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ABSTRACT 

This dissertation consists of three stand-alone studies concerning applications of 

optimization modeling in agricultural policy evaluation and applications of copula when 

considering the tail risk in the energy commodity markets. The first study (Chapter II) 

extends a mathematical optimization model, FASOMGHG, in evaluating economic and 

environmental effects from fulfilling the renewable fuel standard (RFS), which mandates 

increasing amounts of ethanol produced from biomass. As the increase in ethanol 

production from biomass may lead to land competition between traditional food crops and 

energy feedstocks, one potential solution to relieve the competition on land resources is to 

grow cellulosic feedstocks on marginal land. The results from this study suggest that 

growing energy crops on marginal land could help alleviate some of the pressure on land 

competition between traditional and energy crops, but could potentially lead to higher 

GHG emission, soil erosion, and nutrient runoffs. 

The second study (Chapter III) examines the usefulness of energy commodity 

exchange-traded funds (ETFs) in dealing with tail risk in crude oil, gasoline, heating oil, 

and natural gas markets by analyzing the out-of-sample hedging effectiveness of ETFs 

and comparing their performance with those of the futures counterparts. The empirical 

distribution method and kernel copula method are applied to estimate the minimum-Value 

at Risk (VaR) and minimum-Expected Shortfall (ES) hedge ratios for both long and short 

hedgers. The empirical results indicate that the futures contract is a better hedging 
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instrument for hedging tail risk in the crude oil and heating oil markets whereas the ETF 

provides better downside risk protection in the gasoline and natural gas markets. 

The third study (Chapter IV) analyzes the welfare and land uses associated with 

an implementation of a Thai crop-zoning policy by constructing a Thai agricultural sector 

model. The results indicate that the crop-zoning policy has the potential to reduce the 

government spending incurred from the ongoing price-support program and could lead to 

increases in production for primary rice, maize, and cassava. Furthermore, the results 

suggest that the policy would reduce secondary rice and sugarcane production. This 

coincides with the government’s objective of discouraging farmers from growing too 

much rice that was a result of the government’s rice price-support program.  
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1 CHAPTER I  

INTRODUCTION 

Changes in policies and market instruments are likely to alter price volatility and 

therefore increase the level of market risk faced by commodity producers and market 

participants. It is essential for policy makers to be able to evaluate the impacts of policy 

changes and to protect commodity producers and their businesses against any potential 

price risks that may arise because of policy changes. Mathematical programming is a tool 

that that policy makers can use for analyzing and quantifying potential economic and 

environmental impacts of a policy before it is officially implemented. Understanding the 

true impacts of policy changes would provide policy makers with useful information 

regarding potential benefits and costs that would affect the economy. This dissertation 

presents three stand-alone essays related to applications of optimization modeling in 

policy evaluation and market analysis.   

The first essay (Chapter II), “Analysis of Switchgrass Production on Marginal 

Land in the United States”, analyzes the economic and environmental effects from using 

marginal agricultural lands in fulfilling the renewable fuel standard (RFS). The RFS in 

full implementation mandates amounts of ethanol produced from biomass to reach 36 

billion gallons. Since the RFS also restricts that the amount of corn based ethanol to 15 

billion gallons per year, the remaining balance has to be produced from other feedstocks 

including cellulosic feedstocks grown on agricultural lands. In turn, this would lead to 

land competition with traditional food crops. One potential solution to relieve the land 



2 

 

competition is to grow cellulosic feedstocks on marginal land. Nevertheless, there are 

concerns on whether marginal land production is economical and low in environmental 

impacts. In this study, we employ the Forest and Agricultural Sector Optimization Model 

(FASOMGHG), a dynamic nonlinear programming, optimization model of US forest and 

agricultural sector to estimate and project dynamic interactions of all agricultural activities 

(including production, farm-level management, and emissions). The FASOMGHG model 

endogenously solves for optimal values of those activities using the objective of 

maximizing total social welfare. 

The second essay (Chapter III), “Dealing with Tail Risks in Energy Commodity 

Markets: Futures Contracts vs Exchange-Traded Funds”, examines the role of Exchange-

Traded Funds (ETFs) in dealing with tail risk in energy commodity markets. Four energy 

commodities are considered: crude oil, gasoline, heating oil, and natural gas. As the ETFs 

can be traded in small amounts, the energy commodity ETF can potentially be a valuable 

tool for hedging against adverse energy price movements. This is examined because 

several empirical studies have evaluated energy futures hedging performance (see, for 

example, Alizadeh et al., 2008; Chang et al., 2011; Cotter and Hanly, 2012; Conlon and 

Cotter, 2013), but there are very few studies on energy commodity ETFs. In order to 

construct hedged portfolios, the kernel copula method is applied to estimate the minimum-

Value at Risk (VaR) and minimum-Expected Shortfall (ES) hedge ratios for energy 

commodity users (long hedgers) and producers (short hedgers). By considering both 

hedger positions, this allows us to evaluate futures contracts and ETFs hedging 

performance vis-à-vis the hedge positions. 
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The third essay (Chapter IV), “Analysis of Thai Crop-Zoning Policy” analyzes the 

welfare and land uses associated with crop-zoning and price support policy in Thailand. 

To do this a Thai agricultural sector model was developed based on the type of 

optimization model discussed in McCarl and Spreen (1980). The results from this study 

can aid policy makers in identifying crops that are most suitable for replacing crops being 

grown on unsuitable lands.   

The findings from the three studies should provide valuable information for 

practitioners, academics, and policy makers regarding the applications of optimization 

models in policy evaluation and the applications of copula in risk management. 

 

 

  



4 

 

2 CHAPTER II 

ANALYSIS OF SWITCHGRASS PRODUCTION ON MARGINAL LAND IN 

THE UNITED STATES 

2.1 Introduction 

 The Renewable Fuel Standard (RFS) program – a federal program under Title II 

of the Energy Independence and Security Act (EISA) of 2007 – requires increasing 

volumes of renewable fuels to be blended with US fuels. In particular, the RFS contains a 

target mandate that US fuels must ultimately contain at least 36 billion gallons of 

renewable fuels. To date, corn has been the primary US feedstock utilized for ethanol 

production. However, the EISA imposes a cap on the amount of corn-based ethanol that 

can be used to satisfy the RFS and the cap essentially equals current production – 15 billion 

gallons per year (Schnepf and Yacobucci, 2013). This means that the remaining balance 

of the RFS-qualified ethanol will have to be produced from other feedstocks with crop 

residues, energy crops, and wood considered to be major potential feedstocks. 

As cropland in the United States is essentially fully utilized, growing energy crops 

for cellulosic feedstocks will likely divert cropland from traditional food/feed production. 

In particular, increasing energy crop production on cropland would reduce the amount of 

food/feed that flows into traditional markets, reducing exports and consumption levels. 

This, in turn, is expected to increase food prices and food insecurity (Runge and Senauer, 

2007; Tyner et al., 1979). In addition, higher food prices may lead to development of lands 

outside the United States, potentially stimulating deforestation or other forms of leakage 
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associated with increases in greenhouse gas (GHG) emissions (Fargione et al., 2008; 

Murray et al., 2004; Searchinger et al., 2008). 

One potential solution to relieve cropland competition is to grow cellulosic 

feedstocks on marginal land. A 2009 US National Academy report (National Academy of 

Sciences, 2009) states that: “In contrast, liquid biofuels made from lignocellulosic biomass 

can offer major improvements in greenhouse gas emissions relative to those from 

petroleum-based fuels if the biomass feedstock is a residual product of some forestry and 

farming operations or if it is grown on marginal lands that are not used for food and feed 

production.” Moreover, the report estimated the annual amount of cellulosic biomass that 

could be produced sustainably at 400 million dry tons under 2008 technology and 550 

million under anticipated 2020 conditions. In this context, the report concludes that 

“croplands would not be diverted for biofuels and land therefore would not be cleared 

elsewhere to grow crops displaced by fuel crops if growing and harvesting of cellulosic 

biomass would incur minimal or even reduce adverse environmental effects such as 

erosion, excessive water use, and nutrient runoff”.  

Compared to croplands, marginal lands generally have lower moisture, soil 

nutrient content and fertility. In addition, they are often more fragile in terms of erosion 

potential and degradation state. Therefore, they are not suitable for growing row crops. 

However, a number of arguments have been presented that energy crops could be grown 

on marginal lands. Consider the case of switchgrass. Jensen et al. (2007) argue that 

switchgrass has the capacity to grow on marginal lands with relatively small amounts of 

fertilizer and that once planted, it can last more than 10 years with annual harvest. In 
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addition, Lemus et al. (2002); Nabity et al., (2012) assert that growing switchgrass on 

marginal lands would help improve local water quality and nitrogen use efficiency. Vogel 

(1996) suggests that switchgrass production helps reduce soil erosion and improve soil 

organic carbon development, which in turn enhances productivity and environmental 

quality of the land as well as reduces the effects of droughts and floods. Guretzky et al. 

(2011) indicates that perennial grass crops have potential to produce ethanol with lower 

levels of GHG emissions and asserts that switchgrass grown on marginal lands can 

generate relatively high biomass yield despite lower applications of fertilizer and 

pesticides. Overall, these studies suggest that growing energy crops on marginal lands will 

help avoid land competition allowing greater amounts of traditional crops to enter the 

marketplace while simultaneously improving soil and water quality along with other 

favorable environmental outcomes. 

Several studies on growing cellulosic feedstocks on marginal lands have focused 

on evaluating environmental (including GHG) impacts, appraising land development 

costs, and assessing economic feasibility of marginal-land-based ethanol production. 

These studies report mixed results. For example, Valcu-Lisman, Kling and Gassman 

(2016) find that restricting biofuel crops to marginal land in Iowa is not likely to yield the 

highest valued production output and ecosystem benefits. In contrast, Schmer et al. (2008) 

conduct field studies in Nebraska, North Dakota and South Dakota, and find that 

switchgrass production on marginal land helps improve soil carbon sequestration. The 

results from Schmer et al. (2008) suggest that utilizing marginal land to grow native 

grasses for cellulosic ethanol and bioelectricity have potential to offset as much as 17.2% 
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of the states’ energy consumption while also reducing GHG emissions by 68% relative to 

gasoline. Nevertheless, none of the prior studies have considered the full market 

interactions over time among different crops and livestock, and generally focused on small 

regions. 

2.2 Objectives of the Study 

 This study analyzes the effects of growing energy crops on marginal land on a 

natural scale considering full market effects and many of environmental effects. More 

specifically, the study aims to address the following questions: 

1) Does growing energy crops on marginal land help relax competition with 

conventional production across the total domain of US agricultural production? 

2) What are the economic and environmental implications of satisfying the cellulosic 

portion of the RFS mandate with and without the use of marginal land? 

3) What is the role of marginal land if rather than meeting the RFS mandates we meet 

the much smaller cellulosic ethanol projections generated by the Energy 

Information Agency (EIA)? 

4) What happens if the mandates are relaxed – i.e., what is the free market penetration 

of conventional and cellulosic ethanol? 

5) To what extent will expanding the amount of cellulosic biofuel produced reduce 

the amount of traditional crop production reaching traditional markets and raise 

crop prices? 

6) What is the optimal share of energy crops and crop residues with and without 

employment of marginal land? 
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The remainder of this paper is organized as follows. Section 2.3 presents the 

methodology. Section 2.4 describes marginal land definition, source, and characteristics. 

Section 2.5 provides an overview of model scenarios. Section 2.6 reports and discusses 

the model results. Section 2.7 concludes this study. 

2.3 Methodology 

In this study, the Forest and Agricultural Sector Optimization Model with 

Greenhouse Gases (FASOMGHG) is employed to estimate and project the US-based 

implications of meeting the RFS and EIA ethanol projections with and without marginal 

lands. In particular, this study focuses on the dynamic effects of growing energy crops on 

marginal land on agricultural commodity prices and production; changes in land 

management such as tillage management, land-use change, and fertilizer usage; net 

greenhouse gas emissions; and environmental impacts. The FASOMGHG model (Adams 

et al., 2005; Beach et al., 2013; Lee et al., 2007; McCarl and Schneider, 2001) 

endogenously solves for optimal values of all those elements. The dynamic optimization 

process is done under the assumption of perfectly competitive behavior in the agricultural 

sector and is simulated by maximizing total social welfare as discussed in McCarl and 

Spreen (1980). The model imposes constraints on natural resources (including land and 

labor) as well as accounts for GHG emissions, carbon sequestration, and a number of 

environmental attributes.  

For this particular study, three biofuel production levels are imposed. These are 

the mandate levels contemplated in: 
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1) The original Energy Independence and Security Act (EISA) projection (although 

these are retarded by five years given the slow progress in producing cellulosic 

ethanol). Under EISA, the level of Renewable Fuel mandated, which is often 

referred to as RFS2, required the annual use of biofuels to reach 36 billion gallons 

in 2022 (which we make 2027 in our analysis) with at least 16 billion gallons from 

cellulosic biofuels, and a cap of 15 billion gallons for corn-starch ethanol. 

2) The Annual Energy Outlook (AEO) developed by the US Energy Information 

Administration (EIA), which contains 1 billion gallons from cellulosic biofuels. 

3) A free market projection in the absence of biofuel mandates. 

For each projection of biofuel production levels, cases with and without marginal 

land are considered. Hence, a total of six scenarios are examined: (1) EISA without 

marginal land (EISA), (2) EISA with marginal land (EISA-ML), (3) AEO without 

marginal land (AEO), (4) AEO with marginal land (AEO-ML), (5) Free Market without 

marginal land (FreeMkt), and (6) Free Market with marginal land (FreeMkt-ML). The 

results from the FASOMGHG model yield projections of cropland used for switchgrass 

production, crop prices, total ethanol production, GHS emissions, and non-GHG 

environmental effects under these six scenarios.  

 

2.4 Marginal Land Definition, Source, and Characteristics 

In this study, marginal land is classified as cropland pasture – land suitable for crop 

production but is currently used for pasture. This is defined following the classification 

used in the USDA Economic Research Service Major Land Use (ERS-MUL) database and 
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the Natural Resources Inventory (NRI). According to the ERS-MLU database, cropland 

pasture is defined as managed land suitable for crop production (i.e., relatively high 

productivity) that is being used as pasture. However, the ERS-MLU database lacks a clear 

distinction between grassland pasture and rangeland, while the NRI defines these as 

separate land categories.  

The FASOMGHG model make use of both the ERS-MLU and NRI databases and 

avoids overlap between different land use categories by developing a unique hybrid NRI-

MLU land categorization system (Beach and McCarl, 2010). This combined NRI-MLU 

land categorization system provides FASOMGHG with a representation of regional 

marginal land transition possibilities as well as a consistent accounting of public and 

private grazing lands. The yield estimates associated with growing switchgrass on 

marginal land were obtained from the Bio-Based Energy Analysis Group at the University 

of Tennessee and were those used in the Department of Energy billion-ton study (Yu et 

al., 2014). These data are only available for the states where the Department of Energy 

(DOE)’s billion-ton team assumed switchgrass would be able to grow on marginal land – 

Florida, New York, Wisconsin, Georgia, Louisiana, Virginia, Mississippi, Missouri, 

Texas, South Dakota, and Wyoming. As the main focus of this study involves an 

examination of economic and environmental effects of allowing switchgrass to be grown 

on marginal land instead of on cropland, switchgrass grown on marginal land is assumed 

to be a perfect substitute for switchgrass grown on cropland in producing feedstocks for 

cellulosic ethanol. 
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2.5 Model Scenarios  

In this study, six scenarios are constructed based on the three projections: EISA, 

AEO, and Free Market. To analyze the effects of marginal land under each projection 

while controlling for other factors, two scenarios – with and without marginal land – are 

constructed for each projection.  

The key differences across the six scenarios are summarized in Table 2.1. For the 

EISA projection, we follow RFS2 and set the upper limit of annual use of biofuels to reach 

36 billion gallons in 2022 with at least 16 billion gallons coming from cellulosic biofuels. 

For the AEO projection, we follow EIA and set the upper limit of annual use of biofuels 

to reach 15 billion gallons in 2022 with a lower limit of 1 billion gallons for cellulosic 

biofuels. Under both EISA and AEO projections, a cap of 15 billion gallons for corn-starch 

ethanol is also imposed. Lastly, for the free market projection, we do not set any upper or 

lower limits on the annual use of biofuels and the cellulosic biofuels. That is, under this 

the free market scenario, we let the model generate the optimal amount of biofuel 

production endogenously.  

 

   Table 2.1. Key assumptions across scenarios 

  Scenarios 

  EISA EISA-ML AEO AEO-ML FreeMkt FreeMkt-ML 

Annual Cellulosic 

Biofuel Use (Billion 

Gallon) 

Lower 

Limit  
15 15 1 1 - - 

Annual Corn-Starch 

Ethanol Use (Billion 

Gallon) 

Upper  

Limit 
15 15 15 15 - - 

Marginal Land  No Yes No Yes No Yes 
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2.6 Results and Implications 

2.6.1 Switchgrass Production 

Under the AEO and Free Market scenarios, there is no switchgrass grown on 

cropland as sufficient cellulosic feedstocks can be obtained at an apparently lower price 

relying on crop residues mainly in the form of corn stover. Consequently, no switchgrass 

is grown on marginal land. On the other hand, under the EISA projection, we find that 

significant amounts of switchgrass are grown. 

The annualized amounts of cropland and marginal land used in growing 

switchgrass over 2015 to 2045 are estimated as constant annuities at a 4% discount rate 

under the EISA scenarios are shown in Table 2.2, and the projected amounts of cropland 

and marginal land used in growing switchgrass in 2030 are reported in Table 2.3.  

As can be seen from Table 2.2 and Table 2.3, the amounts of cropland used for 

switchgrass production are significantly affected by whether marginal land use is allowed. 

When marginal land is allowed, a significant amount of switchgrass production that is 

used to be grown on cropland will be shifted to marginal land as it helps reduce pressures 

 

    Table 2.2. FASOMGHG results on annualized amounts of land used for switchgrass production 

 Land-Used Type 

 Cropland Marginal Land 

Scenario   

  EISA 1.933 0.000 

  EISA-ML 0.506 7.651 

Unit: million acres  
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   Table 2.3. FASOMGHG results on amounts of land used for switchgrass production in 2030 

 Land-Used Type 

 Cropland Marginal Land 

Scenario   

  EISA 3.551 0.000 

  EISA-ML 1.286 16.320 

Unit: million acres  

 

on the use of cropland to meet the RFS2’s biofuels mandates. Table 2.2 shows that the 

annualized amount of 1.933 million acres of cropland that is used for growing switchgrass 

is reduced to 0.506 million acres once marginal land is allowed. It should be noted that 

the acreage of marginal land used for switchgrass production is much higher than that of 

cropland. This finding is consistent with the fact that marginal land has less nutrients than 

cropland. Furthermore, as cellulosic ethanol production technology advances, we find that 

more acres of marginal land will be used in 2030 as shown in Table 2.3.  

Figure 2.1-2.3 show total cropland used in agriculture under all six scenarios. Under the 

EISA-ML scenario, over time the amounts of total cropland used will be slightly lower 

than those under the EISA without marginal land scenario. This indicates that a portion of 

switchgrass will be moved from traditional cropland to marginal land. From Table 2.4, the 

cropland released from switchgrass production will then be used to grow other  

 

Table 2.4. FASOMGHG results on annualized amounts of cropland used for corn, soybean, and hay production 

 Scenario 

 EISA EISA-ML 

Crops   

  Corn 88.703 88.788 

  Soybean 83.477 83.572 

  Hay 63.974 64.137 

Unit: million acres   



14 

 

 

 

Figure 2.1. Projected total cropland used in agriculture under EISA projections 

 

 

Figure 2.2. Projected total cropland used in agriculture under AEO projections 
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Figure 2.3. Projected total cropland used in agriculture under free market projections 
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Figure 2.4. Land used for switchgrass production under EISA with marginal land scenario 
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Figure 2.5. Switchgrass on cropland in 2030 – EISA scenario 

  

 

 

Figure 2.6. Switchgrass on marginal land in 2030 – EISA-ML scenario 
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Figure 2.7 and Figure 2.8 suggest that locations where corn will be grown in 2030 

across the country under EISA and EISA-ML scenarios are pretty much the same, but 

more intense under the EISA-ML scenario. Nevertheless, corn production in some states 

increases significantly after marginal land is allowed to grow switchgrass. Specifically, 

corn production in California and Louisiana under the EISA-ML scenario is higher than 

that under the EISA scenario. We can also see a reduction in corn production in some 

states, such as Wyoming. This can happen since the model take into account the dynamic 

interaction of multiple crops. Thus, other conventional crops may become more profitable 

than corn in some states once marginal land is introduced.    

Table 2.5 presents estimates of annualized crop prices under both EISA and EISA-

ML scenarios. The annualized corn price under the EISA-ML scenario is estimated to be 

$2.873 per bushel, which is marginally lower the annualized corn price under the EISA 

scenario ($2.896 per bushel). Similar results are observed for the cases of soybeans, 

sorghum, oats, rye, and canola. Overall, these findings imply that marginal land can help 

alleviate some of the pressure on land competition between traditional and energy crops 

although its impact on crop prices is minimal. 

 

Table 2.5. Annualized prices of selected crops 

 EISA EISA-ML 

Price   

  Corn ($/bu.) 2.896 2.873 

  Soybeans ($/bu.) 10.069 10.045 

  Sorghum ($/cwt.) 5.984 5.939 

  Oats ($/bu.)  2.385 2.439 

  Rye ($/bu.) 7.683 7.774 

  Canola ($/bu.) 9.177 9.082 
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Figure 2.7. Corn on cropland in 2030 – EISA scenario 

 

 

 
Figure 2.8. Corn on cropland in 2030 – EISA-ML scenario 
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2.6.2 Ethanol Production 

Figure 2.9-2.11 show the projected amount of cellulosic ethanol production, crop 

ethanol production, and total ethanol production (in billion gallons) under four scenarios: 

AEO, AEO-ML, EISA, and EISA-ML, respectively. Under the free market projection 

(with and without marginal land), there is no requirement for the minimum amount of 

cellulosic ethanol produced. As expected, our analysis results indicate that no cellulosic 

ethanol will be produced under these two scenarios. Under the AEO and AEO-ML 

scenarios, it is projected that approximately one billion gallons of cellulosic ethanol will 

be produced during 2020 through 2045. On the other hand, under EISA and EISA-ML, 

cellulosic ethanol production is projected to increase significantly after 2020 and remains 

at the mandate level of around 13.7 billion gallons after 2030. With respect to crop ethanol 

production, it is estimated that about 15 billion gallons of crop ethanol will be produced 

during 2020 through 2045 under all four scenarios.   

 

Figure 2.9. Cellulosic ethanol production under AEO, AEO-ML, EISA, and EISA-ML scenarios 
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Figure 2.10. Crop ethanol production under AEO, AEO-ML, EISA, and EISA-ML scenarios 

 

Figure 2.11. Total ethanol production under AEO, AEO-ML, EISA, and EISA-ML scenarios 
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ethanol produced from agricultural wastes in the form of corn stover and other crop 

residues, it does not incorporate ethanol produced from other organic waste in landfills. 

Therefore, in terms of ethanol production, our model focuses mainly on the contribution 

from the agricultural sector. 

Figure 2.12 presents the annualized amount of cellulosic ethanol produced from 

different types of feedstocks during 2020 through 2045. The mix of different types of 

feedstocks remains stable under the EISA projection once marginal land is used to grow 

switchgrass. As can be seen from the figure, cellulosic ethanol will be produced mainly  

 

Figure 2.12 Feedstock mix to produce cellulosic ethanol under EISA projection 
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from corn residues. More specifically, corn residues are projected to account for 58 

percent of cellulosic ethanol production, while the share of miscanthus is projected to be 

24 percent. It should be noted that the projected share of switchgrass used to produce 

cellulosic ethanol is only 4 percent. This is, nevertheless, expected as corn residues are 

more cost competitive than switchgrass, and miscanthus yield is almost two times higher 

than that of switchgrass, hence a better choice. The shares of other ethanol sources such 

as wheat residues and sorghums are estimated to be about 5 percent. Overall, our results 

suggest that allowing marginal land for cellulosic feedstock production does not alter the 

composition of the types of feedstocks contributing to cellulosic ethanol production. 

2.6.3 GHG Emissions 

An important reason for substituting biofuels for fossil fuels is mainly to offset 

GHG emissions. Several researchers argue that growing cellulosic crops (namely, 

switchgrass) on marginal land could help reduce GHG emission if there is no large release 

of sequestered carbon and if switchgrass sequesters more than traditional crops (Gelfand 

et al., 2013). Nevertheless, land use changes are inevitable in using marginal land to grow 

switchgrass. Hence, there will be some carbon, at least initially, released from the land. 

Moreover, emissions from associated use of fertilizer and harvest or other production 

machinery, along with the emissions from transportation of feedstock to the bio-refinery, 

must be taken into account as well.  

In this study, total GHG results are compared between the EISA and EISA-ML 

scenarios. Our results suggest that marginal lands do not reduce net GHG emissions. The 

amount of GHGs produced under the EISA-ML scenario is higher than the amount 
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generated under the EISA scenario without marginal land. This contradicts the findings of 

Fargione et al. (2010); Monti et al. (2012); Tilman et al. (2006); and Liu et al. (2017), who 

report smaller GHG emissions when growing energy crops on degraded or abandoned 

agricultural land rather than on cropland.  

To examine why growing energy crops on marginal lands does not help reduce the 

net GHG emissions, we decompose the net emissions into several categories. The 

annualized GHG emissions from various sources under both EISA and EISA-ML 

scenarios are reported in Table 2.6. The annualized GHG emission offsets from cellulosic 

ethanol production are estimated to be 33.490 and 33.528 million tons of carbon dioxide 

equivalents (MMT CO2e) under the EISA and EISA-ML scenarios, respectively. Another 

major source of GHG emission offsets is agricultural soil CO2 sequestration. The offsets 

contributed from this source are 97.841 MMT CO2e under EISA scenario.  

 

Table 2.6. Annualized GHG emissions from 2015-2045 (million tons of CO2e) 

  EISA EISA-ML 

Sources of Emission    

  Cellulosic Ethanol  -33.490 -33.528 

  Crop Ethanol  -54.033 -54.032 

  Biodiesel  -8.766 -8.766 

  Soil CO2  -97.841 -96.119 

  Soil N2O  7.246 7.388 

  Fertilizer CO2  80.336 82.875 

  Fertilizer N2O  74.774 76.682 

  Pasture N2O  85.837 84.461 

  Pesticide  8.350 8.389 

  Fuel  76.867 77.030 

  Enteric  205.381 204.817 

  Manure  63.871 63.777 

  Rice  8.363 8.327 

  Miscellaneous  1.856 1.856 

Total  416.269 420.676 
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It is initially expected that switchgrass could potentially sequestrate more carbon 

than traditional row crops, since it has long roots. However, once marginal land is used 

for growing switchgrass, the amount of CO2 sequestered in the soil decreases to 96.119 

MMT CO2e. Reduction in soil carbon sequestration is due to more agricultural activities 

on land and conversion of land in pasture into switchgrass. Moreover, since marginal land 

has low soil nutrient content and low fertility, more fertilizers are needed in order to 

increase the yield of switchgrass on marginal land, compared to that used on cropland. 

Furthermore, the movement of switchgrass to marginal land allows more land to be used 

in conventional crops, resulting in a net increase in the fertilizer and fuel emissions. Hence, 

emissions from fertilization, machinery, and transportation of feedstock under the EISA-

ML scenario are also higher than those under the EISA scenario. 

2.6.4 Non-GHG Environmental Effects 

One argument against conventional biofuel production is that growing crops as a 

bioenergy feedstock could exacerbate both erosion and nutrient runoff. Several studies 

suggest that growing low-input, perennial grasses such as switchgrass, as a feedstock 

could potentially reduce such impacts (Campbell et al., 2008; Tilman et al., 2006). 

Switchgrass could reduce erosion not only due to its presence as a vegetative cover on the 

soil surface, but due to its network of fibrous roots in surface layers of soil that inhibit 

erosion (Kort et al., 1998). Moreover, Jensen et al. (2007) assert that planting switchgrass 

on croplands could reduce soil erosion potential compared to annual row crops, and could 

potentially provide good forage and habitat for native wildlife. Therefore, in this study, 
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we also investigate a number of other environmental effects including wind and water 

erosion as well as nitrogen and phosphorus runoff. 

Table 2.7 reports the annualized values of wind and water erosion under the EISA 

and EISA-ML scenarios. As can be seen from the table, the relative changes in wind and 

water erosion between the two scenarios are negligible. This suggests that the possibility 

of planting switchgrass on marginal land does not help reduce wind and water erosion 

effectively. That is, although, from the economic point of view, allowing marginal land 

for growing switchgrass helps alleviate the pressure from competition for land between 

food crops and energy crops, in terms of environmental impacts, our results suggest that 

allowing marginal land for switchgrass production does not help control erosion. 

 

Table 2.7. Annualized values of wind and water erosion (in million tons) 

  

EISA 

Without 

Marginal Land 

With 

Marginal Land 

Wind Erosion  540.170 533.511 

Water Erosion  788.045 776.131 

Total Erosion  1,328.214 1,309.641 

 

In terms of nutrient runoff, we expect that once marginal land is allowed to grow 

switchgrass, nutrient runoffs will be higher. This occurs because marginal land, which is 

covered with grass for animal grazing and is generally not fertilized, will then be used to 

grow switchgrass, resulting in higher fertilizer usage under the scenario with marginal 

land. Furthermore, as marginal land is used to grow energy crops, more croplands are 

available for planting other crops. Those croplands are then used to grow other crops that 

utilize higher amounts of fertilizers than does the switchgrass being replaced. The 
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annualized values of NO3 runoff, Nitrogen loss, potassium runoff, and potassium loss with 

sediment under the EISA and EISA-ML scenarios are shown in Table 2.8. As expected, 

the values of all nutrient runoff measures increase when marginal lands are allowed. These 

findings contradict the National Academy study assertion that utilizing marginal land 

would help reduce runoff (National Academy of Sciences (U.S.), 2009). The observed 

results are likely due to both the increased use of marginal land for switchgrass and the 

increased use of cropland for traditional crops, which shows us that all crop production 

becomes higher once marginal land is used.   

 

Table 2.8. Annualized values of environmental measures (in million tons) 

  

EISA 

Without 

Marginal Land 

With 

Marginal Land 

NO3 Runoff                    0.618  0.634 

Nitrogen Loss                    0.109  0.113 

Potassium Runoff                    0.075  0.078 

Potassium Loss with Sediment                    0.135  0.138 

 

2.7 Conclusions 

In this study, the economic and environmental effects of growing switchgrass on 

marginal land were investigated. The Forest and Agricultural Sector Optimization Model 

with Greenhouse Gases (FASOMGHG) model is employed to estimate and project the 

US-based implications of meeting the Energy Independence and Security (EISA) and 

Annual Energy Outlook (AEO) ethanol mandate with and without marginal lands. A free 

market projection in the absence of biofuel mandates is also considered. Overall, we find 

positive economic effects but at the cost of negative environmental effects, which 
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contradicts the National Academy study assertion of beneficial environmental effects from 

utilizing marginal land.  

While growing switchgrass on marginal land is not considered to be optimal under 

the AEO and Free Market projections as cellulosic ethanol. In those cases switchgrass is 

not found to be economically competitive. However, under the EISA mandate, switchgrass 

is economic and we find that growing switchgrass on marginal land does reduce land 

competition pressures. We find that a significant portion of switchgrass production needed 

to meet the EISA mandate will be shifted to marginal land. In particular, when the model 

is run allowing switchgrass on marginal land, acres planted to switchgrass on conventional 

cropland falls. In turn cropland is used to grow other food crops, which in turn helps reduce 

crop prices and generates benefits for consumers. 

In terms of environmental effects, we find that growing switchgrass on marginal 

land potentially leads to higher levels of net GHG emissions and higher nutrient runoff. 

This is because CO2 sequestered in the soil is released once marginal land is used for 

growing switchgrass compared to it staying in pasture. In addition, since marginal land 

has low soil nutrient content and low fertility, fertilizer is needed and that results in 

increased nutrient runoff. Additionally GHG emissions from fertilization, machinery, and 

transportation of feedstock are higher when marginal land is utilized. On the other hand 

erosion is reduced. These results contradict the National Academy study assertion that 

biofuels made from cellulosic biomass grown on marginal land can offer major 

improvements in greenhouse gas emissions and environmental effects relative to those 

from petroleum-based fuels grown on cropland.  
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These findings are especially useful for both agricultural producers and policy 

makers who seek to evaluate benefits and costs of utilizing marginal land for energy crop 

production. The tradeoff between economic benefits and environmental impacts must be 

thoroughly taken into consideration.  

This study can be extended in several directions. First, the spatial effects of the 

policy can be investigated further in terms of water quality and quantity used in the 

agricultural sector. Second, other than land competition, the analysis can be extended to 

competition in water usage between food and energy crops. Finally, changes in the mix of 

irrigated crops in total irrigation usage should be examined as a consequence of the RFS2 

mandate on biofuels. 
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3 CHAPTER III 

DEALING WITH TAIL RISKS IN ENERGY COMMODITY MARKETS: 

FUTURES CONTRACTS VS EXCHANGE TRADE FUNDS* 

3.1 Introduction 

Given the increase in energy commodity price volatility over the last decade, 

energy price risk management is becoming increasingly important for both users and 

producers. Futures contracts are one of the most common derivatives used to reduce 

exposures to adverse energy price movements. Energy commodity users (producers) can 

take a long (short) futures market position to lock a near future purchase (sale) price. While 

the futures contracts offer market participants the ability to hedge against price 

fluctuations in the energy commodity markets, they may not be a feasible hedging tool for 

small and mid-sized market participants due to their minimum size. Most futures contracts 

are too large and expensive for small and mid-sized energy market participants (especially 

for end-users such as residential consumers, agricultural producers, and small and mid-

sized trucking companies)1.   

 Alternatively, these market participants can gain exposure to energy price changes 

by investing in an energy commodity Exchange Traded Fund (ETF), which is designed to 

track movements in the price of futures contracts. While several empirical studies have 

 
* Reprinted with permission from “Dealing with Tail Risk in Energy Commodity Markets: Futures 

Contracts Versus Exchange-traded Funds” by Panit Arunanondchai, Kunlapath Sukcharoen, and David J. 

Leatham, 2019, Journal of Commodity Markets, 100112, Copyright (2020) by Elsevier. 
1 Note that one futures contract on crude oil, gasoline, and heating oil offered by the Chicago Mercantile 

Exchange (CME) Group is worth 42,000 gallons (or 1,000 barrels) of crude oil, gasoline, and heating oil, 

respectively, and one natural gas contract represents 10,000 million British thermal units (MMBtu) of natural 

gas.     
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evaluated the hedging performance of energy commodity futures (see, for example, 

Alizadeh et al., 2008; Chang et al., 2011; Conlon and Cotter, 2013; Cotter and Hanly, 

2012), there are very few studies on the hedging effectiveness of energy commodity ETFs.  

Murdock and Richie (2008) examined the suitability of the United States Oil Fund 

as a hedging instrument. Based on the correlation analysis results, they concluded that the 

Fund is a reasonably good hedging vehicle for crude oil during backwardation, but it may 

not be an effective hedging tool during contango. Sukcharoen et al. (2015) compare the 

effectiveness of futures contract versus ETF in hedging gasoline price movements and 

finds that the ETF is a superior hedging instrument relative to the futures contract during 

a high-volatility period. Maples et al., (2016) investigate the use of several commodity 

ETFs (including corn, soybeans, and heating oil ETFs as well as live cattle Exchange 

Traded Note) as hedging tools for southeastern agribusiness producers. Their analysis 

results suggest that the ETFs are effective in hedging commodity price risks. However, 

none of these studies considers the potential of energy commodity ETFs from the tail risk 

perspective2. Accordingly, the primary purpose of this paper is to examine the 

effectiveness of ETF as an alternative hedging tool for both energy commodity users and 

producers in a tail-risk hedging context3. 

 
2 Even though Sukcharoen et al., (2015) also consider the ability of gasoline ETF in reducing tail risk of 

movements in gasoline spot price, the optimal ETF hedge ratios are calculated under a minimum-variance 

framework (not a minimum-tail risk framework). 
3 Note that previous studies, including Alizadeh et al. (2008); Liu et al. (2017); and Sukcharoen and Leatham, 

(2017), have already considered the effectiveness of energy commodity futures in dealing with tail risk. 

Also, Cotter and Hanly, (2006) have previously addressed the problem of differential hedging performance 

for long and short hedgers for various objective functions. Therefore, the novelty of this paper is to examine 

whether ETFs might be a better instrument than futures contracts for hedging tail risk in the energy 

commodity markets. 
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As the goal of most hedgers is to avoid unfavorable extreme-tail outcomes or tail 

risk (Stulz, 1996; Unser, 2000; Veld and Veld-Merkoulova, 2008), we apply a minimum-

tail risk framework to estimate optimal hedge ratios. Specifically, this study considers both 

the minimum-Value at Risk (VaR) and minimum-Expected Shortfall (ES) objectives. To 

determine the minimum-VaR and minimum-ES hedge ratios, the distribution of hedged 

portfolio returns needs to be estimated. The standard practice is to use an empirical 

distribution method (see, for example, Demirer and Lien, 2003; Harris and Shen, 2006; 

Lien and Tse, 2000, 2001). This is considered an indirect method as the distribution of 

hedged portfolio returns is not directly derived from the joint distributions of spot and 

futures (or ETF) returns. This study adopts a direct approach and estimates the joint 

distributions of relevant returns using a kernel copula method. Similar to the empirical 

distribution method, the kernel copula approach is a nonparametric method and therefore 

does not require any prior assumptions regarding the shape of the returns distributions.  

3.2 Objectives of the Study 

This paper aims to contribute to the literature in several aspects:  

1) It adds to the rare literature on ETF hedging by examining the usefulness of ETFs 

in dealing with tail risk in the energy commodity markets. In particular, both 

average and dynamic out-of-sample hedging effectiveness of ETFs are analyzed 

and compared with those of futures contracts.  

2) Unlike previous studies on ETF hedging, the paper investigates hedging 

performance of ETFs for more than one energy commodities. Specifically, four 

energy commodities are considered including crude oil, gasoline, heating oil, and 
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natural gas. This allows us to inspect whether the hedging results are sensitive to 

the underlying energy commodities. 

3) The kernel copula approach is applied to determine minimum-VaR and minimum-

ES hedge ratios. To confirm the robustness of the results, we also conduct an 

analysis using the empirical distribution method.  

4) Given that long and short hedgers are concerned with opposite tails of the 

distribution of portfolio returns, we calculate the optimal hedge ratios for both long 

hedgers (energy commodity users) and short hedgers (energy commodity 

producers). This allows us to evaluate the sensitivity of the hedging performance 

vis-à-vis the hedge positions. Our findings would benefit both energy commodity 

users and producers who seek out the best hedging instrument for reducing the risks 

of adverse price movements in energy commodity markets. 

The remainder of this paper is organized as follows. Section 3.3 describes the 

characteristics of energy commodity ETFs. Section 3.4 outlines the minimum tail-risk 

hedging problem, methods for estimating the optimal hedge ratios, and hedging 

effectiveness measures. Section 3.5 presents the data and preliminary analysis results. 

Section 3.6 reports and discusses the empirical results on the optimal ETF and futures 

hedge ratios and their out-of-sample hedging effectiveness. Finally, Section 3.7 provides 

the conclusions drawn from this study  

3.3 Characteristics of Energy Commodity ETFs 

An exchange-traded fund or ETF was first introduced in 1989 on the Toronto Stock 

Exchange and has matured substantially over the last few decades as an investment 
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product. By construction, the ETF is designed to track the performance of an underlying 

asset or a basket of underlying assets (including stocks, bonds, commodities, and/or 

derivative products). The ownership of those underlying assets is then allocated into 

individual shares, which are traded like stocks on a real-time intraday basis. This is one of 

the most desirable characteristics of the ETF because it has provided all types of investors 

(including small and mid-sized investors) with an inexpensive way to gain exposure to a 

particular market. For example, an investor may purchase only five shares of the United 

States Oil (USO) Fund that would give him exposure to roughly 5 barrels of crude oil, as 

opposed to purchasing one crude oil futures contract that covers 1,000 barrels of crude oil. 

In this section, we first discuss the construction of ETFs (including the practical 

differences between ETFs and futures contracts), and then outline the trading of the four 

energy commodity ETFs considered in this study.  

3.3.1 ETF Construction 

The supply of ETF shares is generated through a creation/redemption mechanism. 

The mechanism involves large specialized investors, known as authorized participants. 

The authorized participants can increase the supply of shares (i.e., create the ETF shares) 

by exchanging the underlying assets required to create a fund with ETF providers/issuers. 

On the other hand, they can reduce the supply of shares (i.e., redeem the ETF shares) by 

accumulating a sufficient number of the ETF shares and then exchanging them with the 

ETF providers for the underlying assets of equivalent value. The number of ETF shares 

created and redeemed mainly depends on the market demand for ETF shares. For example, 

if the market demand for ETF shares is high, the authorized participants will exchange the 
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underlying assets with the ETF providers in an exchange for additional ETF shares. The 

ETF shares created are then traded by individual investors on a stock exchange.    

It should be noted that the authorized participants bear the transaction costs associated 

with the creation and redemption of the ETF shares. Therefore, the ETFs offer market 

participants a more cost-effective way of gaining exposure to a specific market than the 

traditional futures contracts. Table 3.1 summarizes practical differences between ETF and 

futures trading. As mentioned earlier, the ETF market provides small investors and 

hedgers with more trading flexibility than the futures market as the ETF market allows 

investors to trade as little as a single share. In addition, unlike futures investors, ETF 

investors are not required to meet any initial or maintenance margin requirements. 

Regarding transaction costs, ETF investors have to pay an annual management fee of 0.45-

0.60 percent (depending on the funds). The commission fee on an ETF trade is $0-$4.95 

per trade (depending on the brokerage firms), whereas the commission fee on a futures 

trade is $1.45 per futures contract. Nevertheless, despite these transaction costs, the ETF 

market is still an appealing avenue for smaller investors who have no or limited access to 

futures hedging due to the large margin requirements and large contract size. In terms of 

accessibility, ETF investors can conveniently trade ETF shares during regular trading 

hours (as well as during extended trading hours, depending on the brokerage firms), 

whereas the futures contracts are traded six days a week (nearly 24 hours a day) on the 

Chicago Mercantile Exchange (CME) Globex system.    
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Table 3.1. Practical differences between ETF and futures trading 

Issue ETF Trading Futures Trading 

Accessibility Trades executed throughout the 

trading day and during extended 

hours trading 

Nearly 24 hours, six days a week 

Investment Minimum 1 share 1 contract 

Brokerage/Commission Fee $0 - $4.95 per trade $1.45 per contract 

Management Fee 0.45%-0.60% per year 

(for energy commodity ETFs) 

None 

Initial Margin None Required 

Maintenance Margin None Required 

Leverage Lower Leverage Higher Leverage 

Short Selling Allowed Allowed 

Liquidity Good but Lower Liquidity Higher Liquidity 

Transparency High Degree of Transparency High Degree of Transparency 

  

Table 3.2 reports average daily dollar volume of ETF and futures markets for crude 

oil, gasoline, heating oil, and natural gas. As can be seen from Table 3.2, both ETF and 

futures markets are liquid. Thus, investors in both markets should be able to quickly get 

in and out of the markets. However, the futures market is more liquid than the ETF market. 

When it comes to leverage, futures investors are able to utilize more leverage than are ETF 

investors. For example, investors who wish to trade ETF shares on margin may borrow 

only up to 50% of the transaction price. On the other hand, futures investors only need to 

deposit 5% to 15% of the total contract value (that is, they can borrow more than 50% of 

the transaction price). Short selling is possible for both ETF and futures investors. 

Nevertheless, while the margin requirements remain the same for the long and short 

positions in the futures market, short selling an ETF share involves an interest charged on 

the loaned ETF shares as well as a fee that needs to be paid to the lender for the right to 

borrow the share. To avoid these extra costs related to short selling, short hedgers in crude 

oil and natural gas markets may instead purchase “inverse ETFs” or “short ETFs” offered 
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Table 3.2. Average daily dollar volume of ETF and futures markets for crude oil, gasoline, heating oil, and 

natural gas (from the ETF launch date to August 31, 2017) 

ETF/Futures ETF Average Daily Dollar 

Volume 

Futures Average Daily 

Dollar Volume 

United States Oil (USO) Fund/  

West Texas Intermediate (WTI) crude oil 

$381.94 million 

(14.32 million shares) 

$21,851.24 million 

(0.31 million contracts) 

United States Gasoline (UGA) Fund/ 

New York Harbor Regular gasoline 

$2.44 million 

(63,274 shares) 

$4,013.60 million 

(42,962 contracts) 

United States Diesel-Heating Oil (UHN) 

Fund/ 

New York Harbor No. 2 heating oil 

$0.16 million 

(5,644 shares) 

$4,069.29 million 

(41,926 contracts) 

United States Natural Gas (UNG) Fund/ 

Henry Hub natural gas 

$148.81 million 

(1.42 million shares) 

$4,424.58 million 

(0.11 million contracts) 

 

by ProShares, which are designed to return the inverse of the performance of a certain 

benchmark. With respect to transparency, both markets are very transparent, given that 

both ETF shares and futures contracts are traded on regulated exchanges. In addition, most 

ETFs publicly disclose their complete portfolios every day.  

3.3.2 Energy Commodity ETFs 

During the last decade, numerous energy commodity ETFs have been introduced. 

The four energy commodity ETFs considered in this study are the United States Oil (USO) 

Fund, the United States Gasoline (UGA) Fund, the United States Diesel-Heating Oil 

(UHN) Fund, and the United States Natural Gas (UNG) Fund. These energy commodity 

ETFs operate under investment objectives that are defined relative to the daily returns on 

the underlying futures contracts. 

The USO Fund (ticker symbol: USO) tracks in percentage terms the daily changes 

of West Texas Intermediate (WTI) crude oil futures prices. The USO Fund’s launch 

(inception) date is April 10, 2006. The USO Fund’s top portfolio holdings include near-

month crude oil futures contracts and other oil-related futures contracts. In 2019, the USO 
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Fund has approximately $1.58 billion in assets and 133.6 million shares outstanding. Since 

its inception date, the average daily dollar volume of the USO shares is $381.94 million, 

whereas that of the West Texas Intermediate (WTI) crude oil futures contracts is 

$21,851.24 million (see Table 3.2). In terms of physical volume, the average daily trading 

volumes of the USO shares and crude oil futures contracts (with each contract equal to 

1,000 barrels) are 14.32 million shares and 0.31 million contracts, respectively.  

The UGA Fund (ticker symbol: UGA) tracks in percentage terms the daily changes 

of New York Harbor RBOB gasoline futures prices. The launch date of the UGA is 

February 27, 2008. It holds mainly near-month RBOB futures contracts and other 

gasoline-related futures contracts. As of March 2019, the UGA Fund has about $45.4 

million in assets under management and 1.6 million shares outstanding. Since the UGA’s 

launch date, the average daily dollar volume of the UGA shares is $2.44 million (or 63,274 

shares), whereas that of the New York Harbor Regular gasoline futures contracts (with 

each contract equal to 42,000 gallons) is approximately $4,013.60 million (or 42,962 

contracts). 

 The UHN Fund (ticker symbol: UHN) tracks in percentage terms the daily changes 

of New York Harbor No. 2 heating oil futures prices. The UHN Fund’s launch date is 

April 9, 2008. Its top portfolio holdings are near-month heating oil futures contracts and 

other heating oil-related futures contracts. As of June 2018, the UHN Fund has 

approximately $7.3 million in assets and 350,000 shares outstanding. Since the UHN’s 

inception date, the average daily dollar volume of the UHN shares is $0.16 million (or 

5,644 shares), whereas that of the New York Harbor No. 2 heating oil futures contracts 
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(with each contract equal to 42,000 gallons) is approximately $4,069.29 million (or 41,926 

contracts).  

Lastly, the UNG Fund (ticker symbol: UNG) tracks in percentage terms the daily 

changes of Henry Hub natural gas futures prices. Its launch date is April 18, 2007. The 

UNG Fund holds mainly near-month natural gas futures contracts and other natural gas-

related futures contracts. In 2019, the UNG Fund has about $263.6 million in assets under 

management and 10.8 million shares outstanding. Since its launch date, the average daily 

dollar volume of the UNG shares is $148.81 million, whereas that of the Henry Hub 

natural gas futures contracts is $4,424.58 million. In terms of physical volume, the average 

daily trading volumes of the UNG shares and natural gas futures contracts (with each 

contract equal to 10,000 mmBtu) are 1.42 million shares and 0.11 million contracts, 

respectively. Note that these funds roll over their near-month futures contracts to the next-

month contracts as soon as the near-month futures contracts are within two weeks of 

expiration. 

3.3.3 Hedging with Energy Commodity ETFs 

The concept behind the use of energy commodity ETFs in hedging price risks in 

the energy commodity markets is straightforward. Take, for example, the USO Fund that 

is designed to match the change of WTI crude oil futures price on a daily basis. More 

specifically, if WTI crude oil futures prices increases by one percent on a given day, the 

USO Fund is designed to rise by one percent that day. Therefore, cash flows emanating 

from an energy commodity ETF investment would theoretically provide protection for a 

hedger in a similar way as would cash flows from futures trading.  



40 

 

 Nonetheless, a hedger should keep in mind that the mechanics of ETF hedging is 

somehow different from futures hedging. Specifically, an energy commodity ETF is a cash 

product whereas a futures contract is a derivative product. As the derivative product has a 

fixed maturity date, the hedger knows that the no arbitrage condition helps ensure that the 

futures price and the spot price of the underlying commodity equate on a specified future 

date. This is no such condition for an ETF. In effect, there may be a perpetual basis risk 

with ETF.  

Furthermore, the ETF is not marked-to-market. In other words, ETF investors 

would not realize a gain or loss until they sell or buy back the ETF, potentially leaving a 

naked position if the maturities do not match (especially if the ETF holders are forced to 

sell their ETF shares due to liquidity issues). In addition, as energy commodity ETF 

managers strive to match the percentage change of the target futures contract on a day-to-

day basis, the compounding of the gross return of the ETF may differ from the total return 

received from holding the respective futures contract over a specified period of time 

(Burney, 2012; Cheng and Madhavan, 2009). Due to the single-day objective of the energy 

commodity ETF, a constant rebalancing of the hedge is required and this involves 

transaction costs (Burney, 2012; Hill and Teller, 2010). Depending on the hedge period, a 

futures hedger might also need to rebalance the futures position periodically to ensure the 

effectiveness of the hedge. These are important factors that all hedgers should consider 

before selecting a hedging instrument.    
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3.4 Methodology 

The determination of the optimal hedge ratio depends on the underlying asset 

position to which a particular hedger is exposed (i.e., whether a long or short position 

should be taken to manage risk) and his/her risk management objective (hedging 

objective). In this section, we first outline the hedging problem facing two types of tail-

risk hedgers: long and short tail-risk hedgers, and then present the kernel copula approach 

for estimating the optimal hedge ratios. We also discuss how hedging effectiveness is 

analyzed in this section. 

3.4.1 Minimum-tail Risk Hedging Problem 

The two hedging instruments considered in this study are energy commodity 

futures and ETFs. This paper takes the point of view of both energy commodity users 

(long hedgers) and producers (short hedgers). In general, an energy commodity user 

(typically either an end consumer or energy commodity processor) that wishes to lock the 

price of an energy commodity to be purchased at some time in the near future is engaged 

in a long hedge. At time 𝑡, such a long hedger expects to purchase (or process) a known 

quantity, 𝑄𝑡, of a particular energy commodity at time 𝑡 + 1. The spot price at time 𝑡, 

denoted by 𝑆𝑡, is known, whereas the spot price at time 𝑡 + 1, denoted by 𝑆𝑡+1, is 

unknown. To hedge the change in spot price, the long hedger would take a long position 

of 𝑋𝑡 units of the energy commodity in either the futures or ETF market at time 𝑡. The 

long hedger’s per-period return on the hedged portfolio (i.e., from time 𝑡 to time 𝑡 + 1) 

for the case of futures hedging is therefore given by: 
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 𝑅𝑡+1
ℎ,𝑙𝑜𝑛𝑔

= −𝑅𝑡+1
𝑆 + ℎ𝑡𝑅𝑡+1

𝐹  (3.1) 

where 𝑅𝑡+1
𝑆 = ln(𝑆𝑡+1/𝑆𝑡) is the per-period return on the spot position at time 𝑡 + 1, 

𝑅𝑡+1
𝐹 = ln(𝐹𝑡+1/𝐹𝑡) is the per-period return on the futures position at time 𝑡 + 1, and ℎ𝑡 =

𝑋𝑡/𝑄𝑡 is the hedge ratio to be determined at time 𝑡.       

 On the other hand, an energy commodity producer that commits to selling an 

energy commodity at some time in the future typically wishes to protect against the risk 

of declining commodity price and hence engages in a short hedge. To hedge the change in 

spot price, the short hedger (that expects to sell a known quantity, 𝑄𝑡, of a specific energy 

commodity at time 𝑡 + 1) would take a short position of 𝑋𝑡 units of the energy commodity 

in either the futures or ETF market at time 𝑡. The short hedger’s per-period return on the 

hedged portfolio for the case of futures hedging is thus given by: 

 𝑅𝑡+1
ℎ,𝑠ℎ𝑜𝑟𝑡 = 𝑅𝑡+1

𝑆 − ℎ𝑡𝑅𝑡+1
𝐹  (3.2) 

For the case of ETF hedging, the per-period ETF return at time 𝑡 + 1, 𝑅𝑡+1
𝐸𝑇𝐹 =

ln(𝐸𝑇𝐹𝑡+1/𝐸𝑇𝐹𝑡), is used in place of 𝑅𝑡
𝐹.  

 As mentioned previously, the determination of the optimal hedge ratio, ℎ𝑡, depends 

not only on whether a short or long hedge position is to be taken but also on the hedger’s 

risk management objective. In practice, most hedgers are only concerned with dangerous 

“lower-tail outcomes” or “tail risk” (Stulz, 1996; Unser, 2000; Veld and Veld-

Merkoulova, 2008). Accordingly, this paper assumes that the hedger’s objective is to 

minimize the tail risk of the hedge portfolio returns. Thus, the hedger’s problem at time 𝑡 

is then to select the optimal hedge ratio, ℎ𝑡
∗ that minimizes the tail risk of the hedged 

portfolio. The following equation formally presents the hedger’s problem: 
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 ℎ𝑡
∗ = arg min

ℎ𝑡

𝑅𝑀(𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

) (3.3) 

where 𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

 is the hedger’s per-period return on the hedged portfolio, 𝑡𝑦𝑝𝑒 = 𝑙𝑜𝑛𝑔 for 

long hedgers and 𝑡𝑦𝑝𝑒 = 𝑠ℎ𝑜𝑟𝑡 for short hedgers, and 𝑅𝑀(⋅) denotes the risk measure. 

The construction of 𝑅𝑡+1
ℎ,𝑙𝑜𝑛𝑔

 and 𝑅𝑡+1
ℎ,𝑠ℎ𝑜𝑟𝑡

are described in Eq. (3.1) and Eq. (3.2), 

respectively. This paper considers the two most popular tail risk measures: Value at Risk 

(VaR) and Expected Shortfall (ES).  

 For a given confidence level, (1 − 𝛼)100%, VaR is defined as the largest potential 

loss on a hedged portfolio over a given time horizon (i.e., from time 𝑡 to time 𝑡 + 1) and 

given by:  

 𝑉𝑎𝑅(1−𝛼)100%(𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

) = −𝐺−1(𝛼) (3.4) 

where 𝐺 is the cumulative distribution function (CDF) of 𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

. On the other hand, the 

ES at the is defined as the expected loss on a hedge portfolio conditional on the amount of 

losses exceeding the VaR of the portfolio. More specifically, the ES at the (1 − 𝛼)100% 

confidence level over a given time horizon is given by:      

 𝐸𝑆(1−𝛼)100%(𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

) = −𝐸[𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

|𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

≤ −𝑉𝑎𝑅(1−𝛼)100%(𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

)] (3.5) 

In this study, VaR and ES are calculated for three confidence levels: (1 − 𝛼)100% =

90%, 95%, and 99%.  

3.4.2 Estimation of the Optimal Hedge Ratios 

Since there is no explicit analytical solution for the minimization problem in Eq. 

(3.3), the minimum-VaR and minimum-ES hedge ratios need to be solved numerically. 

To calculate the VaR and ES values, we need to first estimate the CDF of hedger’s per-
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period return on the hedged portfolio, 𝐺(𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

). In this study, the kernel copula method 

is adopted to estimate the CDF of hedged portfolio returns. The kernel copula approach is 

based on the Sklar’s theorem (Sklar et al., 1959). For the case of two random variables, 

the Sklar’s theorem states that any bivariate distribution can be decomposed into two parts: 

two individual marginal distributions and a copula that describes their dependence 

structure. More formally, 

 𝐺(𝑥1, 𝑥2) = 𝐶(𝐺1(𝑥1), 𝐺2(𝑥2)) (3.6) 

where 𝐺1(𝑥1) and 𝐺2(𝑥2) are marginal distributions of random variables 𝑥1 and 𝑥2, 

respectively, and 𝐶: [0,1]2 ⟶ [0,1] is a copula function. If 𝐺1(𝑥1) and 𝐺2(𝑥2) are 

differentiable, the joint density function, 𝑔(𝑥1, 𝑥2), can be expressed as: 

 𝑔(𝑥1, 𝑥2) = 𝑔1(𝑥1) ⋅ 𝑔2(𝑥2) ⋅ 𝑐(𝐺1(𝑥1), 𝐺2(𝑥2)) (3.7) 

where 𝑔1(𝑥1) and 𝑔2(𝑥2) are the density of 𝐺1(𝑥1) and 𝐺2(𝑥2), and 𝑐(⋅) is the density of 

the copula function. This decomposition implies that the modeling of the two marginal 

distributions can be separated from the modeling of the dependence structure.  

 Accordingly, the procedure for constructing the joints distribution of 𝑅𝑡+1
𝑆  and 

𝑅𝑡+1
𝐹  (or 𝑅𝑡+1

𝑆  and 𝑅𝑡+1
𝐸𝑇𝐹) using the kernel copula approach can be briefly summarized in 

four steps. First, we estimate the marginal distribution for each return series using an 

empirical distribution function, and then transform the return series into a standard 

uniform variable (also known as copula data)4. Second, the copula density, 

 
4 To avoid the possible misspecification of parametric distributions, the marginal distributions of spot, 

futures, and ETF returns are estimated nonparametrically instead of parametrically. Similar to Barbi and 

Romagnoli, (2014); Bouyé and Salmon, (2009); Power and Vedenov, (2010); and Sukcharoen and Leatham, 

(2017), the marginal distributions are estimated using the unfiltered return data instead of using the GARCH 

filtered return data to avoid the first stage estimation and specification errors. 
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𝑐(𝐺1(𝑥1), 𝐺2(𝑥2)), is estimated nonparametrically using a kernel-type copula density 

estimator of (Geenens et al., 2017). Third, we generate 𝑚 = 10,000 Monte Carlo draws of 

the two standard uniform variables from the estimated copula density.  

Finally, the draws from the copula are converted to spot and futures (or ETF) return 

series by applying the inverse of the corresponding marginal distribution function of each 

return series. For any given ℎ, we use the simulated 𝑅𝑡+1
𝑆  and 𝑅𝑡+1

𝐹  (or 𝑅𝑡+1
𝑆  and 𝑅𝑡+1

𝐸𝑇𝐹) 

series to generate the distribution of 𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

. For a given hedge ratio ℎ, let 

{𝑅1
ℎ,𝑡𝑦𝑝𝑒

, 𝑅2
ℎ,𝑡𝑦𝑝𝑒

, … , 𝑅𝑚
ℎ,𝑡𝑦𝑝𝑒

} be a series of hedged portfolio returns constructed from the 

data series of spot and futures (or ETF) returns. The kernel copula method suggests 

estimating 𝑉𝑎𝑅(1−𝛼)100%(𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

) as: 

 𝑉𝑎𝑅(1−𝛼)100%(𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

) = −𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ({𝑅𝜏
ℎ,𝑡𝑦𝑝𝑒

}
𝜏=1

𝑚
, (𝛼 ⋅ 100%)) 

(3.8) 

The minimum-VaR hedge ratio is then determined as the value of ℎ that minimizes the 

VaR of hedged portfolio returns. On the other hand, for a given hedge ratio ℎ, 

𝐸𝑆(1−𝛼)100%(𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

) can be calculated as:  

 

𝐸𝑆(1−𝛼)100%(𝑅𝑡+1
ℎ,𝑡𝑦𝑝𝑒

) = −
1

⌊𝛼𝑚⌋
∑ 𝑅(𝑖)

ℎ,𝑡𝑦𝑝𝑒

⌊𝛼𝑚⌋

𝑖=1

 

(3.9) 

where ⌊𝛼𝑚⌋ denotes the largest integer not greater than 𝛼𝑚, and 𝑅(1)
ℎ,𝑡𝑦𝑝𝑒

≤ 𝑅(2)
ℎ,𝑡𝑦𝑝𝑒

≤ ⋯ ≤

𝑅(𝑚)
ℎ,𝑡𝑦𝑝𝑒

 are the order statistics in ascending order corresponding to the simulated hedged 
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portfolio returns 𝑅1
ℎ,𝑡𝑦𝑝𝑒

, 𝑅2
ℎ,𝑡𝑦𝑝𝑒

, … , 𝑅𝑚
ℎ,𝑡𝑦𝑝𝑒

. The minimum-ES hedge ratio is then 

determined as the value of ℎ that minimizes the ES of hedged portfolio returns5.  

3.4.3 Hedging Effectiveness 

To analyze hedging effectiveness of two alternative hedging instruments, we apply 

a rolling window analysis similar to Barbi and Romagnoli (2014); Conlon and Cotter 

(2013); and Sukcharoen and Leatham (2017). Due to daily mark-to-market practices, the 

appropriate hedge horizon – the time frame for measuring price changes – is one day 

(Demirer et al., 2005). Therefore, this paper focuses on a daily hedge horizon6. 

Specifically, we compute the minimum-VaR and minimum-ES hedge ratios for both short 

and long hedgers using the first 250 daily return observations (i.e., a rolling window of 

250 trading days)7. To capture the out-of-sample hedging performance, the next 250 daily 

observations are used to measure the hedging effectiveness. Following Ederington, 

(1979), hedging effectiveness is measured as a percentage reduction in the risk of 

 
5 To check the robustness of the hedging results, we also conduct an analysis using the empirical distribution 

method (also known as the historical simulation method). It should be noted that both the empirical 

distribution and kernel copula approaches are nonparametric methods. However, unlike the kernel copula 

method, the empirical method is considered as an indirect approach because the VaR and ES values are 

calculated from the probability distribution of the hedged portfolio returns, not from the joint distributions 

of spot and futures (or ETF) returns.  
6 Note that a similar analysis can be applied to different hedge horizons such as weekly, monthly and 

quarterly. 
7 To check the robustness of the results, an additional analysis is also conducted using a rolling window of 

500 trading days. We find that the main conclusion regarding the relative hedging performance of ETFs and 

futures remains unchanged. Moreover, we also find that using the 500-day rolling window leads to poorer 

hedging outcomes (in terms of percentage of risk reduction) than using the 250-day rolling window for most 

cases (especially for the gasoline and heating oil markets). Nevertheless, studies on the optimal size of the 

rolling windows for calculating optimal hedge ratios based on empirical distribution and kernel copula 

methods are still needed.  
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unhedged (spot) position relative to the risk of hedged position. That is, hedging 

effectiveness (in percentage) is defined as: 

 
𝐻𝐸 = (1 −

𝑅𝑀(𝑅 
ℎ∗,𝑡𝑦𝑝𝑒)

𝑅𝑀(𝑅 
0,𝑡𝑦𝑝𝑒)

) × 100 
(3.10) 

where 𝑅ℎ∗,𝑡𝑦𝑝𝑒 is the return on optimal hedged portfolio, 𝑅0∗,𝑡𝑦𝑝𝑒 is the return on unhedged 

portfolio, and 𝑅𝑀(⋅) is the risk measure. In this study, two tail-risk measures are 

considered in evaluating the hedging effectiveness: VaR (90%, 95%, and 99%) and ES 

(90%, 95%, and 99%). We then move the rolling window by one day and recalculate the 

optimal hedge ratios as well as the out-of-sample effectiveness. Finally, the average 

hedging effectiveness is calculated across all rolling windows for each hedging 

instrument, hedging objective and types of hedger.   

3.5 Data and Preliminary Analysis 

The empirical analysis is based on daily spot, futures, and ETF prices for four 

different energy commodities: crude oil, gasoline, heating oil, and natural gas. The spot 

and futures price data used include daily spot and futures prices for West Texas 

Intermediate (WTI) crude oil (trading location: Cushing, Oklahoma), New York Harbor 

Regular gasoline (trading location: New York Harbor), New York Harbor No. 2 heating 

oil (trading location: New York Harbor), and Henry Hub natural gas (trading location: 

Louisiana Gulf coast). These spot and futures price data are drawn from the U.S. Energy 

Information Administration (EIA) 8. With respect to the ETF price data, we employ daily 

 
8 Here, the spot price is defined as “the price for a one-time open market transaction for immediate delivery 

of a specific quantity of a production at a specific location where the commodity is purchased ‘on the spot’ 
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ETF prices for the United States Oil (USO) Fund, United States Gasoline (UGA) Fund, 

United States Diesel-Heating Oil (UHN) Fund, and United States Natural Gas (UNG) 

Fund. The ETF price data are obtained from Thomson Reuters Datastream.  

 For each energy commodity, we use the ETF launch date (see Section 3.3.2) as the 

first date of the spot, futures and ETF time series. Accordingly, daily log returns are 

calculated using the price data from April 10, 2006 to August 31, 2017 for crude oil, from 

February 27, 2008 to August 31, 2017 for gasoline, from April 9, 2008 to August 31, 2017 

for heating oil, and from April 18, 2007 to August 31, 2017 for natural gas. To construct 

each continuous series of futures returns, we use the nearby futures contract and switch to 

the next contract month two weeks before expiration9. Care has been taken to ensure that 

the log returns of futures prices are calculated using the same futures contract. Altogether, 

we have a total of 2,862 observations for crude oil, 2,389 observations for gasoline, 2,360 

observations for heating oil, and 2,606 observations for natural gas. Accordingly, our 

rolling window analysis discussed in Section 3.3 would result in 2,363 (out-of-sample) 

test windows for crude oil, 1,890 test windows for gasoline, 1,861 test windows for heating 

oil, and 2,107 test windows for natural gas. 

Table 3.3 reports summary statistics for daily spot, futures, and ETF log returns for 

crude oil, gasoline, heating oil, and natural gas. Over the time period studied, the means 

 
at current market rates” (U.S. Energy Information Administration, 2019). All futures contracts settle in the 

same locations as the spot market counterparts.  
9 It should be noted that all the energy commodity ETFs considered periodically roll over their futures 

contracts as soon as the near-month futures contracts are within two weeks of expiration. Therefore, a two-

week rollover strategy is adopted in this study. As part of the robustness analysis, we also consider a rollover 

strategy where contracts are held until expiration and a one-week rollover strategy. We find that the rollover 

strategy does not affect the main findings of the study. This is consistent with Carchano and Pardo, (2009) 

who show that the choice of rollover date to construct the futures return series is irrelevant.   
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of all return series are negative but close to zero. The spot returns are found to be more 

volatile than the futures and ETF returns for all four commodities, with the natural gas 

market being the most volatile. All return series are slightly skewed and display high 

excess kurtosis (especially the gasoline and natural gas spot returns). This implies that all 

return series are not normally distributed.  

The Augmented Dicky-Fuller (ADF) test results indicate that each return series is 

stationary10. For crude oil and heating oil markets, there is a stronger correlation and tail 

dependence (both upper and lower) between the spot and futures returns than between the 

spot and ETF returns, but the opposite is observed for gasoline and natural gas markets 

(except for the upper tail dependence in the gasoline market)11. The lowest correlation and 

tail dependence are observed between the natural gas spot and futures returns. The highest 

correlation and tail dependence are found between the crude oil spot and futures returns. 

3.6 Empirical Results 

In this section, we present our empirical findings for optimal hedge ratios and out-

of-sample hedging effectiveness determined for both long and short hedgers in four energy 

commodity markets: crude oil, gasoline, heating oil, and natural gas markets. Comparisons 

10 A Seasonal Autoregressive Integrated Moving Average (ARIMA) model and an Exponential Smoothing 

State Space (ETS) model with seasonality were estimated to check the existence of seasonality in each return 

series. Both the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) indicate that 

the inclusion of a seasonal component does not help improve forecast accuracy. The finding is consistent 

with Liu et al., (2017) who find that there is insufficient evidence to support the existence of seasonality in 

returns series of energy commodities.  
11 In this study, the pair-wise tail dependence coefficients are estimated non-parametrically using an 

empirical copula. A threshold used in the estimation of tail dependence coefficients is 0.05. In other words, 

5% of the most extreme data are used in the calculation of tail dependence coefficients.    
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Table 3.3. Summary statistics of daily spot, futures, and ETF log returns for crude oil, gasoline, heating oil,   

    and natural gas 

  Spot Futures ETF 

Crude Oil    
     Mean (%) -0.013 -0.023 -0.068 

     Standard Deviation (%) 2.441 2.337 2.181 

     Minimum (%) -12.827 -12.595 -11.300 

     Maximum (%) 16.414 16.410 9.169 

     Skewness 0.141 0.063 -0.146 

     Excess Kurtosis 4.458 4.020 2.272 

     ADF -38.841* -39.813* -38.427* 

     Correlation (with Spot) 

     Lower Tail Dependence (𝑘 = 0.05) 

     Upper Tail Dependence (𝑘 = 0.05)  

0.923 

0.846 

0.846 

0.903 

0.741 

0.734 

Gasoline    
     Mean (%) -0.006 -0.030 -0.020 

     Standard Deviation (%) 3.651 2.439 2.175 

     Minimum (%) -19.327 -16.109 -12.331 

     Maximum (%) 48.380 21.665 10.572 

     Skewness 1.156 -0.025 -0.299 

     Excess Kurtosis 17.396 6.567 2.624 

     ADF -33.237* -35.123* -34.918* 

     Correlation (with Spot) 

     Lower Tail Dependence (𝑘 = 0.05) 

     Upper Tail Dependence (𝑘 = 0.05)  

0.524 

0.353 

0.328 

0.601 

0.403 

0.319 

Heating Oil    
     Mean (%) -0.029 -0.033 -0.049 

     Standard Deviation (%) 2.194 2.075 1.985 

     Minimum (%) -12.708 -19.749 -10.130 

     Maximum (%) 14.862 10.118 9.549 

     Skewness 0.047 -0.365 0.001 

     Excess Kurtosis 4.339 5.876 2.360 

     ADF -35.448* -34.207* -34.301* 

     Correlation (with Spot) 

     Lower Tail Dependence (𝑘 = 0.05) 

     Upper Tail Dependence (𝑘 = 0.05)  

0.888 

0.712 

0.797 

0.845 

0.678 

0.746 

Natural Gas    
     Mean (%) -0.036 -0.043 -0.157 

     Standard Deviation (%) 3.904 2.941 2.649 

     Minimum (%) -27.844 -13.797 -13.198 

     Maximum (%) 39.007 26.874 13.952 

     Skewness 0.912 0.637 0.087 

     Excess Kurtosis 15.677 4.735 1.370 

     ADF -41.819* -36.276* -35.613* 

     Correlation (with Spot) 

     Lower Tail Dependence (𝑘 = 0.05) 

     Upper Tail Dependence (𝑘 = 0.05)  

0.163 

0.169 

0.200 

0.198 

0.169 

0.215 

     Note: ADF is the Augmented Dickey-Fuller test statistic, where * denotes the rejection of the null hypothesis  

     of a unit root (non-stationarity). For lower and upper tail dependence, 𝑘 is the threshold number, meaning 𝑘% of  

     most extreme return data are used in the calculation.  
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of out-of-sample hedging effectiveness also are made between the two hedging 

instruments: futures and ETFs. The kernel copula methods is applied to estimate the VaR 

and ES values at the 90%, 95%, and 99% confidence levels12. 

3.6.1 Optimal Hedge Ratios 

Average ETF and futures hedge ratios calculated using the kernel copula approach 

are shown for different hedging objectives and for both long and short hedgers in Table 

3.4. Examining first the impact of hedge positions, we find that of the 48 hedge-ratio pairs 

the optimal hedge ratios for short hedgers are larger than those for long hedgers in about 

60 percent of the cases. In keeping with previous findings (Demirer et al., 2005; Demirer 

and Lien, 2003), the overall results indicate no discernible pattern in the relative sizes of 

optimal hedge ratios for long and short hedgers. However, few distinct patterns are found 

when considering each energy commodity market and each hedging instrument 

individually. In the crude oil market, regardless of the hedging instruments, long hedgers 

are almost always hedge more than short hedgers (except for the minimum-VaR (90% and 

95%) objectives). In the gasoline market, long hedgers almost always hedge more than 

short hedgers when an ETF is used as a hedging instrument. The only exception is for the 

minimum-VaR (90%) objective. In contrast, for all hedging objectives (except for the 

minimum-ES (99%) objective), the size of the futures position for long hedgers is smaller 

than that for short hedgers. In the heating oil market, long hedgers consistently hedge less 

 
12 We also estimate the VaR and ES using the empirical distribution method. Both the empirical distribution 

and kernel copula methods generate qualitatively similar empirical results. The results from the empirical 

distribution method are available from the authors upon request.  
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       Table 3.4. Average minimum-Value at Risk (VaR) and minimum-Expected Shortfall (ES) hedge ratios  

       for the case of ETF (futures) hedging 

Hedging Objectives Crude Oil Gasoline Heating Oil Natural Gas 

Panel A: Long Hedgers  
     min-VaR (90%) 0.969 0.934 0.894 0.179 

(0.989) (0.784) (0.959) (0.197) 

     min-VaR (95%) 0.995 1.029 0.901 0.253 

(0.998) (0.764) (0.967) (0.257) 

     min-VaR (99%) 1.062 1.373 0.979 0.491 

(1.020) (0.893) (0.936) (0.413) 

     min-ES (90%) 1.028 1.115 0.932 0.251 

(1.008) (0.791) (0.936) (0.254) 

     min-ES (95%) 1.053 1.254 0.959 0.319 

(1.016) (0.821) (0.913) (0.295) 

     min-ES (99%) 1.124 1.512 1.017 0.456 

(1.014) (0.97) (0.917) (0.381) 

Panel B: Short Hedgers    
     min-VaR (90%) 0.999 0.939 0.928 0.302 

(1.000) (0.881) (0.978) (0.257) 

     min-VaR (95%) 1.015 1.017 0.948 0.281 

(1.002) (0.853) (0.989) (0.216) 

     min-VaR (99%) 1.043 1.304 1.042 0.547 

(0.997) (0.928) (1.018) (0.355) 

     min-ES (90%) 1.028 1.093 0.982 0.335 

(0.995) (0.864) (1.002) (0.249) 

     min-ES (95%) 1.038 1.194 1.016 0.361 

(0.992) (0.876) (1.012) (0.268) 

     min-ES (99%) 1.064 1.376 1.121 0.496 

(0.940) (0.962) (1.067) (0.271) 

Notes: The optimal hedge ratios for both short and long hedgers are estimated using a rolling window 

approach with a rolling window of 250 trading days. The total number of rolling windows is 2,363 windows 

for crude oil, 1,890 windows for gasoline, 1,861 windows for heating oil, and 2,107 windows for natural 

gas. 

 

than short hedgers, regardless of the hedging objectives and hedging instruments. In the 

natural gas market, ETF hedge ratios for long hedgers are steadily smaller than ETF hedge 

ratios for short hedgers. Conversely, except for the minimum-VaR (90%) objective, the 

size of the futures position for long hedgers is larger than that for short hedgers.  

 Considering next the size of ETF position versus futures position, we find that ETF 

hedge ratios are always larger than futures hedge ratios in the gasoline market. In addition, 
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the difference in the relative magnitudes of ETF and futures hedge ratios in the gasoline 

market is found to increase monotonically with the confidence levels. In the crude oil, 

heating oil and natural gas markets, we find no systematic pattern in the relative sizes of 

ETF and future hedge ratio13. The only exception is for the short hedgers in the natural gas 

market, where the ETF hedge ratios are always larger than the futures hedge ratios. We 

also find that, for the minimum-ES objective, the difference in the relative size of the ETF 

and futures hedge ratios in these three markets increases monotonically with the 

confidence levels. Examining the impact of hedging objectives (tail risk measures), the 

most prominent pattern observed is that the minimum-VaR hedge ratios are smaller than 

the minimum-ES hedge ratios for most cases (specifically, for 35 out of 48 hedge-ratio 

pairs). This suggests that the minimum-ES hedging strategy almost always requires that 

the long (short) hedgers purchase (sell) more units of relevant futures or ETF than the 

minimum-VaR strategy.  

Finally, considering the relationship between confidence levels and optimal hedge 

ratios, we get varied results across the four energy commodity markets. In the crude oil 

market, we find that, regardless of hedge positions, the optimal ETF hedge ratios increase 

monotonically with confidence levels. On the other hand, the optimal futures hedge ratios 

decrease monotonically with confidence levels for short hedgers with the minimum-ES 

objective, but the reverse relationship is observed for long hedgers with the minimum-

 
13 According to Liu et al., (2017), the dependence measures (including the correlation coefficient and 

Kendall’s tau) are the key determinants of the optimal hedge ratios. Thus, the differences in futures and ETF 

hedge ratios (across different commodity markets) are likely explained by the differences in the upper and 

lower tail dependence coefficients (see  

Table 3.3 for the information on the upper and lower tail dependence coefficients).  
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VaR objective. For the long hedgers with the minimum-ES objective and the short hedgers 

with the minimum-VaR objective, we find no systematic relationship between optimal 

futures hedge ratios and confidence levels. In the gasoline market, the optimal hedge ratios 

are found to have larger magnitude at higher confidence levels for almost all cases. The 

only exception is for the minimum-VaR futures hedge ratios. In the heating oil market, we 

observe a monotonic positive relationship between optimal hedge ratios and confidence 

levels for most cases (except for the case of long futures hedgers). In the natural gas 

market, excluding the case of short hedgers with the minimum-VaR objective where no 

systematic relationship is observed, we find that the optimal hedge ratios increase 

monotonically with confidence interval. Overall, these findings indicate the importance of 

considering hedger’s preferences on hedge position, tail risk measure, and confidence 

level in computing both futures and ETF hedge ratios.    

3.6.2 Out-of-sample Hedging Effectiveness 

To analyze the usefulness of ETFs in dealing with risk in energy commodity 

markets, we examine the out-of-sample hedging effectiveness of energy commodity ETFs 

and compare their hedging performance with energy commodity futures. For each hedge 

position and hedging objective, we measure the hedging effectiveness by computing a 

percentage reduction in VaR (90%, 95%, 99%) and ES (90%, 95%, 99%) of the unhedged 

portfolio relative to the hedged position. In this section, we report the average out-of-

sample hedging effectiveness of ETF and futures hedge ratios in reducing tail risk in crude 

oil, heating oil, and natural gas markets, respectively. The best performing hedging 

instrument for each hedging objective and each hedging effectiveness measure is 
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highlighted in bold type. To test whether the best performing hedging instrument performs 

statistically significantly better than the alternative hedging instrument, a paired t-test 

(based on a heteroscedasticity and autocorrelation (HAC) standard error) is conducted. 

The test results (with * and ** respectively denoting the rejection of the null hypothesis 

of equal out-of-sample hedging effectiveness between the two hedging instruments at the 

5% and 1% significance levels) are also reported in this section.      

For each hedging objective, we also provide plots of percentage reduction in the 

respective tail risk – the specific tail risk in which the hedgers attempt to minimize – across 

all out-of-sample test windows. These plots provide a detailed illustration of dynamic 

hedging performance of ETFs and futures in crude oil, gasoline heating oil, and natural 

gas markets. Overall, our findings suggest that the hedging performance of ETF and 

futures contract depends greatly on the underlying energy commodity and partly on the 

confidence level and hedge position. In what follows, we discuss the out-of-sample results 

obtained for each energy commodity under consideration.  

3.6.2.1 Crude oil 

We first consider the crude oil market. The results reported in Table 3.5 indicate 

that, on average, both ETF and futures hedge ratios produce positive tail-risk reduction, 

regardless of the tail-risk measures used to compute the hedging effectiveness. Depending 

on the hedging objective and risk measure considered, the average hedging effectiveness 

ranges from 46.80% to 74.38% for ETF hedging and from 51.80% to 88.80%% for futures 

hedging. In general, the average hedging effectiveness is found to be smallest at the largest 

confidence level (99%) and largest at the lowest confidence level (90%). We also find that  
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Table 3.5. Average out-of-sample hedging effectiveness (in percentage) of crude oil ETF (futures) 

 Hedging Effectiveness, Measured as a Percentage Reduction in 

Hedging Objectives 
VaR 

(90%) 

VaR 

(95%) 

VaR 

(99%) 
ES (90%) ES (95%) ES (99%) 

Panel A: Long Hedgers       
     min-VaR (90%) 70.335 68.694 52.153 62.451 58.365 48.207 

(87.640**) (82.780**) (66.937**) (76.777**) (71.635**) (59.585**) 

     min-VaR (95%) 70.147 68.576 52.037 62.386 58.400 48.341 

(87.621**) (82.895**) (66.864**) (76.751**) (71.582**) (59.631**) 

     min-VaR (99%) 67.904 67.051 50.943 61.068 57.505 47.778 

(84.804**) (80.649**) (65.419**) (74.783**) (69.999**) (58.659**) 

     min-ES (90%) 69.650 68.571 52.111 62.398 58.608 48.558 

(87.341**) (82.681**) (66.730**) (76.613**) (71.492**) (59.631**) 

     min-ES (95%) 68.643 67.789 51.698 61.758 58.146 48.389 

(86.619**) (82.233**) (66.439**) (76.235**) (71.253**) (59.541**) 

     min-ES (99%) 65.328 64.659 49.070 58.883 55.372 46.804 

(76.101**) (72.710**) (58.505**) (66.936**) (62.339**) (51.797**) 

Panel B: Short Hedgers       
     min-VaR (90%) 74.278 71.119 61.574 66.979 63.491 53.373 

(88.725**) (84.007**) (70.763**) (77.824**) (72.393**) (56.700**) 

     min-VaR (95%) 74.345 71.081 61.449 66.978 63.421 53.235 

(88.799**) (84.091**) (70.870**) (77.887**) (72.441**) (56.690**) 

     min-VaR (99%) 73.896 70.604 60.854 66.444 62.813 52.641 

(87.691**) (83.055**) (70.363**) (77.060**) (71.781**) (56.523**) 

     min-ES (90%) 74.383 70.860 61.442 66.904 63.268 53.049 

(88.458**) (83.659**) (70.733**) (77.582**) (72.178**) (56.688**) 

     min-ES (95%) 74.229 70.621 61.154 66.679 63.029 52.843 

(87.982**) (83.293**) (70.455**) (77.265**) (71.936**) (56.649**) 

     min-ES (99%) 72.864 69.507 60.113 65.590 62.025 51.916 

(81.451**) (77.402**) (65.260**) (71.649**) (66.814**) (52.106) 

Notes: The table reports the average out-of-sample hedging effectiveness for both long and short hedgers. The average 

hedging effectiveness is calculated across 2,363 test windows. The best performing hedging instrument for each 

hedging objective and each hedging effectiveness measure is highlighted in bold type. A pair t-test is performed to test 

the null hypothesis of equal hedging effectiveness between the two hedging instruments. * and ** denote the rejection 

of the null hypothesis at the 5% and 1% significance levels, respectively.  

 

the minimum-VaR objective almost always leads to greater risk reduction than the 

minimum-ES objective with the same confidence level. In addition, comparing the two 

hedge positions with the same hedging objective, we find that short hedgers achieve 

greater risk reduction from hedging than long hedgers for almost all cases. 
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Comparing the two hedging instruments, except for one case (out of 72), the crude 

oil futures contract has the ability to significantly reduce a larger amount of risk than the 

crude oil ETF (see Table 3.5). Examining the dynamic hedging performance across 2,363 

out-of-sample test windows, it is apparent that the futures contract is almost always a better 

instrument for hedging tail risk in crude oil market than the ETF. For long hedgers, futures 

hedging results in greater risk reductions than ETF hedging in all test windows for the  

minimum-VaR (90% and 99%) and minimum-ES (90%) objectives. For other long-

hedging cases, the futures contract produces greater tail-risk reductions than the ETF for 

at least 92% of all test windows, except for the minimum-ES (99%) objectives. These 

results are illustrated in Figure 3.1 and Figure 3.2. For short hedgers, the futures contract 

yields better hedging performance than the ETF at least 88% of all test windows, except 

for the minimum-ES (99%) objectives14. We therefore conclude that while both ETF and 

futures contract are effective in reducing tail risk in the crude oil market, the futures 

contract is a better hedging instrument than the ETF.  

3.6.2.2 Gasoline 

We next consider the gasoline market. We find that both ETF and futures hedging 

on average help reduce VaR, and ES of the unhedged position. The average hedging 

effectiveness varies from 8.30% to 30.01% for ETF hedging and from 0.49% to 25.93% 

for futures hedging, depending on the hedging objective and risk measure used to calculate 

hedging effectiveness. Similar to the crude oil market, we find that the average hedging  

 
14 For the minimum-ES (99%) objective, futures hedging yields better hedging effectiveness than ETF 

hedging about 74.35% and 64.45% of all test windows for long hedgers and short hedgers, respectively. 
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Figure 3.1. Crude oil: Percentage reductions in VaR for long hedgers (left panels) and short hedgers (right panels) with a minimum-VaR objective 
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Figure 3.2. Crude oil: Percentage reductions in ES long hedgers (left panels) and short hedgers (right panels) with a minimum-ES objective 
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effectiveness tends to be smallest at the highest confidence level and that the minimum-

VaR objective generally produces better hedging performance than the minimum-ES 

objective with the same confidence level as shown in Table 3.6.   

 

 Table 3.6. Average out-of-sample hedging effectiveness (in percentage) of gasoline ETF (futures) 

 Hedging Effectiveness, Measured as a Percentage Reduction in 

Hedging Objectives 
VaR 

(90%) 

VaR 

(95%) 

VaR 

(99%) 
ES (90%) ES (95%) ES (99%) 

Panel A: Long Hedgers       
     min-VaR (90%) 29.826** 24.886** 9.639** 19.410** 15.212** 9.311** 

(23.598) (16.202) (4.372) (12.647) (8.413) (4.726) 

     min-VaR (95%) 29.880** 24.741** 10.141** 19.523** 15.253** 9.175** 

(23.104) (15.699) (4.390) (12.364) (8.267) (4.540) 

     min-VaR (99%) 23.525** 19.711** 10.298** 16.858** 13.717** 9.247** 

(21.446) (14.383) (4.719) (10.839) (6.884) (2.411) 

     min-ES (90%) 30.012** 24.738** 10.154** 19.636** 15.304** 9.393** 

(22.719) (15.702) (4.650) (12.348) (8.297) (4.373) 

     min-ES (95%) 27.409** 22.849** 10.375** 18.763** 14.749** 9.254** 

(22.292) (15.166) (4.619) (11.926) (8.005) (3.865) 

     min-ES (99%) 18.677 16.335** 9.476** 14.230** 12.120** 8.734** 

(20.690**) (14.012) (4.510) (10.249) (6.285) (1.788) 

Panel B: Short Hedgers       
     min-VaR (90%) 26.588* 23.392** 15.694** 20.443** 18.089** 11.344** 

(25.934) (19.130) (10.727) (15.763) (11.708) (4.780) 

     min-VaR (95%) 26.626** 23.509** 15.819** 20.581** 18.087** 11.282** 

(25.458) (19.255) (10.482) (15.709) (11.964) (5.620) 

     min-VaR (99%) 23.760 20.389** 14.155** 18.373** 15.968** 9.234** 

(24.355) (19.386) (8.408) (14.254) (10.205) (1.636) 

     min-ES (90%) 26.840** 23.291** 15.599** 20.548** 17.946** 11.056** 

(25.614) (20.025) (10.184) (15.779) (11.885) (4.910) 

     min-ES (95%) 25.791 22.227** 15.022** 19.749** 17.192** 10.312** 

(25.341) (20.201) (9.755) (15.549) (11.678) (4.330) 

     min-ES (99%) 21.748 18.935 13.523** 16.992** 14.820** 8.302** 

(24.449**) (19.697) (8.099) (14.099) (9.839) (0.491) 

Notes: The table reports the average out-of-sample hedging effectiveness for both long and short hedgers. The average 

hedging effectiveness is calculated across 1,890 test windows. The best performing hedging instrument for each 

hedging objective and each hedging effectiveness measure is highlighted in bold type. A pair t-test is performed to test 

the null hypothesis of equal hedging effectiveness between the two hedging instruments. * and ** denote the rejection 

of the null hypothesis at the 5% and 1% significance levels, respectively.  
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When comparing long and short hedgers with the same hedging objective, we find 

that short hedgers tend to achieve greater risk reduction from both ETF and futures 

hedging than long hedgers. This result is consistent with that obtained from the crude oil 

market. 

 Comparing the average hedging performance of the two hedging instruments, the 

ETF outperforms the futures contracts in 68 out of 72 cases (see Table 3.6). In addition, 

the superior performance of ETF hedging is statistically significant at 1% significance 

level for 71 out of 72 cases.  

In contrast to the results obtained from the crude oil market, it is evident from the 

figures that the gasoline ETF is a superior hedging instrument than the gasoline futures 

contract. Figure 3.3 and Figure 3.4 illustrate their dynamic hedging effectiveness across 

1,890 out-of-sample test windows. More specifically, for the long (short) hedgers with the 

minimum-VaR objective, ETF hedging outperforms futures hedging about 86.03% 

(59.05%), 92.16% (81.90%), and 78.94% (86.30%) of all test windows for the 90%, 95%, 

and 99% confidence levels, respectively. Similarly, for the long (short) hedgers with the 

minimum-ES objective, ETF hedging leads to greater tail risk reduction than futures 

hedging 100.00% (99.58%), 85.97% (91.32%), 81.01% (80.79%) of all test windows for 

the 90%, 95%, and 99% confidence levels, respectively. Hence, it can be concluded that, 

when hedging tail risk in the gasoline market, the ETF is a better hedging vehicle than the 

futures contract.  
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Figure 3.3. Gasoline: Percentage reductions in VaR for long hedgers (left panels) and short hedgers (right panels) with a minimum-VaR objective 
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Figure 3.4. Gasoline: Percentage reductions in ES for long hedgers (left panels) and short hedgers (right panels) with a minimum-ES objective 
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3.6.2.3 Heating oil 

We now consider the heating oil market. The findings in Table 3.7 indicate that 

the average hedging effectiveness for both hedging instruments are positive. Thus, 

regardless of the hedging objective and hedge position, the ETF and futures contract are 

effective in VaR, and ES of the unhedged position. The magnitude of average hedging 

effectiveness again varies with the hedging objective and tail-risk measure considered. 

The average hedging effectiveness ranges from 33.15% to 58.16% for ETF hedging and 

from 35.97% to 67.14% for futures hedging.  

Similar to the crude oil and gasoline markets, we observe an inverse relationship 

between the size of average hedging effectiveness and confidence level in most cases. In 

accordance with the results obtained from the crude oil and gasoline markets, we find that 

the minimum-VaR objective generally produces greater risk reduction than the minimum-

ES objective.  

We also find that short hedgers almost always achieve greater tail-risk reduction 

from both ETF and futures hedging than long hedgers. Comparing the average hedging 

effectiveness of the two hedging instruments, the futures contract unanimously leads to 

greater risk reduction than the ETF (Table 3.7).  

The results are statistically significant at the 5% level for 95 out of 96 cases. It is 

fairly clear that, regardless of hedging objectives and positions, the futures contract is 

almost always a better vehicle for hedging tail risk of in the heating oil market. 
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Table 3.7. Average out-of-sample hedging effectiveness (in percentage) of heating oil ETF (futures) 

 Hedging Effectiveness, Measured as a Percentage Reduction in 

Hedging Objectives 
VaR 

(90%) 

VaR 

(95%) 

VaR 

(99%) 
ES (90%) ES (95%) ES (99%) 

Panel A: Long Hedgers       
     min-VaR (90%) 56.661 52.283 36.881 46.478 41.715 34.377 

(66.403**) (62.350**) (46.381**) (55.262**) (49.932**) (37.108*) 

     min-VaR (95%) 56.522 52.069 36.409 46.384 41.675 34.439 

(66.418**) (62.318**) (46.405**) (55.315**) (50.002**) (37.240*) 

     min-VaR (99%) 56.522 52.069 36.409 46.384 41.675 34.439 

(63.027**) (60.267**) (45.387**) (53.419**) (48.624**) (35.968) 

     min-ES (90%) 56.328 51.796 36.086 46.266 41.510 34.406 

(65.545**) (62.055**) (46.748**) (55.204**) (50.147**) (38.018**) 

     min-ES (95%) 55.368 51.240 35.403 45.800 41.113 34.210 

(64.031**) (61.071**) (46.693**) (54.588**) (49.956**) (38.841**) 

     min-ES (99%) 52.199 49.145 33.587 44.019 39.737 33.152 

(60.848**) (58.800**) (46.589**) (52.759**) (48.584**) (37.153**) 

Panel B: Short Hedgers       
     min-VaR (90%) 58.120 52.906 41.503 49.014 45.317 34.670 

(67.103**) (65.022**) (51.327**) (59.859**) (56.450**) (42.910**) 

     min-VaR (95%) 58.044 52.939 41.532 49.006 45.318 34.613 

(67.125**) (65.140**) (51.500**) (59.874**) (56.453**) (42.956**) 

     min-VaR (99%) 58.044 52.939 41.532 49.006 45.318 34.613 

(66.609**) (64.206**) (51.032**) (59.220**) (55.855**) (42.793**) 

     min-ES (90%) 58.155 52.640 42.049 48.941 45.208 34.594 

(67.135**) (64.873**) (51.569**) (59.778**) (56.375**) (43.044**) 

     min-ES (95%) 57.411 52.159 42.103 48.525 44.907 34.502 

(67.007**) (64.592**) (51.545**) (59.615**) (56.212**) (43.035**) 

     min-ES (99%) 52.652 48.625 40.681 45.453 42.746 33.622 

(64.667**) (62.841**) (49.508**) (57.963**) (54.812**) (42.585**) 

Notes: The table reports the average out-of-sample hedging effectiveness for both long and short hedgers. The average 

hedging effectiveness is calculated across 1,861 test windows. The best performing hedging instrument for each 

hedging objective and each hedging effectiveness measure is highlighted in bold type. A pair t-test is performed to test 

the null hypothesis of equal hedging effectiveness between the two hedging instruments. * and ** denote the rejection 

of the null hypothesis at the 5% and 1% significance levels, respectively.  

 

Figure 3.5 and Figure 3.6 illustrate the dynamic hedging effectiveness across 1,861 

out-of-sample test windows. Specifically, for long (short) hedgers with the minimum-VaR 

objective, futures hedging is found to beat ETF hedging about 83.50% (70.88%), 90.44% 

(87.96%), and 77.38% (82.16%) of all test windows for the 90%, 95%, and 99% 

confidence levels, respectively. For long (short) hedgers with the minimum-ES objective,  
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Figure 3.5. Heating oil: Percentage reductions in VaR for long hedgers (left panels) and short hedgers (right panels) with a minimum-VaR objective 
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Figure 3.6. Heating oil: Percentage reductions in ES for long hedgers (left panels) and short hedgers (right panels) with a minimum-ES objective 
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the futures contract produces a better hedging performance than the ETF about 90.76% 

(94.47%), 83.61% (96.78%), and 70.12% (54.16%) of all test windows for the 90%, 95%, 

and 99% confidence levels, respectively. Therefore, we can conclude that the futures 

contract provides better tail risk protection in the heating oil market than the ETF.  

3.6.2.4 Natural gas 

Lastly, we consider the natural gas market. Unlike the other three markets, the 

results reported in Table 3.8 indicate that the average hedging effectiveness of both ETF 

and futures contract are not always positive. More specifically, the ETF leads to a negative 

average hedging effectiveness in 14 out of 72 cases whereas the futures contract produces 

a negative outcome in 25 out of 72 cases. Examining the hedging performance across 

different hedging objectives, we also find that both minimum-VaR (99%) and minimum-

ES (99%) futures hedge ratios almost always yield negative average hedging 

effectiveness.  

Depending on the hedging objective and type of tail-risk measure considered, the 

average hedging effectiveness ranges from -16.78% to 7.47% for ETF hedging and from 

-16.12% to 5.34% for futures hedging. In the natural gas market, we find an inverse 

relationship between the magnitude of average hedging effectiveness and confidence level 

for both minimum-VaR and minimum-ES objectives. Opposite to the other three markets, 

the minimum-ES objective tends to produce better hedging performance than the 

minimum-VaR objective with the same confidence level. In addition, we find no distinct 

pattern between the hedge position and the size of average hedging effectiveness.  
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Table 3.8. Average out-of-sample hedging effectiveness (in percentage) of natural gas ETF (futures) 

 Hedging Effectiveness, Measured as a Percentage Reduction in 

Hedging Objectives 
VaR 

(90%) 

VaR 

(95%) 

VaR 

(99%) 
ES (90%) ES (95%) ES (99%) 

Panel A: Long Hedgers       
     min-VaR (90%) 2.575 2.873 1.433 2.279 2.131 1.657** 

(3.119**) (2.873) (1.248) (2.605**) (2.229) (1.469) 

     min-VaR (95%) 2.797 2.651 2.593 2.815 3.206 2.508 

(3.834**) (2.294*) (2.970*) (3.232**) (3.263) (2.414) 

     min-VaR (99%) -16.780 -9.210 -9.416 -9.667 -7.713** -7.533** 

(-16.123) (-9.331) (-10.112) (-10.025) (-8.858) (-10.371) 

     min-ES (90%) 3.144 3.312 2.136 3.093 3.206** 2.515** 

(3.268) (3.011) (2.036) (3.244*) (2.990) (2.141) 

     min-ES (95%) 1.954 2.868** 2.404 2.796 3.202** 2.613** 

(2.198) (2.249) (2.613) (2.790) (2.817) (1.840) 

     min-ES (99%) -7.860 -3.323 -2.321 -2.603 -0.963 0.156* 

(-4.792**) (-2.793) (-0.923**) (-1.593**) (-0.602) (-0.283) 

Panel B: Short Hedgers       
     min-VaR (90%) 6.812** 4.859** 2.494** 3.691** 2.260** 2.355** 

(5.338) (2.835) (-0.947) (1.756) (0.199) (1.087) 

     min-VaR (95%) 5.618** 3.852** 2.391** 3.197** 1.822** 1.633** 

(4.241) (1.987) (-0.331) (1.375) (0.036) (0.416) 

     min-VaR (99%) 0.117** -1.286** 0.479** -0.106** -0.290** 1.205** 

(-3.243) (-3.637) (-2.145) (-2.833) (-3.09) (-0.330) 

     min-ES (90%) 7.466** 4.997** 3.095** 4.030** 2.470** 2.553** 

(5.064) (2.612) (0.283) (1.878) (0.414) (1.242) 

     min-ES (95%) 7.408** 4.588** 3.131** 3.795** 2.276** 2.614** 

(5.030) (2.005) (0.687) (1.888) (0.475) (1.551) 

     min-ES (99%) 3.476** 1.988** 1.919** 1.891** 1.133** 1.953** 

(1.323) (-0.292) (-1.857) (-0.629) (-1.571) (-0.050) 

Notes: The table reports the average out-of-sample hedging effectiveness for both long and short hedgers. The average 

hedging effectiveness is calculated across 2,107 test windows. The best performing hedging instrument for each 

hedging objective and each hedging effectiveness measure is highlighted in bold type. A pair t-test is performed to test 

the null hypothesis of equal hedging effectiveness between the two hedging instruments. * and ** denote the rejection 

of the null hypothesis at the 5% and 1% significance levels, respectively.  

 

As can be seen from Table 3.8, ETF hedging clearly outperforms futures hedging 

for short hedgers. The pair t-tests confirm that the findings are statistically significant at 

the 1% significance level for all cases. However, based on the average hedging 

effectiveness alone, it is not apparent which instrument is better for long hedgers. 

Inspecting the dynamic hedging effectiveness illustrated in Figure 3.7 and Figure 3.8, we 



70 

 

find that, except for minimum-VaR (90%) long hedgers, the natural gas ETF outperforms 

the futures counterpart in more than half of the 2,107 out-of-sample test windows. Figure 

3.7 and Figure 3.8 also reveal that both ETF and futures hedging yield negative hedging 

performance in many out-of-sample test windows.  

Depending on the hedge position and hedging objective, the ETF hedge ratios 

produce poor hedging performance between 4.79% and 51.87% of the time, whereas the 

futures hedge ratios result in negative hedging effectiveness between 21.55% and 49.36% 

of the time. The poor hedging performance of both instruments is likely explained by the 

low correlation and tail dependence of log returns of spot and hedging instrument prices 

(Brinkmann and Rabinovitch, 1995; Moosa, 2003).  

It is also well known that the natural gas market can suffer extreme backwardation 

or contango (especially during extreme weather events). This likely leads to an occasional 

dislocation between spot and futures prices, resulting in distinct periods where poor 

hedging performance occurs. 

Nevertheless, despite its repeated poor hedging performance, ETF hedging seems 

to be a better and safer choice in dealing with tail risk in the natural gas market (especially 

for short hedgers)15.         

 
15 We also examine the possibility of using crude oil, gasoline, and heating oil ETFs and futures contracts 

to cross hedge downside risk in the heating oil market. However, these hedging instruments provide worse 

performance than the natural gas ETF and futures contract. The results on cross hedging are available from 

the authors upon request. It should also be pointed out that while a comprehensive search for effective 

instruments for hedging tail risk in the natural gas market is essential, it is beyond the scope of this paper 

and is a subject of future work.  
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Figure 3.7. Natural gas: Percentage reductions in VaR for long hedgers (left panels) and short hedgers (right panels) with a minimum-VaR objective 
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Figure 3.8. Natural gas: Percentage reductions in ES for long hedgers (left panels) and short hedgers (right panels) with a minimum-ES objective 
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3.6.3 Differential Hedging Abilities 

As an energy commodity ETF aims to track daily price movements in a benchmark 

futures market, one may expect the two hedging instruments to offer the same hedging 

performance. However, the out-of-sample hedging effectiveness results indicate 

differences in hedging abilities between ETFs and futures contracts. This result seems to 

suggest that there is a discrepancy between ETF and futures returns, known as “tracking 

error”. According to Pope and Yadav (1994), tracking error can be measured as an 

absolute difference between ETF and benchmark (i.e., futures) returns. More specifically, 

it can be calculated as: 

 
𝑇𝐸𝑡 =

∑ |𝑅𝑡
𝐸𝑇𝐹 − 𝑅𝑡

𝐹|𝑇
𝑡=1

𝑇
 

(3.11) 

where 𝑅𝑡
𝐸𝑇𝐹is the return of the ETF at time 𝑡, 𝑅𝑡

𝐹 is the return of the benchmark futures 

contract, and 𝑇 is the number of observations.  

The descriptive statistics of tracking errors of crude oil, gasoline, heating oil, and 

natural gas ETFs are summarized in Table 3.9. The daily tracking error ranges from an 

average of 0.443% to 0.619% across the four ETFs. In addition, the means of tracking 

errors are found to be statistically significant for all ETFs considered.  

These results indicate that all ETFs fall well short of perfectly tracking the return 

of the underlying futures contracts. This evidence supports our conjecture that tracking 

error is an underlying reason behind the differential hedging abilities. 
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Table 3.9. Tracking error of ETFs 

  Crude Oil Gasoline Heating Oil Natural Gas 

Mean (%) 0.443** 0.478** 0.558** 0.619** 

Standard Deviation (%) 0.764 0.962 0.770 1.077 

Minimum (%) 0.001 0.000 0.000 0.000 

Maximum (%) 24.044 22.881 15.919 27.043 

Number of Observations 2862 2389 2360 2606 

** denotes the rejection of the null hypothesis that the mean is equal to zero at the 1% significance level. 

 

3.7 Conclusions 

Energy commodity exchange-traded funds (ETFs) provide an alternative vehicle 

for both commodity users (long hedgers) and producers (short hedgers) to hedge their 

exposure to unfavorable energy price movements. Here we analyzed the usefulness of 

ETFs in dealing with energy market tail risk. To do this we examine out-of-sample 

hedging effectiveness of ETFs and compare their hedging performance with those of the 

futures counterparts. The empirical application focuses on four different energy 

commodities: crude oil, gasoline, heating oil, and natural gas. The kernel copula method 

is applied to estimate the minimum-Value at Risk (VaR) and minimum-Expected Shortfall 

(ES) hedge ratios for both long and short hedgers.  

 Our findings suggest that the optimal sizes of ETF and futures positions are 

dependent upon hedger’s preferences on hedge position, the tail risk measure, and desired 

confidence level. We find that out of sample hedging performance depends on energy 

commodity. Both ETF and futures contract usage are effective in reducing crude oil, 

gasoline, and heating oil tail risk. However, both hedging instruments perform poorly in 
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the natural gas market due to the low correlation and tail dependence between log returns 

of spot and hedging instrument prices.  

In all energy commodity markets considered, average hedging effectiveness of 

both ETF and futures are typically found to be smallest at the largest confidence level 

(99%) and largest at the smallest confidence level (90%). In addition, we find that the 

minimum-VaR objective almost always leads to greater tail risk reduction in the crude oil, 

gasoline, and heating oil markets relative to the minimum-ES objective. However, the 

opposite is observed in the natural gas market. Also excepting in the natural gas market, 

short hedging is generally able to achieve greater risk reduction than long hedging. 

Average and dynamic out-of-sample analyses indicate that the futures contract is a better 

hedging instrument for crude oil and heating oil than the ETF. However, the ETF provides 

better tail risk protection than the futures contract in the gasoline and natural gas markets. 

These findings are especially useful for both energy commodity users and producers who 

seek out the best hedging instrument for reducing the risks of adverse price movements in 

energy commodity markets.  

 This research can be extended in several directions. First, a similar research 

problem can be studied in other commodity and asset markets. Second, the analysis can 

also be extended to the multi-commodity hedging case. Finally, the impact of hedge 

horizons and transaction costs on the relative hedging performance of the ETF and futures 

contracts should also be examined.  
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4 CHAPTER IV 

ANALYSIS OF THAI CROP - ZONING POLICY 

4.1 Introduction 

 The agricultural sector has played a critical role in driving economies of many 

developing countries, including Thailand. According to the Thai National Economic and 

Social Development Council, the sector contributes approximately 10 percent of 

Thailand’s gross domestic production (GDP). Furthermore, in 2017, about 11.7 million 

people (or 30.7 percent of the labor force) were employed in agriculture, with 

approximately 5.9 million households involved as reported by National Statistical Office 

of Thailand.  

Agricultural productivity is directly linked with the match between crop nutrient 

demands and the supply of soil and chemical based nutrients. However, crops are 

frequently planted under less than ideal soil conditions. Thailand’s Land Development 

Department, estimate approximately 39.17 percent of the rice planted (specifically, about 

27.41 out of 69.86 million rai or 10.84 out of 27.62 million acres) occurs on lands that 

have a low level of soil suitability for rice (National Committee to Develop Organic 

Agriculture, 2017). Mesgaran et al. (2017) asserts that productivity could be enhanced by 

better matching lands. In addition, production on unsuitable lands exacerbates land 

degradation, ecosystem damage, and water scarcity (Mauser, et al., 2015). Nevertheless, 

there are currently no guidelines nor restrictions on crop production on low quality lands 

in Thailand.  
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 In 2017, the Thai government initiated a zoning program that was intended to 

discontinue planting of secondary rice on unsuitable lands by replacing them with more 

suitable crops. The zoning program utilizes support for converting rice production on 

unsuitable soils with other crops. In 2017, the program caused 6 million unsuitable rai (2.4 

million acres) to be shifted to more suitable crops (National Committee to Develop 

Organic Agriculture, 2017). This shift covered 4.8 million rai of rice, which accounts for 

40% of the converted area. However, there has not been a study quantifying the economic 

market and welfare impacts of the program nor have estimates been developed of its longer 

term impact on crop mix.  

This study aims to analyze the welfare and land use questions associated with the 

zoning policy. To do this a Thai agricultural sector model was developed based on the 

type of optimization model discussed in McCarl and Spreen (1980). That model is then 

employed to evaluate the economic costs and benefits arising from the zoning program. 

Furthermore, we also take into account the existence of an on-going rice price-support 

program into the study. The results from this study can aid policy makers in identifying 

crops that are most suitable for replacing crops being grown on unsuitable lands.  

The reminder of this chapter is structured as follows. Section 4.2 provides the 

background of Thailand’s rice price-support program and agro-economic zoning 

initiative. Section 4.3 describes specific objectives of this study. Section 4.4 describes our 

study justification. Section 4.5 provides the background on methods used in this study. 

Section 4.6 presents the data and empirical analysis. Section 4.7 provides the empirical 

results, and Section 4.8 concludes the chapter. 
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4.2 Background 

4.2.1 Rice Price-support Program 

Before analyzing the crop-zoning program, it is noteworthy to discuss an ongoing 

price-support program, which significantly affects the rice market in Thailand. The Thai 

rice price-support was first used in 2001. The main purpose of the program was to raise 

farmers’ incomes. Under this price support program, farmers are allowed to sell their rice 

to the government at the support price of THB 15 per kilogram, when the market price 

falls below the specified price. Afterward, in an attempt to recover the government 

spending incurred from the program, the government would sell the purchased rice to 

foreign governments through the Government-to-Government (G-to-G) rice sale, which 

is handled by the Thai Rice Exporter Association (TREA) (Poapongsakorn et al., 2014). 

As a result, this program created incentives for rice producers to grow more rice instead 

of other crops that may be more suitable with the land they have. In addition, critics of the 

program argue that the government not only has to bear the high costs running the 

program, but also creates market distortions.  

4.2.2 Crop-Zoning Policy 

Thailand introduced the agro-economic zone in 1979. In the Thai Agricultural 

Economics Act 1979, agro-zoning is defined as “an area of agricultural production 

established according to the soil type, rainfall, temperature, economic crop, and farm type 

by using the boundary line of the province as border zone”. The main objective of zoning 

is to encourage farmers to grow crops on suitable lands and to enhance a long-term 

development in Thai agriculture. Later in 2013, the definition of agricultural zoning was 
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changed to “an area of agricultural production, including animal husbandry, and 

reforestation to be established according to the market conditions by taking into 

consideration conditions similar to the main factors such as climate, water resources, crop 

area, animal feed, types of farming and income of farmers” (National Committee to 

Develop Organic Agriculture, 2013). That change was intended to support land use that 

matches with soil suitability while also ensuring that crop production would meet market 

demand. In addition, the agricultural zoning program is expected to increase crop 

productivity as the crops selected for replacing those grown on unsuitable soils are 

expected to perform better.  

Crop switching is, however, costly from the point of view of farmers. Knowledge 

on how to grow the crops, available marketing channels, machinery needed, altered 

transport needs, storage requirements, perishability, alternative pest issues and many other 

factors come into play. To provide farmers with incentives to participate in the program, 

the government has provided training for farmers on the production of the new crops. 

Moreover, the government has also guaranteed a minimum commodity sale price to help 

farmers who participated in the program and overcome any difficulties with reaching the 

marketplace. The training and price supports are expected to make it both possible and 

beneficial for farmers to comply with the zonal desires of the government. Nevertheless, 

since the first implementation of the program in 1979, the zoning program has turned out 

to have limited effect. As a result, the Ministry of Agriculture and Cooperatives (MOAC) 

has scheduled a road map to speed up the development of the zoning. In addition, the 
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MOAC has created the country’s soil-suitability map that aims to provide farmers with 

more reliable information. 

Several factors have contributed to the low rate of success of the agro-zoning 

program. Boonyanam (2018) pointed out that the agricultural zones in Thailand were 

designed based solely on physical characteristics and failed to take into account economic 

and marketplace factors, mainly crop prices and input prices. These economic factors are 

key determinants of farmers’ crop choice and land allocation decisions, and should not be 

ignored when designing policy. Furthermore, the government failed to adequately 

consider the underlying interaction of supply and demand at the province level.  

4.3 Objectives of the Study 

 Two main objectives of this study are: 

1) To examine the effects of the agricultural land use zoning policy for rice planted 

areas on market outcomes and welfare of Thai consumers, and producers 

2) To develop a Thai agricultural sector model (THAI-ASM) using mathematical 

programing that is both useful in this analysis and potentially useful in analyzing 

the potential implications of other Thai agricultural policies  

4.4 Study Justification 

Understanding the true impacts of the agricultural zoning program would provide  

policy makers with information on program net benefits and performance of possible 

policy instruments or incentive designs. Moreover, the results from this study will provide 

projections on market and land use implications of zoning, which farmers and policy 
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makers might use in their planting and planning decisions. Finally yet importantly, 

outcomes of the agricultural land use zoning program in Thailand could provide 

information valuable in other countries regarding zoning like policies. 

4.5 Methods Employed 

To properly take into account the aforementioned economic factors, a price-

endogenous, price endogenous spatial production and commodity sale model is 

constructed for the agricultural sector in Thailand. The model is built based on the theory 

in McCarl and Spreen (1980) following practices used in the agricultural portion of the 

Forest and Agricultural Sector Optimization Model—Green House Gas version 

(FASOMGHG), and it’s agriculture only predecessor (ASM) which is a nonlinear 

programming model of the forest and agricultural sectors in the United States developed 

by McCarl et al. (e.g., Baumes, 1978; Burton and Martin, 1987; Adams et al., 1986; Adams 

et al., 1990; Adams et al., 1996; Chang et al., 1992; McCarl, 2001; Schneider et al.,  2007; 

Adams et al., 2005; Schneider et al., 2007; Beach et al., 2009; Beach et al., 2010). 

Conceptually, the model is developed to evaluate the welfare and market impacts of public 

policies, such as zoning policy, that inevitably lead to crop mix or land use changes.   

To properly address the physical characteristics of agricultural land in Thailand, 

crop-budgeting and satellite data were incorporated in the model. These data were 

obtained from the Ministry of Agriculture and Cooperatives (MOAC) and the Land 

Development Department (LDD) of the Thai Ministry of National Development. The 

satellite data contain the spatial locations of land and ratings regarding land suitability for 

select crops. The main results simulated by the model include: (i) the allocation of land 
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use over time to various agricultural activities at the province level, (ii) water use for each 

activity with different irrigation status at the province level, and (iii) national crop prices 

over time. 

4.6 Model Development and Specification 

This section describes how the Thai agricultural sector model was constructed and 

describes the data used in the model. The model incorporates information from the soil 

suitability map for Thailand’s five primary crops (namely, primary rice, secondary rice, 

maize, cassava, and sugarcane). Measurement units for all these crops are reported in 

Table 4.1. 

 

Table 4.1. Agricultural crops 

Crop Items Units 

    Primary Rice (Kaojao Napee) Kilograms of raw rice 

    Secondary Rice (Kaojao Naprung) Kilograms of raw rice 

    Maize Kilograms of shelled maize 

    Cassava Kilograms  

    Sugarcane Kilograms of harvested cane 

 

The key endogenous variables determined in the model are crop consumption, 

provincial land allocation across the crops, water use, fertilizer use, and crop prices. As 

explained in McCarl and Spreen (1980) market equilibrium is determined by maximizing 

the sum of consumers’ and producers’ surpluses in the agricultural sector, subject to 

market clearing conditions, resource constraints, and crop-mix constraints. It is assumed 

that the agricultural markets for those crops in Thailand are perfectly competitive. 
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4.6.1 Algebraic Illustration of the Agricultural Sector Model 

THAI-ASM is constructed using a price-endogenous mathematical programming 

method proposed by Enke (1951), Samuelson (1952), Beckmann (1973), and McCarl and 

Spreen (1980). In the standard price-endogenous mathematical programming model, an 

optimization problem is formulated with equations balancing supply and demand and in 

turn equilibrium prices are obtained from the shadow prices or Lagrangian multipliers on 

the supply demand balance rows.  

THAI-ASM consists of about 6,974 constraints and 8,020 variables. The main 

objective of the model is to maximize total welfare of Thailand subject to all the market 

equilibrium constraints. The total welfare is defined as the sum of the areas under the 

demand curves corresponding to all the crops minus the sum of the costs incurred in 

producing those crops. That is, the model is structured such that the sum of consumers’ 

and producers’ surpluses in the agricultural sector is maximized subject to a set of resource 

constraints along with regional and national supply-demand balances ensuring that the 

Pareto Optimal condition is satisfied. Specifically, the objective function can be expressed 

as: 

𝑊 = ∑ ∫ 𝑃𝑖
𝑄(𝑄𝑖)𝑑𝑄𝑖

𝑄𝑖
𝐷

0𝑖

− ∑ ∫ 𝑃𝑛
𝑍(𝑄𝑖)𝑑𝑄𝑖

𝑍𝑛

0𝑛

(4.1) 

where 

 𝑊  : Total Welfare of Thailand;  

𝑄𝑖  : The amount of crop 𝑖 consumed; 

𝑍𝑛  : The amount of factor 𝑛 supplied; 
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𝑃𝑖
𝑄(𝑄𝑖)  : The inverse demand function for the crop 𝑖; 

𝑃𝑛
𝑍(𝑍𝑛) : The inverse supply function for the purchased factor 𝑛; 

The first integral term of the objective function (4.1) denotes the sum of the areas 

under the demand functions for all crops with 𝑄𝑖 as integration variables. The second 

integral term represents the sum of the areas under the supply functions of all inputs with 

𝑍𝑛 as integration variables. For simplicity, we do not consider transportation of crops to 

consumers. As a result, the resulting crop prices determined by the model represent 

producer prices at the farm-gate.  

The objective function above is maximized subject to the following resource 

constraints: 

𝑄𝑖
𝐷 ≤ ∑ ∑ 𝛾𝑖,𝑟,𝑤𝑅𝐴𝐼𝑖,𝑟,𝑤

𝑤𝑟

          for all 𝑖 (4.2) 

∑ ∑ ∑ 𝑅𝐴𝐼𝑖,𝑟,𝑤 ≤  𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑛𝑑

𝑖𝑤𝑟

(4.3) 

∑ ∑ 𝑅𝐴𝐼𝑖,𝑟,𝑤

𝑤𝑖

≤ 𝐿𝑟       for all 𝑟 (4.4) 

∑ 𝑅𝐴𝐼𝑖,𝑟,𝑤

𝑤

≤ 𝐿𝐷𝐷𝑖,𝑟       for all 𝑖, 𝑟  (4.5) 

∑ ∑ 𝜔𝑖,𝑟𝑅𝐴𝐼𝑖,𝑟,𝑤

𝑟𝑖

≤ 𝑊𝑎𝑡𝑒𝑟 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒       for 𝑤 = irrigated land (4.6) 

𝑄𝑖
𝐷 , 𝑅𝐴𝐼𝑖,𝑟 , 𝑃𝑖

𝑄 ≥ 0 (4.7)  

Eq. (4.2) represents the supply demand balance constraints for each of the crops, 

it balances production of the crops from allocated land with consumption. Here 𝛾𝑖,𝑟,𝑤 
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denotes the yield of crop 𝑖 per unit land (rai) for production with a specific irrigation status 

𝑤 in province 𝑟 and 𝑅𝐴𝐼𝑖,𝑟,𝑤 denotes the amount of land used for growing crop 𝑖 with a 

specific irrigation status 𝑤 in province 𝑟. These constraints restrict that the domestic 

demand for each crop 𝑖 must not exceed the sum of total supply added across all of the 

provinces of each crop 𝑖. 

Eq. (4.3) imposes constraints on land availability at the national level. These 

constraints indicate that the sum of land allocated to different crops in the country, 

∑ ∑ ∑ 𝑅𝐴𝐼𝑖,𝑟,𝑤𝑖𝑤𝑟 , cannot be greater than total land availability in the country, which is 

denoted by 𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑛𝑑. Eq. (4.4), on the other hand, imposes constraints on land 

availability at the province level. These constraints require that the sum of land with a 

specific irrigation status 𝑤 allocated to different crops in province 𝑟, ∑ ∑ 𝑅𝐴𝐼𝑖,𝑟,𝑤𝑤𝑖 , 

cannot exceed total land availability in province 𝑟 at time 𝑡, 𝐿𝑟. 

 Eq. (4.5) characterizes the crop-zoning constraints. In THAI-ASM, the crop-

zoning program is introduced into the model by limiting the amount of land with a specific 

irrigation status 𝑤 in province 𝑟 that can be allocated to crop 𝑖, 𝑅𝐴𝐼𝑖,𝑟,𝑤, to be under the 

amount of suitable land for that crop specified by Land Development Department of 

Thailand, 𝐿𝐷𝐷𝑖,𝑟. Eq. (4.6) imposes constraints on water availability for all crop 

production. These constraints indicate that the sum of water used for different crops on 

irrigated land in the country, ∑ ∑ 𝜔𝑖,𝑟𝑅𝐴𝐼𝑖,𝑟,𝑤𝑟𝑖 , cannot be greater than total water 

availability in the country, which is denoted by 𝑊𝑎𝑡𝑒𝑟 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒. 𝜔𝑖,𝑟 denotes water used 

rate of crop 𝑖 in province 𝑟. Finally, Eq. (4.7) represents the non-negativity constraints on 

all endogenous variables. 



86 
 
 

 In addition, following Chen and Önal (2012) and McCarl (1982), historical crop 

mix constraints were also imposed in order to prevent the model from extreme 

specialization in regional land use and crop production. 

 Demand and supply functions for all five crops are estimated using historical data 

on crop prices, consumption, and elasticities in 2014. The data on crop prices, 𝑝𝑖, 

consumption, 𝑞𝑖, and elasticities, 𝜀𝑖, were obtained from three main sources: OAE, the 

Food and Agricultural Policy Research Institute at University of Missouri (FAPRI-MU), 

and Isvilanonda and Kongrith (2008). To include the demand functions in the model we 

linearized them. In particular, assume we add in an inverse linear demand function for 

each crop 𝑖 of the form 𝑝𝑖 = 𝛼𝑖 + 𝛽𝑖𝑞𝑖. To specify this curve we use historical data and 

compute the intercept (𝛼𝑖) and slope (𝛽𝑖) as follows. First, by definition, demand elasticity 

for crop 𝑖 is defined as:  

𝜀𝑖 =
Δ𝑞𝑖

𝑞𝑖
/

Δ𝑝𝑖

𝑝𝑖
 (4.8) 

where Δ𝑞𝑖 denotes the change in crop 𝑖’s consumption due to a change in its market price, 

denoted by Δ𝑝𝑖. Eq. (4.8) can then be rewritten as: 

𝜀𝑖 =

Δ𝑞𝑖

𝑞𝑖

Δ𝑝𝑖

𝑝𝑖

=
Δ𝑞𝑖

Δ𝑝𝑖
⋅

𝑝𝑖

𝑞𝑖
=

𝑝𝑖

𝛽𝑖𝑞𝑖

(4.9) 

Solving for 𝛽𝑖, the demand curve slope is:  

𝛽𝑖 =
𝑝𝑖

𝜀𝑖𝑞𝑖

(4.10) 
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Given the downward sloping demand function, 𝜀𝑖 is negative. As 𝑝𝑖 and 𝑞𝑖 are both 

positive, we have that 𝛽𝑖 < 0. After obtaining the value of 𝛽𝑖, the intercept, 𝛼𝑖, then can 

be calculated by substituting the estimated value of 𝛽𝑖 into the inverse demand function. 

More specifically, we have that: 

𝛼𝑖 = 𝑝𝑖 (1 −
1

𝜀𝑖
) (4.11) 

4.6.2 Graphical Analysis of Price Support Program 

In this section, we illustrates the welfare and production implications of 

implementing the rice price support program with and without the crop-zoning policy. For 

simplicity, we assume that the demand curve remains unchanged under all scenarios. In 

this section, 𝐷 is the domestic demand curve for the commodity, and 𝑆 is the aggregate 

supply curve. Under the base scenario, 𝑃0 and 𝑄0 are the competitive equilibrium price 

and quantity.  

Figure 4.1 illustrates the welfare and production with the rice price support 

program. In Table 4.2, under the base scenario, producers’ surplus equals area 𝑑 + 𝑔 and 

consumers’ surplus equals area 𝑎 + 𝑏 + 𝑐 + 𝑒 + 𝑓. Once the rice price support program 

is implemented, producers receive the fixed price 𝑃𝑃𝑟𝑖𝑐𝑒𝑆𝑢𝑝𝑝𝑜𝑟𝑡 corresponding to the 

production of 𝑄𝑐. The government agrees to purchase the excess supply of 𝑄𝑐 − 𝑄𝑎 at the 

price 𝑃𝑃𝑟𝑖𝑐𝑒𝑆𝑢𝑝𝑝𝑜𝑟𝑡. Then the government sells a portion of that amount, 𝑄𝑏 − 𝑄𝑎, to 

governments of foreign country at the world price 𝑃𝑊𝑜𝑟𝑙𝑑. Thus, with the price support 

program, producers’ surplus expands to 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 + 𝑖 + 𝑗 + 𝑘 + 𝑙 + 𝑜, 
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Figure 4.1. Welfare analysis of price support program 

 

 

Table 4.2. Welfare components of price support program  

 Without Price Support With Price Support 

Consumer Surplus a+b+c+e+f a 

Producer Surplus d+g b+c+d+e+f+g+i+j+k+l+o 

Government Spending - e+f+g+h+i+j+k+l+m+n+o+p+q+r 

Trade Revenue - f+g+h+j+l+m+n 

Total Welfare a+b+c+d+e+f+g a+b+c+d+f+g+j+l-p-q-r 

 

while consumers’ surplus reduces to 𝑎. The expenditure falls to the government amounts 

to 𝑒 + 𝑓 + 𝑔 + ℎ + 𝑖 + 𝑗 + 𝑘 + 𝑙 + 𝑚 + 𝑛 + 𝑜 + 𝑝 + 𝑞 + 𝑟. However, under this 

program, the portion of the commodity purchased by the government is sold to foreign 

countries and generates the trade revenue of 𝑓 + 𝑔 + ℎ + 𝑗 + 𝑙 + 𝑚 + 𝑛. As a result, the 

total social welfare becomes 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑓 + 𝑔 + 𝑗 + 𝑙 − 𝑝 − 𝑞 − 𝑟. The 

deadweight loss of 𝑒 + 𝑝 + 𝑞 + 𝑟 − 𝑗 − 𝑙 is created by the price support program as the 

program increases production but at the same time increases the government program cost, 
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which is larger than the revenue generated from trade. Note that these results are based on 

the assumption that there is no shift in demand curve. 

In Figure 4.2 we extends our analysis by introducing the crop-zoning policy into 

the economy. Under the crop-zoning policy scheme, producers are restricted in terms of 

the areas where they can grow the crop. 

 

Figure 4.2. Welfare analysis of price support program under crop-zoning policy 

 

 Hence, the supply curve is shifted to the left as the production is reduced. Thus, 

under the crop-zoning policy without the price support program, producers’ surplus 

amounts to the area 𝑐 + ℎ + 𝑑 and consumers’ surplus equals are 𝑎 + 𝑏 + 𝑔. Once the 

price support program is implemented with the crop-zoning policy, the government 

purchases the excess supply of 𝑄0 − 𝑄𝑎 at the price 𝑃𝑃𝑟𝑖𝑐𝑒𝑆𝑢𝑝𝑝𝑜𝑟𝑡 and sells a portion of 

that amount, 𝑄𝑏 − 𝑄𝑎, to governments of foreign country at the world price 𝑃𝑊𝑜𝑟𝑙𝑑. In 

Table 4.3, under the crop-zoning scenario with the price support program, producers’ 
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surplus expands to 𝑏 + 𝑐 + 𝑑 + 𝑔 + ℎ + 𝑙 + 𝑚, while consumers’ surplus reduces to 𝑎. 

However, the expenditure incurs to the government amounts to 𝑔 + ℎ + 𝑖 + 𝑗 + 𝑘 + 𝑙 +

𝑚 + 𝑛 + 𝑜 + 𝑝 + 𝑞 + 𝑟 and the revenue generated from trading a portion of the excess  

 

 Table 4.3. Welfare components of price support program under crop-zoning policy 

 Base Crop-Zoning 

 Without Price 

Support 

With Price Support Without Price 

Support 

With Price 

Support 

Consumer Surplus a+b+c+g+h+i+p a a+b+g a 

Producer Surplus d+j+q+e 

b+c+d+e+g+h+i+j+l

+m+n+o+p+q+s+t+

w 

c+h+d 
b+c+d+g+h+l+

m 

Government Spending - 

g+h+i+j+k+l+m+n+

o+p+q+r+s+t+u+v+

w+x+y+z 

- 
g+h+i+j+k+l+m

+n+o+p+q+r 

Trade Revenue - 
h+i+j+k+o+p+q+r+t

+u+v 
- h+i+j+k 

Total Welfare 
a+b+c+d+e+g+h+i+j

+p+q 

a+b+c+d+e+h+i+j+

k+o+p+q+r+t-x-y-z 
a+b+c+d+g+h 

a+b+c+d+h-n-o-

p-q-r 

 

 Base Crop-Zoning 

Deadweight Loss g+x+y+z-k-o-r-t g+n+o+p+q+r 

 

supply equals to ℎ + 𝑖 + 𝑗 + 𝑘. As a result, the total social welfare becomes 𝑎 + 𝑏 + 𝑐 +

𝑑 + ℎ − 𝑛 − 𝑜 − 𝑝 − 𝑞 − 𝑟. With the price support program, the crop-zoning policy leads 

to the reduction of the government spending by 𝑠 + 𝑡 + 𝑢 + 𝑣 + 𝑤 + 𝑥 + 𝑦 + 𝑧. 

Furthermore, the deadweight loss changes from 𝑔 + 𝑥 + 𝑦 + 𝑧 − 𝑘 − 𝑜 − 𝑟 − 𝑡 to 𝑔 +

𝑛 + 𝑜 + 𝑝 + 𝑞 + 𝑟. This graphical visualization shows that the crop-zoning policy has the 

potential to reduce the cost to the government and may lead to a lower deadweight loss. 
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4.6.3 Data 

THAI-ASM allows land allocation decisions to be determined endogenously 

within the model. Cropland in THAI-ASM is defined as land suitable for crop production. 

The data on land availability was obtained from the OAE. In addition, land is classified 

by irrigation status (irrigated or non-irrigated), which allows us to incorporate water 

management into the model simulation. 

 Province-specific total crop production and historical planted rai of all five crops 

from 2006 through 2015 were collected from the OAE. We also collected the crop 

budgeting data for all 77 provinces in Thailand from the OAE. Data on crop production 

costs include the costs of inputs such as seeds, fertilizers, and chemicals; the costs of 

irrigation, machinery, fuels, and repairs; interest payments for loans; and labor costs. 

Water supply data were collected from the Royal Irrigation Department, whereas 

geospatial data on soil conditions for different land parcels were collected from LDD. 

To assist the government in determining the crop zone, the LDD has completed 

the country soil survey and matched the land quality with growth requirement for each 

crop. Land suitability is divided into four categories: highly suitable (S1), moderately 

suitable (S2), marginally suitable (S3), and unsuitable (N). It should be noted that crop 

budgeting data vary with land suitability categories. More specifically, crops that are 

grown in the area with highly suitable category are expected to have the highest crop yield, 

followed by crops that are grown in the moderately suitable area, marginally suitable area, 

and unsuitable area, respectively. These land suitability data were prepared through survey 

and then mapped to satellite data by the LDD. Combining the LDD geospatial data with 
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the agricultural land use data obtained from OAE, we can determine the location, size, and 

zone of each crop acreage in each province. By doing so, we can determine the type of 

land being used for the current crop production as well. Historical water use and fertilizer 

use associated with all crops were also obtained from the OAE. 

Figure 4.3 shows the proportion of land use for rice production to total agricultural 

land use over the years 2006 to 2017. On average, rice production uses up to about 47% 

of the agricultural land use in Thailand. Although the proportion of land planted to rice 

has declined over time due to technological advance, it is still very large and consistent 

with the concern that agricultural land in Thailand might not be used efficiently. For the  

model to properly reflect this reality, changes in market and production conditions over  

 

 

Figure 4.3. Proportion of rice land use to total agricultural land use over 2006 to 2017  

(million rais) 
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time are incorporated into THAI-ASM. Crop yields and costs associated with crop 

production are continuously updated with the assumption that technology gradually has 

improved over time. Hence, we have that over time crop yields increase while production 

costs decrease. In addition, demand is assumed to increase over time as population grows. 

Furthermore, the multi-period nature of the economic problem requires converting 

future revenues and future costs into their present values using a real (inflation-adjusted) 

annual discount rate. The default discount rate used in THAI-ASM is four percent, which 

is broadly consistent with opportunity costs of capital in Thai agriculture. It should be 

noted that as discount rates increase this reduces the attention paid to future revenues and 

costs.  

Different discount rates should also be considered in order to test for the sensitivity 

of model results to alternative discount rates. More specifically, it is crucial for policy 

makers to pay attention to the sensitivity of model results with respect to the value of 

discount rates because it can significantly affect the timing of land use, investment, 

production decisions of the producers in the model. 

In terms of geographical coverage, THAI-ASM covers agricultural activities at the 

province-scale across Thailand. In the model, all 77 provinces across the country are 

represented as production regions and then their production flows into 4 market regions: 

Northern, Northeastern, Central, and Southern regions. Each of the 77 sub-regions can be 

mapped into the overall 4 market regions as shown in Table 4.4. 

To analyze the effect of the crop-zoning program, two scenarios are considered: 

(1) a base scenario; (2) a forced crop-zoning scenario. Under both scenarios, the rice price-  
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Table 4.4. THAI-ASM market regions/ agricultural regions 

Market Regions Provinces 

    Northern Chiang Rai, Phayao, Lampang, Lamphun, Chiang Mai, Mae Hongson, Tak, 

Kamphaeng Phet, Sukhothai, Phrae, Nan, Uttaradit, Phitsanulok, Phichit, Nakhon 

Sawan, Uthai Thani, Phetchabun 

 

    Northeastern Loei, Nong Bua Lam Phu, Udon Thani, Nong Khai, Bueng Kan, Sakon Nakhon, 

Nakhon Phanom, Mukdahan, Yasothon, Amnat Charoen, Ubon Ratchathani, Si Sa 

Ket, Surin, Buri Ram, Maha Sarakham, Roi Et, Kalasin, Khon Kaen, Chaiyaphum, 

Nakhon Ratchasima 

 

    Central Saraburi, Lop Buri, Sing Buri, Chai Nat, Suphan Buri, Ang Thong, Ayutthaya, 

Nonthaburi, Bangkok, Pathum Thani, Nakhon Nayok, Prachin Buri, 

Chachoengsao, Sa Kaeo, Chanthaburi, Trat, Rayong, Chon Buri, Samut Prakan, 

Samut Sakhon, Nakhon Pathom, Kanchanaburi, Ratchaburi, Samut Songkhram, 

Phetchaburi, Prachuap Khiri Khan, Chumphon 

 

    Southern Ranong, Surat Thani, Phangnga, Phuket, Krabi, Trang, Nakhon Si Thammarat, 

Phatthalung, Songkhla, Satun, Pattani, Yala, Narathiwat 

  

 

support program is implemented. The base scenario represents a business-as-usual 

situation, where the crop-zoning program is not implemented. Under the crop-zoning 

scenario, crops are limited to the acreage of "suitable" land by province. Therein the 

suitable land is that determined via satellite data that capture the spatial characteristics of 

agricultural land where crops should be relocated. According to the LDD, these land can 

be classified into four different types according to soil suitability: highly suitable (S1), 

moderately suitable (S2), marginally suitable (S3), and unsuitable (N). Once crops are 

restricted in terms of the areas where they can be planted, we let the model endogenously 

solve for the optimal choices of crops as well as the locations that are the most suitable.  

By comparing the results from the two scenarios, we can then evaluate the 

economic effects of the crop-zoning policy in terms of changes in land use, input uses, 

crop prices, and welfare. 
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4.7 Empirical Results 

To ensure the reliability of the mathematical programming model, the model is 

first validated by comparing estimated values of land allocated to the major crops in 

Thailand under the base scenario with observed values in 2015. Table 4.5 presents the 

observed and projected land use obtained from the model for all five major crops. Overall, 

the model is able to accurately predict agricultural land use. Table 4.5 also reports 

percentage differences between estimated and observed land use. On average, we find that 

the percentage differences are less than 15%. Overall, the model seems to fit the data well 

for most major crops.   

 

Table 4.5. Observed and projected land uses in 2015 (million rai) 

  Observed Projected % Change 

Crop    

  Primary Rice  55.10  54.94  -0.29% 

  Secondary Rice  8.46  8.30  -1.89% 

  Sugarcane 8.46  7.20  -14.89% 

  Cassava 9.32  10.05  7.83% 

  Maize 6.22  6.89  10.77% 

 

We then estimated the supply of all five crops under the two different scenarios: 

the base scenario and the crop-zoning scenario. In the base scenario, we consider a 

business-as-usual case with no restriction on location where the crops can be produced. In 

the crop-zoning scenario, we incorporate the restriction on lands for crop production in all 

77 provinces. Specifically, we include land constraints for the major crops in different 
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provinces using the satellite data obtained from the LDD. In addition, under this scenario, 

each crop has four different yield outcomes depending on soil suitability of the available 

land.  

We first consider the impact of crop-zoning on land uses. Table 4.6 shows land 

used for production of all five major crops under the base and the crop-zoning scenarios. 

For primary rice, maize, and cassava, we find that land use is projected to increase as a 

result of the crop-zoning program. More specifically, it is projected that land use for 

primary rice, maize, and cassava will increase approximately 9.19%, 46.84%, and 12.49%, 

respectively. On the other hand, the secondary rice and sugarcane acreages are projected 

to decrease if the crop-zoning policy is enforced. In particular, the model indicates that the  

number of rai planted to secondary rice and sugarcane is expected to decrease by about 

17.39% and 21.10%, respectively. 

 

Table 4.6. Projected land uses (million rais) 

 Base Crop-Zoning % Change 

Crop    

  Primary Rice 48.19 52.62 9.19% 

  Secondary Rice 10.64 8.79 -17.39% 

  Maize 5.53 8.12 46.84% 

  Sugarcane 9.10 7.18 -21.10% 

  Cassava 9.61 10.81 12.49% 

 

We next consider the impact of crop-zoning restrictions on the amount of crops 

produced. Table 4.7 reports projected production for all five crops. As can be seen from 

Table 4.7, the results are consistent with the impact of crop-zoning on land uses. More  
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Table 4.7. Projected crop production (million tons) 

 Base Crop-Zoning % Change 

Crop    

  Primary Rice  22.83   24.38  6.79% 

  Secondary Rice  6.75   5.90  -12.59% 

  Maize  3.93   5.78  47.07% 

  Sugarcane 111.51  100.48  -9.89% 

  Cassava  33.79   34.83  3.08% 

 

specifically, we find that crop production for primary rice, maize, and cassava is projected 

to increase by roughly 6.79%, 47.07%, and 3.08%, respectively.  

For secondary rice and sugarcane, the amount of crops produced are projected to 

be about 12.59% and 9.89% lower under the base scenario than under the crop-zoning 

scenario, respectively. The results indicate that, by restricting land uses to the most 

suitable crops based on soil suitability, the crop-zoning policy as simulated causes 

reductions in production of secondary rice and increases in maize production.  

 As crop production changes as a result of implementing the crop-zoning policy, 

we also consider the impact of crop-zoning on crop prices. Table 4.8 presents projected 

prices of all five crops. The model properly captures the inverse relationship between 

quantities demanded and prices. The table shows that maize prices drop sharply 

(approximately a 37.14% decrease) under crop-zoning as compared to the base scenario. 

On the other hand, we find that the primary rice and secondary prices increase by 35.50% 

and 45.59% respectively as a result of the price support policy. Both primary and 

secondary rice prices are set to THB 15 per kilogram as the price support policy is 

implemented. On the other hand, the sugarcane price increases by 22.52% under the crop-

zoning scenario. This suggests that although the crop-zoning policy shows the potential to  
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Table 4.8. Projected crop prices (Thai baht per kg) 

 Base Crop-Zoning % Change 

Crop    

  Primary Rice  11.07   15.00  35.50% 

  Secondary Rice  10.31   15.00  45.49% 

  Maize  7.89   4.96  -37.14% 

  Sugarcane  1.11   1.36  22.52% 

  Cassava  2.29   2.27  -0.87% 

 

deviate the land for more suitable crop production, it could lead to a higher price for some 

crops. This implies that the policy may positively affect sugarcane producers but 

negatively reduce the profit of cassava producers as the cassava price drops. 

To examine the effect of the crop-zoning policy on the land rental rate, we calculate 

the Fisher price index, which is the geometric average of the Laspeyres and Paasche price 

indices (Siegel, 1941). By taking the geometric average of the two indices, the Fisher price 

index takes into account the upward bias of the Laspeyres price index and the downward 

bias of the Paasche price index. The formula of the index is: 

Fisher Price Index = √Laspreyre Price Index × Paasche Price Index

= √
∑ ∑ 𝑝𝑖𝑐1𝑞𝑖𝑐0𝑐𝑖

∑ ∑ 𝑝𝑖𝑐0𝑞𝑖𝑐0𝑐𝑖
×

∑ ∑ 𝑝𝑖𝑐1𝑞𝑖𝑐1𝑐𝑖

∑ ∑ 𝑝𝑖𝑐0𝑞𝑖𝑐1𝑐𝑖

(4.12) 

where 𝑝𝑖𝑐0 is the land rental rate in province 𝑖 for crop 𝑐 under the base scenario; 𝑞𝑖𝑐0 is 

amount of land used in province 𝑖 for crop 𝑐 under the base scenario; 𝑝𝑖𝑐1 is the land rental 

rate in province 𝑖 for crop 𝑐 under the crop-zoning scenario; and 𝑞𝑖𝑐1 is amount of land 

used in province 𝑖 for crop 𝑐 under the crop-zoning scenario. 

From Table 4.9, on average, the results suggest that land rental rates under the 

crop-zoning scenario would be approximately 5.92% higher than those under the base  
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Table 4.9. Land price indices 

Price Index 
Land Type 

All 
S1 S2 S3 N 

Laspreyre 105.29 102.11 101.38 101.41 104.00 

Paasche 105.54 136.52 107.65 105.00 107.86 

Fisher 105.42 118.07 104.47 103.19 105.92 

 

scenario. Furthermore, with the crop-zoning policy, the results show that the land rental 

rates across all land types would be higher than those under the base scenario. Specifically, 

the land rental rate would be 5.42%, 18.07%, 4.47%, and 3.19% for highly suitable (type 

S1), moderately suitable (type S2), marginally suitable (type S3), and unsuitable (type N) 

lands, respectively.  

Given the importance of irrigation in Thailand, we also examine how producers’ 

irrigation decisions change as a result of implementing the crop-zoning policy. Table 4.10 

reports the projected water use (in 1,000 million cubic meters) under the two scenarios. 

Our model results indicate an increase in total water use because of the crop-zoning policy. 

More specifically, total water uses under the crop-zoning scenario is approximately 6,070 

million cubic meters more than under the base scenario. The increase in total water use  

 

Table 4.10. Projected water uses (1,000 million m3) 

 Base Crop-Zoning % Change 

Crop    

  Primary Rice 33.13   38.39  15.88% 

  Secondary Rice 23.20   18.11  -21.94% 

  Maize  3.01   4.48  48.84% 

  Sugarcane  3.09   6.22  101.29% 

  Cassava  9.33   10.63  13.93% 

Total 71.76 77.83 8.46% 
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could be explained by the fact that the majority of the highly water consuming crops are 

reallocated to irrigated land.  

Table 4.11 reports overall crop land allocations across the four different land types 

under the two scenarios as well as the percentage change in land allocations from the base 

scenario. Overall, the model results suggest that the enforcement of the crop-zoning policy 

will help reduce the production of secondary rice on highly suitable (type S1) land.  

In particular, it is expected that production of secondary rice will be largely 

relocated to moderately suitable (type S2). In addition, the crop-zoning policy will also 

result in a decrease in the production of primary rice and maize on marginally suitable and 

unsuitable (type S3 and N) land, but a drastic increase in the production of both crops on 

highly suitable (type S1) land. On the other hand, the policy will lead to increases in  

 

Table 4.11. Present value of projected land uses (million rai) for all land types under base and crop-zoning 

scenarios 

  Base Crop-Zoning % Change 

Crop Land Type    

  Primary Rice S1 9.66 26.54 174.74% 

 S2 17.82 23.61 32.49% 

 S3 8.52 1.87 -78.05% 

 N 12.19 0.60 -95.08% 

  Secondary Rice S1 6.55 3.15 -51.91% 

 S2 0.64 2.73 326.56% 

 S3 1.71 1.59 -7.02% 

 N 1.74 1.31 -24.71% 

  Maize S1 0.77 5.02 551.95% 

 S2 3.51 2.92 -16.81% 

 S3 1.24 0.18 -85.48% 

 N 0.00 0.00 NA 

  Sugarcane S1 2.88 6.56 127.78% 

 S2 0.00 0.00 NA 

 S3 5.80 0.02 -99.66% 

 N 0.42 0.60 42.86% 

  Cassava S1 4.78 10.72 124.27% 

 S2 0.00 0.03 NA 

 S3 0.00 0.00 NA 

 N 4.83 0.05 -98.96% 
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production of sugarcane and cassava on highly suitable (type S1) land.  

According to the LDD satellite data, there is excessive production of secondary 

rice and too little maize. The major problem is lands that are unsuitable for growing the 

secondary rice are being used to grow it. The model results also show that the crop-zoning 

policy has the potential to free up lands in the central and the northeastern parts of the 

country for primary rice and maize production. Note that land types for different crops are 

overlapping. That is, land that is highly suitable for one crop is not necessary highly 

suitable for other crops. Specifically, the areas that are categorized as highly suitable (type 

S1) for secondary rice are categorized as moderately suitable (type S2) for primary rice. 

From the results, we can see a significant decrease in highly suitable (type S1) land use 

for the secondary rice production with it being reallocated to primary rice and sugarcane. 

Moreover, in order to meet the national demand for secondary rice, the model suggests 

that marginally suitable (type S3) land use is expected to increase significantly for growing 

the rice. Compared to the base scenario, we find that secondary rice land use decreases in 

highly suitable (type S1) by 51.91%, in marginally suitable (type S3) by 7.02%, and in 

unsuitable (type N) by 24.71%, and increases significantly in moderately suitable (type 

S2) by 326.56% (see Table 4.11). 

In addition, most of the highly suitable (type S1) land for growing cassava is 

located in the northern and northeastern parts of Thailand. The model results suggest that 

the implementation of the crop-zoning policy will lead to a significant decrease in cassava 

grown on unsuitable (type N) lands. The major production is then relocated from the 

southern and central parts to the northern and northeastern parts. This helps free up suitable 
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land for primary rice and secondary rice production. In particular, as reported in Table 

4.11, cassava use of highly suitable (type S1) increases by 124.27%, while use of 

unsuitable (N) decreases by 98.96%. There is no significant changes in moderately and 

marginally suitable land use for cassava (type S2 and S3). Consequently, primary rice use 

of highly suitable (type S1) increases drastically by 174.74% relative to the base scenario. 

Likewise, maize land use also increases significantly in highly suitable (type S1) by 

551.95%. On the other hand, sugarcane land use increases on highly suitable (type S1)  

land by 127.78%. In this section, we also presents spatial distribution of crop production 

across the country in more details. 

Figure 4.4 maps the spatial distribution of primary rice production under both 

scenarios. In the base scenario (Figure 4.4 (a)) we see the southern, central, and 

northeastern parts of Thailand are the main areas for primary rice production. Under the 

zoning program where farmers are better informed of the more suitable land and are 

restricted, the majority of primary rice production is shifted to the central region and total 

production increases significantly (as illustrated in Figure 4.4 (b)).  

Figure 4.5 maps the spatial distribution of secondary rice production under the two 

scenarios. Under the base scenario the northern, central, and southern regions are the main 

areas for secondary rice production. Under the crop-zoning scenario the production of 

secondary rice shifts to the northeastern and eastern regions. Moreover, overall secondary 

rice production across the country also decreases under the crop-zoning scenario. 
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Figure 4.4. Spatial distribution of primary rice under the base and crop-zoning scenarios in 2015 (rai) 

 

(a) Base Scenario – Primary Rice 

 

(b) Crop-Zoning Scenario – Primary Rice 

 

Figure 4.5. Spatial distribution of secondary rice under the base and crop-zoning scenarios in 2015 (rai) 

 

(a) Base Scenario – Secondary Rice 

 

(b) Crop-Zoning Scenario – Secondary Rice 
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Figure 4.6 shows the spatial distribution of maize production under the scenarios. 

Under the base scenario maize is heavily grown in the eastern and northern regions. Once 

the crop-zoning policy is implemented, maize production is more spread out across the 

two regions. In total, the production of maize is expected to increase significantly under 

the crop-zoning scenario.  

 

Figure 4.6. Spatial distribution of maize under the base and crop-zoning scenarios in 2015 (rai) 

 

(a) Base Scenario – Maize 

 

(b) Crop-Zoning Scenario – Maize 

 

Figure 4.7 maps the spatial distribution of sugarcane production under both 

scenarios. In the base scenario sugarcane is grown in almost all regions except the southern 

region of Thailand. Under the crop-zoning scenario, there is less production in the northern 
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region and more in the central region. Overall, sugarcane production is projected to decline 

under the crop-zoning policy. 

 

Figure 4.7. Spatial distribution of sugarcane under the base and crop-zoning scenarios in 2015 (rai) 

 

(a) Base Scenario – Sugarcane 

 

(b) Crop-Zoning Scenario – Sugarcane 

 

Figure 4.8 shows the distributions of cassava production by scenario. Under the 

base scenario, cassava is grown in almost all regions except the southern region of 

Thailand. Under the crop-zoning scenario, Figure 4.8 (b) shows that production across the 

country increases slightly. 

In terms of welfare, under crop-zoning with the price support policy, the THAI-

ASM model shows zoning decreases overall welfare by approximately 2.84% or 268 

million Thai baht.  
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Figure 4.8. Spatial distribution of cassava under the base and crop-zoning scenarios in 2015 (rai) 

 

(a) Base Scenario – Cassava 

 

(b) Crop-Zoning Scenario – Cassava 

 

These results are shown in Table 4.12. However, the government spending on the 

rice price support program also decreases from THB 16.33 × 108 to THB 12.25 × 108, 

which is approximately 24.97% reduction. To further see how the crop-zoning policy may 

help alleviate the negative effect of the price support policy, we estimate the outcomes 

under the base and crop-zoning scenarios without the price support program.  

Table 4.13 shows  implementing the rice price-support program under the crop-

zoning scenario generates a smaller deadweight loss than under the base scenario. From               

Table 4.13, the deadweight loss reduces from THB 4.69 × 108 to THB 4.02 × 108, which 

is about 14.40% once the crop-zoning policy is put into action. In other words, the crop-

zoning policy can alleviate the negative impact from the price support program. In effect, 
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the policy helps reduce the amount of commodities the government has to purchase from 

farmers under the price support program at THB 15 per kilogram.  

 

Table 4.12 Components of welfare by scenario (THB 100 million) 

 Base Crop-Zoning 

   

  Consumer Surplus 5,617.99 5,576.02 

  Producer Surplus 3,821.52 3,591.79 

  Government Spending 16.33 12.25 

  Total Welfare 9,423.17 9,155.56 

 

              Table 4.13. Welfare by scenario (THB 100 million) 

 Without Price 

Support 

With Price 

Support 

Deadweight Loss 

  Base  9,427.87   9,423.17   4.69  

  Crop-Zoning  9,159.58   9,155.56   4.02  

  Deadweight Loss  268.29   267.62   

 

4.8 Conclusions 

This study evaluated the effect of a crop-zoning policy in conjunction with rice 

price supports in Thailand. To do this, we developed a Thai agricultural sector model. In 

this framework, we take into account the interaction of supply and demand of crops in 

addition to physical characteristics of land. Our results indicate that the crop-zoning policy 

has the potential to reduce government price support spending and to increase production  

of primary rice, maize, and cassava. Simultaneously, the policy would reduce secondary 

rice and sugarcane production for, which coincides with the government’s aim to 

discourage farmers from growing too much rice. However, total irrigation water usage 

also increases significantly, although it is still under the total water available, under the 
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crop-zoning scenario. The increase is approximately 5,000 million cubic meters. In terms 

of environmental impacts, increases in land uses for primary rice and maize production 

might also lead to increases in fertilizer uses. Our spatial analysis also helps identify 

beneficial crop regional relocations. 

These findings are useful for both agricultural producers and policy makers who 

seek to evaluate benefits and costs of implementing the crop-zoning policy.  

This study can be extended in several directions. First, the model can be extended 

to cover international trade, especially in Southeast Asia. Second, the analysis can be 

extended to incorporate processed goods and livestock. Due to available data limitations, 

we were unable to expand the model to cover those items. Finally, the modeling and results 

analysis could be extended and coupled with other modeling efforts to account for physical 

environmental impacts of the policy, such as GHG emissions, water quality, nutrient 

runoff, and so on. 
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5 CHAPTER V  

SUMMARY 

This dissertation consists of three stand-alone studies: two concerning applications 

of optimization modeling in agricultural policy evaluation and one on the applications of 

copula in dealing with tail risk in energy commodity markets. The first study (Chapter II) 

extends a mathematical optimization model, FASOMGHG to evaluate economic and 

environmental effects from using marginal land in fulfilling the renewable fuel standard 

(RFS). The second study (Chapter III) examines the usefulness of Exchange-Traded Funds 

(ETFs) in dealing with tail risk in the energy commodity markets. The third study (Chapter 

IV) analyzes the welfare and land uses associated with an implementation of a Thai crop-

zoning policy in conjunction with price supports. To do this, a Thai agricultural sector 

model is constructed. 

The first essay (Chapter II), “Analysis of Switchgrass Production on Marginal 

Land in the United States”, analyzes the economic and environmental effects of using 

marginal land in fulfilling the cellulosic ethanol part of the renewable fuel standard (RFS). 

In particular, the 2007 RFS mandates that US fuels must ultimately contain at least 36 

billion gallons of renewable fuels with a cap of 15 billion gallons on corn-based ethanol. 

To achieve the goal, the remaining balance of the RFS-qualified ethanol will have to be 

produced from other cellulosic feedstocks. However, growing energy crops for cellulosic 

feedstocks will unavoidably lead to cropland competition between food and energy crops, 

which in turns will cause food crop prices to increase. Marginal land has been proposed 
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as a solution to alleviate such pressure on cropland use and in turn on crop prices. 

However, production on marginal land may be harmful to the environment. This study 

examines both economic and environmental impacts of growing energy crops, specifically 

switchgrass, on marginal land at the national level. Overall, the analysis results suggest 

that growing energy crops on marginal land could help alleviate some of the pressure on 

land competition between traditional and energy crops, but would lead to higher GHG 

emission, soil erosion, and nutrient runoffs. 

The second essay (Chapter III), “Dealing with Tail Risks in Energy Commodity 

Markets: Futures Contracts vs Exchange-Traded Funds”, examines the usefulness of 

Exchange-Traded Funds (ETFs) in dealing with tail risk in energy commodity markets. 

Four energy commodities are considered including crude oil, gasoline, heating oil, and 

natural gas. The kernel copula method is applied to estimate the minimum-Value at Risk 

(VaR) and minimum-Expected Shortfall (ES) hedge ratios for both long and short hedges. 

When examining the out-of-sample hedging effectiveness, we find that hedging 

performance of ETF and futures contract depends greatly on the underlying energy 

commodity and partly on the confidence level and hedge position. Overall, our empirical 

results indicate that both ETF and futures contract are effective in reducing tail risk in the 

crude oil, gasoline, and heating oil markets. However, both hedging instruments perform 

poorly in reducing risk in the natural gas market due to the low correlation and tail 

dependence between log returns of spot and hedging instrument prices. 

The third essay (Chapter IV) “Analysis of Thai Crop-Zoning Policy” analyzes the 

welfare and land uses associated with the Thai crop-zoning policy in conjunction with rice 
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price support policy. To do this a Thai agricultural sector model was developed based on 

the optimization model discussed in McCarl and Spreen (1980). Our results indicate that 

the crop-zoning policy has the potential to reduce the government spending incurred from 

the ongoing price-support program along with increasing production for primary rice, 

maize, and cassava. Furthermore, our results suggest that the policy would reduce 

secondary rice and sugarcane production. This coincides with the government’s aim to 

discourage farmers from growing too much rice that was the result of the government’s 

price-support program.  
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