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ABSTRACT

Ultrasound elastography has gained considerable consideration as a non-invasive imaging modal-

ity over the past ten years. Ultrasound elastography maps the strains experienced by a tissue under

a small compression with the intent of acquiring diagnostic information about diseases. Elasto-

graphic data acquired from function-specific imaging mode can be utilized to distinguish tissue

stiffness when subjected to a small external mechanical force. Poroelastography is a new elas-

tographic technique that is used to image the temporal behavior of tissues subjected to a small

uni-axial mechanical force. From the temporal data, poroelastographic imaging makes use of

curve fitting techniques to estimate temporally-related elastographic parameters such as the Axial

Strain Time Constant (ASTC). Curve fitting techniques can be directly applied to ultrasound data

obtained from the soft tissue subjected to a constant compression. However, experimental poroe-

lastographic data are inherently noisy due to long, oftentimes hand-held, data acquisition. The

presence of this noise can affect the accuracy of the ASTC estimation. To estimate the ASTC with

high accuracy, it is essential to reduce the noise that affects the data before applying the curve-

fitting techniques. This work focuses on a method to denoise ultrasound poroelastographic data,

which uses wavelet thresholding in order to improve the robustness of the curve fitting technique

and increase the accuracy of the estimated ASTC. Wavelet thresholding is achieved through eval-

uating the wavelet coefficients and choosing the threshold optimally. Threshold value determines

the efficiency of the denoising operation. In this work, we are using wavelet filtering along with the

wavelet hard thresholding technique. Simulations are used to test the proposed denoising methods.

Experiments were used to demonstrate the applicability of the proposed technique to experimental

data. Simulation results show that the use of the wavelet-based denoising method prior compu-

tation of the ASTC using curve fitting can lead to ASTC estimates that are significantly more

accurate than those obtained when the denoising method is not used.
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NOMENCLATURE

ASTC Axial Strain Time Constant

EPR Effective Poisson Ratio

TC Time constant

RF Radio Frequency

LM Levenberg - Marquardt

LSE Least Square Error

GLSE General Least Squared Error

SLSE Standard Least Square Error

WT Wavelet Transform

WC Wavelet Conditioning

CF Curve Fitting

RAM Random Access Memory

AM Amplitude Modulation

SNR Signal to Noise Ratio
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1. INTRODUCTION

Elastography is an ultrasound imaging modality capable of imaging the local mechanical re-

sponse of a tissue subjected to a small compression [1]. Elastography provides additional di-

agnostic information compared to standard ultrasound methods. Elastography imaging modality

consolidates transducer pressure with ultrasound to give clinical guidance about the state or pres-

ence of the disease, severity of the disease and status of the tissue under treatment. The extent to

which the pathological tissue resists deformation in response to an applied mechanical force can

be relatively different compared to the surrounding healthy tissue [2] [3]. Ultrasound elastography

therefore takes advantage of these changed differences in the underlying mechanical properties

to differentiate a diseased tissue from healthy normal tissue. Quasi-static ultrasound elastogra-

phy maps the strains experienced by the tissue during the compression. Dynamic elastography,

instead, maps the strains experienced by the tissue either by analyzing the strain induced in the

tissue under small compression, or by the imaging the tissue when excited using low frequency

vibrations or shear waves [1]. The strains are computed by correlating the pre-compressional and

post-compressional RF data. An Axial strain elastograms represents a map of the strain tensor

component along the axis of the imaging plane [2]. For the interpretation of standard elastographic

images, biological tissues are typically modeled as linear elastic and in-compressible solids [4]. In

reality, several tissues in our body contain fluid and they change volume when subjected to com-

pression [5]. Poroelastography is an advanced elastographic imaging technique where the tissue

is modeled as a biphasic material - somewhat similarly to a sponge [6]. When a poroelastic tissue

is subjected to a small sustained compression, the elastic properties of the tissue change due to

solid matrix deformation or fluid translocation [7] [8]. Poroelastographic imaging is interested in

imaging the time-dependent deformation of the tissue when subjected to the sustained compression

such as during a creep relaxation experiment or a stress relaxation experiment[8]. Poroelastogra-

phy techniques allow the generation of new types of elastograms concerning the tissue’s poroelastic

behavior. [2].
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Axial strain elastograms are sensitive to the strain in the tissue under loading along the axis of

the imaging plane. Poroelastographic imaging generates time-sequenced axial strain elastograms

when poroelastic tissue is subjected to creep or stress relaxation [2] [9]. Time-sequenced axial

strain elastograms are used to analyze temporal behavior of the pixel, pixel-by-pixel basis and

compute time constant to generate ASTC elastogram. ASTC differences are typically associated

with inherent differences in tumor and ordinary tissue’s mechanical characteristics [10]. Studies

have shown that ASTC may provide significant, clinically relevant information to distinguish the

diseased tissue from the normal tissue and to predict the probable outcome of a disease or ailment

[2]. ASTC values were also found to correlate with the state or presence of malignant breast cancer.

[9][2][10]. Hence accurate assessment of ASTC may be important for clinical applications.

1.1 Motivation

Prior work on ASTC imaging has led to the development of a real-time ASTC estimator us-

ing Curve fitting and optimization techniques [9]. The curve fitting technique works extremely

well as an ASTC estimator when applied to simulated data modeled with only additive Gaussian

noise. However, axial strain ultrasound data may be corrupted by additional types of noise, for in-

stance - multiplicative noise [11]. Unfortunately, the curve fitting technique fails to estimate ASTC

accurately when directly applied to ultrasound simulated noisy data.

1.2 Hypothesis

The hypothesis of this study is that we can improve the performance and robustness of the

curve fitting technique to estimate the ASTC values closer to the true value, by denoising the

poroelastographic data using wavelet thresholding.

1.3 Research Plan

• Design and implement a denoising algorithm to improve accuracy in the estimation of ASTC.

• Evaluate the reliability and performance of the algorithm using a simulation framework.

• Conduct suitable experiments as a proof of concept.
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2. ULTRASOUND IMAGING

2.1 Ultrasound Overview

Ultrasound is an acoustic wave with frequencies higher than human audible range. Ultrasound

imaging is a noninvasive imaging modality that uses ultrasonic waves and their echoes to obtain

anatomical view of the body and diagnose, monitor and treat tissues. Ultrasonic frequency range

for medical instrumentation to achieve good resolution and good penetrability, is from 0.5MHz to

20MHz. Changes in brightness in ultrasound image depend on the intensity of the back-scattering

coefficient. During transmission, the transducer converts electrical signals into ultrasonic waves

and during reception, it converts received ultrasonic echoes into electrical (RF) signals. Ultrasonic

transducer is placed on the surface of the skin or inserted into a body opening to obtain visual

representation of the inside of a body.

2.2 Elastography Overview

Ultrasound Elastography is interested in imaging the local mechanical response of the tissue,

when tissue is subjected to small sustained compression. Tissue elasticity imaging can be charac-

terized based on the mechanical stimulus propagated into the tissue, 1) Quasi-static elastography

where a small mechanical compression is used to image the strain experienced by the tissue [12]

[13] [14] 2)Dynamic elastography where low-frequency vibration/ultrasound harmonic pulses are

used to inspect the behavior of the tissue [15] [16] [17] [18] [19]. In this work, strain elaastog-

raphy is discussed briefly. Strain elastography or standard elastography is based on quasi-static

tissue strain estimation [20]. When a tissue is compressed using a constant uni-axial load, stiff and

soft tissue regions experience different strain levels [21]. The extent to which a diseased tissue

resists deformation in response to an applied mechanical force is relatively different compared to

a surrounding healthy tissue [2] [3]. Ultrasound strain elastography therefore takes advantage of

these changed mechanical properties to differentiate the diseased tissue from healthy normal tis-

sue. From knowledge of the elastographic strains generated into the tissue, mechanical attributes

3



of the tissue may be reconstructed [11]. These may include the shear or Young’s modulus or the

Poisson’s ratio [20]

2.2.1 Strain Elastography Working Principle

1. Acquire pre-compression RF data from the region of interest.

2. Apply a small sustained compression using ultrasonic transducer along with the compression

plates to compress tissue by a small amount.

3. Acquire post-compression RF data from the same region of interest.

4. Estimate the strain using pre-compressional and post-compressional RF data. Numerous

strain estimation algorithms algorithms have been proposed in the past. In this work, we

have used dynamic programming elastography (DPE) and Horn-Schunck (HS) optical flow

estimation [22] based strain estimation.

Axial strain elastograms represent images of the strain tensor component along the axis of the

imaging plane [9]. Axial strain elastograms represent the mechanical attributes of the tissue in a

qualitative way. With the use of wide bandwidth transducers and fast sampling of the ultrasonic RF

signals, axial strains can be estimated with high degree of precision [21]. In general, lateral strain

elastograms are noisier than axial strain elastograms and their precision is restricted due to the

relatively small lateral sampling rate [21]. Elastographic techniques are clinically useful in several

types of medical applications, such as cancer imaging, early diagnosis of lymphedema, kidney and

liver diseases [2] [23].

2.3 Poroelastography Overview

Novel elastographic techniques aimed at imaging tissue’s temporal mechanical behavior have

been recently proposed [8]. Among these, viscoelasticity imaging and poroelastography are the

most prominent ones. Most of our work is focused on poroelastography. Therefore, remainder of

this chapter will concentrate on the fundamental ideas and applications of poroelastography imag-

ing. True incentive behind these new elastographic techniques originates from the profound assess-
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ment that several pathologies modify the temporal mechanical response of the tissue [2]. Poroe-

lastography makes use of elastographic techniques for imaging the temporal mechanical behavior

of poroelastic materials when subjected to small sustained compression [8]. In Poroelastography,

biological tissues are modeled as biphasic systems - similar to a sponge [6]. A poroelastogram is

defined as a series of temporally sequenced elastograms obtained from the tissue under load at dif-

ferent intervals [20]. Poroelastograms reveal information about the temporal mechanical behaviour

of the poroelastic tissue [24] [25]. Poroelastography techniques allow generation of new types of

elastograms that are related to the tissue’s poroelastic behavior.

2.4 Axial Strain TC Estimation

Poroelastographic imaging generates series of temporally sequenced axial strain elastograms

when poroelastic tissues are subjected to a constant axial strain or constant axial stress [2]. These

Time-sequenced axial strain elastograms are used to analyze temporal behavior of the pixel and

compute time constant pixel-by-pixel to generate ASTC elastogram [20]. ASTC elastograms re-

flect temporal modifications in poroelastic tissue due to translocation of fluids. ASTC is obtained

by calculating the time constant of the exponential increase of the axial strain over the time interval

of the poroelastogram [20]. It is plausible to use several conceptual models to obtain tissue time

constants from the stress relaxation data or creep relaxation data [26] [27]. Therefore, simplistic

exponential polynomials that uses multiple exponential terms can serve as an appropriate option

to approximate creep relaxation data or stress relaxation data for clinical applications [23] [5] [9]

[11].
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3. STRAIN MODEL

Time constant τ and the equilibrium value η rely heavily on the imaging tissue or the mate-

rial and could be vital for diagnostic purposes. When data is collected for an infinite amount of

time without any noise, estimating the τ would be fairly straightforward. In reality, however, the

ultrasound data is heavily corrupted by noise. Furthermore, it may be a major challenge to obtain

ultrasound data for indefinite amount of time, especially in clinical setting. The strain behavior

is comparable to the voltage response of Resistor Capacitor circuit [28]. The strain is sampled at

Nyquist rate and Ni is additive Gaussian noise with zero - mean distribution.

Two major types of noise predominantly corrupt the creep data. One is the decorrelation noise,

another is the amplitude modulation noise [29]. Compression, slide-slippage, and other undesirable

movement in the sample can induce decorrelation noise [11]. An arbitrary variation in the RF signal

magnitude can induce amplitude modulation noise [11]. The Amplitude modulation noise shifts

the strain estimation from the center of the observation window, resulting in incorrect estimates

[11]. Decorrelation noise, is modeled as additive Gaussian noise [9] [30] [31], whereas AM noise

is modeled as multiplicative noise similar to speckle noise in B-mode ultrasound [11]. The generic

strain model is given below [11].

Si = Ii +Ni (3.1)

where, Ii = Vi ∗ Zi and Zi = η + γe
−ti
τ

Zi is the true strain, Vi is the multiplicative noise and Ni is the additive Gaussian noise in the

strain data. γ is adapted accordingly to suit the poroelastic material strain model [11]. In this study

we will consider multiplicative noise along with additive Gaussian noise.
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4. CURVE FITTING AND OPTIMIZATION

4.1 Introduction

Curve fitting refers to finding an appropriate mathematical model that expresses the relationship

between a dependent variable Y and a single independent variable X and estimating the values of

its parameters using nonlinear regression. The curve fitting problem typically involves comparing

a theoretical noiseless test curve to the noisy experimental data and find the best fit to a series

of data points in noisy experimental data subjected to certain constraints. The real-time ASTC

estimator developed in our lab [9] uses the least square error curve-fitting method along with the

LM optimization directly applied over the noisy elastographic data.

4.2 Least Square Error

LSE curve fitting is an extremely popular data fitting method. The best fit is considered to be the

one with the smallest error between an observed value and the fitted value. In Least Square Error

technique, the observational errors on both dependent and independent variables are considered.

The mathematical model for LSE that minimizes the error for η,τ is:

LSE (y (t, η, τ)) =
∑n

i=1
E(y (t, η, τ) , S (ti)) (4.1)

Where E(y(t, η, τ), S(ti)) gives the smallest error between an observed value and the fitted value,

n refers to the set of data points.

4.2.1 General Least Square Error

General Least Square Error curve fitting involves minimization of the geometric error. It is

called the geometric error because it is the minimum Euclidean distance between the experimental

data point and the plot of a given noiseless theoretical error [9]. Main issue with GLSE technique is,

modification in the scaling of the strain vs. time plot changes the results of the best fit. Furthermore,

since the calculation of the error metric for each data point involves the computation of a minimum
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which in turn can deteriorate the computation speed.

4.2.2 Standard Least Square Error

Standard Least Square Error curve fitting involves minimization of the algebraic error. Unlike

GLSE, plot scaling has no effect on the resulting estimation. Standard Least Square Error is best

suited for scenarios in which the noise model for the data samples acquired is Gaussian [9]. The

mathematical model for SLSE that minimizes the error for η ,τ is:

E(y (t, η, τ) , S (ti)) = (y (t)− S (ti))
2 (4.2)

4.3 LM Optimization

Mathematical optimization is the method of choosing the best element from the available series

of possibilities with regard to some criterion. In general, an optimization problem consists of

maximizing or minimizing a function whose domain is in real numbers IR by trial and error method.

The LM Optimization algorithm is an iterative algorithm appropriate for non-linear least square

problems. These minimization problems occur mainly in least square curve fitting [32] [33] [34].

Berry et al. [23] used the LM optimization algorithm previously for poroelastographic imaging

purposes. LM optimization is based on gradient descent and the Gauss-Newton [32].

However, LM optimization method is more robust than the Gauss-Newton algorithm. LM

optimization method estimates the Hessian matrix using the sum of outer products of the gradients.

One of the shortcomings of LM optimization approach is, it finds only a local minimum, which is

not necessarily the global minimum. LM optimization follows an update rule of the form [32],

xk+1 = xk − (H + λI)−1 ∇E(xk) (4.3)

where xk is the current guess and is given by, [τk, ηk]
T . H is the hessian of E(xk) . "I" denotes

a diagonal matrix and is given by diag(diag(H). E(xk) denotes the gradient of E(xk). λ is a

constantly changing step size. It is possible to increase or decrease λ to accept or reject the update
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and it affects the rate of convergence of the algorithm.

For a given set of temporal strain samples free of AM noise, the LM optimization algorithm

implemented for the SLSE goodness of the fit argument estimates the best η and τ pair. In this

study we are mainly focusing on τ , ASTC.
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5. WAVELET CONDITIONING

5.1 Introduction

Wavelet transform is one of the dominant tool for reducing the effect of multiplicative noise

from ultrasound data. Wavelet Transform is used for representation and analysis of function at

more than one resolution [35]. Fourier transform based methods fail to perform well while working

on non-stationary signals and they capture only the global features [36]. In practical scenario where

the data are only piece-wise smooth and the noise distributions are random in nature, Wavelet

transform perform better than Fourier filters on multiplicative noise [36]. Individuals have more

option and control in the wavelet domain and can basically identify the frequency transients in the

decomposed bands that would otherwise be removed by conventional fourier filtering or we can

denoise a few decomposed bands and leave other decomposed bands alone.

5.1.1 Algorithm Overview

The main idea is shown in the Figure 5.1 (adapted from [37] [38]). In the analysis step the

signal is decomposed into wavelet coefficients for analysis. In the processing step we perform

wavelet thresholding to denosie the data and the denoised decomposed data is reconstructed in the

synthesis step. Analysis and synthesis step is analogous to Filter bank.

The general application of wavelet thresholding to our elastography problem comprises the

following steps:

1. Performing multilevel 1D wavelet analysis on the noisy Elastographic data to get the wavelet

coefficients (approximation coefficient and detail coefficients).

2. Estimate the noise level from the detail wavelet coefficients.

3. For detail coefficients,

(a) Calculate the standard deviation and threshold

(b) Apply thresholding to remove high frequency noise components
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4. Apply Low pass filtering on approximation coefficients to remove small noise coefficients

and capture signal components around DC , in order to obtain perfect denoised reconstruc-

tion.

5. Reconstructing the denoised data by multilevel 1D Wavelet reconstruction.

6. Apply LSE curve fitting with LM optimization to the reconstructed denoised elastographic

data to estimate the ASTC elastographic parameter accurately.

The thresholding is applied to the detail coefficients and Low pass filtering is applied to the ap-

proximation coefficients in the wavelet domain. This creates an algorithm that is easy and compu-

tationally more effective to remove multiplicative noise [39] [40].

5.2 Multilevel 1-D Wavelet Decomposition

Given a signal of length N, the signal can be decomposed into log(to the base 2)N levels, maxi-

mum [38]. Decomposition up-to maximum level is required for perfect denoised reconstruction of

the signal. The first step decomposes the signal into approximation coefficients, and detail coeffi-

cients. Approximation coefficients are obtained by convolving the signal with the low pass wavelet

filter. Similarly, convolving the signal with the High pass filter we can obtain the detail coefficients

[38]. the filter outputs are down sampled by a factor of 2. The high pass and low pass filters

produce signals by spanning only half the frequency band at each level of decomposition and thus

reducing the frequency uncertainty by half. The down sampler is used in order to compress the

data and obtain even indexed convolution.

Figure 5.1: Denoising Overview
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The next step splits the approximation coefficients in two parts using the same scheme, re-

placing signal by the first approximation coefficient, and producing second level approximation

coefficients and detail coefficients, and so on [38].

5.3 Wavelet Thresholding

Approximation coefficients contain low-frequency terms which in turn contain significant sig-

nal components and therefore less affected by noise. A low pass filter is used to filter the approxi-

mation coefficients to capture the frequencies around DC and remove any noise remnants present

in the signal. Since the noisy components are of high frequency, approximation coefficients are less

affected by noise compared to detail coefficients. Therefore, thresholding is usually limited to the

detail coefficients. Hence, with the help of proper threshold we can remove the noisy components

and can smooth the noisy wavelet coefficients. If the threshold value is low, noise components

may still be present in the estimated signal. Whereas, if the threshold is high then the signal is

over smoothed, hence result in loss of important signal components. Therefore, optimal threshold

selection is crucial for the performance of denoising algorithm.

A brief overview of two popular thresholding algorithms, hard and soft thresholding, are pre-

sented in this section. The hard thresholding algorithm follows, maintain or destroy strategy. It

sets any coefficient less than or equal to the threshold to zero refer Figure [41]. On the other hand,

the soft thresholding algorithm, also known as wavelet shrinkage, sets any coefficient less than

or equal to the threshold to zero [42] and the threshold is subtracted from any coefficient that is

greater than the threshold [38]. This moves the image coefficients toward zero [42] [36].

The general equation to compute threshold value Tn is given by [43] [44],

Tn =
γσ2

σx
(5.1)

where γ is the scale factor, σx is the standard deviation of the detail coefficients and σ2 is the

variance of the detail coefficients [45]. The scale factor γ is calculated for each decomposed using

the equation below,
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γ =

√
log(

L

DL

) (5.2)

where Li in the numerator represents the length of the detail coefficients at ith level, DL in the

denominator represents the total number of wavelet decomposition.

Noise variance σ2 is estimated using equation below [37].

σ =

[
median (|Y ij|)

0.6745

]2
(5.3)

where, Y ij ∈ detail Coefficients.

The experimental factor 0.6745 in the denominator re-scales the numerator so that σ2 is a

suitable estimator for the σ for the noise [37].

5.4 Multilevel 1-D Wavelet Reconstruction

Before wavelet reconstruction we apply Low pass filtering on Approximation coefficients and

remove all the detail coefficients except the last level. This is important as we are dealing with

small strain data in the order of 1-2%. In the synthesis stage up-sampler is used to compensate for

downsampling done at analysis stage. First upsample by a factor of 2 and then convolve the signal

with a known inverse filter. Same concept can be extended for multilevel.
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6. SIMULATION METHODS

Simulating the noisy time constant curves and using the simulated data as an input for the time

constant estimator algorithm, we test the performance of the proposed algorithm. Simulations are

used to test the hypothesis of this study. Although several denoising algorithms have been tested,

only wavelet conditioning is recorded as it is the most relevant real - time constant estimators

discussed in this study. 1D simulation analysis was carried out to evaluate the accuracy, precision

and performance of the algorithm as a function of the true time constant value of the axial strain.

Because of the noise model’s importance in the estimation process, selected simulations have been

repeated for different input SNR values.

6.1 MATLAB Simulation

All simulations were conducted using a desktop computer with windows 10 Operating system.

The desktop computer had following specification, Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz

2.39GHz, 2 processors, 5 GB RAM. A simulation model using MATLAB- R2018b, academic use

was used to run the simulations and evaluate the algorithm. For simulation, an empirical axial strain

curve with known η and τ values were created using MATLAB according to the generic strain

model given in the chapter 3. All the MATLAB simulations in this study use values of η = 0.25

and τ = 60s. Once the empirical axial strain curve was created both AM noise and decorrelation

noise were added to it accordingly to perform ASTC estimation. For statistical analysis, 100 trials

were run. Figure 6.1 gives an overview of the MATLAB simulation flow employed for both the

methods for comparison in our study.

Figure 6.2a is a example of noise free empirical axial strain curve used for the simulation

study. Figure 6.2b illustrates the effect of adding noise to an empirical strain curve with a TC of

60 seconds and η = 0.05 such that the resultant noisy curve has a Input SNR of 20dB

Once the noise has been added to an empirical curve for a specific TC, the theoretical curve

is discarded, leaving only the noisy curve for TC estimation. This process is repeated n times,
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giving ’n’ TC estimates to analyze. Once ’n’ TC estimates have been obtained, the accuracy of the

estimator is measured. Here ’n’ indicates the number of trials. For statistical analysis, 100 trials

were run. The example of a simulation run for a single realization is show in the Figure 6.3.

6.2 Finite Element Method

Analyzing a problem using finite element method is called Finite Element Analysis (FEA). We

have used ABAQUS FEA software suite for finite element analysis in our study. ABAQUS FEA

software suite is developed by Abaqus Inc, Rhode Island, United States. ABAQUS FEA software

offers powerful and complete solutions for both routine and sophisticated engineering problems

covering a vast spectrum of industrial/ clinical applications. In our study we have used ABAQUS

FEA software to generate poroelastic displacements and strains under boundary conditions imi-

tating the actual experiments in ultrasound elastography [46]. ABAQUS adopts effective stress

principle to model the porous medium [47]. For complete details on the poroelastic simulation

in ABAQUS, please refer [10]. We have used two samples from FEM simulation, Sample A and

Sample B. In our FEM simulation, background mimics the normal tissue and the inclusion mimics

a tumor. The simulated inclusion has a height of 40mm and radius of 20mm. The mechanical

properties of the ABAQUS FEA simulated sample mimics the mechanical characteristics of the

cancerous and healthy tissues [48] [49]. 1kPa stress was used to replicate the creep experiment.

The simulated samples are squeezed from the top with constant stress while maintaining the bot-

tom stable to create creep compression. Because of the noise model’s importance in the estimation

process, FEM samples were simulated for different input SNR values. Sample A has an inclusion

of 0.75cm and Sample B has an inclusion of 1.02 cm. We have used initial values of η = 0.02 and

τ = 10s. The window of observation is > 0.5τmax.

6.3 Performance Evaluation

For a given set of n trial estimates τi, 1 ≤ i ≤ n done on a set of noisy samples from a

time constant curve of known τi, the bias is quantified as the difference between the mean of the

measurements and the reference value in terms of percentage as shown in the equation [9].
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Bias% =
|mean (τ∧i )− τ |

τ
X100 (6.1)

Accuracy is given by the equation.

Accuracy % = 100−Bias % (6.2)

Quantitative performance measures such as Peak Signal-to-Noise Ratio (PSNR) has been used

to estimate the performance of the discussed algorithm. PSNR is commonly used to measure

the quality of reconstruction from noisy data [41]. The PSNR is defined as a ratio between the

maximum possible power of a signal and the power of corrupting noise that affects the fidelity

of its representation [41]. PSNR is usually expressed in terms of the logarithmic decibel scale.

Mathematical equation for PSNR is given by,

PSNRi = 10log10(
Peakval2i
MSE

) (6.3)

where peakval is either specified by the user or taken from the input range. MSE is the mean

square error
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Figure 6.1: MATLAB Simulation Flow
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(a) Empirical strain curve

(b) Noisy curve obtained from a) after adding 1.AM
noise, 2.Decorrelation noise

(c) Noisy curve obtained from a) after adding both the
noise

Figure 6.2: Temporal strain curve

18



Figure 6.3: Example of a simulation run for comparison of curve fitting stand-alone method with
the proposed method
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7. SIMULATION RESULTS

7.1 MATLAB Simulation Results

7.1.1 ASTC Estimation With And Without Wavelet Denoising

Curve fitting, Stand-Alone ASTC Estimator

Figure 7.1 shows Curve fitting technique with LM optimization for ASTC constant estimation

when elastographic data is corrupted only by decorrelation noise. For statistical analysis the sim-

ulation is repeated for different input SNR values of 10 20 30 40db. In the Figure 7.1 blue curve

represents the theoretical curve for axial strain. The axial strain curve was created with η = 0.25

and 60s TC. The blue scattered points represent the elastographic data corrupted only by decorrela-

tion noise. The red curve represents the fitted curve by LSE curve fitting technique along with LM

optimization. As the signal improves and noise becomes less dominant the fitted curve becomes

identical to theoretical curve in the absence of AM noise.

In absence of AM noise the curve fitting technique (discussed in chapter 04) works extremely

well as an ASTC estimator with less than 1% error as seen in the Figure 7.1. For statistical analysis,

100 trials were run to estimate the true TC in presence of AM noise and in absence of AM noise

by curve fitting method. For simulation, only additive Gaussian noise was added ensuring input

SNR 10dB, 20dB, 30dB, 40db and 60db.

7.1.1.1 Strain Data Corrupted By Decorrelation Noise Alone

Single realization of CF with WC is compared with CF as a stand alone estimator in the Figure

7.2. As the signal improves and noise becomes less dominant the fitted curve becomes identical

to theoretical curve in the absence of AM noise. The theoretical axial strain curve was created

with η = 0.05 and TC = 60s.The red curve represents the fitted curve after wavelet conditioning

while the black curve represents the fitted curve by CF stand alone method. The dotted green

plot represents the noisy strain data. For statistical analysis, 100 trials were run and the bias% for

both the methods and percentage error are recorded with respect to the true TC value in the Table
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(a) Curve fitting with LM optimization for
input SNR 10dB

(b) Curve fitting with LM optimization for
input SNR 20dB

(c) Curve fitting with LM optimization for
input SNR 30dB

(d) Curve fitting with LM optimization for
input SNR 40dB

Figure 7.1: LSE CF with LM Optimization applied over elastographic data corrupted by decorre-
lation noise for different input SNR
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(a) Input SNR 20dB (b) Input SNR 60dB

(c) b)Zoomed

Figure 7.2: Strain data corrupted by Decorrelation Noise alone

7.1. Plot 7.3 shows the accuracy of both the methods in presence of decorrelation noise alone.

The accuracy of the CF as a stand alone estimator is comparable to CF with wavelet conditioning

method.

Input SNR CF with WC Stand-alone CF
20db 0.4838 1.6439
30db 0.6943 0.9811
40db 0.0249 0.2371
60db 0.0742 0.0546

Table 7.1: Bias% in presence of decorrelation noise
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Figure 7.3: Accuracy% in presence of decorrelation noise

7.1.1.2 Strain Data Corrupted By Multiplicative Noise Alone

Single realization of CF with WC is compared with CF as a stand alone estimator in the Figure

7.4. As the signal improves and noise becomes less dominant, the fitted curve becomes closer

to the theoretical curve. The theoretical axial strain curve was created with η = 0.05 and TC =

60s. The red curve represents the fitted curve after wavelet conditioning while the black curve

represents the fitted curve by CF stand alone method. The dotted green plot represents the noisy

strain data. For statistical analysis, 100 trials were run and the bias% for both the methods and

percentage error are recorded with respect to the true TC value in the Table 7.2. Plot 7.5 shows the

accuracy of both the methods in presence of AM noise alone. The accuracy of the Curve fitting

with WC is 5 times better than stand alone CF method in estimating ASTC close to true value.
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(a) Input SNR 20dB (b) Input SNR 60dB

Figure 7.4: Strain data corrupted by AM Noise alone

Input SNR CF with WC Stand-alone CF
20db 1.9455 13.5
30db 1.8 8.3
40db 1.2 5.34
60db 0.045 2.34

Table 7.2: Bias% in presence of AM noise

7.1.1.3 Strain Data Corrupted By Additive And Multiplicative Noise

Single realization of CF with WC is compared with CF as a stand alone estimator for different

input SNR values in the Figure 7.6. Figure 7.6 a) - d) gives a comparison between curve fitting

method without wavelet conditioning and curve fitting method with wavelet conditioning. The

theoretical axial strain curve was created with η = 0.05 and TC = 60s. The red curve represents

the fitted curve after wavelet conditioning while the black curve represents the fitted curve by CF

stand alone method. The dotted green plot represents the noisy strain data. In the stand alone

method we perform curve fitting directly on the noisy elastographic data. As the signal improves

and noise becomes less dominant the fitted curve by CF technique without WC is still far from

the theoretical curve, while the fitted curve from WC becomes almost identical to the theoretical

strain curve. For statistical analysis, 100 trials were run and the bias% for both the methods and

percentage error are recorded with respect to the true TC value in the Table 7.3. When curve fitting
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Figure 7.5: Accuracy% in presence of AM noise

is applied over denoised elastographic data instead of noisy elastographic data, it is possible to

estimate ASTC values closer to true ASTC value. Plot 7.7 shows the accuracy of both the methods

in presence of AM noise alone.

In the absence of AM noise the curve fitting technique (discussed in chapter 04) works ex-

tremely well as an ASTC estimator with less than 1% error. However, true axial strain ultrasound

data is corrupted by other types of noise apart from decorrelation noise, for instance - AM noise.

AM noise shifts the strain estimation from the center of the observation window, resulting in in-

correct estimates. Unfortunately, the curve fitting technique lacks the ability to estimate ASTC

with less than 1% error in the presence of AM noise when directly applied over noisy elasto-

graphic data which is evident from the Table 7.3. The error rate of curve fitting technique as a
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stand-alone ASTC estimator is 10 times higher on an average compared to the error rate of curve

fitting technique along with wavelet conditioning. Known issue with curve-fitting techniques when

experimental data is extremely noisy, is that it creates extremely large local minima leading to sig-

nificantly larger computations to find the global minimum and sometimes ends up finding only the

local minimum, which is not necessarily the global minimum. By employing wavelet conditioning

discussed in chapter 05, it is possible to avoid this scenario. Wavelet condition helps to smoothen

the axial strain curve by filtering out most of the noisy components corrupting the elastographic

data while trying to match the empirical strain curve.

Input SNR CF with WC Stand-alone CF
20db 2.4455 39.1959
30db 1.093 14.5268
40db 0.2555 7.571
60db 0.1296 3.3538

Table 7.3: Bias% in presence of AM noise

7.2 FEM Results

We have used FEM simulated sample A and sample B to validate our hypothesis. The simulated

data presented in this study has a total of 200 frames of RF data for both the samples. Figure 7.8

shows the simulated axial strain data for frame 10, for Sample A and Sample B. The box on the

Figure 7.8 shows the area inside the inclusion considered for analysis for all the 200 frames of RF

data for the respective samples.

Table 7.4 shows the error rate associated with ASTC estimation with respect to the true TC

value. The letter F in the table represents error rate greater than 30% in TC estimation. From Table

01 we can see that the Bias% error metric is relatively low for LM optimization when used with

wavelet conditioning. From 7.4 and 7.5 for both sample A and Sample B we can say that the two

step approach of wavelet conditioning along with curve fitting outperforms the stand - alone LM
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/
(a) Input SNR 20dB

(b) Input SNR 30dB

(c) Input SNR 40dB

(d) Input SNR 60dB

Figure 7.6: Strain data corrupted by AM+Decorrelation Noise
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Figure 7.7: Accuracy% in presence of AM noise

curve fitting techniques. The wavelet conditioning along with LM curve fitting yields smaller error

metric in ASTC estimation hence the better accuracy.From 7.4 and 7.5. It is evident that LSE+LM

curve fitting is not robust in estimating ASTC.

Input
SNR

Wavelet Conditioning
+ LM
(Hard Thresholding)

LM
Stand-alone

20db 3.7917 F
30db 3.0898 F
40db 3.0209 F
60db 2.8823 F

Table 7.4: SAMPLE A: BIAS% associated with ASTC estimation with respect to the true TC value

28



(a) Sample A

(b) Sample B

Figure 7.8: Simulated Strain data
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nput
SNR

Wavelet Conditioning
+ LM
(Hard Thresholding)

LM
Stand-alone

20db 4.3301 F
30db 4.0179 19.501
40db 3.719 21.01
60db 3.0396 20.95

Table 7.5: SAMPLE B: BIAS% associated with ASTC estimation with respect to the true TC value

Table 7.6 shows the error rate associated with ASTC estimation with respect to the true TC

value using different wavelet kernel. Wavelet Kernel is used for estimating and designing wavelet

filter coefficients for strain data analysis and synthesis. All the Wavelet families for different order

was tested but only error for coif5, sym8, db1 or Haar, bior3.7 ( best in each family ) is shown in

the Table 7.6. Table 7.7 shows the error rate associated with ASTC estimation with respect to the

wavelet conditioning using different number of detail coefficients for computing inverse wavelet

transform. Table 7.8 shows the error rate associated with ASTC estimation with respect to the

wavelet conditioning using different number of wavelet decomposition before performing wavelet

thresholding.

Table 7.9 gives a comparison between different filtering methods used to remove small noise

remnants from the approximation wavelet coefficients and capture the signal components around

the DC. Approximation coefficients contain significant signal components. Therefore, filter selec-

tion in wavelet domain becomes crucial to achieve high accuracy of ASTC estimator. Please note

that these filters are also tested as stand-alone denoising method and all of them failed to converge

expect low pass filter when used in Wavelet domain for any given input SNR value refer 7.9 7.10.

The simulation was run on both the samples, A and B for different input SNR values.

Hard thresholding yields ASTC better estimates than soft thresholding for denoising the elas-

tographic data when noise is very high, as the SNR improves they become almost identical to each

other. Performance evaluation for WT is shown in Figure 7.9.
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(a) Sample A

(b) Sample B

Figure 7.9: Accuracy with respect to wavelet thresholding
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Input
SNR

Coiflets Symlets Daubechies Biorthogonal

Sample A
20dB 12.8812 10.72 6.8576 3.7917
30dB 11.4104 8.6287 6.8519 3.0898
40dB 11.2507 8.6928 6.8542 3.0209
60dB 10.8537 8.8796 6.8532 2.8823
Sample B
20dB 11.8908 14.1756 6.8549 4.3301
30dB 11.2197 14.6637 6.8519 4.0179
40dB 11.0985 14.7635 6.6541 3.719
60dB 10.7493 14.9903 6.8537 3.0396

Table 7.6: Wavelet Kernel comparison

Input
SNR

Only Last Level 50% 100%

Sample A
20dB 3.7917 21.4936 22.1913
30dB 3.0898 21.8639 21.7649
40dB 3.0209 21.9017 21.909
60dB 2.8823 22.0676 22.089
Sample B
20dB 4.3301 22.4564 24.424
30dB 4.0179 22.3992 23.6478
40dB 3.719 22.3979 23.6933
60dB 3.0396 22.4564 23.7609

Table 7.7: Inverse Wavelet Transform with few detail coefficients

Quantitative performance measure such as PSNR has been used to estimate the performance

of the denoising algorithm. PSNR is commonly used to measure the quality of reconstruction data

from noisy data from wavelet transform. In our study, we use the reconstructed data to estimate the

TC using curve fitting method. Table 7.11 shows the PSNR of the reconstructed data for different

input SNR values. The denoising algorithm is pretty consistent irrespective of different input SNR

values .
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Decomposition Level Bias%
Sample A
1 F
2 F
4 F
log2 N 2.883
Sample B
1 F
2 F
4 19.501
log2 N 3.0396

Table 7.8: Wavelet Decomposition Level Selection for Input SNR 60dB

SNR Median
Filter

Low pass
Filter

Gaussian
Filter

Linear
filter

Guided
Filter

Sample A
20db F 3.7917 F F F
30db F 3.0898 F F F
40db F 3.0209 F F F
60db F 2.8823 F F F
Sample B
20db F 4.3301 F F F
30db F 4.0179 F F F
40db F 3.719 F F F
60db F 3.0396 F F F

Table 7.9: Bias% : Wavelet Conditioning (Hard thresholding) + LM

Estimated ASTC elastograms for an heterogeneous poroelastic sample A, Figure 7.10 and sam-

ple B, Figure 7.11 for different input SNR from FE simulation is shown in the figure. From the

Figure 7.10, we see that the ASTC elastogram computed by the proposed technique is closer to the

ground truth, refer Table 7.4 and 7.5, relative to the ASTC images computed by stand-alone Curve

fitting method. Wavelet conditioning improves the robustness of curve fitting technique.
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(a) ASTC Elastogram : Curve fitting, Stand
Alone - 20db Input SNR

(b) ASTC Elastogram : Curve fitting with
Wavelet Conditioning - 20db Input SNR

(c) ASTC Elastogram : Curve fitting, Stand
Alone - 60db Input SNR

(d) ASTC Elastogram : Curve fitting with
Wavelet Conditioning - 60db Input SNR

(e) Color scale

Figure 7.10: Sample A: ASTC Elastogram for Input SNR 20dB and 60dB
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(a) ASTC Elastogram : Curve fitting, Stand
Alone - 20db Input SNR

(b) ASTC Elastogram : Curve fitting with
Wavelet Conditioning - 20db Input SNR

Figure 7.11: Sample B: ASTC Elastogram for Input SNR 20dB and 60dB
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SNR Median
Filter

Low pass
Filter

Gaussian
Filter

Linear
filter

Guided
Filter

Sample A
20db F 5.0944 F F F
30db F 4.747 F F F
40db F 3.6846 F F F
60db F 3.0936 F F F
Sample B
20db F 5.6858 F F F
30db F 5.1678 F F F
40db F 4.9256 F F F
60db F 3.2538 F F F

Table 7.10: Bias% : Wavelet Conditioning (Soft thresholding) + LM

SNR Input PSNR
Sample A
20 dB 88.7489
30 dB 89.9207
40 dB 90.1406
60 dB 90.1902
Sample B
20 dB 87.7256
30 dB 89.8993
40 dB 90.1347
60 dB 91.1808

Table 7.11: PSNR of denoised data after Wavelet Conditioning (Hard Thresholding)
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8. EXPERIMENT AND RESULTS

8.1 In vivo Experimental Method

Data from an animal subject with triple negative breast cancer [50] are used for our study. We

have used, mouse as our animal subject to acquire experimental data. With a variety of clinical

models available, breast cancer development can be researched in mouse. Many clinical models

may be helpful in investigating certain elements of the advancement of cancer but unfortunately,

they do not epitomize the whole cancer cycle. The best way to mimic human cancerous disease in

mice is by injecting the cancerous cells beneath the mouse’s mammary fat pad [50]. The in vivo

data acquisition protocol was approved by the Houston Methodist Research Institute, Institutional

Animal Care and Use Committee.

The elastography experiments were conducted using Sonix RP, an ultrasound diagnostic sys-

tem with Windows XP Operating System. It is a product by Ultrasonix, Canada. The transducer

used for these experiments was a 38 mm real-time linear array with 128 elements, a bandwidth be-

tween 5-14 MHz, a center frequency of 6.6 MHz, 50% fractional bandwidth (at -6 dB), a sampling

frequency of 40 MHz, and a 1 mm beam width at the focus point. To compensate for the surface

geometry as well as improve the focus inside the fairly superficial tumor in the mouse, an aqueous

ultrasound gel pad (Aquaflex, Parker Laboratories, NJ, USA) was placed between the compressor

plate and the animal. Creep experiments were performed manually on the anesthetized animal. A

constant force, replicating the effects of a creep test, was applied to the anesthetized animal through

the weight of the transducer, compressor plate, and a weight band. As described in Chapter 03,

the axial strain Si is computed in a cumulative manner using consecutive frames to maintain an

acceptable correlation level [9]. Temporal changes in the axial strain distribution can be estimated

pixel by pixel. From the temporal curves of the axial strain, the axial strain time constant for each

pixel in the elastograms can be computed. A TC elastogram, or a map of the local time constants,

can be created for the entire image. Ultrasound RF data were acquired for up to 1 min. Multiple

37



data acquisitions were performed at different locations around the tumor. Data could not be col-

lected consecutively at the highest frame rate of the ultrasonic system because the system has a

buffer that limits the total number of frames that can be acquired during a single collection. TC

elastograms were computed for the in vivo data using all 485 frames available.

8.2 In vivo Experimental Result

The ASTC elastogram computed from invivo experiment using curve fitting along with wavelet

conditioning is shown in the Figure 8.2. These findings demonstrate the technical feasibility of us-

ing the wavelet conditioning prior to LM algorithm to produce ASTC on actual experimental invivo

axial strain data. The estimated ASTC for invivo experiments was 10-30s within the inclusion and

20-70s outside the inclusion (refer Figure 8.1)[46].
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(a) Inside Inclusion

(b) Outside Inclusion

Figure 8.1: Strain curve inside and outside inclusion
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(a) B-MODE Image
(b) Invivo ASTC Elastogram

(c) Scale

Figure 8.2: Invivo B-mode image and Axial Strain Time Constant Elastogram
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9. CONCLUSION

In this study, we have proposed a 2-step approach for estimating the ASTC from the elasto-

graphic strain data of the poroelastic soft tissue. In this study we show how denoising elastographic

strain data prior to curve fitting will increase the robustness of curve fitting technique and also in-

crease the accuracy of the estimated ASTC. We have tested wavelet thresholding as a stand-alone

algorithm to remove AM noise and have used PSNR metric to evaluate the performance of the

algorithm. We have compared the performance of wavelet thresholding + curve fitting method

in estimating the ASTC elastogram with the stand-alone curve fitting estimation method for a

wide range of input SNRs, for all cases the proposed (wavelet thresholding + curve fitting) ASTC

estimator produced accurate and reliable results. We observed that our proposed technique can

estimate the ASTC with greater accuracy in most cases relative to the stand-alone curve fitting

method which failed to converge for the simulated axial strain elastographic data. In this study,

experimental data were used as a proof of concept to validate the observations of the simulation.

As ASTC can be linked directly to human soft tissue’s mechanical attributes, the 2-step approach

of estimating the ASTC by curve fitting technique along with wavelet thresholding may be useful

in diagnosis of malignancy, clinical guidance about the state or presence of the disease, severity of

the disease and status of the tissue under treatment. This study mainly focused on ASTC estima-

tion, the proposed 2-step approach can be extended to estimate equilibrium strain as well as EPR

TC from the noisy elastographic data. The denoising algorithm used in this study is generic and

can be extended to any elastographic parameter estimator currently available in the field.
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