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ABSTRACT

From an early age, children begin developing critical motor control skills that

will be used for the rest of their lives. While everyday activities like standing or

walking require gross motor control, fine motor control over the hands is vital to

healthy development. Fine motor skills contribute significantly to reading, writing,

crafting, drawing, and more, all of which are important for communication and

school readiness. Pediatricians can evaluate a child’s gross and fine motor skills

using questionnaires and activities. For example, there may be periods when a

pediatrician meets with a child to see if their tracing abilities are getting better or

worse through sketching questionnaires. Usually, these questionnaires ask the adults

to draw with their child. However, it is particularly difficult to fully evaluate a

child’s drawings through a handful of sketches created in just these meetings. We

propose to create a sketching system that will collect all drawing data from parents

and children that can then automatically evaluate and differentiate a child’s sketch

from an adult’s using only their strokes. We believe that each sketching stroke is

unique and includes artifacts of the user’s age. Working with sketches from children

between 2–5 and adults over 18, we build different statistical features to determine

age groups and train a system by analyzing different stroke patterns. A system

capable of automatically categorizing users into age groups can enable new solutions

for the assessment of fine motor skills as well as enable novel applications related to

collaborative learning software and age-based authentication.
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1. INTRODUCTION

It is essential to begin evaluating healthy childhood development from an early

age, as a child’s development determines readiness for school and other activities.

Critical school-readiness skills include the ability to hold a pencil, use scissors, and

open small items like glue [109]. Multiple studies have shown that delayed devel-

opment can lead to many complications later in life, including difficulty handling

small objects, reduced reading and writing achievements, and other complications

through preteen years [12, 33, 89, 98]. Because evaluating children’s development is

so important, there are several widely-used assessments for this purpose, many of

which rely on motor control [45,56,62,97,112].

1.1 Gross and Fine Motor Control

Typically, there are two forms of motor control that assessments consider: gross

and fine [46, 97]. Gross motor control refers to vast movements of the body like

waving, jumping, or walking and can be tested in different ways [21, 54, 69]. For

instance, gait analysis alongside gross motor function is used by Kurtz et al. to

understand if a brain injury is present in a child [54]. Understanding gross motor

control can also help in the early identification of autism in children, as shown in

work by Ozonoff et al. [69].

Gross motor control contributes to significant movements of the child and their

development skills, whereas fine motor control ties to the child’s school-readiness

because it is vital for everyday activities like cutting, writing, painting, coloring, and

handling small items [89]. There is a neurological aspect of fine motor skills that

indicates later reading and math achievements [12,33,61]. If not correctly identified,

delayed fine motor control can lead to the decline of a child’s capabilities to retain
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new information or focus on school-based activities [13]. Additionally, their ability

to communicate and write legibly or adequately can suffer [12].

1.2 Assessments

Most often, parents consult pediatricians for all aspects of their child’s health,

including development. Pediatricians rely on both questionnaires and parent in-

volvement to evaluate children’s motor delays, if any [82]. The Ages and Stages

Questionnaire (ASQ) and Parents’ Evaluations of Developmental Status (PEDS)

are two ways to evaluate the development of children [9, 32, 97]. Another standard

measure is the Bayley Mental Development Index score. Most of these tools assess

children’s behavioral, mental, and physical health in ages ranging from four months

to five years old. Assessments can be generally classified as indirect or direct; indirect

methods can be done by parents at home, while direct methods are most completed

with an expert such as a pediatrician.

Questionnaires are screening tools to understand if children’s motor control is de-

veloping well depend upon their age and other factors [9,97]. Usually, screening tools

can be answered by the parents as an indirect evaluation. Still, they can only cap-

ture some of the activities of a child compared to direct evaluation with experts [48].

Indirect evaluation is more efficient and less costly, but a parent’s response might be

biased or missing problems that a pediatrician may identify through direct assess-

ment [48]. Although indirect screenings alleviate the burden on pediatricians, 17%

of the children that go through screenings would still need professional help for their

motor delay [68]. Also, direct development evaluations are more correlated to Bayley

index scores than conventional indirect approaches [102]. Therefore, direct evalua-

tion approaches with pediatricians are more reliable in discovering motor delays in

a child.
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1.3 Sketching and Development

One way of evaluating fine motor control is through drawing—the small move-

ments of our hands while drawing or writing correlates tightly with fine motor con-

trol [15,29,93]. For fine motor control, it is important to evaluate children’s sketches

comparatively to their parents [33]. It is recommended to have a parent draw with

their child; this type of involvement can be associated with the child’s performance at

schools [94]. Although it is suitable for parents to interact with the child in drawing

activities, if a parent saves multiple images of their drawings together, it could be

hard to evaluate only the child’s sketches during direct evaluations, while disregard-

ing the adult’s sketches. Not only can it be hard, but it is also time-consuming to

review each drawing.

Pediatricians can use these drawings along with standard questionnaires to com-

prehensively evaluate the development of a child. Given that the actual likelihood of

motor delay in children is relatively low [68], direct evaluation can be limiting on a

pediatrician’s time. The limited amount of time available for pediatricians could af-

fect children, who do have motor delay problems, of having shorter evaluations. The

average pediatrician may manage as many as 2, 000 children [60]. Therefore, the best

practice would be to have an indirect evaluation screening method that helps lower

the ratio between children and pediatricians while yielding useful data [48,102].

1.4 Modernizing Fine Motor Assessment through Sketch Recognition

Instead of writing on paper, this work proposes that the child use a pen-enabled

device so the device can process their strokes and automatically determine which

strokes are from the child and which strokes are from the parent. Prior work in the

field of sketch recognition extracts features from the user’s sketches for automatic

classification and the evaluation of their drawings [26, 36, 38, 49, 53, 92, 95, 104, 105].
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This research could provide insight as to how to classify each stroke belonging to

an adult or a child. The pediatrician could potentially use the information given to

differentiate the strokes and use the child’s strokes to evaluate if the child has any

motor delay.

Research has shown that by age two, 90% of children have moderate ability

when operating touchscreen devices [20]. A proliferation of studies and articles have

reflected on the impacts of these devices on children’s learning [16, 44, 66], social

development [64], and parental interactions1,2. Research also shows that using tablets

or other forms of a mobile device can enhance the children’s motivation in learning

and collaboration [57]. Children often interact with tablet devices because there

are many educational applications. Educational apps are the third most popular

category on Apple’s App Store, behind gaming and business usage3. With hundreds

of thousands of educational apps, one can imagine ample uses for a system that can

automatically identify whether the parent or child is currently using the device. For

example, an application that helps a child learn to write could ask a parent to show

the child what to do and then wait until the child has written something before

evaluating it.

1.5 Case Scenarios

1.5.1 Without system

A parent is asked to fill out a questionnaire about their child’s developmental

process to the best of their ability. Questions about drawing skills are included in

the “Fine Motor Skills” section. These questions ask the parent how well the child

draws a particular shape, or if the child has any difficulties holding a pen. The next

1https://www.littlethings.com/reasons-not-to-give-children-technology/
2http://www.bbc.co.uk/guides/z3tsyrd
3https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/
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day the parent meets with a pediatrician to evaluate their child’s motor skills. The

pediatrician reviews what the parent provided and then discusses the score given

by the questionnaire. When reviewing the sketches, the pediatrician may need to

repeatedly ask if the stroke belongs to the parent or the child. The parent may not

remember or remembers incorrectly, which hinders the time and performance of the

pediatrician’s evaluation. The pediatrician is unable to determine accurately how

well the child is developing, and because the meeting took longer than expected,

other meetings will be impacted. To prepare for their next session, the parent must

record their child’s activity correctly.

1.5.2 With system

With the proposed system, the parent could still fill out a questionnaire, but the

labeling system is automated. The system would extract x and y coordinates and

timestamps from the sketches to process the data into meaningful features [58,74,78].

The system will then use the extracted features to classify each stroke. Afterward,

it would save the information of the strokes and mark the sketch as belonging to a

child or an adult. Afterward, it would save the information of the strokes and mark

the sketch belonging to a child or an adult, which enables the ability to examine the

children separately from adults for proper evaluation of the child’s ability. Because

the system saves a record of each sketch, the pediatrician can reference all shapes, in

addition to asking the parent if the child can draw a specific shape. In this scenario,

the strokes that the child made were no longer evaluated only by the parent but

also the pediatrician, which reduces a potential bias introduced by the parent. The

resulting score is less ambiguous than the outcome of a standard ASQ. The meeting

is beneficial for everyone and finishes in a timely manner.
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1.6 Design goals

It is vital to evaluate the fine motor control of children. Sketching is an essential

method to measure fine motor control, but this requires a more direct approach for

the pediatrician to monitor a child’s sketch. Direct approaches can be problematic

because pediatricians may not have enough time to evaluate each child directly, and

for those who need care the most, indirect methods can be inadequate. These prob-

lems need solutions which support children’s use of touchscreen devices for sketching

in the comfort of their own homes, while also providing a better evaluation of fine mo-

tor control to enhance their opportunities to learn and develop. This work proposes

to create a sketching system that can differentiate strokes from a child from those of

an adult using characteristics of their strokes. The goal is to support many further

applications beyond assessment, such as educational tools or child authentication.

1.7 Research Questions

R1. How accurately can a smart sketch interface differentiate adults

and children using only single strokes from free-form sketches?

Building on Kim’s work [49], this study seeks to verify the findings that sketch

features embed characteristics of a user’s age. While Kim demonstrated classification

among specific age groups using strokes and sketches, this work is focused on verifying

that work by differentiating adults from children using single strokes in free-form

sketches on a smart drawing interface for generic users.

R2. What are the top features that distinguish adult from child

sketches?

In accordance with the goal to enable many new applications such as fine motor

assessment or enhanced interactive learning, it is important to identify the key age-

based characteristics of sketches. These top features are critical to creating machine
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learning algorithms that distinguish users based on age.
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2. RELATED WORK

Quantifying motor skills is crucial in determining the healthy development of a

child [98]. Pediatricians use various automated assessments to work with children and

their parents to improve children’s motor abilities. One example during children’s

evaluation may involve parents and their children collaborating to perform sketching

activities with traditional means [57]. For this type of drawing interaction, existing

systems and tools can assist by better informing parents of their children’s’ motor

abilities—by classifying their strokes as either child or adult skill levels—through the

following areas.

• Screening tools can provide an assessment by evaluating children’s fine motor

skills.

• Children’s interaction with tools and devices discusses how children learn

motor skills and how educators use technology in the classroom.

• Sketch recognition reviews the use of intelligent processing methods to an-

alyze stroke-based input.

• Differentiation refers to similar techniques to distinguish between users on a

single device.

2.1 Screening Tools

One reasonably known screening tool that parents use is the Ages and Stages

Questionnaire (ASQ) [88]. Pediatricians use questionnaires to measure and keep

a record of children’s motor development. Motor development includes children’s
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communication skills, problem-solving skills, and other skills that require the mus-

cles in the body. Many cultures tested the validity of this tool under different lan-

guages [25, 45, 80]. In turn, the ASQ became reliable and widespread for parents

and pediatricians to use. The ASQ consists of 21 intervals in five different areas for

children of ages 2 to 48 months: personal, gross motor control, fine motor control,

problem-solving, and communication. The answered questions provide an approxi-

mate estimate of how much motor delay a child may have compared to other children

that took the tool previously. Squires et al. [88] discovered that approximately 10–

20% of children have a delay, and this screening tool lessened the number of children

visiting their pediatrician [87]. However, pediatricians primarily use the Ages and

Stages Questionnaire for indirect evaluation, which does not include experts to be

part of the screening process. Instead, children’s screening process is done by non-

experts that need to complete several activities with the child that they might not

record. A record of the activities done by children during the screening process can

shorten the time of visits with a pediatrician.

The Parents’ Evaluations of Developmental Status (PEDS) is another screening

tool used for early development [32]. The survey is similar to ASQ, as the question-

naire asks the parent questions that relate to the child’s fine motor skills, gross motor

skills, problem-solving, and communication skills. PEDS has an additional section

for interpreting the results of the screening tools. For example, if there is a single

concern, the interpretation form asks for another screening, and if the child failed

the assessment again, then there is additional testing. In this way, parents have a

continuous record of the child’s development.
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2.2 Children Interaction with Tools and Devices

Gual et al. studied the interaction of children with standard classroom ob-

jects [30]. The problem is in understanding the motor development of many children

from different grade levels. In total, they used 253 children for their tasks. Each task

contributes to a multitude of motor composite areas: fine motor precision and fine

motor integration. Activities similar to cutting, writing, and folding require the pre-

cision of the hands and fingers because most fine motor functionalities heavily involve

the muscles in our fingers. Taking similar motor functions, Gual discovered that mo-

tor skills develop with age, and with this information, children cannot perform some

activities. Therefore, there is a distinct difference once children mature.

A series of papers expected that tablets are used more often in the classrooms [14,

18, 55, 66, 77]. Researchers used tablets to observe students’ behavior while learning

a foreign language [81]. One challenge is how much it affects the teaching styles

of teachers and professors. Teachers and professors could eventually change their

teaching habits that are more accustomed to class learning, which is similar to work

by Montrieux et al. [63]. Montrieux created a Google Form to evaluate a set of

teachers for their teaching styles and received 123 responses. Their findings discuss

that teachers switch into two categories based on how active the students interact

with their tablets. That is, teachers can either be innovative teachers or instrumental

teachers, where both styles of teaching are highly interactive with the students and

their tablet devices. The study supports that children can be highly interactive when

completing activities.

2.3 Sketch Recognition

Academics and researchers have applied sketch recognition to perform many dif-

ferent tasks [24, 34, 37, 40, 65, 90, 91, 110, 111, 113] to interpret a user’s intentions. In

10



a high-level view, a sketch is a collection of strokes where strokes are a collection

of points. Recognizing drawings require multiple inferences about how a user draws

a shape [72–74]. Some systems attempt to understand the user’s intentions when

they create a diagram [1, 2, 10, 17, 41, 59], by using these tools, there are fewer er-

rors, and ideas are allowed to flow more freely without the concern of beauty in

the diagram. Other systems that manage diagrams must be different in other do-

mains where symbols in one domain do not translate in other domains [28, 31, 70].

To accommodate this, some researchers create systems to ease the development of

new sketch recognition systems [39]. Usually, these systems can be incorporated into

smart user interfaces for easier interaction [7,11]. There are also other uses to sketch

recognition for quantifying different algorithms [8,76]. The understanding of human

intention is achieved by using gesture-based, vision-based, or geometric-based sketch

recognition.

Valentine et al. created a sketching interface called Mechanix, a tutoring system

for mechanical engineers [5,6,95,96]. Their system lowers the workload of professors

and teaching assistants (TA) when they grade exams, homework, and quizzes. In

introductory engineering courses, the disproportionate ratio between students and

instructors results in grading, taking a significant portion of the instructors’ time.

Worse still, the students receive their marked exams and homework after a long de-

lay. Not having immediate feedback could cause students to make the same mistakes

during exams or evaluations. Students need to properly learn different concepts in

introductory courses to continue their career and understand advanced concepts.

Valentine approached this problem with a sketching interface and discussed the var-

ious concepts shown in introductory engineering courses. The user would draw as

they would on pen and paper, and the system gives immediate feedback if the user

drew a concept incorrectly. At the time, 111 students were used in their study, and
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the students found the system to be very helpful, especially the immediate feedback

they received. The contribution was that an intelligent user interface was made

using sketch recognition algorithms and that students learned the basic concepts

of mechanical engineering while benefiting from automatic feedback. Valentine et

al. system demonstrate the value of sketch recognition algorithms in determining a

user’s intention during a sketch.

There are several systems already that attempt to measure drawing ability and

try to improve the way people sketch [19,22,35,42,103]. In work by Williford et al.,

they wanted to improve design and communication skills for engineering students

when sharing and visualizing their ideas [105]. Often when engineers sit together to

share ideas, they are either writing on a whiteboard or chalkboard to visualize or

communicate. Without proper design principles, engineers will have a difficult time

persuading or convincing others of their idea. Learning to perform basic lines, circles,

and ellipses can be treated as lessons in design. The study collected 80 students over

two semesters between the ages of 18-19 years. The study consisted of a group

using Persketchtivity and another group using pen and paper. The traditional pen

and paper group was given homework problems. The group using Persketchtivity was

given the same problems but through the application. Students using the application

had increased sketching and visualization skills. They were able to appreciate the

real-time feedback from Persketchtivity. An intelligent system such as Persketchtivity

aids student’s design and used sketch recognition to recognize their strokes. Various

recognizers can form shapes using strokes to make several observations in a sketch.

Similar works like iCanDraw [23] and EyeCanDraw [19] also provide aid or sketching

instructions when drawing a human figure. We build upon these works, looking both

at the measurement methods and the features they use for recognition.

There are numerous examples in the field of sketch recognition interfaces that
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target children learning how to sketch for developmental learning [50–53, 71, 101],

and these examples could also relate to techniques for improving the classification of

children using touchscreen gestures [3, 79, 83–86, 100, 107, 108]. Two systems, TAY-

ouKi [101] and KimCHI [50,51,53], provide more examples that introduce the basic

drawing concepts to children. Kim et al. created a fine motor skill framework based

on children overall drawing skills. There were two types of classifiers: KimCHI, which

classifies the overall drawing skill of children and KimCHI2, which classify drawing

skills based on curvature. The motivation for their work is to assess child school-

readiness and social behavior. The problem with current solutions is that they use

human experts to evaluate full sketches of child drawings. Looking through the child

drawings can be cumbersome and prone to human error. The sketch recognition al-

gorithm that they used to show certain features that paper assessment applications

cannot show as the time of sketching and the curvature of their sketch. In their first

application, KimCHI, had children draw from a template beside them and generate

features that help determine the amount of motor delay. In their second study, they

generated different features that relate to the curvature to understand children’s fine

motor skills. Using 10-fold classification on over 150 children, the KimCHI classi-

fier scored an f-measure of 0.904 from distinguishing between adults and children.

Also, using the same data, KimCHI2 uses corner-finding and curvature to achieve an

f-measure of 0.744 [49, 53]. For both KimCHI and KimCHI2, both approaches use

sketch-based features that are used for the entire sketch instead of a single stroke.

2.4 Differentiation

One of Hang et al.’s approaches to extract features uses two of the user’s fingers.

Using two fingers would restrict normal movement that one finger can do alone [43].

For example, to draw a square using two fingers, both fingers would have to draw
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while spreading apart their fingers simultaneously. The technique was first motivated

by another paper that used stroke order to distinguishing adults. However, the stroke

order could always change, or the user could change the stroke order and create

the same result visually. The study showed that they had a high number of false

negatives and false positives for authentication. This mainly due to users creating

their template from a simple example template. Therefore, templates were too simple

to use for distinguishing adults from children. Even if the application had the desired

security capabilities, the interaction with the application was too strenuous for the

user’s fingers. Having a user trace a template using two fingers at the same time

would be uncomfortable. The act of using their fingers at the same time would be

frustrating and causes some users to draw with only one finger instead of two. Even

though their idea of using the distance between two fingers is interesting, it would

not be very distinct in the same age group. Using the distance between two fingers

in different age groups could prove more useful for differentiating between adults and

children. However, the usability of the application could be frustrating for children

to use, so the children may not comply with using two fingers.

In the paper “Scribble-a-secret,” Oka et al. made a sketch-based password au-

thentication system [67]. Sketching interfaces have increased in popularity since the

rise of hand-held computing devices. In their approach, they wanted a way to authen-

ticate an individual using free-form sketches. Then from these sketches, the system

would use the edge orientation from the set of strokes to authenticate. Each of the

87 participants drew a free-form sketch of a unique subject. They had to recreate

their free form sketch several times for the application to extract features from that

same sketch. At least ten sketches from a single user need to be collected to use edge

orientation. The author took the average of each edge orientation and used this as

the user template. Validating the accuracy of the algorithm, the author compared
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sketches with 86 participants and showed a low percentage of false negatives and

false positives. Edge orientation is an interesting approach and has the advantage of

better performance if the password is complicated. As the password becomes com-

plex, the accuracy increases, but users would have a difficult time remembering their

password.
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3. METHODOLOGY

In this work, the proposed system is a sketch recognition system able to differ-

entiate between adults and children. The system has been used to collect sketching

information from users and pre-processed for the shape recognition algorithm. Using

the messy sketches from the users, this system attempts to extract traditional sketch

recognition features and other features using vision-based techniques. This chapter

explains the system, the user studies, the activities, the features, and the classifiers

in detail. Chapter 5 discusses the best features and validation methods.

3.1 Data Collection

This section details the collection of data from various users informing the devel-

opment of the “Sketch Pals” system. Initial studies informed the design of the system

to make necessary improvements before the full user study. These user studies had

adults and children perform three different activities to collect strokes from tasks

with prompts varying in specificity with respect to what the users needed to draw.

The sketches from these activities are saved into the device for further pre-processing.

3.1.1 Design

Sketches were collected using a custom sketching application called “Sketch Pals”

that ran on a Nexus 7 pen-enabled tablet device. Nexus 7 was the platform of choice

because it is a cheap tablet that can be found in a common household. Initial

studies took place to evaluate the feasibility and design direction of the study. These

users were tasked with sketching different figures without a template to express

their creativity fully. Thus the interface design went through several iterations after

receiving feedback. Sketch Pals, shown in Figure 3.1, is a simple interface with
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functions like erasing, changing brush size, clearing a canvas, and saving sketches.

The top bar shows different functionalities of the application, represented as icons.

From left to right, the “New” button (a plus sign) that will save the current drawing

and clear the canvas. Next, the “Clear” button (trash can) clears the canvas. The

next two buttons switch the mode of the stylus: the “Draw” button (pen) switches

to a pen, and the “Erase” button (rotating rectangle) switches to an eraser. Lastly,

the “Save” button (floppy disk) prompts the saving process. This process asks the

user if they are 18 or older. If yes, it will ask the user to name their drawing. If no,

it will ask the user to call an adult over to save for them. Figures 3.2 and 3.3 are

examples of sketches produced by adult and child participants, respectively. Each

stroke in each sketch is in a different color.

3.1.2 User Studies

The classifiers were trained using data from a total of 39 participants, as shown

in Table 3.1. Adults were over the age of 18, and the children were between the

ages of 3 and 5. Each participant sketched on a pen-enabled device and had to

complete three different activities. In the first activity, the participants draw for 5

minutes. They may express anything through a sketch. In the second activity, the

user picks a shape to replicate for 2 minutes. They can select from a square, triangle,

trapezoid, or a star. The last activity is the first activity in addition to testing each

button of the system. To preserve the participants’ creativity, adults were asked to

work alone, and children drew without any help from their teacher or parent. The

overall session includes three activities; the last activity, however, saves the sketch

differently depending on whether the participant is a child or an adult. For child

participants, the researcher took the device and labeled the session a child session.

For adult participants, the system would label their session as an adult, and they
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Figure 3.1: SketchPals Application
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Figure 3.2: Example of an adult sketch
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Figure 3.3: Example of a child sketch

20



Demographics of all participants
Group Adults 18+ Children 3-5 Overall
# of Volunteers 25 14 39
# of Sketches 50 28 78
# of Strokes 1185 1888 3073

Table 3.1: The basic Demographics of all users in the study

would get to choose the name of the file.

3.1.3 Data Structure

Sketch data was collected from over several sessions. Each session consists of

three sketches from each activity. When a user begins to sketch, every pen-down to

pen-up motion defines as a stroke. In every stroke, there is a collection of points.

While the user is sketching, the system assigns each point a stroke number. Once a

pen-up to pen-down motion starts, the system increments the stroke number. After

the user completes the sketch, the system saves the sketch into a CSV file for later

processing. The sketches that the user cleared and deleted are also collected. These

unwanted sketches help determine the intentions in the sketch during analysis.

Data collection involves sampling the state of the canvas throughout the sketch,

collecting x and y coordinate data and timestamps the refresh rate of the screen. Ini-

tially, the sampling rate was once per second, but some features were not calculating

features accurately because the time between points was not short enough: strokes

would look different but have the same calculated features. Increasing the sampling

rate to the refresh rate of the screen addressed this issue. The data for each collected

stroke has the timestamps in milliseconds, the x and y coordinates of the points,

the color of the points, the x and y velocity of the stroke, and the stroke number.
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The color shows us the difference between regular strokes and erased strokes. The

velocity of the stroke is used for some sketching features. The stroke number label

each point in which stroke it belongs. These are the pieces of information that are

collected from the tablet device and used in the feature generation process.

3.2 Pre-processing

Resampling was not used during the feature generation process. Resampling,

shown in Figure 3.4, is a typical pre-processing step in sketch recognition to stan-

dardize the number of points in the sketch by making the distance between the points

equidistant. Resampling can be used to upsample, downsample, or remove the effects

of an inconsistent sampling rate. Some sketch recognition algorithms rely on resam-

pling to standardize the input. For example, template matching works best when

the input sketches have the same number of points as the template as missing data

points, or abnormal clusters of data points would cause these template matching to

fail. In a similar vein, corner finding algorithms that rely on the geometry of the dis-

tance between points being smaller over corners than over a straight segment in the

sketch could fail without equidistant points. However, this work benefits from using

the raw, messy sketches over the resampled ones. In this work, understanding the

differences in the production of strokes between the different categories of users can

give some insight. Differences in the strokes could be removed during the resampling

process. By not resampling, the system keeps each stroke unique to the user.

Through many tribulations, some files contain the entire session, meaning that a

single file contains multiple sketches. The elapsed time was calculated between each

stroke. Roughly, the time between strokes is 1–2 seconds, and it takes 3–5 minutes

between sketches. If the time difference between strokes is below 1 minute, there

is an assumption that the next stroke is in the same sketch. Otherwise, the stroke
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Figure 3.4: Example of a resampled sketch and an original sketch

belongs to another sketch.

The system needed another method for distinguishing strokes by utilizing the

velocity, direction, and the elapsed time of the stroke. If the stroke is too fast, the

stroke could break into two separate strokes. First, the system extracts velocity from

the CSV file. If the total velocity increases between two strokes, then this is where

the error occurs. The system subtracts the velocity from the end of one stroke and

the beginning of the next stroke. If the difference is below 15, then the two strokes

should be in the same stroke. This study also considered the change of direction

(angle) between a set of points. The angle gave a considerable amount of leeway

to the threshold, depending on if the change is greater or lower than the previous

changes. From these heuristics, the system estimated when stokes was a single stroke.

3.3 Shape Recognition

The primary goal for the second activity versus the other activities is to have

a set of sketches that follow a template. The second activity in the user studies

consists of users tracing different shapes. The system process the traced shape and

classifies the shape by using a template-matching algorithm called $P (pronounced

p-dollar) [4, 99, 106]. Each template consists of a point cloud, i.e., a set of points

consisting of x and y coordinate values. The user’s sketch is compared to each
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template using Hausdorff distance to find the best template. Hausdorff distance

matches each point in the input sketch to its corresponding point in the template

sketch by finding the pairs of points with the smallest Euclidean distance. The

template with the smallest total distance is the predicted shape. For this algorithm

to work, the input must go through a pre-processing phase where the sketch is scaled,

translated to the origin, and resampled in order to standardize the size, location, and

point regularity.

3.4 Optimization and Feature Generation

After the sketches were collected and pre-processed, features were extracted and

used later for classification. Generating features involves small calculations that

may be shared across features. Instead of needlessly repeating calculations and

slowing down the overall algorithm, these calculations can be computed beforehand

and then passed to another function to finishing generating the features, as shown

in Algorithm 1. In the “send to features” function, list, change in the distance

(distDeltas), change in time (timeDeltas), and change in angle (angleDeltas) have

been initialized. After initializing the values, the system computes the bounding

box of the stroke shown in Algorithm 2. “DistDeltas” gets the distance between

each point in a stroke. “TimeDeltas” calculates the elapsed time between each point

in a stroke. “AngleDeltas” calculates the angles between points in a stroke. Then

some features needed the diagonal Length (diagLen) and the bounding box angle

(boundboxAng). To calculate the bounding box, first, the system finds the lowest

and highest x, y coordinates. Then the system subtracts the minimum from the

maximum x and y values to get the width and height, respectively.

After calculating these repetitive values for optimization purposes, the system

passed these values through another function called “features.” Given all the deltas
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Algorithm 1 Feature Extraction

function sendToFeatures(stroke, length)
list = []
distDeltas = []
timeDeltas = []
angleDeltas = []
boundingBox = getBoundingBox(stroke)
for i = 0; i < length; + + i do

distDeltas[i] = distChangeAtPoint(i, stroke)
timeDeltas[i] = timeChangeAtPoint(i, stroke)

end for
for i = 0; i < length; + + i do

angleDeltas[i] = angleChangeAtPoint(i, distDeltas, length)
end for
diagLen =

√
boundingBox.height2 + boundingBox.width2

boundboxAng = tan−1( boundingBox.width
boundingBox.height

)

list = features(diagLen, boundboxAng, distDeltas, timeDeltas, angleDeltas)
return list

end function

between points, “features” generates the full feature set in the order shown in Algo-

rithm 3. The corresponding equations for each feature listed in Equations 3.1–3.17.

The main program receives the full computed feature set, where the program

starts to train the classifiers. The program computes the last set of features Zernike

moments 1–8 in a different data structure that only includes x, y, and time. More

information about calculating each feature used in the “features” function can be

found below.

• Distance between first and last point is the distance between the first and

last point of a stroke.

√
(xp−1 − x0)2 + (yp−1 − y0)2 (3.1)
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Algorithm 2 Bounding Box

function getBoundingBox(stroke)
list = []
width = 0
height = 0
xlow = −∞
xhigh =∞
ylow = −∞
yhigh =∞
while nextpoint.next! = null do

xAxis = nextpointx
yAxis = nextpointy
if xAxis < xlow then

xlow = xAxis
end if
if xAxis > xhigh then

xhigh = xAxis
end if
if yAxis < ylow then

ylow = yAxis
end if
if yAxis > yhigh then

yhigh = yAxis
end if
nextpoint = nextpoint.next

end while
width = abs(xhigh− xlow)
height = abs(yhigh− ylow)
list.add(width)
list.add(height)
return list

end function
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Algorithm 3 Feature Generation

function features(diagLen, boundboxAng, disDeltas, timeDeltas,
angleDeltas, stroke, length, boundingbox)

percent10Dist = totalLength ∗ 0.10
ptDistFL = firstLastP tDist(stroke)
totalLength = totalLen(stroke)
totalAngle = totalAng(length, angleDeltas)
totalAbsAngle = totalAbsAngle(length, angleDeltas)
smooth = smoothness(length, angleDeltas)
maxspeed = maxSpeed(length, distDeltas, timeDeltas)
totalT ime = totalT ime(stroke, length)
aspect = abs(3.14

4.0
− boundingboxAng)

curve = curviness(angleDeltas)
totAngDivLen = totalAngleDivTotalLength(totalAngle, totalLength)
dens1 = density1(totalLength, ptDistFL)
dens2 = density2(totalLength, diagonalLength)
openess = openess(ptDistFL, diagonalLength)
boundingArea = boundingBoxArea(boundingBox)
logArea = log(boundingArea)
totalAngleDivTotalAbsAngle =
totalAngleDivTotalAbsAngle(totalLength, totalAbsAngle)
logLength = log(totalLength)
logAspect = log(aspect)
percent5 = strokePercentEnd(stroke, 0.05, length)
percent3 = strokePercentEnd(stroke, 0.03, length)
percent2 = strokePercentEnd(stroke, 0.02, length)
NDDE = newNDDE(length, stroke)
DCR = newDCR(length, stroke)
distf10 = grabF10Dist(percent10Dist, length, newDistDeltas, stroke)
distb10 = grabB10Dist(percent10Dist, length, newDistDeltas, stroke)
return listoffeatures

end function
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• Total stroke length is the total distance in a stroke. Let n be the point in a

stroke and let δ be the change in x and in y, for example δxp = x(p−1)−x(p).

n−2∑
n=1

√
δx2n + δy2n (3.2)

• Total angle traversed is the summation of angles in a stroke. Let θ be the

angle.
n−2∑
n=1

θn (3.3)

• Total absolute angle traversed is the summation of angles in a stroke.

n−2∑
n=1

abs(θn) (3.4)

• Smoothness is the sum of the squared values of the angles in a stroke.

n−2∑
n=1

θ2n (3.5)

• Max speed is the sum of the squared values of the angles in a stroke.

max
δx2n + δy2n

δt2n
(3.6)

• Total time is the total amount of time of the stroke.

tn−1 − t0 (3.7)

• Aspect ratio is the absolute value of 45 degrees minus the angle of the bound-
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ing box.

abs(45o −BoundingBoxAngle) (3.8)

• Curviness is the summation of the absolute value of all angles below 19 degrees

in a stroke.
n−2∑
n=1

abs(θ′n) where θ′ = {θ | θ < 19o} (3.9)

• Total angle divided by length is the total angle divided by the length of

the stroke.

TotalAngle

StrokeLength
(3.10)

• The distance between the first and last sampling points divided by

stroke length.

FirstandLastPointDistance

StrokeLength
(3.11)

• Diagonal of the stroke’s bounding box divided by the stroke length.

DiagonalofBoundingBox

StrokeLength
(3.12)

• Total angle divided by total absolute angle.

TotalAngle

TotalAbsoluteAngle
(3.13)

• Log of the area of the bounding box.

Log(AreaofBoundingBox) (3.14)

• Total angle of the last 5%, 3%, and 2% of a stroke. Let v be the new
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set of points of the last percentage of a stroke.

v−2∑
v=1

θv (3.15)

• First 10% of the total distance. Let v be the new set of points of the first

10% of the stroke.
v−2∑
v=1

√
δx2v + δy2v (3.16)

• Last 10% of the total distance. Let v be the new set of points of the last

10% of the stroke.
v−2∑
v=1

√
δx2v + δy2v (3.17)

3.5 Classifiers

The goal of this study is to determine critical features and classify each stroke by

its category: adult or child. Using the data presented in Table 3.1, the system was

trained and validated using five different classifiers to differentiate between children’s

strokes and adult strokes: Random Forest, Decision Tree, Zero-Rule, Naive Bayes,

and Support Vector Machines (SVMs). For each algorithm, leave-one-out validation

was done so that the classifiers do not overfit for the test data. The baseline algorithm

is the Zero-Rule, which picks the majority class without regard for any features.

Random Forest algorithm constructs a model based on many randomized Decision

Trees. Decision Tree algorithm constructs a model by a series of cascading questions

in form of a tree structure using features and values. Naive Bayes is based on Bayes’

algorithm; it calculates the probability of a sample to be of a specific class based on

the sample’s features. SVMs generates a line to separate the data into two classes.

For classifying the data set, the system labeled each participant based on their
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previous response if they are 18 or older. If the user responds “yes,” then every stroke

is labeled as “A” for adult and “C” for a child if the user answer “no.” The responses

was then used to compare against labels that the machine learning algorithm picked.

In this study, the classifiers were trained using the Sklearn library in Python [75].

To prevent the Random Forest and Decision Tree classifiers from overtraining in one

class, there needed to be a way of handling an imbalanced data set. Typically each

sample has an equal weight of 1.0, but in this study, there is an imbalanced amount

of users from each class. In essence, there are 1, 185 samples in class “A” and 1, 888

in class “C.” When the classifier is training, it can weight each class differently based

on the number of samples in each category using Equation 3.18; where wi is the

weight of class i, n is the total amount of samples in the data set, k is the number

of classes, and ni is the number of instances in class i. Once the classifier finishes

training, it is validated by having each user test against a set of classified users.

wi =
n

kni

(3.18)
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4. RESULTS

The results show the performance of the system in determining strokes between

child and adult users. F1-score is calculated across the entire data set as a means

of evaluating system integrity. F1-score is the harmonic mean between precision

and recall: precision measures the reliability of the model’s results and recall mea-

sures how well the model can detect each class. Another indicator of performance,

accuracy, provides less information and can give undesirable results. Consider the

scenario where the data has a 90/10 split between the two classes. If the classifier

only predicts the majority class, it will get 90% accuracy. However, analyzing the

precision and recall of both classes shows that the minority class had a recall of zero.

This phenomenon is called the accuracy paradox: the model gets good accuracy but

had bad results.

The features derived from this data set were used to validate whether the system

could distinguish children from adults. 10-fold cross-validation and leave-one-out

cross-validation are commonly used techniques in classification problems to test the

model on every part of the data set. 10-fold cross-validation randomly splits the data

into ten parts, training ten models with a different part as the test set each time.

Leave-one-out cross-validation splits the data such that each part contains data from

a single user and uses the same train/test scheme as its 10-fold counterpart. It is

important that any user who appears in the training set does not also appear in

the test set to make the training and test sets completely independent. Therefore,

leave-one-out cross-validation better suits this problem and is the used validation

method.

In the study, the best two classifiers were Random Forest and Decision Tree.
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Table 4 shows the scores for each classifier used in this work. The Random Forest

algorithm is able to determine children and adults with a precision of 0.85, a recall of

0.85, and F1-score of 0.84. Using the Decision Tree algorithm, it had a precision of

0.85, a recall of 0.85, and F1-score of 0.86. Arguably, the Random Forest algorithm

is many decision trees, but it is worth mentioning the top features from the top two

classifiers. Figures 4.1 and 4.3 shows the confusion matrix for the Random Forest

and the Decision Tree classifiers. The confusion matrix shows how many strokes

were classified correctly and incorrectly in the data set. From this information, both

classifiers had a better time classifying children strokes more than adult strokes.

Figures 4.2 and 4.4 are a list of features that were important for both classifiers

to differentiate between children and adults. Figures 4.1 and 4.2 are the top ten

critical features for the Random Forest and Decision Tree classifiers. Top features

were distinguished by how much the classifier can separate the data by category using

that particular feature. The best three features for the Random Forest classifier were

Long’s density metrics: the diagonal length divided by the total length, total angle

divided by the total length, and the log of the area of the stroke’s bounding box.

The best features for the Decision Tree classifier were the diagonal length divided by

the total length, total angle divided by the total length, and Zernike’s 8th moment.
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Table 3. Machine Learning Algorithms

Classifiers F1-score Precision Recall

Zero-Rule 0.47 0.38 0.61

Naive Bayes 0.57 0.59 0.54

SVM 0.74 0.74 0.74

Random Forest 0.84 0.85 0.85

Decision Tree 0.86 0.85 0.85

Figure 4.1: Confusion Matrix for the Random Forest Algorithm
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Figure 4.2: Important features selected of the Random Forest Algorithm
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Figure 4.3: Confusion Matrix for the Decision Tree Algorithm
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Figure 4.4: Important features selected for the Decision Tree Algorithm

37



1 The stroke length divided by the diagonal length of the bounding box
2 Total angle divided by length
3 Log of area
4 DCR
5 Total Angle
6 Distance between first and last point
7 Zernike moment 8
8 Aspect ratio
9 The distance between the first and last sampling points divided by

stroke length
10 Openness

Table 4.1: Random Forest top 10 features

1 The stroke length divided by the diagonal length of the bounding box
2 Total angle divided by length
3 Zernike moment 8
4 Openness
5 Distance between first and last point
6 Zernike moment 5
7 NDDE
8 10% distance at the end of a stroke
9 Total angle divided by total absolute angle

10 The distance between the first and last sampling points divided by
stroke length

Table 4.2: Decision Tree top 10 features
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5. DISCUSSION

This section reviews the essential features that contributed to our system’s decision-

making models. In this work, the system employed techniques from two different

modalities to extract possible features: sketch recognition and computer vision. The

system determined that one of Long’s density metrics is the most important feature

for classification. Equation 5.1 shows Long’s density metric as the stroke length

divided by the diagonal length of the bounding box. In other words, the metric

shows how far the user traveled in a single stroke relative to the overall stroke’s

size. We hypothesize that a child’s sketch strokes are longer; when a child draws a

house, the child maximizes the amount of space used. Adults’ sketches are compar-

atively minimalistic, e.g., adults’ strokes are precise and take less space. A pictorial

demonstration of the density metric is in Figure 5.1.

∑p−2
p=1

√
δx2p + δy2p

arctan( ymax−ymin
xmax−xmin

)
(5.1)

The system found that the total angle divided by the total stroke length, seen

in Equation 5.2, another one of Long’s density metrics, is also a significant indica-

tor. Figure 5.2 is a pictorial demonstration of the density metric, and it shows how

much change in direction a stroke has. The values are more significant if the user

sketches a spiral versus a straight line. We hypothesize that a child’s sketches are

more “spiral” than adults. That is, children draw curves and circles frequently, mak-

ing spiraling motions as they sketch. While not widely explored, this behavior has

been acknowledged as perhaps helping to indicate motor development differences in

autistic children [27]. In conjunction with longer strokes, one can infer that children

fill in their sketches using spirals to use as much space as possible.
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Figure 5.1: A demonstration of a bounding box and stroke length ratio
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p−2∑
p=1

θp√
δx2p + δy2p

(5.2)

Figure 5.2: A demonstration of a spiral

The third most important feature was Zernike moment 8. Zernike moments are

optical features that highlight different characteristics of an image based on how

they would appear through a figurative “lens.” In practice, a moment is calculated

from Zernike polynomials, mathematical filters representing how light passes through

varying lenses [47]. For example, the first moment is constant and does not produce

any meaningful values. The second and third moments are different modifications
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of the first moment but are viewed as the vertical tilt (sine) and the horizontal tilt

(cosine) shown respectively in Equation 5.3 and Equation 5.4, where p is the radial

distance. Equation 5.5 is the equation for Zernike moment 8, which is a measure of

the light bending along the horizontal axis.

Usually, Zernike moments are applied to images in computer vision techniques,

but in this case, visual representations of individual strokes rather than full sketches

were used. From single strokes, the results showed that adults’ sketches align more

along the horizontal axis than children’s. One explanation may be that adults are

more predisposed to axial alignment than children. These findings are also consistent

with the previous discussion of children’s tendency to sketch with spiraling behavior

or in a way that fills more space. In both cases, Zernike moment 8 further defends

that adults are relatively more strict and precise than children.

• Zernike moment 2: tilt (vertical tilt)

2psinθ (5.3)

• Zernike moment 3: tip (horizontal tilt)

2pcosθ (5.4)

• Zernike moment 8: horizontal coma; light bending in the horizontal axis

√
8(3p3 − 2p)cosθ (5.5)
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Another important aspect of the drawings that was observed relates to the pres-

ence of “hooks” in the sketches. In the field of sketch recognition, hooks and tails

refer to small, curved marks at the very beginning or ending of strokes, such as those

left by putting the pen down a little before starting the next stroke while still mov-

ing from the previous one. From a recognition standpoint, it is beneficial to remove

these artifacts [74]. However, as some preliminary work by Kim demonstrated [49],

there may be some value in keeping them for other types of analysis. For example,

Figure 5.3 shows that the participant created a hook at the end of the outline of

an “A,” and projecting along the direction of the hook shows that it clearly points

to the beginning of the cross through the “A,” as seen in Figure 5.4. Note that to

clearly show order, line segments in Figure 5.4 have been colored green if they are

in the first 10% of the beginning of a stroke and red if they are in the last 10% end

of a stroke. The projected line is generated from the line of best fit formed between

the final point in the stroke and the point of max curvature along the hook. We

hypothesize this phenomenon is an artifact correlating with cognitive development

of planning, or more precisely, as an indication of pre-planning. The ability to plan

and understand the concept of future and consequences develops as children grow,

so there is an assumption that pre-planning from participants could be helpful in

future works in differentiating between adults and children.

From a sketch recognition standpoint, children often draw in erratic behavior

when given a choice to draw without a template. Their sketches are inexperienced

in that they may have low precision in shapes or lines. Adults are more precise and

clean when they sketch. Adults would often want to create beautiful pictures with

perfect lines and curves when drawing , which influences other works that beautify

strokes [95,105]. Not only are these differences interesting from a childhood develop-

ment perspective, e.g., measuring creativity when not using a template or building
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Figure 5.3: A closer look at a hook

44



Figure 5.4: Hook leading to the next stroke
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assessment tools based on cognitive behaviors, but they also support the primary

goal of differentiating adults and children using sketch recognition principles.
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6. FUTURE WORK

A goal of this project was to develop a system that can authenticate a child user on

a device. The current system has an F1-score of 0.86 in differentiating between adults

and children. These results should be sufficient to support a system that could serve

as the basis of a more personalized and effective security framework. Most modern

security systems require users to answer security questions, provide usernames and

passwords, and/or complete a biometric scan to confirm that the machine is providing

the correct information to the right person. This only works when people lock their

computer, but many times they will leave their computer unlocked in their home,

allowing children to have access to their parent’s information. Our system could

easily be extended to look at several strokes grouped together, creating an accurate

and effective means of preventing such scenarios.

It would also be interesting to see if sketch recognition features can be used to

differentiate between different age groups at the stroke level. Some preliminary work

towards this goal was done by Kim, who was able to distinguish between children’s

fine motor skill developmental stages; however, work still needs to be done to do this

at a stroke level and identify specific ages [49]. Systems built on this recognition

could facilitate further personalization, allowing device interaction to be customized

to specific age groups.
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7. CONCLUSION

Children learn key concepts and abilities as they grow, which may impact their

problem-solving ability, their academic performance, and, ultimately, their careers. It

is imperative to evaluate children’s development as they grow, and measuring healthy

progression of motor control is one important metric. These skills are used in school-

based activities, and children can fall behind without proper evaluation. Fortunately,

there are ways to quantify the children writing academic achievements with the help

of pediatricians. Using pediatricians can help evaluate a child’s gross and fine motor

skills that may affect how the child grows and learns. Since fine motor skills can

contribute to reading, writing, crafting, and drawing, it is crucial to quantify the

child’s motor delay. However, the ratio between pediatricians and children is too

high for pediatricians. This high ratio can prevent the assessment of children that

need guidance. Screenings such as the “Ages and Stages Questionnaire” and the

PEDS score form can help lower the ratio, but it does not shorten the duration or

complexity of direct evaluations.

In this work, a system was trained to collect sketch data from children and adults

to classify the sketches between the two users automatically. The results show that

sketches can be successfully differentiated and that the sketch data can provide valu-

able information about the intentions of the user. There was a collection of 3, 073

strokes from 14 child participants and 25 adult participants on the Nexus 7 tablet.

The study consisted of sketching anything they can imagine, tracing shapes, and

lastly sketching from their imagination again while using each button. Sketch recog-

nition features and vision techniques were extracted from the user’s strokes. Once the

set of features were calculated from each stroke, different models were constructed
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based on varying machine learning algorithms: Zero-Rule, Naive Bayes, Support

Vector Machines, Random Forest, and Decision Tree. Out of all the classification

machine learning algorithms, the Decision Tree performed the best. Using leave-one-

out validation, the performance of the Decision Tree algorithm after validation was

a total F1-score of 0.86 with high precision and recall.

Certain features were discussed that were important to the system derived from

traditional sketch recognition features. The most important feature was Long’s den-

sity metric, stroke length divided by bounding diagonal box length, which describes

how space was used in a stroke. The second most important feature was Long’s

density metric, total angle divided by the stroke length, which shows the change in

direction in the substrokes of a stroke. Lastly, Zernike moment 8 was an important

feature. The intuition of Zernike moment 8 is that strokes drawn in the horizontal

axis typically differ between children and adults.Hook features were also discussed

that were previously used in other works. More work on these hook features can help

in differentiating adults from children.

To conclude, there were two questions this study sought to address.

• How accurately can a smart sketch interface differentiate adults and children

using only single strokes from free-form sketches?

• What are the top three important features in determining adults and children?

Regarding the first question, results showed that the system was able to differentiate

adults and children with an F1-score of 0.86. By testing with leave-one-out cross-

validation, the results correlate to the real world where the system would not be

re-trained for new users. Not only does this verify findings from Kim’s work [49] by

categorizing age groups based on sketching features, but it also expands the results

to free-form sketches and supports a wider number of applications.
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In answer to the second question, the essential features were two of Long’s density

metrics—length divided by bounding box diagonal, total angle traversed divided by

total stroke length—and Zernike Moment 8.
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