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ABSTRACT

This study proposes a vision-based algorithm for joint angle estimation of robotic plasma

medicine devices with a steerable tip joint. The algorithm uses ArUco markers of size 4x4 be-

cause of their robust and fast detection. An ArUco marker with a square length of 9mm is attached

to each of the rigid distal and proximal parts of the robot with respect to the tip joint connecting

those parts, and the joint angle is measured using a high-definition (HD) webcam simulating an

endoscope camera. The proposed vision-based method can eliminate the need for any additional

physical sensors that increase the device size, and the approach is also free of any interference

from the electromagnetic field generated by plasma, and the risk of electrical breakdown, which

can disturb and potentially damage other sensors with conducting components.

The performance of the ArUco markers is explored in terms of the angle accuracy and precision

with respect to other approaches such as electromagnetic (EM) position and orientation sensors and

the kinematics model of the joint. Subsequently, the ArUco marker-based vision system is tested

with real-time joint angle estimation for the continuous motion of the distal tip. The results from

this series of experimental studies serve to validate the effectiveness of the proposed marker-based

vision system as a feedback sensing component for the robot-assisted plasma medicine devices.
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NOMENCLATURE

NTP Non Thermal Plasma

EM Electromagnetic

FBG Fiber Bragg Grating

MIS Minimally Invasive Surgery

HD High Definition

PnP Perspective-n-Point

APPJ Atmospheric Pressure Plasma Jet

RONS Reactive Oxygen and Nitrogen Species

DOF Degrees of Freedom

D Outer diameter of Plasma Robot

PTFE PolyTetraFluoroEthylene

r Moment Arm of the Servo Motor

φ Angle swept by the Servo Motor Shaft

∆L Change in Tendon Length

θ Joint Angle

l Nominal Tendon Length

l1 Distance between the Joint Center and the edge of Proximal
Link

l2 Distance between the Joint Center and the edge of Distal Link

fps Frames per Second

(k1, k2, k3) Radial Distortion Coefficients

(p1, p2) Tangential Distortion Coefficients
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(fx, fy) Camera Focal Length

(cx, cy) Camera Optical Center

m Slope of the best fit line

b y intercept of the best fit line

x̄ Mean of the x-coordinates of the data points

ȳ Mean of the y-coordinates of the data points

xy Mean of the product of the xy coordinates of the data points

x2 Mean of the squares of the x-coordinates of the data points.

R2 Coefficient of Determination

SEline Sum of squared errors of each data point from the corre-
sponding predicted points on the regression line

SEy Sum of squared errors of each data point from ȳ

θd Desired Joint Angle

∆θ Difference between the desired and filtered joint angle

θf Filtered Joint Angle

θt True Joint Angle

θm Measured Joint Angle

u Control Signal
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1. INTRODUCTION

Plasma, in recent years, has been becoming increasingly popular in various medical proce-

dures. The viability of using plasma, in particular, non-thermal plasma (NTP) for tissue regen-

eration, wound healing, cancer treatment, and various other medical conditions has been studied

extensively [1]. However, the devices for plasma-mediated treatment require further engineering

innovation; precise control systems and dose delivery mechanisms need to be developed for the

clinical application of this technology.

To this end, in a recent work, researchers from our lab developed and validated the feasibility

of an in vivo robotic plasma medicine device (see Fig 1.1 (a)), which can be used for treating

exposed cancers inside of a human body in a minimally invasive way [2]. The device is designed

to generate a stable plasma plume and is capable of delivering precisely controlled plasma doses

to selectively kill tumors of various sizes. A steerable distal tip in the device design is intended to

help it navigate to various deep-seated organs in the human body and to target normal-sized tumors

at different orientations. But to dexterously maneuver the device, the joint angle between the distal

and proximal parts need to be determined accurately. This joint angle measurement will serve

as the feedback signal employed by the different close-loop control architectures for the precise

positioning of the distal tip.

A popular way to determine joint angles in robot-assisted surgeries is to use position encoders.

Position encoders are sensors consisting of a graduated scale and a read-head. The encoder deter-

mines the position of this read-head on the scale and outputs a voltage signal that is characteristic

of the joint angle. Motorized joints in surgical robots use these encoders to complete the servo con-

trol loop [3] however, a motorized joint and an encoder at the proximal tip of our plasma medicine

robot are susceptible to electromagnetic (EM) interference because of the EM fields generated by

the plasma plume. For this reason, our device design uses a tendon actuated joint which is insus-

ceptible to these EM fields. With a tendon-driven robot, one way to estimate the joint angle is

to use a robot kinematic model [4]. Such a model correlates the joint angle with the change in
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Figure 1.1: (a) The robotic plasma medicine device with the robotic interface and flow controller
[2], and (b) Distinct ArUco markers placed at the proximal and distal segments of the device.

tendon length. These models, however, provide for only an open loop control system and are robot

specific, that is they vary from one robot configuration to another. Also, these models rely on many

assumptions about the tendons inelastic properties and the manner in which they are routed around

the device. As such, these models are not the most accurate and hence fall short of providing the

precision necessary to guide a plasma plume for cancer treatment. Another method to estimate the

joint angles in surgical robots is to embed tiny electromagnetic (EM) sensors in the different links

of the robot [5], [6]. These sensors are subjected to an EM field generated by a field generator and

the resulting voltages then characterize the orientation of the segments housing these sensors. But

like the position encoders in the motorized joints, these sensors are also sensitive to the EM fields

generated by the plasma plume and hence, not suitable for use with our plasma robot. Another

novel method for active tip steering of surgical devices that is robust to EM fields makes use of

2



optical strain sensors known as fiber Bragg gratings or FBGs [7]. These sensors are a popular

choice with continuum manipulators in Minimally Invasive Surgery (MIS) and use the strain gage

readings to estimate the needle curvature and position inside the human body. However, these

strain sensors do not work well with high curvature needle bending or in our case with large dis-

tal tip angles. This is because the glass fiber breaks at these extremums and leads to a complete

breakdown of the navigation system.

One way to circumvent the limitations of the aforementioned techniques is to use computer

vision algorithms for joint angle estimation. These algorithms make use of the high definition

(HD) endoscopic cameras used in robotic surgical procedures as an alternative real-time feedback

sensor. In one example, to estimate the pose of instruments in the da Vinci Surgical System,

researchers used region based methods with an estimated transform to position the vertices of

the instruments CAD model in the camera frame and then generated silhouette regions from this

projection. The pose was then estimated by matching the model silhouettes and the data silhouettes

by pixel-wise classification [8]. Other methods in computer vision make use of different optical

markers to ascertain the pose of an object. Markers composed of chessboard vertices and circular

dots have been used for tracking ultrasonic probes in laparoscopic surgeries [9], [10]. And recently,

hybrid markers comprising of a mixed pattern of both circular dots and chessboard vertices have

also been suggested for pose estimation of ultrasonic probes in surgery [11]. Pose estimation from

images of such markers is determined using the Perspective-n-Point (PnP) problem [12]. Recently,

the PnP problem is being used with a new set of optical markers, called ArUco markers. These

markers have also been used for pose and position estimation of various surgical tools and their

support systems [13], [14], [15]. But this work has not yet been extended to joint angle estimation

of articulated medical robots and plasma medicine devices.

In this paper, we propose a vision-based method with ArUco markers (see Fig 1.1 (b)) to

determine the joint angles of articulated robotic plasma medicine devices. A further contribution

of our work is in the performance evaluation of our proposed approach at a very small resolution.

We validated and compared our results by using an electromagnetic sensor and a kinematic model

3



based on the change in the tendon pulling length. Our method is not susceptible to any EM fields

and works well with plasma medicine devices. This method can also be applied to surgical tools

in MIS and since it does not require any additional sensor it can be used to further miniaturize

surgical instruments in MIS.

The proposed thesis document will be organized as follows, Section II presents background on

our plasma medicine device and the proposed ArUco markers for the joint angle estimation. Sec-

tion III describes the research objectives and the scope of our project. Section IV details the method

and vision algorithm used for joint angle estimation and is followed by Section V which entails

the plasma robots kinematic model. Section VI presents our experimental setup and evaluates the

performance of our optical marker based approach with relevant discussions. Lastly, Section VII

concludes the document with a summary of our key results and conclusions drawn from our work.

4



2. BACKGROUND

2.1 Plasma Medicine Devices

Non-thermal plasmas (NTPs), also known as atmospheric pressure plasma jets (APPJs) provide

a rich source of reactive oxygen and nitrogen species (RONS) responsible for cytopathic effects

in modern medicine. And their operation at atmospheric pressure and room temperature further

motivates their medicinal use. However, plasma-mediated cancer treatment among deep-seated

human body organs requires novel device designs for safe clinical applications. This necessity has

motivated several academic circles to research safe and novel devices for channeling plasma to

human organs. To this end, researchers have shown a successful generation of plasma at the tip

of a long, flexible plastic tube using a thin metal wire installed inside the tube. This sort of setup

allows for safe handling of the device without the risk of thermal or electric shocks but has several

limitations. Plasma generation, gas discharge, and plume length are sensitive to conductive objects

in contact with the tube wall. This, in turn, affects the stability of the plasma plume and the ability

to control the dose for selective cancer treatment.

A viable solution to the shortcomings of contemporary plasma devices is to integrate with these

devices the ability to selectively control the plasma dose. The proposed robotic plasma medicine

device from our lab is capable of selective controlling plasma doses for cancer treatment and is

equipped with a steerable distal tip. This steerable tip allows for dexterous manipulation of the

device and helps with navigation about deep-seated organs. The steerable tip also allows small

sized devices to target various normal sized tumors at different orientations. The experimental

results evincing the performance of the device shows that it is devoid of thermal and electric failures

and is safe for human touch. The robotic interface with tendon actuation allows for smooth motion

of the distal tip and a flow regulator checks the dose of the plasma being delivered. To further

improve the device design we look at different feedback sensing modalities for an effective control

system design.

5



2.2 ArUco Markers

ArUco markers [16] are square markers that consist of a black border encompassing a grid of

black and white squares (Fig 2.1(a)). The pattern of these black and white squares corresponds to

a unique binary code and thus gives each marker a unique identity (Fig 2.2 (b)). ArUco marker

dictionaries consist of markers of different sizes. The marker size n refers to the size of the inner

grid of squares i.e a marker with size n = 4 has an inner grid of size 4× 4. The larger the marker

size, the larger is the dictionary however with an increase in marker size, marker detection at longer

distances becomes more difficult. For our application, a marker size of n = 4 suffices since our

application does not require a large number of such markers. Also, a marker of this size is the

aptest because of the small scale of contemporary medical devices.

ArUco marker detection is subject to its four corners being visible to the camera. The subse-

quent image processing steps include the application of adaptive thresholding to obtain borders,

finding contours and filtering out unwanted or false borders. The filtering process removes borders

with a small number of points, involves polygonal approximation and retains convex polygons with

only four corners, and sorts the corners in an anticlockwise direction. This is followed by a marker

identification step which involves using a homography transformation to get a normal view of the

marker. The image processing algorithm then first checks the presence of a black border and then

checks for and identifies the unique binary sequence encoded in the square grid. The final step is

to refine the corners for valid markers by sub-pixel interpolation.

Pose estimation and position tracking using ArUco markers correspond to finding a homoge-

neous transform between two coordinates frames. These coordinate frames are the ones defined at

the optical center of the image and at the center of the marker in the physical world. This transform

can be found using the perspective n point (PnP) problem. For the PnP problem, the coordinates

of the marker must be known in the frame attached to its center along with the coordinates of the

markers projection on the image plane expressed in the frame fixed to the optical center. The lat-

ter coordinates are found via the image processing algorithm when detecting ArUco markers and

marker coordinates in the physical world can be found by just specifying the markers physical

6



Figure 2.1: (a) ArUco Marker of size n=4, and (b) ArUco marker with the external border removed.
The binary code represented by the black and white squares is shown in the grid.

size s. The PnP solution gives us a translation vector and a rotation vector. The translation vector

locates the marker with respect to the camera and the rotation vector specifies the orientation of

the marker with respect to the camera.
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3. RESEARCH OBJECTIVES

The crux of this study is to verify the feasibility of using a vision-based feedback approach for

joint angle estimation of plasma medicine robots. A computer vision algorithm is developed for

ArUco marker detection and joint angle estimation. This is followed by a derivation of the robot

kinematic model as a function of the change in tendon length. A series of different experiments

are performed, first to evaluate the performance of ArUco marker based angle estimation against

a tendon kinematic model and a V3 Electromagnetic sensor, followed by the angle estimation

in the presence of an active plasma plume. Subsequently, we present evidence of accurate and

precise angle measurements from our optical marker based vision algorithm approach. As such

the following research objectives corroborate our findings

1. Develop a method and vision algorithm for joint angle estimation

(a) Method: derive a mathematical model using rotation matrices to determine the relative

angle between the proximal and distal part.

(b) Vision Algorithm: develop a code for marker detection and pose estimation using the

PnP problem.

2. Evaluate the performance of marker-based vision algorithm

(a) Accuracy Assessment: measure the joint angle from the vision algorithm and compare

against measurements obtained from tendon kinematic model, EM sensor and vector

graphics.

(b) Precision Analysis: take repeated angle measurements for several distal tip angles.

Calculate the mean and standard deviation for the measurements obtained for different

angles to ascertain the precision of our method.
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(c) Real-time joint angle estimation of Plasma robot: demonstrate the ability of our pro-

posed method to estimate the joint angle in real time for continuous motion of the distal

tip.

Given the objectives of our research, there are certain limitations to this study. First, the ArUco

marker detection is subject to its four corners being visible to the camera. This means that if

the marker gets occluded due to either roll of the device or because of blood smearing during

the clinical application of this technology, this approach will fail. We investigate experimentally

the extent of the field of view in which the marker is detectable and also discuss several possible

future works that can resolve this issue. Another limitation is with respect to zero errors with the

measurement systems when the joint angle is zero. This is due to errors in marker placement and

EM sensor attachment. A mechanical stop is used to restrict the rotation at the joint and the joint

angle is fixed at zero degrees. Zero errors are then measured for all measurement systems and all

readings are subsequently adjusted.
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4. METHOD AND ANGLE ESTIMATION ALGORITHM

We extend the PnP problem of finding the pose of markers with respect to the camera to finding

the angle at the tip of the plasma medicine device. This involves attaching two different ArUco

markers across a revolute joint of the plasma robot. The markers are attached such that their

centers lie on a common axis when the joint angle is zero. We then solve the PnP problem for each

individual marker and obtain two separate rotation and translation vectors (Fig. 4.1). Using the

literature on 3D rotation we can then specify a rotation matrix that quantifies the 3D pose of one

joint segment with respect to the other. This is given by the following relation

R = RT
proximal ∗Rdistal (4.1)

whereR is the rotation matrix quantifying the pose of the distal section with respect to the proximal

section, Rproximal and Rdistal are the rotation matrices of distal section and the proximal section of

the robot respectively.

Figure 4.1: A schematic of the plasma medicine device with the attached ArUco markers of size
n=4. Rotational matrices characterizing the orientation of each marker with respect to the camera
frame are also shown.
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We used C++ with OpenCV to write the image processing vision algorithm. The ArUco library

is available with OpenCV which makes it easier and simpler to implement the aforementioned

procedure. Algorithm 1 details the implementation of our image processing and angle estimation

code. The highlighted text represents the coded method of our approach.

Algorithm 1 Angle Estimation Algorithm
Require: Two distinct ArUco Markers

1: Specify ArUco Marker Dimension s
2: Declare a ptr to a predefined 4x4 dictionary
3: Declare a VideoCapture object
4: if !VideoCapture.isopened then
5: exit
6: end if
7: while true do
8: aruco::detectMarkers→ markerCorners, markersIds
9: aruco::estimatePoseSingleMarkers→ rvec, tvec

10: aruco::drawDetectedMarkers

11: for i = 0; i < markerIds.size(); i++ do
12: if marekerIds[i]==30 then
13: Rodrigues(rvec[i], Rproximal)
14: end if
15: if marekerIds[i]==42 then
16: Rodrigues(rvec[i], Rdistal)
17: end if
18: R = RT

proximal ∗Rdistal

19: end for
20: bool Rcheck = IsRotationMatrix(R)
21: if Rcheck == true then
22: JointAngle = rotationMatrixtoEuler(R)
23: end if

24: end while
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5. ROBOT KINEMATICS

The robotic plasma medicine device prototyped in our laboratory is a one degree of freedom

(DOF) tubular structure with only two links. It consists of a single revolute joint and has an outer

diameter D. The device is actuated using two kevlar tendons that run along the length of the robot

on either side of the joint and are fastened to two separate servo motors. The tendons are routed

along the device through PTFE composite tubing. We derived a tendon-robot kinematic model to

be used as an input actuation map i.e. the desired joint angle at the robot tip is correlated with

the servo motor angle. We also use this model for a comparative analysis with the joint angles

determined from our vision algorithm. To estimate the joint angle we make use of the tendon

pulling length and make the following set of assumptions

• The tendons are inelastic.

• The tendons are constrained along the entire length of the robot with a PTFE composite

tubing except at the joint.

• The tendons are constrained in a 2-dimensional plane.

• The change in tendon length is observed only at the revolute joint.

With these assumptions, we can estimate the change in tendon length, ∆L as equivalent to the

length of the arc swept by the moment arm of the servo motor to which the tendon is attached.

Mathematically this is represented as

∆L = rφ (5.1)

where r is the moment arm of the servo motor and φ is the angle swept by the motor shaft. The

derived mathematical function that correlates the joint angle, θ to change in tendon length, ∆L is

found to be piecewise function. Considering the entire range of motion as the functional domain
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of our derived model, it is split into two sub-domains; motion from mean position (i.e. when joint

angle is zero) to either extreme (positive or negative) and motion from these extremums to the

mean position. Mathematically this can be represented as

θ =

 f(∆L) if motion is from mean to extreme

g(∆L) if motion is from extreme to mean

(5.2)

The overall tendon actuation scheme with the two motors and the piecewise function is summarized

in Table 1.

Tendon Based Actuation (Joint Motion)

Motor #
Tendon Kinematic Model

f(∆l) g(∆l)
1 mean to negative extremum positive extremum to mean
2 mean to positive extremum negative extremum to mean

Table 5.1: Summarized tendon based actuation

We analyze the joint geometry for an arbitrary angle in these sub-domains to derive our model.

To determine the function f(∆L) we take a look at Fig. 5.1 which shows the joint kinematics

for an arbitrary angle, θ when the tip moves from the mean position to the negative extreme. The

figure also shows how the change in tendon length ∆L appears at the joint at this joint angle θ.

When the joint angle is 0 °, there is no change in tendon length and the nominal tendon length at

the joint is denoted as l. Now, to determine the angle θ, we analyze the geometry shown in yellow

in Fig. 5.1. Given the distance between the joint center and the edge of proximal link as l1, and the

distance between the joint center and the edge of distal link as l2, we first determine the lengths lbe

and lbd using the Pythagorean theorem. Then using trigonometric relations we find the angles α

13



Figure 5.1: Plasma Robot Joint Kinematics. Joint moves from mean to the negative extreme and
this is brought about by actuating Motor 1.

and β. And using cosine law and eq. 5.1 we then determine angle γ from the following equation

γ = arccos(
l2be + l2bd − (l −∆L)2

2(lbe)(lbd)
) (5.3)

The function f(∆L) is then simply calculated as

f(∆L) = π − (α + β + γ) (5.4)

The above relation also holds true for when the distal tip moves from the mean to the positive

extremum. In this case, the tip is actuated by motor 2.

Similarly, to determine the function g(∆L) we take a look at Fig. 5.2 which shows the joint

kinematics for an arbitrary angle θ when the tip moves from the negative extremeum to the mean

position. Notice how the change in tendon length ∆L appears at the joint for this motion. The
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Figure 5.2: Plasma Robot Joint Kinematics. Joint moves from positive extreme to the mean posi-
tion and this is brought about by actuating Motor 1.

change in tendon length gets added to the nominal tendon length l, unlike the previous case. Again,

we analyze the geometry shown in yellow in Fig 5.2. Since l1 and l2 are robot design parameters,

they remain unchanged and hence the lengths lbe and lbd also remain unchanged. Consequently

angles α and β also remain the same. Using cosine law once again the varying angle γ in Fig. 5.2.

is then given as

γ = arccos(
l2be + l2bd − (l + ∆L)2

2(lbe)(lbd)
) (5.5)

Using γ we then calculate the other varying angle ψ as

ψ = π − (α + γ) (5.6)
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The function g(∆L) which is then simply calculated as

g(∆L) = β − ψ (5.7)

This relation also holds true for when the distal tip moves from the negative extreme to the mean

position. In this case, the tip is actuated by motor 2.

The above kinematic model measures the servo angle for each motor as incremented from the

servo angle at which the tendon is brought into tension when the joint angle is zero. This requires

us to find the servo angle for each motor for which the tendon is taught when the corresponding

angle subtended at the tip is 0°.
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6. EXPERIMENTS AND RESULTS

We worked with two experimental setups and performed three different sets of experiments

to validate our proposed approach for joint angle estimation. The first of our two experimental

setups was used to validate and compare the performance of our proposed method with other

existing techniques. It did not involve any plasma plume generation as plasma interferes with the

EM sensor validation setup. Two sets of experiment were carried with this setup. The second

experimental setup was used to evaluate the performance of our vision algorithm with an active

plasma plume. The details of our experimental studies are detailed as follows.

6.1 Experimental Setup

6.1.1 Plasma Robot

The robotic plasma medicine device shown in Fig 1.1 was modified and raised square platforms

were added to the distal and proximal links near the revolute joint to attach the ArUco markers. The

length of this square platform is 11 mm and the attached ArUco markers have a square dimension

of 9 mm. ArUco marker attached to the proximal section has the Id 30 and that attached to the

distal part has the Id 42. Fig. 6.1 shows the plasma robot with the square platform and the attached

ArUco markers. In practice, any ArUco marker of size n=4 can be used and there are no restrictions

on any specific marker Id.

Before running our experiments we eliminated any zero error between the pose of the two

markers. This is because marker placement is done manually and so using our vision system we

calculated the angle between two markers when the joint angle is zero. A mechanical bracket was

3D printed and was slid at the joint between the two links such that the joint was locked at 0° and

then the zero error was measured. Ideally, this should be zero but taking into account the human

error in marker placement we adjusted all subsequent angle measurements with this zero error

value.
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Figure 6.1: Plasma robot with added square platforms and attached ArUco Markers.

6.1.2 Camera

In our experiments, we used a Logitech BRIO Ultra HD Webcam for simulating an endoscope

camera. This camera is rated at 30 fps (frames per second) when operated at 4K resolution and at

60 fps when operated at 1080p. When used with OpenCV at a 4K resolution the frame rate of this

camera drops to 24 fps when no image processing is done. With our vision algorithm, this frame

rate dropped further to approximately 6 fps (in actual it varies from 4 to 8 fps). The camera was

mounted such that the focal plane was at an angle to the plasma robot and the attached markers.

This was to realistically simulate the camera position in actual endoscopic surgeries. Before con-

ducting the experiments we first performed a calibration of our camera using the ChArUco Board.

ArUco markers on this board came from the dictionary DICT_6X6_250 and had a square dimen-

sion of 15.6 mm. Camera calibration is performed to eliminate any radial and tangential distortions
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in the camera and to determine the intrinsic parameters of our camera. The distortion coefficients

which characterize the radial and tangential distortions were determined to be as follows

Distortion Coeffiecients =



k1

k2

p1

p2

k3


=



1.90

−2.39

2.05

−1.47

−1.15


(6.1)

where, k1, k2 and k3 are radial distortion coefficients and p1 and p2 are tangential distortion coeffi-

cients. The camera intrinsic parameters were found to be

Camera Matrix =


fx 0 cx

0 fy cy

0 0 1

 =


748 0 317

0 749 249

0 0 1

 (6.2)

where (fx, fy) represent the camera focal length and, (cx, cy) is the camera optical center. The

average re-projection error for our calibration was determined to be 0.15 pixels which indicate a

good camera calibration.

6.1.3 EM Sensor

We use an Aurora V3 EM sensor from NDI in our experiments. This is an advanced electro-

magnetic (EM) spatial measurement system. The sensor is used with the first of the two experi-

mental setups that we used for experimental validation of our vision algorithm. The sensor is not

used when experimenting with active plasma plume as EM fields from plasma generation interfere

with the sensor readings. The sensor consists of the following components

• Planar Field Generator (FG)

• System Control Unit (SCU)

• Sensor Interface Unit (SIU)
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Figure 6.2: NDI Aurora V3 Electromagnetic Sensor.

• 6 DOF EM sensors (0.8 mm diameter x 9 mm)

The sensor components are shown in Fig. 6.2. The two 6 DOF EM sensors are attached to the

proximal and distal links (see Fig. 6.1), with the sensor on the proximal part defined as our global

reference standard. The pose between the two is then quantified with a quaternion which we then

convert to an angle measurement.

In the two experiments with which we use this EM sensor, we consider it as our gold standard.

This is because of the high accuracy and precision pertinent to this systems 6DOF sensor. The

orientation errors for the system are detailed in Table 6.1.

6.1.4 Vector Graphics

To validate our vision algorithm in the presence of an active plasma plume we can not use the

EM sensor so we used an off-line angle measurement technique. Since the robot is only 1 DOF
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Orientation Errors 6 DOF
RMS (°) 95% CI (°)

Orientation Accuracy 0.30 0.48
Orientation Precision 0.20 0.40
Orientation Trueness 0.25 0.45

Table 6.1: Cube Volume (Planar Field Generator) - Orientation Errors [17]

we mount a camera parallel to the motion plane in which the joint moves. For each discrete angle

measurements, an image was captured which was then analyzed in a vector graphics software

called Inkscape to get an estimate of the angle subtended at the robot tip. This technique was also

extended to experiments that did not involve plasma generation.

6.2 Discretized Angle Measurements

The first set of experiments was conducted to investigate and compare the accuracy and preci-

sion of our proposed ArUco markers. For accuracy assessment, joint angle readings from ArUco

marker-based vision system were compared against those obtained from the EM sensor, tendon

kinematic model and from the vector graphics approach. For precision analysis for each joint

angle, fifteen repeated readings were taken and the spread of the data analyzed. The experiment

consisted of pulling the tendons for different displacements using two servo motors. These dis-

placement correspond to unique joint angles as calculated from the kinematic model (-40°, -35°,

-30°, -25°, -20°, -15°, -10°, -5°, 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°). The experimental setup

for this experiment is shown in Fig. 6.3.

The results obtained for the discrete angle measurements are shown in Fig. 6.4. It is observed

that the angle measurements from the ArUco marker-based vision system are very close to an-

gle measurements from the EM sensor (our gold standard). The measurements from the vector

graphics approach are also close to those obtained from the EM sensor however the error between

the two is larger than the error between the ones obtained from our vision algorithm and the EM

sensor. This may be because the image plane of the camera used for vector graphics approach is

not exactly parallel to the motion plane. Please note that vector graphics is an off-line approach
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Figure 6.3: Experimental Setup for experiments 1 and 2.

with no feedback providing capabilities and was used only for validation. It is also prone to human

error since when analyzing the images in Inkscape, the lines drawn parallel to the distal and prox-

imal links may not be exact and slight inaccuracies can magnify the error in angle measurement.

The tendon kinematic model performs the worst out of all measurement techniques and the error

becomes especially large at larger angles (whether positive or negative). This is because the PTFE

composite tubing is inaccurately placed. The tubing protrudes beyond the distal and proximal edge

for tendons running along both sides of the robot. This protrusion alters the geometry shown in

Fig. 5.1 and Fig. 5.2; the angles α and β change. This coupled with the many assumptions

that we made while deriving this model explains the poor performance of the tendon kinematic

model. Another reason that might explain the poor performance of the tendon kinematic model

is the controller issue. The kinematic model assumes that the servo actuation using the Phidget
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Figure 6.4: Discretized Angle Measurements, (a) Positive angle measurements and (b)Negative
Angle measurements.

23



controller is accurate with no sources of error. If the controller is imprecise such that the servo

angl,e φ subtended by the controller is different from the desired servo angle as calculated from

the tendon kinematic model, the model will perform poorly.

To better ascertain the accuracy and precision assessment of our proposed approach we plotted

the errors of our system with respect to the EM sensor and calculated the standard deviation of all

15 readings for each discretized angle. The results are shown in Fig. 6.5. The error plot (Fig. 6.5

(a)) shows that the error is roughly between ± 2° and that the maximum error is slightly above

2°. In fact, there are only three error values that exceed 1.5°. The standard deviation plot (Fig.6.5

(b)) shows that the maximum standard deviation value is about 2.2° and there are only three values

that exceed a standard deviation of 1°. The overall error analysis for all measurement techniques

is summarized in Table 6.2.

Error Analysis w.r.t EM Sensor
(Angle Measurement - EM Sensor Angle Measurement)Error Analysis

(in degrees) Tendon Kinematics Vector Graphics Vision Algorithm
Absolute Max. Error 7.78 2.21 2.22
Absolute Min. Error 0.31 0.37 0.01

Mean -1.37 -1.17 0.1
Standard Deviation 3.09 0.75 0.98

RMS Error 3.3 1.38 0.96

Table 6.2: Error Analysis of Discretized Angle Measurements

The table shows that the mean error for all set of discretized angles as measured by the ArUco

marker-based approach is 0.1°, the lowest among all measurement techniques. Also, the RMS

error is the lowest for the ArUco marker based angle estimation method. The maximum error is

lowest for the vector graphics approach and it differs from the maximum error of marker-based

vision algorithm approach by only 0.01°.
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Figure 6.5: Accuracy and Precision Assessment, (a) Error Plot and (b) Standard Deviation Plot.
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6.2.1 Calibrated Kinematic Model

The experimental results for the discretized angle measurements showed the poor performance

of our tendon kinematic model. We had derived the model with the intention of using it as an

input actuation map but the performance evaluation results show that it is unfit to be used as our

input signal. With any control system if the input signal is prone to error the control action i.e.

the control signal will also be erred. This will results in a poor control system with the output

not converging to the desired state, in fact in the worst case the system response may diverge. To

address this problem we propose to fit linear regression models to the data from our EM sensor

and ArUco marker-based vision algorithm. This makes sense since the results in Fig. 6.4 show the

different sensor data points approximating a line. These regression models correlate the change

in tendon length, ∆L with the joint angle, θ and substitute as a calibrated input actuation map for

the derived tendon kinematic model. Also, there can always be several manufacturing errors that

can’t be appropriately modeled, such as unbalanced pre-tension and misalignment of tendons, etc.,

for which a fitted/calibrated kinematic model can be a practical solution. The slope m and the

y-intercept b of the equation of the best fit line for our model is obtained using regression analysis

on a set of bivariate numeric data points. Mathematically they are defined as follows

m =
x̄ȳ − xy
(x̄)2 − x2

(6.3)

b = ȳ −mx̄ (6.4)

where x̄ is the mean of the x-coordinates of the data points, ȳ is the mean of the y-coordinates of

the data points, xy is the mean of the product of the xy coordinates of the data points and x2 is

the mean of the squares of the x-coordinates of the data points. Note that this sort of modeling

will be specific to each plasma robot and linear fits need to be found for all of them and for each

motor separately. The results of our linear regression fit for positive angles subtended by motor 2

is shown in Fig. 6.6 and the fit for negative angles subtended by motor 1 is shown in Fig. 6.7.
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Figure 6.6: Regression fits to positive angles subtended by Motor 2, (a) EM Sensor data and (b)
Aruco Marker based Vision System data.
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Figure 6.7: Regression fits to negative angles subtended by Motor 1, (a) EM Sensor data and (b)
Aruco Marker based Vision System data.
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Figure 6.8: Block diagram of the proposed control scheme for the plasma robot with an improved
kinematic model.

The quality of our regression fit models was ascertained by calculating the R2 values, also

known as the coefficient of determination. R2 value indicates what percent of the prediction error

in the y variable is eliminated when the least squares regression is applied to the x variable.

Mathematically it is calculated as follows

R2 = 1− SEline

SEȳ

(6.5)

where SEline is the sum of squared errors of each data point from the corresponding predicted

points on the regression line and SEy is the sum of squared errors of each data point from ȳ. A

good linear fit will result in data points close to the line of best fit and hence SEline will be close

to zero. This, in turn, will yield a value of R2 close to one. In fact, the maximum value that a

coefficient of determination can have is one. For all four regression fits the R2 values we obtained

were very close to one as displayed on the plots in Fig. 6.6 and Fig. 6.7. This showed a good

linear fit and based on these results we propose to use the regression models from fitting the EM

sensor data as our new input actuation map. The EM sensor data was used for this purpose because

the EM sensor is more accurate than our ArUco marker-based vision system. Also shown in the

figures are the 95% confidence bands for our regression fits. For any regression fit model, the slope

and the y-intercept will vary for different samples of the same data and as such the best fit line will

also change from sample to sample. A confidence band indicates the range in which the true best
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Figure 6.9: ArUco Marker tracking for Joint Angle Estimation, (a) 0°, (b)Positive extreme and
(c)Negative extreme

fit line lies. The confidence bands shown on the plots in Fig. 6.5 and Fig. 6.6 encompass the

region which has a 95 % chance of containing the true best fit line. With this improved kinematic

model we then proposed a closed loop control structure for our plasma robot as shown by the block

digram in Fig. 6.8.

6.3 Real Time Continuous Angle Measurements

The second experiment was conducted to validate real-time continuous joint angle measure-

ments from our vision system. To validate the real-time performance of our proposed approach,

joint angle readings from ArUco marker-based vision system were compared against those ob-

tained from the EM sensor. The experiment was carried out by continuously actuating the servo

motors to which the tendons were connected. A continuous real-time angular displacement from

0° to approximately 160° was applied to each of the servo motors. This corresponded to two cycles

of the tip movement across its entire range motion. The experimental setup for this experiment is

the same as shown in Fig. 6.3. Stills of the marker tracking in real time at different angles are

shown in Fig. 6.9. The EM sensor is operated at a fixed rate of 40 fps whereas the vision system

operates at approximately 4 fps to 8 fps. To account for the varying frame rate on our vision sys-

tem we used the Chrono library to record the time taken to capture each frame. The results from

both, the EM sensor and the vision-based approach are presented in Fig. 6.10. The plots of the

data from two sensors shown in Fig. 6.10 shows that the results from our approach are in close
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Figure 6.11: Experimental Setup for experiment 3.

agreement with the data obtained from the EM sensor. This is especially true for when the distal tip

is moving. With the distal tip static, the data from our vision system is much noisier as compared

to the EM sensor. The maximum error at these intervals is noted to be a little more than 2° which

is what was expected from the discretized angle measurement experiment. To address this noise

we propose the use of a data smoothening filter such as a Gaussian filter but this analysis is left

for future studies for now. There is no lag between the two data sets which shows that the ArUco

marker-based vision system matches the speed performance of the EM sensor.

6.4 Angle measurements with an Active Plasma Plume

To evaluate the performance of our approach in the presence of an active plasma plume which

generates EM fields we performed a third experiment. The AruCo marker-based system was used

to determine joint angles when the robotic plasma device generated and directed an active plasma
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Figure 6.12: Discretized Angle Measurements with an Active Plasma Plume

plume through its distal tip. No EM sensor was used for validation of our results since it is sensitive

to EM fields from the plasma. We relied only on the vector graphics approach for validation and

validated only a series of discretized joint angle measurements. The experiment consisted of

pulling the tendons for different displacements using two servo motors just like the discretized

angle measurement experiment. These tendon displacements corresponded to the following set of

angular displacements at the robot tip; -30°, -15°, 0°, 15° and 30°. The experimental setup for this

experiment is shown in Fig. 6.11.

The results of this experiment are shown in Fig. 6.12. The negative change in tendon length

represents actuation by motor 1 which subtends negative angles at the tip whereas a positive change

in tendon length represents actuation by motor 2. Note that just like experiment 1, the angle

measurements from ArUco marker-based system are close to the measurements from the vector
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Figure 6.13: Images for Vector Graphics approach (a) 35° and (b) -35 °.

graphics approach. This corroborates our initial claim that an ArUco marker based joint angle

estimation is robust to any EM fields generated by the plasma. The errors in measurements from

vector graphics approach and our marker-based approach are again due to the image plane not

being parallel to the plane of motion. Fig. 6.13 shows two images that were used for our vector

graphics approach. And just like the first experiment the tendon model again performed poorly

and the same reasoning holds for this case as well.
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7. CONCLUSION

In this thesis we proposed an optical marker based vision approach to joint angle estimation of

robotic plasma medicine devices. The optical markers used for this study were ArUco markers. We

devised and evaluated the ArUco marker based vision algorithm and tested it’s performance against

other measurement techniques. The results showed that ArUco markers are able to estimate joint

angles with an accuracy of ± 2° and the results were in close proximity to those obtained from

the EM sensor. However the measurements from our approach lacked precision and for static

tip angles the measurements were very noisy. We recommend the use of a data smoothening

filter to address this problem. Other than the EM sensor our proposed algorithm outperformed

the tendon kinematic model and vector graphics approach. With regards to the poor performance

of the derived tendon kinematic model we explored regression fits to our EM sensor data as an

alternative input actuation map. And lastly, as predicted our approach was found to be robust to

EM fields and ferromagnetic materials present within the device’s vicinity.

In future works, controller performance will be evaluated to ascertain any inherent errors in

the robotic tool interface of the plasma robot. This will help us better understand the underlying

sources of errors responsible for the poor performance of the tendon kinematic model and will

also assist us in designing more accurate actuation schemes for our robot. Other than that, in all

our future endeavors marker occlusion will be taken into account. We anticipate that once this

device gets introduced to clinical trials it is highly likely that markers may get occluded because of

blood smearing. Also, marker occlusion may occur due to the roll of the device itself. To develop

robust sensing modalities it is necessary that such occlusion is accounted for. We would also like

to improve our algorithm for measuring angles of devices having more than 1 DOF. A possible

solution to these anticipated challenges is the use of an ArUco marker map. This would consist

of a marker strip with ArUco markers scattered on it and we propose to attach such strips across

all joints among such devices. With a large number of distinct ArUco markers occlusion becomes

unlikely. However, this would require us to adapt ArUco markers to curved surfaces and with

35



this, we can also get rid of the square platforms with sharp edges that are not suited for medical

procedures.
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