position, velocity, and time (PVT) information in GPS-denied 

environments, some researchers have used alternative data sources such as inertial 

measurement unit (IMU) readings, stereo (depth) cameras, laser scanner, Wi-Fi signals, 

radio-frequency identification (RFID), and sonar [137-144]. Chao et al. [145], for 

example, used monocular cameras to build visual simultaneous localization and mapping 

(SLAM) for drone navigation. Pestana et al. [146] utilized OpenTLD tracker to enable 
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drones to follow moving objects. Rajeev et al. [147] proposed indoor (GPS-denied) 

drone navigation using augmented reality (AR) and a pre-built 3D model. Bachrach et al. 

[148] integrated a depth camera with regular RGB cameras to generate instant 3D paths 

for navigation. Scaramuzza et al. [149] designed a visual-inertial multi-drone system 

with cameras and IMUs to autonomously fly and map the environment. While previous 

work has investigated GPS-denied navigation, the challenge of aerial object localization 

and mapping using only visual information (i.e., vision-based navigation) has to a large 

degree remained unexplored. 

2.6. Social vulnerability  

Social vulnerability refers to the susceptibility of a certain group of people to 

disaster impact [150]. Burton et al. [151] framed this concept through the lens of social, 

economic, and physical conditions that make people and communities vulnerable to 

natural hazard events. Blaikie et al. [152] defined social vulnerability as a social or 

personal characteristic of people and their ability to anticipate, cope with, and recover 

from hazard impact. Cutter et al. [153] introduced social vulnerability index (SoVI) to 

describe and analyze the county-level social vulnerability. Collectively, the main 

components of social vulnerability research include the identification of influential 

variables, interrogation of the impact of these variables and their relationships, and 

exploring approaches to reduce social vulnerability.  

Admittedly, certain population groups are more vulnerable than others. For 

example, studies conducted on the social impact of hurricane Katrina revealed that New 

Orleans communities with low-income and limited education recovered at a slower pace 
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[154]. Low-income households, that are less likely to have sufficient disaster insurance 

or safeguards, are often underfunded during the rebuild and recovery process which is 

primarily funded by insurance claims and bank loans. In contrast, high-income families 

possess more resources to recover from damages; some can even relocate to their second 

home that is not impacted by the disaster [155]. 

Gender and race are two more important factors in social vulnerability. Due to 

the fact that women are disproportionally responsible for raising children, taking care of 

elderly family members, and doing housework, they may experience more anxiety in the 

aftermath of a major disaster [156]. Moreover, women are at the disadvantaged position 

in the post-disaster job market and are less likely to earn enough income to pay for 

recovery expenses [157]. Studies show that black and Hispanic families on average deal 

with more housing problems than white population groups [158], and many 

underrepresented and minority groups live in unsafe buildings and experience sheltering 

problems after disasters [159]. The agreed upon influential factors include 

socioeconomic status, gender, race and ethnicity, age, commercial development, 

employment, rural or urban location, residential property infrastructure, occupation, 

family structure, education, population growth, medical service, social dependence, and 

special need population [160-165].  

Understanding the disparity of these factors is critical because any or a 

combination of them could be precursors to social vulnerability. For example, high-

income groups who enjoy a better socioeconomic status live in more developed 

residential properties with better infrastructure, making them less vulnerable and more 
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resilient to disaster impact. Conversely, vulnerable groups with low income and limited 

education, often do not have enough insurance, and lack risk awareness and resources to 

recover, making them more susceptible to disasters. Since disaster risks are not borne 

equally by all members of society but are imposed disproportionately on already 

vulnerable social and economic groups [153, 166-169], research and outreach activities 

that enable public participation and engagement in disaster resiliency practices can 

potentially address some of these social vulnerabilities [170], and promote trust-building 

between ordinary people, authorities, and disaster response agencies. 
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3. METHODOLOGY 

This Chapter covers the general methodology designed and pursued in this 

research, including the study of disaster impact, data preparation, model development 

and implementation, and the analysis of results. It also presents four research challenges 

that this research aims to address. 

3.1. General methodology  

With the development of personal recoding and sharing technologies with mobile 

connectivity, more first responders, NGOs, and ordinary citizens are generating large 

amounts of data describing the aftermath of natural disasters including hurricanes and 

floods. The research presented in this Dissertation attempts to collect, annotate, 

experiment with, and analyze these data (particularly aerial imagery) using CNNs, as 

demonstrated in the general methodology in Figure 7.  

 

 

Figure 7. Dissertation methodology. 
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For data collection, web mining and keyword search is used to obtain videos 

from the public domain (e.g., YouTube). As explained later, this raw data needs accurate 

annotation for successful CNN training, validation, and testing. The type of data 

annotation (e.g., bounding box or pixel segmentation annotation) depends on the choice 

of CNN architecture. Data balancing in the form of up-sampling, down-sampling, 

augmentation, and class separation are also carried out to improve model performance 

and create more generalizable output. Given the fully prepared data (training, testing, 

and ground-truth data), multiple CNN models are trained and tested. Prediction results 

are then compared with ground-truth data to evaluate model performance, and several 

iterations are used to modify and retrain the CNN models to achieve better 

performances. Key factors such as pre-trained weights, error matrix, and data balance 

will be analyzed which vary from one CNN architecture to the next.  

This general methodology can be extended to other disaster types as long as the 

required information is perceivable from aerial angle. Although the visual appearance of 

damage varies from one type of disaster to the next, the designed techniques for data 

pre-processing, data balancing, model training and testing, and viewpoint projection and 

mapping are to a large extent generalizable to other disasters.  

3.2. Research challenges 

3.2.1. Identifying objects of interest in disaster footage 

In order to produce proper datasets to train CNNs, a total of 22 aerial videos 

depicting the aftermath of previous hurricanes are mined from the web. After examining 
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the video contents, a list of objects of interest is created. Table 8 shows that most aerial 

videos contain scenes that depict flooded areas building roofs (both damaged and 

undamaged), cars, debris, vegetation, people, and boats. In addition to visibility in aerial 

footage, other key criteria for selecting these classes for video data annotation include 

application to disaster response, and potential for future research. For example, the 

location of people not only does help first responders in SAR operations, but may also 

guide decisions with respects to evacuation and sheltering, resource delivery, and 

recovery efforts. 

 

Table 8. Disaster object classes and applications. 

Object classes Potential application 

Flooded area 
Search and rescue, wayfinding, storm surge mapping, aid 

delivery, insurance claims 

Building roofs (damage, 

undamaged) 

Damage information map, construction repair, search and 

rescue, insurance claims, debris removal 

Car Search and rescue, insurance claims, property rescue 

Debris 
Cleanup, damage information map, construction repair, 

search and rescue 

Vegetation Cleanup, repair 

People Search and rescue, resource deployment, victim relocation 

Boat Insurance claims, search and rescue 

 

3.2.2. Selecting the best CNN architecture  

In order to quantify the performance of a CNN model, the trade-off between 

accuracy (expressed in terms of average precision or AP) and speed (expressed by FPS 

in generated output) must be considered. Table 9 lists examples of CNN architectures 

and their performance when tested on COCO test-dev data [131]. Ideally, the desired 

model for disaster information extraction should be able to operate in real-time (i.e., 30 
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FPS or higher). On the other hand, slower but more precise models are also worthy of 

investigation since the slow speed may be overcome through the use of proper post-

processing techniques. The selection of CNN architecture also depends on the desired 

output types, i.e., classification, object detection, or segmentation. 

 

Table 9. CNNs test Average precision (AP) and processing time (millisecond) on 

COCO test-dev [80]. 

CNN architecture AP (%) Time (ms) 

YOLOv2 [79] 21.6 25 

SSD321 [127] 28.0 61 

R-FCN [125] 29.9 85 

DSSD513 [127] 33.2 156 

FRCN [125] 36.2 172 

RetinaNet-101-800 [80] 37.8 198 

 

3.2.3. Factors influencing model performance  

In line with the previous challenge, it is critical to understand the influence of 

both internal and external factors on model performance, and prediction quality and 

generalizability. Internal factors include those that are inherent to the CNN architecture 

(e.g., pre-trained weights), while external factors describe input data distribution (i.e., 

class balance), drone viewpoint altitude, and object sizes. To address this challenge, 

several CNN models are trained and tested on different data combinations, and targeted 

data augmentation strategies will be utilized to investigate and isolate the effect of each 

factor on model performance. 

3.2.4. Quantifying disaster damage 
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In the disaster aftermath, as summarized in Table 3 and Table 4, cost estimation 

is an important consideration for deployment of resources to the affected areas. For 

example, debris removal may cost close to 30% of the total cost of disaster response 

[171]. Timely debris removal is also necessary for public health and to reduce the load 

on sanitary systems [172]. Therefore, in addition to detect the location of disaster 

damage, this Dissertation aims to enable the quantification of such damage to provide 

estimates of cleanup and recovery cost and time. To achieve this, transforming visual 

information from drone’s perspective view onto an orthogonal mapping system for easy 

geometric calculation is necessary. The key challenge in achieving this is how to 

perform such operations in the absence of geolocation data, or when such data is 

sparsely available. Therefore, this research explores the possibility of using only visual 

information (without relying on drone’s GPS coordinates) to localize and map detected 

disaster damage. 
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4. BOUDNGING BOX OBJECT DETECTION* 

This Chapter presents bounding box object detection by describing the work 

completed on dataset preparation and balancing, CNN model architecture, performance 

measurement, experiments conducted, and analysis of results. 

4.1. Volan2018 data description  

4.1.1. Data collection and annotation  

The first dataset created in this research is named Volan2018 [173], which 

contains 8 videos (Volan001-008) obtained from YouTube using web mining by 

searching keywords such as “hurricane”, “damage”, “aerial”, “drones”, and “aftermath”. 

Volan2018 contains eight aerial videos (with 1280×720 resolution, 30 FPS) from 

different hurricanes that occurred during the 2017-18 hurricane seasons (including 

hurricanes Harvey, Maria, Irm1a, and Michael). Together, this video dataset covers 

locations in the city of Houston (Texas), southern areas of Texas (i.e., Port Aransas, 

Holiday Beach, and Rockport), Puerto Rico (U.S. territory), Big Pine Key, Mexico 

Beach, and St Joe Beach (all in Florida). As part of pre-processing, frames containing 

watermarks in Volan001 and 002, and black margins in Volan008 were removed. These 

videos are extracted frame by frame and then annotated using DarkLabel [174] for the 

following object classes: damaged roof, undamaged roof, debris, vegetation, car, and 

flooded area. One object in one frame is defined as one instance so that the pixel 

                                                 

*Part of this Section is reprinted with permission from “Convolutional neural networks for object detection 

in aerial imagery for disaster response and recovery” by Yalong Pi, Nipun Nath, and Amir Behzadan, 

2020. Advanced Engineering Informatics, 43, 101009, Copyright [2020] by Elsevier. 
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coordination values (with the most upper left point of the frame serving as origin) of the 

bounding boxes are obtained for training. Annotating consecutive frames in a video 

using DarkLabel can cost one annotator approximately 2 seconds per frame, although 

this varies based on the content of the frame and the number and diversity of objects of 

interest that must be annotated. For example, to annotate a 10-minute long video (18,000 

frames), 10 hours of work is expected. Figure 8 illustrates annotation samples for each 

class following the annotation strategy below: 

 Flooded area: Flooded areas in Volan2018 are widespread and connected. 

Bounding boxes corresponding to flood can thus cover the most portion of a 

frame (including other class instances). To avoid this, flooded area is split by 

drawing multiple small bounding boxes that cover only the flooded area without 

including other objects.  

 Debris: Small-sized debris are ignored in annotation since small amounts of 

debris will most likely not turn into major obstacles during disaster operations. 

Large-sized debris that could impede transportation or cause damage is annotated 

by drawing bounding boxes around the edges. Similarly, visible destructions to 

infrastructure and splintered houses are annotated as debris.  

 Cars: Bounding boxes are drawn around the edges for each car, individually.  

 Vegetation: Large boxes are drawn covering the tree cluster if those boxes do not 

cover any other class instance. Otherwise, one separate box is drawn for each 

tree. Lawn is not classified as vegetation for the purpose of this annotation.  
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 Damaged roof: Bounding boxes are drawn to cover the entire roof (include 

undamaged part), but do not include elements below the roof (e.g., walls).  

 Undamaged roof: Bounding boxes are drawn to reach the roof drip edge 

(containing skylight, chimney, etc.), but do not include elements below the roof 

(e.g., walls).   

 

  
(a) (b) 

  
(c) (d) 

Figure 8. Examples of Volan2018 annotation examples [173]. 

 

All 8 videos Volan001-008 with location, duration, and hurricane name listed in 

Table 10. According to FAA [175], drones should fly at or below 300 feet which is the 

altitude limit set by most drone manufactures. On the other hand, most helicopters fly at 

1000 feet and above [176]. Considering the viewpoint altitude, Volan001, 002 and 003 

are grouped as drone dataset (D), while Volan004, 005, and 006 are grouped as 
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helicopter dataset (H). Also, Volan007 (drone video) and Volan008 (helicopter video) 

from hurricane Michael, which are different from Volan001 through Volan006, serve as 

completely unseen test videos to validate the real-world applicability of this work 

beyond common testing and validation practices in computer vision. While in traditional 

computer vision, the same (already available) dataset is split into training and testing 

portions, here the goal is to train a CNN model in advance using past disaster data, and 

then test it on new disaster data captured from a different time and location. 

 

Table 10. Volan2018 video name, event location, duration and instance amount per 

class [173].  
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In this Chapter, models are first trained and tested on Volan001 through 

Volan006 that cover six different locations in three hurricanes during the 2017 season 

(hurricanes Harvey, Maria, and Irma). Next, the trained models are then tested on 

Volan007 and Volan008 captured from the 2018 season (hurricane Michael) at two 

completely different locations (St Joe Beach and Mexico Beach, Florida) to assess the 

scalability and generalizability of the trained models to new situations. 

The instance distribution of Volan001 through 006 is shown in Figure 9. In this 

Figure, each colored line represents one class, the x-axis indicates the frame number, and 

the y-axis indicates the number of instances. This distribution shows the variation of 

visible objects on the ground in camera’s viewpoint as the vehicle (drone or helicopter) 

flies over different areas. For example, in Volan005, a helicopter flies over flooded areas 

in frame 1 through 360, followed by areas that are not flooded in frames 361 through 

1,170, and then over flooded areas again in frames 1,171 through 2,460. A similar visual 

analysis can be performed for all classes in all six videos. 



 

48 

 

 

Figure 9. Volan001-006 instance distribution [173]. 
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In order to quantify the class/instance diversity in Volan2018 dataset, two 

indicators are created to describe the instance frequency, namely, instance number (IN), 

i.e., total amount of instance per class in each images; and frame number (FN), i.e., the 

amount of frames that contain more than one particular class. Next, instance per frame 

(IPF), i.e., average instance amount per class in each frame is calculated by Equation 2.  

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑃𝑒𝑟 𝐹𝑟𝑎𝑚𝑒 (𝐼𝑃𝐹) =  
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 (𝐼𝑁) 

𝐹𝑟𝑎𝑚𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 (𝐹𝑁)
 

(2) 

All the IPF per class in each video are listed in Table 11 and average IPF for 

each classes considering all the videos (all the locations) is calculated in the last column. 

Comparing the IPF values for the same class across different videos (taken from 

different locations or at different times) reveals the significance of a certain type of 

damage or hazard across time (temporal scale) and locations (spatial scale), as viewed in 

aerial imagery taken by drone or helicopter. For example, Volan003 contains more 

flooded areas than other videos, while the location represented in Volan005 has suffered 

less damage (as indicated by the fewer number of damaged roofs) than other locations. 

The last column in the table lists the average IPF value for the entire Volan2018 dataset. 

Evidently, the most frequent classes in Volan2018 are flooded area (5.73), undamaged 

roof (4.68), and vegetation (3.15) whereas debris, car, and damaged roof do not appear 

frequently. The average IPF can assists future data collection by directing more attention 

to classes that are underrepresented (lower IPF values), thus helping balance the dataset. 
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Table 11. Volan2018 dataset instance per frame (IPF) [173]. 

 001 002 003 004 005 006 007 008 
Average 

IPF 

Flooded 

Area 
5.72 5.84 3.72 3.49 10.35 5.25 - - 5.73 

Undamaged 

Roof 
2.94 5.33 12.94 2.64 6.22 3.60 1.34 2.42 4.68 

Damaged 

Roof 
1.34 3.94 1.00 2.84 3.49 3.83 1.63 2.27 2.54 

Car 3.44 1.33 2.72 1.04 3.83 1.88 1.00 - 2.18 

Debris 2.26 1.93 - 3.15 1.70 2.81 2.01 3.92 2.54 

Vegetation 2.54 - 8.86 1.43 1.49 - 1.42 - 3.15 

 

4.1.2. Volan2018 data balancing  

Initially, a model is trained on the whole Volan2018 dataset resulting in a trial 

model. However, this model is overfitting on Volan003, i.e., it performs very well only 

on testing data from Volan003 video but not others. As shown in Table 10, Volan3 

contributes a large portion of images in the training data, hence the trial model is heavily 

biased towards Volan003. In order to overcome this imbalanced data problem, data pre-

processing methods include up-sampling (augment rare data) and down-sampling 

(reduce frequent data) are often adopted [177]. Considering up-sampling Volan2018 will 

result an even larger size of data with images focusing on Volan001-006, which will lead 

to overfitting. In other words, poor performance on unseen data (e.g., Volan007 and 

008). Down-sampling is implemented to balance Volan2018 by removing images from 

the data pool.  

In order to reflect the data balance level, balance ratio (BR) calculated using 

Equation 3 is introduced, where 𝑖𝑛,𝑘 indicates how many instances of class 𝑛 frame 𝑘 

contains, the total number of classes is 𝑐, and the total amount of frames is 𝑓. 
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Moreover, 𝑁̅ =  
∑ ∑ 𝑖𝑛,𝑘

𝑓
𝑘=1

𝑐
𝑛=1

𝑐
 denotes the average instances amount for class c in f 

frames. By definition, the higher BR implies the a less balanced dataset. The most 

balanced dataset should have BR value at 0. This BR can be applied to describe the 

balance level of the whole Volan2018 or individual video dataset (e.g., Volan001). Table 

12 shows the BRs for Volan001-006, suggesting the most balanced video is Volan006 

with BR 0.36 and the most unbalanced video Volan003 with BR 0.79.  

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 (𝐵𝑅) =  

∑ | ∑ 𝑖𝑛,𝑘
𝑓
𝑘=1 −  𝑁̅|

𝑐

𝑛=1

𝑐 × 𝑁̅
 

(3) 

Down sampling in the content of this experiment indicates removing images with 

frequent classes from Volan001-006 thus balance the classes among them. In order to 

implement under-sampling, two parameters are defined in the follow. Diversity 

balancing threshold (DBT) expressed in Equation 4 where  𝑐𝑘 represents the class types 

in frame 𝑘. By definition, DBT is in the range from 𝑚𝑖𝑛
1≤𝑘≤𝑓

( 𝑐𝑘) which is the minimum class 

types frame k has, to 𝑚𝑎𝑥
1≤𝑘≤𝑓

( 𝑐𝑘) which is the maximum class types in frame k. Quantity 

balancing threshold (QBT) defined with Equation 5. Here, 𝑖𝑛,𝑘 , n, and k, are similar to 

the definition in Equation 4, c indicates the total class types, and f is the total frame 

number. 

𝑚𝑖𝑛
1≤𝑘≤𝑓

( 𝑐𝑘)  ≤ 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝐷𝐵𝑇) ≤ 𝑐𝑚𝑎𝑥 = 𝑚𝑎𝑥
1≤𝑘≤𝑓

( 𝑐𝑘) (4) 

  

𝑚𝑖𝑛
1≤𝑛≤𝑐

( 𝑚𝑖𝑛
1≤𝑘≤𝑓

𝑖𝑛,𝑘) ≤ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑄𝐵𝑇) ≤ 𝑚𝑎𝑥
1≤𝑛≤𝑐

(𝑚𝑎𝑥
1≤𝑘≤𝑓

𝑖𝑛,𝑘) (5) 
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Frame 𝑘 in one video (frame 0…f) is removed if 𝑐𝑘 < 𝐷𝐵𝑇, i.e., frame k contains 

less class of 𝑐𝑘 than the DBT value. While balancing Volan001-006, DBT is set equal to 

1, i.e., frames containing no instances of any class are removed. Considering the 

remaining frames, frame 𝑘 is removed if 𝑖𝑛,𝑘 > 𝑄𝐵𝑇, i.e., 𝑘 contains more instances of 

class n. All the possible QBT values are implemented and the BR values and each 

operation is recorded. Eventually, the set of the remaining frames corresponding to the 

lowest BR (i.e., the most balanced) is saved with the 𝐵𝑅𝑚𝑖𝑛. This procedure saves 

images with more diverse classes. Table 12 below shows down sampling results listing 

the initial BR, initial frames, minimum BR, minimum frames, and the final selected 

frames from each video. In this table, it is observable that the amount of the minimum 

frames for each subset is different. For instance, the minimum frame amount of 

Volan003 in subset D is 3,084 but for Volan002 it is 925. In order to select images 

representing different locations equally, the lowest values of the minimum frames in 

each subset (D and H) are selected, i.e., 925 for D and 519 for H. For each remaining 

video (Volan001 and 003) in D, 925 frames are randomly selected from the minimum 

frames. These selected frames with the 925 frames from Volan002 form a new subset 

named drone balanced (DB). Similarly, subset helicopter balanced (HB) is created by 

selecting 519 frames from Volan004-006. Data balancing of Volan003 has led to the 

largest frame removal (39,065 frames) with the greatest BR drop of 0.55.  
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Table 12. Data balancing results for each video within Volan2018 dataset [173]. 

Viewpoint Video 
Initial 

BR 

#Frames 

@ Initial 

BR 

BRmin 
#Frames 

@ BRmin 

#Frames 

Selected 

D 

Voaln001 0.49 2,520 0.36 1,045 925 

Voaln002 0.51 2,160 0.47 
925 

(min.) 
925 

Voaln003 0.79 39,990 0.24 3,084 925 

H 

Voaln004 0.60 6,570 0.29 
519 

(min.) 
519 

Voaln005 0.64 2,640 0.24 3,136 519 

Voaln006 0.36 9,510 0.20 2,813 519 

 

Frames in dataset D and H that overlap with frames from DB and HB are 

excluded resulting in two unbalanced datasets: drone unbalanced (DU) and helicopter 

unbalanced (HU). Figure 10 demonstrates the data splitting scheme. In total, Volan2018 

dataset is divided into subsets DU, HU, DB, HB, Volan007 and Volan008. Unseen 

videos Volan007 and 008 are reserved to test the proposed framework on real-world 

practices, i.e., training CNN models on disaster data that have happened and deploying 

them on newly happening disasters. Each subset from Volan2018 is further split into 

three parts training (60%), validation (20%), and testing (20%) by random selection.  
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Figure 10. Volan2018 data splitting.  

 

4.2. YOLO v2 architecture  

YOLO v2 [79] is a CNN model that takes RGB imagery as input, and outputs 

predictions in form of target objects’ classes and their coordinates in the image. Figure 

11 demonstrates the structure which is comprised of 23 layers including convolution and 

max pooling layers, each with kernel, normalization, and activation functions. A 

convolution layer has kernels with parameters in each kernel cell, and extracts features 

such as shape and color from the input. A convolution layer has kernels with parameters 

in each kernel cell, and extracts features such as shape and color from the input. Each 

kernel applies convolution computations by a stride to cover the entire image and 
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outputs one channel. Taking the first convolution layer in Figure 11 as an example, after 

applying 32 kernels with stride 1 on the input (416×416×3), the output is a 32 channel 

matrix. Each layer computes the input and then passes the result on to the next layer until 

the last output layer. Altogether, the model divides the input image into a 13×13 grid, 

and at the output layer each grid predicts 5 anchor boxes. Each anchor box contains x 

and y coordinates, width, height, confidence value (confidence with which the anchor 

box contains an object), and probability for each class. Since this model predicts six 

classes, in each anchor box, the output corresponding to a single image (i.e., video 

frame) contains 13×13×5×(5+6) = 9,295 predicted values. 
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Figure 11. YOLO v2 architecture [173].   
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The key for a model to produce the correct prediction is the weights in the 

kernels. Training CNN models involves backpropagation, a process during which kernel 

weights are updated. In each iteration, the difference between ground truth and 

prediction is calculated by loss function, L, as laid out in Equation 6. In this Equation, 𝑥𝑖, 

𝑦𝑖, 𝑤𝑖, ℎ𝑖, 𝑐𝑖, and 𝑝𝑖 represent predicted x and y coordinates of the center of the box, 

width, height, objectness score, and class probability, respectively, while 𝑥𝑖̂, 𝑦𝑖̂, 𝑤𝑖̂, ℎ𝑖̂, 

𝑐𝑖̂, and 𝑝𝑖̂ represent ground truth x and y coordinate of the center of the box, width, 

height, objectness score, and class probability, respectively, and 𝜆𝑏𝑜𝑥 represents the box 

scale factor. The function 𝐵𝐶(𝑎𝑖̂, 𝑎𝑖) (Equation 7) represents the binary cross-entropy 

where 𝑎𝑖̂ and 𝑎𝑖 are ground truth and predicted values, respectively. During training, 

backpropagation updates the weights systematically using loss function and regression 

function to yield better prediction until the optimum point. 

 

(6) 

 
(7) 

Transfer learning [178] is a model training scheme that leverages the pre-trained 

weights on large dataset such as VOC [124] and COCO [131], followed by re-training 

the model on costumed dataset (often smaller). Since the pre-trained weights already 

have the capability to extract key features (edge, color, and pattern), transfer learning is 

more effective than training only on costumed data. Therefore this experiment adopts 
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transfer learning using the YOLO v2 pre-trained weights on VOC and COCO as shown 

in Figure 12. This approach also requires fine-tuning of the last layer to match the class 

number due to Volan2018 targets on 6 classes whereas COCO and VOC covers 80 and 

20 classes, respectively. After loading the pre-trained weights, only the last layer of the 

model is updated on the training data with the rest 22 layers frozen. Learning rate is set 

at 10−3 with epoch (iteration) set as 25.  Next, the frozen layers are released to let all the 

weights to update with a 10−4 leaning rate. When the loss L does not drop within 3 

epochs, the learning rate is reduced by 5×10−5. Validation loss is calculated to check and 

monitor the performance during training by deploying the intermediate trained weights 

on validation data for every epoch. Provided that validation data is not included in 

training, validation procedure therefore simulates the deployment on unseen data. If 

validation loss L  does not drop in 10 consecutive epochs, the training is terminated and 

the best weights are saved at the local minimum to avoid overfitting. Fully trained CNN 

models are tested on the testing data to evaluate prediction accuracy.  
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Figure 12. Transfer learning [173]. 

 

As previously stated, Volan2018 is split into DB, DU, HB, and HU, each subset 

is divided into training, validation, and testing portions. In order to investigate the 

influence of the pre-trained weights, models for four subsets are trained using transfer 

learning based on pre-trained weights from VOC and COCO. Altogether, 8 YOLO v2 

models are trained based on different combinations to investigate the factors including 

viewpoint altitude, pre-trained weights, and data balance. All the fully trained CNNs are 

tested on all the testing portions and Volan007 and 008. Table 13 lists the numbered 

models with their pre-trained weights, training, validation, and testing data. Please note, 

Volan007 and 008 are not included in the training or validation steps in order to test the 

performance in the real-world situation.  
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Table 13. Pre-trained weights, training, and validation combinations of 8 YOLO v2 

CNN models [173]. 

Model Pre-trained weights Trained on Validated on Tested on 

1 COCO DB DB 

(for all models) DB, DU, 

HB, HU, 

Volan007, Volan008 

2 VOC DB DB 

3 COCO DU DU 

4 VOC DU DU 

5 COCO HB HB 

6 VOC HB HB 

7 COCO HU HU 

8 VOC HU HU 

 

4.3. Performance measurement  

As shown in one detection example in Figure 13, provided with the ground truth 

bounding box and the predicted box of the same class, the intersection over union (IoU) 

is calculated with Equation 8. Here, intersection area indicates the pixel area where the 

prediction and ground truth boxes overlap, and union area is the combined area of 

prediction and ground truth boxes. By definition, the IoU value of any given prediction 

ranges from 0 to 1. While IoU = 100% is the most ideal result, current CNN researches 

have not achieved 100% for all detections. Hence in this work, a detection is considered 

as successful while IoU ≥ 50%, which is a common practice in VOC challenge.   

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛(𝐼𝑜𝑈) =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
 (8) 

 
Figure 13. Union (IoU) example [173]. 



 

61 

 

 

As Figure 14 (a) shows, a successful detection (IoU ≥ 50%) is defined as a true 

positive (TP). In addition, there could be two types of wrong detection as shown in 

Figure 14 (b) and 14 (d); false positive (FP) when there is no ground truth but a detection 

is produced, and false negative (FN) when the ground truth is present but the model does 

not detect it. Cases such as that shown in Figure 14 (c) can be classified as both FP and 

FN when the IoU is less than 50%. Of note, true negative (TN) cases that occur when 

there is no ground truth and the model indicates no object in the image, are not 

considered. Subsequently, precision, recall, and F1 are calculated by Equations 9, 10, 

and 11. By definition, precision is calculated by dividing the total number of TP cases by 

the total number of detection boxes. In other words, precision indicates the percentage of 

correct detections. The recall value, on the other hand, is computed by dividing the total 

number of TP cases by the total number of ground truth boxes, therefore, describing the 

percentage of correctly detected ground truth cases. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (11) 
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Figure 14. TP, FP, and FN prediction examples [173]. 

 

Precision-recall curve is one of the common methods to evaluate the CNN 

performance. For each detection, the precision and recall are computed and reflected on 

a graph with X-axis indicating the recall value and Y-axis representing the precision 

value. The area below the precision-recall curve is defined as mean average precision 

(mAP). As shown in Figure 15, the best model produces all TP detection and no FP and 

FN, i.e., all the ground truth are correctly detected (mAP=100%). On the contrast, the 

worst model with mAP 0 % cannot produce any TP, i.e., all detections are either FP and  

FN.  
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Figure 15. Precision-recall curve interpretation [173]. 

 

4.4. Experiments and results analysis  

In the prediction stage, threshold (i.e., minimum class probability) is commonly 

used to eliminate low-confidence detection boxes and produce human understandable 

output. For example, a model with the threshold value of 0.1 only outputs detections 

with class probability higher than 0.1. To investigate the suitable threshold for real-

world applications, model2 (trained on DB based on weights from VOC) is tested on 

Volan007 video, and record precision, recall, and F1 score for threshold values ranging 

from 0.0 to 0.9 with 0.1 increments. Sample results for classes debris and undamaged 

roof are shown in Figure 16. According to this Figure, larger threshold values lead to 

lower recall and higher precision, indicating that the model produces fewer detections, 

therefore, fewer false positives and more false negatives. Theoretically, the best 

threshold is at the point where precision, recall, and F1 score converge. However, in 

cases where the object of interests are highly valuable or not detecting them may have 
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severe consequences (e.g., trapped people on the roof of a flooded home), high recall is 

necessary even with low precision. On the other hand, different information users may 

have different opinions about the value of different objects, thus leading to varying 

perceptions of precision and recall values. Besides, different classes and test data have 

different corresponding precision, recall and F1 curves. In conclusion, the selection of 

precision and recall, essentially the threshold value, primarily depends on the needs and 

expectations of the end user. 

 

  
(a) (b) 

Figure 16. Precision, recall, and F1 score Model 2 tested on Volan007 for (a) debris, 

and (b) undamaged roof classes [173]. 

 

The results of testing all 8 CNN models on DB, DU, HU, HB, Volan007, and 

008 with threshold 0 (all detections) are shown in Table 14. As indicative by these 

results, models trained on drone videos tend to perform better when tested on drone 

videos, while models trained on helicopter videos tend to perform better when tested on 
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helicopter videos. This observation supports the influence of viewpoint altitude on 

model performance. The best mAP for D and H set is model3 (74.48% mAP, trained on 

DU based on COCO weights and tested on DU) and model7 (80.69% mAP, trained on 

HU based on COCO weights and tested on HB), respectively. These promising results 

support that automatically extracting information from aerial views is feasible. 

Although training and testing images in D and H are different, they are still 

extracted from similar videos that closely resemble one another (e.g., same disaster, or 

same location). In practice, the test video could be captured from an utterly different 

altitude, camera, flying speed, disaster event, location, time, and lighting condition. A 

robust model must perform adequately in detecting ground objects when applied to a 

completely new (unseen and drastically different) video footage. Therefore, trained 

models are also tested on Volan007 (drone video) and Volan008 (helicopter video) that 

were not previously seen by the models. It can be seen in Table 14, that models pre-

trained on VOC and trained on the balanced data tend to perform better than other 

models. For example, for drone footage, model2 (trained on DB based on VOC weights) 

performs best (24.50% mAP) on Volan007 video whereas for helicopter footage, model6 

(trained on HB with VOC weights) performs best (13.88% mAP) on Volan008 video. 

Figure 17 displays detection examples of model2 tested on randomly selected input.  
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Table 14. 8 model mAP (%) tested on 8 testing subsets (* denotes the best 

performance in each subset) [173]. 

Testing model1 model2 model3 model4 model5 model6 model7 model8 

DB 67.37 65.30 71.84 69.66 5.81 4.54 6.85 4.36 

DU 41.17 40.00 74.48* 72.23 6.79 5.02 7.34 6.37 

HB 4.59 4.50 3.83 3.74 61.37 52.07 80.69* 79.73 

HU 2.92 2.40 2.27 1.72 31.86 25.83 78.72 76.92 

Volan007 18.17 24.50* 16.67 12.57 1.26 1.65 1.24 0.62 

Volan008 11.91 6.40 2.16 1.62 12.07 13.88* 12.30 10.43 

 

  

Figure 17. Model2 detection examples [173].  

 

Figure 18 displays the precision-recall curves for the best model (i.e., Model 2) 

tested on DB, DU, HB, HU, Volan007 and 008 testing data. For similar data, this model 

2 achieved 65.30% and 40.00% mAP on testing data from DB and DU, respectively. For 

individual classes performances, class debris, damaged roof, and vegetation have the 

highest AP of 81.77%, 53.27%, and 93.39% while tested on DB, respectively. Looking 

at the performance on unseen data, Model 2 has 24.50% mAP. Particularly, class 

vegetation has the highest AP of 67.59%, followed by undamaged roof with 32.81%, and 

debris with an AP of 17.58%. In conclusion, the best model is capable of accurately 
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predicting object classes including vegetation, undamaged roof, and debris. The testing 

precision-recall graphs of all other models are stated in displayed the Appendix A.  

 

 

Figure 18. Model2 testing results on DB, DU, HB, HU, Volan007, and Volan008 

subsets [173]. 
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The effect of three key factors, namely the viewpoint altitude (low for drone vs. 

high for helicopter), data balancing (balanced vs. unbalanced), and pre-trained dataset 

(i.e., COCO vs. VOC) on model performance is investigated. Table 15 summarizes the 

results of statistical analysis performed on all eight models with respect to viewpoint 

altitude. For each trained model, a comparison is made between the performance of that 

model, when tested on Volan007 (drone) and Volan008 (helicopter) videos. For each 

comparison listed in Table 15, the general hypothesis is that training and testing on 

videos captured from the relatively same altitude yields best results. In other words, a 

model trained on D (H) dataset tends to show a statistically better performance when 

tested on D (H) dataset. Mathematically, this can be expressed by the null hypothesis H0 

that that there is no difference in the mAP between the results when the mode is tested 

on Volan007 (u007) and Volan008 (u008), i.e., u007 = u008. The alternative hypothesis or 

HA is that u007 > u008 (for models trained on drone video, i.e., Models 1, 2, and 3) and 

u008 > u007 (for models trained on drone video, i.e., models 4, 5 and 6). For each 

comparison, the confidence level is set at 99%, test data sample is produced by randomly 

selecting two-thirds of the entire frames in each video (Volan007 or Volan008), and 

mAP is measured and averaged over 50 iterations. Next, a two-sample one-tail t-test is 

run to evaluate the significance for each pair. Considering the first row of Table 15 for 

instance, results show that model1 (trained on D) performs with an average mAP of 

18.20% when tested on Volan007 (captured by drone), and an average mAP of 11.74% 

when tested on Volan008 (captured by helicopter), and this difference in mAP is 
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statistically significant at 99% confidence level. The same trend is observed for all eight 

models (training and testing on video taken from relatively same altitude yields better 

results). However, cross training and testing, i.e., model trained on D dataset and tested 

on H dataset or vice versa, leads to very low accuracy. Therefore, it can be concluded 

that the viewpoint altitude is a critical factor that must be considered when building and 

deploying CNN models. 

 

Table 15. Statistical analysis of the influence of viewpoint altitude on model 

performance (p < 0.01) [173]. 

Model Test data Viewpoint mAP (%) STDV t-value Hypothesis 

1 
Volan007 Drone 18.20 0.520 74.27 

 
u007 > u008 

Volan008 Helicopter 11.74 0.317 

2 
Volan007 Drone 24.54 6.372 252.73 

 
u007 > u008 

Volan008 Helicopter 4.26 0.367 

3 
Volan007 Drone 18.45 0.485 263.97 

 
u007 > u008 

Volan008 Helicopter 0.15 0.017 

4 
Volan007 Drone 12.69 0.544 137.75 

 
u007 > u008 

Volan008 Helicopter 1.69 0.130 

5 
Volan007 Drone 1.278 0.064 -303.28 

 
u008 > u007 

Volan008 Helicopter 12.08 0.241 

6 
Volan007 Drone 1.66 0.07 -145.31 

 
u008 > u007 

Volan008 Helicopter 14.01 0.591 

7 
Volan007 Drone 1.22 0.042 -325.86 

 
u008 > u007 

Volan008 Helicopter 12.37 0.236 

8 
Volan007 Drone 0.63 0.022 

-224.80 u008 > u007 
Volan008 Helicopter 10.50 0.307 

 

The BR parameter was introduced to measure the extent of data balance in 

individual dataset. Table 16 demonstrates the influence of BR balancing and pre-trained 
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weights when tested on unseen data. The proposed data balancing method excludes 

video frames from the training dataset and select same amount of data representing 

different locations equally. As a result, the training time reduced 14 to 17 times compare 

to training without this method. In particular, when pre-trained on COCO [131], 

reducing the size of training dataset affects slightly on performance (1.5% increase for D 

and 0.23% decrease for H subset). On the other hand, by pre-training on VOC [124], 

data balancing not only does decrease the training time, but also improves the 

performance by 11.89% and 3.54% for D and H subsets, respectively. In this analysis, 

training time is based on Intel Xeon E5-2680 v4 2.40GHz 14-core CPU, 128GB RAM, 

and NVIDIA K80 (12 GB) GPU [179]. Overall, it is observed that models trained on 

balanced training subset with pre-trained weighs from VOC [124] (i.e., Model 2 from 

the D subset, and Model 6 from the H subset) outperform other models. 

 

Table 16. Performance and training time analysis [173]. 

Model 
Train 

data 

Test         

data 

Pre-

trained on 

Data 

balance 

# 

Training 

frames 

mAP (%) 
Training 

time (hr) 

1 

D Volan007 

COCO B 1,665 18.17 6.93 

3 COCO U 25,137 16.67 121.79 

2 VOC B 1,665 24.50* 7.67 

4 VOC U 25,137 12.57 118.98 

5 

H Volan008 

COCO B 934 12.07 2.63 

7 COCO U 10,297 12.30 39.04 

6 VOC B 934 13.88* 2.52 

8 VOC U 10,297 10.43 37.33 
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4.5. Summary   

With the goal of leveraging CNNs to extract valuable information from aerial 

disaster visual data, a list of valuable object classes was first created. Followed by data-

mining the internet to acquire data that contains those classes resulted in a bounding box 

annotated dataset named Volan2018. This dataset consisted of 8 videos from various 

hurricanes at different locations in different time. A novel approach using BR, DBT, and 

QBT to balance and select most equally representative data was proposed and tested. In 

order to investigate the influence factors including viewpoint altitude, data balancing, 

and pre-trained weights, 8 CNN models based on YOLO v2 architecture were trained, 

validated, and tested on Volan2018 subsets. Results showed that CNN models tend to 

perform better on data that is collected at the similar viewpoint altitudes and perform 

poorly on data from different altitudes. The proposed data balancing approach was 

capable of improving the CNN model performance on unseen data while reducing 

training time by up to 17 times. Model2 trained on drone balanced data using pre-trained 

weights from VOC achieved the best performance of 24.50% mAP on unseen data. 

While training and testing on similar data (Volan001-006),  best model3 (trained on DU 

based on COCO weights) accomplished mAP of 74.48% and model7 (trained on HU 

based on COCO weights) achieved a mAP of 80.69%. These result suggested the 

proposed framework has the potential to extract accurate information in real-time, thus 

was capable of assisting disaster information retrieval.  
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5. IMAGE SEMANTIC SEGMENTATION  

This Chapter presents image semantic segmentation by describing the work 

completed on dataset preparation and balancing, semantic segmentation CNN model 

architecture, performance measurement, experiments conducted, and analysis of results. 

5.1. Volan2019 data description    

5.1.1. Data collection and annotation  

The second dataset, Volan2019 (under Creative Common license), is web-mined 

from YouTube by searching key words including: “disaster”, “hurricane”, “drone”, 

“aerial”, and “aftermath” Altogether, Volan2019 contains 16 videos covering locations 

in Florida, Texas, Massachusetts, South Carolina, California, and the British Virgin 

Islands. Table 17 details the corresponding disaster event, recoding vehicle, and video 

duration of all the videos, which are numbered from Volan201-216. The majority of the 

Volan2019 dataset reflects hurricanes Michael, Harvey, Irma, Matthew, and Florence 

during the 2017-2018 hurricane seasons. California wildfire Tubbs in 2017 is also 

included as Volan213. All frames in the videos are extracted resulting in an image pool 

of 112,050 numbered images following the same sequence as the videos. Given that 

annotating one image costs approximately 20 minutes (37,516 hours to annotated all 

images), every 1 out of every 128 frames (or 1 frame in every 4.3 seconds) is extracted 

for further consideration. This operation downsizes the dataset to 875 images without 

losing much content diversity. Table 17 documents the total extracted frame number 

from each video.  
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Table 17. Description of Volan2019 dataset videos and number of annotated frames 

(D: UAV, H: Helicopter). 

Video D/H Date 
Length 

(s) 
Location Disaster event 

# 

Frames 

201 D 
Oct 11, 

2018 
78 Mexico Beach, Florida 

Hurricane 

Michael 
18 

202 D 
Aug 29, 

2017 
163 

Friendswood, Houston, 

Texas 

Hurricane 

Harvey 
30 

203 D 
Jun 23, 

2018 
431 British Virgin Islands, UK Hurricane Irma 101 

204 D 
Dec 29, 

2016 
119 Orlando, Florida 

Hurricane 

Matthew 
28 

205 D 
Aug 27, 

2017 
73 Houston, Texas 

Hurricane 

Harvey 
17 

206 D 
Oct 16, 

2018 
39 

Beacon Hill, Boston, 

Massachusetts 

Hurricane 

Michael 
9 

207 H 
Sep 18, 

2018 
431 South Carolina 

Hurricane 

Florence 
67 

208 D 
Oct 14, 

2018 
50 

Beacon Hill, Boston, 

Massachusetts 

Hurricane 

Michael 
12 

209 H 
Aug 31, 

2017 
1335 Rockport Texas 

Hurricane 

Harvey 
312 

210 H 
Oct 11, 

2018 
18 Mexico Beach, Florida 

Hurricane 

Harvey 
4 

211 D 
Nov 20, 

2018 
61 St Joe Beach, Florida 

Hurricane 

Michael 
14 

212 D 
Nov 6, 

2017 
215 Fountain Grove, California 

Wildfire Tubbs 

Fire 
50 

213 D 
Sep 4, 

2017 
387 

Bear Creek, Houston, 

Texas 

Hurricane 

Harvey 
76 

214 D 
Aug 27, 

2017 
199 Houston, Texas 

Hurricane 

Harvey 
46 

215 D 
Nov 17, 

2018 
312 Unknown 

Unknown/ 

Tents 
73 

216 D 
Oct 15, 

2018 
87 Panama City, Florida 

Hurricane 

Michael 
18 
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Next, all the selected images are split into training (60%), validation (20%), and 

testing portions (20%). Note that the burnt houses in Volan212 (California Tubbs 

wildfire) are annotated but excluded due to the fact that their appearances are drastically 

different from hurricane damages. However, the remaining annotations from Volan212, 

e.g., car and vegetation, are used for model training and testing. Labelbox [180] is 

employed to annotate every image with classes stated in Table 8, namely roofs (damaged 

and undamaged), car, people, boat, flooded area, debris, vegetation, and road. As 

examples shown in Figure 19, pixel level masks are drawn corresponding to the 

instances. In doing so, individual objects (e.g., damaged roof, undamaged roof, car, boat, 

people) are annotated separately and bulk objects (e.g., flooded area, vegetation, road, 

debris) are marked as one instance, For example, there are 6 roofs, 1 flooded area, 7 

vegetation, and 1 car in Figure 19 (a). Bulk but continuing classes are annotated 

separately, e.g., there are two instances of flooded areas in Figure 19 (b). Similarly, 

Figure 19 (c) shows 67 undamaged roof, 2 car, 46 vegetation, and 33 flooded area 

instances, and Figure 19 (d) contains 12 undamaged roof, 2 car, 3 flooded area, and 21 

vegetation instances. Compared to Volan2018, the annotation in this dataset is more 

accurate especially for bulk objects, i.e., they are not divided into smaller bounding 

boxes.  
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(a) (b) 

  
(c) (d) 

Figure 19. Sample annotations of classes roof (damaged and undamaged), 

vegetation, car, flooded area, and road in Volan2019 dataset. 

 

Figure 20 illustrates the instance distribution, where the X-axis represents the 

image number, the Y-axis indicates different classes, and the instance amount for each 

class goes upwards in the Z-axis. In addition, the bar chart at the bottom of the figure 

indicates the percentage of frames categorized by their original videos, which represents 

different locations and disasters. Observably, video Volan203 (12%) and 209 (36%) 

contribute the larger portion of frames. In total, Volan2019 contains 7,457 undamaged 

roof (UD), 1,637 flooded area (FA), 501 damaged roof (DR), 815 car (C), 2,994 boat 

(B), 662 people (P), 540 debris (D), 762 road (R), 5,191 vegetation (V). In consistency 

as Volan2018, class flood area, vegetation, and undamaged roof are the frequent classes, 

as oppose to damaged roof and debris.  
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Figure 20. Volan2019 instance and class distribution per video frame. 
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5.1.2. Multiclass data augmentation 

As shown in Figure 20, an important implication of the annotated Volan2019 is 

not balanced, i.e., certain classes (a.k.a., majority classes) such as UR and V have much 

more instances than other classes (a.k.a., minority classes) such as DR and C). This is 

reflected as the distribution peaks in Figure 20. In Subsection 4.1.2, balance ratio (BR) is 

introduced to quantify the degree of the balance level, followed by down-sampling 

Volan2018 resulting in a BR drop from 0.79 to 0.24. To put the BR value in perspective, 

the BR is 0.87 for Volan2019, 0.84 for COCO, and 0.54 for VOC. According to Huh et 

al., an effective image size per classes should be greater than 500 in order to purse 

accurate results [181]. Considering that the total amount of images in Volan2019 (only 

875 images) is relatively small, down sampling Volan2019 may further shirk the dataset 

losing the necessary information. Therefore, up sampling is implemented for the 

minority classes with the goal to achieve a lower BR value for the entire dataset. To this 

end, images that are relatively unbalanced with minority classes are chosen to augment. 

The reason behind is that augmenting images will simultaneously increase the instance 

amount for all the existing classes, which undermines the balancing purpose. To start, 

the dominating class for each image is determined by selecting the classes which 

comprise most instances for each image. For example, Figure 21 (a) represents an image 

that has class P as the dominating class with BR 1.03. Figure 21 (b) shows FA, V, and D 

as dominating classes for a image with a BR 0.74. The image corresponding to Figure 21 

(a) is more unbalanced than Figure 21 (b), hence it is more suitable for data 

augmentation to increase the instance amount for class P.  
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Figure 21. Selecting video frame candidates for data augmentation based on 

balance ratio. 

 

In order to simulate practical circumstances, augmentation effects including 

zoom in, motion blur, pixel drop out, add cloud, and color equalization (different time 

during the day) are considered. For example, motion blur simulates images taken while 

the recording vehicle is moving at a high speed, which often happens in practice. These 

5 different effects form an operation bag with 32 possible combinations, e.g., zoom in 

with add clouds. Figure 22 illustrates the augmentation example which contains original 

image, original annotation, annotation overlaid on original image, augmented image, 

augmented annotation, augmented annotation overlaid on augmented image (from left to 

right).  

 

(a) 

 

(b) 

 272 
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Figure 22. Examples of image augmentation operations (from left to right: original 

image, original annotation, annotation overlaid on original image, augmented 

image, augmented annotation, augmented annotation overlaid on augmented 

image). 

 

Next, in order to augment the minority classes (e.g., D) without increasing the 

amount of majority classes (e.g., UR), images are selected by the BR threshold and 

dominating class. Considering images (I) with one certain class (C) as dominating class, 

images with BR that are higher than the BR threshold are augmented N times. Here, N 

indicates random selections from the bag of augmentation (32 combinations). All the 

possible BR thresholds and classes are used to augment the entire training data to 

achieve the best results. Afterwards, images and operations corresponding to the lowest 

total BR of are used to generate the final augmented data. In theory, augmenting with an 

infinite N will produce the most balance data yet impossible. Thus, considering the total 

operation possibilities, Volan2019 training data is augmented with maximum N = 32, 16, 

and 8 (indicating 32, 16, and 8 maximum augmentation operations, respectively) 
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resulting in augmented datasets named VA32, VA16, and VA8, respectively. The 

maximum N is referred to as degree of augmentation. The resulting 3 models trained on 

VA32, 16, and 8 are named Mask1 (VA32), Mask1 (VA16), and Mask1 (VA8) as shown 

in Figure 23.  

 

 

Figure 23. Volan2019 augmentation based on BR values.  

 

Based on the conclusion in Section 4.4, view-point altitude of the recording 

vehicle is a main factor of the CNN models’ performance. Therefore, Volan2019 is also 

split into two subsets MD (corresponding to mask drone) and MH (corresponding to 
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mask helicopter) based on the altitude as illustrated in Figure 24. Both MD and MH are 

split into three subsets: training (60%), validation (20%), and testing (20%). Similar to 

Volan2019 augmentation, each training subset of MD and MH subset is further 

augmented as shown Figure 24 in using the balancing strategy based on the BR. MD 

training subset is augmented with maximum degree 32, 16, and 8 resulting in drone 

augmented MDA32, MDA16, and MDA8, respectively. The training subset of MH is 

augmented resulting in augmented MHA32, MHA16, and MHA8 (indicating maximum 

32, 16, and 8 degree augmentation applied). Validation and testing data are not 

augmented to evaluate the influence of BR based augmentation.  

 

 

Figure 24. Volan2019 data splitting based on altitude and augmentation based on 

BR value. 

 



 

82 

 

Table 18 displays the model names with the training data (with and without 

augmentation), instance amount per class, and dataset BR. Model Mask2, 3, and 4 have 

less classes based on the confusion level between classes as later will be stated in 

Subsection 5.2.3.2. Notably, data augmentation for Mask2-4 is implemented only for the 

included classes. In order to keep the consistency of the evaluation, model Mask1-4 are 

tested on the same Volan2019 testing data. MaskD and its variation as well as MaskH 

and its variations are tested on MD testing and MH testing subsets, respectively.  

According to this table, augmentation is able to reduce the BR value resulting in more 

balanced data. Moreover, higher degree augmentation leads to more balanced data 

expect the training data of Mask4 has only 2 classes.



 

83 

 

 

Table 18. Number of instances per class in training data and balance ratio reduction for Volan2019 dataset. 

Model (training data) UR FA DR C B P D R V BR 

Mask1 (9 classes) 4,363 1,017 276 494 1,948 282 290 432 3,025 0.87 

Mask1 (VA32) 6,490 1,915 2,258 2,099 2,172 1,789 2,780 1,583 4,225 0.40 

Mask1 (VA16) 5,824 1,735 1,357 1,773 2,008 1,496 1,877 1,115 3,905 0.48 

Mask1 (VA8) 5,043 1,553 769 1,086 1,976 1,387 1,001 758 3,656 0.57 

Mask2 (5 classes) 4,363 - 276 494 1,948 282 - - - 0.91 

Mask2 (VA32) 4,608 - 836 978 1,965 843 - - - 0.62 

Mask2 (VA16) 4,832 - 826 907 1,964 829 - - - 0.65 

Mask2 (VA8) 4,770 - 676 894 1,962 838 - - - 0.67 

Mask3 (3 classes) 4,363 - - - 1,948 282 - - - 0.66 

Mask3 (VA32) 4,363 - - - 1,948 4,860 - - - 0.32 

Mask3 (VA16) 4,363 - - - 1,948 645 - - - 0.59 

Mask3 (VA8) 4,363 - - - 1,948 645 - - - 0.59 

Mask4 (2 classes) - - 276 494 - - - - - 0.28 

Mask4 (VA32) - - 2,197 494 - - - - - 0.63 

Mask4 (VA16) - - 2,197 494 - - - - - 0.63 

Mask4 (VA8) - - 993 526 - - - - - 0.31 

MaskD (D) 2,080 689 129 339 1,856 369 151 221 2,502 0.85 

MaskD (MDA32) 3,448 1,267 972 1,427 1,961 1,146 1,801 965 4,155 0.41 

MaskD (MDA16) 2,931 1,131 576 1,170 1,921 1,055 1,002 630 3,505 0.47 

MaskD (MDA8) 2,677 1,133 495 929 1,902 1,253 842 562 3,227 0.46 

MaskH (H) 2,320 292 187 78 39 4 170 245 673 1.37 

MaskH (MHA32) 2,808 950 1,063 392 611 4 939 506 1,061 0.79 

MaskH (MHA16) 2,587 734 748 238 332 4 710 403 829 0.92 

MaskH (MHA8) 2487 636 537 169 171 4 540 343 721 1.08 
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5.2. Mask object detection  

5.2.1. Mask-RCNN architecture 

Mask-RCNN is capable of producing instance segmentation at 5 FPS with high 

accuracy (32.0 % COCO-AP). Figure 25 illustrates the architecture which takes RGB 

input and outputs segmentation (mask) in each predicted box with an autoencoder. In 

detail, the input is processed by a common CNN (ResNet in this experiment) but without 

flattening the high dimensional output. Next, a feature pyramid network (FPN) is applied 

on 4 of the CNN hidden layers resulting in P2-P5 feature maps. One more map P6 is 

calculated by max pooling P5. Meanwhile, the input goes into a separate region proposal 

network (RPN) which is responsible for generating candidate prediction boxes with 

objectness (i.e., the chance that one box contains target objects). Normally, RPN 

downsizes the input by a factor of 30-40, followed by each output pixel corresponding to 

a large region of interest (RoI) in the input. A 3×3 kernel is applied on each FPN map to 

predict the objectness score and bounding box. Altogether, P2-P6 feature maps are 

concatenated to a list of numbers and the top 2,000 (default) proposals are selected for 

further consideration. This 2,000 proposals, with other parameters, are passed down 

separately to box and mask heads, which are responsible for box prediction and mask 

segmentation. For the box head, the concatenated feature maps are fully connected with 

the output to generate the class probability (also include background) and the offset 

values of the bounding boxes. For mask head, an autoencoder with several encode and 

decode kernels, is responsible to generate pixel masks in the predicted boxes from the 

featured maps. The resulting mask with each pixel containing a confidence value 
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represents the likelihood of objectness. The mask threshold is set at 0.5 [81], i.e., if a 

pixel is predicted with a confidence higher than 0.5, it belongs to that object. Finally the 

output includes bounding boxes with class probabilities and binary masks in each box. 

  

 

Figure 25. Mask-RCNN architecture. 

 

5.2.2. Performance measurement  

Similar to the bounding boxes measurement, intersection over union (IoU), 

precision, recall, and mAP are calculated at pixel level. As shown in Figure 26, the pixel 

wise overlapping area of the ground truth annotation and predicted area is calculated as 
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intersection, and union area of them are computed as union. Next, IoU for each detection 

is calculated with Equation 8 in Section 4.3. Based on the IoU, Figure 27 illustrate cases 

including true positive (TP), true negative, and two scenarios of false negative (FN). 

Similar to bounding boxes detection evaluation, the TP (IoU > 50%), FP (IoU = 0%), 

and FN (pixel IoU < 50%, or =0%) cases are saved to calculate the precision and recall 

value using Equation 9 and 10 in Section 4.3. Finally, the mAP which is the area under 

the precision-recall curve is calculated to describe the overall performance.  

 

 

Figure 26. Pixel intersection and union example. 
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Figure 27. Pixel level examples of TP, FP, and FN.  

 

5.2.3. Experiments and results analysis  

5.2.3.1. Prediction confidence and precision correlation 

Model Mask1 trained on the entire Volan2019 training subset is based on Mask-

RCNN architecture with pre-trained weight that is trained on the COCO dataset. While 

training, the learning rate is set as 10-3 and decreased by 10-1 if there is no loss drop 

monitored within 3 epochs. The training of Mask1 is terminated if the validation loss 

does not drop after 10 epochs. After the model is fully trained, Mask1 is tested on the 

testing subset (154 images) as examples shown in Figure 28. According to this table, 

Mask1 has the mAP of 25% with class P has the highest AP of 55%, followed by class B 

at 46% and UR at 43%.  
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Figure 28. Sample detection output of Mask1 tested on Volan2019 dataset. 

 

However, there is no ground truth to compare when deploying the models in 

practice (e.g., newly happening hurricane). Therefore, metrics including AP and mAP 

are not available due to the lack of the ground truth. Given the model produces 

confidence with prediction as shown in detection examples in Figure 28, it is possible to 

predict the accuracy only based on the confidence value to solve this problem. To this 

end, an analysis of the correlation between prediction precision and confidence is carried 

out. Considering Mask1, prediction for each image per class is compared individually 

with the ground truth resulting in paired precision and confidence (P&C) values. The 

Pearson R value of this P&C data is measured and reported in Table 20. Moreover, this 

P&C data is further split into three parts: regression (60%), validation (20%), and testing 

(20%). Regression and validation data are used to perform regression with degree 1 

(linear), 2, 3, and 4 in order to predict the accuracy based on a given confidence value. 

Next, the predicted accuracy is compared with testing data and the errors for each class 

as reported in Table 20. As an example of UR shown in Figure 29 (a), the P&C values 

are plotted and used to conduct linear regression resulting in a function of confidence F. 
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The function F is later used to predict the testing portion of the P&C data to determine 

the detection precision solely based on confidence value. After comparing the predicted 

precision and ground truth precision, the error is calculated as 1.19%. Figure 29 (b) 

shows the P&C regression at degree 2 with 1.17% error. Observably, P&C regression 

with higher degrees does not necessarily produce more accurate precision prediction. 

 

Table 19. Mask1 average error (%) for different degrees of precision-confidence 

regression. 

Degree UR FA DR C B P D R V 

1 (linear) 1.19 1.41 1.43 1.44 0.45 3.49 0.89 3.87 0.99 

2 1.17 1.47 1.49 1.44 0.38 3.6 0.88 3.83 1.1 

3 1.17 1.49 1.50 1.44 0.39 3.32 0.88 3.77 1.14 

4 1.19 1.65 1.48 1.43 0.31 3.77 0.87 3.65 0.99 

 

 

Figure 29. Precision-confidence correlation in Mask1 for class undamaged roof 

(UR) using (a) linear, and (b) polynomial regression. 

 

The same linear regression and testing analysis is performed for Mask2, 3, and 4, 

which have less classes compared to Mask1. Results listed in Table 20 show that there is 
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always a positive correlation between confidence and precision, i.e., high confidence 

predictions are associated with high precision. This correlation is valuable in 

determining prediction quality when testing CNN models on unseen data (e.g., newly 

happening disasters). Furthermore, the error between the predicted (from regression) and 

ground truth precision falls in the range of 0.45-4.28% indicating this method is capable 

of producing an approximate precision without the ground truth data.  

 

Table 20. Precision-confidence correlation analysis for different models using linear 

regression. 

  UR FA DR C B P D R V 

Mask1 
Pearson R 0.48 0.46 0.40 0 0.75 0.5 0.03 0.53 0.39 

Error (%) 1.19 1.41 1.43 1.44 0.45 3.49 0.89 3.87 0.99 

Mask2 
Pearson R 0.48  0.14 0.03 0.74 0.42    

Error (%) 1.91  0.14 0.1 0.48 1.45    

Mask3 
Pearson R 0.44    0.88 0.41    

Error (%) 2.36    0.29 0.93    

Mask4 
Pearson R    0.26   0.54   

Error (%)    1.27   4.28   

 

5.2.3.2. Error percentage matrix and class separation  

Confusion matrix is a common method of presenting model performance in 

binary and multi-class classification tasks. In this matrix, rows and columns correspond 

to predicted and actual classes [182], and misclassified cases are compared and 

benchmarked against correctly classified cases. In semantic segmentation, Li and 

Nevatia [183] used pixel-level confusion matrix (a.k.a., detection error matrix in this 

Dissertation) for image region recognition. Past work in object detection has also 

adopted the notion of error matrix. For instance, Peren-Hernandez et al. [184] created 
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such matrix from detection results using one-versus-one strategy. In a document analysis 

study, an error matrix was created through comparing each ground truth (e.g., table, 

image, and text) with the prediction [185]. Figure 30 shows the detection error matrix 

generated by comparing each prediction from Mask1 model tested on the Volan2019 

testing subset (175 images) with all ground truth annotations contained in the same 

image. A sample frame is shown in Figure 31, which shows that only when the pixel IoU 

is greater than 50%, the detection is considered an overlapping detection. Subsequently, 

in the detection error matrix of Figure 30, the value of the cell corresponding to this 

detection-ground truth pair is increased by 1. Following this approach, it should be noted 

that unlike the traditional confusion matrix, the values in the detection error matrix, do 

not necessarily add up to the total number of ground truth cases; rather, they represent 

the number of all overlapping (IoU>50%) cases. 

P
re

d
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o
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Ground truth 

 UR FA DR C B P D R V 

UR 80 11 11 0 0 1 0 1 1 

FA 22 64 2 0 0 0 0 4 2 

DR 30 1 20 0 1 4 0 0 0 

C 10 0 2 3 2 5 0 0 0 

B 5 1 5 0 19 1 0 1 0 

P 2 0 0 0 0 13 0 0 0 

D 12 1 10 0 1 2 7 0 2 

R 3 14 0 0 1 0 0 8 1 

V 4 0 0 1 0 3 2 0 99 

Figure 30. Mask1 detection error matrix. 
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Figure 31. Example of determining overlapping detection based on pixel-level IoU. 

 

Given that the prediction confidence values reflect prediction quality, a 9×9 

percentage error matrix is the created, as shown in Figure 32 using a similar approach 

but considering detection confidence instead of pixel-level IoU. This time, the 

confidence value confidence𝑘of an overlapping detection is added to the value of the 

cell corresponding to the detection-ground truth pair. For example, when a ground truth 

UR overlaps (>50%) with a detected UR, the prediction confidence will be added to the 

cell {UR, UR}. After taking into account all predictions, the cumulative error matrix 

score (EMS) of each cell is computed using Equation 12. Here, n is the total number of 

the overlapping cases for one cell, which is noted as set 𝑆 =

{𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒1, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒2, … , 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑛}. For each cell, error percentage (EP) is 
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further calculated by Equation 13, in which, c is a set of all classes {UR, FA… V}, and 

EMS' denotes the value of the cell corresponding to a particular ground truth class. 

Error Matrix Score (𝐸𝑀𝑆) =  ∑ confidence𝑘

n

k=1

 (12) 

Error Percentage (𝐸𝑃) =  𝐸𝑀𝑆 ÷ ∑ 𝐸𝑀𝑆′

𝐸𝑀𝑆′∈𝑐

× 100% (13) 

As shown in Figure 32, the error percentage matrix reflects the misclassification 

between classes. For instance, detections for ground truth DR is often predicted as UR 

with high confidence (33.96%). Class P is mostly wrongly predicted as DR (6.75%) and 

C (8.27%). Class R is often misclassified as FA (23.79%). Furthermore, low 

performance classes including FA, D, R, and V are bulk classes, i.e., they are spread out 

and continuous as shown in Figure 28. The approach, which Mask-RCNN models 

produce bounding boxes followed by segment pixels inside them, is not suitable for 

these bulky classes. In other words, a bounding box across the whole image is required 

to produce segmentation for large FA, R, D, and V instances. Therefore, an autoencoder 

is built specifically for these bulk classes as will be explained in the following section. 

On the other hand, individual classes including UR, DR, C, B, and P are separated based 

on the error matric to avoid confusion resulting in the following models: 

 Mask2 trained on data only including classes UR, DR, C, B, and P (all individual 

classes). 

 Mask3 trained on data solely covering classes UR, B, and P. 

 Mask4 trained on data that contains classes DR and C only.  
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Figure 32. Mask1 error percentage matrix to identify highly mismatched classes. 

 

5.2.3.3. Results and analysis  

As stated in Subsection 5.1.2, the training data for Mask2-4 is augmented with 

the proposed BR augmentation method resulting in three augmented (denoted with VA 

32, VA16, and VA8 corresponding to maximum degree at 32, 16, and 8, respectively) 

variation dataset for each. Table 21 displays the performance of Mask1-4 and their 

variations tested on the same Volan2019 testing subset (only existing classes are 

considered). Mask3 produces the highest AP for class UR (46.25%) and P (59.16%). 

Mask3 (VA8) has the best performance for class B with an AP of 64.01%. Mask4 

achieves the highest AP of 19.26% for C. Mask4 (VA32) is able to detect DR with an 

AP of 39.68% which is the largest improvement (25.72%) compared to Mask1 among all 

classes. It is observable that data augmentation and class separation based on error 
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matrix improves the performance of individual classes but not bulk classes. Table 21 

also contains the testing results of MaskD and its variations are tested on the testing 

subset of MD, as well as MaskH and its variations are tested on the testing subset of 

MH. Compared to the benchmark model Mask1, data augmentation and separation based 

on altitude improves the performance of the bulk classes. For example, Mask H achieves 

25.28% AP for class FA, while MaskD (MDA8) has the highest AP for classes D 

(29.51%), R (10.01%), and V (26.07%). Altogether, the highest mAP is achieved by 

Mask3 (VA8) proving data augmentation and class separation (based on error matrix and 

altitude) is an efficient way to boost the model’s performance.  

To compare the performance of this research work with the state-of-the-art 

models such as Mask-RCNN and Faster-RCNN, shared classes between Volan2019 and 

large datasets (e.g., COCO and VOC) such as car, people, boat, and plants are selected to 

compare. Although all the images from large datasets are taken from the ground view-

point, as oppose to Volan2019 images which are recorded from aerial view, those classes 

should share similarities. Table 22 lists the testing results of Mask-RCNN tested on 

COCO and Faster-RCNN tested on VOC regarding the shared classes. According to this 

table, the proposed framework is capable of detecting classes people, boat, and 

vegetation (plant) with comparable accuracy. However, the performance of class car in 

this research is lower than its counterpart, due to the relatively small car sizes in 

Volan2019 compared to COCO and VOC.  
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Table 21. Summary of AP (%) and mAP (%) of Mask-RCNN models and their 

variations. 

Model UR FA DR C B P D R V mAP 

Mask1 42.85 20.51 13.96 15.08 46.03 55.00 3.35 7.11 20.90 24.98 

Mask1 (VA32) 37.72 13.70 39.35 8.25 53.93 32.57 8.03 2.55 21.51 24.18 

Mask1 (VA16) 37.22 13.96 32.89 7.34 51.25 38.02 7.85 2.68 21.15 23.59 

Mask1 (VA8) 39.90 16.26 29.57 8.64 56.17 43.16 5.64 2.18 24.86 25.15 

Mask2 (5 classes) 42.23  25.26 15.89 58.16 38.33    35.97 

Mask2 (VA32) 42.03  35.50 10.36 60.56 42.31    38.15 

Mask2 (VA16) 42.70  37.49 11.27 60.53 44.13    39.22 

Mask2 (VA8) 41.48  38.40 10.54 60.05 48.24    39.74 

Mask3 (3 classes) 46.25    48.86 59.16    51.42 

Mask3 (VA32) 41.22    58.95 37.51    45.89 

Mask3 (VA16) 40.91    62.94 48.23    50.69 

Mask3 (VA8) 41.76    64.01 48.85    51.54 

Mask4 (2 classes)   24.60 19.26      21.93 

Mask4 (VA32)   39.68 10.57      25.12 

Mask4 (VA16)   39.34 11.74      25.54 

Mask4 (VA8)   39.68 10.57      25.12 

MaskD 37.45 13.99 7.66 7.95 50.63 44.42 1.85 4.93 22.21 21.23 

MaskD (MDA32) 36.88 12.66 21.90 12.88 44.84 41.33 3.27 4.24 21.64 22.18 

MaskD (MDA16) 37.47 15.16 19.40 8.40 45.32 45.07 2.57 4.68 22.05 22.24 

MaskD (MDA8) 37.82 19.73 25.18 15.42 45.51 41.30 29.15 10.01 26.07 27.80 

MaskH 44.66 25.28 22.72 7.07 2.77 0.00 1.97 3.98 5.91 12.71 

MaskH (MHA32) 45.22 24.32 20.18 6.33 17.08 0.00 4.54 4.14 6.10 14.21 

MaskH (MHA16) 42.66 21.39 22.67 7.07 11.53 0.00 5.22 2.58 7.26 13.38 

MaskH (MHA8) 44.93 18.33 18.75 4.01 6.41 0.00 8.18 2.79 6.22 12.18 

 

Table 22. Performance comparison of CNN models for similar classes to Volan2019 

dataset. 

Model Train & test data Car Boat Person 
Plant 

(vegetation) 
mAP 

This work Volan2019 

19.26 64.01 59.16 26.07 51.54 

Mask4 
Mask3 

(VA8) 
Mask3 

MaskD 

(MDA8) 
 

Mask R-CNN COCO 49.10 N/A 34.80 N/A 58.10 

Faster R-CNN VOC 78.20 53.20 69 30.10 66.90 
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In order to investigate the influence of the object size, another analysis of Mask1 

testing results is conducted based on the prediction pixel sizes. For each class, all ground 

truth pixel areas are measured to form a set T. The top 25% and bottom 25% of T are 

selected as upper and lower threshold. Next, all the predictions and ground truth masks 

are considered as portion large (L) if the mask area is greater than upper; portion 

medium (M) if mask size is between upper and lower, and small (S) portions if the mask 

pixel areas smaller than lower. For each portion (bin), precision, recall, and AP are 

calculated and recorded. Beside the results of bin L, M, and S, Table 23 also lists the 

results of large and medium portion combined (L+M) as well as the total performance 

bin T. Compared to the benchmark (bin T), the large portion (bin L) has the highest AP 

for class UR (40.59%), FA (47.08%), DR (28.27%), B (44.46%), D (4.36%), R 

(14.21%), and V (28.40%). The medium portion (bin M) produces the highest 

performance for class C (14.74%) and P (66.34%). The reason behind the low 

performance of class C is that the images contain cars are taken at a relatively high 

altitude, resulting in smaller pixel sizes even in bin L compared to other classes. On the 

other hand, the small portion (bin M) yields to a much lower accuracy, indicating that the 

large pixel area is associated with higher performance. Lastly, the combined portion (bin 

L+M) shows a higher performance than the benchmark (bin T) implies filtering the 

prediction to select large objects can help improve the model performance.  
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Table 23. Effect of mask size on Mask1 model performance.  

Bin UR FA DR C B P D R V 
L

ar
g
e 

(L
) 

 
# instances 

(ground truth) 
369 78 29 42 171 38 38 43 281 

# instances 

(prediction) 
734 305 95 272 252 87 303 108 579 

AP (%) 40.59 47.08 28.27 12.41 44.46 34.87 4.36 14.21 28.40 

Precision (%) 31.88 18.36 14.74 6.62 38.10 25.29 1.65 13.89 23.49 

Recall (%) 63.41 71.79 48.28 42.86 56.14 57.89 13.16 34.88 48.40 

Upper (pixel area) 3,709 25,263 16,631 807 2,804 2,247 8,338 21,699 7,977 

M
ed

iu
m

 (
M

) 

 

# instances 

(ground truth) 
737 156 57 81 341 74 74 86 560 

# instances 

(prediction) 
1517 965 390 298 692 208 791 443 1,681 

AP (%) 39.70 18.01 9.94 14.74 42.87 66.34 3.14 7.18 19.97 

Precision (%) 32.23 6.74 6.15 11.07 32.66 30.29 2.15 4.74 13.44 

Recall (%) 66.35 41.67 42.11 40.74 66.28 85.14 22.97 24.42 40.36 

Lower (pixel area) 929 812 3,774 384 719 1,081 1,377 2,953 786 

S
m

al
l 

(S
) 

 

# instances 

(ground truth) 
370 77 28 41 170 37 37 42 281 

# instances 

(prediction) 
1,341 640 333 64 307 213 434 424 1,065 

AP (%) 13.88 1.21 4.31 1.44 8.21 11.84 0.15 0.33 3.91 

Precision (%) 11.48 2.19 2.70 3.13 14.33 4.69 0.46 0.47 4.79 

Recall (%) 41.62 18.18 32.14 4.88 25.88 27.03 5.41 4.76 18.15 

L
+

M
 

 

AP (%) 46.73 26.85 15.46 18.06 50.78 60.84 3.29 8.56 23.39 

Precision (%) 34.72 9.69 8.87 9.46 37.67 30.85 2.10 6.90 16.67 

Recall (%) 70.58 52.34 49.43 43.55 69.26 79.82 20.35 29.2 44.72 

A
ll

 (
T

) 

 

AP (%) 42.85 20.51 13.96 15.08 46.03 55.00 3.35 7.11 20.90 

Precision (%) 27.51 7.23 6.73 9.78 34.45 20.83 1.77 4.62 13.71 

Recall (%) 66.94 44.37 48.25 37.80 63.20 71.14 18.12 26.32 40.64 

 

5.3. Autoencoder segmentation 

5.3.1. PSPNet architecture 

PSPNet stands for pyramid scene network which takes images as inputs and 

outputs semantic segmentations by using an encoder-decoder structure, known as 
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autoencoders. Figure 33 illustrates the PSPNet architecture details: the input image 

matrices first goes through a series of kernels and max pooling layers which produces 

denser matrices with smaller dimensions. Generally, this encoder process is 

implemented by using established CNN architectures such as ResNet or VGG-16. 

Unlike common bottleneck layers between encoder and decoder structures, PSPNet has a 

pyramid pooling module which consists of multiple 1×1 kernels and average pooling 

layers at different scales such as 2×2 or 8×8 which result in several feature maps. The 

output of the all the feather maps is concatenated along one dimension. The following 

up-sampling structure uses a series of reversed CNNs to output a single channel mask 

with the same dimension as the input. In the output, each pixel will be classified in terms 

of belong or not belong to one class by SoftMax (i.e. binary prediction) functions. 

Altogether, this mask contains numerical values indicating different classes (0, 1, 2, …) 

including the background (0). Compare to FCN, SegNet, and other segmentation 

architectures, the pyramid pooling module in PSPNet reduces the information loss thus 

outperforms others in complex tasks.  
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Figure 33. PSPNet architecture. 

 

5.3.2. Performance measurement  

In autoencoder segmentation (e.g., PSPNet), slightly different from object 

detection (e.g., YOLO or Mask-RCNN), the pixel level intersection over union (pixel 

IoU) and accuracy is often reported [186]. Given each pixel is predicted as belonging or 

not belonging to one particular class, each pixels is categorized into cases of  true 

positive (TP, i.e., correct predicted pixel), true negative (TN, i.e., background), false 

positive (FP, i.e., wrong predicted pixel), and false negative (FN, i.e., missed ground 

truth pixel). Figure 34 shows an example (5×5 square pixel image) of the measurement 

of comparing each predicted pixel (25 in total) with the ground truth pixel resulting in 

TP, TN, FP, and FN cases. For every class, pixel IoU is calculated with Equation 14 by 

dividing TP case pixels over the sum of TP, FP, and FN cases. The mean pixel IoU 

(mIoU) across all classes is used to describe the overall performance of the model. 

Accuracy is computed by TP and TN cases divided by all the pixels in the image as in 

Equation 15. To give a perspective, the mIoU for FCN, SegNet, and PSPNet tested on 
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ImageNet scene parsing 2016 dataset are 29.39%, 21.64%, and 41.68%, respectively 

[82]. 

 

Figure 34. TP, FP, and TN cases in semantic segmentation. 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (14) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (15) 

5.3.3. Experiments and results analysis  

As stated previously, models based on PSPNet architecture are trained in order to 

detect bulky classes including D, V, FA, and R. Therefore, only the annotations for those 

classes are extracted from Volan2019 excluding class UR, DR, C, P, and B. This 

processed dataset is named as PSPNet2019 (P2019), followed with the same separation 

scheme, dividing P2019 into training (60%), validation (20%), and testing (20%) 

portions. Model PSPNet1, using ResNet50 as the backbone architecture, is trained and 

validated on P2019 with pre-trained weights on VOC. As shown in Table 24, this model 
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achieves pixel mIoU of 31.26% and 73.92% accuracy. Figure 35 displays the detection 

examples which qualitatively better represent the bulky objects.  

 

  
(a) (b) 

  
(c) (d) 

Figure 35. Sample semantic segmentation output of PSPNet1 tested on P2019 

dataset. 

 

Similar BR-based data augmentation is implemented on P2019 training subset 

resulting in augmented datasets P2019 augmented at degree 32(PA32), P2019 

augmented at degree 16 (PA16), and P22019 augmented at degree 8 (PA8). With the 

same validation data, pre-trained weights, and backbone architecture, models 

PSPNet1(PA32), PSPNet1(PA16), and PSPNet1(PA8) are trained on PA32, PA16, and 

PA8, respectively. In order to investigate the influence of pre-trained weights and 

network depth, two models PSPNet2 and 3 are trained. Compared with PSPNet1, the 



 

103 

 

difference is that PSPNet2 uses pre-trained weights on Cityscapes [187] as oppose to 

PSPNet1 is pre-trained on ImageNet. PSPNet3 uses ResNet 101 as backbone which is 

denser (more filer weights in layers) compared to PSPNet1 used ResNet50. Similar to 

Volan2019, P2019 is also split into two groups: drone images (PSPD) and helicopter 

(PSPH) followed by training models PSPNetD and PSPNetH on the corresponding 

training subsets (60%). Each training subset is augmented based on the explained 

augmentation using degree of 32, 16, and 8 resulting in dataset PDA32, PDA16, PDA8, 

(for drone) PHA32, PHA16, and PHA8 (for helicopter) as in Figure 36. Follow the same 

name convention for Mask-RCNN, the trained models are named PSPNetD (PDA32), 

PSPNetD (PDA16), PSPNetD (PDA8), PSPNetH (PHA32), PSPNetH (PHA16), and 

PSPNetH (PHA8).  

 

 

Figure 36. P2019 data augmentation based on balance ratio, and data separation 

based on altitude. 
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Table 24 shows the training and testing data specifications as well as the 

performance readings including IoU for each class, mIoU, and pixel accuracy for all the 

PSPNet moels. Comparing PSPNet1 and its augmented variations, augmenting minority 

classes generally increases the IoU of those classes, e.g., IoU of class D increased from 

2.24% to 8.26%. Similarly, class R has the pixel IoU improvement from 8.32% to 

9.53%. On the other hand, majority classes typically have decreases after augmentation. 

For instance, the IoU of class V decreased from 38.94% to 5.02%. The comparison made 

between PSPNet1 and PSPNet3 is to identify the effect of network depth. Although 

ResNet101 is deeper than ResNet50, the IoU of small size classes (class D) does not 

improve compared to the benchmark model (PSPNet1). For the effect of pre-trained 

weights (comparing PSPNet2 and PSPNet1), pre-training the model on Cityscapes does 

not improve the IoU of the shared classes such as flooded area and road significantly, as 

well as in other three classes. Also, the mIoU remains almost the same (31.26% 

compared to 28.98%). Training and testing models on subsets PSPD and PSPH based on 

elevation improves the IoU of class R, however leads to lower IoU for FA and D (in 

both subsets). Considering splitting data and augmentation, the best performance for FA 

is 38.58% (PSPNetH), class R at 25.86% (model PSPNetD), and class V has the IoU of 

38.94%. The overall best performing model is PSPNetD (PDA8) with mIoU of 32.17%. 

This proves the proposed data augmentation is capable of improving the performance of 

most of the classes.  
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Table 24. Summary of AP (%), mIoU (%), and accuracy (%) of PSPNet models and 

their variations. 

Model Training BG FA D R V mIoU Accuracy 

PSPNet1 

(ResNet50) 
PSP2019 70.81 35.97 2.24 8.32 38.94 31.26 73.92 

PSPNet1 

(PA32) 
PA32 69.58 18.92 8.26 9.53 5.02 22.26 72.37 

PSPNet1 

(PA16) 
PA16 70.05 29.85 7.28 4.08 3.49 23.23 73.7 

PSPNet1 (PA8) PA8 59.85 25.25 4.68 6.27 10.06 23.23 72.37 

PSPNet2 

(Cityscapes) 
PSP2019 70.95 30.30 0.73 7.87 35.04 28.98 73.2 

PSPNet3 

(ResNet101) 
PSP2019 71.22 14.54 1.58 13.91 37.37 27.73 73.26 

PSPNetD PSPD 67.24 29.66 0.00 16.5 37.92 31.25 70.19 

PSPNetD 

(PDA32) 
PDA32 66.38 22.36 3.57 10.63 22.4 25.06 66.64 

PSPNetD 

(PDA16) 
PDA16 67.69 27.9 0.79 24.9 30.71 30.4 67.81 

PSPNetD 

(PDA8) 
PDA8 67.95 30.59 1.48 25.86 34.96 32.17 70.75 

PSPNetH PSPH 69.35 21.7 1.53 18.67 18.61 25.97 77.01 

PSPNetH 

(PHA32) 
PHA32 76.83 33.65 9.08 17.68 12.94 28.4 74.18 

PSPNetH 

(PHA16) 
PHA16 76.57 31.03 0.46 12.95 15.73 27.34 75.63 

PSPNetH 

(PHA8) 
PHA8 77.08 38.58 0.21 9.92 17.94 28.75 76.82 

 

 

In order to compare this research work with the state-of-the-art autoencoders, 

Table 25 shows results of Unet [188], SegNet [128], and PSPNet tested on ADE20K 

[189]. Similar to COCO and VOC, ADE20k contains images taken from ground view, 

and have classes that are similar to flood, road, and vegetation (grass). The comparison 

shows that the series of PSPNet models in this research are comparable with the 

benchmarks in terms of mIoU and accuracy.  
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Table 25. Performance (%) of U-Net, SegNet, and PSPNet for similar classes to 

P2019. 

Model 
Train & test 

data 

Water 

(flooded 

area) 

Road 
Grass 

(vegetation) 
mIoU 

Accuracy 

This 

work 
PSP2019 

38.58 25.86 38.94 32.17 77.01 

PSPNetH 

(PHA8) 

PSPNetD 

(PDA8) 
PSPNet1 

PSPNetD 

(PDA8) 
PSPNetH 

Unet 

ADE20K 

20.40 41.40 52.70 28.50 71.32 

SegNet 58.40 63.00 62.80 21.64 71.00 

PSPNet n/a n/a n/a 21.64 76.35 

 

5.4. Summary  

In order to produce pixel level segmentation of aerial visual input, Volan2019 

was created containing 875 pixel-level annotated images with classes including building 

roof (damaged and undamaged), road, car, boat, people, vegetation, debris, and road. 

CNN architectures Mask-RCNN was employed (using transfer-learning) to train, 

validate, and test models on Volan2019. Particularly, correlation between prediction 

confidence and precision was analyzed, and results showed a positive relation between 

confidence and precision. This provides practical value for disaster response 

practitioners with a mathematical tool to evaluate the detection quality especially during 

newly happening disaster when the ground truth is not available. Based on the positive 

correlation between confidence and precision, an error matrix reflecting the detection 

confusion was created. This matrix was further used to guide class separation lead to a 

series of Mask-RCNN models each trained and tested on subsets with focuses of 

different classes (less confused). Additionally, a novel data augmentation strategy based 

on data balance level was created and tested. Altogether, with class separation and data 
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augmentation, the best performing Mask-RCNN model achieved a mAP of 51.54%. 

Furthermore, bulk classes including flood area, vegetation, debris, and road were 

selected to build datasets (training, validation, testing, and augmentation) for PSPNet 

models. The testing results showed autoencoders not only able produced better quality 

output for bulk objects but also achieved considerable pixel mIoU and accuracy. In 

particular, the best performing PSPNet model achieved a 32.17% mIoU and 77.01% 

accuracy. Altogether, these results implied the proposed framework was capable of 

extracting pixel level segmentation from aerial imagery for rapid PDA and quantification 

in the aftermath of disasters.  
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6. PERSPECTIVE TO ORTHOGONAL MAPPING 

This Chapter reviews the homography transformation method used in this study 

to convert the pixel coordinates of detected objects in perspective aerial views to 

orthogonal coordinates used in mapping applications. It also presents object tracking and 

counting techniques that do not rely on drone’s positional data, and tests these 

techniques on disaster footage collected by a drone. 

6.1. Homography transformation  

The outputs of object detection and semantic segmentation (described in 

Chapters 4 and 5) are bounding boxes and masks (e.g., roofs, debris, car). However, 

these detected objects with bounding boxes or masks cannot be directly used in mapping 

systems such as United States national grid (USNG), which allows rapid assessment by 

describing the damage, performing analysis, and illustrating impact. Therefore, this 

research designs a framework to project the quantitative assessment onto an orthogonal 

GIS map for the end users. In order to transform the perspective view from drone’s or 

helicopter’s local frame onto an orthogonal GIS maps, information describing the 

viewpoint’s geolocation (in this case, global coordinates of the drone camera) is often 

needed at all times. However, access to drone’s global position may not be always 

possible (e.g., in GPS-denied environments) especially during disastrous environment. 

Moreover, it is likely that position meta-data is not collected when crowdsourcing the 

data collection, or some users do not will share location information due to privacy 

issues or lack of knowledge about geolocation meta-data. Therefore, this Chapter present 
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an approach that projects perspective information onto a GIS map solely relying on 

visual input.  

Homography transformation is an established projection method in computer 

vision which is commonly used for camera calibration [190], image rectification [191], 

and aerial mapping [192]. In homography transformation, any point on a given input 

plane can be projected on an output plane in space by a 3×3 homography matrix 𝐻, as 

written in Equation 15. Matrix 𝐻 is determined up to scale, thus 𝑖 in Equation 15 is 

normalized to 1 resulting in 𝐻 having 8 degrees of freedom (DOFs), variables a, b, c, d, 

e, f, g, and h. Input and output matrices are defined by Equation 16, in which 

(𝑋𝑖𝑛𝑝𝑢𝑡, 𝑌𝑖𝑛𝑝𝑢𝑡) and (𝑋𝑜𝑢𝑡𝑝𝑢𝑡, 𝑌𝑜𝑢𝑡𝑝𝑢𝑡) denote coordinates in the input and output 

systems, and 𝑤 indicates the scale factor in the output coordinates system. The final 

output coordinate (𝑋′output, 𝑌′output) is computed by Equation 17.  

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐻 × 𝑖𝑛𝑝𝑢𝑡, 𝐻 = [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] (15) 

𝑖𝑛𝑝𝑢𝑡 =  [

𝑋𝑖𝑛𝑝𝑢𝑡

𝑌𝑖𝑛𝑝𝑢𝑡

1

] , 𝑜𝑢𝑡𝑝𝑢𝑡 =  [
𝑋𝑜𝑢𝑡𝑝𝑢𝑡

𝑌𝑜𝑢𝑡𝑝𝑢𝑡

𝑤

] (16) 

𝑋′output =
𝑋𝑜𝑢𝑡𝑝𝑢𝑡

𝑤
, 𝑌′output =

𝑌𝑜𝑢𝑡𝑝𝑢𝑡

𝑤
 (17) 

In order to calculate the 8 variables for matrix H, four pairs of reference points 

with known input and output in both coordinate systems are required. As shown in 

Figure 37, any given point (include the reference points) in perspective view from 

drones or helicopters can be projected onto a real-world orthogonal map by H. For pixel 

coordinates, with the most upper left pixel of the image serving as the origin, rows 
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parallel to the X-axis, and columns parallel to the Y-axis, the pixel coordinates of the 

centroid of the detected bounding box is determined. The real-world position of the 

object, on the other hand, refers to its location in the Cartesian grid system (global 

coordinates on Earth). Reference points marked as (𝑥1, 𝑦1) and (𝑥′1, 𝑦′
1

); 

(𝑥2, 𝑦2) and (𝑥′2, 𝑦′
2

); (𝑥3, 𝑦3) and (𝑥′3, 𝑦′
3

), and (𝑥4, 𝑦4) and (𝑥′4, 𝑦′
4

) are 

shown in Figure 37. For each paired reference points, orthogonal coordinates 

(𝑋𝑜𝑢𝑡𝑝𝑢𝑡, 𝑌𝑜𝑢𝑡𝑝𝑢𝑡) are computed based on perspective coordinates (𝑋𝑖𝑛𝑝𝑢𝑡, 𝑌𝑖𝑛𝑝𝑢𝑡) using 

Equation 18, resulting in Equations 19 and 20. Repeating this procedure for the other 

three reference points results in a total of 8 equations that can be used to solve variables 

a, b, c, d, e, f, g, and h, for matrix 𝐻. Using 𝐻, any given point (𝑥5, 𝑦5)  in the 

perspective view can be projected on the orthogonal map (𝑥′5, 𝑦′
5

) using Equation 

17. 

 

 

Figure 37. Perspective to orthogonal transformation. 
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[

𝑥′output

𝑦′
output

w

] = [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 1

] [

𝑥input

𝑦input

1
] (18) 

𝑥′output =
𝑎𝑥input + 𝑏𝑦input + 𝑐

𝑔𝑥input + ℎ𝑦input + 1
 (19) 

𝑦′
output

=
𝑑𝑥input + 𝑒𝑦input + 𝑓

𝑔𝑥input + ℎ𝑦input + 1
 (20) 

 

 

6.2. Moving object projection 

6.2.1. Experiments  

Compared to most one-stage CNNs, RetinaNet [80] is able to produce more 

accurate predictions with slightly longer processing time. Due to its focal loss (FL) 

function differentiates background and foreground examples, the network applies larger 

weight updates for TP cases and makes less weight changes for the misclassifications 

(mostly background) during training. Equation 24-26 express the FL calculation. In 

Equation 24, p indicates the probability of one prediction, TP means this prediction is a 

true positive. In Equation 25, cross entropy (CE) is calculates based on the output 𝑝𝑡 

from the previous step. Lastly, FL is computed with Equation 26 where r is the focusing 

parameter which adjusts the weigh change for negative examples such as background. 

Therefore, the experiment in this Chapter selects RetinaNet as the main architecture to 

implement.  

𝑝𝑡 = {
𝑝, 𝑖𝑓  𝑇𝑃

1 − 𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (24) 
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𝐶𝐸(𝑝𝑡) = {
−log (𝑝𝑡), 𝑖𝑓  𝑇𝑃

−𝑙𝑜𝑔(1 − 𝑝𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (25) 

𝐹𝐿(𝑝𝑡) = −(1 − 𝑝𝑡)𝑟𝑙𝑜𝑔(𝑝𝑡) (26) 

 

In this chapter, the problem of calculating the real-world position and orthogonal 

mapping of the detected objects is approached from two angles: (i) projection from 

perspective to orthogonal based on reference objects’ coordinates (PROC), and (ii) 

projection from perspective to orthogonal based on reference objects’ size (PROS). 

Figure 38 illustrates the workflows of PROC and PROS approaches. In this Figure, four 

traffic cones are used as reference objects, and the goal is to calculate the orthogonal 

position of a moving person from drone-captured perspective views. In the PROC 

approach, first, Model-P is trained on a perspective video (PV1) and tested on another 

perspective video (PV2) to predict the pixel coordinates of the reference objects in each 

video frame. Next, from the known real-world positions of the reference objects, the 

real-world position of the object, i.e., (𝑥′5, 𝑦′
5

), is calculated in PV2. While the 

PROC approach relies on the real-world positions of reference objects, the PROS 

approach uses the size of reference objects. The pixel coordinates of reference objects 

and ToI are obtained as before by using Model-P. However, the reference objects’ real-

world positions are calculated differently. In essence, another CNN model, Model-O, is 

trained on an orthogonal video (OV1) and tested on another orthogonal video (OV2) to 

predict the boxes of the reference objects. Since in the PROS approach, the actual sizes 

of reference objects are known, the ratio between the sizes of the predicted boxes in 
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pixel and their real sizes is used to transform the pixel coordinates of these objects to 

real-world positions. Next, the real-world position of the object is calculated in PV2 

using Equations 15 through 20. 

 

 

Figure 38. PROC and PROS experiments. 
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6.2.2. Data collection and description  

To train and test RetinaNet CNN models that can automatically detect reference 

objects and ToIs, two experiments are conducted. Experiment 1 involves collecting 

perspective video PV1 (Figure 40) and orthogonal video OV1 (Figure 39), which 

provide the training data for the perspective model (Model-P) and orthogonal model 

(Model-O). Experiment 2 contains two videos, PV2 (Figure 42) and OV2 (Figure 41), 

that serve as testing data.  

The objective of both experiments is to project a moving object captured in 

drone’s perspective view into real-world (orthogonal) coordinates, using four reference 

points. Therefore, each experiment contains a continuously moving person and four 

traffic cones (reference objects). The cones and the person are located on a turf (333 in × 

426 in). To obtain ground-truth information, one drone (Parrot Anafi) records the scene 

from an aerial angle pointing the camera vertically downward (videos OV1 and OV2). 

Another drone (Parrot Bebop 2) records the same scene from a perspective angle and an 

arbitrary altitude (videos PV1 and PV2). The cones’ positions in Experiment 1 (PV1 and 

OV1) are different from Experiment 2 (PV2 and OV2). Also, the person changes outfit 

between the two experiments. With the upper left corner of the turf designated as the 

origin of the real-world coordinate system, the real-world positions of the four cones are 

shown in Figure 3 through 6. For example, cones in Experiment 1 are placed at 

coordinates (0, 0), (0, 333), (426, 0), and (426, 333), whereas in Experiment 2, they are 

placed at coordinates (56, 263), (148, 138), (258, 95), and (356, 277). 
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The timestamps of PV2 and OV2 videos are carefully synchronized, leaving a 

total of 4,149 frames for projection. To train and test the CNN models for detection of 

cones and person, all collected videos are manually annotated with DarkLabel [174], 

frame by frame, as shown in Figure 37 through 40. 

 

Figure 39.Orthogonal video 1 (OV1) of experiment 1. 

 

 

Figure 40. Perspective video 1 (PV1) of experiment 1. 
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Figure 41. Orthogonal video 2 (OV2) of experiment 2. 

 

 

Figure 42. Perspective video 2 (PV2) of experiment 2. 

 

In these Figures, green rectangles represent cones, and red rectangle represents 

person. Description of the experimental data is shown in Table 26. The ground-truth 

real-world positions of the person are retrieved from the manually annotated OV2 video. 

All frames within PV1 and OV1 are used for training while the frames in PV2 and OV2 
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are used for testing. For the training of Model-P and Model-O, the learning rate is set to 

10-4 and batch size is set as 4. 

 

Table 26. Data statistics for experiments 1 and 2. 

Total Number 
Experiment 1 Experiment 2 

PV1 OV1 PV2 OV2 

Total frames 8,873 9,915 5,261 5,814 

Person instances 8,813 8,223 4,492 4,773 

Cone instances 33,362 32,892 19,650 19,092 

 

6.2.3. Projection Based on Reference Objects’ Coordinates (PROC) 

Model-P is responsible for detecting the pixel coordinates of cones and person in 

PV2. Figure 43 shows an example of detection of cones (yellow boxes) and person 

(white box). All detected boxes are associated with a confidence level predicted by the 

model. The four cones and one person that are detected with the highest confidence 

levels are selected for further analyses. Next, pixel coordinates, i.e., the center point of 

the bottom edge of each detection box (marked with dots in Figure 43) are determined as 

input for projection calculation. From the calculated pixel coordinates of four cones and 

their corresponding real-world positions, the person’s real-world position is calculated 

(using Equations 15 through 20), and projected on the orthogonal map shown in Figure 

8. Also, the annotated person’s position in OV2 is projected on the same coordinate 

system which serve as ground-truth. 



 

118 

 

 

Figure 43. Example of detections of person and cones. 

 

As expected, there may be situations when the PROC approach fails to project, 

e.g., when Model-P cannot detect at least four cones in the frame, because they are either 

not within the camera view or obstructed by other objects. In this experiment, such 

frames are removed from analysis. The number of skipped frames, presented as the 

percentage of total number of frames, is termed frame loss (Equation 27) which 

describes how efficiently the model utilizes the input video data. Moreover, due to the 

noise in data and/or detection error, sometimes the detected boxes of the same object 

(e.g., cone) in two consecutive video frames could appear in two considerably different 

locations. Moreover, some false detections appear significantly away from the ground 

truth. These outliers are removed by comparing the current and previous frame pixel 

coordinates, i.e., X- and Y- coordinates of each objects are treated as a timeseries data.. 

For example, consider a set of consecutive frames 𝐶 = {𝑐𝑡; 𝑡 = 1,2, … , 𝑛}, 15 previous 

consecutive data points  𝐶′ = {𝑐𝑡, 𝑐𝑡−1, … , 𝑐𝑡−14} are selected and its mean 𝑐𝑚𝑒𝑎𝑛
′  and 

standard deviation 𝑐𝑆𝑇𝐷
′  are calculated. 𝑐𝑡 indicates the coordinates in the current frame. 
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When 𝑐𝑡 − 𝑐𝑚𝑒𝑎𝑛
′ ≥ 𝑘 ∗ 𝑐𝑆𝑇𝐷

′  (𝑘 = 2 and 3 are considered), frames corresponding to 𝑐𝑡 

are skipped. After removing the outlier predictions, the average projection error is 

recalculated. 

𝑓𝑟𝑎𝑚𝑒 𝑙𝑜𝑠𝑠 (𝐹𝐿) % =
 # 𝑜𝑓 𝑠𝑘𝑖𝑝𝑝𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠
× 100  (27) 

 

Figure 44. Perspective to orthogonal projection.  

 

6.2.4. Projection Based on Reference Objects’ Size (PROS) 

As described earlier, the difference between PROC and PROS approaches is in 

the method for acquiring the reference objects’ real-world positions. In the PROS 

approach, it is assumed that the size of an object in pixel units in the orthogonal image 

will represent a constant physical size throughout the entire video. Based on this 

assumption, from the known physical size of the target object, its actual position (in 

inches) can be calculated solely based on the model’s predictions in the orthogonal view. 

In the experiments conducted, the actual dimensions of the traffic cone are known to be 

10 inches (both length and width). However, due to the noise in data and/or human error, 

the annotated training boxes are slightly bigger than the actual size of the cones. From 

the training data (OV1), the width of the detection boxes for cones is calculated to be 
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14.56 inches on average. Therefore, it is assumed that the detected boxes for the same 

cones in the test data (OV2) would also have the same average physical size. During the 

test, Model-O is applied to the first 30 frames (i.e., 1 second) of OV2 to obtain the sizes 

and coordinates of the boxes representing cones in pixel units. Next, knowing that the 

size of the boxes are 14.56 inches in real-world, coordinates are scaled accordingly to 

obtain the real-world positions of the boxes. The latter part (orthogonal projection) of the 

PROS approach is similar to the PROC approach. 

6.2.5. Results and analysis  

Model-P and Model-O are tested on PV2 and OV2 to evaluate their performance, 

as shown in Table 27. Overall, Model-O produces 51% mAP which is worse than 97% 

for Model-P. One reason for this disparity is that from orthogonal view (in Model-O), 

the person and cones appear less distinctive compared to perspective view (in Model-P). 

For individual classes, Model-P detects class person with 99.21% average precision 

(AP); however, Model-O produces only 45.89% AP. Similarly, for class cone, Model-P 

produces 96.11% detection AP, compared to 51.97% AP for Model-O. 

 

Table 27. Comparison of Model-P and Model-O performance. 

Model mAP AP (Cone) AP (Person) 

P 97.66% 96.11% 99.21% 

O 48.93% 51.97% 45.89% 

 

Projection results obtained from PROC and PROS approaches are summarized in 

Table 28, and illustrated in Figure 45. For both PROC and PROS, the remaining frames 
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after removing non-projectable frames (because the Model-P detected less than four 

cones or one person while tested on PV2) is 3,735 with 9.98% frame loss for both 

projections. The Euclidian distance (in inches) between the person’s real-world and 

projected positions is reported as projection error in each frame. The average projection 

error (APE) is calculated as the mean of frame-by-frame errors in all projectable frames. 

As shown in Table 5, the PROS approach achieves an APE value of 15.39 inches, which 

is slightly better than PROC’s APE of 17.18 inches. Next, the projected person’s real-

world X- and Y- coordinates are compared with the corresponding ground-truth 

coordinates, frame by frame, and the errors are divided by the total length along each 

axis (i.e., 426 inches for X-axis and 333 inches for Y-axis) to present the error as a 

percentage. The errors in PROC approach are 9.52 inch (2.23%) along X-axis and 11.79 

(3.54%) along Y-axis, which is slightly outperformed by PROS approach with errors of 

8.62 inches (2.02%) along X-axis and 10.41 inches (3.12%) along Y-axis. 

Furthermore, two scenarios are considered for removing the outliers: k = 2 and k 

= 3. For k = 3, after removing outliers, a total of 1,493 (FL = 64.02%) and 1,488 (FL = 

64.14%) frames remain in PROC and PROS, respectively, and the overall APE is 

improved to 13.86 inches (for PROC) and 11.86 inches (for PROS). When removing 

outliers with k = 2, calculated APEs (overall, X-, and Y-) for both approaches are greater 

than the case of k = 3, but smaller FL (26.63% for PROC and 26.71% for PROS) is 

achieved. Errors along X- and Y-axis for individual frames are documented in Figure 45. 

In general, it is observed that removing outliers leads to higher frame loss but smaller 
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APE in both approaches. Nonetheless, for all cases, the average error along any 

dimension is less than 4% which indicates the robustness of the proposed methods. 

 

Table 28. Test results of  PROC and PROS mapping methods. 

 Method Direct projection Outlier (k = 3) Outlier (k = 2) 

Remianed Frame # 

(frame loss %) 

PROC 3,735 (9.98%) 3,044 

(26.63%) 

1,493 (64.02%) 

PROS 3,735 (9.98%) 3,041 

(26.71%) 

1,488 (64.14%) 

Overall APE 

(inch) 

PROC 17.18 14.35 13.86 

PROS 15.39 12.31 11.85 

X-axis APE (inch 

and %) 

PROC 9.52 (2.23%) 7.11 (1.66%) 6.53 (1.53%) 

PROS 8.62 (2.02%) 5.89 (1.38%) 5.37 (1.26%) 

Y-axis APE (inch 

and %) 

PROC 11.79 (3.54%) 10.89 (3.27%) 10.87 (3.26%) 

PROS 10.41 (3.12%) 9.55 (2.86%) 9.50 (2.85%) 

 

 

Figure 45. Projection error in X- and Y- axis for PROC and PROS. 
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6.3. Object tracking and counting 

6.3.1. CNN-based centroid tracker 

In computer vision, object tracking entails estimating the state and location of an 

object in the sequential frames based on the initial state [193, 194]. Furthermore, object 

tracking can be used to identify and differentiate multiple objects in the frames, thus 

allowing object counting [195]. Several object trackers have been previously studied. 

For example, boosting tracker uses a binary classifier that continuously updates possible 

object positions for the next frame, making it suitable for tracking changes in object 

rotation or illumination [196]. KCF map the image input with circulant matrices, 

followed by diagonalizing it with fast Fourier transformation. Research has shown that 

KCF outperforms boosting tracker on both accuracy and speed [197]. Similarly, 

minimum output sum of squared error (MOSSE) is a high speed tracker capable of 

processing images at 669 FPS. The correlation filter in MOSSE is trained on data that is 

processed by FFT to generate the next frame status [198]. In addition to these object 

trackers, several researches have investigated the use of sequential information from the 

videos. Zhang et al. [199] designed a FCN combined with long short term memory 

(LSTM) networks to count vehicles from city cameras, and achieved mean absolute error 

(MAE) of 4.21. Bagautdinov et al. [200] built an RNN to localize and identify activities 

of people in videos. Fan [201] investigated emotion recognition in videos using a 

combination of CNN and RNN achieving 70.74% accuracy. While these methods 

successfully utilize information in successive frames, they require specific time-related 

datasets. The CNN models utilized in this Dissertation can detect objects in each frame 
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and output object locations in the form of bounding boxes (Chapter 4) or pixel 

classifications (Chapter 5). This information may serve as the initial states for the 

purpose of object tracking. As a drone or helicopter flies over a disaster-affected scene, 

objects on the ground may move in or out of the camera view. Therefore, for the 

purposes of tracking and counting, it is important to identify existing as well as newly 

appeared objects without interruption, while avoiding double-counting the same object 

in multiple video frames. 

Centroid tracking relies on the Euclidean distance between the object centroids in 

initial and sequential frames [202]. Through registering and unregistering objects, this 

technique is capable of differentiating old and new objects. For example, let’s consider 

event I in Figure 46, and assume that the detection model has initially marked the 

bounding boxes (colored in blue) of two objects, shown with ID:1 and ID:2, together 

with their centroids. In the next frame, as a result of the moving objects or camera 

viewpoint, the locations of these two detections in the frame also moves, resulting in two 

new bounding boxes (colored in orange) with corresponding sequential centroids. When 

applying centroid tracking to a high-FPS video, it is safe to assume that the relative 

movements of objects (change of centroid location of each object) in successive frames 

is relatively small. Mathematically, this can be expressed as the Euclidean distance 𝐷 

from the initial centroid to the sequential centroid of the same object being smaller or 

larger than distance 𝐷′ (the distance from an object’s initial centroid to sequential 

centroids of other objects). In Figure 46, if 𝐷 < 𝐷′, instead of registering the two new 
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detections in event I (colored in orange) with new IDs, they will be associated with old 

ID:1 and ID:2, resulting in the total object count of 2 (unchanged from the initial frame).  

 

 

Figure 46. Detections, centroids, and distances in event I. 

 

Now, consider event II in Figure 47, and assume that the detection model has 

initially marked the bounding boxes (colored in blue) of two objects (ID:1 and ID:2), 

and later detected a third object. Since the Euclidean distance 𝐷 from this object’s initial 

centroid (colored in green) to the centroid of the other two objects is large enough, this 

detection is registered as a new object with ID:3. Repeating the same logic in all future 

frames should allow for old and new objects to be reasonably tracked and counted. For 

objects that move outside the camera view (either permanently or temporarily), their IDs 

will be deregistered after a certain number of successive frames, a.k.a., frame memory or 
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N, which can be adjusted for each specific application, camera properties, speeds, and 

the preference.  

 

 

Figure 47. Detection, centroids, and distances in event II. 

 

6.3.2. IoU-based ID assignment using Hungarian algorithm 

Besides using the Euclidean distance and assigning IDs for the closest pairs, 

other methods such as IoU score can be utilized for object tracking. Bewley et al. [203] 

integrated Hungarian algorithm (IoU-based) and Kalman filter, and created SORT 

tracker which achieved 33.4% tracking accuracy on multiple object tracking dataset 

(MOT). Hungarian algorithm is a linear assignment algorithm that minimizes the total 

cost based on the assumed bipartite graph [204]. Figure 48 displays the cost matrix in the 

object tracking setting with rows indicating detections in the previous frame and 

columns representing detections in the next. By initializing an ID to every detection in 
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the first frame, the followed tracked detections will maintain their unique IDs. In the cost 

matrix, cells contain IoU values produced by comparing individual detections between 

the pervious and next frames. Given this matrix, row and column reduction is 

implemented to find the zero-cost path in the matrix. In row reduction, each non-zero 

cell in the first row will be subtracted with the minimum value in that row. A similar 

operation is carried out in all remaining rows. Similarly, for column reduction, the 

minimum value of each column is subtracted from each cell in that column. The 

resulting matrix may have to be augmented if the minimum number of lines that can 

cover all zeros is greater than the matrix dimension (rows and columns). This 

augmentation is done by subtracting the minimum cell value (remaining cells not 

covered by the lines) from all the remaining cells. Ultimately, detection pairs in the 

previous and next frames that correspond to the zeros in the cost matrix are assigned 

with the same IDs. The remaining unassigned detections in the next frame will be 

marked with new IDs. In this research, both centroid tracker and Hungarian tracker are 

shown to assign unique IDs to objects and counting the number of objects belonging to a 

particular class, such as cars or damaged roofs, without reliance on drone’s geolocation 

(i.e., GPS data). 

 



 

128 

 

 

Figure 48. Hungarian cost matrix. 

 

6.3.3. Experiments and results 

To test the validity of the both centroid tracking method, a face recognition CNN 

with 87.48% AP proposed by Li et al. [205] is used to detect and count human faces in 

an office space. The video is taken by a laptop camera and contains three faces which 

frequently appear and disappear in the video. Frame memory (N) is set at 50, implying 

that if an object (in this case, face) remains outside the camera view for 50 successive 

frames, its ID will be deregistered. Figure 49 illustrates selected frames from the office 

video. In Figure 49 (a), the first human face is detected and registered as ID:0. Next, two 

more faces appear in the camera in Figure 49 (b), which are subsequently detected and 

registered as ID:1 and ID:2. In Figure 49 (c), ID:0 and ID:2 faces move out and stay out 

of sight, followed by ID:0 face moving back into the camera view in less than 50 frames 

(i.e., frame memory, N), and ID:2 face moving back after 50 frames, as shown in Figure 

49 (d). As a result, while face ID:0 maintains its original ID, the face that was initially 

registered as ID:2 is now assigned a new ID:3, thus detected as a new face. The outcome 

of this small-scale experiment is shown in Table 29 (first row).  
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Figure 49. Face tracking and counting. 

 

In order to compare the centroid tracker and Hungarian tracker, the next set of 

experiments involve actual drone footage and are conducted to investigate the 

correlation between object detection performance and the reliability of object tracking. 

Figure 50 shows a video frame from experiments described in Subsection 6.2.1, with the 

goal of counting the number of people and cones. In video PV2, the person blocks the 

view of the cones in multiple frames, and also moves out and in the camera view several 

times. Figure 51 shows the output of YOLO model 3  (Section 4.4) with an AP of 

78.87% for detection of undamaged roofs, applied to a segment from Volan003 video 

(Section 4.1). The AP for each model and the deviation between the true number of 

objects (i.e., ground truth) and the output of object counting using the previously 

introduced centroid tracking technique is reported in Table 29. 

.  
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Figure 50. Person blocks the cone in PV2. 

 

 

Figure 51. Roof counting based on YOLO model3. 

 

Considering the centroid tracking method, it can be seen from Table 29 that CNN 

models with higher AP produce better results. For example, Model-P with the highest 

AP results in zero deviations from the ground truth count of cones and person. On the 

other hand, Model-O has the lowest APs of 51.97% (cone detection) and 45.89% (person 

detection) among all models listed in Table 30, which lead to a higher number of 

deviations from the ground truth count (e.g., 8 for person). Finally, counting undamaged 
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roofs with YOLO model 3, the deviation from the ground truth count is 4. In conclusion, 

the designed centroid tracking technique is capable of assigning unique IDs and tracking 

detected objects using the information in sequential frames. It is also found that higher 

object detection precision generally leads to better object counting and tracking. 

On the other hand, the IoU-based Hungarian tracking method is not always better than 

the centroid object tracker. As Table 29 shows, this method only outperforms centroid 

tracking when Model-O is used to count cones. This could be explained considering that 

when the CNN model fails to detect the same object in consecutive frames, the 

Hungarian algorithm keeps assigning new IDs to that object, resulting in over-counting. 

Compared to centroid tracking, Hungarian tracking produces larger deviations in all 

experiments. It can thus be said that centroid tracking is more suitable for object 

counting in this study. 

 

Table 29. Centroid tracking and IoU based Hungarian tracking tests. 

Model Experiment 
AP 

(%) 

Ground 

truth 

Centroid 

tracking:      

count 

(deviation) 

Hungarian 

algorithm: 

count (deviation) 

Face 
Face in 

office 
87.48 3 4 (+1) N/A 

Model-P 
Cones in 

PV2 
99.21 4 4 (0) 7 (+3) 

Model-

O 

Cones in 

OV2 
51.97 4 5 (+1) 4 (0) 

Model-P 
Person in 

PV2 
96.11 1 1 (0) 1 (0) 

Model-

O 

Person in 

OV2 
45.89 1 9 (+8) 12 (+11) 

YOLO 

model3 

Roof 

counting 
78.87 62 66 (+4) 171 (+109) 
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6.4. CNN integration and mapping 

6.4.1. Static frame projection  

Two example classes are used to demonstrate the technique for projecting 

detected objects on a 2D orthogonal map in a real disaster setting. Four building roofs 

are marked as reference points with their real-world positions obtained from Google 

Earth, and all other detected building roofs and two cars are projected from drone’s 

perspective view to a 2D map following the universal transverse Mercator (UTM) 

coordinate system. The input drone video (Volan003) is from Houston, TX, and covers 

zone 15R of the UTM system from Volan2018. Two example frames of this video in 

which detected undamaged roofs (including reference points), flooded areas, and cars are 

marked is shown in Figure 52. Model 2 which is pre-trained on VOC and re-trained on 

drone balanced subset (Section 4.1) is applied on frame #12210 and #12374.  

Considering frame #12210 in Figure 52 (a), from the real-world positions of all 

undamaged roofs, those corresponding to the reference points 1-4 are used to project all 

other detections. In Figure 53 (a), these four points are marked with numbered circles, 

and all other detected undamaged roofs are marked with rectangles numbered 5-14. 

Real-world positions of these undamaged roofs serve as ground truth to measure the 

projection error. Figure 53 (b) shows the frame projection on UTM system. For each 

instance of undamaged roof, the Euclidean distance between the ground truth and 

projection is measured. Each projection is then paired with the closest ground truth, and 

the corresponding Euclidean distance is recorded as error. The frame-level projection 
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error is then calculated using Equation 29, in which n is the total number of detected 

objects in that frame. In addition, the absolute discrepancies along Easting and Northing 

axes are determined, and the average Easting and Northing distances of all pairs in one 

frame are defined as Easting-error and Northing-error, respectively. 

𝑓𝑟𝑎𝑚𝑒 𝑒𝑟𝑟𝑜𝑟 =
1

𝑛
⋅ ∑ 𝑒𝑟𝑟𝑜𝑟𝑖

𝑛

𝑖=1

 (29) 

 

  
(a)  (b) 

Figure 52. Examples of projection input from Volan003 video. 

 

  Projecting undamaged roofs onto a 1-second long segment between frames 

#12210 and #12240 (drone moving to the left in 30 consecutive frames) of Volan3 video 

yields a frame error of 7.18 meters, and an average Easting-error and Northing-error of 

3.41 meters and 7.28 meters, respectively. Considering the size of the drone’s visible 

area in the frame (173.95×130.53 m2), this projection error translates to approximately 

1.9% Easting-error and 5.5% Northing-error, indicating the high accuracy of the 

designed technique for transforming perspective drone views to orthogonal maps. As 

shown in Figure 52 (b), two car instances are additionally detected in frame #12374 of 

Volan003 video, which are also projected along with building roofs, as shown in Figure 

Frame 12210 Frame 12374 
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53 (c) and 50 (d). In this projection, detected roofs 1, 2, 4, and 5 are selected as reference 

points, yielding a 7.79-meter (or 5%) frame error considering both classes. It must be 

noted that the change of viewpoint (as a result of drone moving in the scene) may cause 

any or all of reference points (i.e., building roofs) in one frame to fall out of sight, in 

which case, new reference points are needed to have an uninterrupted projection. For 

instance, comparing Figure 53 (a) and (c), reference point 3 is replaced with a new 

reference point 5, using an ad-hoc reference point selection through tracking and 

updating reference points on the fly. 

 

  

(a) (b) 

  

(c) (d) 

Figure 53. Comparison of object projection results. 
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6.4.2. Reference points updating and calibration  

As examples in the previous Subsection demonstrated, when covering large areas 

from the air, one or more of the four known reference points initially selected could 

move out of or back into the camera view. Therefore, it is necessary to have a 

contingency for updating and calibrating the required number of reference points on the 

fly. Figure 54 shows a frame from Volan003, taken by a drone in Houston, TX in 2017 

during hurricane Harvey, with scene I and scene II marked with transparent colors 

representing the view from a drone camera at two different times. Similar to the previous 

example, undamaged roofs are selected as reference points. In Figure 54, all roofs are 

numbered from 1 to 19 and only the real-world positions of roofs 2, 3, 5, and 6 are 

obtained from Google map. In scene I, detected roofs 2, 3, 5, and 6 together with their 

real-world positions serve as initial four reference points. Next, using the homography 

transformation described in Section 6.1, drone’s perspective view is transformed to an 

orthogonal coordinate system, and roofs 1, 4, 7, 8, 14, 15, and 16 are projected on the 

UTM system. Once the drone camera moves to scene II, roofs 2, 3, and 5 are no longer 

in the view. However, the remaining detected and mapped roofs, i.e., 7, 8, 14, 15, and 16 

from scene I can now serve as new reference points. After selecting four new reference 

points from roofs in scene II, all other roofs detected in this scene can be projected on 

the UTM system. The application of this technique to successive video frames 

guarantees that regardless of how the position and angle of the aerial camera changes, 

detected objects can be mapped in an orthogonal coordinate system.  
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Figure 54. Reference points updating for homography transformation. 

 

It is likely that this method of ad-hoc updating of reference points results in 

accumulated errors since projection is based on the location of detected bounding boxes, 

which is subject to the accuracy of object detection model. Over time, relying on 

previous projections to update the location and count of objects may lead to large 

random errors. A potential remedy to this problem is to implement calibration while 

updating the reference points. As shown in Figure 55, to achieve best calibration results, 

instead of projecting the centroids of building roofs, detected bounding boxes are 

compared with the ground truth polygons in the UTM system. For this specific example, 

this ground truth information is obtained from the U.S. building footprint GitHub 

repository [200]. Inside the visible area, each projection is compared with neighboring 

ground truth objects to measure the IoU. The 4 ground truth roofs (marked with color 

dots) with the highest IoU are considered as successful projections and are therefore 

selected as reference points for the next frame. After determining the four reference 
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points in the orthogonal view, the corresponding pixel coordinates of these roofs are 

selected using the object tracking technique mentioned in Subsections 6.3.2. 

 

Figure 55. Example of reference point calibration. 

 

6.4.3. Experiments and results 

In order to test the performance of the reference point calibration technique, 

YOLO model 3, trained on Volan2018 drone unbalanced data (Chapter 4) is applied to 

100 successive frames from Volan003 video. Autoencoder model PSPNetH (PHA8) 

(Chapter 5) is also applied on the same frames to generate flood detections, as shown in 

Figure 56 (a). As mentioned earlier, the ground truth roof map is obtained from  the U.S. 

building footprint dataset [206]. Four initial reference points in the first frame are 

manually selected, and calibration is applied to project flood detections frame by frame, 
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as shown in Figure 56 (b). Colored lines between these two figures represent the 

correspondence between the paired the reference points. From this Figure, the area 

covered in flood water is measured to be 4,725 square meters (approximately 5,651 

square yards). If the depth of floodwater is known (which is beyond the scope of this 

research), a volumetric estimate of flood can be obtained, which is an extremely useful 

information for flood response, mitigation, and cleanup activities. The same calculation 

can be applied to other classes such as debris and damage roof, with unit cost, to 

estimate the operation cost.  

 

Figure 56. CNN combination and projection.  

 

It must be noted that while homography transformation by itself does not 

introduce a new source of error, its output quality is directly proportional to the accuracy 

of object detection. As evidenced by the examples above, the perspective to orthogonal 

mapping process is not a linear operation. In other words, since objects closer to the 

camera viewpoint appear closer to the bottom section of the video frame, a detection 

error in the upper section of the input image results in a larger mapping error than a 
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detection error in the bottom section of the input image. This concept is demonstrated 

using an experiment in Figure 57 (a). In this example, the goal is to project areas marked 

as Detection1 (closer object) and Detection2 (farther object) onto an orthogonal map. 

Both Detection1 and Detection2 are isosceles trapezoids of the same size (100-pixel 

upper base, 200-pixel bottom base, and 200-pixel height). Figure 57 (b) shows the 

outcome of projecting these two detections onto a map with UTM coordinates. The area 

of Detection2 projection is calculated as 1,117m2, compared to the smaller 278 m2 area 

of Detection1 projection, which validates that the perspective to orthogonal projection is 

nonlinear Considering this effect, in order to filter out large errors in the homography 

transformed map, users could choose to map only portions of each frame that contain 

detections of closer objects, or calculate errors based on the output of the homography 

transformation if ground truth orthogonal information is available. 

 

  
(a) (b) 

Figure 57. Nonlinearity of homography transformation for close and distant 

detections 

 

6.5. Summary  

In this Chapter, a viewpoint transformation technique based on homography 

method was introduced to convert object detections (bounding boxes, masks, pixel 
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classifications) from drone-captured perspective views into the world coordinates of 

orthogonal maps (i.e. UTM system). In addition, two tracking methods, namely centroid 

tracking and Hungarian algorithm were utilized to track object movements and count 

them in successive video frames. The need for this operation was justified through 

describing practical examples of how timely and reliable collection and delivery of 

disaster impact information could add value to disaster management. Several 

experiments were conducted to track and count objects (i.e., human faces in an office, 

person and cones in a courtyard, and building roofs and cars in drone footage). Results 

suggest that objects can be mapped with high accuracy. In order to address the limitation 

of reference point selection and the problem of error accumulation, a calibration 

mechanism was developed to update reference points on the fly and as the camera 

viewpoint is moving. An experiment was conducted using a segment of Volan003 (from 

Volan2018 dataset) video, which resulted in an orthogonal map of flooded areas, and an 

accurate estimate of the land area covered in floodwater. 

It must be noted that for better results and to improve the quality of decision-

making, the output of the mapping procedure must be used in combination with other 

geocoded information available from the same area. For instance, without knowing if a 

projected flooded area depicts a flooded neighborhood or simply corresponds to an 

existing pond or lake, it is difficult to make an informed decision about the severity of 

flood and the level of resources that need to be deployed. To this end, it is recommended 

that all detection projections are further superimposed onto street maps that contain the 

boundaries of existing bodies of water (e.g., rivers, ponds, lakes) and shorelines. This 
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will allow the user to distinguish an open body of water from flood, and determine the 

areas with excess water that need immediate attention. Another use case is when there is 

a need to differentiate debris origins, e.g., whether a debris field belongs to a building 

that used to stand in a particular location, or it has been washed away and brought to this 

location from another site. 
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7. CONCLUSION AND FUTURE WORK  

This Chapter provides a summary of research findings and contributions of this 

Dissertation to the body of knowledge and practice, as well as offers potential directions 

for future work in this field. 

7.1. Findings and Contributions  

The success of disaster mitigation is highly influenced by the extent to which 

first response teams have access to timely and accurate damage assessment information. 

Existing methods of damage assessment still rely heavily on manual processing of large 

volumes of heterogenous data, and are thus inefficient and resource intensive. This 

Dissertation investigated the use of artificial intelligence in the form of CNNs to 

augment current disaster management capacities through automatically extracting and 

mapping high-value disaster impact information in aerial footage. 

In particular, two in-house aerial video datasets, Volan2018 (box labeled) and 

Volan2019 (pixel labeled), were created. Several types of CNN models were then 

trained on these datasets to carry out visual recognition, object localization, mapping, 

and damage quantification. The primary theoretical contributions of this research include 

a thorough description of the methods to build and annotate disaster-related datasets, 

investigation key factors that influence CNN model performance, and techniques for 

GPS-denied object localization and mapping. From the practical perspective, this work 

introduced two fully annotated disaster visual datasets and offered practical suggestions 

for implementing the proposed methods in the field. Moreover, the trained CNN models 

laid the foundation for future research in AI-enabled disaster mitigation. The following 
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paragraphs describe the scientific contributions of this research to the body of 

knowledge and practice. 

7.1.1. Disaster-domain multi-class visual datasets 

A key challenge (Chapter 3) in CNN model training and testing, and quantifying 

model performance in making reliable predictions is the lack of fully annotated visual 

datasets in the disaster management domain. The choice of CNN architecture determines 

the type of annotation (box labeled vs. pixel labeled). As described in Chapter 4, the 

following steps were taken to create Volan2018 and Volan2019 datasets:  

 Create a list of objects of interest (relevant to the problem domain) from the 

review of literature surveys, focus groups, or field observations.  

 Collect available visual data (videos or photos) from the internet, public and 

private sources (to the extent possible), and other individuals (after securing the 

necessary approval).  

 Annotate data by marking the types and locations of objects, while paying special 

attention to the intended output type of the CNN model (i.e., classification, 

bounding box, or segmentation), as it determines the level of detail in the 

annotation.  

Together, Volan2018 and Volan2019 datasets include 64,265 annotated video 

frames and cover different geographical locations. 

7.1.2. CNN model selection and influencing factors  

In order to improve the CNN model performance, this research took on the 

challenge of investigating several performance influencing factors (Chapter 3). CNN 
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models including YOLO [79], RetinaNet [80], PSPNet [82], and Mask-RCNN [81] were 

trained using transfer learning (pre-trained on COCO [131], VOC [124], and ImageNet 

[129]) and retrained on Volan2018 and Volan2019 datasets. These architectures had 

different layers, loss functions, and annotation requirement, thus making it important to 

select CNNs based on metrics such as speed, accuracy, and output format. It was found 

that individual object classes such as car, people, building roof, and boat were suitable 

for object detection CNNs and bulk classes including flood, debris, vegetation, and road 

were better predicted using autoencoders. Other key influencing factors that were 

investigated in this Dissertation are listed below: 

 Camera viewpoint altitude: CNN models trained and tested on videos captured 

from the relatively similar altitude yield best results, while cross-training and 

testing leads to very low accuracy.  

 Pre-trained weights: Models pre-trained on VOC and re-trained on balanced data 

yield best results when tested on both drone and helicopter footage.  

 Data balance: While tested on completely unseen footages, data balancing 

(down-sampling) improves model performance. Moreover, the suggested balance 

ratio (BR) can be used for data augmentation to improve the performance of 

minority classes. 

 Object size: it is proven that there is a correlation between object size and the 

CNN performance. In particular, for any given class, larger objects tend to yield 

higher AP of prediction.  
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 Confidence and precision: A positive correlation between prediction confidence 

and precision exists. This correlation is of extreme value when predictions are to 

be made on new footage with no ground-truth information. While no ground-

truth information prevents the direct calculation of precision, prediction 

confidence is independent from ground-truth information, and thus can be 

obtained directly from the model output. Confidence measurements can be 

therefore used to indirectly estimate prediction precision. Furthermore, this 

correlation can be used as an objective metric to guide class separation (based on 

confusion) among multiple CNN models to maximize performance of each 

model.  

7.1.3. GPS-denied localization and mapping 

Due to the inherent misalignment between perspective and orthogonal views, the 

output of the CNN models may not be readily useful for assessing the extent and 

quantifying the damage. To address this challenge (Chapter 3), this Dissertation 

introduced a homography-based mapping framework, and it was shown that CNN 

detections can be projected from perspective views onto orthogonal maps, given only the 

real-world positions of four initial reference points (e.g., ground landmarks). A centroid-

based object tracking technique based on CNN was integrated with reference point 

updating to enable object counting and GPS-denied mapping in consecutive video 

frames using vision-only data. Beyond the immediate scope of this research, this method 

can be used in other applications where GPS signals are absent or unreliable including 

indoor construction, underwater navigation, battlefield, and space exploration. Once 
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CNN detections are mapped in an orthogonal coordinate system, basic geometric 

calculations can be done to obtain quantity estimate such as length (e.g., of flooded road) 

or area (e.g., of flooded area or debris field). 

7.1.4. Social vulnerability indicators   

As stated in Section 2.6, social vulnerability varies over time and space, among 

different social groups, based on diverse natural environments. The outcome of this 

research can lead to creating affordable and scalable solutions for producing fast and 

accurate disaster damage assessment based on VGI shared by ordinary people. When 

juxtaposed with social vulnerability data, these loss maps can draw more attention to 

communities that are disproportionately affected by natural disasters. Such vulnerability 

data include the Centers for Disease Control (CDC) SoVI map [207], small area income 

and poverty estimates (SAIPE) map [208], and related information layers from the 

United States Census Bureau [209]. Since the degree of generalizability and the 

scalability of output (i.e., performance) of the proposed approach rely primarily on the 

quality of collected training data, targeted data collection from communities that are 

historically impacted the most in natural disasters should be considered as a strategy. 

The above vulnerability maps can be used to this end to ensure collecting diverse and 

statistically representative data, and to eliminate the implicit bias along socio-economic 

lines.  

7.2. Future work  

In exploring a new domain of AI application in this Dissertation, namely aerial 

reconnaissance for disaster response and mitigation, several assumptions were made, and 
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a number of limitations were encountered which could be further investigated in future 

studies. Firstly, datasets Volan2018 (Chapter 4) and Volan2019 (Chapter 5) contain in 

total 22 different disasters (mainly hurricanes) that took place in various locations 

(mainly in North America). However, given the global footprint (type, number, 

frequency, severity) of natural disasters, these datasets cover only a small fraction of a 

much larger pool of data. Therefore, a potential direction for future work is to collect, 

curate, and build larger datasets, possibly using crowdsourcing, in order to support more 

robust CNN model training and testing for disaster management. In addition to 

hurricanes, new data should expand to other types of disasters such as earthquakes and 

landslides, which leave behind visually different damage patterns, calling for specialized 

datasets to train, validate, and test customized CNN models. As stated in Chapter 6, 

ground truth information such as flood location and area, and volume and type of debris 

are necessary to evaluate the performance of disaster information retrieval systems that 

result from this work. However, this ground truth data is generally rare and hard to 

collect. To this end, a potential future research direction is to gather and benchmark the 

scarce ground truth data in support of technology acceptance and development. 

In Chapter 5, the concept of class separation (based on detection error) among 

multiple CNN models was introduced to maximize the performance of CNN models. 

More research can be carried out along these lines by, for example, creating stacked or 

stepped architectures that tie together multiple smaller CNN models, and use 

intermediate learned features from one model as input to other model(s), thus increasing 

the inference efficiency in cases where classes tend to be confused or when there is 



 

148 

 

limited training data. Moreover, with better computing capacities, Bayesian ensemble 

learning [210] can be utilized, without compromising computational speed, to optimize 

posterior detections and achieve better overall performance by combining the output of 

individual CNN models. 

Additionally, performance measurement metrics such as mAP and IoU that are 

well-established and widely used in the computer vision may not be good indicators of 

how useful the developed CNN models are when deployed for disaster response. To this 

end, work needs to be done to establish and document target mAP or pixel IoU standards 

for application development in disaster management by developing human performance 

benchmarks such as processing speed and accuracy in similar scenarios, thereby 

providing ideal performance goals for computer vision application development, and 

introducing realistic benchmarks to compare the performance of CNN models with what 

humans can achieve. Several researches have attempted to benchmark the performance 

of AI with that of a human. For instance, Chen et al. [211] compared CNNs with humans 

in a handwritten character recognition task, and concluded that CNN models yielded 

0.6% less error than humans. Stallkampa et al. [212] conducted an experiment to 

examine the performance of a human and CNN model in traffic sign recognition using 

the German traffic sign recognition benchmark (GTSRB) dataset. In their work, the best 

CNN model achieved a 99.46% correct classification rate, outperforming the best 

performing human group. Taigman et al. [213] compared the performance of deep 

learning and human in face recognition tasks, and suggested that the deep learning 

method could closely approach human level performance. It is important to note, 
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however, that in all such work, the ground truth information is also generated by human 

annotators, and as such, a detection accuracy that can approach or outperform human 

capability is acceptable for practical applications. In the context of disaster management, 

similar benchmarks can be determined by recruiting professionals to identify and locate 

objects. In doing so, special attention must be paid to the tradeoff between detection 

speed and accuracy (i.e., while a CNN model may produce less accurate detections, it 

certainly outperforms humans in speed by an order of magnitude), and their importance 

to the intended outcome (faster detection for immediate search and rescue vs. more 

accurate detection for long-term mapping and recovery). However, at present, these 

objective metrics do not exist in the field of disaster management. 
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APPENDIX A. YOLO MODEL PERFORMANCE  

This Appendix reports the performance of all trained YOLO v2 models (model1-

8) on all available test data from Volan2018 dataset. It is worth to note, while testing on 

unseen dataset (Volan007 and 008), only the existing classes are considered to calculate 

the precision and recall values.  

 

  

  
Figure 58. Model 1-8 testing results on UB, UD, HB, HU, Volan007 and 008.  
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Figure 58. Continued. 
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Figure 58. Continued. 
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Figure 58. Continued. 
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Figure 58. Continued. 

 



 

185 

 

  

  
Figure 58. Continued. 
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Figure 58. Continued. 
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Figure 58. Continued. 

 



 

188 

 

  

  
Figure 58. Continued. 
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Figure 58. Continued. 
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Figure 58. Continued. 
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Figure 58. Continued. 
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APPENDIX B. MASK MODEL REGRESSION  

This Appendix reports the regression results of model Mask1 for degrees of 1, 2, 

3, and 4. Errors are measured as described in Chapter 5. It can be seen that there is 

always a positive correlation between the prediction confidence and precision. 

Moreover, some classes experience performance improvement as the regression 

nonlinearity increases.  

 

 

 

 
 

Figure 59. Mask1 confidence-precision linear regression.  
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Figure 59. Continued. 
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Figure 59. Continued. 
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Figure 60. Mask1 confidence-precision nonlinear regression (degree 2). 
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Figure 60. Continued. 
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Figure 60. Continued. 

  
Figure 61. Mask1 confidence-precision nonlinear regression (degree 3). 
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Figure 61. Continued. 
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Figure 61. Continued. 
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Figure 62. Mask1 confidence-precision nonlinear regression (degree 4). 
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Figure 62. Continued. 
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Figure 62. Continued. 

 

  


