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ABSTRACT 

This project contributes to the development of a biocompatible, multi-analyte 

biotransducer and associated instrumentation that serves as a minimally invasive 

implantable biosensor system to improve patient stratification, guide resuscitation and 

monitor the stabilization of hemorrhaging trauma patients.  The pH-responsive element 

of the multi-analyte biotransducer, with sensing elements for glucose, lactate, pH, 

potassium and partial pressure of oxygen (pO2), was addressed. A pH-responsive 

hydrogel for the measurement of acidosis under physiological conditions was 

synthesized from poly(2-hydroxyethyl methacrylate-co-poly(ethylene glycol) 

methacrylate)-based hydrogels that were molecularly engineered with AEMA and 

DMAEMA and surveyed for the distribution of water states within the hydrogel. It was 

found that bound water, not total hydration, correlated strongly with the biotechnical 

properties, determined the membrane resistance and thereby the pH sensitivity of 

hydrogels. Surface modification of electrodes was accomplished using polypyrrole and 

bioactive hydrogels to reduce the charge transfer resistance for ABIO-BIO interface 

engineering. Using multiplexed biomarker inputs and physician expert scoring, a 

Hemorrhage Intensive Severity and Survivability (HISS) score was obtained from a 

fusion of input data and could correlate to survivability using data-driven prediction 

models. For real-time monitoring, this biotransducer was interfaced externally with 

hardware components including front-end electronics and a display readout. This 

microsystem will be used as an intramuscular indicator for the pathophysiology of 

hemorrhage. 
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NOMENCLATURE  

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

PBS Phosphate-buffered Saline 

DMEM Dulbecco's Modified Eagle Medium 

DI Deionized water 

HEMA 2-hydroxyethylmethacrylate 

AEMA  N-(2-aminoethyl) methacrylate 

DMAEMA N,N-(2-dimethylamino)ethyl methacrylate 

SPMA Sulfopropyl methacrylate 

HMMA N-[Tris(hydroxymethyl)methyl] acrylamide 

HPMA 2-Hydroxypropyl methacrylate 

PEGMA Poly(ethylene glycol) monomethacrylate 

pNVP Poly(N-vinylpyrrolidone) 

TEGDA Tetra(ethylene glycol)diacrylate 

DMPA 2,2-dimethoxy-2-phenylacetophenone 

ϒ-APS (3-aminopropyl)trimethoxysilane 

APNHS Acrylate-poly(ethylene glycol)-3500 n-hydroxysuccinimide 

GOx Glucose oxidase 

LOx Lactate oxidase 

SWCNT Single-walled carbon nanotube 

H2O2 Hydrogen peroxide 

DL Detection limit 
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RM Membrane resistance 

RCT Charge transfer resistance 

PCB Printed circuit board 
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CHAPTER I 

INTRODUCTION  

1.1 Management of trauma-the pressing issue 

Trauma management has continued to become a pressing issue in recent times. The 

dearth of point-of-care systems for monitoring the status of the patient, specifically during the 

transportation of the patient from the site of injury to a clinic poses a prominent challenge in 

trauma management. The intensity of the problem is reflected in the staggering statistics from 

National Trauma Institute in 2018, where trauma is the topmost cause of death in individuals of 

1-46 years of age[1]. Amongst the simplest associations due to trauma, hemorrhage is the most 

significant[2] as it accounts for 40% of mortalities due to trauma[3]. Simple associations 

resulting due to trauma are shown in Figure 1. 

One of the methods for trauma administration during transportation includes employing 

an advanced trauma life support (ATLS) trained workforce[1] to transport the patients from the 

site of injury to the clinic[2]. The most critical patients need to be saved in the “golden-hour 

period” where the time to intervene is less[3]. Silver-day refers to the time of 24 hours in which 

medical care is required[3]. Trauma related hemorrhage contribute highly to death rates in the 

first 24 hours[4].  Lerner et al. demonstrates a counter view for the term “golden-hour” used in 

medical literature and states that not much evidence is available to support the term[5]. However, 

it is a fact that time to intervene is critical during the initial time period in trauma and the most 

severe patients need to be stabilized.  
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Figure 1. Simple associations due to trauma (Reprinted from source: National Trauma 

Institute) [6]. 

 

Shock is a state of lack of perfusion to the tissues [7]. ATLS  identifies heart rate, systolic 

blood pressure and pulse oximetry or pulse pressure as the standard physiological cues for 

identifying the state of shock[8].  These current practices rely on testing the levels of analytes 

based in blood as a substrate. The vital signs predicted by using blood as a substrate may not be 

reliable and include many false negatives and false positives. These signs can give false 

complications that a critical patient is stabilized. Hence, it is indispensable to move to other 

substrates than blood.  

A cascade of events occurs during hemorrhage due to trauma. In an attempt to stop the 

excessive blood loss due to injury, the blood pressure of the body drops[9]. This gives rise to the 

contraction of muscles, leading to sympathetic vasoconstriction[10]. This low peripheral 
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perfusion[11] which constitutes shock[12] and initiates tissue hypoxia[12]. This is accompanied 

by a fall in glucose levels[13] and a rise in the lactate levels[14] with a consequent fall in the pH 

of the body[15], which is countered with an increase in the levels of potassium[16]. To counter 

the effects of this cascade, resuscitation fluids are administered[17]. An adverse immune 

response is due to failure of the coagulation cascade[18] and a storm of local and systemic 

release of interleukins and cytokines is set up in the body, producing anti-inflammatory 

mediators[19]. The mediators move to vital organs causing their dysfunction leading to multiple 

organ failure[20]. This cascade of events for the pathophysiology of hemorrhage establishes the 

role of glucose (low), lactate (high), pH (low), potassium (high) and oxygen tension (low) 

together as biomarkers for trauma.  

Minimally invasive biosensors provide a means to continuously monitor the patient 

data[21]. These biosensors are implantable and are stable and reside in the body for several 

weeks. They detect the levels of the analytes from the substrate they are dwelling in and hence 

can capture the status of these biomarkers in real-time. The data transmission can be made 

possible with the help of electronic hardware circuitry.  Hence, these can be deployed in the 

management of trauma, especially during the transportation of the patient from the site of injury 

to the site of clinic. This will help in point-of-care stabilization of the patients. A layer of 

complexity can be added to form the physiologic profile of the patient by engaging machine 

learning algorithms to produce a single score, based on the levels of the five analytes, and further 

stratified according to the level of severity. This score can reveal the status of the patient to the 

physician in real-time, and care can be delivered to the most critical patients first. This score can 

help in the timely decision making of the physicians thus enabling reduction in morbidity and 

mortality due to hemorrhagic trauma.  



 

4 

 

Minimally invasive biosensors operate below epidermis or dermis at a specific depth and 

are subcutaneously implanted with the help of a small suture or surgery [22]. The in-dwelling or 

implantable type of minimally invasive biosensors can reside in the body for a few days and can 

be used for continual or continuous monitoring for point-of-care diagnostics (POC)[23]. The 

non-invasive wearable biosensors have less accuracy and do not involve breaking the skin 

barrier[24]. As against this, the fully invasive biosensors break the skin and are implanted at a 

considerable penetration depth. Thus, the minimally invasive biosensors are a mid-way between 

the non-invasive and the fully invasive biosensors. They can be inserted into the body with the 

help of a small suture/ incision or a surgery and provide a high accuracy[25]. Figure 2 illustrates 

the concept of a minimally invasive biosensor. 

 

Figure 2. Concept of a minimally invasive biosensor and some of the commonly used 

minimally invasive biosensor types (Reprinted from [22]).  

Microneedle type of minimally invasive biosensors[26] incorporate a solid or a hollow 

cannula with external diameter of about 30 microns[27] and with an insertion length[28] of about 

20 to 1500 microns. It is important that the tip of the biosensor does not break. Hence, the 

mechanics of force should be studied while breaking the skin[29]. The geometry aspects such as 

microneedle length, tip radius, wall thickness, base density, diameter, and wall angle, and the 
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type of material along with the skin resistance to penetration dominate the successful insertion of 

the minimally invasive biosensor[30]. In comparison, Yu et al. have reported coil-type 

minimally invasive biosensors which allow for more loading of the enzyme, due to a larger 

electrochemical surface area and a higher current response[31] . Optical methods can also be 

used in minimally invasive biosensors. A polyacrylamide gel with silver nanoparticles has been 

utilized by Yetisen et al. where the glucose molecules bind to hydrogel causing the silver 

nanoparticles to separate, hence detecting the presence of glucose[32]. 

This paper is a critical review of the minimally invasive implantable biosensors used for 

the pathophysiology of hemorrhage. The different analytes like glucose, lactate, pH, potassium 

and partial pressure of oxygen are considered as their levels fluctuate during hemorrhage due to 

trauma. Hence, they can be considered as the biomarkers for trauma. An effort is made to 

diversify the substrate from interstitial fluid to blood. 

Although the traditional substrate is blood, it has been found that the interstitial fluid[33] 

in the muscles can work as a substrate for biomarkers of trauma. The interstitial fluid is the 

bathing medium for the tissues[34]. This fluid can act as the substrate because the muscles are 

the action point of tissue hypoxia[35]. Due to tissue hypoxia, the blood flow drops as the 

peripheral vasoconstriction occurs. Hence, tapping this substrate specifically in the hemorrhaging 

trauma can be promising in place of blood. Also, muscles form a network throughout the body 

and are the largest utilizers of oxygen[36]. Hence, muscles is where the initiation point of tissue 

hypoxia lies, as a consequence of which the lactate levels are elevated during hemorrhagic 

trauma. Specifically, for measuring glucose the interstitial fluid can prove helpful with the 

microneedles technology[37].  
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Implantable biosensors face challenges of biofouling and fibrous encapsulation[38]. As 

such, they have to be treated for enhanced stability[39]. Biofouling refers to adsorption of 

proteins or other biomolecules on the sensor region and blocking it, causing it to foul and 

decrease in its performance[40]. To counter this biofouling, the biosensor has to be modified 

with a biocompatible coating like hydrogels[41]. 

In the following section, an overview of the present minimally invasive devices for 

monitoring each of the individual analytes of glucose, lactate, pH, potassium and oxygen tension 

is performed. The ranges of analytes for pathophysiological intravascular, and intramuscular 

glucose[42], lactate and pH[43], potassium[44], oxygen tension[45, 46]  [46]are mentioned in 

Table 1 as follows: 

Table 1. describes the ranges of analytes which are biomarkers for hemorrhagic trauma 

including pathophysiological intravascular ranges and upper and lower bounds for 

intramuscular ranges. 

Pathophysiological range 

Analyte 
Lower 

Bound 
Low Normal High 

Upper 

Bound 

Glucose 
0.1-0.5 

mM 

Hypoglycemia 

<3.88 mM 

<70 mg/dL 

Euglycemia 

3.88–5.50 

mM 

70-99 

mg/dL 

Hyperglycemia 

5.50–10.00 mM 

99-180 mg/dL 

 

Lactate  

Hypolactatemi

a 

< 0.50 mM 

Eulactatemi

a 

0.50–1.00 

mM 

Hyperlactatemia 

2.00–4.00 mM 

5-8 

mM 

Potassium  
Hypokalemia 

(<3.50 mM) 

Eukalemia 

3.50-5.50 

mM 

Hyperkalemia 

(>5.50 mM) 

5.5-7.2 

mM 

pH 7-7.35 
Acidosis 

(<7.35) 
7.35-7.45 

Alkalosis  

(>7.45) 

 

pO2 
1-9 

mm Hg 

Hypoxia 

<5.18 mM 

<100 mmHg 

5.18-6.22 

mM 

100-120 

mmHg 

Hyperoxia 

(>6.22 mM) 

>120 mmHg 
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The measurement techniques associated with the five analytes are glucose 

(amperometry), lactate (amperometry), potassium (K+) (potentiometry), pH (impedimetry), and 

oxygen tension (voltammetry). The concept for dose-response curves along with the 

measurement techniques for the analytes are discussed in Thévenot et al.[47] 

 

 

1.2 Minimally invasive biosensors for pathophysiology of hemorrhage 

Glucose and Lactate operate on the principles of enzymatic biosensors. Enzymatic 

biosensors which detect glucose and lactate are mostly electrochemical due to their fast response 

times, high sensitivity and cost efficiency [48]. Glucose and lactate sensing regions incorporate 

immobilized enzymes like Glucose Oxidase (GOx)and Lactate Oxidase (LOx) onto them. The 

reactions for the detection of glucose and lactate proceed as follows: 

The enzymatic oxidation of analytes with enzymes produces H2O2 (Eq.1 and Eq.2)[49, 

50]. 

𝐿 − 𝑙𝑎𝑐𝑡𝑎𝑡𝑒 + 𝑂2
𝐿𝑂𝐷
→  𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 𝐻2𝑂2                                       (1) 

𝑔𝑙𝑢𝑐𝑜𝑠𝑒 + 𝑂2
𝐺𝑂𝐷
→  𝑔𝑙𝑢𝑐𝑜𝑛𝑜𝑙𝑎𝑐𝑡𝑜𝑛𝑒 + 𝐻2𝑂2                                 (2) 

These reactions produce electrons as follow (Eq. 3)s: 

𝐻2𝑂2 → 𝑂2 + 2𝐻
+ + 2𝑒−                                                                   (3) 

These electrons can be detected amperometrically, using EIS (Electrochemical Impedance 

Spectroscopy) techniques. Hydrogen peroxide generated can be electrochemically oxidized on a 

Platinum electrode at +600 mV with an Ag/AgCl reference electrode. Glucose and Lactate have 

been characterized in the previous generation dual analyte biochip[51]. Both sensors have a 

working, reference and counter electrode. 
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The equation for current[52] (Eq. 4) is  

𝑖(𝑡) =
𝑛𝐹𝐴𝐷𝑎𝑝𝑝

1/2 
𝐶∗

2𝜋1/2𝑡1/2
+
𝑛𝐹𝐴𝐷𝑎𝑝𝑝 𝐶

∗

2𝑟𝑜
                                                             (4) 

Where n is a number of electrons, F is Faraday Constant, A is area of the planar electrode, 

Dapp is the Diffusion coefficient, t is the time in seconds, and C* is a standard concentration. 

1.2.1 Glucose 

POC testing devices for glucose use finger pricking, using fluids such as tears, saliva, and 

excretory products like urine[53]. These methods are invasive, painful and need to be conducted 

frequently. Moreover, they do not convey time and the change in glucose magnitude over 

time[30]. On the contrary, minimally invasive devices are safe and use a less obstructive 

approach with minimal tissue invasion and inflammation that doesn’t damage the tissue much. 

Minimally invasive and continuous monitoring sensor devices are called MiCoMs[54]. 

Microneedle array electrodes made from SU8 50 material are described in Sharma et al.[55] and 

are shown in Figure 3. This array of electrodes is inserted by breaking the topmost layer of the 

skin and are implanted in the forearm. Chronoamperometry[56] was used to measure the in vivo 

current. The use of microneedle sensor arrays has been described in Mohan et al.[54] The review 

by El-laboudi et al. described a minimally invasive continuous monitoring glucose sensor that 

uses Interstitial Fluid (ISF) as the substrate[30].  
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Figure 3. (A) Concept of a minimally invasive glucose biosensor, and (B) Dose-response 

curves (Reprinted from [55]). 

1.2.2 Lactate 

      Humans have resting base lactate levels of 0.5-1.0 mM. During hemorrhage, the body 

goes into the anerobic respiration mode and consequently the lactate level increases due to 

abnormality in the Cori-cycle[57] . The lactate then is accumulated in the liver by diffusion into 

the bloodstream[58, 59] [59]. Hence, it is important to detect the rise in levels of lactate, which 

act as a predicator/precursor for the condition of shock or lack of perfusion to the tissues. 

Higher lactate levels is an biomarker for tissue hypoxia and the criticality of the 

shock[60]. It is also a precursor for base deficits giving rise to lowering of pH[61] and resulting 

acidosis. Lactate along with base deficit[62] can help understand the extent of shock[63]. 

Restoration of the abnormal lactate levels are correlated with survival[63]. Early detection of the 

same can help in predicting survival and patient outcomes[64]. The accumulation of lactic acid 

due to inadequate clearance by liver and kidney causes lactic acidosis[65]. 

B)A)
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                        Lactate can be sensed using screen printed graphite electrodes, and microneedle sensors 

as shown in Figure 4. 

 

Figure 4. Responses from an electrochemical lactate biosensor A) Linear sweep voltammetry 

response[65], B) Chronoamperometric response (Reprinted from [65]), C) Concept of a 

minimally invasive lactate biosensor[66], and D) Calibration curve of gold microneedles 

(Reprinted from [66]). 

             
1.2.3 pH 

Hydrogels are three-dimensional network structures which swell with the uptake of water 

and de-swell with the loss of water[66]. Tissue acidosis occurs due to anaerobic glucose 

metabolism during tissue hypoxia. The distribution of water and the impedimetric response of 

hydrogel membranes of pH responsive devices is of interest for the development of in-dwelling 

biomedical sensors that must measure small changes in pH associated with tissue acidosis. Water 

A) B)

C) D)
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distribution and impedance changes due to small pH shifts are a function of monomer 

compositions in the hydrogels. Stimuli responsive hydrogels are a specific type of hydrogels 

which respond to a change in stimulus in their external media (eg. pH, temperature, chemical, 

light) by altering their mesh sizes[67]. pH sensor are the type of stimuli responsive hydrogels[68] 

which can be ionogenic or neutral type, depending on the presence of ionizable groups in their 

structure. Ionogenic hydrogels respond to a change in pH by protonating-deprotonating the 

ionizable groups in their structure[69]. Common cationic monomers include methacrylic acid, 

acrylic acid, N-(2-aminoethyl) methacrylamide, and anionic monomers include acrylamide, 

diethylaminoethyl methacrylate, dimethylaminoethyl methacrylate[70]. As against ionogenic, 

neutral hydrogels respond to a change in pH by means of donnan partitioning[71]. 

Monitoring of pH in the physiological pH range from 7.35-7.45 is crucial in stabilization 

of trauma patients[72] .A pH which is more acidic than 7.35 and accompanied by a rise in the 

lactate levels is termed to be acidosis[73], a condition which can be lethal. The water content in 

hydrogels plays an important role in governing its biotechnical properties[74]. Specifically, the 

bound water content governs the total hydration in poly-(HEMA) based stimuli responsive 

hydrogels[75]. Lactic acid acidosis is a biomarker for hemorrhaging trauma[76]. The relation 

between high lactate and hypoxia has been described using an oxyhemoglobin dissociation curve 

in Leach et al.[77]. 

pH sensor is an interdigitated IAME-co-IME sensor with hydrogel attached onto it[78]. 

Poly-(HEMA) based hydrogels have been utilized to give a sensitive pH response. Sheppard et 

al. explains the use of N,N-(2-dimethylamino)ethyl methacrylamide (DMAEMA) in the pH 

range 7-8[69]. Experimentally, the cationogenic N-(2-aminoethyl) methacrylamide (AEMA)has 

been determined to be the sensitive hydrogel in the pH range 7.35-7.45[79]. 
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Hydrogel based minimally invasive sensors for pH sensing have been described in 

Figure 5. In Culver et al[80], the hydrogels undergo conformational changes when the target 

analyte binds to them and sense the change in pH. This can be extended to cross-linking from 

complementary DNA to give rise to a hydrogel assembly, used as a pH sensor. Yin et al. have 

described the pH sensitivity of polyacrylamide hydrogels due to changes in the pH induced 

functional group change in the pH[81]. Tamayol et al. have described the response of a fiber 

sensor to the pH variation[82]. Sheppard et al. have reported the pH sensitivity using DMAEMA 

hydrogels[71]. 
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Figure 5. pH sensing using minimally invasive approaches (A) Analyte-responsive 

hydrogels for sensing, (B) Sensor mechanisms (C) Swelling degree of PAA ionic hydrogel 

with increasing pH, (D) Response of a fiber sensor to pH variation, and (E) pH sensitivity 

of D (Reprinted from [82]). 

1.2.4 Potassium 

Hyperkalemia refers to elevated levels of potassium as a result of hemorrhaging 

trauma[83]. The renal functions of the kidney do not suffice to match the excessive efflux of 

potassium in the extracellular region[84]. The regulation of potassium hemostasis is impaired as 

the secretion of potassium by vasopressin is inadequate is described in Uyehara et al.[85]. Zhou 

et al. describe a potassium monitoring approach using cDNA hybridization. Figure 6. describes 

the relation between vasopressin and renal clearance[85], and the logarithmic and linear 

responses from the potassium monitoring using DNA hybridization[86]. 

A)

B)

C)

D)

E)



 

14 

 

 

Figure 6. (A) Relation between vasopressin and renal potassium clearance, Potassium 

sensing using: DNA hybridization (B) Logarithmic response, and (C) Linear response 

(Reprinted from [85]). 

 

The detection of potassium is governed by the Nernst equation (Eq. 5.)[87]. 

𝐸 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + (
2.303𝑅𝑇

𝑧𝐹
) log [

𝑖𝑜𝑛 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑐𝑒𝑙𝑙

𝑖𝑜𝑛 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑒𝑙𝑙
]                                            (5) 

Where E is the potential, R is the ideal gas constant (joules per kelvin per mole), T is the 

absolute temperature, z corresponds to the ion charge (for potassium ion z is +1), F is Faraday 

constant. 

A relation has been described between hemorrhagic shock, tissue hypoxia and potassium 

in Filho et al. as shown in Figure 7. [88]. Strong correlations have been reported potassium and 

lactate (R=0.82), potassium and changes in partial pressure of carbon dioxide (R=0.82), 

potassium and changes in pH (R=0.83) [88]. 

 

B) C)

A)
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Figure 7. Relation depicting (A) Changes in pH, (B) Changes in partial pressure of carbon 

dioxide, (C) Arterial lactate, and (D) Arterial potassium (Reprinted from [89]). 

 

1.2.5 Oxygen tension 

Tissue oxygenation is an important parameter in the detection of hemorrhage[90]. Tissue 

saturation can be bifurcated into two parameters: Saturation pressure of oxygen (SpO2) and 

partial pressure of oxygen (pO2), which can in turn be related to hemoglobin saturation using the 

hemoglobin-oxygen dissociation curve [91] described in Collins et al.[91] as shown in Figure 8.  
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Figure 8. Relation between partial pressure of oxygen with hemoglobin saturation and 

oxygen concentration (Reprinted from [91]). 

The current standard of care involves using pulse oximetry which measures the saturation 

pressure of oxygen. However, the saturation pressure measures the oxygen only at the local 

tissue levels [13] , and hence cannot be a reliable predictor for trauma-related hemorrhage 

involving acidosis. Tissue hypoxia correlates with hyperlactatemia which is a consequence of 

shock.[92]  

Zelechowska et al. have monitored the dioxygen levels using cyclic voltammetry [93] 

using electrodes made from carbon nanotubes. Carbon paste electrodes have also been used for 

measuring tissue oxygenation by Bolger et al. [94]. Electrocatalysis have been performed using 

carbon-containing palladium nanoparticles modified using a platinum monolayer in Zhang et al. 

[95]. Hematite nanoparticles have been used on modified glassy carbon electrodes. Here, oxygen 

was electrocatalytically reduced using the four-electron pathway. The mechanism of oxygen 

reduction has been expressed using the Randles- Sevcik equation (Eq. 6)[96].  
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 𝐼 = 2.99 × 105 𝑛(𝑛′ + 𝛼)1/2𝐴𝐷1/2𝐶𝜈1/2                                           (6)

Where 𝐼 is the current produced, 𝑛 is number of all electrons in the process, 𝑛′ is the

number of electrons in the prior step, 𝛼 is the transfer coefficient, 𝐴 is the active surface area of 

working electrode, 𝐷 is the diffusion coefficient of oxygen, 𝐶 is the concentration of oxygen and 

𝜈 is the scan rate [97]. Figure 9. shows the responses for oxygen sensing using different types of 

electrodes. 

Figure 9. Cyclic voltammetric responses for direct reduction of oxygen with electrodes 

made from A) functionalized CNT and B) Bilirubin Oxidase, C) Current versus time 

response for Carbon Paste Electrodes, D) Polarization curves for oxygen reduction on 

Platinum/Palladium electrodes (Reprinted from [93]). 

Ward et al. have reported the measurements of tissue oxygenation in the skeletal muscles. 

Here, near infra-red spectroscopy has been utilized to understand how comparing the absorption 

D)C)

B)A)
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spectra for various types of hemoglobin helps to track changes in the oxygen delivery and its 

consumption by organs [98]. 

 

1.3 Decision-making using a patient stratification profile 

Trauma patients need to be closely monitored especially during their transport from the 

site of injury to the site of clinic. There is a dearth of efficient functional modalities in the 

creation of monitoring and patient stratification profiling. High number of casualties could be 

attributed to the technical gap in this area [99]. One such computer decision-support system has 

been developed by Salinas et al.[99, 100]. This computer-based system includes wireless 

transmission capability. Here, transmission of important parameters like pulse oximetry, blood 

pressure, pulse rate and heart rate is explored. To enable the storage of the profile for the patient 

the data transmission needs to be coupled with a data-logger system. These five analytes can be 

used together in conjunction with classification algorithms to form a patient stratification profile. 

An adjunct device can enable in decision making of the physicians regarding the 

criticality of the patient. This minimally invasive device can be implanted pre-emptively or by 

the first responder at the site of injury. This can enable immediate and continuous measurement 

of the trauma patient’s physiological status in a real-time fashion. Point-of-care monitoring[101] 

in trauma is of paramount importance as it can tell the EMS personnel about the status of the 

injured person in real-time and help in speedy triage. 

Liu et al. have reported the use of Wireless Vital Signs Monitor, Athena GTX to monitor 

vital signs and heart rate parameters [102]. For detecting the trends in the datasets, usage of 

machine learning algorithms based on artificial intelligence[103] has been suggested. This can be 

coupled with deep learning approaches to incorporate the growing data sets of patients. This 
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exorbitant amount of information data can be transmitted to hospital settings using wireless 

telemetry systems. Figure 10. shows the systems used for monitoring the patient status 

wirelessly.  

Figure 10. Monitoring of patient status using an algorithm to support decision-making 

using (A) Murphy factor algorithm to monitor vital signs, and (B) Wireless, portable vital 

signs monitor (WVSM) (Reprinted from [102]). 

1.4 Wholesome system for the management of trauma 

A wholesome system as a biosensor has been devised by Guiseppi et al.  It is dual-

analyte in nature, incorporating glucose and lactate [51]. This designed and fabricated system is 

tested in small animals [104]. Data is acquired using a dual-responsive bioSONDE kept 

indwelling into the muscle of the animal [52]. This biosensor has a hardware interface to gather, 

process and store the data from the two analytes in the form of a wireless bluetooth potentiostsat 

[51].  

Taking inspiration from the dual-analyte biosensor, the system has been improvised to 

incorporate three more analytes in the same foot print area of 2 mm x 4 mm. The hardware 

components of a biosensor microsystem can include the biotransducers, front-end electronics 

B)A)
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such as potentiostat, AD/DA, medical frequency wireless telemetry, base stations, remote 

computer, and display readout. 

Important considerations for hardware design include data collection (current, potential, 

etc.), information transfer, security, signal processing, storage, device footprint, portability, and 

user friendliness. Hardware must be able to securely collect raw data from the biotransducers, in 

this case five separate biotransducers for five separate analytes, and transmit that to a computer 

processing station, temper and interpret the collected data, and display actionable data to the end 

user. Hardware has been improved to incorporate will be able to manage power usage for all 

system components, collect and condition all analog signals from the five biotransducers of the 

SONDE, digitize those analog signals, store raw or conditioned data and operational parameters, 

wirelessly support unidirectional or bidirectional communication with a base station, rapidly 

wake up from a low-power “sleep” for immediate data collection. The microsystem will be 

externalized on animals and the SONDE will be indwelling in the muscle of the animal which 

must be fully ambulatory. 

       Trauma-induced hemorrhage with its attendant peripheral vasoconstriction, insulin 

resistance, hyperlactatemia, acidosis, hyperkalemia, and hypoxia can rapidly lead to death or may 

be followed by a “cytokine storm” which can subsequently lead to Multiple Organ Dysfunction 

Syndrome (MODS), which can also be fatal [51]. A MODS severity score was developedby 

Marshall et al. in 1995, wherein a score (0-4) is applied by physiologic measurement of 

dysfunction in 6 organ systems [105]. The total number of input points were then added to achieve 

a score corresponding to the patients’ ICU mortality %, hospital mortality %, and ICU stay. A 

score similar to MODS, called the Hemorrhage Intensive Systemic Score (HISS) is introduced to 

allow for patient stratification based on biomarker data fusion. HISS is a severity index intended 
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as an adjunct to inform trauma victim healthcare providers of the criticality of the patient’s health 

and help them deliver timely and appropriate care and attention, as required[106]. This can help in 

timely triage and stabilization of the most critical patients and a consequent reduction in patient 

mortality [13]. This bio-SONDE, combined with a wireless processing hardware and a software 

algorithm to enable data fusion from the five identified biomarker analytes, can guide evidence-

based decision making derived from the real-time pathophysiological profile of the patient.  

For decision-making, different software algorithms like fine decision tree classifier, 

ensembled bagged decision tree classifier, linear support vector machine, fine gaussian support 

vector machine, artificial neural network, and possibility rule-based classification method on the 

data with 40% uncertainty (noise) in scores are explored. The predictions made by the data-

driven model in conjunction with an adjunct device in the form of a multi-analyte biosensor 

intended for point-of-care continual monitoring of trauma patients, aid in decision-making, 

particularly in a scenario involving mass casualties. 

Synthetic data sets are developed, in lieu of actual patient data, 200 Sensible Fictitious 

Patient data sets, each containing the results of the five biomarkers, were created using an 

algorithm scripted in Python 3.7.0. In the proposed strategy, each biomarker attribute was 

stratified into three levels corresponding to, for example, hypolactatemia (Low), eulactatemia 

(Normal), and hyperlactatemia (High). The details of the stratification are provided in Table 1. 

Lactate was selected to serve as the principal indicator of pathophysiological stress in the 

hemorrhaging trauma patient[63]. A random number generator (RNG) was used to select a 

bounded value of lactate that corresponded to either hypolactatemia, eulactatemia or 

hyperlactatemia. Correspondingly bounded values for glucose, potassium, pH and oxygen 

tension (pO2) were then selected based on the initial, seeded stat lactate value to generate a 
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physiologically consistent, randomized fictitious patient data set. These synthetic data sets are 

then validated by real-life physicians by providing scores or labels corresponding to each data 

set. These constitute the testing sets, against which the performance of different algorithms is 

measured. 

1.5 Future scope 

Minimally invasive biosensor devices with minimal stress to skin propose a new direction 

to the point-of-care monitoring devices for real-monitoring of hemorrhagic trauma. Five 

biomarkers of glucose, lactate, pH, potassium, and oxygen tension with their levels during 

hemorrhagic trauma are discussed. The measurement techniques for each of these biomarkers is 

also discussed. Glucose and lactate are detected by electrochemical enzymatic biosensor methods 

utilizing amperometry [107]. pH sensor is using stimuli-responsive hydrogels using 

impedimetric[108] approach. Potassium is monitored using a Nernstian approach. Oxygen 

tension is monitored using electrochemical reduction of oxygen using voltammetry 

approach[109].  An integrated hardware platform[110] is proposed to gather, process and store 

the data generated form these five analytes incorporated on a single biochip. Finally, the system 

for point-of-care monitoring is made wholesome using a data-driven approach for decision-

making by employing classification algorithms. Extracted models are used to generate score 

predictions to create the patient stratification profile corresponding to patient severity which will 

help to guide resuscitation. [13] Data will be transmitted wirelessly[111] using low-power 

bluetooth modality[112] to a remote base-station.  
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1.6 Conclusions 

Minimally invasive biosensors offer an advantage of high accuracy over non-invasive 

and less penetration depth over fully invasive biosensors. Point-of-care stabilization of 

hemorrhagic trauma patients is required to reduce morbidity and mortality. The current standard 

of care approach of monitoring the vital signs is not sufficient. Hence, there is a need to move to 

other substrates than blood. Interstitial fluid in muscles at the action point of tissue hypoxia poses 

a reliable substitute for blood. Biomarkers for pathophysiology of trauma include glucose(low), 

lactate(high), pH(low), potassium(high), and oxygen tension(low). Real-time monitoring for 

these biomarkers needs to be supported using a wholesome biosensor system, with wireless 

transmission capability and embedded algorithms, enabling patient stratification for efficient 

data-driven decision-making by the physicians. This can help in scenarios involving mass 

casualties, particularly during the transport of the patients from the site of injury to the site of 

clinic by the primary trauma care providers. 
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1CHAPTER II 

MOLECULAR ENGINEERING OF POLY(HEMA-CO-PEGMA)-BASED HYDROGELS: 

ROLE OF MINOR AEMA AND DMAEMA INCLUSION* 

2.1 Introduction 

Synthetic hydrogels are three-dimensional polymer networks synthesized from highly 

hydrophilic, water soluble monomers rendered water insoluble by electrostatic or covalent 

crosslinking and consequently imbibe and retain a significant weight fraction of water compared 

to the total polymer content [113]. Hydrogels are well-established biomaterials with a diverse 

array of biomedical applications. Traditionally, synthetic hydrogels have been applied as contact 

lenses [114], linings for artificial hearts [115], materials for artificial skin [115], three-

dimensional scaffolds for tissue engineering and regeneration [116-118], bioreceptor hosting 

membranes for biosensors [119, 120], and sophisticated responsive drug delivery devices [121-

123]. This diversity of applications reflects the fact that hydrogels may be molecularly 

engineered to achieve targeted physicochemical and stimuli-responsive properties [124]. 

However, major technical challenges are still found when tailoring hydrogels to the needs of the 

environments in which they are applied and while also eliciting the optimized desired response to 

stimuli originating from that environment. A suitable simple example is an implantable pH 

sensor wherein biocompatibility and pH-sensitivity are both desired characteristics [125, 126]. 

*Reprinted with permission from “Molecular engineering of poly (HEMA-co-PEGMA)-based hydrogels:

Role of minor AEMA and DMAEMA inclusion” by Bhat, A., Smith, B., Dinu, C. Z., & Guiseppi-Elie,

A., 2019. Materials Science and Engineering: C, 98, 89-100. Copyright [2019] by Elsevier.
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In order to impart desired functionality, e.g. pH response, monomer constituents and/or 

chemical modifiers are added to the hydrogel network. Some modifiers alter the primary repeat 

unity structure of the hydrogel and in so doing have the potential to induce new architectural 

features from crystallinity to micelle formation. For example, poly(ethylene glycol) (PEG) may 

be added to hydrogels, ostensibly to mitigate protein adsorption and hence confer 

biocompatibility, although immunogenicity is now a concern with such materials [127, 128]. 

However, PEG inclusion may also influence total hydration, small molecule diffusivity and 

produce a change in elastic modulus [117, 129]. This illustrates the decisive impact monomer 

composition can have on global hydrogel properties. As such, it is important to characterize the 

changes in physicochemical properties and the corresponding biological response to hydrogels 

once desired chemical modifiers have been added and to subsequently optimize their 

composition to achieve targeted performance. The hydrogel characteristics analyzed in this study 

were, i) the total hydration as determined by gravimetry, ii) the distribution of water among free 

and bound states as determined by differential scanning calorimetry (DSC), iii) the elastic 

modulus as measured by force-displacement using an AFM method, iv) the membrane resistance 

calculated from Electrical Impedance Spectroscopy (EIS) data and equivalent circuit modeling, 

and v) the biological response of protein coverage determined by albumin adsorption isotherms 

on the hydrogel surfaces.  

The degree of hydration (DoH), free water and bound water content are key hydrogel 

properties to take into consideration because of their profound impact on the functionality of 

hydrogels for biomedical application [130]. For example, the quantity and distribution of water 

within hydrogels have been shown to alter the sorption and diffusive transport of drugs [131] and 

have also been tailored for the fabrication of injectable hydrogels used in surgery and localized 
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therapy [130]. The balance among hydrophilic /hydrophobic character of functional groups on 

the polymer backbone and the segmental dynamics of the polymer network are responsible for 

the amount of water that can be imbibed (DoH) as well as the state distribution of water within 

the polymer network (free vs. bound water) [130]. The degree of hydration reflects the total 

amount of water imbibed by the hydrogel. Once imbibed, water within a hydrogel is described to 

exist as freezable free water, freezable bound water, and non-freezable bound water [132]. For 

simplicity, the freezable free water and freezable bound water may be grouped together as 

freezable water. The non-freezable water is that portion which is strongly hydrogen-bonded and 

hence bound to the repeat units of the polymer network. This portion of the water does not freeze 

at the regular freezing temperature of water and is not easily removed from the hydrogel. The 

freezable water is taken to be the water of solvation that occupies the interstices or nano-voids 

created by the balance of the solvation of the repeat units of the macromolecular chains that leads 

to an expansion of the network (the swelling force) and the counter balancing elastic force of the 

cross-linked structure (the retractive force) [133]. This water freezes at the regular freezing 

temperature of water and is readily removed from the hydrogel. 

In addition to the DoH and water distribution within hydrogels, the Young’s or elastic 

Modulus is paramount in determining favorable cell biomaterial interaction and has implication 

for the indwelling performance of implantable devices. In recent work, Guiseppi-Elie et al. 

demonstrated a clear relationship between the elastic modulus and the free:bound water ratio in 

poly(HEMA)-based hydrogels [130]. An increase in the free:bound water ratio parallels an 

increase in elastic modulus [130]. Additionally, attachment dependent RMS13 human muscle 

fibroblasts were shown to increase their in vitro attachment and proliferation at lower elastic 

modulus and lower free:bound water content that corresponded to lower cross-link density [134]. 
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As such, changes of the elastic modulus and water content within hydrogels through the 

inclusion of hydrophobic [135, 136], protic and hydrogen bonding moieties [137], cationogenic 

[138] and zwitterionic moieties [139], has become a subject of interest in polymeric biomaterials 

research. Once modified to have the appropriate biomimetic properties, poly(HEMA)-based 

hydrogels have the potential to function as the biocompatible interface between a biotransducers 

(ABIO) and the local site of implantation (BIO) within the human body [124]. 

In this work is sought a pH-responsive hydrogel suitable for short-term intramuscular 

implantation capable of measuring tissue acidosis pursuant to hypoxia. The ideal hydrogel has 

optimized surface chemistry, molecular architecture, nanoscopic through mesoscopic structure, 

and mechanical properties that work in tandem to mitigate the pro-inflammatory response and 

minimize eventual fibrous encapsulation in order to maximize the bioanalytical performance of 

an implanted biotransducer. While a wide array of monomer constituents and chemical modifiers 

are known to influence pH-response, a major challenge is the lack of systematic understanding of 

the impact of individual hydrogel constituents on the water content and water distribution and 

how this may influence relevant physicochemical properties. The two monomer, amino ethyl 

methacrylate (AEMA) and dimethyl amino ethyl methacrylate (DMAEMA) were selected for the 

similarities of their pKa values of 8.46 and 7.84 respectively, [140] [141] but contrasting 

hydrophobicity indices, -3.5 and 3.8 respectively . The reference monomer HEMA has a 

hydrophobicity index of -0.8 [75]. 
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Figure 11. Schematic illustration of the various components of poly(HEMA-co-PEGMA)-

based hydrogels explored in this study.  

The monomer constituents characterized in this study include HEMA, AEMA and 

DMAEMA, the chemical structures and end-groups of which are shown in Figure 11. As seen 

from Figure 11, the hydroxyl end-group in HEMA (-OH), a common monomer used in hydrogel 

formulation [142], was responsible for the hydrophilic property. Similarly, the primary amine 

group of AEMA (-NH2 ↔ -NH3
+) and the tertiary amine end-group of DMAEMA (–N-(CH3)2 ↔ 

(–NH+-(CH3)2) were responsible for the reactive and relatively hydrophilic, and relatively 

hydrophobic behavior of the constituents. The combined presence of the hydrophobic and 

ionizable tertiary amine in DMAEMA and the reactive primary amine in AEMA were expected 

to have an impact on hydration characteristics of the hydrogels. 

This study reveals that inclusion of functional monomers in minor amounts (~4 mol%) 

does not significantly impact the water content but significantly impacts the water distribution. 

Compared to reference HEMA hydrogel, hydrophilic and ionizable AEMA maintains similar 

Cross linker

Confers high hydration Confers
biocompatibility

Modifies 
viscosity X=
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hydration, water distribution, elastic modulus, and protein adsorption, however, it showed higher 

membrane resistance at pH 7.4 under differing temperature conditions. The hydrophobic and 

ionizable DMAEMA had lower total hydration, achieved at the sacrifice of the bound water 

content. The impact of these subtle changes was observed in an increase of the elastic modulus, 

an increase of the membrane resistance, and an increase of protein adsorption. Hydrogels with 

both AEMA (2 mol%) and DMAEMA (2 mol%) exhibited behavior that shifted preferentially 

toward DMAEMA with regard to water content and towards AEMA with regard to the measured 

physiochemical properties. 

  



 

30 

 

2.2 Chemicals and reagents 

The monomers 2-hydroxyethyl methacrylate (HEMA), poly(ethylene 

glycol)(360)methacrylate (PEG(360)MA), N-[tris(hydroxymethyl)methyl]acrylamide (HMMA, 

93%), N-(2-aminoethyl) methacrylamide (AEMA, 90%), N,N-(2-dimethylamino)ethyl 

methacrylamide (DMAEMA, 98%), the cross-linker tetra(ethylene glycol) diacrylate (TEGDA, 

technical grade), the biocompatible viscosity modifier polyvinylpyrrolidone (pNVP, MW 

~1,300,000) and the photo-initiator 2,2-dimethoxy-2-phenylacetophenone (DMPA, 99+%) were 

purchased from Sigma Aldrich Co. (St. Louis, MO, USA). Methacrylate and diacrylate reagents 

were passed through an ( removal column (306312, Sigma-Aldrich Co., St. Louis, MO) in order 

to remove the polymerization inhibitors hydroquinone and monomethyl ether hydroquinone. The 

buffer formed from 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid sodium salt (HEPES) 

was prepared to physiologically relevant conditions of 25 mM and pH = 7.4. A Milli-Q® plus 

(Millipore Inc., Bedford, MA) ultrapure water system was used to prepare deionized water. All 

other common chemicals and solvents were purchased from Sigma Aldrich Co. (St. Louis, MO, 

USA) and were used as received, unless otherwise stated. 

2.2.1 Hydrogel cocktail formulation and polymer synthesis 

All monomers were handled in a UV-free laboratory with UV filtering sleeves (TG-

T8TG-UV, Lightbulbsurplus.com) placed over the fluorescent light bulbs. Four unique hydrogel 

pre-polymer formulations were prepared that varied in composition and were synthesized from 

HEMA, DMAEMA and AEMA by varying 4-mol% (nominally) of the responsive constituent. 

Table 2 lists the hydrogel constituents and their exact molar composition. Thus, all hydrogels 

comprised 80 mol% HEMA. The formulation referenced as 4-mol% HEMA contained an 

additional 4-mol% HEMA to a total of 84-mol% HEMA and served as a reference formulation. 
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Other hydrogels were formulated by replacing the 4-mol% HEMA with 4-mol% AEMA, 4-

mol% DMAEMA, or a mixture of comprising 2-mol% AEMA and 2-mol% DMAEMA. To 

improve component solubility, a mixed solvent comprising 1:1 (v/v) ratio of ethylene glycol and 

DI water was added to the mixture such that it comprised 20 volume% of the formulation. 

Finally, the mixture was ultrasonicated for 5 min and sparged with nitrogen gas to remove 

dissolved oxygen prior to casting and crosslinking. 

Table 2. Monomer composition (mol%) for all four poly(HEMA)-based hydrogel 

formulations containing 4 mol% HEMA, 4 mol% AEMA, 4 mol% DMAEMA, and 2 mol% 

AEMA + 2 mol% DMAEMA. 

 

To prepare hydrogel samples for characterization and testing, the hydrogel formulations 

were cast inside press-to-seal silicone isolator chambers (JTR12R-2.0, Grace Biolabs, Bend, OR) 

comprising 12 each of 4.5 mm diameter x 1.6 mm depth that were placed between two 

hydrophobicly prepared glass slides. Prior to casting, both sides of the glass slides were 

thoroughly degreased with acetone, UV cleaned for 10 min (UV-ozone Cleaner, Boekel 

Industries Inc., Feasterville, PA) and sonicated in isopropyl alcohol to further remove 

contaminants. The slides were then plasma cleaned (Plasma cleaner/sterilizer PDC-32 G, Harrick 

Mol% of monomer components

Polymer constituents
4-mol% 
HEMA

4-mol% 
AEMA

4-mol% 
DMAEMA

2-mol% 
AEMA

2-mol% 
DMAEMA

HEMA (Base monomer: hydrophilic) 79.8 79.8 79.8 79.8
TEGDA (Cross-linker) 3.3 3.3 3.3 3.3
PEGMA(360) (Confers biocompatibility) 5.8 5.8 5.8 5.8
HMMA (Support monomer: hydrophilic) 4.4 4.4 4.4 4.4
pNVP (Pre-polymer: Increases viscosity)
(on the basis of repeat unit structure)

1.9 1.9 1.9 1.9

HEMA (Monomer: hydrophilic) 4.4 0 0 0
AEMA (Monomer: hydrophilic) 0 4.4 0 2.2
DMAEMA (Monomer: hydrophobic) 0 0 4.4 2.2
DMPA (Photoinitiator) 0.4 0.4 0.4 0.4
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Plasma, Ithaca, NY) to activate –OH groups and immediately incubated in a freshly prepared 

solution of 0.1% octadecyltrichlorosilane (OTS) in toluene for 45 minutes. The glass slides were 

then sonicated in isopropyl alcohol for 5 minutes and the silanol condensation with –OH groups 

of the glass allowed to proceed in an oven by sequentially heating to 40, 110, and 40°C for 20 

minutes at each temperature. The isolator was pressed to one glass slide and each chamber filled 

with the hydrogel cocktail. The second glass slide was then gently lowered onto the chambers. 

Hydrogels were UV cross-linked for five minutes (CX-2000, UVP, Upland, CA). Upon 

completion of cross-linking, the polymerized hydrogels were removed from the glass slides and 

gradually hydrated and unreacted monomer extracted by soaking for one hour each in ethanol 

(99%) and 25 mM HEPES buffer (pH 7.4) mixtures in proportions of 100/0, 75/25, 50/50, 25/75 

and 0/100 (mL/mL %). Ethylene glycol diffuses out completely by the extraction/hydration 

procedure used as it does not cross-link or become entrapped within the hydrogel. Such a 

progression in extraction helps to ensure that ethylene glycol is completely removed before the 

test of hydrogel properties. 

2.3 Characterization of Hydrogels 

2.3.1 Hydration via gravimetry  

The degree of hydration (DoH) of the hydrogels was determined using gravimetric 

analysis. Hydrogel discs were weighed following equilibrium hydration (Wh) and then weighed 

again once they were completely dehydrated (Wd). Dehydration was accomplished by storing 

hydrogels in an -80°C freezer for twelve hours and then lyophilizing them for two days under 

0.01 mbarr at -50°C. DoH was then calculated using Eq. (7).  

𝐷𝑜𝐻 =  
𝑊ℎ−𝑊𝑑

𝑊ℎ
× 100                                                                               (7) 
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2.3.2 Water distribution via Differential Scanning Calorimetry (DSC)  

Thermal analysis was performed using a differential scanning calorimeter (Q2000, TA 

Instruments, New Castle, DE). Following established methods [143], wherein, approximately 5-

10 mg of hydrated hydrogel was sealed into a hermetic pan (Tzero hermetic lid, 901684.901; 

Tzero pan, 901683.901), equilibrated at -40°C and heated to 30°C at 10°C/min under purging 

nitrogen (50mL/min). The enthalpic contribution, ΔHm, of hydrogels at 0°C was then found by 

integrating the endothermic peak in TA Universal analysis software and then normalizing the 

data with respect to Wh.  Assuming the enthalpy of the freezable and bound water to be the same 

as that of bulk water (ΔH0 = 334 J/g), the freezable free water content was calculated using Eq. 

(8), and the non-freezable bound water content was calculated using Eq. (9).  

    
𝑊𝑓

𝑊ℎ
(𝑤𝑡%) =

∆𝐻𝑚
∆𝐻0

× 100                                                                             (8) 

   
𝑊nfb
𝑊ℎ
(𝑤𝑡%) =  𝐷𝑜𝐻 −

𝑊𝑓

𝑊ℎ
                                                                                  (9) 

To determine the glass transition temperature (Tg) of the hydrogels, samples were first 

dehydrated then placed and sealed into hermetic pans (Tzero hermetic lid, 901684.901; Tzero 

pan, 901683.901), equilibrated at -20°C and heated to 200°C at 10°C/min for two cycles. The 

first cycle was performed in order to erase the thermal history of the hydrogels, and the second 

cycle was performed in order to determine the inherent thermal properties of the hydrogels. The 

Tg was determined by extrapolation of thermal trace data using TA Universal Analysis software.  

2.3.3 Electrical Impedance spectroscopy  

The electrical conductivity of hydrogels, while not extensively studied, has implications 

for cytocompatibility, cellular attachment and differentiation [144] and appears to manifest 

through differences in hydration. EIS, along with equivalent circuit modeling, provides a 
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convenient means to determine hydrogel membrane resistance. For a hydrogel system 

represented by a simplified Randles equivalent circuit of a series membrane resistor (RM) and a 

parallel arrangement of an interfacial charge transfer resistor (RCT) and a double layer capacitor 

elements, impedance (Z) is represented as a function of its capacitance (C) and frequency (f) (Eq. 

10, Eq.11 and Eq. 12) [78]: 

𝑍′ = 𝑅𝑀 +
𝑅𝑐𝑡

1+(𝜔𝐶𝑑𝑙𝑅𝑐𝑡)
2                                                                 (10)

 𝑍" = −
𝜔𝐶𝑑𝑙𝑅𝑐𝑡

2

1+(𝜔𝐶𝑑𝑙𝑅𝑐𝑡)
2  (11) 

(𝑍′ −𝑅𝑀 −
𝑅𝑐𝑡

2⁄ )
2

+ (𝑍")2 = (𝑅𝑐𝑡 2⁄ )
2

                                             (12)

The hydrogel membrane resistance is reflective of the volume density and state of 

ionization of ionogenic groups within, the type of bathing ions and their concentration that 

partition into the hydrogel, and temperature. The real (Z’) and imaginary (Z”) components of the 

complex impedance presented via the Nyquist plot establishes an idealized semicircle. The 

depressed semicircles in Nyquist plots indicate pseudocapacitance arising due to a frequency 

power (n) value between 0 and 1 (n=0 being a pure resistor and n=1 being a pure 

capacitor)[145]. For an admittance Y0 the pseudocapacitance is given as (Eq. 13): 

𝐶𝑝𝑠𝑒𝑢𝑑𝑜 =
(𝑌0𝑅𝑐𝑡)

1/𝑛

𝑅𝑀
   (13) 

Hydrogel cocktails were pipetted into the wells (ϕ=4.5 mm and T=1.6 mm) of singulated, 

non-adhesive, press-to-seal silicone isolators (JTR12R, Grace Biolabs, Bend, OR) that were 

supported on OTS-silanized glass microscope slides. Following UV cross-linking, slides were 

removed, hydrogels were kept within the isolators then hydrated and extracted by sequentially 

soaking for one hour each in ethanol (99%) and 25 mM HEPES buffer (pH 7.4) mixtures in 



 

35 

 

proportions of 100/0, 75/25, 50/50, 25/75 and 0/100 (mL/mL %). Finally, hydrogels were 

equilibrated overnight in HEPES buffer of nominal pH 7.4. Following equilibration, two 

stainless steel mesh electrodes (5.0 mm x 50 mm) (SS Type 304, ϕ= 0.0075 in, 60 per inch, 

TWP, Inc., Berkeley, CA) that were degreased in boiling methylene chloride, rinsed profusely in 

isopropyl alcohol, rinsed profusely in DI water and blown dry with nitrogen gas, were 

assembled, one on either side of the silicone isolator chamber that contained the cross-linked 

hydrogel. The assembly was then clamped with a plastic clip (Figure 12) and returned to the pH 

7.4 HEPES buffer solution where it was allowed to equilibrate overnight. Immediately before the 

EIS measurements, the samples were removed from the buffer and quickly blown with nitrogen 

gas to remove excess liquid. 

All EIS measurements were carried out over the range 0.01 Hz – 1 MHz using 10 mV p-

t-p sine wave (5 points per decade) with zero offset voltage. Measurements were done at room 

temperature (21 °C) in air or under physiologic conditions in an incubator at 37 °C and 5% CO2 

using a VersaStat 4 (Princeton Applied Research, AMETEK, Inc., Oak Ridge, TN). Impedance 

spectra of Bode plots (impedance magnitude, |Z|, and phase, θ, vs. frequency) and Nyquist plots 

(Zreal versus Zimg) were derived directly from the software provided with the instrument 

(VersaStudio version 1.51, AMETEK, Inc., Oak Ridge, TN). Further data analysis using 

ZSimpWin software version 3.60 (AMETEK, Inc., Oak Ridge, TN) with a modified Randles 

equivalent circuit model R(QR) resolved the membrane resistance, RM, charge transfer 

resistance, RCT, and the double layer capacitance, QDL, or constant phase element (CPE). 
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Figure 12. (A) Schematic illustration of the device under test showing the 2-electrode setup 

for electrical impedance spectroscopy and (B) setup of the electrode assembly with ss-mesh 

electrodes clamped on either side of equilibrated hydrogel discs within silicone isolator 

molds.  

 

2.3.4 Surface Morphology of hydrogels using Scanning Electron Microscopy(SEM) 

Hydrated hydrogels were freeze-fractured using liquid nitrogen. The freeze-fractured 

hydrogels were dried for 48 hours in a closed cell concentrator (TurboVap 500, Zymark, St. 

Cridersville, OH) and stored in a desiccator cabinet (Fisherbrand, Hampton, NH) until use. 

Desiccated hydrogels were mounted onto sample holders using double-sided, conductive carbon 

tape such that their freeze-fractured surfaces were exposed and were sputter-coated with a 5 nm 

thick platinum/palladium layer using a Cressington 208HR High Resolution Sputter Coater 

equipped with a MTM-20 thickness controller (Cressington Scientific Instruments, UK). A small 

piece of carbon tape was placed on one side of the hydrogels. This was done to dissipate the 

charging of the sample while imaging. SEM imaging was conducted using a JEOL JSM-7500F 

FE-SEM at 3.0 kV at magnification of x2.5k. 
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2.3.5 Elastic modulus of hydrogels  

The elastic modulus of fully hydrated hydrogels (25 mM HEPES buffer, pH 7.4) was 

measured using an Instron 3345 (Norwood, MA) equipped with 1 kN pre-load cell. The 

accompanying Instron Bluehill software was used to note the dimensions of the hydrogel sample. 

Using compression-extension mode in the software, the elastic modulus of fully hydrated 

hydrogels was tested with a 0.1 N pre-load force over 5% strain at the rate of 1 mm/min. The 

elastic modulus was extracted from the linear part of the stress-strain curve and noted in kPa. 

2.3.6 Protein adsorption on hydrogels 

Protein adsorption is a key factor in the biological response to implantable devices and is 

the governing event in cell signaling for the foreign body response [146], the inflammatory 

cascade [147] and the blood coagulation cascade [148]. Protein adsorption is therefore important 

for engineered tissue scaffolds and implantable biosensors [149, 150]. Shortly after intravascular 

implantation, plasma proteins such as albumin, fibrinogen, immunoglobulin G, fibronectin, and 

von Willebrand factor adsorb onto the biomaterial’s surface and undergo conformational changes 

that signal to initiate inflammation, coagulation, and the foreign body response [151]. Of these 

proteins, albumin is often used to determine the blood compatibility of prepared hydrogels [152] 

as its extremely high serum content and ability to complex with other proteins gives it an 

influential role in the competitive adsorption of proteins from biological environments [153]. 

The commonality of protein interactions in biological processes coupled with the complexity of 

the mechanisms behind protein adsorption has led to an increased drive to research protein 

adsorption on engineered surfaces [149] and the effect seen on protein adsorption with different 

surface characteristics, such as hydrophobic versus hydrophilic surfaces [151]. 
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Hydrogel cocktails representing the four variants under study were cast (40 µL), UV-

crosslinked and simultaneously covalently attached via NHS-PEG-acryloyl conjugates [154] to 

the bottom of the wells of 96-well polystyrene multi-well plates that were chemically modified 

by treatment for one minute with acidified permanganate (H2SO4/K2Mn04) [154]. Hydrogels 

were then hydrated in PBS 7.4. FITC-tagged albumin was prepared at twelve unique 

concentrations; 0.1, 0.3, 0.5, 1, 3, 5, 10, 30, 50, 100, 300, 500 µg/mL in PBS 7.4 buffer and the 

hydrogels covered in 50 µL of each solution in the dark for overnight incubation at RT. 

Following adsorption, the loosely adsorbed proteins were removed under running DI water for 

five minutes, wells immediately rinsed with PBS buffer and each well scanned using a Cytation-

5 (BioTek Instruments). Adsorption isotherms [155] were constructed from triplicate measures 

of fluorescence intensities at each concentration using the Langmuir Adsorption Isotherm 

equation (Eq. 14) 

𝑄 = 𝑄𝑚𝑎𝑥
𝐾 [𝐴]

1+𝐾[𝐴]
                                                                                  (14) 

Where Qmax is the maximum protein adsorption capacity, Q is protein adsorption capacity 

and K is the equilibrium constant given by (Eq. 15) 

𝐾 =
 [𝐴𝐵]

[𝐴][𝐵]
                                                                                                   (15) 

[A] is the molar concentration of adsorbate (proteins) and [B] is the molar concentration 

of adsorbent sites on the hydrogels. The Langmuir isotherm has long been used to describe the 

adsorption of proteins onto biopolymer surfaces and, as in this case, was often found to have the 

best fit relative to other isotherm models [156]. 
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2.3.7 Statistical Analysis 

For hydrogel water content, the results were presented as the mean ± 95% confidence 

intervals (C.I.), with n = 3. The statistical significance of differences between mean values for 

different samples was evaluated using the Student’s t-test with values of p < 0.05 being 

considered as statistically significant. The results for the Young’s Modulus of the hydrogels was 

presented as an average value and standard deviation for each hydrogel formulation with n = 

500. For impedance at room temperature and physiological temperature, the values were

represented as an average value and standard deviation for each hydrogel formulation with n = 3. 

For protein adsorption, the statistical significance was assessed from the predicted intervals. 

2.3.8 Partition coefficients and hydrophobicity indices for HEMA, AEMA and DMAEMA 

monomers 

2.3.8.1 Calculations for partition coefficients 

Partition coefficient (unit less), P = [X]organic / [X]aqueous, is the ratio of molar 

concentrations (mol/L) in contacting phases [143], generally an organic phase vs the aqueous 

phase (page 1112, Sangster).[157] When log P > 0, P > 1; [X]org > [X]aq and when log P < 0, P < 

1; [X]org < [X]aq. 

As monomers HEMA, AEMA and DMAEMA differ only with respect to their functional 

groups OH, NH2, and N(CH3)3 respectively, it is assumed that only these functional groups 

contribute to the partition coefficients.  

For CH3OH, CH3NH2, N(CH3)3; log P values were calculated to be -0.74 (table 9, page 

1150, Sangster), -0.57 (table 15, page 1192, Sangster), 0.16 (table 15, page 1193, Sangster) 

respectively.[157] For CH3OH and CH3NH2 the log P values are negative indicating 

hydrophilicity. For N(CH3)3, log P is 0.16 (positive), indicating hydrophobicity. These values 
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serve to provide a relative ranking of the monomer along a continuum from highly hydrophilic to 

hydrophobic. 

2.3.8.2 Evaluating the hydrophobicity indices of the monomers using Kyte-Doolittle scale 

(for amino acids) [158] 

Kyte-Doolittle scale[158] lists the hydrophobicity indices of amino acids. We allocated 

these hydrophobicity indices to our monomers based on their functional group similarity with the 

R-groups of amino acids.  

2.4 Results and Discussion 

The monomers used in the hydrogel cocktail were of similar molecular weights, 

diffusivities and chemical reactivity and the hydrogel was formed by random co-polymerization. 

Hence, the composition of the resulting polymer product was expected to reflect the composition 

of the starting reactants. Also, the cross-linker, TEGDA, was consistently used at 3 mol% in each 

of the compositions of HEMA, AEMA and DMAEMA. The degree of cross-linking has been 

well established to have a significant effect on the biotechnical performance hydrogels. In 

previous work by Guiseppi-Elie et al [159] it was established that the cross-link density was 

inversely proportional to swelling and that the measured and calculated degree of cross-linking 

was reflective of the mol % cross-linker in the starting reaction cocktail. 

2.4.1 Water Content and Distribution  

The degree of hydration as determined by gravimetric analysis and the free and bound 

water content as determined by DSC of the four hydrogel formulations are detailed in Table 3. 
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Table 3. Hydration, water distribution (25 °C, DI water) and glass transition temperature, 

Tg, for all four poly(HEMA)-based hydrogel formulations containing 4 mol% HEMA, 4 

mol% AEMA, 4 mol% DMAEMA, and 2 mol% AEMA + 2 mol% DMAEMA. 

 

It is immediately apparent that the total hydration among the four formulations is not 

dramatically different. However, close inspection reveals that the distribution of water among 

free and bound states was significantly different (p <0.05). Of the 39.3% total hydration of the 

poly(HEMA) hydrogel, 91% was non-freezable, bound water and 9% was freezable, free water. 

The replacement of 4 mol% HEMA with 4 mol% AEMA made no difference to the total 

hydration (~ 1% change) or the distribution of water, suggesting that at this level, there is 

equivalence of the –OH and the –NH2 moieties. However, the replacement of 4 mol% HEMA 

with 4mol% DMAEMA resulted in a reduction in total hydration by 15 % and a change in the 

distribution of water such that of the 35.5% total hydration of the poly(HEMA-4 mol% 

DMAEMA) hydrogel, 85% was non-freezable, bound water and 15% was freezable, free water. 

When 4 mol% HEMA was replaced with 2 mol% AEMA and 2 mol% DMAEMA there resulted 

no difference in total hydration (~ 2% change), a behavior that was dominated by the presence of 

Property 4-mol% HEMA
4-mol% 
AEMA

4-mol% 
DMAEMA

2-mol% 
AEMA

2-mol% 
DMAEMA

Degree of hydration at 
25°C DoH (wt%)

39.3±0.4 39.0±0.2 35.5±0.3 38.7±0.2

% Δ 0.0% -0.8% -9.7% -1.5%
Freezable water

(wt%)
3.8±0.69 3.8±0.4 5.5±0.8 5.4±0.4

% Δ 0.0% 0.0% 44.7% 42.1%
Non-Freezable bound 

water (wt%)
35.5±0.69 35.2±0.4 30.0±0.8 33.3±0.4

% Δ 0.0% -0.8% -15.5% -6.2%
Tg (°C) 93.2 ± 2.9 86.3 ± 1.3 114.2 ± 0.7 96.3 ± 0.4
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the 2 mol% AEMA. However, the distribution of water changed such that of the 38.7 % total 

hydration of the poly(HEMA-2 mol% AEMA-2 mol% DMAEMA) hydrogel, 86% was non-

freezable, bound water and 14% was freezable free water, a behavior that was dominated by the 

presence of the 2 mol% DMAEMA. 

The bound water is an integral part of the hydrogel polymer network through hydrogen 

bonding. The implication of this is that bound water is not freezable at the regular freezing point 

of water. The free water, on the other hand, is water not directly hydrogen-bonded to the polymer 

network, which may be readily removed and/or frozen at 0°C. These changes are more clearly 

illustrated in Figure 13 that plots the change in water content of all three other hydrogels relative 

to the reference hydrogel with 4 mol% HEMA. These changes and their statistical significance 

are now clearly discernable as percentage increases and decreases relative to the reference 

hydrogel with 4 mol% HEMA. 
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Figure 13. Relative changes in the degree of hydration, free water content, and bound water 

content of poly(HEMA)-based hydrogel containing 4 mol% HEMA (blue), 4 mol% AEMA  

(red), 4 mol% DMAEMA (green) and 2 mol% AEMA + 2 mol% DMAEMA (purple).  

 

The glass transition temperature (Tg) of hydrogels was determined using DSC [75]. 

Values were obtained from the second DSC heating cycle, erasing any influence from the 

thermal history of the hydrogels. Tg provides insight into the dynamics of the amorphous phase 

of a solid material. The Tg is the temperature at which there is an increase in segmental mobility 

of the polymer backbone. Materials are in a rubbery, soft state above their Tg and in a glassy, 

hard state bellow their Tg. This transition is dependent on the flexibility of the polymer chains, 

which for hydrogels is highly influenced by water content (plasticizer effect). In previous 

studies, the Tg has been found to be inversely related to the amount of bound water, with an 

increase in bound water leading to a decrease in the Tg [130]. Thus, analysis of Tg is relevant and 
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for similarly cross-linked polymers allows comparative insight into hydrogel water distribution. 

The Tg for the control hydrogel was found to be 93.2 2.9°C while the replacement of 4 mol% 

HEMA with 4 mol% AEMA reduced the Tg to 86.3 ± 1.3°C, which was not significantly 

different, and replacement with 4 mol% DMAEMA increased the Tg to 114.2 ± 0.7°C, which 

was significantly different. The Tg values reported in the literature for poly(HEMA) hydrogels 

vary generally from roughly 67°C - 100°C [143, 160] depending on factors such as drying 

procedure, method of measurement, original water content, and of course, the amount of 

crosslinker used. The results from the current study does fall within this range. The wide 

variations in Tg values from the literature were due to the variations in cross-linking density, the 

overall water content, and drying method used prior to DSC. In general, higher water content 

generally lowered the Tg values. However, as this study shows, it may not just be hydration but 

rather specifically, bound water content, which is most influential. The higher Tg obtained for the 

hydrogel containing 4 mol% DMAEMA was accompanied by lower total hydration but also by 

lower non-freezable, bound water. 

The relative similarity in the water content, the distribution of water, and Tg when 4 

mol% HEMA was replaced with 4 mol% AEMA was not surprising as both HEMA and AEMA 

are relatively hydrophilic monomers with relatively similarly sized functional groups. The 

replacement of 4 mol% HEMA with 4-mol% DMAEMA had a significant impact on water 

content and the distribution of water. DMAEMA decreased the bound water content by ~14% 

while increasing the free water content by ~45% relative to the control hydrogels. The modest 

decrease in total hydration, the major shift in the water distribution and the increase in Tg were 

all expected and are consistent with previous studies [130]. DMAEMA, unlike the HEMA and 

AEMA, is a relatively hydrophobic and bulkier moiety. The inclusion of DMAEMA was thus 



45 

expected to cause a decrease in the hydrogels ability to strongly bind water, leading to higher 

free water content and lower bound water content. The lower bound water also raised the energy 

required to incite mobility in the polymer chains within the hydrogel. That this effect could be 

realized with a mere 4 mol% DMAEMA was surprising. 

The effect of 2 mol% AEMA and 2 mol% DMAEMA mixture on the water content and 

distribution was likewise interesting. In general, the overall water content and the Tg for these 

hydrogels were statistically similar to that of poly(HEMA). However, the amount of bound water 

was reduced by a factor of ~6%, and the free water increased by a factor of 42% relative to the 

equivalent water content in poly(HEMA) hydrogel. The overall results were quite different from 

the individual addition of AEMA or DMAEMA. In fact, the Tg for the mixture was significantly 

different from that of the AEMA or the DMAEMA hydrogels. Based on the combined results, it 

was evident that the water content and distribution within a hydrogel with equivalent mixtures of 

hydrophilic and hydrophobic monomers do not follow the simple rule of mixtures but instead 

reflect a distinct behavior all its own. The degree of hydration calculated at pH 7.4 was shown to 

be the same regardless of molecular composition examined. This implies that the minor changes 

in composition did not significantly affect the gravimetrically determined degree of hydration. 

However, the water distribution in the hydrogels was changed dramatically, which in turn 

influences the key biotechnical properties. 

2.4.2 Surface morphology 

The surface morphology of freeze-fractured hydrogels as imaged by SEM is shown in 

Figure 14. The images illustrate the influence of water content and distribution on the 

micromechanics of fracture within the freeze-fractured surface of the hydrogels at x2.5k 

magnification. The images of all hydrogels appeared nearly featureless. The root mean square 
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surface roughness (Rq) for the four poly(HEMA)-based hydrogel formulations containing 4 

mol% HEMA, 4 mol% AEMA, 4 mol% DMAEMA, and 2 mol% AEMA + 2 mol% DMAEMA 

was analyzed using the SurfChargeJ Plugin in ImageJ software[161] and were found to be 71.1, 

68.2, 73.0 and 66.0 nm ,respectively.  

Figure 14. SEM images of poly(HEMA)-based hydrogel containing 4 mol% HEMA, 4 

mol% AEMA, 4 mol% DMAEMA and 2 mol% AEMA + 2 mol% DMAEMA, each taken 

at acceleration voltage 3.0 kV and x2.5k magnification. 

The measured root mean square surface roughness of the freeze-fractured polymers 

(Table 4) reflects the fracture pattern of a heterogeneous ice-in-polymer composite glass. At 

liquid nitrogen temperature, the freezable water coalesces into domains of ice crystals. The size 

of those crystals, the hydrogen bonded interaction between ice crystals and the surrounding 

polymer and the bonded water that influences inter and intra-chain hydrogen bonding among 



 

47 

 

polymer chain segments that may serve to plasticize the polymer combine to play a role in 

determining the surface roughness [162]. Fracture surfaces become more rough when the 

fracture velocity is high[163]. Relative to poly(HEMA), the hydrogel containing the hydrophobic 

moiety, DMAEMA, was shown to possess an increased amount of free water, a decreased 

amount of bound water and shows the highest surface roughness. The hydrogel containing the 

hydrophilic moiety, AEMA, was shown to possess a similar amounts of free and bound water 

show similar surface roughness as poly(HEMA). Although, the water content and distribution in 

AEMA/DMAEMA was dominated by DMAEMA, this hydrogel showed the least surface 

roughness out of the four subsystems. 

2.4.3 Elastic Modulus  

Instron was used to determine the force displacement characteristics of the hydrated 

hydrogel formulations, which were then used, along with the Hertz Model, to calculate the 

Young’s Modulus for each hydrogel. The elastic moduli of the hydrogels with 4 mol% HEMA, 4 

mol% AEMA, 4 mol% DMAEMA and 2 mol% AEMA/2 mol% DMAEMA were measured to 

be 3142 ± 1489 kPa, 1452 ± 41 kPa, 19036 ± 5233 kPa and 2067 ± 12 kPa respectively. Figure 

15 depicts the plot for the average elastic modulus of the hydrogels and the numerical values are 

displayed in Table 4. The Young’s or elastic modulus indicates the stiffness or elasticity of the 

polymer as defined by the relationship between the stress (applied force) and strain (resultant 

deformation). A similar trend was observed between the average Young’s Modulus and the glass 

transition temperature of the four hydrogel formulations. For instance, the lowest average 

Young’s Modulus value observed is 1452 kPa for the AEMA hydrogel and the highest average 

Young’s Modulus value observed is 19036 kPa for DMAEMA hydrogel, which is the same trend 

seen in the glass transition temperature. This was expected as the segmental polymer dynamics 
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are influenced by the water content of the hydrogels due to the plasticizing nature of water [130, 

164]. Hydrogel formulations of HEMA, AEMA and AEMA/DMAEMA have statistically similar 

Young’s Modulus values but DMAEMA has a high average value as well as a statistically 

different Young’s modulus value than the other three types of hydrogels. This shows that in the 

poly(HEMA) hydrogel, the Young’s Modulus of the hydrogel does not differ with the addition of 

AEMA or with a 50/50 composition of AEMA/DMAEMA but it is higher and significant with 

only DMAEMA. 

 

Figure 15. Elastic modulus (kPa) of poly(HEMA)-based hydrogel containing 4 mol% 

HEMA (blue), 4 mol% AEMA (red), 4 mol% DMAEMA (green), and 2 mol% AEMA + 2 

mol% DMAEMA (purple).  
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Table 4. The root mean square surface roughness (Rq) values of freeze-fractured hydrogel 

surfaces determined using SurfChargeJ Plugin in ImageJ software (n=5) and the elastic 

modulus (kP) measured at RT for four poly(HEMA)-based hydrogel formulations 

containing 4 mol% HEMA, 4 mol% AEMA, 4 mol% DMAEMA, and 2 mol% AEMA + 2 

mol% DMAEMA). 

 
 

 

 

Given the equality of the total hydration among the engineered compositions, the 

differences in moduli may be attributed to the differences in the distribution of water within 

these hydrogels brought on by the small changes in molecular composition. A relative increase in 

free water and decrease in bound water content (4 mol% DMAEMA) suggests greater 

opportunities for intra and inter-chain hydrogen bonding (virtual crosslinks) that results in 

increased stiffness. Conversely, higher levels of bound water (4 mol% HEMA) are expected to 

effectively plasticize the polymer, thereby reducing the modulus. Despite the protonation of the 

1° amines and the partitioning of corresponding electro neutralizing counter anions, the 4 mol% 

HEMA and 4 mol% AEMA have similar moduli in the polyelectrolyte[165]. Also, when the 

polymer possesses 2 mol% AEMA and 2 mol% DMAEMA, the distribution of water and elastic 

modulus are dominated by the presence of the DMAEMA. Additionally, the presence of 

ionogenic moieties (1° and 2° amines) potentially gives rise to electrostatic repulsion between 

polymer chains and ingress of solvated counter anions, thus improving the uptake of water [166]. 

 

 

4% HEMA 4% AEMA 4% DMAEMA
2% AEMA and 2% 

DMAEMA

Rq (nm) 71 68 73 66

E (kPa)
Average ± SD (kPa) 3,142 ±1489 1,452 ±41 19,036 ±5233 2,067 ±12
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2.4.4 Membrane Impedance 

Electrochemical Impedance Spectroscopy (EIS) was used to assess the influence of 

hydration and water distribution on the membrane resistance (RM) of the four uniquely 

formulated hydrogel compositions containing 4 mol% HEMA, 4 mol% AEMA, 4 mol% 

DMAEMA, and 2 mol% AEMA + 2 mol% DMAEMA. The measurements were carried out both 

at room temperature (RT, 21°C, 0.043% CO2) and physiological conditions (PC, 37°C, 5% CO2). 

Impedance spectra were obtained over the frequency range 0.01 Hz-1 MHz following 

equilibration in HEPES buffer at pH 7.4. Spectra were essentially similar and equivalent circuit 

modeling of the complex impedance data established an [RM(QnRCT)] resistor-capacitor network 

with robust goodness of fit (Y2<0.2) that varied according to the chemical composition of the 

hydrogels. In this way the membrane resistance value, RM, was extracted for each hydrogel under 

the tested conditions. The extracted parameters were then used to simulate the impendence 

spectra over a slightly wider range of frequencies (1 mHz - 100 MHz). Figure 16 shows the 

Nyquist plots obtained from these simulations and Figure 17 shows the RM (Ω) values as a 

function of hydrogel composition in HEPES buffer. Table 5 shows the equivalent circuit 

parameters extracted from [RM(QnRCT)] equivalent circuit modeling. 
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Figure 16. Nyquist plots of Zreal (Ω) vs. Zimag (Ω) for poly(HEMA)-based hydrogel 

containing 4 mol% HEMA (blue), 4 mol% AEMA (red), 4 mol% DMAEMA (green), and 2 

mol% AEMA + 2 mol% DMAEMA (purple) in HEPES buffer at A) Room temperature 

(RT, 21 ºC, 0.043% CO2) and B) Physiological conditions (PC, temperature 37 ºC, 5% 

CO2). (n=3). 

(A) (B)
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Figure 17. Graph of membrane resistance, RM (Ω), extracted from R(QR) equivalent 

circuit analysis using ZSimpWin v3.60 software versus nominal pH 7.4 in pH-adjusted 

HEPES buffer at A) Room temperature  (RT, 21 ºC, 0.043% CO2) and B) Physiological 

conditions, (PC, 37 ºC, 5% CO2 ).  

Table 5. Equivalent circuit parameters extracted from R(QR) equivalent circuit analysis 

using ZSimpWin v3.60 software and using data obtained at pH 7.4 in pH-adjusted HEPES 

buffer at A) Room temperature (RT, 21 ºC, 0.043% CO2), B) Physiological conditions (PC, 

temperature 37 ºC, 5% CO2), and C) Calculated Resistances. 

As expected, the real and imaginary components of the complex impedance were lowered 

by an order of magnitude upon measurement under physiological conditions. Physiologic 

conditions contributes two key variables, an increased temperature that increases ionization and 

accordingly increases conductivity by 0.262/°C [167] and the presence of additional ions, 

n=3

*

*

n=3

(A) (B)
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bicarbonate ions and protons in particular, formed by the dissolution of CO2 (carbonic acid) CO2 

+ H2O ↔ H2CO3 ↔ [H+] + [HCO3
-] [28]. Hydrogels fashioned exclusively from HEMA

displayed the lowest membrane resistance under both conditions. Hydrogels fashioned with 4 

mol% AEMA were similar, though somewhat more resistive than hydrogels fashioned from 

HEMA. Hydrogels fashioned with 4 mol% DMAEMA displayed the highest membrane 

resistance under both conditions and were 10-fold more resistive that p(HEMA). The 

simultaneous inclusion of AEMA and DMAEMA, each at 2 mol%, could be expected to behave, 

to a first approximation and in accord with the rule of mixtures, as the algebraic sum of 

contributions from the influences of the two separate monomer, that is, a simple rule of mixtures. 

However, this formulation behaved more like the hydrogels fashioned from 4 mol% AEMA 

suggesting the dominant importance of non-freezable bound water in influencing the resistance 

of the membranes. 

The reference hydrogel (84.2 mol% HEMA) and those possessing minor amounts of 

AEMA and/or DMAEMA and their surrounding environment (HEPES buffer pH adjusted to 7.4 

with NaOH) can be considered as a single system. For AEMA and DMAEMA containing 

hydrogels, this system comprises the ionophores (–NH3
+) and (–NH+-(CH3)2) which contribute 

fixed positive charges within the hydrogel and mobile co-ions H+ and Na+ that originate outside 

the hydrogel. The HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, itself a 

zwitterionic organic molecule, contributes -SO3
-, which along with OH- in the bathing  solution, 

contributes counter anions each with the capability to adsorb and diffuse into the hydrogel and be 

equilibrated with the inherent cationic charges within the hydrogel. The extent of ionization of 

the ionogenic moieties depends upon their pKa and is governed by the Henderson–Hasselbalch 

equation. The ion partitioning and the concentration of free ions is governed by Gibbs-Donnan 
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partitioning effect, which depicts the relation between the concentrations of the different ions in 

hydrogel (h) and in the surrounding solution (s) (Eq. 16). 

𝑎𝑚𝑐𝑜
ℎ = 𝐶𝑚𝑐𝑜

ℎ
𝑚𝑐𝑜
ℎ ; 𝑎𝑚𝑐𝑜

𝑠 = 𝐶𝑚𝑐𝑜
𝑠

𝑚𝑐𝑜
𝑠 ; 𝑎𝑐𝑜𝑢

ℎ = 𝐶𝑐𝑜𝑢
ℎ

𝑐𝑜𝑢
ℎ ; 𝑎𝑐𝑜𝑢

𝑠 = 𝐶𝑐𝑜𝑢
𝑠

𝑐𝑜𝑢
𝑠  (16) 

Where, a, C, and γ are the activity, the molar concentration, and the activity coefficient, 

respectively, the subscripts mco and cou refer to mobile co-ions and counter anions, respectively, 

and the superscripts h and s refer to the hydrogel and the adjacent solution, respectively. When 

ionic solutions approach the dilute solution limit, 𝐶𝑚𝑐𝑜
ℎ ≪ 𝐶𝑓𝑖𝑥

ℎ
 holds true and the equation 

modifies to (Eq. 17) 

𝐶𝑚𝑐𝑜
ℎ =

𝐶𝑠
𝑠

𝐶𝑓𝑖𝑥
(
 ±
 𝑠

 ±
 ℎ )
2

 (17) 

The hydrogel resistance is the reciprocal of conductance[168]. The resistance, R, of a 

highly hydrated hydrogel may be expressed as its dimensionalized value, resistivity, , a material 

property or as a reciprocal of its conductance, S, and its dimensionalized value, conductivity,  

(Eq. 18) 

𝑅 =
1

𝑆
=  

𝑙

𝐴
= and 𝑆 =  𝜎 

𝐴

𝑙
                                                   (18)

For conductive polyelectrolytes like hydrogels, the total conductance, Stotal, and the total 

conductivity, total, are the sum of the contributing conductances and conductivities of the 

constituent ions within the material. Thus, (Eq. 19) 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆+ + 𝑆− and 𝜎𝑡𝑜𝑡𝑎𝑙 = 𝜎+ + 𝜎−                                 (19) 

Where subscripts + and – refer to cations and anions respectively. The equivalent 

conductivity can be expressed as (Eq. 20) 

 Λ𝑒𝑞 = 𝜆+ + 𝜆−                                                                    (20) 
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Where, 𝜆+ and 𝜆−, are the equivalent conductivities of the contributing cations and 

anions, respectively. 

The flux generated due to application of an electric field gradient to the hydrogel can be 

written as (Eq. 21) 

𝐽𝑐 = ∑ 𝜈𝑖𝑧𝑖𝜇𝑖𝑖 [𝐶] e N𝐴                                                                (21)

Here, 𝐽𝑐 is the flux of charges through the hydrogel medium, i refers to the ith charge

carrier, 𝑧+ and 𝑧− refer to the charges on or valence of the dissociated ions, 𝜈+ and 𝜈−refer to the 

stoichiometric coefficients of the cation and anion, respectively, 𝜇𝑖 is its ion mobility, e is the

charge on an electron (1.602 × 10-19 C) and NA is Avogadro’s number (6.023 x 1023). The 

product, e* NA = 96,485 C or Faraday’s constant[169].  

The minor mol% inclusion of the ionogenic AEMA (1 amine) and DMAEMA (3 

amine) moieties,  affects the Gibbs-Donnan partitioning and hence the equilibrated internal 

concentration of free ions. Thus, the membrane impedance of the hydrogel at pH 7.4, captured 

using EIS technique, was governed by the ionic concentrations and mobility of ions. Membrane 

resistances were calculated based on the forgoing and were shown to be in remarkably good 

agreement with measured values. The hydration of hydrogel was determined and reported under 

biotechnically relevant conditions and not in DI water. Since the protein adsorption and 

impedimetric pH-responses were all measured under 25mM HEPES condition and we sort to 

investigate the relationship between water content and distribution on these biotechnical 

properties, all hydrations were measured in 25 mM HEPES. 

The manuscript focusses on the influence of composition of poly(HEMA)-based 

hydrogels on the key biotechnical properties and mentions the pH response of the hydrogels as it 

directly reports on observations of impedance measurements as a function of pH (indirect 
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measurements). The pH critical characterization and responses for pH (direct measurements) and 

temperature (LCST and UCST) are the topic of an extensive and detailed study that will shortly 

be reported from our lab. 

2.4.5 Protein Adsorption 

Adsorption data from FITC-labeled albumin were fitted to a Langmuir adsorption 

isotherm model using the solver fit within MS Excel. Parameters like maximum surface 

coverage, Qmax, and the equilibrium constant, Keq, were extracted. Figure 18 shows the 

Langmuir surface coverage, Qmax, of FITC-labeled albumin adsorption onto the poly(HEMA)-

based hydrogels containing 4 mol% HEMA, 4 mol% AEMA, 4 mol% DMAEMA and 2 mol% 

AEMA + 2 mol% DMAEMA. The hydrogel formulation with 4 mol% DMAEMA showed the 

highest protein coverage while the hydrogel formulations with 4 mol% HEMA and 4 mol% 

AEMA showed similar but lower protein coverage. Sticky proteins such as albumin, readily 

unfold exposing their hidden, hydrophobic core to hydrophobic domains on surfaces as they 

spread [170, 171]. The simultaneous inclusion of AEMA and DMAEMA, each at 2 mol%, could 

be expected to behave, to a first approximation and in accord with the rule of mixtures, as a 

balance between the influences of the two monomer. However, this formulation behaved unlike 

any other producing the lowest protein adsorption.  
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Figure 18. Langmuir surface coverage, Qmax, of FITC-labeled albumin adsorption onto 

poly(HEMA)-based hydrogels containing 4 mol% HEMA (blue), 4 mol% AEMA (red), 4 

mol% DMAEMA (green) and 2 mol% AEMA + 2 mol% DMAEMA (purple).  

Proteins adsorb quite differently onto hydrophobic and hydrophilic surfaces [172]. On 

hydrophilic surfaces, a hydration corona prevents globular proteins from readily unfolding to 

become adsorbed. The reduction in bound water that accompanies the inclusion of 4 mol% 

DMAEMA reduces this hydration corona is reflected in higher protein adsorption. As a 

corollary, the inclusion of 4 mol% AEMA, which possesses a similar hydrophobicity index as 

HEMA, results in similar bound water and similar protein adsorption. The distribution of free 

and bound water, influenced by hydrophobicity/hydrophilicity, in turn influences the amount of 

protein adsorption on the surface. As proteins do not adsorb onto bound water rich surfaces, the 

AEMA/DMAEMA subsystem shows the least protein adsorption. 

n=3

*
*



58 

2.4.6 Correlations between water content, distribution and the physicochemical properties 

Correlations among the water content, water distribution and the physicochemical and 

biological properties of these hydrogels were explored using multivariate methods in JMP 

software. Table 6 summarizes the results of the correlation analysis. 

Table 6. Correlations between water content, water distribution and the physicochemical 

biotechnical properties of poly(HEMA)-based hydrogels. 

Modulus (kPa) Impedance (Ω) 
at RT 

Impedance (Ω) 
at 37 ˚C, 5% 

CO2 

Qmax 

(#molecules/cm2) 

Bound water -0.92 -0.87 -0.85 -0.67
Free water 0.61 0.52 0.59 0.22
Total Hydration -0.98 -0.96 -0.90 -0.85

As expected, there was a strong inverse correlation between elastic modulus, membrane 

resistance at room and physiological temperature, the maximum protein surface coverage and 

total hydration. That is, for similarly cross-linked poly(HEMA)-based hydrogels experience 

small changes in monomer feedstock composition, as total water content goes up the hydrogel 

becomes softer, the membrane becomes more conductive, and sticky proteins are disposed to 

lowered adsorption coverage. However, free water showed a direct correlation with all the 

physicochemical and biological properties. It was the bound water, however, that showed the 

inverse correlation, similar to total hydration. Thus, it was seen that the high inverse correlation 

associated with the total hydration was governed by the bound water contribution. It is the bound 

water, which as a controlling factor, is indicative of the change in modulus, membrane resistance 

and protein surface coverage, which in turn were influenced by minor changes in the hydrogel 

composition. 
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2.4.7 Hydrophobicity indices for HEMA, AEMA and DMAEMA monomers* 

Hydrophobicity indices for poly(HEMA)-based hydrogels: HEMA, AEMA and 

DMAEMA calculated from two different methods: 1) Partition coefficients and 2) Kyte-Doolittle 

scale are depicted. 

2.4.7.1 Partition coefficients for HEMA, AEMA and DMAEMA 

Table 7 mentions the hydrophobicity indices for HEMA, AEMA and DMAEMA 

monomers based on the partition coefficients of monomers[157] derived from their functional 

group contributions.  

Table 7. Partition coefficients of monomers based on their functional group contribution. 

Monomers Functional group Partition 

coefficients (log P) 

HEMA (CH3OH) -OH -0.74

AEMA (CH3NH2) -NH2 -0.57

DMAEMA (N(CH3)3 -N(CH3)2 0.16 

2.4.7.2 Hydrophobicity indices of the monomers using Kyte-Doolittle scale (amino acids)

Table 8 mentions the hydrophobicity indices for HEMA, AEMA and DMAEMA 

monomers based on the Kyte-Doolittle scale[158] derived from their functional group 

contribution. 

*Reprinted with permission from “Dataset on hydrophobicity indices and differential scanning

calorimetry thermograms for poly (HEMA)-based hydrogels” by Bhat, A., Smith, B., Dinu, C. Z., &

Guiseppi-Elie, A., 2019. Data in Brief, 103891. Copyright [2019] by Elsevier
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Table 8. Determining hydrophobicity indices of monomer as per amino acids. 

Monomers Functional 

group 

Partition 

coefficient 

(log P) 

Amino 

acid 

Hydrophobicity 

index 

HEMA -OH -0.74 Ser -0.8 

AEMA -NH2 -0.57 Asn and 

Lys 

-3.5 and -3.9 

DMAEMA -N(CH3)2 0.16 Leu and 

Arg 

3.8 and -4.5 

 

2.4.8 Differential Scanning Calorimetry (DSC) thermograms for 4 mol% HEMA, 4 mol% AEMA, 

4 mol% DMAEMA and 2 mol% AEMA/ 2 mol% DMAEMA 

Figures 19-22 depict the DSC thermograms for poly(HEMA)-based hydrogel polymers 

synthesized to contain 4 mol% HEMA, 4 mol% AEMA, 4 mol% DMAEMA, and 2 mol% 

AEMA plus 2 mol% DMAEMA. Table 9 shows the glass transition temperature, Tg, for all four 

poly(HEMA)-based hydrogel formulations.  

 

 

 

 

 

 

   

 

 

Figure 19. DSC thermogram for poly(HEMA)-based hydrogel containing 4 

mol% HEMA 
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Figure 20. DSC thermogram for poly(HEMA)-based hydrogel containing 4 

mol% AEMA 

Figure 21. DSC thermogram for poly(HEMA)-based hydrogel containing 4 

mol% DMAEMA 
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Table 9. Glass transition temperature, Tg, for all four poly(HEMA)-based hydrogel 

formulations containing 4 mol% HEMA, 4 mol% AEMA, 4 mol% DMAEMA, and 2 mol% 

AEMA + 2 mol% DMAEMA [2]. 

Property 
4 mol% 
HEMA 

4 mol% 
AEMA 

4 mol% 
DMAEMA 

2 mol% 
AEMA 

2 mol% 
DMAEMA 

Tg(°C) 93.2 ± 2.9 86.3 ± 1.3 114.2 ± 0.7 96.3 ± 0.4 

2.5 Conclusions 

Minor changes, nominally 4 mol% (4.4 mol%), in monomer composition of a 

poly(HEMA)-based hydrogel, while having very little influence on total hydration was shown to 

have profound impact on the distribution of water within the hydrogel, the elastic modulus, the 

membrane electrical resistance, and critical biological properties such as protein adsorption. The 

Figure 22. DSC thermogram for poly(HEMA)-based hydrogel containing 2 

mol% AEMA+ 2 mol% DMAEMA 
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changes in the physicochemical and biological properties were shown to strongly correlate with 

total hydration and that this correlation was best associated with the bound water content. The 

more hydrophilic monomer, AEMA, maintained hydration and water distribution similar to the 

reference HEMA hydrogel. However, the more hydrophobic monomer, DMAEMA, caused a 

minor decrease in the total hydration and a major shift in water distribution compared to the 

HEMA hydrogel. The inclusion of both AEMA and DMAEMA resulted in deviation from 

expected behavior. The equimolar mixtures of AEMA and DMAEMA showed total water 

content that was essentially unchanged but had water distribution that was more similar to the 

DMAEMA-only than to the AEMA-only hydrogel. Hence, the chemical structure of the 

hydrogels relates to its physico-chemical properties. For example, relative to the control HEMA 

hydrogel, hydrophilic monomer AEMA showed higher membrane resistance and similar surface 

coverage for protein adsorption. On the other hand, the hydrophobic monomer DMAEMA 

showed an enhanced membrane resistance and a higher surface coverage for protein adsorption. 

The AEMA/DMAEMA deviated from its normal expected midway behavior between the 

hydrophilic/hydrophobic subsystems and showed a lower membrane resistance and surface 

coverage for protein adsorption. This system can be used to make biosensors like a pH sensor to 

yield membrane resistances across a range of pH values indicating pH sensitivity. 
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3CHAPTER III

TOWARDS IMPEDIMETRIC MEASUREMENT OF ACIDOSIS WITH A PH-RESPONSIVE 

HYDROGEL SENSOR* 

3.1 Introduction 

Next generation smart materials must sense targeted changes in their environment, 

respond predictably with materials-property based changes decisively linked to the 

environmental stimuli and be conditioned by that change to respond differently to new stimuli, 

that is, the material must “learn”[173]. There is continued growing interest in the use of 

hydrogels as responsive smart materials [174, 175]. This interest is fueled by the relative ease 

with which hydrogels may be molecularly engineered through variation in molecular 

composition, network density variation, and internal architecture control. Possessing broad 

applicability and biocompatibility [176] in various biomedical applications such as drug delivery 

[177] and biosensing [178], hydrogels are cross-linked polymeric networks of highly hydratable 

monomer that results in soft materials that imbibe large amounts of water. The hydration ensues 

due to solvation of the individual monomeric repeat units that seek to dissolve but are 

constrained by the covalent bonds that impose a retractive force on the polymeric network. At 

equilibrium, the water entrained by hydrogels can be rationalized as being distributed amongst 

freezable free water (Wff), freezable bound water (wfb), and non-freezable bound water (Wnfb) 

[74] [179]. Moreover, this distribution has been shown to be readily influenced by small changes 

in composition [75] and to govern key biotechnical properties [180] that are most strongly 

*Reprinted with permission from “Towards Impedimetric Measurement of Acidosis with a pH-

Responsive Hydrogel Sensor” by Bhat, A., Amanor-Boadu J.M., & Guiseppi-Elie, A., 2020. ACS

Sensors, 5:500-9. Copyright [2020] by American Chemical Society
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correlated with the ratio of total freezable to non-freezable water [181]. The hydrogels which 

respond to a change in stimulus are called stimuli-responsive hydrogels[67]. These hydrogels 

swell and de-swell in response to external stimuli such as temperature, light, chemical reactions 

and pH [182]. Such swelling and de-swelling is the result of changes in the water content of the 

hydrogel linked to a hierarchy of chemical influences to changes in its three-dimensional 

network structure [179] and mesh size [183].  

Hydrogels that are pH-responsive belong to a sub-class of stimuli-responsive hydrogels 

that may be neutral or ionogenic/protic as shown in Figure 23. Neutral hydrogels possess no 

ionizable groups in their molecular or repeat unit structure and when incubated in an external 

media of a particular pH, H3O
+, OH- and supporting ions partition into the hydrogel according to 

the Gibbs–Donnan effect [71]. Ionogenic hydrogels possess ionizable pendant groups in their 

structure which can be cationic or anionic and may be protic. These respond to a change in pH 

by protonating or deprotonating their ionizable groups [69]. This is accompanied by swelling and 

deswelling kinetics of the hydrogel [184]. The presence of the solvated ions within the hydrogel 

makes it an ionically conductive polyelectrolyte network. The conductivity of the hydrogel due 

to the ionic electromigration can be measured by probing the hydrogel with a small sinusoidal 

voltage using Electrochemical Impedance Spectroscopy(EIS) techniques [71]. 
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Figure 23. General types of pH-responsive hydrogels a) i) Neutral ii) Ionogenic and b) the 

chemical structures of hydrogel monomer constituents showing the non-ionogenic –OH of 

HEMA and the ionogenic moieties of AEMA and DMAEMA. 

Different types of synthetic pH-responsive hydrogels have been reported in the literature 

[185-187]. Examples include hydrogels incorporating ionogenic monomer such as N,N-

dimethylaminoethyl methacrylate (DMAEMA), acrylic acid (AA), methacrylic acid (MAA). pH-

responsive hydrogels have also been fashioned from poly(acrylamide) (PAA), poly(methacrylic 

acid) (PMAA) with poly(ethylene glycol) (PEG), poly(HEMA), and polymers with phosphoric 

acid derivatives [186, 188-191]. Sheppard et al. have reported pH-responsive DMAEMA sensors 

showing highest pH-sensitivity between pH 7-8 corresponding to the pKa of DMAEMA [192]. 

Deirram et al. have reported the use of poly(2-(diisopropylamino)ethyl methacrylate) 

(PDPAEMA) for drug release at pH 7.4 [193]. pH-sensitivity in terms of equilibrium water 

content of poly(HEMA) and poly(acrylamide) hydrogels have been detailed by Rapado et al. 

[194]. Siegel et al. have demonstrated a system based on swelling of methyl methacrylate 

(MMA) and N,N-di- methylaminoethyl methacrylate (DMEMA) hydrogels for pH-sensitivity 

[195]. Hoffmann et al. have shown the pH-sensitivity for N-isopropyl acrylamide (NIPAAm) 

[196]. Guiseppi-Elie et al have studied DMAEMA containing copolymers of HEMA and 3-

trimethoxysilylpropyl methacrylate(PMA) [197] as pH-responsive and glucose oxidase hosting 

+

+ -

+ -

+ -
Mc

ξ

Mc

ξ+-

+ -

Mc

ξ

Mc

ξ

++ - -+

-

-+-

a)

i)

ii)

b)



 

67 

 

hydrogels for glucose responsive release of insulin in an all synthetic artificial pancreas [126]. 

Walker et al. showed changes in hydrogel properties arising from high salt concentrations that 

alter the activity of water, causing local charge shielding, and changes to inter- and intra-chain 

hydrogen bonding (virtual crosslinks) [198]. Along with the mechanical properties influenced by 

water distribution, electrical conductivity of the hydrogels, and the correlations between these 

two factors were studied for their application in using hydrogel-based sensors for biomedical 

applications [199]. The electrical resistance of a hydrogel membrane can be extracted from 

equivalent circuit modeling of EIS data. For a simple Randles equivalent circuit, the membrane 

resistance, RM, and the parallel combination of charge transfer resistance, RCT, and the double 

layer capacitance at the electrode-hydrogel interface, CDL,[200] , the mathematical representation 

of the system is as per Eq. 10, Eq.11, and Eq. 12. [201] [78] 

Acidosis is a condition pursuant to tissue hypoxia and a consequence of anaerobic 

glucose metabolism wherein the pH of blood and interstitial fluid falls below 7.35 [13]. 

Monitoring the pH associated with acidosis is important in stabilizing the hemorrhaging patient 

[202]. Hence, a sensor is required to monitor the small fluctuations in pH in the 

pathophysiological range of 7.35-7.45 with high sensitivity. The measurement of membrane 

resistance of a pH-responsive hydrogel via EIS and equivalent circuit analysis represents an 

option to achieve this objective. Key considerations in performance are the device sensitivity 

[d(RM)/d(pH)] and its stability. 

This paper [203]investigates the role of hydrogel composition and its effects on hydration 

and conductance in search of a highly sensitive and robust hydrogel for impedimetric pH sensing 

in the pathophysiological range associated with the hemorrhaging trauma patient. The material 

composition of the stimuli-responsive hydrogel can be molecularly engineered[204] for 
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differential ionic distribution around the pKa of the ionogenic group thereby affecting its water 

content, water distribution and impedance. This paper employed two methods: i) a parallel plate 

method that employed nano-platinum enobled stainless steel mesh electrodes [79], and ii) a 

microfabricated interdigitated pair of coplanar gold electrodes [205]. Using the parallel plate 

method, four hydrogels were investigated. The base system of poly(2-hydroxyethyl 

methacrylate) [poly(HEMA)] and alternate molecular compositions altered by introducing 4.4 

mol% of hydrophilic and hydrophobic pendant groups; 2-aminoethyl methacrylate (AEMA, 

pKa=8.46)[140] and N-(2-(dimethylamino) ethyl)-methacrylate (DMAEMA, pKa=7.84)[206], 

respectively. The effects of a hydrophilic/hydrophobic mixture (AEMA/DMAEMA) 2.2 

Mol%/2.2 Mol% was also investigated. The pH responsiveness of each composition was 

measured by EIS over the range pH 4-10 and specifically investigated over the pH range 7.35-

7.45. Correlation by ANOVA was used to identify the water state that was best correlated with 

the impedance of the hydrogel. Additionally, Taguchi mixed-level fractional factorial design was 

used to establish a robust system devoid of influence of noise [207] [208]. Optimization was 

accomplished using the Response Surface Method (RSM) optimizer. RSM optimizer uses a 

quadratic fit modeling to identify within a design space the location of a point where the 

maximum or the minimum value of the response lies [209].  

3.2 Materials and Methods 

Hydrogels were synthesized from monomers 2-hydroxyethyl methacrylate (HEMA), 

cross-linker tetra(ethylene glycol) diacrylate (TEGDA), poly(ethylene glycol)(360)methacrylate 

(PEG(360)MA), hydrophilic support monomer N-[tris(hydroxymethyl)methyl]acrylamide 

(HMMA, 93%), biocompatible viscosity modifier polyvinylpyrrolidone (pNVP, MW 

~1,300,000), photo-initiator 2,2-dimethoxy-2-phenylacetophenone (DMPA, 99+%) procured 
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from Sigma Aldrich Co. (St. Louis, MO, USA). To remove the polymerization inhibitors, 

hydroquinone and monomethyl ether hydroquinone, methacrylate and diacrylate reagents were 

passed through an inhibitor removal column (306312, Sigma-Aldrich Co., St. Louis, MO). 

Deionized water was obtained using a Milli-Q® plus water system (Millipore Inc., Bedford, 

MA). The 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid sodium salt (HEPES) buffer of 25 

mM was pH adjusted to the nominal values of 5, 6, 7, 8, 9, 10 by dropwise addition of 0.1 M 

NaOH and pH adjusted to 4 with 0.1 M HCl. Dulbecco's Modified Eagle Medium (DMEM, high 

glucose with 4500 mg/L glucose) at pH 8.14 was pH adjusted to 7.35, 7.40 and 7.45 by dropwise 

addition of 0.1 M HCl. DMEM is a pseudo-body fluid that acts as a physiologic mimicking fluid 

[210] when used under physiologic conditions (T = 37 ºC and 5% CO2). DMEM contains the full 

suite of physiologically relevant inorganic salts of calcium, potassium, sodium, and magnesium, 

amino acids, vitamins and other components including glucose (4500 mg/L) and pyruvic acid 

(110 mg/L). Acryloyl-PEG (3500)-NHS and 3-aminopropyltriethoxysilane (ϒ-APS) were used 

for conjugation and surface modification for the attachment of hydrogel to chips. 

Octadecyltrichlorosilane (OTS) was used for creating hydrophobic glass slides. All materials 

were procured from Sigma Aldrich Co. (St. Louis, MO, USA) unless stated otherwise. 

3.2.1 Hydrogel cocktail formulation and sample preparation 

All monomers were handled in a UV-free laboratory with UV filtering sleeves (TG-

T8TG-UV, Lightbulbsurplus.com) placed over the fluorescent light bulbs. The monomers were 

added as per their mol% compositions and mixed with ethylene glycol:water (1:1 v/v ratio) to 

form 20 volume% of the formulation. The reference hydrogel was synthesized from 84.2 mol% 

HEMA. Three ionogenic hydrogels were synthesized containing monomer substitutions of 4.4 

mol% hydrophilic (AEMA), 4.4 mol% hydrophobic (DMAEMA) or 2.2 mol%/ 2.2 mol% 
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hydrophilic/ hydrophobic (AEMA/ DMAEMA) to create four hydrogel compositions. The 

AEMA containing hydrogel was also investigated at 1, 3 and 30 mol%. The mol% compositions 

are tabulated in Table 10. Degassed hydrogel cocktails were pipetted into the wells of non-

adhesive, press-to-seal silicone isolators of diameter 4.5 mm and thickness 1.6 mm (JTR12R, 

Grace Biolabs, Bend, OR) placed on and then sandwiched between OTS-silanized glass 

microscope slides. Following UV-cross linking, slides were removed and hydrogels were 

retained in the isolators with the help of platinized Type 304 Stainless Steel mesh electrodes (5 

mm x 1 mm) [79] attached on either sides of the isolator and secured with a plastic retaining clip. 

This was done to ensure that during hydration, the hydrogels were kept within the isolators. The 

hydration process involved sequential incubation for 1 h each in ethanol (99%) and 25 mM 

HEPES buffer (pH 7.40) mixtures in proportions of 100/0, 75/25, 50/50, 25/75 and 0/100 

(mL/mL%). Following this, the hydrogels were placed inside an incubator (VWR 2310, Marshall 

Scientific, Hampton, NH) which was maintained at physiological conditions of 37 ºC and 5% 

CO2 and equilibrated in pH-adjusted HEPES buffer at nominal pH values of 4, 5, 6, 7, 7.35, 7.40, 

7.45, 8, 9, and 10. The samples were removed from the buffer and excess liquid was removed by 

gentle blowing with nitrogen gas prior to conducting EIS measurements within the incubator 

which also served as a Faraday cage. 
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Table 10. Monomer components with their mol% composition for the various 

poly(HEMA)-based hydrogels.  

   Mol% of monomer components 

Polymer constituents  

4-

mol% 

HEMA  

4-

mol% 

AEMA  

4-

mol% 

DMA

EMA  

2-mol% 

AEMA 

2-mol% 

DMA 

EMA  

1-

mol% 

AEMA 

3-

mol% 

AEMA 

30-

mol% 

AEMA 

HEMA (Base 

monomer: 

hydrophilic)  

79.8  79.8  79.8  79.8  83.2 81.2 54.2 

TEGDA (Cross-linker)  3.3  3.3  3.3  3.3  3.3 3.3 3.3 

PEGMA(360) (Confers 

biocompatibility)  
5.8  5.8  5.8  5.8  5.8 5.8 5.8 

HMMA (Support 

monomer: 

hydrophilic)  

4.4  4.4  4.4  4.4  4.4 4.4 4.4 

pNVP (Pre-polymer: 

Increases viscosity) 

(on the basis of repeat 

unit structure)  

1.9  1.9  1.9  1.9  1.9 1.9 1.9 

HEMA (Monomer: 

hydrophilic)  
4.4  0  0  0  0 0 0 

AEMA (Monomer: 

hydrophilic)  
0  4.4  0  2.2  1 3 30 

DMAEMA (Monomer: 

hydrophobic)  
0  0  4.4  2.2  0 0 0 

DMPA 

(Photoinitiator)  
0.4  0.4  0.4  0.4  0.4 0.4 0.4 

 

3.2.2 Electrochemical impedance spectroscopy (EIS) 

EIS was conducted over the range 1 MHz - 10 mHz using 10 mVpp sine wave (5 points 

per decade) using a Versastat4 (Princeton Applied Research, AMETEK, Inc., Oak Ridge, TN). 

The data was modeled using Randles equivalent circuit R(QR) or R(QR)(QR) in ZSimpWin 

software version 3.60 (AMETEK, Inc., Oak Ridge, TN). Parameters like membrane resistance 

(RM) of the hydrogel, charge transfer resistance (RCT) and double layer capacitance (QDL) were 

extracted. RM versus pH graphs was plotted to reveal the pH responsiveness of the hydrogel. All 

measurements were conducted with the hydrogel placed inside the incubator. Control experiment 



 

72 

 

included the impedance characterization of pH adjusted HEPES buffer over the pH values of 4, 

5, 6, 7, 7.35, 7.40, 7.45, 8, 9, and 10. 

3.2.3 Hydration characteristics of hydrogels 

3.2.3.1 Hydration of hydrogels using gravimetric methods 

Gravimetric methods were employed to determine the degree of hydration (DoH) of the 

hydrogels. Hydrogel discs were weighed after equilibrium hydration and upon complete 

dehydration. Hydrogels were stored in a -80 ºC freezer for a period of 12 hours and lyophilized 

under 0.01 mbarr at -50 ºC to yield the dehydrated weight. The hydrated and dehydrated 

hydrogel weights were recorded as Wh and Wd respectively. DoH was calculated as fractional 

percentage change in weights upon drying. Ww was termed as the total water content. 

3.2.3.2 Differential scanning calorimetry (DSC) 

Differential Scanning Calorimetry (Q2000, TA instruments, New Castle, DE) was used to 

determine the distribution amongst water states within the hydrated hydrogels [211]. About 5-10 

mg of hydrated hydrogel was sealed into a hermetic pan (Tzero hermetic lid, 901684.901; Tzero 

pan, 901683.901) and equilibrated at -40 ºC and heated to 30 ºC at 10 ºC/min under purging 

nitrogen (50 mL/min). Using TA analysis software, the endothermic peak was integrated to 

reveal the enthalpic contribution ΔHm, of hydrogels at 0°C [212]. The enthalpy of freezable and 

bound water was assumed to be same as that of the bulk water (ΔH0 = 334 J/g)[213]. The 

freezable free water content and non-freezable bound water content was calculated using the 

equations (Eq. 8 and Eq. 9): 
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3.2.4 Design of experiments approach 

3.2.4.1 Taguchi orthogonal arrays 

Taguchi orthogonal arrays, which is a form of a design of experiments (DoE) approach, 

was used to find the optimal mol% composition for AEMA, while making a robust system by 

minimizing the effect of control factors and its fluctuations on the targeted output, sensitivity 

[214]. Figure 24 shows the concept of the Taguchi design of experiments construct. The internal 

factor, AEMA mol%, was considered at 3 levels (1, 4.4 and 30 mol%), external factors were 

frequency, temperature and pH. Frequency was considered at 2 levels, fτ-22.37 and fτ+22.37 

mHz, where fτ is the frequency corresponding to the characteristic time constant of the hydrogel, 

temperature was considered at 2 levels (36 and 38 ºC) and pH was considered to be a factor with 

two levels (7.35 and 7.45). The two frequency levels were established as the difference between 

the smallest and the largest characteristic frequencies (Z” (max) = -1/[CDLl) from the Nyquist 

plots among the various AEMA mol%. The output was considered to be sensitivity 

[d(RM)/d(pH)]. Weibull++ software (HBM Prenscia, Southfield, MI) was used to construct the 

Taguchi matrix design. The analysis estimated 36 experiments to be performed to complete the 

construct. The data table was imported and Taguchi analysis was completed in statistical 

software (Minitab, Inc., State College, PA) to generate plots for signal-to-noise ratio (higher the 

better) and data means, from which the optimal parameters were determined. Similarly, optimal 

parameters for freezable water content and non-freezable bound water content were determined. 

For maximizing the response, larger the better signal-to-noise ratio is expressed as (Eq. 22):  

𝑆

𝑁
= −10𝑙𝑜𝑔∑

(
1

𝑌2
)

𝑛
                                                                 (22) 

where Y is the observed data and n is the number of observations [215]. 
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Figure 24. Concept of the Taguchi design of experiments construct for the generation of a 

robust hydrogel composition. 

3.2.4.2 Response surface methodology (RSM) optimizer 

An optimization approach using RSM was used to find the optimal sensitivities 

(membrane resistance, RM versus pH) for AEMA, DMAEMA and AEMA/DMAEMA hydrogel 

subsystems. One factor RSM was performed using Design Expert software version 11 (Stat-

Ease, Inc., Minneapolis, MN). A second-degree polynomial equation was fitted to identify the 

optimal sensitivity for each subsystem within design space of mol% from 0 to 30 mol%. 

3.2.5 Hydrogel on IME chip 

3.2.5.1 Surface inspection and cleaning 

Microlithographically fabricated independently addressable microband electrodes and 

interdigitated microsensor electrodes (IAME-co-IME 2-1 Au) chips of dimensions 1.0 cm x 1.0 

cm x 0.05 cm were supplied by ABTECH Scientific Inc. (Richmond, Virginia, USA). These 

chips were made from borosilicate glass substrates with patterns of gold electrodes and a 

windowed, insulating layer of silicon nitride (Si3N4) that revealed the region of interdigitation 
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but passivated the array buses. The chips were fabricated using the standard industry 

microlithography lift-off technique. Both the IAME and IME portion have finger dimensions of 

1.0 mm x 2.0 μm with line separations of 1.0 μm each. The IME portion has a pattern of five 

interdigitated fingers. The electrodes on the IAME-co-IME chip were inspected using Stereo 

Microscope (Omano OM-113-1LP 10X / 30X, Roanoke, VA) to check for their integrity. The 

electrodes on the IAME-co-IME chip were cleaned by heating in trichloroethylene for 3 minutes, 

1 min in acetone and 1 min in isopropyl alcohol to remove any organic residues and render the 

surface free from impurities, and subsequently treated with plasma cleaning (Basic Plasma 

Cleaner PDC-32G, Harrick Plasma, Ithaca, NY). Cathodic cleaning was performed in 0.1 M PBS 

buffer, pH=7.3 to remove adsorbed siloxane from the gold digits by employing three-electrode 

electrochemical cell set-up with reference electrode (Ag/AgCl, 3 M KCl) and sweeping the 

potential between 0 and -1.2 V using cyclic voltammetry at a scan rate of 100 mV/s for 40 

cycles[216]. 

3.2.5.2 Surface chemistry for attachment of hydrogel on IAME-co-IME chip 

A 0.01 M solution of ϒ-APS in toluene was freshly prepared, into which the IAME-co-

IME chip was submerged under dark conditions. This allowed for physical adsorption of ϒ-APS 

molecules onto the -OH groups on the exposed glass substrate. The electrodes were sequentially 

rinsed in 100% toluene, 50:50% toluene: ethanol and 100% ethanol(v/v) for 1 min each. These 

were then heated using a vacuum oven (51221162, Precision, Swedesboro, NJ), at 40°C for 20 

min and 110 °C for 10 min [217] to enforce covalent bonding between the ϒ-APS and -OH 

groups. Cooled slides having covalently-attached ϒ-APS groups were then immersed in 

deionized water for a period of 24 hours. This allowed for the extension of hydrophilic amine 

groups from the silica surface and for the hydrolysis of any unbonded ethoxy groups. The 
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electrodes were then immersed in a 0.1 mM solution of APN in HEPES buffer with the pH 

adjusted to 8.5. This enabled the ϒ-APS (primary amine group) to be covalently conjugated to 

the n-hydroxysuccinimide group of Acryloyl-PEG (3500)-NHS. The identified optimal mol% 

composition of the hydrogel was prepared, cast and cross-linked on the interdigitated IME 

portion as per the procedure described in the previous section. 

3.2.5.3 Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) was performed to extract the membrane 

resistance of the optimally identified hydrogel composition cast onto the interdigitation region of 

the IME part of the IAME-co-IME chip. The hydrogel was placed in an incubator (VWR 2310, 

Marshall Scientific, Hampton, NH) which was maintained at 37 ºC and 5% CO2 and equilibrated 

overnight in DMEM cell culture media pH adjusted to 7.35,7.40,7.45 from 8.14 using 0.1 M 

HCl. Excess DMEM was removed from the hydrogel and the Versastat-4 (Princeton Applied 

Research, AMETEK, Inc., Oak Ridge, TN) was employed for the characterization of the 

hydrogel over the frequency range 1 MHz-10 mHz using a 10 mVpp interrogation sine wave. 

The data was modeled using Randles equivalent circuit R(QR) in ZSimpWin software version 

3.60 (AMETEK, Inc., Oak Ridge, TN). Parameters like membrane resistance (RM) of the 

hydrogel, charge transfer resistance (RCT) and double layer capacitance (QDL) were extracted. RM 

versus pH graphs were plotted to reveal the pH responsiveness of the optimally identified mol% 

composition of the hydrogel. 

3.2.6 Statistical Analysis 

Results were presented as mean ± 95% confidence intervals (C.I.) with n = 3. Student’s t-

test with p < 0.05 was employed to determine the statistical significance of the results. 

 



 

77 

 

3.3 Results and Discussion 

3.3.1 Electrical characterization of poly(HEMA)-based hydrogels in HEPES buffer 

To establish reference parameters for the equivalent circuit modeling of pH-responsive 

hydrogels, EIS measurements employing the parallel plate method with silicone isolators were 

made in hydrogel-free, pH-adjusted HEPES buffer of pKa = 7.31 [218]. Parameters extracted 

from the Randles equivalent circuit [RS(QDLRCT)] modeling of this hydrogel blank, particularly 

RCT (7.4E-042.6E-05) Ω and QDL(5.4E+04 5.2E+04) S.secn, served as starting points for the 

parameterization of hydrogel equivalent circuit modeling. Hydrogel equivalent circuit modeling 

was accomplished with an [RS(QMRM)(QDLRCT)]. The first QR term reflected information about 

the resistive and capacitive behavior of the hydrogel membrane. The resistive behavior (RCT) 

arose from charge transfer at the electrode-liquid interface, in this case from a platinized stainless 

steel electrode to the HEPES buffer and is likely dominated by hydrogen evaluation and oxygen 

reduction [201, 209]. The concentration of ions and their mobilities within the hydrogel can be 

related to total conductance [219], the reciprocal of which is the membrane resistance of the 

hydrogel. Figure 25 shows the global trends of solution resistance (RS, HEPES buffer only) and 

membrane resistance (RM, various hydrogels) versus pH (4 – 10) in pH-adjusted HEPES buffer 

for the four poly(HEMA)-based hydrogels at physiological conditions (37 ºC, 5% CO2) at 4.4 

mol%. Across the range of pH explored (4.0 - 10.0) there was no significant change in the RS, 

RCT and QDL values of the HEPES blank system. This is shown as an essentially flat line ~ 40 Ω. 

When viewed closely, the observed change in the solution resistance, RS, as a function of pH 

reflected the change in ion concentration associated with the protonation of HEPES below pH 

6.0 and deprotonated above pH 9.0, with the pKa of the buffer being at 7.31 [218]. Hydrogels on 

the other hand had resistances that varied with pH, being low at low pH values, rising to ~5x103 
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Ω at pH=7 and low again at high pH values, reflective of the partition of H+ and OH- ions into 

the hydrogel. 

 

Figure 25. Plots of the solution resistance, RS (Ω), of HEPES buffer blank and hydrogel 

membrane resistance, RM (Ω), of various poly(HEMA)-based hydrogels of 4.4 mol% 

ionogenic monomer versus nominal pH at physiological conditions (HEPES buffer, T=37 

°C, 5% CO2). 

Among the various poly-(HEMA)-based hydrogels tested, the AEMA containing 

hydrogels showed the possibility of a steep slope or high pH-sensitivity in the region from 7.0 to 

8.0. From these results and from the fact that AEMA is a cationogenic moiety that promotes 

swelling of the hydrogel at lower pH [197, 220] [220], various mol% AEMA containing 

hydrogels were subsequently studied. Figure 26 shows the global trends of solution resistance 

(RS, HEPES buffer only) and membrane resistance (RM, various hydrogels) versus pH (4 – 10) in 

pH-adjusted HEPES buffer for the five AEMA containing hydrogels (0, 1, 3, 4.4, 30 mol%) at 

physiological conditions (37 ºC, 5% CO2). Across the range of pH explored (4.0 - 10.0) AEMA 

containing hydrogels of mol% that varied from 0-4.4 mol% had resistances that varied with pH, 

being low at low pH values, rising to ~5x103 Ω at pH=7 and low again at high pH values, 

reflective of the partition of H+ and OH- ions into the hydrogel. At 30 mol% AEMA, the 
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hydrogel behaved just like the hydrogel-free buffer, confirming that it was highly swollen with 

ion transport characteristics that were dominated by the buffer. Close inspection of the responses 

of the 0-4.4 mol% AEMA containing hydrogels in the region pH = 7.35 – 7.45 showed the 1 

mol% AEMA hydrogel to present the steepest slope or highest sensitivity that was significantly 

different (p<0.05) relative to other compositions. Accordingly, the 1 mol% AEMA hydrogel was 

judged the most sensitive material for pH sensing in the desired pH region and investigated 

further. 

 

Figure 26. Plots of the solution resistance, RS (Ω), of HEPES buffer blank and hydrogel 

membrane resistance, RM (Ω), of various poly(HEMA)-based hydrogels of varying AEMA 

mol% monomer versus nominal pH at physiological conditions (HEPES buffer, T=37 °C, 

5% CO2).  

 

3.3.2 Taguchi design and RSM optimization 

Along with AEMA (above), electrical impedance characterization was performed over 

various mol% DMAEMA and AEMA/DMAEMA containing hydrogels in order to identify the 

significantly highest sensitivity corresponding to that molecular composition. The data from the 
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electrical impedance characterization was fed into the Taguchi robustness design construct and 

the RSM optimizer. 

The aim was to produce a sensor that is less variable (more robust) in the face of 

variation over which the engineer has little or no control. For this approach, different factors 

(internal, external and outputs) with their levels were identified and the orthogonal array design 

was constructed, Figure 24. The robust design involves finding those factors which most affect 

the signal-to-noise ratio. For each control factor with its respective levels, the optimal or the 

highest signal-to-noise ratio was chosen. A maximization of the overall signal-to-noise ratio is 

selected to make the output devoid of any fluctuations in the control factors and thereby render 

the system robust [221]. Statistically, the effect of factor levels on the output responses can be 

depicted as (Eq. 23): 

𝐴𝐿𝑛 = (
1

𝑛𝐿𝑛
∑ 𝑌𝑖𝐿𝑛𝑖𝐿𝑛

)− �̅�                                                    (23) 

Where 𝐴𝐿𝑛 is the effect of nth factor level on the corresponding output, 𝑛𝐿𝑛 depicts the 

number of outputs corresponding to the nth level, and 𝑖𝐿𝑛refers to the rows corresponding to nth 

level [222].  

Two types of main effects plots are obtained from the Taguchi construct, higher signal-

to-noise ratio and data mean. The higher signal-to-noise ratio plot identifies the robustness of the 

system using the setting of control factors which minimizes the effect of noise. This is 

accomplished by capturing the variation in the response under different conditions for noise. 

From the main effects plot for signal-to-noise ratio the composition was identified to be the most 

robust factor (p<0.05) and the factors’ combinations for the most robust system was observed to 

be 1 mol% at pH 7.35, temperature 38 ºC, and frequency fτ-22.37 mHz. For each combination of 
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the levels of external factors, the main effects plot for data means, such as combination of factors 

was identified to be 1 mol%, pH 7.35, temperature 36 ºC, and frequency = fτ-22.37 mHz. In the 

combination of external factors; pH = 7.35, temperature = 38 °C and frequency = fτ-22.37 mHz 

were the other robust factors to make the output of the system free of any fluctuation in the 

control factors. Thus, AEMA 1 mol% was the most robust hydrogel composition pH-responsive 

sensing in the desired pH region. 

One-Factor RSM methodology[223] was used to find the optimal sensitivity 

corresponding to the mol% of all the systems. A general form of RSM can be written as (Eq. 

24)[224].  

𝑦 = 𝛽0 +∑ 𝛽𝑖
𝑘
𝑖=1 𝑥𝑖  + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖 𝑥𝑗 +  𝜀

𝑘
𝑗≥𝑖

𝑘
𝑖=1                            (24) 

Where y is the response surface, 𝑥𝑖 𝑥𝑗 are the independent variables, β is the intercept and 

ε is the error due to noise. From the RSM optimization, composition was identified to be a 

significant factor (p<0.05). For the AEMA system, optimal mol% was identified as 1 mol%, for 

DMAEMA it was observed to be 2 mol% and for AEMA/DMAEMA system it was seen to be 4 

mol%. One factor RSM on AEMA, DMAEMA and AEMA/DMAEMA hydrogel compositions, 

performed by maximizing the sensitivity or slope, [d(RM)/d(pH)], in the desired pH region 7.35-

7.45, revealed optimal parameters. The predicted optimal sensitivity was 10,056 Ω/pH for the 2.2 

mol% of DMAEMA hydrogel, and was 15,282 Ω/pH for the 4.4 mol% AEMA/DMAEMA 

hydrogel. However, both of these were less than the highest sensitivity obtained for AEMA 1 

mol% hydrogel of 15,816 Ω/pH. Among all the mol% compositions identified experimentally or 

via prediction, the robust 1 mol% AEMA hydrogel was also the optimal composition for highest 

sensitivity.  
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3.3.3 Comparison of methods for impedimetric pH sensing under physiological mimetic 

conditions  

The electrical characterization of sensitive, robust, optimal 1 mol% AEMA was 

performed using parallel plate mesh electrodes and microfabricated, co-planer interdigitated 

microsensor electrodes (IME) on a chip was determined in DMEM cell culture media at T=37 

°C, 5% CO2. DMEM cell culture media effectively simulates a physiological fluid, being 

comprised of a wide range of physiologically relevant monovalent and divalent inorganic ions 

but free of proteins. Both electrode formats allowed easy access of the test fluid as well as free 

expansion of the responsive hydrogel. The fundamental difference between these two 

configurations is the linear electric field and the fringing electric field[225], respectively. Figure 

27 shows the impedimetric response as the membrane resistance, RM (Ω), versus pH in the pH 

region of interest for the pH-responsive hydrogel of 1 mol% AEMA. These dose-response curves 

[221] over the region of nominal pH = 7.0-8.0 is shown in Figure 27a and over the region of 

actual pH = 7.35-7.45 is shown in Figure 27b.  
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Figure 27. Plot of membrane resistance, RM (Ω), versus pH in the pH region of interest for 

pH-responsive hydrogel sensors fashioned using the parallel plate method and co-planar, 

interdigitated microsensor electrode method in DMEM cell culture media at T=37 °C, 5% 

CO2.  

 

The parallel plate method and the impedimetric chip method yielded sensitivities in the 

desired pH range (7.35-7.45), [d(RM)/d(pH)], of is -28,437 Ω/pH and -2,472 Ω/pH, respectively. 

From the dose-response curves, additional sensor performance characteristics such as angle [𝜃 =

𝑡𝑎𝑛−1(𝑠𝑙𝑜𝑝𝑒)], detection limit [𝐷𝐿 =
3𝑆𝑦/𝑥

𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑛𝑒
], dynamic range [𝐷𝑅 =

20𝑙𝑜𝑔10 (
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑖𝑔𝑛𝑎𝑙

𝑁𝑜𝑖𝑠𝑒
) dB, and chi square, a statistic for goodness of fit that shows how well 

the observed signal matches with the ideal expected signal [𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)

2

𝐸𝑖
] , were calculated 

and are summarized in Table 11 [226, 227] [227] [221].  

 

 

y=-2472.4x+18467
R2=0.9925

y=-28437x+211714
R2=0.9726
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Table 11. Performance characteristics of the 1 mol% AEMA containing hydrogel sensor 

using the parallel plate method and the interdigitated microsensor electrode array method 

in DMEM cell culture media at T=37 °C, 5% CO2 (for actual pH=7.35-7.45). 

Parameters IME method Parallel plate method 

Sensitivity (slope) -2,472.4 Ω/pH  -28,437 Ω/pH 

Θ=tan-1(slope) -89.976 º or -1.5703 rad -89.997 º or -1.5707 rad 

Detection limit 7.37 Ω 7.47 Ω 

Dynamic range 11.06 dB 52.24 dB 

Chi square 0.29 0.14 

 

To be effective as a pH sensor, the buffer capacity of the responsive hydrogel should not 

itself perturb the pH of the test medium. Considering the size of the volume element (voxel) of 

hydrogel to be sampled, the Zaretsky convention[225] gives d x w x h where d is the length of 

the digits (1,000 µm), w is the width of the region of interdigitation [5 x  = 5(2a+2a’) = 30 µm], 

where  is the spatial periodicity, a is the digit width (2 µm) and a’ is the space width (1 µm), 

and h is the depth of penetration of the fringing electric field into the hydrogel in the z-axis and 

is given as h = /3 = 2 µm. The total sampled volume is thus 60,000 µm3 or 6.0 x10-4 cm3. This 

is a very small volume compared to the volume of tissue which the device must subtend[228]. 

Accordingly, the hydrogel layer is not expected to have sufficient buffering capacity to 

influence/alter the extra-hydrogel pH. Similarly, to be effective as a sensor, the pH response 

must be insensitive to the range of ions that may potentially partition into the hydrogel[229]. 

Hence, all dose response characterizations were done in DMEM under physiological mimetic 

conditions of T=37 °C, 5% CO2. Interestingly, the impedimetric response does not arise from the 

rate of change of hydrogel swelling brought about by entry or egress of bathing ions but rather a 
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shift in steady state equilibrium arising from ion concentration and/or ion mobility. Acidosis 

reflects a gradual change in tissue pH and is expected to be in pseudo-equilibrium with the 

hydrogel membrane. The estimated response time for hydrogel layers on the order of ~10 µm 

thick is on the order of min. The two media, HEPES and DMEM, behaved similarly as our 

interest was the change in resistance with pH and not the absolute resistance of each hydrogel. 

The reported parameter is thus the highest sensitivity and not absolute resistance of the hydrogel. 

Dulbecco's Modified Eagle Medium (DMEM, high glucose with 4500 mg/L glucose) at pH 8.14 

was pH adjusted to 7.35, 7.40 and 7.45 by dropwise addition of 0.1 M HCl, has been used as the 

cell culture medium. The pH sensitivity using hydrogels placed in DMEM under physiologic 

conditions (T = 37 ºC and 5% CO2) maintained using incubator VWR 2310, which mimics blood 

plasma (without plasma proteins) and interstitial fluid (without extracellular matrix proteins), is a 

suitable and appropriate parameter for demonstration.  

 

3.3.4 Water content and the governing factor in pH response 

The water content and distribution within the AEMA containing hydrogels 0, 1, 4.4 and 

30 mol% AEMA was determined by gravimetry, confirmed by DSC and is summarized in 

Figure 28a. The degree of hydration is simplistically the sum of freezable water and non-

freezable bound water. Hydrogels with 0, 1 and 4.4 mol% AEMA possess similar degrees of 

hydration (~40%) that was dominated by non-freezable bound water reflecting the strong 

hydrogen bonding between water and the abundant hydroxyl group of HEMA [180]. Increased 

abundance of AEMA (30 mol%) dramatically increased the degree of hydration [197], from 

~40% to ~80%, and established an equitable balance between the freezable and non-freezable 

water, statistically similar (p<0.05). Interestingly, the non-freezable bound water remained 
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essentially the same regardless of hydrogel composition, it was the freezable water which 

increased with increasing AEMA content. 

 

Figure 28. (a) Degree of hydration (DoH), total freezable water, Wf, and non-freezable 

bound water, Wnfb, (%) for hydrogels synthesized with 0, 1, 4.4 and 30 mol% AEMA.  

 

Correlations between pH-sensitivity and the type of water; total freezable water (Wf), 

total non-freezable bound water (Wnfb), degree of hydration (DoH), freezable water fraction 

(Wf/Ww), and non-freezable water fraction (Wnfb/Ww) was conducted using multivariate analysis 

in JMP software (SAS, Cary, NC). Figure 28b shows the calculated correlation coefficients. 

While there was the expected strong correlation of pH-sensitivity with total water content (-

0.70), there was found a far stronger correlation between non-freezable bound water and 

hydrogel pH-sensitivity (-0.82). Non-freezable bound water is that portion of the imbibed water 

that interacts strongly with the polymer chains via hydrogen bonding and effectively shields the 

hydrated ions during transport. This implied that the non-freezable bound water may be the 

influential factor controlling the pH response of the hydrogel. It is the distribution of the water of 

hydration among freezable and non-freezable states that govern all the major biomedical 
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properties of hydrogels - not the total hydration [75, 230]. There was no significant difference in 

the total hydration of the 0 mol% and 1 mol% AEMA hydrogels. However, the addition of 1 

mol% AEMA produced a significant difference (p<0.01) in the distribution of water states. 

Correlations between the states of water reveals that it is the non-freezable bound water which 

influences the total hydration and is the dominant factor governing the pH response of the 

hydrogels. Thus, hydrogel swelling was not what promotes the high pH sensitivity, but rather the 

most dramatic change in non-freezable water content. The possible mechanism involves 

increased responsiveness of the hydrogel with decreased non-freezing bound water due to more 

available, readily disreputable inter-chain hydrogen bonding interactions among moieties on the 

polymer backbone. Highly hydratable, high mol% AEMA hydrogels were less sensitive than the 

1 mol% AEMA hydrogel which demonstrated the most dramatic change in non-freezable water 

content and was thus most sensitive to changes in external pH. 

3.4. Conclusions 

It was found that the molecular composition of a poly-(HEMA)-based hydrogel could be 

engineered for changes in hydration, distribution of water states and hence membrane resistance 

via impedance analysis. Minor compositional changes (<5mol%) manifest major changes in the 

biotechnical properties of the hydrogels through changes in the distribution of water states. A 

sensitive, robust and optimal poly-(HEMA)-based hydrogel for pathophysiological pH sensing in 

the region 7.35-7.45 was established with 1 mol% AEMA. The robustness and the optimization 

of this composition were confirmed using Taguchi Design of Experiments and the Response 

Surface Methodology. Water distribution within AEMA containing hydrogels was investigated 

and the type of water was correlated to the membrane resistance at physiological conditions to 

reveal non-freezable bound water as the most strongly inversely correlated parameter with the 
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membrane resistance and pH sensitivity. The highest sensitivity hydrogel was found to be that 

wherein the most dramatic change in non-freezable bound water occurs upon small changes in 

protonation-deprotonation of the ionogenic group. Since higher ionogenic compositions with 

higher hydration and higher ion concentration were not more sensitive, this suggests that it was 

changes to the ion mobility resulting from changes in non-freezable bound water that produced 

the highest pH sensitivity. A pH-sensitive hydrogel sensor chip to measure small fluctuations in 

pH associated tissue acidosis, intended for application in pH sensing during hemorrhage related 

trauma, has been demonstrated.  
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CHAPTER IV                                                                                                                 

ENGINEERING THE ABIO-BIO INTERFACE OF NEUROSTIMULATION ELECTRODES 

USING POLYPYRROLE AND BIOACTIVE HYDROGELS 

4.1 Introduction 

The biointerface is the contact region between an abio material and a material of biological 

origin [216]. Biointerface engineering refers to the purposeful manipulation of that interphasial 

region to achieve a desired technical objective. Chronically indwelling neurostimulation 

electrodes are needed to stimulate the vagus nerve of the chronically depressed [231], [232], 

[233] and to stimulate the spinal cord of paraplegics [234, 235],[236]. Typical electrodes are 

plagued by fibrous encapsulation [237] leading to increased interfacial impedance and an 

escalating power penalty [238]. Such fibrous encapsulation is the result of the inflammatory 

cascade [239] triggered by the foreign body response [240]. The goal of biointerface engineering 

in this context is to reduce interfacial impedance as well as mitigate the foreign body response 

[241]. In this paper, gold coated polyimide electrodes were sequentially coated with a layer of an 

electroconductive polypyrrole thin film for reduced interfacial impedance and a phosphoryl 

choline containing hydrogel layer to address the challenge of fibrous encapsulation at the ABIO-

BIO or electrode-tissue interface. 

It has previously been demonstrated that neurostimulation of the lumbar spinal cord in rats 

with spinal cord injuries can elicit motor movement of the legs [242]. While this treatment has 

produced promising results in several studies, its efficacy is hindered by increased impedance at 

the electrode-spinal cord interface. The foreign body response triggered by the presence of non-

native material within the epidural space results in fibrous encapsulation of the electrodes in a 

layer of scar tissue  [243]. Such encapsulation inhibits efficient charge transfer from electrode to 
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spinal cord, necessitating higher voltages in order to produce the same level of current 

stimulation. Therefore, modified electrodes with decreased impedance are critical to the success 

of neurostimulation treatments for spinal cord injury. 

There are single biphasic constant current stimulators (0.25-0.3 ms per phase) [242] .The 

Precision® neurostimulator has a capability of multiple channels for constant current source. The 

Bion® microstimulator uses a single channel to provide currents between two electrodes [244]. 

In addition to constant current neurostimulators, there are constant voltage neurostimulators. For 

example, Synergy® neurostimulators [245] provide constant voltage over two sources. Restore® 

neurostimulators [246] provide constant voltage over a single source. Constant current 

neurostimulation has been reported by Silva et al. with current values from (0.4-2.0 mA) 

[247],[248],[249],[250]. Constant voltage values have been reported by Schade et al. from 

threshold of (3.6 ± 2.2) V to (5.3 ± 2.9) V [251], [252]. Neurostimulation electrodes are 

generally made from metallic materials[253] such as platinum[254], stainless steel[254], iridium, 

platinum-iridium, tungsten[255], gold, tantalum, tin, rhodium, and nichrome. Recently, porous 

graphene[256], reduced graphene oxide-gold oxide nanocomposite electrodes[257] have been 

used. The supporting but insulating materials[253] for these contacting electrodes include 

flexible polyimides, silicone sheets[258], and non-flexible glass and titanium nitride. Commonly 

used materials for modifying electrodes include polypyrrole (PPy) ,[259, 260], poly(3,4‐

ethylenedioxythiophene) (PEDOT) [261],[262],[263],[264] and polyaniline (PAn) 

[265],[266],[267]. 

Biocompatible electroconductive hydrogels provide a potential means of introducing 

electrodes into the body for long-term use[241] by inhibiting the foreign body response and 

reducing interfacial impedance. These hybrid polymers combine the biocompatible features of a 
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hydrogel with the electrochemical properties of inherently conductive electroactive polymers 

(CEPs) [268] such as polythiophene [269], polyaniline [270], and polypyrrole [129] [271]. 

Specifically, polypyrrole has been incorporated in a variety of biomedical applications, including 

nanofibrous guidance structures for nerve regeneration [272], photothermal chemotherapy 

treatment of breast cancer [273], and enzyme biosensors [274] for subcutaneous glucose 

monitoring [275], among others. Given its versatility, biocompatibility, and ease of synthesis, 

polypyrrole [276] has been identified as a conductive electroactive polymer of interest for use in 

neurostimulation [277]. 

This work [278]entails the fabrication and characterization of layered electroconductive 

polypyrrole [279] and a biocompatible hydrogel [197] intended to engineer the ABIO-BIO 

interface [142] as a means of decreasing interfacial impedance [280] and increasing 

biocompatibility [124]. The work identifies an optimum charge density of polypyrrole for 

modification of neurostimulation electrodes and explores the relationship between charge 

density, electroactive area, and charge transfer resistance. Electrodeposited polypyrrole thin 

films were synthesized from 0-100 mC/cm2 and characterized by multiple scan rate cyclic 

voltammetry using the Fe(II)/Fe(III) system as a probe to reveal changes in the effective surface 

area, by electrical impedance spectroscopy to show changes in the charge transfer resistance, and 

by scanning electron microscopy to reveal changes in surface morphology pursuant to the 

growing conductive polymer film. By forming a copolymer of pyrrole with pyrrolyl butyric acid 

(PyBA) and by using EDC-NHS conjugation of the free acid with N-(2-aminoethyl) methacrylate 

(AEMA) and by using a UV-polymerizable dopant in the form of sulfopropyl methacrylate 

(SPMA), the hydrogel layer could be covalently bonded to the pyrrole layer. 
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Continual glucose and lactate monitoring is of importance in the measurement of 

physiological conditions such as hyperlactatemia (>2.0 mM) and hyper- and hypo-glycemia 

(>5.5 mM and <3.88 mM). Such monitoring can guide patient-specific therapeutic interventions 

in the management of conditions such as hemorrhaging trauma and diabetes (hyperglycemia). In 

this study, we have engineered amperometric-enzyme biotransducers for the monitoring of 

glucose and lactate wherein the enzymes lactate oxidase (LOx) and glucose oxidase (GOx) were 

hosted within hydrogel membranes consisting of 2-hydroxyethyl methacrylate (HEMA), and 

other monomers. Enhancements were pursued by forming supramolecular conjugates of the 

enzymes with Single-Walled Carbon Nanotubes (SWCNT) to promote direct electron 

transfer[281] and with polypyrrole:poly(styrenesulfonate) (PPy:PSS) nanoparticle inclusions to 

support redox mediation. Enhancements improved the electronic properties of the responsive 

hydrogels as characterized by amperometry. The surface modification was extended to test 

different electrode systems using Fe(II)/Fe(III) system as a probe to reveal changes in the 

effective surface area, suitable to build a sensitive LOx/GOx biotranduscer for amperometric 

sensing. 

 

4.2. Materials and Methods  

4.2.1 Materials 

Chemicals and materials were purchased from Sigma Aldrich Co. (St. Louis, MO, USA) as 

described in earlier publications [75]. Briefly, the monomers 2-hydroxyethyl methacrylate 

(HEMA) (40.75 mol%), N-(2-hydroxypropyl) methacrylamide (HPMA) (40.75 mol%), 

poly(ethylene glycol)(360)methacrylate (PEG(360)MA) (5 mol%), N-[tris(hydroxymethyl) 

methyl]acrylamide (HMMA, 93%) (5 mol%), 2-Methacryloyloxyethyl phosphorylcholine 
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(MPC) (5 mol%), the cross-linker tetra(ethylene glycol) diacrylate (TEGDA, technical grade) 

(1.0 mol%), the biocompatible viscosity modifier polyvinylpyrrolidone (pNVP, MW 

~1,300,000) (2.0 mol%, as monomer repeat unit) and the photo-initiator 2,2-dimethoxy-2-

phenylacetophenone (DMPA, 99+%) (0.5 mol%) were prepared as a cocktail. Prior to mixing, 

methacrylate and diacrylate reagents were passed through an activated alumina column (306312, 

Sigma-Aldrich Co., St. Louis, MO) in order to remove the polymerization inhibitors 

hydroquinone and monomethyl ether hydroquinone. A Milli-Q® plus (Millipore Inc., Bedford, 

MA) ultrapure water system was used to prepare deionized water. The 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid sodium salt (HEPES, 99.5+%) buffer was prepared to 25 mM and 

the pH was adjusted to 7.4 using dropwise addition of 10 M NaOH [75]. Dulbecco's Modified 

Eagle Medium (DMEM), with high glucose (4500 mg/L glucose) was used where indicated.  

The conjugation reagents 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and 

sulfo-N-hydroxysuccinimide (sulfo-NHS) were purchased from Pierce. The polypyrrole dopant, 

sulfopropyl methacrylate (SPMA), was purchased from Sigma Aldrich. A Milli-Q® plus 

(Millipore Inc., Bedford, MA) ultrapure water system supplied deionized water. All other 

common chemicals and solvents were purchased from Sigma Aldrich Co. (St. Louis, MO, USA) 

and were used as received, unless otherwise stated. Polyimide, 8 mil thick Cirlex® laminate were 

purchased as 23.5” x 23.5” sheets (Fralock, Valencia, CA) and cut into 6”x 6” sheets, cleaned, 

plasma treated and sputtered deposited with 100 Å TiW and 1,000 Å Au on one side (Thin Films 

Industries, Inc., Morrisville, PA). These served as a source of gold-coated polyimide electrodes 

used for in vitro studies.  
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4.2.2 Electrode fabrication and cleaning 

Electrodes, shown in Figure 29, were rectangular, gold-coated polyimide (10 x 15 mm) 

masked with adhesive-backed polyimide tape to create a circular ( = 0.7 mm) electrodeposition 

window, Figure 29A. Although polypyrrole was successfully electrodeposited onto this design, 

use of polyimide tape in this way produced variations between discrete electrodes. Furthermore, 

because the three characterization methods were inherently destructive and altered the electrode 

surface, three separate deposition areas per charge density performed in triplicate were required. 

An additional design, created in SolidWorks® and manufactured with an LS100 Gravograph 

CO2 laser at 5% power (Gravotech Inc., Duluth, GA) started with a single rectangular piece of 

gold-coated polyimide (7.5 x 20 mm) and produced three isolated deposition areas as shown in 

Figure 29B. A single rectangular piece of polyimide tape (7.5 x 8 mm) was used as a mask to 

confine electrodeposition within the intended areas. With this design, polypyrrole could be 

deposited across all three sections at the same time, with the same charge density, then the 

sections could each be cut apart for use with one of the three characterization methods. 

Electrodes were cleaned first with DI water to remove residual dust from the laser, then with 

ethanol to remove organic compounds from the gold surface. Electrodes were cleaned with UV-

ozone for 5 minutes (UV-ozone Cleaner, Boekel Industries Inc., Feasterville, PA) to remove 

adsorbed organic debris and rinsed in isopropyl alcohol. Finally, electrodes were made the 

working electrode of a three-electrode setup, suspended in PBS 7.4, and processed through 20 

cycles of cathodic cleaning (scan rate 0.1 V/s, potential range 0 to -1.2V) to remove surface 

oxides [216]. 
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Figure 29. A) i) Design and construction of electrodes for in vitro assessments of 

electropolymerized charge densities of 0 – 1,000 mC/cm2.  

 

 

4.2.3 Preparation and electrodeposition of polypyrrole 

A unique pyrrole solution was formulated for electrodeposition. To aid in the crosslinking of 

the hydrogel layer to the electrodeposited polypyrrole film, amino ethyl methacrylate (AEMA, 

0.25M) was conjugated to pyrrolyl butyric acid (PyBA) via carbodiimide chemistry. The 1-ethyl-

3-(3-dimethylaminopropyl) carbodiimide (EDC) bonds covalently to PyBA under acidic 

conditions, forming an unstable o-acylisourea intermediate. Then, N-hydroxysuccinimide (NHS) 

displaces EDC to form an ester intermediate with increased stability and efficiency for reaction 

with the primary amine group of AEMA. The chemistry for the conjugation of PyBA-conj-

AEMA using EDC-NHS is depicted in Figure 30. This PyBA-conj-AEMA, combined with 

pyrrole (Py, 0.5M), pyrrolyl butyric acid (PyBA, 0.5M), and the dopant sulfopropyl methacrylate 

(SPMA, 0.25M) were incubated in the dark and pH adjusted to 5.0 in order to initiate 

electropolymerization from the pyrrole solution to yield poly(Py-co-PyBA-co-PyBA-conj-

AEMA):SPMA which shall be referred to as PPy:SPMA. Electrodeposition of polypyrrole was 

conducted using a VerstaSTAT 4 Potentiostat/Galvanostat (Princeton Applied Research, 

AMETEK, Inc., Oak Ridge, TN) and analyzed with VersaStudio software (10 cycles, 0 to +0.75 
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V). Laser fabricated gold electrodes were made the working electrode of a three-electrode setup, 

with a large area platinum mesh as the counter electrode and Ag/AgCl (3 M KCl) as the 

reference electrode (RE803, ABTECH Scientific, Inc., Richmond, VA). A film of polypyrrole 

was deposited at seven charge densities (1, 5, 10, 30, 50, 100, 1,000 mC/cm2). 

 

 

 
Figure 30. Schematic illustration of the conjugation of PyBA with AEMA to yield PyBA-

conj-AEMA using EDC-NHS (Adapted from [273]). 

 

4.2.4 Preparation and crosslinking of hydrogel 

Fluorescent light bulbs within the laboratory space were fitted with UV filtering sleeves 

(TG-T8TG-UV, lightbulbsurplus.com) to maintain a UV-free environment for monomer 

handling. The monomers HEMA, TEGDA, and PEGMA were filtered through an alumina 

column to remove polymerization inhibitors added during manufacturing. The following solid 

monomers were added to a solution of the three filtered liquid monomers in deionized water: 

HPMA, HMMA, MPC, pNVP (biocompatible viscosity modifier), and DMPA (photoinitiator). 
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This cocktail was degassed with nitrogen, stirred on a stir plate, and placed in an ultrasonicator 

(Branson 1510, Gaithersburg, MD) to ensure complete dissolution of solid monomers in the 

liquid solution. The hydrogel cocktail was then pipetted onto the PPy:SPMA-modified gold 

electrodes and crosslinked for five minutes under UV (CX-2000, UVP, Upland, CA) . Hydrogels 

were hydrated in the DMEM (Dulbecco's Modified Eagle Medium, high glucose with 4500 mg/L 

glucose, Sigma-Aldrich Co., St. Louis, MO)) solution which was used for impedance 

measurements. 

4.2.5 Characterization of PPy:SPMA|Hydrogel electrodes 

Electrodes were characterized by scanning electron microscopy (SEM), multiple scan rate 

cyclic voltammetry (MSRCV) and AC electrical impedance spectroscopy (EIS). To compare 

differences in surface morphology across the specified range of charge densities, electrodes were 

sputter-coated with a gold layer using a Cressington 108 Sputter Coater (Cressington Scientific 

Instruments, UK) and placed on a viewing mount using carbon tape, with additional carbon tape 

across the top of the electrodeposited area to dissipate charge while imaging. Electrodes were 

viewed with a JEOL JSM-7500F FE-SEM at 2.0 kV and a magnification of x 20k. SEM images 

were analyzed using ImageJ software [282]. Prior to hydrogel layer attachment, PPy:SPMA-

modified electrodes were characterized by multiple scan rate cyclic voltammetry (MSRCV) 

[283] in 50 mM potassium ferrocyanide/ferricyanide [(K4Fe(CN)6)/(K3Fe(CN)6)] in a 

background of 0.1M KCl. The Au|PPy:SPMA-modified gold electrodes were made the working 

electrode of a three-electrode setup, with a large area platinum mesh as the counter electrode and 

Ag/AgCl (3 M KCl) as the reference electrode (RE803, ABTECH Scientific, Inc.). MSRCV 

measurements were taken across a voltage range of 0 to 0.75 V at variable scan rates (10, 25, 50, 

75, 100, 125, 150, and 200 mV/s). Two cycles were applied to allow the system to reach a steady 
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state, with the first cycle discarded and the second set aside for analysis using the Randles-

Sevcik equation. Electrical impedance spectra were obtained with a VerstaSTAT 4 

Potentiostat/Galvanostat (Princeton Applied Research, AMETEK, Inc., Oak Ridge, TN) and 

analyzed with VersaStudio software (VersaStudio version 1.51, AMETEK, Inc., Oak Ridge, 

TN). PPy:SPMA-modified gold electrodes were made the working electrode of a two-electrode 

setup, with a large surface area platinum mesh acting as both the counter and reference. 

Measurements were taken across a frequency range of 0.01 Hz to 1 MHz at an RMS amplitude 

of 7.07 mV with 5 points per decade. Impedance parameters such as membrane and charge 

transfer resistance were obtained in ZSimpWin software version 3.60 (AMETEK, Inc., Oak 

Ridge, TN) through equivalent circuit analysis using the Randles R[QR] model. The 

Au|PPy:SPMA|Hydrogel electrodes were similarly characterized. In order to most closely 

simulate internal body conditions, electrodes were immersed in DMEM and incubated at 37 ºC 

using a VWR2310 Water-Jacketed CO2 Incubator (Marshall Scientific, Hampton, NH) while 

carrying out these experiments. 

4.2.6 Statistical Analysis of Impedance Parameters 

Impedance values for cleaned and pristine electrodes, electrodes modified following 

electropolymerization with polypyrrole:sulfopropyl methacrylate (PPy:SPMA), and electrodes 

modified by PPy:SPMA and coated with a UV-crosslinked poly(HEMA-co-HPMA-co-MPC)) 

hydrogel are reported as average values with n = 5. Pearson’s correlation coefficient compared 

with charge density is reported for electroactive area, percent fracture area, charge transfer 

resistance, and membrane resistance, with +/- 0.8 representing a strong correlation. 
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4.2.7 Fabrication and Performance of Lactate and Glucose Responsive Hydrogel Biosensors 

Incorporating Polypyrrole and Carbon Nanotubes 

Blank hydrogels were prepared using the monomers 2-hydroxyethyl methacrylate (HEMA), 

2-hydroxypropyl methacrylamide (HPMA), poly(ethylene glycol)(360)methacrylate 

(PEG(360)MA), N-Tris(hydroxymethyl)methyl]acrylamide (HMMA, 93%), the cross-linker 

tetra(ethylene glycol) diacrylate (TEGDA, technical grade), the biocompatible viscosity modifier 

polyvinylpyrrolidone (pNVP, MW ~1.3M) and the photo-initiator 2,2-dimethoxy-2-

phenylacetophenone (DMPA, 99+%) purchased from Sigma Aldrich Co. (St. Louis, MO). Blank 

hydrogels were made increasingly conductive and responsive by inclusion of 1.0 wt% PPy:PSS 

nanoparticles (Sigma-Aldrich) to support redox mediation. SWCNTs (purity, 95wt%) and GOx 

(EC 1.1.3.4 from Aspergillus niger, G7141-250KU, type X-S, 146,000 units/g solid, Sigma 

Aldrich) or LOx (EC: 1.13.12.4 from Pediococcus sp., L-1175-1xKU, 1K units/g solid, A.G. 

Scientific™) were used to create supramolecular conjugates (SWCNT-GOx, SWCNT-LOx) 

fabricated via ultrasonication and ultracentrifugation according to previously published 

procedures. Samples were stored at 4 °C. Amperometric dose-response curves (+0.65V vs. 

Ag/AgCl) were produced for hydrogel-coated, gold-on-polyimide electrodes for 0.0-50.0 mM 

lithium-L-lactate and D-(+)-glucose (Sigma-Aldrich) in 0.01 M PBS. Amperometric dose-

response curves (+0.65V vs. Ag/AgCl) were produced for hydrogel-coated, gold-on-polyimide 

electrodes for 0.0-50.0 mM lithium-L-lactate and D-(+)-glucose (Sigma-Aldrich) in 0.01 M PBS. 

4.2.8 Surface modification and characterization of systems for improving sensitivity of 

amperometry  

Several electrode substrates like glassy carbon electrode ( = 3 mm, Bioanalytical Systems, 

Inc., West Lafayette, IN), graphitic carbon electrode ( = 0.47 cm, Bioanalytical Systems, Inc., 



 

100 

 

West Lafayette, IN), titanium electrode ( = 0.47 cm, Bioanalytical Systems, Inc., West 

Lafayette, IN), platinized stainless steel electrode ( = 0.48 cm, Bioanalytical Systems, Inc., 

West Lafayette, IN) platinized for a charge density of 50 mC/cm2 using one-pot platinization 

technique [79], Platinum microelectrode (Pt100,  = 100 µm, Bioanalytical Systems, Inc., West 

Lafayette, IN), and gold microelectrode (Au 100,  = 100 µm, Bioanalytical Systems, Inc., West 

Lafayette, IN) cleaned using alumina polish (15 um, Bioanalytical Systems, Inc., West Lafayette, 

IN) were tested by multiple scan rate cyclic voltammetry using the Fe(II)/Fe(III) system as a 

probe to reveal changes in the effective surface area. Areaeffective was found using the parameters 

from the Randles-Sevcik equation. The analysis for the ratio of Areaeffective versus Areacalculated 

was accomplished to reveal the system showing high current density (A/cm2). Electrical 

impedance spectra were obtained with a VerstaSTAT 4 Potentiostat/Galvanostat (Princeton 

Applied Research, AMETEK, Inc., Oak Ridge, TN) and analyzed with VersaStudio software 

(VersaStudio version 1.51, AMETEK, Inc., Oak Ridge, TN) to reveal the charge transfer 

resistance (RCT) of these subtrates. 
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4.3. Results and Discussion 

4.3.1. Evolving surface morphology of polypyrrole films 

Potentiostatic electropolymerization of Py, PyBA and PyBA-conj-AEMA to various charge 

densities (0-100 mC/cm2) produced an inherently conductive polymer layer, [P(Py-co-PyBA-

conj-AEMA):SPMA], on the gold electrode. Figure 31A shows SEM image analysis of 

polypyrrole across seven electrodeposition charge densities (1, 5, 10, 30, 50, 100 and 1,000 

mC/cm2), compared to a bare gold surface. Isolated deposits of polypyrrole were observed at 1 

mC/cm2, with a semi-continuous film forming at 5 mC/cm2. To fully exploit the 

electroconductive properties of polypyrrole, a uniform, homogenous film with consistent 

thickness and minimal surface features was anticipated. The density of such features gradually 

decrease with electrodeposition charge density up to 50 mC/cm2. Above this charge density, a 

second film appears to begin to deposit on top of the first, introducing larger surface features 

such as those seen at 100 mC/cm2. At 1,000 mC/cm2 saturation was observed. The plot for 

percent area with surface features is shown in Figure 31B, showing the clear minimum at 50 

mC/cm2. 
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Figure 31. A) SEM images of PPy:SPMA electrodeposited onto gold-sputtered polyimide via 

potentiostatic electropolymerization at charge densities at 0, 1, 5, 10, 30, 50, 100 ,and 1000 

mC/cm2, each taken at acceleration voltage 2.0 kV and ×20 k magnification.  

 

4.3.2. Determination of effective electroactive area from multiple-scan rate cyclic voltammetry 

Multiple-scan rate cyclic voltammetry in Fe(II)/Fe(III) serves to delineate the ability of 

the substrate electrode to support the one-electron charge transfer reaction associated with the 

reversible Fe(II)-Fe(III) couple. In this regard, performance at bare the gold electrode serves as a 

reference or control condition to which PPy:SPMA-modified electrodes may be compared. The 

anodic peak current, ipa, was determined at each scan rate for each PPy:SPMA modified gold 

electrode. Figure 32A is a plot of anodic peak current, ipa, as a function of the square root of 

scan rate, 𝛎1/2 (V/s)1/2, in the familiar form of the Randles–Sevcik equation (Eq. 1) [284]. The plot 

following electrodeposition to 1 mC/cm2 demonstrates a similar linear relationship with scan rate 

when compared with bare gold with only a modest change in slope consistent with SEM 

observations at that charge density. The addition of 5, 10 and 30 mC/cm2 reveals considerably 

reduced anodic current and independence of increasing scan rate. This behavior is consistent 

with a diffusion free, surface confined or mediated reaction. The linear relationship once again 

emerges at and above 50 mC/cm2, with only a slight increase in linearity at 100 mC/cm2 and a 

1 μm 30 
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further larger increase at 1,000 mC/cm2. These patterns confirm a return to the active diffusion-

controlled redox reaction at an electrode-active surface. The slopes of each line corresponding to 

the various electrodeposition charge densities was used to calculate the effective electroactive 

area via the Randles-Sevcik equation (Eq. 6).  

Where ipa is the peak anodic current (μA), n is the number of electrons involved in the 

redox reaction, Aeff is the effective electroactive area (cm2), Do is the diffusion coefficient for 

ferri/ferrocyanide, Co is the concentration of ferri/ferrocyanide (mM) in solution, and ν is the 

scan rate (V/s). Here electroactive area is defined as the portion of the electrode’s surface 

actively engaged in charge transfer with the ferri/ferrocyanide solution. Given that the test 

electrodes were comprised of two conductive materials, Au and PPy:SPMA, this could refer to 

charge transfer between gold and solution, or between polypyrrole and solution. A charge 

density of 1 mC/cm2 produced electrodes with an electroactive area of 8.83 mm2, 79% of the 

actual reference electroactive area (11.22 mm2). Given that SEM revealed only a few isolated 

deposits of polypyrrole at this charge density, electroactive area most likely corresponds with 

exposed bare gold in this case. Similar to the observed peak current trends, 5, 10, and 30 mC/cm2 

exhibit a substantial decrease in electroactive area (0.45, 0.36, and 0.38 mm2 respectively), with 

the polypyrrole films formed at these charge densities acting as an barrier against charge transfer 

between the electrode and Fe(II)/Fe(III) in solution. Electroactive area increases to 2.96 mm2 at 

50 mC/cm2, suggesting a threshold at or near this charge density at which polypyrrole begins 

exhibiting its own electrode-like behavior. Electroactive area further increases only slightly at 

100 mC/cm2 (3.46 mm2), and increases appreciably at 1,000 mC/cm2 (5.88 mm2 or 52% of bare 

gold). As shown in Figure 32B, polypyrrole initially acts as a barrier to charge transfer until 50 

mC/cm2. Above 50 mC/cm2, it acts like an electrode material [285] and supports diffusion linked 
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charge transfer of Fe(II)/Fe(III) from solution. It is noteworthy that the electrode-activity of 

Au|PPy:SPMA, as manifiest in the effective surface area, follows a similar trend as the SEM 

feature analysis, with 50 mC/cm2 emerging as a charge density of interest.  

 
Figure 32. A) Plots of anodic peak current, ipa, versus the square root of eight scan rates (10, 

25, 50, 75, 100, 125, 150, 200 mV) for seven charge densities of electrodeposited PPy:SPMA 

and control (0 mC/cm2).  

 

4.3.3 Changes in charge transfer resistance by EIS 

 EIS was used to investigate the electrode characteristics of Au|PPy:SPMA as well as the 

impact of the hydrogel layer on the impedance characteristics of Au|PPy:SPMA|Hydrogel. 

Figure 33A shows the Nyquist plots for control and the seven charge densities studied in 

DMEM at 37 ºC and 5% CO2. Figure 33B depicts the plot of the charge transfer resistance as a 

function of the electrodeposition charge of PPy:SPMA films. Electrical impedance spectroscopy 

(EIS) revealed that on average, gold electrodes electrodeposited with polypyrrole and hydrogel 

exhibited an 82% decrease in charge transfer resistance, RCT, compared with bare gold 

electrodes. Polypyrrole is known to contribute its characteristic redox chemistry with EOX and 

ERED corresponding to ~0.2 V [286] and -3.6 V [286, 287], respectively. Table 12 shows the 

impedance parameters extracted from R(QR) model fitting, including RM (Ω) and RCT (Ω) for the 

BA
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control and the seven charge densities. Technical triplicates of PPy:SPMA films formed from 50 

mC/cm2 experimentally showed modest in vitro variability. A Pearson’s correlation 

coefficients[288] analysis between the electrodeposition charge density and the various 

parameters extracted from model fitting of the EIS data established a strong anti-correlation 

between electrodeposition charge density and charge transfer resistance, RCT, of Pearson’s 

correlation coefficient, r = -0.83. All other parameters were uncorrelated or very weakly 

correlated (Due to membrane resistance, RM, the Pearson’s correlation coefficient, r=0.11). 

 

Figure 33. A) Nyquist plots showing real and imaginary components of the complex 

impedance, where, for a simple Randles R(QR) equivalent circuit, the rightmost x-intercept 

of each curve represents the sum of membrane resistance and charge transfer resistance.  
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Table 12. Electrical impedance parameters obtained for the range of charge densities 

studied, including membrane resistance (RM) and charge transfer resistance (RCT). 

Charge 

Density 

(mC/cm2) 

RM (Ω) RCT (Ω) Yo (S-secn) n  χ2 

0 77.67 8.05E+5 6.45E-6 0.84 1.08E-4 

1 100.8 1.97E+5 3.44E-5 0.65 1.09E-4 

5 69.34 1.71E+5 5.41E-5 0.73 1.13E-4 

10 67.06 1.15E+5 1.00E-5 0.80 1.08E-4 

30 53.35 4.12E+4 1.14E-5 0.80 1.73E-4 

50 87.64 3.25E+4 1.43E-4 0.91 3.72E-4 

100 88.21 3.10E+4 1.63E-4 0.72 1.09E-4 

1000 21.58 1.16E+4 1.06E-4 0.71 6.36E-4 

 

4.3.4 Interlayer attachment 

Films were incubated in DMEM at 37 ºC and 5% CO2 and monitored for delamination. 

Up to 72 h films maintained their integrity. After 72 h hydrogel layers showed some evidence of 

lifting, but not complete delamination. Electrodeposited PPy:SPMA films that did not contain the 

PyBA-conj-AEMA (control) were similarly prepared and incubated. These films produced 

interlayer delamination within 30-45 min and upon hydration. Electrode assemblies were tested 

in the DMEM solution at current intensities from 20mA - 100mA (biphasic pulses, 1.0 Hz), with 

maximum current limited to 30 mA. Current was passed through these electrodes to test the 

coating stability. The stability test for the electrodes subjected to neurostimulation currents 

limited to 30 mA showed a stability of 0.5 hour. Future work will focus on improving the 

interlayer adhesion, measurement of the in vitro biocompatibility and the conduct of animal 

studies. 

4.3.5 Amperometric sensing for LOx/GOx biotransducers 

From the amperometry, CNTs being inherently conductive, show more current when 

incorporated into the LOx hydrogel. CNTs also serve to facilitate Direct Electron Transfer (DET) 
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to the electrode from the active site of the enzyme. Addition of PPy:PSS, an intrinsically 

conductive polymer (ICP) further adds to the current response of the hybrid hydrogel containing 

LOx-CNT and PPy. The most complex hydrogel composed of LOx-CNTs and PPy:PSS showed 

the highest sensitivity (5.0 x10-4 A/mM). The sensitivity decreased from the most complex LOx-

CNT|PPy:PSS/Gel to the LOx/Gel control which was 2.0x10-4 A/mM. The sensitivities of the 

GOx-CNT|PPy:PSS/Gel and GOx/Gel control to glucose were 5.0x10-4 and 4.0x10-4 A/mM 

respectively. Thus, addition of supramolecular complexes based on SWCNTs and PPy:PSS 

increased the current response and sensitivity from lactate and glucose (not sown) responsive 

hydrogel biotransducers. Figure 34 shows the glucose and lactate hydrogels of increasing 

complexity, and reports the sensitivity of these gels compared to that of literature. These can be 

extended to sense glucose and lactate of varying concentrations pertinent to various pathologies. 

 

Figure 34. Glucose and Lactate responsive hydrogels of increasing complexity; i) Blank 

hydrogel cocktail, ii) LOx/Gel, iii) LOx-CNT/Gel, iv) LOx-CNT|PPy:PSS/Gel, B) 

Amperometric responses, and C) Sensitivity from four types of lactate responsive hydrogels 

[286]. 
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4.3.6 Surface modification and characterization of systems for improving sensitivity of 

amperometry 

The surface modification and characterization of systems for improving sensitivity of 

amperometry showed graphitic carbon electrode as the electrode system with the highest current 

density as per Figure 35 A and B. This was followed by platinum, glassy carbon, gold, 

platinized stainless steel, and titanium electrode. γ was the correction factor used for area (Eq. 

25).   

𝐴𝑒𝑓𝑓= 𝐴𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐*                                                                                     (25) 

γ>1 indicated an enhanced film and γ<1indicated a passivated electrode. 

As per Figure 35 C and D, impedance was modeled according to (Eq. 26) 

𝑍𝑡𝑜𝑡 = 𝑅𝑀 +
𝑅𝐶𝑇−𝑗𝑅𝐶𝑇

2 𝐶𝐷𝐿𝜔

𝜔2𝑅𝐶𝑇
2 𝐶𝐷𝐿

2 +1
                                                                          (26) 

RCT/γ was of the order of (x108) for titanium, with the order of RCT/γ of graphitic carbon 

(x102), for glassy carbon and platinum (x105), for gold and platinized stainless steel (x106). For 

the carbon-based electrodes, graphite has more sp2 domains than glassy carbon, hence capability 

to support conduction is more (pz orbitals). 

Area available (calculated) for graphite (1.73 x10-1 cm2) is much more than glassy carbon 

(7.0 x10-2 cm2). Thus, further experiments would entail using glassy carbon electrode to check 

improved sensitivity for amperometric sensing. Carbonization of electrode can be performed on 

the gold of the biosensor system to improve the sensitivity for amperometric sensing using 

LOx/GOx biotransducers. Structurally, glassy carbon is an amorphous form of carbon, whereas 

graphite has a more ordered structure, with distinct planes – the basal plane and the edge plane. 
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The edge plane is considerably more conductive than the basal plane. Glassy carbon is 

mechanically more durable than pyrolytic graphite. 

 

 

 

 
 

Figure 35. Characterization using cyclic voltammetry in 50mM Fe(II)/50mM Fe(III): A)Plots 

of current density (anodic peak current, ipa/cm2), versus the square root of twelve scan rates 

(10, 15, 25, 50, 75, 100, 125, 150, 200, 250, 300, 350 mV) on the electrode substrates of 

graphitic carbon, platinum, glassy carbon, gold, platinized stainless steel and titanium. 

 

Electrode material
Slope of R-S 

Plots 

Graphitic 

Carbon

5.5E-02 1.58

Platinum 4.9E-02 1.40

Glassy Carbon 3.3E-02 0.94

Gold 2.3E-02 0.66

Platinized 

Stainless Steel

3.8E-03 0.11

Titanium 4.0E-04 0.01

Electrode 

material

RCT RCT/

(Ω)

Graphitic 

Carbon

1.90E+02 1.20E+02

Platinum 3.04E+05 2.17E+05

Glassy 

Carbon

1.17E+05 1.24E+05

Gold 1.16E+06 1.76E+06

Platinized 

Stainless 

Steel

1.64E+05 1.49E+06

Titanium 5.60E+06 5.60E+08

0.0E+00

2.0E+02

4.0E+02

6.0E+02

8.0E+02

1.0E+03

1.2E+03

1.4E+03

1.6E+03

1.8E+03

0.0E+00 1.0E+03 2.0E+03 3.0E+03 4.0E+03 5.0E+03 6.0E+03 7.0E+03 8.0E+03 9.0E+03 1.0E+04

Z
im

g
 (
Ω

)

Zreal (Ω)

RM

RM+RCT

Yo

A) B) 

C) D) 



 

110 

 

4.4 Conclusion 

Neurostimulation electrodes were successfully modified for the potential treatment of spinal 

cord injury and vagus nerve stimulation. Test electrodes electrodeposited with polypyrrole and 

hydrogel exhibited markedly decreased interfacial impedance over the bare gold electrodes 

currently used in neurostimulation techniques. Characterization techniques revealed deposition 

patterns of polypyrrole at different charge densities as well as electrochemical properties such as 

electroactive area and charge transfer resistance. An optimum charge density of 50 mC/cm2 was 

identified for use in neurostimulation based on SEM analysis and electroactive area calculations. 

Future work will explore interfacial impedance of modified electrodes in vivo in porcine models 

at the Houston Methodist Research Institute, Houston, TX. The final bio-electrode assembly can 

be improved by incorporating vascular endothelial growth factor (VEGF) [289], anti-

inflammatory agents [290], various drug payloads [291], and rendering some electrode pads as 

enzyme-based biosensors. 

Preliminary experiments showed the sensitivity of LOx-CNT|PPy:PSS/Gel  as 5.0 x10-4 

A/mM, and of GOx-CNT|PPy:PSS/Gel as 5.0x10-4 A/mM. Future work to improve the 

sensitivity of the amperometric system would entail building the LOx/GOx biotransducer on 

glassy carbon substrate. Explorations for the medium for the dose-response curves can include 

Tetramethyl Urea-Urea-Water conjugates[292] or the use of Dimethyl sulfoxide. The system can 

be checked for sensitivity for chronoamperometry at -0.475 V, and 0.6 V potentials in 

deoxygenated (nitrogen gas purging) and fully oxygenated (air purging) conditions in 5 mM 

concentrations of lactate and glucose. 
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CHAPTER V                                                                                                                          

FUSING FIVE PHYSIOLOGICAL BIOMARKERS: TOWARD A HEMORRHAGE 

INTENSIVE SEVERITY AND SURVIVABILITY (HISS) SCORE 

5.1 Introduction  

Trauma accounts for 47% of mortalities in individuals 1-46 years of age in the United 

States [6]. Trauma-induced hemorrhage with its attendant peripheral vasoconstriction [293], 

[294] insulin resistance [295], hyperlactatemia, [296], [297], [298] acidosis [299], hyperkalemia 

[89], [300] and hypoxia [12], [301] can rapidly lead to death or may be followed by Multiple 

Organ Dysfunction Syndrome (MODS), a consequence of a “cytokine storm”, which can also be 

fatal [299], [301]. The field triage decision scheme for the national trauma triage protocol 

provides guidelines to identify the status of the patient [302]. The physiological criteria includes 

identification of vital signs such as; systolic blood pressure (Hypotension <90 mmHg) [303], 

[304], [305], [306], abnormal respiratory rate (<10 or >29 breaths per minute) [302], abnormal 

heart rate (Tachycardia >100 beats per minute) [307], [308] and the Glasgow coma scale (≤ 13) 

[309, 310]. The Glasgow coma scale categorizes the patients according to the severity of head 

injury. Simple Triage and Rapid Treatment (START) is the commonly used algorithm for mass 

casualty triage in the USA [311], [312], [313], [314], which is used in conjunction with 

secondary triage for Secondary Assessment of Victim Endpoint (SAVE) when the resource 

supply is restricted [311]. START and SAVE employ criteria such as respiratory rate, cognitive 

function (ability to listen and respond to commands), and radial pulse to identify the category for 

triage. Another example is the Injury Severity Score (ISS) [315] based on the Abbreviated Injury 

Scale (AIS) system which aggregates the assessed injury to six regions of the body and 

establishes correlations with mortality and morbidity [316]. A MODS severity score was 
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developed by Marshall et al. in 1995, wherein a score (0-4) is applied following physiologic 

measurement of dysfunction in 6 organ systems (i) respiratory function (pO2/FIO2 ratio), ii) renal 

function (serum creatinine), iii) liver function (serum bilirubin), iv) cardiovascular function 

(PAR), v) Hematologic (Platelet count) and vi) Neurologic (Glasgow Coma Score)) [105]. The 

total number of input points were then added to achieve a score corresponding to the patient’s 

ICU mortality %, hospital mortality %, and ICU stay.  

Since the introduction of the MODS score, new rapidly deployable micro-analytical 

technologies have enabled measurement of key physiological indicators and the opportunity for 

the emergence of scores based on molecular biomarkers of physiological stress. A Hemorrhage 

Severity and Survivability Score (HISS) is herein introduced to allow for patient stratification 

based on the fusion of micro-analytical measurements of multiple physiological biomarker 

values [317]. HISS is a severity index intended as an adjunct to inform the providers of 

healthcare to the victims of hemorrhaging trauma of the criticality of the patient’s health and so 

assist them in the delivery of timely and appropriate attention and care. HISS, therefore, can help 

in timely triage and in the stabilization of the most critically ill patients, and as a consequence, 

reduce patient mortality. An adjunct device in the form of an indwelling biosensor system, the 

Physiologic Status Monitoring (PSM) Biochip, has been proposed and is under development to 

help healthcare providers of trauma care in mass military and civilian triage situations [51, 318]. 

A dual-responsive biosensor for glucose and lactate has been proposed, designed, fabricated and 

tested in rodent and piglet animal models of hemorrhaging trauma [318]. The PSM Biochip is a 

bio-SONDE, an indwelling device which measures, monitors and wirelessly transmits 

physicochemical information from within a victim of hemorrhaging trauma [51]. Here, a penta-

analyte bio-SONDE capable of acquiring the physiological data pertinent to hemorrhagic shock 
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states is proposed as the source of the data for subsequent fusion. When implanted 

intramuscularly, the PSM-Biochip enables the continuous, real-time monitoring of the patient’s 

physiological status via the following key biomarkers; glucose, lactate, pH, potassium and 

oxygen tension. Such a system has the potential to go beyond single immediate datum (stat) 

capability to reveal evolving and predicted temporal trend status. This bio-SONDE, combined 

with a wireless processing hardware and a software algorithm to enable data fusion from the five 

identified biomarker analytes, can guide evidence-based decision making [319] derived from the 

real-time pathophysiological profile of the patient.  

The present work evaluates multiple data fusion algorithms and seeks to identify the 

minimum patient and expert data sets needed to arrive at reliable and confident patient 

stratification decisions using the HISS Score. Here, multiple patient physiological data are 

originated and multiple individual experts score the data. A key consideration is thus the real-

time fusion of disparate pathophysiological data to yield an actionable HISS score. Such data 

integration has medical and biomedical engineering applications such as in rapid, wearable 

health monitoring and internet of things (IoT) monitoring [320], [321], [322]. Data fusion can 

also be applied to implantable devices to generate data telemetry systems [323] with patient 

profiles [324]. Decision trees [325], support vector machine [326], neural networks [327], 

uncertainty index [328] and hybrid intelligent systems consisting of fuzzy logic and genetic 

algorithms [329] have been employed as classification approaches for data fusion in medicine. 

Decision tree classifiers were used to build a classification model in the form of a tree from the 

patient biomarker data [330]. The classifier provides a score for the data by testing each attribute 

and sorting and classifying particular instances in the data [331]. Ensemble bagged decision trees 

helped to reduce variance by the ‘bagging’ effect [332]. The support vector machine classifier 
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[333] makes use of an optimal hyperplane and calculates the margin or the distance of the points 

from the hyperplane [334]. The points closest to the hyperplane are called the support vectors 

[335]. Support vector machines are often used because they are robust [336] and fast [333]. 

Neural networks mimic the structure of biological neurons, have input, output and/or hidden 

layers, and propagate to adjust the weights between the elements of the networks [337]. They are 

often used because of their value in tuning of data [338]. Genetic algorithms are employed to 

find an optimal solution for systems based on natural evolution [339] and have been used in 

time-series based neural networks [340] and in steady-state gene regulatory networks [341]. 

Similar approaches for the application of artificial intelligence in medicine and for developing a 

score for patients in the ICU [342] include the DeepSOFA [343], an automated alert functions 

for the patient status [344]. Decision support-systems employing an artificial intelligence 

clinician for sepsis in the ICU have also been generated [345]. 

In many of the machine learning applications, it is assumed that data belong to a certain 

class with complete certainty. However, in some applications, such hard class association does 

not accurately reflect the true nature of the problem. In real-world problems, different forms of 

uncertainty such as fuzziness, imprecision, and incompleteness may coexist. This is the case 

specifically in applications where expert knowledge plays a crucial role. Expert data tends to be 

incomplete and in many cases uncertain, though less so than naive information, and in some 

cases may be erroneous. Possibility theory [346] is a framework devoted to the handling of 

incomplete and/or uncertain data and is particularly applicable to expert knowledge. Unlike 

probability theory, possibility theory uses a pair of dual set-functions, namely possibility and 

necessity measures which make it capable of representing partial ignorance [347]. The 

possibility rule-based classification using function approximation (PRBF) algorithm has been 
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shown to successfully handle the uncertainty in class labels of data and make an efficient use of 

the available data provided in the incomplete expert evaluation, a condition which is generally 

neglected in traditional supervised learning techniques. In Nazmi et al. [348], this algorithm was 

used to determine the at-fault level of drivers engaged in rear-end collision car accidents using 

labels calculated from evaluations elicited from five subject-matter experts. Possibility labels 

may be directly extracted from an expert [349] by a) the expert weighting the possibility of data 

belonging to each of the given 𝑐 classes by a number between 0 and 1, or 2) to use possibility 

histograms from an empirical distribution of multiple expert opinions. 

To achieve these objectives, viable penta-analyte patient data sets should be available. 

However, in the absence of actual patient data, strategies to generate synthetic data sets must be 

developed. Thus, a secondary objective of this work was to generate sufficient data using a 

synthetic data generation algorithm that produces Sensible Fictitious Rationalized Patient (SFRP) 

data. The SFRP algorithm (detailed later) creates a hidden seed layer and then generates 

biomarker values with filters to add noise/fuzziness and introduce variance to the five 

physiological biomarkers of interest. Practitioner input was sought in refining the filters and 

noise/fuzziness for each biomarker. The five biomarker values for each SFRP maps to a single 

output, the HISS score. The SFRP data was then shared with practicing physician experts who 

provided their individually rationalized HISS scores. Thus, the physicians’ scores serve as the 

ground truth but carry the inherent uncertainty born from disagreement among experts. Multiple 

SFRP data sets scored by a single expert, allowed an assessment of intra-professional variance. 

Correspondingly, multiple physicians providing ground truths of a single SFRP data set allowed 

accommodation of inter-professional variations. Multiple physician experts, given the results of a 

single set of measurements of physiological biomarkers, evaluate the status of patients in the 
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form of a HISS score. In the decision-making processes, which incorporates bioanalytical 

diagnostic data and expertly sourced scores, uncertainty is inevitable. That is, given a reported 

set of measurements of the five biomarkers for a patient, different physicians may provide 

different evaluations, i.e. scores, for the status of the patient. In such cases, it is possible to 

represent the uncertain scores in the form of a range of values. The generated data were used to 

make predictions for the status of the hemorrhaging patients by training a decision tree classifier 

and rule-based evolutionary classifier [347] to handle uncertainty in scores. The results of 

training models are presented in terms of their prediction accuracies. Furthermore, this allowed 

forecasting of the size of the patient data set and the number of clinician experts required to 

achieve stratification accuracies of 99% and 99.9%. 

5.2 Materials and Methods 

On-line data engines were searched for the availability of anonymized actual patient 

biomarker data for the hemorrhaging trauma patient (glucose, lactate, pH, potassium and oxygen 

tension). Owing to necessary HIPAA-based security policies at hospitals, actual data for 

hemorrhaging patients could not be directly accessed. The authors are currently in discussions 

with clinicians to gain access to diagnostic data sets under appropriate approvals. Accordingly, 

the classification methods were each employed on the synthetically derived Sensible Fictitious 

Rationalized Patient (SFRP) data. 

5.2.1 Patient data generation -Sensible Fictitious Rationalized Patient data and evaluation by 

practitioners 

In lieu of actual patient data, synthetic (SFRP) data sets were generated via a scripted 

algorithm in Python 3.7.0. The flowchart for the SFRP data set generator is shown in Figure 36 

and is based on the pathophysiological data in Table 13. The general algorithm begins with a 
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seeded hidden layer of HISS scores that ranged from low(0) to severe(4). The initial seeding 

distribution for trauma scores was evenly distributed among the five levels. Each of the five 

biomarker values associated with each level was subsequently filled by randomly selecting a 

value from within a pathophysiological range that can be attributed to that trauma level (based on 

normal physiologic values and specific trauma and hemorrhage perturbations). The noise was 

introduced by controlling the relative level of deviation from initially seeded values into other 

trauma regimes – i.e. letting initially chosen values drift into other regimes not originally 

occupied by the primary, hidden trauma seed score. Glucose noise was based on potentially 

convoluting scenarios (adrenergic response) or by a simple, tunable probability of taking on a 

value, not within the seeded range. Lactate was similarly assigned. Potassium noise was added 

via post mathematical calculation. Acidosis (pH) noise was introduced by allowing for 

physiologically normal values to be taken at any hidden seed (with the rationale being that pH is 

a late and severe biomarker). Oxygen tension (pO2) noise was introduced via a convoluting 

scenario (respiratory compensation based on pH – determined randomly) and simple, random 

noise. The algorithm, in the most direct sense, allowed for initial seed values to bleed over into 

other regimes and create data that was confounded. For proof of concept, random number 

generators of no bias were used – although extension into Gaussian and other distributions may 

be readily implemented. 



 

118 

 

 

Figure 36. Flowchart for data generation using Sensible Fictitious Rationalized Patient 

(SFRP) data generator. 

 

The algorithm may be run for any number of synthetic patients to generate SFRP data 

sets for each. For assessment, the initial hidden layer seeding was not output and was not 

revealed to any evaluator of the datasets. Potassium was determined via the empirical 

relationship from Burnell et al. [350], which details that a 0.1 unit drop in pH raises the [K+] by 

0.6 mM. This is implemented in pseudocode in the following way for each output (Eq. 27):  

[𝐾+]𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚([𝐾
+]𝑛𝑜𝑟𝑚𝑎𝑙) + (7.35 –  𝑝𝐻[𝑖]) ∗ 6  (27) 
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Where [𝐾+]𝑖 denotes the potassium of the 𝑖𝑡ℎ patient, and 𝑝𝐻[𝑖] that patient’s pH level 

generated earlier. The random function action yields a normal potassium concentration within 

physiologic ranges, and is then altered if the pH of the patient displays acidosis via the relation 

described. This concept is illustrated for the entries shown in bold in Table 13. 

Table 13. Bounded pathophysiological ranges of key biomarkers of physiological stress in 

the hemorrhaging trauma patient. 

Pathophysiological range 

Analyte Low Normal High 

Glucose 

Hypoglycemia 
<3.88 mM 
<70 mg/dL 

Euglycemia 
3.88–5.50 mM 
70-99 mg/dL 

Hyperglycemia 
5.50–10.00 mM 
99-180 mg/dL 

Lactate 

Hypolactatemia 
< 0.50 mM 

Eulactatemia 
0.50–1.00 mM 

Hyperlactatemia 
2.00–4.00 mM 

Potassium 

Hypokalemia 
(<3.50 mM) 

Eukalemia 
3.50-5.50 mM 

Hyperkalemia 
(>5.50 mM) 

pH 
Acidosis 
(<7.35) 

7.35-7.45 Alkalosis  
(>7.45) 

pO
2
 

Hypoxia 
<5.18 mM 
<100 mmHg 

5.18-6.22 mM 
100-120 mmHg 

Hyperoxia 
(>6.22 mM) 
>120 mmHg 

 

 

In this way a complete set of Sensible Fictitious Rationalized Patient data for n+25=100 

fictitious avatars (not patients) were created and ported into an excel spreadsheet for expert 

scoring and fusion considerations. Empirical relationships among the biomarker variables are 

possible and are being explored to enhance the robustness of the SFRP data sets. Table 14 shows 

a possible outcome for generating the training and testing data sets using the SFRP data 

generator. Accordingly, 100 unique Sensible Fictitious Rationalized Patient (SFRP) data sets 

were scored by five clinical experts. Each of the five experts assigned a HISS score, valued 0-4, 
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to each penta-analyte data set while providing a rationale for their selection of the assigned score 

for a particular patient (0=LOW, 1=GUARDED, 2=ELEVATED, 3=HIGH, 4=SEVERE). This 

resulted in a multi-class/expert framework [351] for the model-based predictions. 

Table 14. Partial data set for “fictitious patients”, including training data set (1 to n) and 

testing data set (n+1 to n+25) generated using the Sensible Fictitious Rationalized Patient 

(SFRP) data generator and corresponding expert assigned Hemorrhage Intensive Severity 

and Survivability (HISS) score.  

Fictitious 
Patient 

Sensible Fictitious Rationalized Patient (SFRP) 
Data 

HISS 

Glucose 
(mg/dL) 

Lactate 
(mmol/L) 

pH 
Potassium 

(mmol/L) 

pO
2 

(mmHg) 
D1 D2 D3 D4 D5 

1 70 2.7 7.42 5.10 78 1 1 1 1 0 

2 160 6.0 7.11 6.14 44 4 2 3 3 3 

n 41 9.7 7.26 4.84 97 3 3 4 3 3 

.. .. .. .. ..  .. .. .. .. .. .. 

n+1 123 3.3 7.41 5.00 86 UD UD UD UD UD 

n+2 49 8.7 7.13 5.92 53 UD UD UD UD UD 

.. .. .. .. .. .. .. .. .. .. .. 

n+25 220 8.6 7.23 4.52 92 

UD UD UD UD UD 

5.2.2 Classification algorithms 

Data from different sources can be fused via estimation, association and decision fusion 

[352]. Multi-class [353] ensembled bagged decision tree (EBDT), linear support vector machine 

(SVM-linear), artificial neural network with Bayesian regularization algorithm (ANN:BR) and 

possibility rule-based using function approximation (PRBF) classifiers were used to classify the 

SFRP data sets. Figure 37 shows the concept for a fused score from the data of the five 

biomarkers. Five unique data sets, each of size 100, corresponding to the pathophysiological 

profile of 100 fictitious patients and along with the HISS scores of five healthcare provider 
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experts: [100][D1], [100][D2], [100][D3] [100][D4] and [100][D5] were thus created from the 

available 100 penta-biomarker, patient data sets. Testing data comprised 25% of the total data set 

and the same testing data was used for all algorithms. Figure 38 is a flowchart that illustrates the 

generalized approach to classification.  

 

Figure 37. Immediate and continual measurement of key biomarkers may serve as a 

“gauge” for identifying shock states.  
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Figure 38. Flowchart illustrating the generalized approach to classification, pattern 

recognition and possibility analysis that results in an accuracy assessment from the 

confusion matrix (CM). 

The multi-class ensembled bagged decision tree and linear support vector machine 

classifiers were used for predictions over the entire data sets (D1-D5). Neural networks [354] 

were used to determine the adequate number of training size for accurate predictions over the 

five data sets. Possibility rule-based classifers were used to capture the uncertainty in the 

responses of the experts over the five data sets. Each algorithm was trained and then the same 

test data set (25%) was used to validate each model. The accuracy was established as the 

performance metric and was determined from the generated confusion matrix. For all algorithms, 

the mean test and mean training accuracy were determined by varying the size of the training set 

between 30 and 80 instances with steps of 5. To test the trained models, a fixed set of instances 

of size 20 was used. The experiment for each training set size was repeated twenty times to 

reduce the effect of variance on the results and the mean accuracy was reported. This served as a 

self-consistent approach across all classifier algorithms. However, each algorithm was also 

uniquely approached as described following.  

 

SFRP Data Generator

Data Sets

Multiple experts score 

the data

Convert the crisp labels 
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Train the Possibility 

algorithm

SVM: Linear and Decision 
Tree: Ensemble Bagged

Pattern Recognition ANN
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algorithm(s)
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5.2.2.1 Multi-class ensembled bagged decision tree and linear support vector machine 

classifiers 

SVM-linear and EBDT were based on the 5-fold, cross-validated classification accuracy. 

SVM-linear was used as it requires lower computational cost as compared to the non-linear 

SVM. Additionally, an ensemble technique (bagging) was applied in order to reduce an error of 

DT, as the combination of several weak predictors into one high-quality ensemble model 

improves predictive performance[355]. Moreover, classifiers were trained using hyperparameter 

(maximum number of splits, number of learners, learning rate) optimization by Bayesian 

optimization and 50 iterations, which allows for minimization of cross-validation loss, and in 

turn increases the overall accuracy of the predictions. The computations were performed using 

MATLAB R2019b Classification Learner App run on a PC [355]. The computations were 

repeated three times and the mean accuracy ± standard deviation were presented. 

 

5.2.2.2 Artificial Neural network with Bayesian regularization algorithm 

A Bayesian regularized neural network (ANN:BR) capable of classifying patients using 

an assigned HISS score was developed in MATLAB 2018a Neural Network Pattern Recognition 

App run on a PC [356]. The neural network was trained to a max epoch size of 100 using 

Bayesian regularization algorithm[357] (training stops according to adaptive weight 

minimization) using Mean-Square Error as the performance metric. Responses from the five (5) 

experts were used to create a single label by calculating the mathematical mode as the best 

metric of central tendency. The mode was chosen over the mean due to possible skew in HISS 

scores. The NN was trained using i) sorted and ii) unsorted data. Sorted data served to ensure 

that HISS scores were normally distributed among the training and test data. Sorting established 
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groups of 5 different patient data using the 80:20 rule (e.g. 80% of HISS score “1” was used in 

the training set, while 20% of HISS score “1” was used in the test set). Unsorted data employed 

no such grouping and hence carried the risk that the test data could be unbalanced in its 

representation of certain HISS scores. Neural network performance was measured by using a 

constant test set size of 25 with 4 or 5-fold cross-validation, where the training set size varied 

from 15% to 75% of the total data set size. In yet a totally different and additional approach, the 

mean test and mean training accuracy were determined by varying the size of the training set 

between 30 and 80 instances with steps of 5. To test the trained models, a fixed set of instances 

of size 20 was used. The experiment for each training set size was repeated twenty times to 

reduce the effect of variance on the results and the mean accuracy was reported. This served as a 

self-consistent approach across all classifier algorithms.  

 

5.2.2.3 Possibility rule-based classifier 

The possibility rule-based classifier was implemented using Python 3.7.5 run on a PC. A 

5-fold cross-validation was used with population size = 4000, stretch = 25, learning rate = 0.1, 

and training iterations = 100,000. Having the assigned scores from five expert physicians for the 

generated SFRP data sets, it is probable that any two physicians might disagree on the score of 

any one patient’s values or the same physician assigns different scores to patient’s values that are 

nearly similar. This problem may be addressed with the use of possibility theory [358], capturing 

the inherent intra-expert and inter-expert variation in the responses of physicians. More 

specifically, scores provided by the physicians for each set of measurements, the SFRP data set, 

were converted into possibility values that were values between 0 and 1. For a given 

measurement vector 𝐱 and a hypothetical class, 𝜔𝑘, the possibility distribution, 𝜋𝐱, defined for 𝐱 
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represents the knowledge contribution of an information source about the actual state of 𝐱. In 

other words, 𝜋𝐱(𝜔) = 0 means that state 𝜔 is rejected as impossible, and 𝜋𝐱(𝜔) = 1 means that 

state 𝜔 is totally possible (plausible). In a machine learning framework, this concept is employed 

to solve classification problems by taking 𝜋𝐱 to represent the degree of belonging of SFRP data 

to classes which are provided by the expert(s) [349].  

PRBF has two main mechanisms to generate a problem solution; a rule-based 

evolutionary algorithm to approximate possibility labels, and an information fusion method to 

make plausible inferences for unseen data. When trained on a dataset with possibility labels, 

PRBF iteratively evolves a population of overlapping rules which are piece-wise linear 

approximations of the target possibility distributions. Moreover, the data fusion technique 

employed in PRBF combines the data provided by multiple sources, i.e., rules of the model, and 

calculates the most plausible values for the class membership of the unseen data set. 

Consequently, for an unseen patient data set, the model generates a possibility distribution (π). 

This distribution may then either be interpreted by an expert for decision-making purposes or 

processed to extract a crisp class by taking the one with the highest possibility. To demonstrate 

the benefit of employing a model that is robust in the presence of HISS score uncertainty, the 

same training data that were generated using SFRP data generator were used to train the PRBF 

algorithm and the trained model was evaluated against the 100 instances used in the previous 

sections for the model evaluation. The disagreement among the physicians’ evaluations, was 

captured by repeating the process for all of the 100 SFRP samples by calculating a set of 

possibility labels as well as a class label based on the majority vote. 
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5.2.2.4 Performance metric, cross-validation, adequacy of patient data size and predicted 

patient data size with the number of experts 

In general, the performance of a multi-class classification can be measured using 

accuracy, precision and F–score [359]. A confusion matrix plot can be used to evaluate the 

quality of the classifier [360]. The matrix contains values corresponding to true labels and 

predicted labels. The values in the major diagonal of the confusion matrix can determine how 

well the classifier has performed. In this work accuracy was used as a performance metric to 

report the prediction performances, which can be obtained from the major diagonal elements of a 

confusion matrix as follows (Eq. 28),  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=
Σ 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑗𝑜𝑟 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙

# 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
   (28) 

Cross-validation [361] [362] helps with using all the available data for model training and 

hence in making more robust predictions. To do so, the data were randomly split into equal sets 

for training of multiple models. Here a 5-fold cross-validation [363] was used. The adequacy for 

the patient data size was tested with the minimal point for stabilizing validation accuracy. The 

adequacy for the number of experts and the prediction for the patient data size for a test accuracy 

of 0.99 and 0.999 with the predicted number of experts necessary to achieve that accuracy was 

arrived at using the regression model fit and application of predictive modeling in JMP Pro 

software version 14.0 run on a PC. 

5.2.2.5 Comparison of classification algorithms 

The classification algorithms employed in the previous sections were compared for their 

respective accuracies. To train each model, 5-fold cross-validation was employed and the 

average test accuracies along with the standard deviation of the accuracies was reported. To train 
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the PRBF algorithm, the uncertain labels (u) were used and the other classification algorithms 

were trained on D1-D5 and using the majority vote of the labels obtained from the five physician 

experts.  

For each classification model, a set of hyper-parameters was tuned and the model with 

the highest test accuracy was chosen to be reported. For ANN:BR, the number of nodes was 

selected from [5, 60] with step 5. Different activation functions were tested and a ‘tanh’ function 

was selected. The solver that was used to train the models was the 'adam' solver and the model 

was trained for 100,000 iterations. For the random forest model, the maximum depth of each tree 

was selected from [1, 7] and the number of trees was selected from [10, 150] with step 10. The 

entropy was employed as the selection criterion at each node. A similar strategy was used for the 

decision tree algorithm wherein the maximum depth was selected from [1, 5]. Moreover, for the 

bagged decision tree algorithm the number of estimators was selected from [6, 20] with step 2. 

For the SVM model, different kernel functions (linear, polynomial, radial base function, and 

sigmoid) were tested. In the case of the polynomial kernel, the degree of the polynomial was 

selected from [2, 6]. Finally, for the PRBF model, the maximum number of rules was selected 

from {500, 1000, 3000, 4000, 5000, 6000}. The maximum condition stretch was selected from 

[317 20, 25, 30, 35] which modifies the proportional size of the rule condition and effects the 

accuracy of the rules. The learning rate was set to 0.1, and the number of training iterations was 

30,000.  

For the decision tree classifiers, support vector machine and the neural network, their 

Python implementation that was available in Scikit-learn [364] library was used. For the PRBF 

algorithm, its implementation in Java was used. All experiments were carried out on a 2.70 GHz 

Windows 10 machine with a 16.0 GB RAM. One -way Analysis of Variance (ANOVA) was 
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used to determine the significance levels for the performance of these algorithms using JMP Pro 

software version 14.0 run on a PC. 

 

5.3 Results  

5.3.1 Classification via Ensembled bagged decision tree and linear support vector machine 

Two well-established classifier algorithms, namely Decision Tree (DT) and Support 

Vector Machine (SVM-linear), were used in the classification of SFRP data. Figure 39A and 

39B provide the accuracy versus the number of training samples for DT:EB and SVM:L. Table 

15 presents the findings of the DT:EB and SVM:L classifiers in terms of their validation 

accuracy.  
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Figure 39. Evaluation of the mean test and mean train accuracy versus the number of 

training samples for the training size varied from 30-80 in steps of 5.  
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Table 15. Application of two different algorithms (SVM: Linear and Decision Tree: 

Ensemble Bagged) to the five (5) unique SFRP data sets; [100][D1], [100][D2], [100][D3], 

[100][D4] and [100][D5].  

Class 
Frequency [%] 

D1 D2 D3 D4 D5 

0 56 43 37 43 53 

1 14 20 27 18 17 

2 5 18 7 15 13 

3 19 17 11 24 17 

4 6 2 18 0* 0* 

SVM-L accuracy [%] 78.3±0.5 92.7±0.5 78.3±2.4 88.3±0.5 86.7±0.9 

EBDT accuracy [%] 83.3±1.2 96.3±0.9 72.3±0.9 90.0±0.0 87.7±1.2 

Class with the highest 

confusion (TPR – 

sensitivity for EBDT) 

4 (17%) 4 (0%) 2 (14%) 2 (60%) 2 (77%) 

 

 

Analysis of each experts’ model individually, revealed that DT:EB generally performs 

better than SVM:L (Table 15). Although the differences between both predictors for each dataset 

were slight (in the range of 2-6%), when it comes to patient stratification decisions, small 

improvements may be consequential to the therapeutic intervention for a patient. The highest 

cross-validated accuracy was achieved for the expert D2 dataset and the DT:EB classifier 

(96.3±0.9%). However, a confusion matrix revealed that D2 failed completely to predict Class 4 

(Severe), as 100% of labels were misclassified. Among all experts, the highest confusion (TPR) 

occurred for Class 2 (Elevated), which was the most frequently misclassified as either Class 1 

(Guarded) or 3 (High) and for Class 4 (Severe) misclassified as Class 3 (High). There was no 

single instance where all the five experts concurred on the score of 2. This is due to the fact that 

2 is a score in the mid-range of 0-4 and hence higher variability for this score was introduced 

compared to the extremities [365]. As shown in Table 15, a high level of misclassification may 
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result from an imbalanced number of instances in each class. For example, for expert D1, only 6 

instances out of 100 were labeled with Class 4 (Severe), which leads to only 17% TPR. For D3, 

only two data rows were labeled as Class 4 (Severe), which caused complete misclassification of 

this score (0% TPR). While for D4 and D5, despite the high performance, none of the input 

instances were scored as Class 4 (Severe), leading to a model which will fail to make predictions 

of this class for the new data. Bagging classifiers may reduce the misclassification rate and 

improve overall accuracy of algorithms. Thus, the DT:EB classifier, while being more time-

consuming, performed with high accuracy compared to the SVM:L. However, the support vector 

machine classifiers had a higher accuracy for the data set D3 whereas the decision tree algorithm 

was less effective in capturing the localized accuracy of D3. From the literature, accuracies of 

83-88% for SVM [366], and accuracies of 70-83% have been reported for decision trees in 

medical applications [367]. 

5.3.2 Classification via artificial neural network classifier 

With a constant size of 25 validation data sets, it was observed that the error increased 

with increase of the SFRP training data sets (Figure 40). From the literature, it is known that the 

error should have stabilized or be shown a decrease to some extent with increasing training data 

sets [368]. This was attributed to the difference in the opinions of the experts. Consequently, a 

sliding window of validation data sets was used. Using the approach of Mode to allow the 

doctors to vote together along with a sliding window of validation data sets showed a decrease in 

error with an increase in the training data sets, in agreement with the literature as shown in 

Figure 39D [369]. Here it was observed that sorting improved output quality with a smooth 
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trend towards equilibrium or limiting error. However, the unsorted data appeared chaotic with 

stochastic noise.  

 

Figure 40. Evaluation of the influence of the size of the training set, expressed as a % of 

available data, on the performance of the ANN-BR as expressed in the cross–entropy for 

constant epochs of 100.  

 

Unsorted data at a very low training set size (15-20%) showed a very high standard 

deviation of MSE due to a lack of heterogeneity within the training set. The probability of less 

frequently available HISS scores, such as 4, being withheld from the training set was very high. 

For example, at a training set size of 20%, the probability of a HISS Score of 4 showing up in the 

training set was 0.008. Unsorted data tended to the same MSE as sorted data (~0.12), but was 

variable in its descent due to probabilities of scores not being included in the training set because 

if low frequency (e.g. HISS Score 4). As shown in Figure 39D, improvement in the test accuracy 

of the ANN:BR was insignificant for the number of SFRP training samples larger than 75. Based 

on Figure 39C and 39D, 75 SFRP data sets were established to be an adequate data size to build 

a model for prediction. From the literature, prediction accuracies of 44% and training accuracies 

of 50% and above have been reported for neural networks in medical applications [370] [371]. 
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When the accuracies were on a lower side, the neural network approaches were often combined 

with hybrid fuzzy systems [372].  

5.3.3 Performance of PRBF 

One simple way to resolve conflict among class evaluations from multiple experts is to 

take the class label that was most frequently identified. An alternative approach, which makes 

better use of the rich data provided by the experts, is to calculate a set of possibility labels using 

equation (4), which is expected to reflect the disagreement among experts better than solely 

taking the majority vote. Figure 41A depict the 5-fold training and validation accuracies. For the 

sample presented in Figure 41B, the majority vote opts for class zero to represent the patient’s 

status, as shown in Table 15. The possibility labels calculated using the equation (4) for the same 

patient data are provided in column ‘Uncertain labels’ in Figure 41B. The uncertain labels 

assume the association of the patient data to class zero and one. The degree of possibility that the 

sample belongs to each class is different however and is equal to 1 and 0.5 for class zero and 

one, respectively. This graded association reflects the disagreement among the experts in 

deciding the true status of the patient.  

 A confusion matrix plot was used to represent the performance of the possibility rule-

based classifier using function approximation (PRBF) [360]. The matrix contains values 

corresponding to true labels and predicted labels. The values in the major diagonal of the 

confusion matrix serve to determine how well the classifier has performed. Folds indicate the 

division of the data set to confirm that each of the folds has been used as a set. Uncertainty or 

error information has been utilized to support medical diagnostics where a prediction accuracy of 

87% has been reported for a training accuracy of 90% [373]. Common approaches like 
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possibility rule-based classification for handling error include fuzzy probabilities [374], and 

hybrid fuzzy-NN systems [375].  

 

 

 

 

 

 

 

 

 

 

 

The PRBF model was able to predict HISS scores with 92% accuracy for a testing and 

training accuracy of 96%. These results confirm that the idea of integrating evaluations from 

multiple experts and modeling them with a proper uncertainty handling tool, which is possibility 

theory in this work is beneficial for decision making. Note that by increasing the number of 

training samples of the SFRP data sets, the model will be better trained and able to produce more 

accurate predictions.  

 

 

 Training 

accuracy 

Test 

accuracy 

Fold-1 0.950 0.90 

Fold-2 0.963 0.90 

Fold-3 0.975 0.95 

Fold-4 0.950 0.95 

Fold-5 0.938 0.90 

Mean accuracy 0.955 0.92 

Standard 

deviation 

±0.014 ±0.03 

Fictitious 

Patient 

Majority 

vote 

Uncertain 

label (𝐮) 
PRBF prediction 

(𝝅) 

72 0 [1,0.5,0,0,0] [0.979,0.321,0,0,0] 

Figure 41. A) Cross-validation model training results for PRBF algorithm for Population 

size = 4000, stretch = 25, learning rate = 0.1, and training iterations = 100,000, B) True 

labels and predicted uncertain labels for the tested SFRP sample of fictitious patient 

number 72. 

B) 

A) 



 

135 

 

5.3.4 Comparison of the test accuracies of classification algorithms 

The performance of the four classification algorithms, ensemble bagged decision tree 

(EBDT), linear support vector machine (SVM-linear), artificial neural network with Bayesian 

regularization algorithm (ANN:BR) and possibility rule-based using function approximation 

(PRBF) were compared for their ability to accurately classify the SFRP data sets. Figure 42A 

lists the test accuracies and Figure 42B shows the misclassification rates for the classification 

algorithms and the uncertainty labels of PRBF algorithm for different experts and the majority 

vote. The highest accuracy is highlighted in bold for each algorithm. EBDT, SVM-linear, 

ANN:BR and PRBF generated score predictions with testing accuracies corresponding to 93%, 

91%, 92%, and 92%, respectively, with no statistically significant difference (p>0.05) in their 

means for ±95% confidence interval (C.I).  

 

Figure 42. A) Comparison of test accuracies and B) Misclassification rates of EBDT, SVM-

L, and ANN:BR along with the uncertainty labels of PRBF algorithms for experts D1-D5 as 

well as the majority vote. 
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5.3.5 Predictions for the adequacy of the patient data size and number of experts for improved 

accuracy 

It is reasonable to ask, given the scoring accuracies obtained for the 100 patients and 5 

physician experts 100[5], what data set size and how many experts will be required to improve 

scoring accuracies? Targeted accuracies of 99% and 99.9% could be achieved with SFRP data 

size and clinical expert scores of 147[7](99%) and 154[9](99.9%), respectively. The model fit for 

99% was for a R2=0.96 with the Total Sum of Squares (SStotal) as 0.04 with a statistical 

significance of p ≤0.05 for a ±95% confidence interval (C.I). The model fit for 99.9% was for a 

R2=0.89 with the Total Sum of Squares (SStotal) as 0.11 with a statistical significance of p ≤0.05 

for a ±95% confidence interval (C.I).  

 

 

5.4 Discussion  

5.4.1 Evaluation of individual classifiers 

The collection, labeling and archiving of medical data is usually time-consuming, 

expensive and fraught with security concerns, appropriately so [376], [362]. Therefore, it is a 

challenge to build predictive models based on limited available training data. Moreover, the 

labels are often provided by multiple experts, who may have different opinions about the same 

patient’s health status. Such disagreement may result from differences in experts’ knowledge and 

clinical experience. As a worst-case scenario, differences in opinions may lead to patient 

misclassification [377], which may have serious consequences to their health [378]. The goal of 

the present study was to produce and use 100 instances of Sensible Fictitious Rationalized 

Patient data in the development of predictive models for patient stratification, to use expert 
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opinion to achieve the same stratification in order to ground truth the predictive models and to 

engage cognizance of intra-expert consistency and inter-expert variability. The study revealed 

that the more imbalanced the input data, the higher the misclassification penalty. The similarity 

in misclassification (high level of misclassification of Scores 2 and 4) for each dataset and for 

both DT:EB and SVM:L classifiers, may be the result of insufficient information provided to 

perform reliable labeling. It is, therefore, extremely important to compare various classifiers in 

terms of not only their accuracy but also their level of misclassification.  

5.4.2 Qualitative evaluation of experts’ HISS scoring 

As a pilot study, the opinions of five experts, D1– D5, were obtained. Expert 1 based his 

bias weighing decisions on the abnormal levels of biomarkers, being driven by the extremes. For 

example, when the lactate levels were high, with potassium elevated but compensated, but with a 

normal pH, this produced a HISS score of 1. It is observed that a score of 2 was assigned when 

the lactate level does not correlate with other values (normal pH, Eukalemia, Euoxia). High 

lactate, very low glucose, low pH and normal oxygen produced a HISS score of 3. All values 

very deranged with pH almost out of physiologic non-recoverable range; hypoxia below 60, 

elevated lactate, potassium elevated suggesting cell injury, resulted in a HISS score of 4. While 

providing the scores, expert 2 was able to pick the ones that were similar. Hence, his scores were 

consistent across all different profiles. The scoring pattern of expert 3 was not localised. Expert 4 

localised his scores from 0-3. While this paper is not concerned with expert performance, and the 

data set was far too small to allow the analysis of experts, the very low intra-expert variablity 

(8.0%) and larger inter-expert variability (20.6%) is worthy of mention.  
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5.4.3 Comparison of classifiers in terms of cross-validation accuracy  

By the majority vote, SVM-L, EBDT, ANN:BR, and PRBF had cross-validated 

accuracies of 0.91±0.06, 0.93±0.04, 0.92 ±0.07, and 0.92±0.03 respectively. The results for 

EBDT, SVM-L, and ANN:BR were statistically significant. The misclassification is more 

prominent among the middle classes of 2 and 3. For example from Figure 43, misclassification 

rates were 71% for the class of 2 for SVM-L This is because the experts converge upon the 

extreme values but may have an overlap in the middle classes. Ensemble bagged decision tree 

(EBDT) and linear support vector machine (SVM-L) classifiers provided for classification in a 

simple hierarchy of a tree structure and SVM-L provided robust classification. An 

unquestionable advantage of the presented decision tree classifiers is that they are simple and 

rapid prediction tools which establishes the trauma severity score with a high accuracy. The 

results showed that the decision tree classifiers constitute a reasonable basis for the further 

extensive studies on more specific and complex prediction approaches which may overcome the 

limitations of the current methods such as a lack of external validation of the model, experts’ 

opinion, or variation. 
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Figure 43. Representative confusion matrices for EBDT, SVM-L, ANN:BR. 

 

5.4.3.1 Artificial Neural network with Bayesian regularization algorithm 

ANN:BR has the advantage of tuning the incoming patient data sets. The term epoch in 

ANN is defined as the measure of the number of times all of the training vectors were used to 

update the weights [379]. The softmax activation function was used to introduce non-linearity 

into the model. The inputs were turned into a linear model (ωx+b), where ωx is the matrix 

multiplication of weights (ω) and inputs (x) and b is the bias. The scores obtained from this step 

were fed into the softmax function (equation 3) which converts them into probabilities (Eq. 29). 

𝜎(𝑧)𝑗 =
𝑒
𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 𝑓𝑜𝑟 𝑗 = 1, 2… , 𝑘     (29) 

Softmax function maps the set of outputs onto inputs. In this case, there are five outputs 

which when passed through the softmax function get distributed according to probability (0,1). 

This was useful for finding the most probable occurrence or classification for a particular output. 

SVM-LEBDT

ANN:BR
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5.4.3.2 Performance of PRBF relative to other classifiers 

In the possibility rule-based classifier system using function approximation (PRBF) 

[358], possibility theory is used to handle uncertainty in expert knowledge. The degree of 

belonging of an instance to the 𝑘𝑡ℎ class may be characterized by 𝑢𝑘 ∈ [0,1]. Different 

theoretical frameworks have been proposed to solve problems that suffer from uncertainty [380] 

including probability theory, set theoretic functions, and possibility theory. Under the possibility 

theory [358], [381] framework, 𝑢𝑘is the level of possibility that the given data point belongs to 

the class of score 𝑘 and the following representation holds for the set of possibilistic classes 

assigned to the 𝑖𝑡ℎ instance (Eq. 30): 

𝒖𝑖 = (𝑢𝑖
1, 𝑢𝑖

2, … , 𝑢𝑖
𝑐) ∀𝑢𝑖

𝑘 ∈ [0,1]    (30) 

In Equation (4), 𝑐 is the number of scores defined for the problem, i.e. in this case five 

scores, being LOW (0), GUARDED (1), ELEVATED (2), HIGH (3), SEVERE (4). Unlike the 

probabilistic labels, the values of the vector 𝒖𝑖 do not have to sum up to unity. Instead, each 

parameter takes a value ranging from 0 to 1. The classification scheme proposed by Nazmi and 

Homaifar [358], namely, possibility rule-based classifier using function approximation (PRBF), 

employs this definition of a class assignment and trains a rule-based evolutionary model that 

given a data point, predicts the degree of possibility to which the SFRP data set belongs to each 

of the possible classes.  

The PRBF classifier added a layer to the intra- and inter- expert variabilities addressed by 

the other classifiers by tapping into the votes (either majority or individual) of the experts for a 

particular patient data set and reporting the number of times a physician's label agrees with the 

consensus. It was interesting to note that expert 4 had the highest concurrence from his scoring 
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pattern localized for 0-3. This coincides with real-life scenarios when expert physicians try to 

categorize the patients from 0-3 and try to save them. Comparatively, the score of 4 

corresponding to severe was rare. From the 5-fold cross-validation results, the improvement in 

the test accuracy is insignificant for the number of training samples larger than 70. The increase 

in the training samples from 30% to 70% improved the accuracy from 71% to 78.5%. 

The PRBF model seeks to incorporate the inherent disagreement among the physician 

experts into the model training procedure. According to Figure 42A, integrating evaluations 

from multiple physicians through the possibility theory resulted in a better performance than 

EBDT, SVM-L, ANN:BR, and PBRF trained using the majority vote. This implies that 

employing different tools of modeling the uncertainty, allows for capturing different forms of 

uncertainty and potentially leads to better prediction accuracy. Moreover, training a model using 

PRBF allows for an additional level of interpretation of the model prediction during the decision-

making process. To illustrate this point, consider the example of Fictitious Patient 72 presented 

in Figure 41B. When the trained PRBF model was elicited for predicting a label for this sample, 

it was able to correctly predict association to both classes with different degrees of belonging, as 

shown in Figure 41B. For each test sample, the PRBF model provides a degree of possibility to 

belong to each class. The possibility values can be used to gain more insight into the prediction 

process of the model and provides the decision-maker with more information about the 

potentially over-lapping classes. Figure 42B shows the misclassification rates for than EBDT, 

SVM-L, ANN:BR, and PBRF. PRBF has the least misclassification rates. As per the majority 

vote, SVM-L seems to have high misclassification followed by ANN:BR and then the EBDT. 

Representative confusion matrices have been shown in Figure 43. 
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5.4.4 Prediction for an adequate patient data size and predicted patient data size with the 

number of experts 

An adequate testing patient data size of 75 was found beyond which the Mean Square 

Error and the validation accuracy were both stabilized for ANN:BR. This therefore establishes 

the minimum patient data set needed to conduct predictive patient classification. The present 

patient data size of 100 and five scoring experts produced accuracies of 0.93. The patient data 

size needed to obtain an improved accuracy of 0.99 was predicted to be 147 with the predicted 

number of 7 experts. Similarly, for an accuracy of 0.999, the predicted size of the number of 

patient data was 154 with 9 scoring experts. From the model, R2 was 0.96, with the Total Sum or 

Squares (SStotal) as 0.04 with p ≤0.05 for a ±95% confidence interval (C.I). Increasing the 

number of scoring experts from 5 to 7 can yield an accuracy of 99% but necessitates an increase 

in patient data set size from 100 to 147 (R2=0.96). Likewise, increasing the number of scoring 

experts from 5 to 9 can yield an accuracy of 99.9% but necessitates an increase in patient data set 

size from 100 to 154 (R2=0.89). There is less certainty in the prediction in going from 99 to 99.9 

% because of the limitations of the resent data set. 

5.4.5 Improvements to the existing model-based on a substantial number of experts 

This is a preliminary evaluation of the multiple approaches for the fusion of discrete 

patient sensor data into an actionable HISS score. Hence, the model-based predictions along with 

the evaluations of the experts’ opinions form a baseline and serve as a precursor to a larger study 

for which the following improvement strategies can be implemented: 

Number of experts: The current study uses five experts, D1-D5, with 100 SFRP data 

sets. The robustness of the probability theory and capacity to ascertain and account for physician 

variance was tested by means of uncertainty in the experts’ opinions. From the results, it is 
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observed that the self-consistency in the scoring of 4 experts can overcome the scoring 

inconsistency of 1 expert. Hence, a ratio of 4:1 is suggested for the number of experts. This aids 

in substantiating the robustness of the machine learning approaches to ascribe an accurate and 

actionable HISS score despite the presence of inter-physician variance. An alternative is working 

with the available number of experts (5) and tuning by increasing one expert at a time to check 

the limit beyond which the accuracy does not improve any further but stabilizes. 

The confidence level of expert scores: It is believed that experts assign the patients to a 

particular class with a certain confidence level, in this case, 100%. However, they can be 

requested to reveal their confidence level in scoring each patient. Alternatively, the statistical 

confidence can be extracted by capturing the variability in the responses of the physicians using 

approaches like ANOVA. This could be implemented for a substantial number of experts (e.g. 

100). 

The relative weights of each patient attribute: In arriving at the class assignment, the 

expert physician reviews the five relevant physiological attributes. In its implementation, the 

classifier algorithms accept a single score with the assumption that each attribute is equally 

weighted in that decision-making assignment by the expert. In reality, experts inherently weigh 

each attribute and the weight is often influenced by that value and the values of other attributes. 

Based on their experience, the expert physician may treat certain biomarker attributes as being 

more or less important/influential than others when assigning the patient to the selected class. 

This can be extended for a substantial number of experts (e.g. 100), where a methodology can be 

developed to extract the relative weighting of each attribute. This relative weighting is thus a 

global factor assigned to the attribute. From the multiple expert physician responses obtained, a 

statistical assessment of the significance of each attribute can be determined. Techniques such as 
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“leave one out analysis” and ANOVA will allow the extraction of the relative sensitivity of each 

attribute to the class assignment.  

Temporal variation in HISS scores: In the present implementation, SFRP data were 

presented to each classifier algorithm as STAT data. However, patients are known to display 

temporal changes or trends in these biomarker values during hemorrhage progression such as 

during evacuation from theatre to the Green Zone. There is increasing attention being given to 

the diagnostic relevance of trend data in patient stratification. 

 

5.5 Conclusions 

In this study, the Sensible Fictitious Rationalized Patient (SFRP) synthetic data generator 

was introduced for hemorrhaging trauma patients wherein five biomarkers; glucose, lactate, pH, 

potassium, and oxygen tension, served as the basis for an actionable HISS score rendered by four 

experts. Several classification algorithms; ensembled bagged decision tree (EBDT), linear 

support vector machine (SVM-linear), artificial neural network with Bayesian Regularization 

algorithm (ANN:BR) and possibility rule-based using function approximation (PRBF) were 

evaluated for their ability to accurately classify the 100 entries of the SFRP data set. These data-

driven predictions are presented as an adjunct to help the decision-making of physicians 

regarding the status of the hemorrhaging patient during triage and uses a severity scale of 

(0=LOW, 1=GUARDED, 2=ELEVATED, 3=HIGH, 4=SEVERE). A training data set size of 75 

has been identified as adequate to achieve the best performance by minimizing the Mean Square 

Error. This approach has the advantage of high validation accuracies from the ensembled bagged 

decision trees and linear support vector machines (93% and 91%) with the tunability of neural 

networks (92%), and the ability to capture the uncertainty in the responses of experts with the 
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help of a possibility theory-based approach (92%). The predictions generated using the 

classification methods would assist in an adjunct device in the form of a biosensor system for 

point-of-care monitoring of the trauma patient, especially in mass casualty situations. 

Improvement strategies are discussed with an increase in the number of experts to 100 scoring 

the SFRP data sets. This paper has a clinical utility in terms of classification by grouping data, 

prediction for incoming data and regression by means of prediction of continuous data. The 

predicted patient data size to obtain a test accuracy of 0.99 has been identified to be 147 with a 

predicted number of 7 experts. 

Refined prediction model disclosed a predicted patient data size of 154 with a predicted 

number of 9 experts for a test accuracy of 0.999. Similarly, the adequacy of the patient data size 

has been identified to be 75 and of the number of experts has been noted as 5 to allow training 

and validation. 
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CHAPTER VI                                                                                                                 

SUMMARY AND FUTURE WORK 

In this body of work, the development of a biocompatible, multi-analyte biotransducer 

and associated instrumentation that serves as a minimally invasive implantable biosensor system 

to improve patient stratification, guide resuscitation and monitor the stabilization of 

hemorrhaging trauma patients is addressed.  Focus is given on the pH-responsive element of the 

multi-analyte biotransducer, with sensing elements for glucose, lactate, pH, potassium and partial 

pressure of oxygen (pO2). A pH-responsive hydrogel for the measurement of acidosis under 

physiological conditions was synthesized from poly(2-hydroxyethyl methacrylate-co-

poly(ethylene glycol) methacrylate)-based hydrogels that were molecularly engineered with 

AEMA and DMAEMA and surveyed for the distribution of water states within the hydrogel. It 

was found that bound water, not total hydration, correlated strongly with the biotechnical 

properties, determined the membrane resistance and thereby the pH sensitivity of hydrogels. 

Surface modification of electrodes was accomplished using polypyrrole and bioactive hydrogels 

to reduce the charge transfer resistance for ABIO-BIO interface engineering. Using multiplexed 

biomarker inputs and physician expert scoring, a Hemorrhage Intensive Severity and 

Survivability (HISS) score was obtained from a fusion of input data and could correlate to 

survivability using data-driven prediction models. For real-time monitoring, this biotransducer 

was interfaced externally with hardware components including front-end electronics and a 

display readout. This microsystem will be used as an intramuscular indicator for the 

pathophysiology of hemorrhage. Future work for the implementation of the biotransducer entails 

microlithographic fabrication of a penta-analyte, electroanalytical biotransducer for 

physiological status monitoring. 
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6.1 Microdisc Electrode Array (MDEA) and instrumentation assembly, validation and 

demonstration 

For the dual biotransducer with glucose and lactate sensing regions, MDEA 5037[382, 

383] was fabricated and packaged. Stop-off lacquer (Microshield, Tolber Chemical Division. 

Hope. Arkansas) was painted on the two sensing regions to protect them during packaging. The 

packaging consisted of soldering the MDEA chip to the lead connector using adhesive and 

encapsulant epoxy FP4323 (Henkel Adhesives, Rocky Hill, CT) to prevent it from being 

vulnerable to solvents. After packaging, the MDEA dual sensing regions were characterized 

using multiple scan rate cyclic voltammetry (MSCRV) in 50 mM Ferri/50 mM Ferro cyanide 

solution in 0.1 M PBS. Figure 44A and 44C show the layout and instrumentation assembly for 

MDEA 5037 dual-analyte sensor. Figure 44B shows the symmetrical voltammograms from the 

upper sensing region of MDEA 5037. 
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Figure 44. A) MDEA 5037 and the soldered lead connector, B) Cyclic voltammograms for 

10 mV/s, 20 mV/s, 30 mV/s, 40 mV/s and 50 mV/s, C) Instrumentation assembly for MDEA 

5037 containing MDEA dual-analyte sensor, connecting wires, connectors, and lead going 

to instrument. 

 

6.2 Hardware sensor to support the penta-analyte, electroanalytical biotransducer for 

physiological status monitoring 

A support hardware sensor along with a penta-analyte biochip can help to gather, process 

and store the exorbitant data generated by the biosonde for trauma management. 

The scope of this work is the design of prototype hardware components involved in an 

implantable biosensor microsystem for the measurement of analytes relevant to the 

pathophysiology of hemorrhage. The hardware components of a biosensor microsystem can 

include the biotransducers, front-end electronics such as potentiostat, AD/DA, medical frequency 

wireless telemetry, base stations, remote computer, and display readout. Important considerations 

for hardware design include data collection (current, potential, etc.), information transfer, 
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security, signal processing, storage, device footprint, portability, and user friendliness. Hardware 

must be able to securely collect raw data from the biotransducers, in this case five separate 

biotransducers for five separate analytes, and transmit that to a computer processing station, 

temper and interpret the collected data, and display actionable data to the end user.  

  Measuring, recording and transmitting real time physiological measurements is 

important and plays a crucial role when responding to the etiology and pathophysiology of many 

diseases [110]. Thus, this project is oriented to the design of externalized hardware that enables 

the intramuscular measurement, capture, processing, and transmission of bioanalytical data of 

five implanted biosensors relevant in the resuscitative response to hemorrhage. The five 

biosensors used measure glucose (amperometry), lactate (amperometry), potassium (K+) 

(potentiometry), pH (impedimetry), and pO2 (voltammetry). The project has the goal of 

monitoring the levels of each biomarker via an integrated set of dedicated biotransducers formed 

into a sonde and applied during a case of hemorrhage. The injury caused by hemorrhage are 

lactate levels rise, and post-traumatic injury also includes hyperglycemia.  

The system constraints for the externalized hardware system to support the penta-analyte 

biochip include portability, a battery life of 5 days, footprint of 2.1 cm x 5.1 cm, and an 

Intelligent Power Management (IPM) of 174 μs. Bluetooth Low Energy (BLE) mode would be 

selected as against other modalities like Bluetooth/Zigbee, BLE conserves energy and is more 

suited for power management.  
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Figure 45. A) Design of hardware sensor in Eagle CadSoft, B) Design of the penta-analyte 

biochip comprising of glucose, lactate, pH, potassium and pO2 in Solidworks, and C) PCB 

Schematic of hardware sensor. 

As shown in Figure 45A glucose, lactate and pO2 sensors will be interfaced with the 

potentiostat. Potassium will be interfaced with potentiometer, and pH will be interfaced with 

impedimetric analyzer. This forms the front-end. The signal is amplified using operational 

amplifiers (LMP7721, Texas Instruments, Dallas, TX) and conditioned using the Analog to 

Digital Converter using microcontroller ATMega328 from Beetles BLE (Bluno beetle V1.0, 

DFRobot, Shanghai, China). The data transmission is accomplished using the Bluetooth Low 

Energy Link. The final prototype shown in Figure 45C will be able to manage power usage for 
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all system components, collect and condition all analog signals from the five biotransducers of 

the sonde shown in Figure 45B, digitize those analog signals, store raw or conditioned data and 

operational parameters, wirelessly support unidirectional or bidirectional communication with a 

base station, rapidly wake up from a low-power “sleep” for immediate data collection. The 

microsystem will be externalized on animals and the sonde will be indwelling in the muscle of 

the animal which must be fully ambulatory. The pairing of these new types and architectures of 

biosensors, nanomaterials, and wireless communication and handheld devices, such as cell 

phones, remains a promising endeavor in telemedicine, remote healthcare, and biosensing. This 

study can be extended to integrate biotransducers, mixed signal electronics, low power devices 

and wireless communications into clinically relevant systems utilizing Hemorrhage Intensive 

Severity and Survivability (HISS) score for monitoring during trauma and surgery and for 

monitoring in the intensive care unit (ICU). 
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