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ABSTRACT 

 

This thesis presents an equation-based approach to steady state building energy 

modeling using constrained optimization.  Models using this approach can be built from 

algebraic equations that describe a building and its HVAC equipment and knowledge of 

the system’s overall control strategy.  The equation-based nature of this approach allows 

arbitrary systems to be represented, and simple rules can be followed to construct 

models that produce a valid energy balance overall operating conditions, including 

atypical scenarios such as temperatures drifting above or below their desired set points. 

The theory behind constrained optimization modeling of steady state HVAC 

systems is presented, and methods for constructing typical HVAC systems are given.  

Mathematical methods for integrating dynamic effects such as thermal mass into these 

models are also presented.  To efficiently solve these models, a prototype program 

named Beryl is presented along with a performance analysis of the computer resources 

required for different types of modeling.  Finally, future areas of research are given such 

as modeling improvements and improvements to numerical solvers for the specialized 

problems being solved. 

The solver developed in this work was able to perform yearly building energy 

simulations on single AHU in 0.5 to 5.0 seconds using hourly time steps on a single 

thread.  Factors that affect simulation runtime were also analyzed.  Based on these 

results and the robustness of the simulations, constrained optimization based building 

energy modeling was shown to be a valid and potentially useful approach. 
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NOMENCLATURE 

 

𝑋 A Fraction that Varies from 0 to 1 (0 − 1)  

𝑃𝑐𝑡 Percentage (%) 

𝛼 A Coefficient or Conversion Factor (𝑉𝑎𝑟𝑖𝑒𝑠) 

휂 Efficiency (0 − 1) 

𝑙,𝑤 Length, Width (𝑓𝑡) 

𝐴 Area (𝑓𝑡2) 

𝑂𝑐�̃� Occupancy (𝑓𝑡2 𝑃𝑒𝑟𝑠𝑜𝑛⁄ ) 

𝑉 Volume (𝑓𝑡3) 

𝑡,𝜏,𝛿 Time, Time Constant, Time Step Period (ℎ) 

𝐴𝐶𝐻 Air Changes per Hour (𝐴𝑖𝑟 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ℎ⁄ ) 

𝜌 Density (𝑙𝑏𝑚 𝑓𝑡3⁄ ) 

𝑇,∆𝑇 Temperature, Temperature Rise (°𝐹) 

𝑊 Humidity Ratio (𝑙𝑏𝑤 𝑙𝑏𝑑𝑎⁄ ) 

𝑃 Pressure (𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂, 𝑝𝑠𝑖) 

�̅� Air Volume Flow Rate per 𝑓𝑡2 of Floor Area (𝐶𝐹𝑀 𝑓𝑡2⁄ ) 

𝑐𝑝 Specific Heat (𝐵𝑡𝑢 (𝑙𝑏𝑚 ∙ °𝐹)⁄ ) 

𝑅 R-Value ((ℎ ∙ 𝑓𝑡2 ∙ °𝐹) 𝐵𝑡𝑢⁄ ) 

𝐶 Thermal Capacitance (𝐵𝑡𝑢 (𝑓𝑡2 ∙ °𝐹)⁄ ) 

𝑈𝐴̅̅ ̅̅  UA-Value per 𝑓𝑡2 of Floor Area (𝐵𝑡𝑢 (ℎ ∙ °𝐹)⁄ ) 

�̅� Electric Usage per 𝑓𝑡2 of Floor Area (𝑊 𝑓𝑡2⁄ ) 
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�̅� Heating Energy Flow (𝐵𝑡𝑢 (ℎ ∙ 𝑓𝑡2)⁄ ) 

𝐻�̃� Fan Horsepower per 1000 CFM (𝐻𝑝 𝑘𝐶𝐹𝑀⁄ ) 

𝐻𝑝̅̅ ̅̅  Horsepower per 𝑓𝑡2 of Floor Area (𝐻𝑝 𝑓𝑡2⁄ ) 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅  Brake Horsepower per 𝑓𝑡2 of Floor Area (𝐻𝑝 𝑓𝑡2⁄ ) 

𝑃𝑟𝑖𝑐𝑒 Price of an Energy Source ($ 𝑘𝑊ℎ⁄  or $ 𝑀𝑀𝐵𝑡𝑢⁄ ) 
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CHAPTER I 

INTRODUCTION 

 

Background 

Building engineers, operators, and architects analyze building energy flows to 

minimizing energy usage and costs while maintaining thermal comfort.  Modeling is 

often used to aid this process.  Over the past 50 years hundreds of building energy 

programs have been developed, enhanced, and are in use [1].  The simulations they 

perform involve multiple domains, such as thermodynamics, fluid dynamics, heat and 

mass transfer, electrical systems, control systems and communication systems.  

Describing these areas can require a wide variety of math, including algebraic equations, 

differential equations, partial differential equations, and constrained optimizations. 

Most modern building simulation programs are large, monolithic, and require 

developers to add extensions in order to simulate new technologies [2].  The algorithms 

used to solve problems are usually for a specific domain, such as partial differential 

equation solving or whole building simulation.  Modeling with aspects of multiple 

domains or performing optimizations can require coupling multiple pieces of software 

together. 

The protocols used in whole building energy simulators like EnergyPlus treat 

HVAC systems as a set of interacting modules [3].  This limits the simplifications that 

can be applied when solving models and makes a mathematical analysis of a model as a 

whole difficult.  For instance, calibrating or optimizing building energy models can 

involve the use of derivatives, but these can be difficult to calculate.  Errors in the 

convergence of internal algorithms can result in large changes in output values for small 

changes in inputs.  Also, gradient calculations can require a separate calculation for each 

variable’s derivative. 

Differential-algebraic equation solvers such as Modelica express models in terms 

of mathematical equations instead of algorithms.  This allows users to model new 

equipment while at the same time allowing models to be build based on libraries of 
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HVAC components [4].  Modelica’s equation solving approach also allows for 

optimizations by simplifying models before solving them with a numerical solver.  

Models are limited by the type of math that the solver can handle.  Optimica extends the 

Modelica language to handle constrained optimizations [5].  This allows for the direct 

coupling of models in multiple domains in one tool.  

The complexity of building energy systems is rapidly increasing and dealing with 

this complexity is likely to be a driving force for future building simulation programs 

[2].  Equation-based modeling aid in dealing with complexity by allowing for new 

models to be created in a modular way without black box algorithms.  It also separates 

the domains of modeling and mathematical solving, which allows for tools to be created 

that handle problems that cross multiple domains. 

Objectives and Scope 

 This thesis presents a technique to unify existing building simulation methods 

under a single equation-based approach.  By formulating steady state building energy 

models as constrained optimizations model variables can be mathematically coupled 

with equations from other types of modeling approaches.  Ultimately the ability to 

successfully simulate different modeling methods depends on the speed, and robustness 

of the numerical solver used and the diversity of the mathematical procedures it 

implements. 

 Steady state models were implemented to demonstrate using constrained 

optimization for steady state modeling.  Models were developed for three common types 

of air handling units for a hypothetical office building with three zones and contain 

approximately 50 to 100 equations and constraints.  An analytical treatment for 

integrating dynamic calculations into a steady state simulation and the theoretical 

implications of this are given. 

A numerical solver named Beryl was created to demonstrate the performance and 

robustness that can be achieved in solving the developed models.  Beryl uses a 

decomposition algorithm to simplify and decompose models into a sequence of smaller 

problems before writing a program to solve each problem.  These performance results 
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are then combined with theoretical results on the algorithms used to solve them to 

estimate the runtime performance of larger models. 

Organization of the Thesis 

 The literature review of Chapter II covers topics related to HVAC simulation and 

constrained optimization.  These topics serve as the basis for the mathematical methods 

and solver that are presented.  Chapter III presents a method for performing steady state 

building energy use calculations using constrained optimization.  Next, a method of 

integrating passive dynamics such as thermal mass into these calculations is presented in 

Chapter IV.  Chapter V gives examples of models of three common air handler types.  In 

Chapter VI an algorithm for decomposing and simplifying constrained optimization 

problems is presented.  A program for performing building energy calculations is 

presented in Chapter VII.  This program implements the algorithm presented in Chapter 

VI and provides an upper bound on what’s achievable in building energy simulations 

based on this approach.  Finally, in Chapter VIII future topics and extensions of this 

method are discussed. 
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CHAPTER II 

LITERATURE REVIEW 

 

This literature review is divided into four sections: Building Energy Modeling, 

Constrained Optimization, previous usage of constrained optimization in HVAC, and 

computer science.  Figure 1 shows how these three sections relate to the methods 

developed in this thesis and the prototype solver developed to demonstrate them.  The 

two sections on building related topics give background for the methods developed, 

while the section on constrained optimization theory covers non-HVAC topics used in 

the modeling approach and the prototype solver.  Definitions of key terms used in the 

rest of the thesis appear in bold. 

 

 
Figure 1 – Relationship between Literature Review Areas and Thesis Areas 

 

Building Energy Modeling 

Building models describe the behavior of buildings and their HVAC systems.  A 

building energy flow model might describe a building’s structure and systems.  Inputs 



 

5 

 

such as outside air temperatures and internal loads allow outputs such as energy use to 

be calculated in a simulation. [6] 

Most system disturbances that are relevant to a building’s overall energy usage 

occur at a daily or hourly level [7].  These include changes in occupancy, internal loads, 

and weather.  Table 1 gives definitions of terms related to how a simulation progresses 

over time.  Over a short time period, typically an hour or less, building energy flows can 

be approximated as steady state.  Steady state models describe average energy flows 

over time periods without any dependency on previous times.  HVAC control systems 

that operate with time constants on the order of minutes or faster require dynamic 

models that simulate the system continuously over time. 

 

Table 1 – Modeling Time Domains 

Time Domain Description 

Steady State Models equilibrium conditions without time dependence 

Dynamic Models a system over time 

Quasi-Dynamic Using a series of steady state models to model a system’s 

behavior over time 

Quasi-Steady State Building dynamic calculations into a steady state model 

 

When system dynamics can be ignored, a series of steady state models can be 

solved to simulate a model over time.  This is known as quasi-dynamic modeling since 

time steps of the model don’t depend on each other.  Also, slow but important system 

dynamics can be built into a steady state model, resulting in a quasi-steady model. 

Early Building Energy Analysis 

 Degree-day methods [8] were developed before computer simulations became 

available.  They provide a way to estimate a building’s thermal energy requirements by 

looking at the integrated outside air dry-bulb temperatures above or below a balance 

point temperature.  Later, bin methods [9] provided a way to take building part load 

conditions, structure, and component level features of the HVAC system into account 

without having to duplicate simulations over similar operating conditions.  ASEAM [10, 
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11] used ASHRAE’s bin calculation method so that building energy analysis could be 

performed on early microcomputers.  Simplified energy analysis methods continue to 

find use in applications such as building model calibration even after more 

comprehensive simulation tools became available because of their speed and ability to 

represent key system parameters [12]. 

 Knebel’s Modified Bin Method [9] provided a way to take part load conditions, 

structure, and component level features of an HVAC system into account.  Algorithms in 

this method consist of a series of steps where variables are fixed or iterated on until the 

correct operating conditions are found.  For instance, Figure 2 shows a Dual Duct 

Constant Air Volume (DDCAV) system with two zones.  The algorithm of Figure 3 

shows how to calculate zone temperatures in the style that Knebel presented.  This 

algorithm is valid when the heating and cooling coils are both being used and the 

resulting supply fan leaving air temperature falls at or below the heating coil set point 

and at or above the cooling coil set point.  Calculating other operating conditions 

requires extra steps, and algorithms based on this style are manually developed. 

 

 
Figure 2 – Temperature Parameters for a Dual Duct Constant Air Volume System 
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Figure 3 – Knebel’s Algorithm to Solve Temperatures in the DDCAV System 

 

Steady State and Quasi-Steady State Simulators 

In the late 1960s to early 1970s, the U.S. Postal Service in cooperation with 

ASHRAE began developing algorithms and software to simulate the energy usage of 

multi-zoned buildings to take into account weather, solar gains, and thermal mass [13].  

Many other building energy simulation programs existed in this era, but they were 

typically proprietary, poorly supported, and expensive to process [14].  Later, Lawrence 

Berkeley National Laboratory released DOE-2 in 1978 to perform whole building energy 

simulations using methods developed previously in the public and private sectors [15].  

DOE-2 performs hourly simulations with 4 sub-modules for sequentially calculating 

loads, systems, plants, and economics.  Its calculations use a steady state energy balance 

with the addition of the weighting factor method used to calculate building thermal mass 

effects [16]. 
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From the early 1970s to 1995, the US ARMY Construction Engineering 

Research Laboratories developed the program BLAST [17].  Like DOE-2, BLAST uses 

a collection of sub-models to perform hourly whole building energy use calculations 

with three sequentially executed subprograms that compute hourly space loads, plant 

demands, and fuel and electric consumption [18].  Unlike DOE-2, BLAST uses a heat 

balance approach for zone thermal load calculations based on the first law of 

thermodynamics [19]. 

Beginning in 1994, efforts to merge BLAST and DOE-2 into a single program 

resulted in a whole building energy use simulator known as EnergyPlus [17].  The 

developers of EnergyPlus sought to merge the best capabilities of DOE-2 and BLAST 

while rewriting the code base in a modular style.  For zone load calculations EnergyPlus 

uses a derivation of the heat balance approach used in IBLAST, a research version of 

BLAST [20].  In EnergyPlus, a high-level manager oversees the convergence of iterative 

sub-system calculations.  By treating sub-systems independently of one another, 

different system-based and component-based calculations can be integrated together in 

an overall simulation [3].  A thorough review of the history of building energy analysis 

methods leading to modern methods was presented in a M.S. thesis by Oh [12]. 

Airflow networks consist of a set of nodes connected by airflow elements such as 

ducts, fans, doorways, and construction cracks [21].  Developed in 1986, COMIS [22] 

performs quasi-steady state pressure, air flow, and pollutant transport simulations of 

buildings using the airflow network method.  It can be used as a stand-alone air flow 

model or as an infiltration module for thermal building simulation programs [23].  In 

1988 AIRNET [21] was developed to model building airflow analysis and 

smoke/contaminant transport.  The methods of AIRNET were later integrated into 

CONTAM [24], which can model mass accumulation and reduction processes such as 

humidity removal in addition air network calculations. 
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Dynamic, Equation-Based Modeling 

In 1981, Silverman, Jurovics, Low and Sowell [25] developed a concept of 

modeling HVAC systems as networks of interconnected components.  Unlike traditional 

simulation programs at the time that simulated a fixed “menu” of systems, their 

component-based approach interconnects component equations to solve with a nonlinear 

optimization algorithm.  Later, using methods of solving nonlinear algebraic equations 

developed in other industries [26], Sowell, Taghavi, Levy and Low [27] developed a 

program known as ENET that automatically generated source code for a particular 

HVAC system configuration. 

To facilitate the reuse of building models developed by separate teams, a joint 

European/US research group created a component-based software architecture known as 

the Energy Kernel System, or EKS [28].  The US version of EKS, the Simulation 

Problem ANalysis Kernel (SPANK), evolved into the Simulation Problem Analysis 

Research Kernel (SPARK).  Systems in SPARK consist of interconnected modules 

containing nonlinear differential and algebraic equations [29].  During a simulation, 

SPARK decomposes modular systems into a single list of equations before using graph 

data structures to determine the most efficient solution strategy.  For systems of 

equations with a low level of interconnectivity, SPARK outperforms simulation 

programs that use sparse matrix techniques or that treat systems as interconnected 

modules instead of decomposing them into a single set of flattened equations.  However, 

systems with a high degree of connectivity, like discrete 2D heat transfer, are inefficient 

with SPARK’s approach [30, 31]. 

First released in 1997, the Modelica language models large, complex, and 

heterogeneous systems using nonlinear differential-algebraic equations [32].  To support 

rapid prototyping, design, and operation of building energy and control systems, 

Lawrence Berkeley National Laboratory released a library of building components 

implemented in Modelica [4].  While being a rich language in terms of modeling 

complex dynamic systems, Modelica is unable to handle many concepts used in 

optimization such as cost functions, constraints, variable bounds, and initial guesses [5]. 
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Other commercial component-based HVAC simulation programs also exist.  

HVACSIM+ [33] uses a hierarchal concept of interconnected components.  Components 

themselves are represented with algebraic and differential equations that are solved using 

a nonlinear equation solver.  Similarly, TRNSYS [34] simulates the dynamics of HVAC 

systems using component based models. 

Spawn of EnergyPlus 

A prototype to the successor of EnergyPlus known as Spawn-of-EnergyPlus 

(SOEP) is currently under development [35].  The SOEP team broke EnergyPlus into a 

set of component models for simulating in a discrete event simulator.  These component 

models are decoupled from the numerical solver and can be co-simulated with models 

from other tools or component models generated from Modelica.  This modular structure 

of SOEP is designed to allow the scope of building energy modeling to evolve more 

rapidly and robustly than its current form in EnergyPlus. 

SOEP uses the Functional Mockup Interface (FMI) standard [36] to couple 

component models together.  This standard was developed as a collaboration between 

simulation tool vendors and research institutes.  It describes models in terms of 

differential, algebraic, and discrete equations with time, state, and step events.  This 

enables C-Code to be generated in the form of an input/output block for a model.  

Simulations using the FMI standard couple multiple FMI components into a single 

simulation using master algorithms that synchronize and control the data exchange 

between the components. 

EnergyPlus currently uses rule-base supervisory control sequences based on 

calculated loads.  SOEP’s modular structure allows models to be simulated with control 

schemes based on predefined and user defined control sequences.  FMI components for 

these control functions are generated from Modelica based models.  Modelica based 

models can also be used for new HVAC modeling while keeping existing EnergyPlus 

models for envelope heat transfer, lighting, and airflow. 

Recently developed quantized-state system (QSS) methods are used to integrate 

ordinary differential equations (ODEs) [37] in SOEP.  QSS methods discretize system 
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states and keep time as the calculated output, which allows control events to be explicitly 

scheduled [35].  In contrast, a classical ODE simulator that uses a constant time step size 

there can be uncertainty when event transitions occur. 

Model Optimization 

GenOpt [38, 39] couples simulation programs that have a text-based input and 

output with mathematical optimization algorithms.  It was developed for optimization 

problems where calculating cost functions are computationally expensive and derivatives 

may not exist.  Available algorithms include pattern searches, particle swarm 

optimization, and the simplex algorithm of Nelder and Mead. 

While Modelica simulates differential-algebraic equations, Optimica [5, 40] 

extends the Modelica language to handle steady state and dynamic optimization 

problems.  For steady state optimizations, derivatives of dynamic Modelica models can 

be set to zero.  For dynamic optimizations, Optimica automatically transcribes 

continuous variables into discrete problems for solving with a steady state nonlinear 

programming algorithm. 

Constrained Optimization Theory 

This thesis demonstrates a method of performing steady state building energy 

modeling using constrained optimization as well as a prototype simulation engine.  Both 

depend on constrained optimization solvers and theory for their performance.  This 

section discusses the constrained optimization theory, its history, as well as minor 

subfields that have use in building energy modeling. 

Optimization Overview 

Unconstrained and Constrained Optimization 

Unconstrained optimization finds a minimum or maximum of a function.  Figure 

4 shows an unconstrained optimization, where contour lines show the level curves of a 

function and the red dot marks the optimal value.   
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Figure 4 – An unconstrained optimization 

 

Constrained optimization optimizes a function subject to constraints on the 

variables.  Figure 5 shows a constrained optimization with the same optimization goal 

contours as Figure 4 except that the variables are constrained to lie within the blue 

polygon. 

 

 
Figure 5 – A constrained optimization 

 

Linear and Nonlinear Programming 

 Constrained optimization can be divided into linear and nonlinear programming 

based on the type of objective function and constraints used.  Linear programs, with a 

standard form shown in Figure 6, optimize a linear function subject to linear constraints.  
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Nonlinear programs, with a form of Figure 7, can have any functions for the objective or 

constraints.  Figure 8 gives an alternate form of nonlinear program that any problem in 

the form of Figure 7 can be reformulated into.  Solvers such as IPOPT [41] use the form 

of Figure 8 as inputs.  Nonlinear programs are parametric when a sequence of nonlinear 

problems is solved with parameters that vary on each simultion.  Sensitivity analysis 

[42] can be used in parametric nonlinear programming to estimate the solution on one 

time step from the solution of the previous time step. 

 

minimize:  𝒄𝑇𝒙 

subject to: 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 𝟎  

Figure 6 – Canonical Form of Linear Programs 

 

minimize: 𝑓(𝒙) 

subject to: 𝒈(𝒙) ≤ 𝟎

𝒉(𝒙) = 𝟎 

Figure 7 – Form of a Nonlinear Program 

 

minimize: 𝑓(𝒙) 

subject to: 𝒉(𝒙) = 𝟎 

𝒙𝒎𝒊𝒏 ≤ 𝒙 ≤ 𝒙𝒎𝒂𝒙 

Figure 8 – Box-Bound Form of a Nonlinear Program 

 

Convex and Non-Convex Optimization 

Convex optimization problems [43] minimize convex functions over convex sets, 

shown in Figure 9.  The properties of convex functions and sets guarantee that all local 

minima to a convex optimization problem are also global minima, which makes them 

easier to solve in general than non-convex optimizations.  Formulating an HVAC system 
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model with convexity in mind helps ensure the model’s robustness and accuracy when 

it’s simulated in a numerical solver. 

Specialized branches of convex optimization with well-developed theory and 

algorithms also exist.  For instance, piecewise linear programming [44] extends linear 

programming by optimizing a piecewise linear function.  Quadratic programming [45] 

finds the optimal value of a quadratic function subject to linear inequality constraints  

These branches can be used to efficiently approximate more complex problems or as 

sub-problems in non-convex optimization algorithms. 

 

 
Figure 9 – Convex and Non-Convex Functions and Sets 

 

Research History 

Pierre de Fermat first developed a method to find minima and maxima of 

functions [46].  He found that local minima of an unconstrained function occur where 

the gradient equals zero.  In 1788 Joseph-Louis Lagrange extended this to functions 

constrained by equality constraints with the theory of Lagrange multipliers [47].  In 1939 
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William Karush extended this to inequality constraints [48], which was rediscovered in 

1951 by Harold Kuhn and Albert Tucker [49].  These conditions are known as the 

Karush-Kuhn-Tucker conditions, or KKT conditions.  Table 2 summarizes the 

solvability conditions for these different types of problems. 

 

Table 2 – Local Minima for Different Problem Types 

Problem Local Minima Conditions Discovered 

minimize: 𝑓(𝒙) 
 

∇𝑓(𝒙) = 𝟎 1636 

(Fermat) 

minimize: 𝑓(𝒙) 

subject to: 𝒉(𝒙) = 𝟎 
 

∇𝑓(𝒙) +∑λ𝑗∇ℎ𝑗(𝒙)

𝑛

𝑗=1

= 0

ℎ𝑗(𝒙) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1,… , 𝑙

 

1788 

(Lagrange) 

minimize: 𝑓(𝒙) 

subject to: 𝒈(𝒙) ≤ 𝟎

𝒉(𝒙) = 𝟎 
 

∇𝑓(𝒙) +∑𝜇𝑖∇𝑔𝑖(𝒙)

𝑚

𝑖=1

+∑λ𝑗∇ℎ𝑗(𝒙)

𝑛

𝑗=1

= 0

𝑔𝑖(𝒙) ≤ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,… ,𝑚

ℎ𝑗(𝒙) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1,… , 𝑙

𝜇𝑖 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … ,𝑚

𝜇𝑖𝑔𝑖(𝒙) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,… ,𝑚

 

1938 

(Karush) 

and 1951 

(Kuhn/Tucker) 

 

 In 1939 Leonid Kantorovitch of the USSR began researching the use of linear 

programming for economics.  This resulted in him winning 1975 Nobel Prize in 

Economics [50].  At the time, economic planning decisions were made based on ad-hoc 

rules and people manually working to find solutions.  The first algorithm to solve these 

problems effectively, the simplex method for linear programming, was developed in 

1947 by Dantzig [51].  The simplex method allowed for economic decisions with 

thousands of variables to be calculated exactly instead of using ad-hoc rules. 

Initially, research into linear and nonlinear programming developed along 

different paths [52]. Then, in 1984, Karmarkar [53] introduced a class of algorithms 

known as interior point methods.  Since the 1990s, interior point methods have been 
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competitive for solving linear programs as well as more general problems such as 

convex optimizations. 

Specialized Branches of Optimization 

Multi-Objective and Lexicographic Optimization 

 Multi-objective optimization problems involve optimizing multiple, competing 

objectives at the same time.  Pareto optimal solutions are points where all objectives 

cannot be made better without one being made worse, and preferences of which 

objectives to maximize over others dictate which Pareto optimal solution to take as the 

final overall solution [54].  Goal programming [55] extends linear programing for 

multiple, usually conflicting objectives.  

Nonlinear programs in the form of Figure 7 optimize a single objective function 

subject to constraints.  However, HVAC control systems often have a hierarchy of 

objectives.  For instance, a control system might first seek to maintain a zone’s 

temperature and as a lower priority keep the relative humidity below a certain 

percentage.  Lexicographic optimization problems, seen in Figure 10, minimize a 

sequence of objective functions 𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑘(𝒙) subject to constraints.  [56] 

 

minimize: 
(in order) 

𝒇(𝒙) = [𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑘(𝒙)]
𝑇 

subject to: 𝒈(𝒙) ≤ 𝟎

𝒉(𝒙) = 𝟎 

Figure 10 – A Lexicographic Optimization Problem 

 

 Lexicographic optimization problems can be decomposed into a sequence of 

single-objective optimizations where the minimized objective of a higher goal becomes a 

constraint to later goals [57].  Figure 11 shows this process, where a new optimal value 

is calculated for each objective.  After performing an optimization for one stage, the 

optimized objective value and function constrains later stages.  The solution to the last 

stage is taken to be the overall result. 
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Stage 1 minimize 𝑓1(𝒙𝟏) 

subject to 𝒈(𝒙𝟏) ≤ 𝟎

𝒉(𝒙𝟏) = 𝟎 
 

Stage 2 minimize 𝑓2(𝑥2) 

subject to 𝒈(𝒙𝟐) ≤ 𝟎

𝒉(𝒙𝟐) = 𝟎 

𝑓1(𝒙𝟐) = 𝑓1(𝒙𝟏) 
 

⋮ ⋮ 

Stage k minimize 𝑓𝑘(𝒙𝒌) 

subject to 𝒈(𝒙𝒌) ≤ 𝟎

𝒉(𝒙𝒌) = 𝟎 

𝑓1(𝒙𝒌) = 𝑓1(𝒙𝟏) 

⋮ 

𝑓𝑘−1(𝒙𝒌) = 𝑓𝑘−1(𝒙𝒌−𝟏) 
 

Figure 11 – Lexicographic Decomposition 

 

Non-Convex Optimization 

In an HVAC model, a single nonlinear fan curve or VAV zone temperature 

balance makes the optimization problem non-convex.  This requires the use of non-

convex solution algorithms.  In one class of non-convex solution algorithms, penalty and 

interior point methods, constrained problems are converted to unconstrained problems 

by modifying the cost function [58].  In the context of an HVAC simulation, penalty 

methods start out by allowing variables like VAV flow rates to hold any value, but 

gradually ensure that constraints hold as the simulation goes on.  Conversely, in interior 

point methods all variables hold valid values in the beginning, but as the calculation goes 

on the solution is allowed to get closer to the constraint boundary. 

Solvers may also use convex approximations of non-convex problems to take 

advantage of convex optimization algorithms [43].  Sequential quadratic programming 
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(SQP), used in Ma et al. [59], iteratively finds a solution to nonlinear and non-convex 

optimization problems.  On each iteration it approximates the optimization problem as a 

quadratic program around the current best solution.  Then it uses this quadratic program 

to calculate a more optimal solution [60]. 

Integer and Global Optimization 

Integer programming and mixed integer programming [61] refer to the cases 

when all or some parameters must be integers.  For example, in the area of HVAC 

modeling a control sequence that turns multiple chillers on or off can be formulated as a 

mixed integer program.  To find a known global optimal solution to integer programs, 

branch and bound algorithms [62] divide up a search space, find upper and lower bounds 

of these subspaces, and prune spaces with than cannot contain the optimal solution from 

further consideration. 

Constrained Optimization in HVAC 

Control Optimization 

Constrained optimization finds use in optimizing HVAC control set points.  

Zheng and Zaheer-Uddin [63] modeled a chilled water loop connected to a variable air 

volume AHU using steady state nonlinear equations with nonlinear constraints.  With 10 

control variables and discrete intervals of 10 minutes, they were able to show the 

benefits of humidity control and optimizing outside air usage in terms of air quality and 

efficiency.  Later, Zheng [64] developed a strategy for constructing dynamic HVAC 

models for use in control optimization. Models created with this strategy were used to 

investigate the global optimal operation of CAV and VAV AHUs. 

Model Predictive Control 

Model predictive control (MPC) uses a plant model and an optimization routine 

to choose an optimal control strategy based on predicted future conditions.  

Mathematically, the optimization routines it performs are very similar to the type of 

simulation proposed for this thesis since both use constrained optimization applied to 

HVAC models.  Where examples in this thesis use constrained optimization to solve for 
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instantaneous steady state control conditions, MPC optimizes a control cost function as a 

system operates over time to select an immediate control strategy. 

Ma et al. Ma, Borrelli, Hencey, Packard and Bortoff [65] applied MPC to a 

cooling thermal energy storage system.  In their MPC control strategy, every hour 

command signals change based on an optimal control problem that looks 24 hours into 

the future.  Later, [66] Ma et al. refined their method by expanding the system model to 

incorporate a model of the buildings that the cooling system serves that includes thermal 

mass modeling, solar modeling, and a fan coil unit model.  After testing their control 

method in a real central plant, operators manually applied the calculated optimal strategy 

to the plant to improve its COP by 11.9%. 

In addition, this approach was tailored by Ma et al. to control a single duct VAV 

AHU [59].  The system model neglected dynamics for the AHU components while using 

a RC network model for zonal thermal capacitance.  Discretizing the system dynamics 

over a 24-hour time period combined with constraints on operating parameters resulted 

in a nonlinear program.  This was solved using a sequential quadratic programming 

algorithm.  In Ma et al. [67] statistical distributions of parameter uncertainties and 

allowable violations of constraints results were taken into account, resulting in a 

stochastic model predictive control problem.  This problem was solved using a 

customized interior point method that took advantage of the problem’s overall 

sparseness.  The analysis of Kelman et al [68] on the optimization algorithms used for 

the single duct VAV system as well as a dual duct CAV system showed that local 

minima occur that correspond to different system control strategies.  As system 

complexity grows, the number of local minima increase making global optimizations 

more difficult. 
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CHAPTER III 

STEADY STATE MODELING 

 

Steady state building energy modeling directly represents building and HVAC 

operating conditions under static equilibrium.  These models can be useful in estimating 

building energy usage, since energy usage depends on fluid flows and equipment 

operation that varies slowly over time more than control dynamics.  Also, ignoring the 

effects of control dynamics allows time steps of an hour or longer to be used.  However, 

steady state algorithms used in commercial software are complex, monolithic, and can’t 

take advantage of symbolic simplifications, making an equation-based approach 

desirable. 

This chapter presents a method of formulating steady state building energy 

models using constrained optimization.  Models can be created by piecing together 

algebraic equipment models and defining functions to optimize so that the system 

behaves identically to a dynamic model that has reached steady state.  Optimization 

functions can be created from a qualitative description of the control system, so detailed 

descriptions of control system dynamics aren’t required.   

Constrained Optimization Based Modeling 

 Formulating a steady state building energy model requires knowledge of the 

building, HVAC system equipment, and control strategy.  Figure 12 shows where this 

information fits in the equality constraints, inequality constraints, and objectives of a 

nonlinear program.  Equality constraints in this approach describe the relations between 

state variables from components such as fans, zones, and cooling coils.  Inequality 

constraints describe limitations on the controlled variables.  Finally, the optimization 

objective describes control system goals, where minimizing the objective results in the 

steady state operating conditions of the system. 
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Figure 12 – Using Lexicographic Nonlinear Programming for Steady State HVAC  

 

Modeling  

This approach focuses on the goals that a control system seeks to achieve and 

ignores details of the control system’s mechanical operation and control algorithms.  

Examples of common control system goals include zone temperature control, humidity 

control, and minimizing air flow or energy costs.  The mathematical functions to use can 

be derived from a description of the system’s operation, as shown in the models of 

Chapter V.  These models are useful for estimating building energy usage, since energy 

usage depends on fluid flows and equipment operation that varies slowly over time more 

than control dynamics. 

A Simple System 

Figure 13 shows a Single-Zoned Single Duct Constant Air Volume (SZCAV) 

system with reheat and a single zone.  This system controls the zone temperature to its 

set point by reheating a constant flow of supply air, where the supply air is cooled by a 

cooling coil with a fixed temperature set point.  The simplified model of this system 

used here assumes a constant temperature rise across the fan, infinite cooling and reheat 

coil capacities, and that the zone has no thermal mass.  Table 3 gives the parameters 

used in modeling this system, with volume flow rates, the UA value, and loads 

normalized to the zone’s floor area.  Variables normalized to floor area are written with 

an overbar. 
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Figure 13 – A Single-Zoned Single Duct Constant Air Volume System 

 

Table 3 – Parameters for the SZCAV Example 

Parameter Symbol Value Unit 

Zone Set Point 

Temperature 
𝑇𝑍𝐴,𝑆𝑃 70 °𝐹 

Outside Air Flow per ft² 

of Floor Area 
�̅�𝑂𝐴 0.2 

𝐶𝐹𝑀

𝑓𝑡2
 

Supply Fan Delta-T ∆𝑇𝑆𝐹 2.0 °𝐹 

Cooling Coil Set Point 

Temperature 
𝑇𝐶𝐶,𝑆𝑃 55 °𝐹 

Air Density Times 

Specific Heat 
𝜌𝑐𝑝 1.08 

𝐵𝑡𝑢

ℎ ∙ °𝐹 ∙ 𝐶𝐹𝑀
 

Wall UA Value per ft² of 

Floor Area 
𝑈𝐴̅̅ ̅̅  0.6 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2 ∙ °𝐹
 

Zone Load per ft² of Floor 

Area 
�̅�𝑠 6.0 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2
 

Supply Air Flow per ft² of 

Floor Area 
 �̅�𝑆𝐴 1.0 

𝐶𝐹𝑀

𝑓𝑡2
 

Outside Air Temperature 𝑇𝑂𝐴 50 °𝐹 
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Equality Constraints Alone 

Equations 3.1–3.5 below give the energy balance equations for calculating 

temperatures in the model.  Equation 3.1 gives the mixed air temperature balance, 

equation 3.2 gives the supply fan leaving air temperature, equation 3.3 gives the cooling 

coil leaving air temperature, equation 3.4 gives the supply air temperature from the 

cooling coil leaving air temperature and the amount of reheat used, and equation 3.5 

gives the zone energy balance.  These five equations have six unknown variables: the 

mixed air temperature 𝑇𝑀𝐴, the supply fan leaving air temperature 𝑇𝑆𝐹, the cooling coil 

leaving air temperature 𝑇𝐶𝐶, the reheat coil energy usage �̅�𝑅𝐻, the supply air temperature 

𝑇𝑆𝐴, and the zone temperature 𝑇𝑍𝐴. 

 

𝑇𝑀𝐴 = �̅�𝑂𝐴𝑇𝑂𝐴 + (�̅�𝑆𝐴 − �̅�𝑂𝐴)𝑇𝑍𝐴 3.1 

𝑇𝑆𝐹 = 𝑇𝑀𝐴 + ∆𝑇𝑆𝐹 3.2 

𝑇𝐶𝐶 = 𝑀𝑖𝑛(𝑇𝑆𝐹 , 𝑇𝐶𝐶,𝑆𝑃) 3.3 

�̅�𝑅𝐻 = 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝐶𝐶) 3.4 

𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝑍𝐴) + 𝑈𝐴̅̅ ̅̅ (𝑇𝑂𝐴 − 𝑇𝑍𝐴) + �̅�𝑆 = 0 3.5 

 

 The five equations and six unknown variables of the example model result in an 

underdefined set of equations because they don’t take the control system’s actions into 

account.  These equations can be reduced to describe any variable in terms of another.  

Figure 14 shows the supply air temperatures required to achieve different zone 

temperatures for the given operating conditions.  The leftmost point on the ray represents 

the system state at the lowest achievable supply air temperature, 55°F, which occurs 

when no reheat is used.  As the supply air temperature increases the zone temperature 

increases. 
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Figure 14 – SZCAV Zone Temperature vs. the Required Supply Air Temperature 

 

A Constrained Optimization Model 

The SZCAV example system reheats air to control zone temperature by 

controlling the reheat coil’s set point temperature.  This can be represented 

mathematically using constrained optimization by adding an inequality constraint and an 

objective function to equations 3.1–3.5 above, resulting in the model of Figure 15.  The 

inequality constraint in equation 3.12 of this model limits the reheat coil set point when 

insufficient cooling exists.  The objective function of equation 3.6 ensures that the used 

reheat coil set point achieves the zone temperature set point to the highest degree 

possible. 

 

minimize: |𝑇𝑍𝐴 − 𝑇𝑍𝐴,𝑆𝑃| 3.6 

subject to: �̅�𝑆𝐴𝑇𝑀𝐴 = �̅�𝑂𝐴𝑇𝑂𝐴 + (�̅�𝑆𝐴 − �̅�𝑂𝐴)𝑇𝑍𝐴 3.7 
𝑇𝑆𝐹 = 𝑇𝑀𝐴 + ∆𝑇𝑆𝐹 3.8 

𝑇𝐶𝐶 = 𝑀𝑖𝑛(𝑇𝑆𝐹 , 𝑇𝐶𝐶,𝑆𝑃) 3.9 

�̅�𝑅𝐻 = 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝐶𝐶) 3.10 

𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝑍𝐴) + 𝑈𝐴̅̅ ̅̅ (𝑇𝑂𝐴 − 𝑇𝑍𝐴) + �̅�𝑆 = 0 3.11 

�̅�𝑅𝐻 ≥ 0 3.12 
Figure 15 – Model of Single-Zoned Single Duct Constant Air Volume Temperatures 
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Figure 16 shows the zone temperature versus supply temperature for the same 

operating conditions used in Figure 14.  The equality and inequality constraints define 

the 1D ray of operating points that the system can achieve.  The leftmost point on the ray 

gives the zone and supply air temperature when no reheat is used, and the dotted red line 

marks the zone temperature set point of 70°F.  The intersection of the ray and the dotted 

line gives the zone and supply air temperatures when reheat is used to control the space 

at an outside air temperature of 50°F. 

 

 
Figure 16 – SDVAV Zone Temperature vs. Supply Air Temperature 

 

Atypical Operating Conditions 

 Manually developed building energy modeling algorithms often assume that 

systems operate under typical operating conditions.  For instance, DOE-2 assumes that 

zone temperatures operate at their set point for load calculations.  Applying this 

assumption to equations 3.1–3.5 results in a model with an equal number of equations 

and unknown variables, but this is only valid when the system has enough cooling 

capacity.  This model would be incomplete since it’s possible for the initial assumptions 

of the model to be violated.  For instance, a system without enough cooling capacity may 
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have zones that rise above their set point temperatures.  A complete model would 

correctly represent atypical operating conditions as well as normal operating conditions. 

 Having complete models that represent atypical operating conditions is important 

because the process of developing, calibrating, and optimizing a model can easily result 

in atypical simulations that need to be refined.  Even if a building never experiences 

atypical operating conditions in real life, invalid inputs or bad guesses for calibrations 

and optimizations can cause a simulation where a system is unable to handle zone loads 

or equipment is operated outside of its valid operating range.  Complete models can also 

be debugged more easily by getting rid of the need to manually account for a model’s 

faulty assumptions.  For instance, if the model of Figure 15 has too little cooling 

capacity and a zone temperature of 85°F, a complete model would show the hot zone 

while an incomplete model that assumes the zone is at the correct set point would not 

balance out. 

Constrained optimization based models provide a natural way to describe the 

complete operation of a system.  This is because systems minimize their optimization 

goals, but only as far as the constraints of the system allows.  For example, the model of 

Figure 15 correctly models situations when the zone temperature setpoint cannot be 

achieved.  Figure 17 shows this system for an outside air temperature of 100°F.  In this 

case the system cannot achieve the zone set temperature point.  However, the 

constrained optimization problem takes this into account by cooling the zone as much as 

it can, resulting in the leftmost point on the ray as the solution. 
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Figure 17 – A SDCAV System That Can’t be Controlled 

 

Modeling with Lexicographic Objectives 

The SZCAV system of the previous section can be modified into a Single-Zoned 

Single Duct Variable Air Volume (SZVAV) system by changing the controls and using a 

variable speed drive.  Figure 18 shows a constrained optimization formulation of this 

model with objectives that have a priority.  This lexicographic optimization uses the 

parameters from the SDCAV example in Table 3 as well as new parameters given in 

Table 4.  Loads in this model are constant, but quasi-dynamic simulations can be 

performed by treating loads as time dependent inputs and repeating calculations for each 

time step. 
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minimize: 
(in order) 

𝑀𝑎𝑥(0, 𝑇𝑍𝐴,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 − 𝑇𝑍𝐴 ) + 𝑀𝑎𝑥(0, 𝑇𝑍𝐴 − 𝑇𝑍𝐴,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 ) 3.13 

�̅�𝑆𝐴 3.14 

�̅�𝑅𝐻 3.15 

subject to: �̅�𝑆𝐴𝑇𝑀𝐴 = �̅�𝑂𝐴𝑇𝑂𝐴 + (�̅�𝑆𝐴 − �̅�𝑂𝐴)𝑇𝑍𝐴 3.16 

𝑇𝑆𝐹 = 𝑇𝑀𝐴 + ∆𝑇𝑆𝐹,𝑀𝑎𝑥 (
�̅�𝑆𝐴

�̅�𝑆𝐴,𝑀𝑎𝑥
)

2

3.17 

𝑇𝐶𝐶 = 𝑀𝑖𝑛(𝑇𝑆𝐹 , 𝑇𝐶𝐶,𝑆𝑃) 3.18 

�̅�𝑅𝐻 = 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝐶𝐶) 3.19 

𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝑍𝐴) + 𝑈𝐴̅̅ ̅̅ (𝑇𝑂𝐴 − 𝑇𝑍𝐴) + �̅�𝑆 = 0 3.20 

�̅�𝑆𝐴,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴 3.21 

�̅�𝑆𝐴 ≤ �̅�𝑆𝐴,𝑀𝑎𝑥 3.22 

�̅�𝑅𝐻 ≥ 0 3.23 
Figure 18 – Single-Zoned Variable Air Volume Temperature Balance Equations 

 

Table 4 – Additional Parameters for the SZVAV Example 

Parameter Symbol Value Unit 

Zone Heating Set Point Temperature 𝑇𝑍𝐴,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 68 °𝐹 

Zone Cooling Set Point Temperature 𝑇𝑍𝐴,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 74 °𝐹 

Maximum Supply Fan Delta-T ∆𝑇𝑆𝐹,𝑀𝑎𝑥 2.0 °𝐹 

Minimum Supply Air Flow  �̅�𝑆𝐴,𝑀𝑖𝑛 0.4 
𝐶𝐹𝑀

𝑓𝑡2
 

Maximum Supply Air Flow  �̅�𝑆𝐴,𝑀𝑎𝑥 1.0 
𝐶𝐹𝑀

𝑓𝑡2
 

 

Three changes are made to the constraints.  First, the supply air flow is allowed 

to vary between min and max values instead of being held at a constant value.  The 

inequalities of equations 3.21 and 3.22 represents this.  Second, a variable speed drive 

causes the temperature rise across the supply fan to vary as a function of its flow, which 

is reflected in equation 3.17.  Finally, reheat usage is explicitly written into equations 

3.19 and 3.23, and negative reheat usage isn’t allowed.  This lets the supply air 

temperature float above the cooling coil leaving air temperature to provide zone 

temperature control. 
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The system controls the fan and reheat coil to use as little electricity and heating 

as possible while keeping the zone temperature as close as possible to the zone 

heating/cooling setpoint range.  This involves three lexicographic objective functions: 

equation 3.13 for the zone temperature error and, equation 3.14 to minimize the air flow 

rate, and equation 3.15 to minimize the amount of reheat use.  Figure 19 shows a graph 

of the zone temperature error function from the objective in equation 3.13.  It has a value 

of zero between the heating and cooling set points and increases linearly away from 

them. 

A powerful feature of this lexicographic formulation is that the problem can be 

described verbally based on a description of what the control system needs to achieve.  

The control system’s priorities determine the ordering of lexicographic objectives.  For 

this model minimizing the zone temperature error in equation 3.13 is prioritized over 

minimizing the air flow rate in equation 3.14 and reheat usage in equation 3.15 since the 

purpose of the system is temperature control.  After that, equations 3.14 and 3.15 can be 

ordered either way since both result in the same answer. 

 

 
Figure 19 – Zone Temperature Error as a Function of Heating and Cooling Set 

Points 
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This lexicographic model can be solved in three stages, one for each objective 

[57].  Figure 20, Figure 21, and Figure 22 show the problems solved for each stage.  The 

first stage minimizes the zone temperature error, the second stage minimizes the supply 

air flow rate subject to the minimized temperature error from the previous stage, and the 

third stage minimizes reheat usage subject to the minimized zone temperature error and 

supply air flow.  The ordering of these objectives causes the model to prioritize 

temperature control first, supply air flow second, and reheat usage third.  Temperature 

control has the highest priority since controlling zone conditions is the main purpose of 

HVAC systems.  This system uses as little air flow and reheat as possible, but never at 

the expense of a zone that’s too hot or cold. 

 

minimize: 𝑓1 = 𝑀𝑎𝑥(0, 𝑇𝑍𝐴,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 − 𝑇𝑍𝐴 ) + 𝑀𝑎𝑥(0, 𝑇𝑍𝐴 − 𝑇𝑍𝐴,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 ) 3.24 

subject to: �̅�𝑆𝐴𝑇𝑀𝐴 = �̅�𝑂𝐴𝑇𝑂𝐴 + (�̅�𝑆𝐴 − �̅�𝑂𝐴)𝑇𝑍𝐴 3.25 

𝑇𝑆𝐹 = 𝑇𝑀𝐴 + ∆𝑇𝑆𝐹,𝑀𝑎𝑥 (
�̅�𝑆𝐴

�̅�𝑆𝐴,𝑀𝑎𝑥
)

2

3.26 

𝑇𝐶𝐶 = 𝑀𝑖𝑛(𝑇𝑆𝐹 , 𝑇𝐶𝐶,𝑆𝑃) 3.27 

�̅�𝑅𝐻 = 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝐶𝐶) 3.28 

𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝑍𝐴) + 𝑈𝐴̅̅ ̅̅ (𝑇𝑂𝐴 − 𝑇𝑍𝐴) + �̅�𝑆 = 0 3.29 

�̅�𝑆𝐴,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴 3.30 

�̅�𝑆𝐴 ≤ �̅�𝑆𝐴,𝑀𝑎𝑥 3.31 

�̅�𝑅𝐻 ≥ 0 3.32 

Figure 20 – Stage 1 of the SZVAV Model 
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minimize: 𝑓2 = �̅�𝑆𝐴 3.33 

subject to: �̅�𝑆𝐴𝑇𝑀𝐴 = �̅�𝑂𝐴𝑇𝑂𝐴 + (�̅�𝑆𝐴 − �̅�𝑂𝐴)𝑇𝑍𝐴 3.34 

𝑇𝑆𝐹 = 𝑇𝑀𝐴 + ∆𝑇𝑆𝐹,𝑀𝑎𝑥 (
�̅�𝑆𝐴

�̅�𝑆𝐴,𝑀𝑎𝑥
)

2

3.35 

𝑇𝐶𝐶 = 𝑀𝑖𝑛(𝑇𝑆𝐹 , 𝑇𝐶𝐶,𝑆𝑃) 3.36 

�̅�𝑅𝐻 = 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝐶𝐶) 3.37 

𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝑍𝐴) + 𝑈𝐴̅̅ ̅̅ (𝑇𝑂𝐴 − 𝑇𝑍𝐴) + �̅�𝑆 = 0 3.38 

�̅�𝑆𝐴,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴 3.39 

�̅�𝑆𝐴 ≤ �̅�𝑆𝐴,𝑀𝑎𝑥 3.40 

�̅�𝑅𝐻 ≥ 0 3.41 

𝑀𝑎𝑥(0, 𝑇𝑍𝐴,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 − 𝑇𝑍𝐴 ) + 𝑀𝑎𝑥(0, 𝑇𝑍𝐴 − 𝑇𝑍𝐴,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 ) = 𝑓13.42 

Figure 21 – Stage 2 of the SZVAV Model 

 

minimize: �̅�𝑅𝐻 3.43 

subject to: �̅�𝑆𝐴𝑇𝑀𝐴 = �̅�𝑂𝐴𝑇𝑂𝐴 + (�̅�𝑆𝐴 − �̅�𝑂𝐴)𝑇𝑍𝐴 3.44 

𝑇𝑆𝐹 = 𝑇𝑀𝐴 + ∆𝑇𝑆𝐹,𝑀𝑎𝑥 (
�̅�𝑆𝐴

�̅�𝑆𝐴,𝑀𝑎𝑥
)

2

3.45 

𝑇𝐶𝐶 = 𝑀𝑖𝑛(𝑇𝑆𝐹 , 𝑇𝐶𝐶,𝑆𝑃) 3.46 

�̅�𝑅𝐻 = 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝐶𝐶) 3.47 

𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝑍𝐴) + 𝑈𝐴̅̅ ̅̅ (𝑇𝑂𝐴 − 𝑇𝑍𝐴) + �̅�𝑆 = 0 3.48 

�̅�𝑆𝐴,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴 3.49 

�̅�𝑆𝐴 ≤ �̅�𝑆𝐴,𝑀𝑎𝑥 3.50 

�̅�𝑅𝐻 ≥ 0 3.51 

𝑀𝑎𝑥(0, 𝑇𝑍𝐴,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 − 𝑇𝑍𝐴 ) + 𝑀𝑎𝑥(0, 𝑇𝑍𝐴 − 𝑇𝑍𝐴,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 ) = 𝑓13.52 

�̅�𝑆𝐴 = 𝑓2 3.53 

Figure 22 – Stage 3 of the SZVAV Model 

 

 These calculations can be shown visually in terms of the two controlled 

parameters: the supply air temperature and the amount of reheat performed.  Fixing both 

parameters results in a set of equations that can be solved for a unique solution.  Figure 

23 shows all possible states that satisfy the three stages of the solution from Figure 20.  

The non-convex polytope that ranges from 0.2 
𝐶𝐹𝑀

𝑓𝑡2
 to 1.0 

𝐶𝐹𝑀

𝑓𝑡2
 gives the range of all valid 

supply air flows and reheat usages that ensure temperature control of the space.  The 

solution of the stage 1 problem can lie anywhere within this space.  The stage 2 
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algorithm minimizes the supply air flow while only considering points that are valid 

solutions to stage 1.  This solves for the supply air flow rate that’s used.  Finally, stage 3 

minimizes the reheat usage subject to the solutions of stages 1 and 2.  This reduces the 

solution to a single point and gives the steady state solution to the overall problem. 

 

 
Figure 23 – Supply Air Flow and Reheat Usages that Meet Zone Temperature Set 

Points for the SZVAV Model 

 

 Temperature control can only be achieved for the SZVAV system when the 

outside air temperature is less than 100°F.  In this case the solution to stage 1 of the 

model is a single point that achieves a zone temperature of 74.6 °F.  Stages 2 and 3 reach 

the same solution since stage 1 reduces space of possible solutions to a single point. 
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Figure 24 – Solution to Stages 1, 2, and 3, for when the Outside Air Temperature is 

100°F 
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CHAPTER IV 

INTEGRATING DYNAMIC MODELING 

 

 Dynamic processes in a building can have a large effect on its energy use.  For 

example, thermal mass dampens and delays the impact of outside air conditions, which 

can reduce cooling and heating loads by 20% [69].  In this case steady state assumptions 

can’t be made for an entire system.  However, modeling steady state and dynamic parts 

of a system together can give the speed benefits of steady state building energy use 

modeling without having to use small time steps.  The following process describes how 

to create hybrid steady state/dynamic models by embedding dynamic modeling within a 

steady state constrained optimization model. 

Dynamic Building Processes 

Processes in buildings take place over a wide range of time scales.  Weather 

follows a daily cycle, walls have time constants on the order of minutes hours, and 

HVAC controls can have time constants on the order of seconds to minutes.  Figure 25 

shows approximate time scales that different HVAC processes act on. 

 

 
Figure 25 – Time Scales of HVAC Processes 
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Ignoring control dynamics allows steady state building energy models to use time 

steps of an hour or more.  This reduces the time required to perform simulations over an 

entire year of weather and operating conditions.  However, thermal mass dynamics take 

place on a larger time scale and may be too important to ignore. 

Figure 26 shows the effect of thermal mass on the internal and external surfaces 

of an exterior wall.  A wall’s outside surface temperature cycles over a 24-hour period 

because of outside air conditions, and thermal mass causes the internal surface 

temperature to lag.  The time frame of this lag can be on the order of hours.  This 

reduces the temperature variation of the interior wall, which tends to reduce the energy 

required to condition the interior space. 

 

 
Figure 26 – Temperature Lag and Dampening due to Thermal Mass on an Exterior 

Wall 
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Hybrid Steady State/Dynamic Modeling 

 Steady state models directly represent average conditions over time step periods 

while the states of dynamic models states change continuously with time.  Dynamic and 

steady state models can be coupled together by balancing energy and mass flows over 

each steady state time step period.  This results in a hybrid steady state/dynamic model.  

Figure 27 shows this process.  

 

 

Figure 27 – Constructing a Hybrid Model from Static and Dynamic States 

 

Mathematically, hybrid models can be represented as parametric, lexicographic, 

constrained optimizations that include systems of differential-algebraic equations and 

conservation equations, as seen in Figure 28.  In this form the 𝒙𝑨𝒗𝒈 vector represents the 

average states of the steady state part of the model over time step period 𝛿.  For system 

dynamics, the 𝒙𝑫𝒚𝒏 vector represents dynamic energy and mass flows that change over 

time, and the �̅�𝑫𝒚𝒏 vector represents the average of 𝒙𝑫𝒚𝒏 variables over the time step 

period.  The 𝒚 vector represents input parameters such as loads and outside air 

temperatures that remain constant over a time step.  However, these inputs can change 

from time step to time step to represent varying weather and loads. 
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minimize: 
(in order) 

𝒇(𝒙𝑨𝒗𝒈, �̅�𝑫𝒚𝒏, 𝒚) 4.1 

subject to: 𝒈(𝒙𝑨𝒗𝒈, �̅�𝑫𝒚𝒏, 𝒚) ≤ 𝟎 4.2 

𝒉(𝒙𝑨𝒗𝒈, �̅�𝑫𝒚𝒏, 𝒚) = 𝟎 4.3 

𝒋(𝒙𝑨𝒗𝒈, 𝒙𝑫𝒚𝒏(𝑡), �̇�𝑫𝒚𝒏,(𝑡), 𝒚) = 𝟎 4.4 

�̅�𝑫𝒚𝒏 =
1

𝛿
∫ 𝒙𝑫𝒚𝒏(𝜏)𝑑𝜏
𝛿

0

4.5 

Figure 28 – Mathematical Form for Hybrid Problems 

 

Equations 4.1–4.3 of Figure 28 cover steady state aspects of the model, while 

equation 4.4 covers dynamic aspects of the model.  These differential-algebraic 

equations must have a unique solution for 𝒙𝑫𝒚𝒏,(𝑡) to be valid.  Equation 4.5 connects 

the steady state and dynamic aspects of the model by calculating the average of each 

dynamic variable over a time step. 

Hybrid models in the form of Figure 28 can be solved by eliminating dynamic 

variables and solving the resulting constrained optimization.  Figure 29 below shows this 

process.  First, time-average variables are solved for as a function of time from their 

differential equations.  Exact analytical solutions or approximate numerical solutions can 

be used.  Next, functions for time averages are calculated.  Finally, the time-average 

solutions are used as equality constraints in the final formulation. 

Starting conditions for the dynamic variables are required for running a model 

since they usually appear in the dynamic variable’s time averaged equations.  At the end 

of each time step the final dynamic states are calculated for use as the initial conditions 

on the next time step.  The tracking of the initial and final states of dynamic variables 

creates a dependence on each time step to the previous time step.  These initial and final 

conditions or the state of a dynamic variable in between them can also be explicitly 

added as variables to a model for outputting within a solver.  This enables visualizing the 

time-average of the dynamic states as well as the dynamic states themselves versus time. 
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Figure 29 – Converting a Hybrid Model to a Solvable Constrained Optimization 

 

A Simple Hybrid Model 

Figure 30 shows a model for a zone where the only thermal contact with the 

outside is a brick wall modeled as an RC network with a single thermal capacitance.  

The wall temperature in this model varies continuously while the zone temperature and 

supply air flow are assumed to be constant over a time step.  For zone temperature 

control the supply air flow is varied to keep the zone at a constant set point. 
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Figure 30 – A Steady State Zone Model with Thermal Mass in the Wall 

 

Table 5 shows input parameter values for the model of Figure 30.  The wall’s 

thermal parameters and thickness are set to typical values for a brick structure with no 

insulation.  These fundamental parameters are translated to the wall resistance, thermal 

capacitance, time constant, and UA value parameters used in the RC circuit model and 

zone temperature balance using equations 4.1–4.4.  Table 6 lists their values. 
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Table 5 – Input Parameters for the Example Hybrid Model 

Parameter Symbol Value Unit 

Wall Density 𝜌𝑊𝑎𝑙𝑙 120 
𝑙𝑏𝑚

𝑓𝑡3
 

Wall Thermal 

Conductivity 
𝑘𝑊𝑎𝑙𝑙 0.42 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡 ∙ °𝐹
 

Wall Specific Heat 𝑐𝑝,𝑊𝑎𝑙𝑙 0.20 
𝐵𝑡𝑢

𝑙𝑏𝑚 ∙ °𝐹
 

Wall Thickness 𝑙𝑊𝑎𝑙𝑙 0.36 𝑓𝑡 

Wall Area 𝐴𝑊𝑎𝑙𝑙 5,600 𝑓𝑡2 

Floor Area 𝐴𝐹𝑙𝑜𝑜𝑟 10,000 𝑓𝑡2 

Zone Set Point 

Temperature 
𝑇𝑍𝐴,𝑆𝑃 70 °𝐹 

Supply Air Temperature 𝑇𝑆𝐴 55 °𝐹 

Air Density Times 

Specific Heat 
𝜌𝑐𝑝 1.08 

𝐵𝑡𝑢

ℎ ∙ °𝐹 ∙ 𝐶𝐹𝑀
 

Time Step Period 𝛿 1.0 ℎ 

Min Supply Air Flow 

Normalized to Floor Area 
 �̅�𝑆𝐴,𝑀𝑖𝑛 0.3 

𝐶𝐹𝑀

𝑓𝑡2
 

Max Supply Air Flow 

Normalized to Floor Area 
 �̅�𝑆𝐴,𝑀𝑎𝑥 1.0 

𝐶𝐹𝑀

𝑓𝑡2
 

Zone Load Normalized to 

Floor Area 
�̅�𝑆 10.0 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2
 

 

𝑅𝑊𝑎𝑙𝑙 =
𝑙𝑊𝑎𝑙𝑙
𝑘𝑊𝑎𝑙𝑙

4.6 

𝐶𝑊𝑎𝑙𝑙 = 𝜌𝑊𝑎𝑙𝑙𝑐𝑝,𝑊𝑎𝑙𝑙𝑙𝑊𝑎𝑙𝑙 4.7 

𝜏𝑊𝑎𝑙𝑙 = 𝑅𝑊𝑎𝑙𝑙𝐶𝑊𝑎𝑙𝑙 4.8 

𝑈𝐴̅̅ ̅̅ 𝑊𝑎𝑙𝑙 =
𝐴𝑊𝑎𝑙𝑙
𝑅𝑊𝑎𝑙𝑙𝐴𝑍

=
𝑘𝑊𝑎𝑙𝑙𝐴𝑊𝑎𝑙𝑙
𝑙𝑊𝑎𝑙𝑙𝐴𝑍

4.9 
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Table 6 – Calculated Parameters for the Example Hybrid Model 

Parameter Symbol Value Unit 

Wall Thermal Resistance 𝑅𝑊𝑎𝑙𝑙 0.86 
ℎ ∙ 𝑓𝑡 ∙ °𝐹

𝐵𝑡𝑢
 

Wall Thermal 

Capacitance 
𝐶𝑊𝑎𝑙𝑙 8.6 

𝐵𝑡𝑢

𝑓𝑡2 ∙ °𝐹
 

Wall Time Constant 𝜏𝑊𝑎𝑙𝑙 7.4 ℎ 

Wall UA Value 

Normalized to Floor Area 
𝑈𝐴̅̅ ̅̅ 𝑊𝑎𝑙𝑙 0.65 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2 ∙ °𝐹
 

 

Figure 31 shows a mathematical formulation of the zone/wall model of Figure 30 

using constrained optimization.  Equations 4.10–4.12 cover the steady state zone model.  

Equation 4.10 describes the control objective of maintaining the zone temperature set 

point, equation 4.11 describes the zone temperature balance, and equation 4.12 describes 

the allowable range of supply air flow rates.  Equations 4.13 and 4.14 cover the dynamic 

wall model.  The differential equation of equation 4.13 describes the wall temperature 

change over time.  Equation 4.14 is the formula for calculating the average wall 

temperature over a time step period 𝛿.  This couples the steady state and dynamic parts 

of the model by ensuring that the energy transferred from the wall over a time step 

equals the load in the zone temperature balance equation 4.11. 

 

minimize |𝑇𝑍𝐴 − 𝑇𝑍𝐴,𝑆𝑃| 4.10 

subject to 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝑍𝐴) + 2𝑈𝐴̅̅ ̅̅ 𝑊𝑎𝑙𝑙(𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 − 𝑇𝑍𝐴) + �̅�𝑆 = 0 4.11 

�̅�𝑆𝐴,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴 ≤ �̅�𝑆𝐴,𝑀𝑎𝑥 4.12 

𝜏𝑊𝑎𝑙𝑙�̇�𝑊𝑎𝑙𝑙(𝑡) = −4𝑇𝑊𝑎𝑙𝑙(𝑡) + 2𝑇𝑂𝐴 + 2𝑇𝑍𝐴 4.13 

𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 =
1

𝛿
∫ 𝑇𝑊𝑎𝑙𝑙(𝑡)𝑑𝑡
𝛿

0

4.14 

Figure 31 – Mathematical Formulation of the Zone Model 

 

 Figure 32 shows how the continuous wall temperature 𝑇𝑊𝑎𝑙𝑙(𝑡) in the hybrid 

model changes over a time step and its average value �̅�𝑊𝑎𝑙𝑙.  At the beginning of a time 



 

42 

 

step the wall temperature is known to be 𝑇𝑊𝑎𝑙𝑙(0).  Also, equation 4.13 controls how the 

𝑇𝑊𝑎𝑙𝑙(𝑡) changes over time.  Equation 4.13 is a linear differential equation over each 

time step period because of the assumption that its steady state variables are constant 

over a time step.  This causes 𝑇𝑊𝑎𝑙𝑙(𝑡) to exponentially converge to the wall temperature 

at the end of the time step 𝑇𝑊𝑎𝑙𝑙(𝛿). 

 

 
Figure 32 – Average and Continuous Wall Temperatures over a Time Step 

 

 Equations 4.15–4.27 show the calculation of average wall temperatures from the 

differential equation in equation 4.13 and the definition of the average wall temperature 

over a time step in equation 4.14.  First, equation 4.13 is solved for wall temperature 

𝑇𝑊𝑎𝑙𝑙(𝑡) over time, as shown in equations 4.15–4.20. 

 

�̇�𝑊𝑎𝑙𝑙(𝑡) = −
4

𝜏𝑊𝑎𝑙𝑙
𝑇𝑊𝑎𝑙𝑙(𝑡) +

2

𝜏𝑊𝑎𝑙𝑙
𝑇𝑂𝐴 +

2

𝜏𝑊𝑎𝑙𝑙
𝑇𝑍𝐴 4.15 

𝑇𝑊𝑎𝑙𝑙(𝑡) = 𝑒
−

4
𝜏𝑊𝑎𝑙𝑙

𝑡
𝑇𝑊𝑎𝑙𝑙(0) + ∫ 𝑒

−
4

𝜏𝑊𝑎𝑙𝑙
(𝑡−𝜏) 2

𝜏𝑊𝑎𝑙𝑙
(𝑇𝑂𝐴 + 𝑇𝑍𝐴)𝑑𝜏

𝑡

0

4.16 

𝑇𝑊𝑎𝑙𝑙(𝑡) = 𝑒
−

4
𝜏𝑊𝑎𝑙𝑙

𝑡
𝑇𝑊𝑎𝑙𝑙(0) + ∫ 𝑒

−
4

𝜏𝑊𝑎𝑙𝑙
𝑡
𝑒

4
𝜏𝑊𝑎𝑙𝑙

𝜏 2

𝜏𝑊𝑎𝑙𝑙
(𝑇𝑂𝐴 + 𝑇𝑍𝐴)𝑑𝜏

𝑡

0

4.17 
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𝑇𝑊𝑎𝑙𝑙(𝑡) = 𝑒
−

4
𝜏𝑊𝑎𝑙𝑙

𝑡
𝑇𝑊𝑎𝑙𝑙(0) +

2

𝜏𝑊𝑎𝑙𝑙
(𝑇𝑂𝐴 + 𝑇𝑍𝐴)𝑒

−
4

𝜏𝑊𝑎𝑙𝑙
𝑡
∫ 𝑒

4
𝜏𝑊𝑎𝑙𝑙

𝜏
𝑑𝜏

𝑡

0

4.18 

𝑇𝑊𝑎𝑙𝑙(𝑡) = 𝑒
−

4
𝜏𝑊𝑎𝑙𝑙

𝑡
𝑇𝑊𝑎𝑙𝑙(0) +

𝑇𝑂𝐴 + 𝑇𝑍𝐴
2

(1 − 𝑒
−

4
𝜏𝑊𝑎𝑙𝑙

𝑡
) 4.19 

𝑇𝑊𝑎𝑙𝑙(𝑡) =
𝑇𝑂𝐴 + 𝑇𝑍𝐴

2
+ (𝑇𝑊𝑎𝑙𝑙(0) −

𝑇𝑂𝐴 + 𝑇𝑍𝐴
2

) 𝑒
−

4
𝜏𝑊𝑎𝑙𝑙

𝑡
4.20 

 

Next, the solution for 𝑇𝑊𝑎𝑙𝑙(𝑡) is substituted into equation 4.14 to calculate the 

average wall temperature 𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔, as shown in equations 4.21 and 4.22.  Equations 

4.23–4.27 show the evaluation of the integral and the simplification process.  Equation 

4.27 expresses the average wall temperature in terms of the initial condition and steady 

state variables.  It can be coupled with the steady state part of the problem to construct 

the quasi-steady state model of Figure 33. 

 

𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 =
1

𝛿
∫ 𝑇𝑊𝑎𝑙𝑙(𝜏)𝑑𝜏
𝛿

0

4.21 

𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 =
1

𝛿
∫

𝑇𝑂𝐴 + 𝑇𝑍𝐴
2

+ (𝑇𝑊𝑎𝑙𝑙(0) −
𝑇𝑂𝐴 + 𝑇𝑍𝐴

2
) 𝑒

−
4

𝜏𝑊𝑎𝑙𝑙
𝜏
𝑑𝜏

𝛿

0

4.22 

𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 =
1

𝛿
∫

𝑇𝑂𝐴 + 𝑇𝑍𝐴
2

𝑑𝜏
𝛿

0

+
1

𝛿
∫ (𝑇𝑊𝑎𝑙𝑙(0) −

𝑇𝑂𝐴 + 𝑇𝑍𝐴
2

) 𝑒
−

4
𝜏𝑊𝑎𝑙𝑙

𝜏
𝑑𝜏

𝛿

0

4.23 

𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 =
1

𝛿

𝑇𝑂𝐴 + 𝑇𝑍𝐴
2

∫ 𝑑𝜏
𝛿

0

+
1

𝛿
(𝑇𝑊𝑎𝑙𝑙(0) −

𝑇𝑂𝐴 + 𝑇𝑍𝐴
2

)∫ 𝑒
−

4
𝜏𝑊𝑎𝑙𝑙

𝜏
𝑑𝜏

𝛿

0

4.24 

𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 =
𝑇𝑂𝐴 + 𝑇𝑍𝐴

2
+
1

𝛿
(𝑇𝑊𝑎𝑙𝑙(0) −

𝑇𝑂𝐴 + 𝑇𝑍𝐴
2

)∫ 𝑒
−

4
𝜏𝑊𝑎𝑙𝑙

𝜏
𝑑𝜏

𝛿

0

4.25 

𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 =
𝑇𝑂𝐴 + 𝑇𝑍𝐴

2
+
1

𝛿
(𝑇𝑊𝑎𝑙𝑙(0) −

𝑇𝑂𝐴 + 𝑇𝑍𝐴
2

)
𝜏𝑊𝑎𝑙𝑙
4

(1 − 𝑒
−

4𝛿
𝜏𝑊𝑎𝑙𝑙) 4.26 

𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 =
𝑇𝑂𝐴 + 𝑇𝑍𝐴

2
+
𝜏𝑊𝑎𝑙𝑙
4𝛿

(𝑇𝑊𝑎𝑙𝑙(0) −
𝑇𝑂𝐴 + 𝑇𝑍𝐴

2
)(1 − 𝑒

−
4𝛿

𝜏𝑊𝑎𝑙𝑙) 4.27 
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In the formulation of Figure 33 equations 4.13 and 4.14 of Figure 31 are replaced 

by equation 4.27 to solve for the average wall temperature as it varies over time on a 

time step.  The initial wall temperature 𝑇𝑊𝑎𝑙𝑙(0) is given at the beginning of a time step, 

and this value is updated for the next time step.  To do this, equation 4.20 is evaluated at 

the end of the time step, resulting in equation 4.32.  eliminating all differential equations 

and calculus from the model.  The model of Figure 33 is solvable using nonlinear 

programming since it no longer contains any differential equations or calculus. 

 

minimize: |𝑇𝑍𝐴 − 𝑇𝑍𝐴,𝑆𝑃| 4.28 

subject to: 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝑍𝐴) + 2𝑈𝐴̅̅ ̅̅ 𝑊𝑎𝑙𝑙(𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 − 𝑇𝑍𝐴) + �̅�𝑆 = 0 4.29 

�̅�𝑆𝐴,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴 ≤ �̅�𝑆𝐴,𝑀𝑎𝑥 4.30 

𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 =
𝑇𝑂𝐴 + 𝑇𝑍𝐴

2
+
𝜏𝑊𝑎𝑙𝑙
4𝛿

(𝑇𝑊𝑎𝑙𝑙(0) −
𝑇𝑂𝐴 + 𝑇𝑍𝐴

2
)(1 − 𝑒

−
4𝛿

𝜏𝑊𝑎𝑙𝑙)4.31 

𝑇𝑊𝑎𝑙𝑙(𝛿) =
𝑇𝑂𝐴 + 𝑇𝑍𝐴

2
+ (𝑇𝑊𝑎𝑙𝑙(0) −

𝑇𝑂𝐴 + 𝑇𝑍𝐴
2

) 𝑒
−

4𝛿
𝜏𝑊𝑎𝑙𝑙 4.32 

Figure 33 – Solvable Hybrid Model of a Zone with Thermal Mass 

 

 The SZVAV model was simulated with the outside air temperature data shown in 

Figure 34A.  This outside air temperature data symmetrically rises and lowers over a 

seven-hour period, staying constant over each hour.  A single quasi-steady state 

simulation is performed for each hour, with dynamics embedded within the model.  The 

initial wall temperature node is set to the average of the zone temperature set point and 

the initial outside air temperature.  Figure 34B shows the average wall temperatures 

from the steady state simulation and how the wall temperature changes continuously 

over time. 

At the beginning of the simulation the wall has a temperature of 68°𝐹, as seen in 

Figure 34B.  No change in wall temperature occurs during the first hour since this is 

balanced between the outside air temperature of 66°𝐹 and the zone temperature of 70°𝐹.  

Later in the simulation the wall temperature rise from the outside air is delayed by the 

thermal mass.  Figure 34C shows steady state supply air flows for each hour of the 
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simulation.  In a purely steady state model supply air flows would only depend on the 

outside air temperature, but the thermal mass in this model causes a delay in when 

supply air is required. 

 

 
Figure 34 – Example Hybrid Model Simulation 

Integrating Linear Differential Equations to Steady State Models 

 

Dynamic states in hybrid models change over time during a time step while 

averaged states are assumed to remain constant.  Systems of linear differential equations 

within a hybrid model that are coupled to the steady state part of the model can be 

written in the form of equation 4.33.  In this equation the 𝒙 vector represents dynamic 

states that vary continuously, the 𝒚 vector represents averaged states that vary once on 

each time step, and the 𝑨 matrix is square. 

 

�̇�(𝑡) = 𝑨(𝒚)𝒙(𝑡) + 𝒃(𝒚) 4.33 

 

Elements of 𝑨(𝒚), and 𝒃(𝒚) can be constants or functions of the averaged states.  

Since averaged states stay constant on a time step, even if elements of 𝑨(𝒚), and 𝒃(𝒚) 

depend nonlinearly on 𝒚 the dynamic part of the model is always a set of linear 

differential equations.  The calculations below show how to integrate systems of 

equations in the form of equation 4.33 into a constrained optimization model.  This 

formulation contains some steady state variables and some quasi-steady state variables.   
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Linear differential equations in the form of equation 4.33 are applicable for 

modeling one dimensional heat transfer [70].  In RC thermal network calculations 𝑨(𝒚) 

represents thermal resistances and thermal mass and is usually constant, while 𝒃(𝒚) 

represents temperatures such as outside air temperature that drive heat flow.  Appendix 

B shows a derivation of RC thermal networks with equally spaced nodes. 

In the following equations the time variable 𝑡 represents the time over an 

individual time step, where 𝑡 = 0 at the beginning of a time step.  Equation 4.44 gives 

the overall solution to equation 4.33 over a time step.  Evaluating the integral results in 

equation 4.35.  Equation 4.36 gives the time average of a function over a time step.  

Substituting equation 4.35 into equation 4.36 and evaluating results in equation 4.37, 

which is a linear function of the initial conditions of the dynamic states at the beginning 

of a time step and the 𝒃(𝒚) vector.  Appendix A shows the derivation of equations 4.35 

and 4.37 over a time step. 

 

𝒙(𝑡) = 𝑒𝑨(𝒚)𝑡𝑥(0) + ∫ 𝑒𝑨(𝒚)(𝑡−𝜏)𝒃(𝒚)𝑑𝜏
𝑡

𝑡𝑖

4.34 

𝒙(𝑡) = 𝑒𝑨(𝒚)𝑡𝒙(0) + (𝑒𝑨(𝒚)𝑡 − 𝑰)𝑨(𝒚)−1𝒃(𝒚) 4.35 

�̅� =
1

𝛿
∫ 𝒙(𝜏)𝑑𝜏
𝛿

0

4.36 

�̅� =
1

𝛿
(𝑒𝑨(𝒚)𝛿 − 𝑰)𝑨(𝒚)−1𝒙(0) − (

1

𝛿
(𝑒𝑨(𝒚)𝛿 − 𝑰)𝑨(𝒚)−1 − 𝑰)𝑨(𝒚)−1𝒃(𝒚) 4.37 

 

 Calculations for the averaged dynamic variables �̅� include the initial conditions 

for the dynamic states, 𝒙(0).  For calculations after the first time step 𝒙(0) is equal to 

𝒙(𝛿) at the end of the previous time step.  Equation 4.38 gives the formula for 𝒙(𝛿), 

which is equation 4.35 evaluated at 𝑡 = 𝛿. 

 

𝒙(𝛿) = 𝑒𝑨(𝒚)𝛿𝒙(0) + (𝑒𝑨(𝒚)𝛿 − 𝑰)𝑨(𝒚)−1𝒃(𝒚) 4.38 
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 Whenever the 𝑨 matrix is independent of the averaged states 𝒚 all equations from 

this section reduce to linear functions that don’t change over a simulation.  This allows 

thermal mass model variables to be presolved out of the actual model that’s solved by a 

nonlinear programming solver.  Since solving the remaining linear equations with 

known variables is trivial compared to constrained optimization, this allows large 

thermal mass models with hundreds of variables to be solved in almost the same amount 

of time as a resistance only model with no thermal mass. 

Hybrid Wall Models with Multiple Nodes 

 Thermal mass of a wall can also be modeled by dividing a wall into multiple layers 

and using an RC circuit for each layer.  This more accurately models one dimensional heat 

transfer through a wall since it tracks temperatures at different levels instead of assuming 

that the wall’s thermal mass is at a single temperature.  Figure 35 shows a network for a 

wall made of a single substance divided into 𝑛 equal sections that are assumed to each be 

at a uniform temperature.  Each section has a capacitance of 
𝐶𝑊𝑎𝑙𝑙

𝑛
, where 𝐶𝑊𝑎𝑙𝑙 is the total 

thermal capacitance of the wall.  Resistances at the wall surfaces have a resistance of 
𝑅𝑊𝑎𝑙𝑙

2𝑛
, 

were 𝑅𝑊𝑎𝑙𝑙 is the total thermal resistance of the wall.  Interior resistances have a value of 

𝑅𝑊𝑎𝑙𝑙

𝑛
 since they’re made up of two 

𝑅𝑊𝑎𝑙𝑙

2𝑛
 resistances joined together. 

 

 
Figure 35 – An RC Network for Modeling Thermal Mass of a Wall 

 

 The model of Figure 36 shows the wall/zone model of Figure 31 with a dynamic 

wall model that can use any number of nodes.  Appendix B shows the derivation of this 

equation.  This linear system can be solved using the equations of the previous section. 
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minimize: |𝑇𝑍𝐴 − 𝑇𝑍𝐴,𝑆𝑃| 4.39 

subject to: 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐴 − 𝑇𝑍𝐴) + 2𝑛𝑈𝐴̅̅ ̅̅ 𝑊𝑎𝑙𝑙(�̅�𝑊𝑎𝑙𝑙,𝑛 − 𝑇𝑍𝐴) + �̅�𝑆 = 0 4.40 

�̅�𝑆𝐴,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴 ≤ �̅�𝑆𝐴,𝑀𝑎𝑥 4.41 

𝜏𝑊𝑎𝑙𝑙
𝑛2

[
 
 
 
 
 
 
 
 
�̇�𝑊𝑎𝑙𝑙,1

�̇�𝑊𝑎𝑙𝑙,2

�̇�𝑊𝑎𝑙𝑙,3
⋮

�̇�𝑊𝑎𝑙𝑙,𝑛−2

�̇�𝑊𝑎𝑙𝑙,𝑛−1

�̇�𝑊𝑎𝑙𝑙,𝑛 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
−3 1 0 ⋯ 0 0 0
1 −2 1 ⋯ 0 0 0
0 1 −2 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ −2 1 0
0 0 0 ⋯ 1 −2 1
0 0 0 ⋯ 0 1 −3]
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𝑇𝑊𝑎𝑙𝑙,1
𝑇𝑊𝑎𝑙𝑙,2
𝑇𝑊𝑎𝑙𝑙,3
⋮

𝑇𝑊𝑎𝑙𝑙,𝑛−2
𝑇𝑊𝑎𝑙𝑙,𝑛−1
𝑇𝑊𝑎𝑙𝑙,𝑛 ]

 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
2 0
0 0
0 0
⋮ ⋮
0 0
0 0
0 2]

 
 
 
 
 
 

[
𝑇𝑂𝐴
𝑇𝑍𝐴

] 4.42

 

�̅�𝑊𝑎𝑙𝑙,𝑖 =
1

𝛿
∫ 𝑇𝑊𝑎𝑙𝑙,𝑖(𝜏)𝑑𝜏
𝛿

0

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑤𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑖 4.43 

Figure 36 – Hybrid Model with the Wall Divided into Multiple Layers 

 

 Figure 37 shows outside air temperatures and resulting supply air flows for the 

models of Figure 31 and Figure 36 simulated with different numbers of wall temperature 

nodes.  Initial wall temperature nodes were set to their steady state value with the zone at 

its setpoint temperature and the outside air temperature at the first hour’s value.  As the 

number of nodes increase the magnitude of the heating load passed increases, and this 

results in higher supply air flows.  Higher loads with more nodes are due to the smaller 

discrete thermal masses.  More nodes allow heat to flow deeper inside instead of having 

to heat a larger thermal mass first.  This effect is limited, however, which can be seen by 

comparing the 100 node simulation with the other models. 
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Figure 37 – Air Flow Rates using Different Numbers of Wall Temperature Nodes 
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CHAPTER V 

EXAMPLE HVAC MODELS FOR COMMON AIR HANDLER TYPES 

 

 Commercial buildings and their HVAC system designs vary by design 

requirements, region, when they were built, and the personal preferences of the 

architects and engineers involved in a project.  This variety makes it challenging to 

develop flexible building energy use modeling methods than can correctly represent a 

variety of systems in one tool.  This chapter gives examples of constrained optimization 

models for a variety of HVAC systems and components for an example building.  

Modifications are made to these models to highlight how different system variations can 

be represented without a major reworking of source code. 

Building Description 

Dimensions and Layout 

Figure 38 shows the layout of the simple, hypothetical office space that’s 

modeled in this chapter.  For modeling purposes this building is divided into a perimeter 

zone of office space, an interior zone of office space, and an interior zone for a computer 

room.  Table 7 gives the input parameters that define the building and zone dimensions. 

 

 
Figure 38 – Example Building Floor Layout 
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Table 7 – Example Building Dimensions 

Parameter Symbol Value Unit 

Building Length 𝑙𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 160 𝑓𝑡 

Building Width 𝑤𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 80 𝑓𝑡 

Building Height ℎ𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 15 𝑓𝑡 

Zone 2 Length 𝑙𝑍2 80 𝑓𝑡 

Zone 2 Width 𝑤𝑍2 40 𝑓𝑡 

Zone 3 Length 𝑙𝑍3 40 𝑓𝑡 

Zone 3 Width 𝑤𝑍3 40 𝑓𝑡 

 

Equations 5.1 and 5.2 give the interior zone areas in terms of their inputted 

widths and heights.  Equation 5.3 gives the perimeter zone area as the overall building 

area minus the interior zone areas.  Since the example building is a single floor the roof 

areas of each zone equal their zone areas, as given in equations 5.4–5.6.  Table 8 lists 

these calculated values. 

 

𝐴𝑍2 = 𝑙𝑍2𝑤𝑍2 5.1 

𝐴𝑍3 = 𝑙𝑍3𝑤𝑍3 5.2 

𝐴𝑍1 = 𝑙𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑤𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 − 𝐴𝑍2 − 𝐴𝑍3 5.3 

𝐴𝑅𝑜𝑜𝑓1 = 𝐴𝑍1 5.4 

𝐴𝑅𝑜𝑜𝑓2 = 𝐴𝑍2 5.5 

𝐴𝑅𝑜𝑜𝑓3 = 𝐴𝑍3 5.6 

 

Table 8 – Building Zone Parameters 

Parameter 
Symbol 

(Zone i) 

Zone 1  

(Perimeter 

Office) 

Zone 2  

(Interior 

Office) 

Zone 3 

(Computer 

Lab) 

Unit 

Floor Area 𝐴𝑍𝑖 8,000 3,200 1,600 𝑓𝑡2 

Roof Area 𝐴𝑅𝑜𝑜𝑓𝑖 8,000 3,200 1,600 𝑓𝑡2 
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Equation 5.7 gives the total zone area as the sum of the three individual zone 

areas.  Equations 5.8–5.10 give the total window and wall areas for the perimeter zone.  

Table 9 lists their calculated values. 

 

𝐴𝑍 = 𝐴𝑍1 + 𝐴𝑍2 + 𝐴𝑍3 5.7 

𝐴𝑊𝑎𝑙𝑙,𝑇𝑜𝑡𝑎𝑙 = 2(𝑙𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 + 𝑤𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔)ℎ𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 5.8 

𝐴𝑊𝑖𝑛𝑑𝑜𝑤 = 0.01𝐴𝑊𝑎𝑙𝑙,𝑇𝑜𝑡𝑎𝑙𝑃𝑐𝑡𝑊𝑖𝑛𝑑𝑜𝑤 5.9 

𝐴𝑊𝑎𝑙𝑙 = 𝐴𝑊𝑎𝑙𝑙,𝑇𝑜𝑡𝑎𝑙 − 𝐴𝑊𝑖𝑛𝑑𝑜𝑤 5.10 

 

Table 9 – Calculated Building Areas 

Parameter Symbol Value Unit 

Total Floor Area 𝐴𝑍 12,800 𝑓𝑡2 

Total Wall Area 

(Windows and Walls) 
𝐴𝑊𝑎𝑙𝑙,𝑇𝑜𝑡𝑎𝑙 7,200 𝑓𝑡2 

Window Area 𝐴𝑊𝑖𝑛𝑑𝑜𝑤 2,880 𝑓𝑡2 

Wall Area 𝐴𝑊𝑎𝑙𝑙 4,320 𝑓𝑡2 

 

Thermal Properties 

Table 10 gives thermal property inputs for the building.  The perimeter walls are 

made of concrete with a thickness of 0.66 𝑓𝑡, with windows covering 40% of the 

perimeter surface.  The wall’s density and specific heat are only used in the DDVAV 

model with dynamics.  All other models treat exterior heat conduction as steady state. 
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Table 10 – Building Thermal Property Inputs 

Parameter Symbol Value Unit 

Wall Thermal 

Conductivity 
𝑘𝑊𝑎𝑙𝑙 0.42 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡 ∙ °𝐹
 

Wall Thickness 𝑙𝑊𝑎𝑙𝑙 0.66 𝑓𝑡 

Wall Density 𝜌𝑊𝑎𝑙𝑙 120 
𝑙𝑏𝑚

𝑓𝑡3
 

Wall Specific Heat 𝑐𝑝,𝑊𝑎𝑙𝑙 0.20 
𝐵𝑡𝑢

𝑙𝑏𝑚 ∙ °𝐹
 

Window R-Value 𝑅𝑊𝑖𝑛𝑑𝑜𝑤 2.0 
ℎ ∙ 𝑓𝑡2 ∙ °𝐹

𝐵𝑡𝑢
 

Roof R-Value 𝑅𝑅𝑜𝑜𝑓 20 
ℎ ∙ 𝑓𝑡2 ∙ °𝐹

𝐵𝑡𝑢
 

Window Percentage 𝑃𝑐𝑡𝑊𝑖𝑛𝑑𝑜𝑤 40 % 

 

 Equations 5.11 and 5.12 give the overall wall resistance and thermal capacitance.  

Multiplying these two parameters together gives the overall wall time constant, shown in 

equation 5.13.  Equations 5.14 and 5.15 give the wall and window/roof UA values for 

the perimeter zone normalized to the perimeter zone area.  Table 11 shows the calculated 

values of these parameters. 

 

𝑅𝑊𝑎𝑙𝑙 =
𝑙𝑊𝑎𝑙𝑙
𝑘𝑊𝑎𝑙𝑙

5.11 

𝐶𝑊𝑎𝑙𝑙 = 𝜌𝑊𝑎𝑙𝑙𝑐𝑝,𝑊𝑎𝑙𝑙𝑙𝑊𝑎𝑙𝑙 5.12 

𝜏𝑊𝑎𝑙𝑙 = 𝑅𝑊𝑎𝑙𝑙𝐶𝑊𝑎𝑙𝑙 5.13 

𝑈𝐴̅̅ ̅̅ 𝑍1,𝑊𝑎𝑙𝑙 =
𝐴𝑊𝑎𝑙𝑙

𝑅𝑊𝑎𝑙𝑙𝐴𝑍1
5.14 

𝑈𝐴̅̅ ̅̅ 𝑍1,𝑊𝑖𝑛𝑑𝑜𝑤/𝑅𝑜𝑜𝑓 =
𝐴𝑊𝑖𝑛𝑑𝑜𝑤

𝑅𝑊𝑖𝑛𝑑𝑜𝑤𝐴𝑍1
+

𝐴𝑅𝑜𝑜𝑓1

𝑅𝑅𝑜𝑜𝑓𝐴𝑍1
5.15 
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Table 11 – Calculated Wall Parameters 

Parameter Symbol Value Unit 

Wall R-Value 𝑅𝑊𝑎𝑙𝑙 1.57 
ℎ ∙ 𝑓𝑡2 ∙ °𝐹

𝐵𝑡𝑢
 

Wall Thermal 

Capacitance 
𝐶𝑊𝑎𝑙𝑙 15.8 

𝐵𝑡𝑢

𝑓𝑡2 ∙ °𝐹
 

Wall Time Constant 𝜏𝑊𝑎𝑙𝑙 24.9 ℎ 

Perimeter Zone Wall UA 

Value 
𝑈𝐴̅̅ ̅̅ 𝑍1,𝑊𝑎𝑙𝑙 0.34 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2 ∙ °𝐹
 

Perimeter Zone Window 

and Roof UA Value 
𝑈𝐴̅̅ ̅̅ 𝑍1,𝑊𝑖𝑛𝑑𝑜𝑤/𝑅𝑜𝑜𝑓 0.23 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2 ∙ °𝐹
 

 

 Equation 5.16 gives the overall floor area normalized UA value for the perimeter 

zone.  The two interior zones only have roof area, so their floor area normalized UA 

values can be calculated from the roof component alone.  This is shown in equations 

5.17 and 5.18.  Equation 5.19 gives the overall air volume of each zone as the zone floor 

area times the building height.  Table 12 shows these calculated zone parameters. 

 

𝑈𝐴̅̅ ̅̅ 𝑍1 = 𝑈𝐴̅̅ ̅̅ 𝑍1,𝑊𝑎𝑙𝑙 + 𝑈𝐴̅̅ ̅̅ 𝑍1,𝑊𝑖𝑛𝑑𝑜𝑤/𝑅𝑜𝑜𝑓 5.16 

𝑈𝐴̅̅ ̅̅ 𝑍2 =
𝐴𝑅𝑜𝑜𝑓2

𝑅𝑅𝑜𝑜𝑓𝐴𝑍2
5.17 

𝑈𝐴̅̅ ̅̅ 𝑍3 =
𝐴𝑅𝑜𝑜𝑓3

𝑅𝑅𝑜𝑜𝑓𝐴𝑍3
5.18 

𝑉𝑍𝑖 = 𝐴𝑍𝑖ℎ𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 5.19 
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Table 12 – Calculated Zone Parameters 

Parameter 
Symbol 

(Zone i) 

Zone 1  

(Perimeter 

Office) 

Zone 2  

(Interior 

Office) 

Zone 3 

(Computer 

Lab) 

Unit 

Total Zone UA 

Value per 𝑓𝑡2 of 

Floor Area 

𝑈𝐴̅̅ ̅̅ 𝑍𝑖 0.57 0.05 0.05 
𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2 ∙ °𝐹
 

Zone Air Volume 𝑉𝑍𝑖 120,000 48,000 24,000 𝑓𝑡3 

 

Zone Loads 

 Table 13 gives the sensible and latent loads per person used in the models of this 

chapter as well as the symbols and units used for the lighting and plug load ratios.  Table 

14 gives the peak lighting and plug usages and peak occupancies of each zone. 

 

Table 13 – Lighting, Plug and People Load Inputs 

Parameter Symbol Value Unit 

Sensible Load per Person �̃�𝑆,𝑃𝑒𝑟𝑃𝑒𝑟𝑠𝑜𝑛 300 
𝐵𝑡𝑢

ℎ ∙ 𝑃𝑒𝑟𝑠𝑜𝑛
 

Latent Load per Person �̃�𝐿,𝑃𝑒𝑟𝑃𝑒𝑟𝑠𝑜𝑛 250 
𝐵𝑡𝑢

ℎ ∙ 𝑃𝑒𝑟𝑠𝑜𝑛
 

Lighting and Plug Load 

Ratio 
𝑋𝐿&𝑃 Varies 0 − 1 

People Load Ratio 𝑋𝑃𝑒𝑜𝑝𝑙𝑒 Varies 0 − 1 

 

Table 14 – Zone Load Inputs 

Parameter 
Symbol 

(Zone i) 

Zone 1  

(Perimeter 

Office) 

Zone 2  

(Interior 

Office) 

Zone 3 

(Computer 

Lab) 

Unit 

Peak Lighting and 

Plug Load per Square 

Foot 

�̅�𝐿&𝑃𝑖,𝑀𝑎𝑥 1.3 1.3 2.0 
𝑊

𝑓𝑡2
 

Peak Occupancy per 

Person 
𝑂𝑐�̃�𝑖,𝑀𝑎𝑥 150 150 80 

𝑓𝑡2

𝑃𝑒𝑟𝑠𝑜𝑛
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Plug and occupancy loads are assumed to change depending on the time of day 

and whether the day is a weekday or weekend.  Figure 39 shows the schedules for plug 

loads and occupancy as a fraction of their maximum value for weekdays and weekends.  

When the building is unoccupied at night or on a weekend plug loads are 30% of the 

peak value.  The workday begins at 7:30 AM, reaches peak occupancy at 9:30 AM, 

continues until 4:30 PM, and ramps down until it reaches its final unoccupied state at 

6:30 PM. 

 

 
Figure 39 – Plug and Occupancy Load Ratios for the Example Building 

 

Steady state building energy models assume that loads don’t change over time.   

Averaging the continuous plug and occupancy load ratios over a time step give the fixed 

values that are used in the steady state model.  Figure 40 shows the weekday plug ratio 

values used for a time step period of one hour.  Hourly schedule values don’t all fall on 

the continuous schedule since ramp up and ramp down times start on the 30 minute mark 

while time steps occur on the hour itself. 
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Figure 40 – Hourly Weekday Plug Load Schedule Values 

 

Energy Sources and Prices 

 All cooling and heating is supplied using chilled and hot water.  Electric usages 

consist of fans, lights, and plug loads.  Table 15 gives the default energy prices used in 

models. 

 

Table 15 – Energy Price Inputs 

Parameter Symbol Value Unit 

Electricity Price 𝑃𝑟𝑖𝑐𝑒𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 0.12 
$

𝑘𝑊ℎ
 

Chilled Water Price 𝑃𝑟𝑖𝑐𝑒𝐶ℎ𝑊 15 
$

𝑀𝑀𝐵𝑡𝑢
 

Hot Water Price 𝑃𝑟𝑖𝑐𝑒𝐻𝑊 12 
$

𝑀𝑀𝐵𝑡𝑢
 

 

 Energy and cost variables in models are normalized to zone square footages and 

time for readability and to make variable scaling for the robustness of the numerical 
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methods easier.  For instance, typical fan energy usages in terms of in 
𝑊

𝑓𝑡2
 fall within a 

known range, where fan energy usages in 𝑊 varies depending on the size of the 

building.  Actual total energy usages or costs can be obtained by multiplying the usage 

by the normalizing floor area 𝐴𝐹𝑙𝑜𝑜𝑟 and the time step period 𝛿, as shown in equations 

5.20–5.22. 

 

𝐸𝑥 = �̅�𝑥𝐴𝐹𝑙𝑜𝑜𝑟𝛿 5.20 

𝑄𝑥 = �̅�𝑥𝐴𝐹𝑙𝑜𝑜𝑟𝛿 5.21 

𝐶𝑜𝑠𝑡𝑥 = 𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝑥𝐴𝐹𝑙𝑜𝑜𝑟𝛿 5.22 

 

Weather Data for Simulations 

 Simulations in this chapter are performed using weather data for Houston TX in 

2007.  Figure 41 shows the hourly dry bulb and dew point temperatures used.  The 

hourly data was created by linearly interpolating raw NOAA weather station data [71]. 

 

 
Figure 41 – Weather Data Used in Simulations 
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Constants and Conversion Factors 

 Table 16 lists physical constants and conversion factors used in this modeling.  

Properties of air are assumed to be constant for all temperatures and pressures, and the 

atmospheric pressure is assumed to be a typical sea level pressure.  Model equations use 

variables for conversion factors instead of writing out numbers for readability and 

consistency. 

 

Table 16 – Physical Constants and Conversion Factors Used in Modeling 

Parameter Symbol Value Unit 

Density of Air times Specific Heat of 

Air 
𝜌𝑐𝑝 1.08 

𝐵𝑡𝑢

ℎ ∙ °𝐹 ∙ 𝐶𝐹𝑀
 

Density of Water times the Latent Heat 

of Vaporization of Water 
𝜌ℎ𝑓𝑔 4840.0 

𝐵𝑡𝑢

ℎ ∙ 𝐶𝐹𝑀
 

The ratio of the molecular masses of 

water and dry air 
𝑀𝑟𝑎𝑡𝑖𝑜 0.621945 

𝑘𝑔 𝑀𝑜𝑙𝑤𝑎𝑡𝑒𝑟⁄

𝑘𝑔 𝑀𝑜𝑙𝑑𝑟𝑦𝐴𝑖𝑟⁄
 

Outside Air Pressure 𝑃𝑂𝐴 14.696 𝑝𝑠𝑖 

Watts to kW Conversion Factor 𝛼𝑊𝑎𝑡𝑡𝑠𝑇𝑜𝐾𝑤 0.001 
𝑘𝑊

𝑊
 

Btu to MMBtu Conversion Factor 𝛼𝐵𝑡𝑢𝑇𝑜𝑀𝑀𝐵𝑡𝑢 0.000001 
𝑀𝑀𝐵𝑡𝑢

𝐵𝑡𝑢
 

Horsepower to Watt Conversion Factor 𝛼𝐻𝑝𝑇𝑜𝑊𝑎𝑡𝑡𝑠 1341.02 
𝑘𝑊

𝐻𝑝
 

kW to Btu/h Conversion Factor 𝛼𝐾𝑤𝑇𝑜𝐵𝑡𝑢𝑃𝑒𝑟𝐻 3412.142 
𝐵𝑡𝑢

ℎ ∙ 𝑘𝑊
 

kW to Btu/h Conversion Factor 𝛼𝐻𝑝𝑇𝑜𝐵𝑡𝑢𝑃𝑒𝑟𝐻 4575.69 
𝐵𝑡𝑢

ℎ ∙ 𝐻𝑝
 

CFM to 1000 CFM Conversion Factor 𝛼𝐶𝑓𝑚𝑇𝑜𝐾𝐶𝑓𝑚 0.001 
𝑘𝐶𝐹𝑀

𝐶𝐹𝑀
 

 

Hourly Zone Loads 

 Equation 5.23 gives the heating load for each zone in terms of the lighting and 

plug electric usage.  Models assume that all electric energy used in a zone results in a 
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load.  Equation 5.24 and 5.25 give peak sensible and latent people loads per square foot 

of zone floor area.  Table 17 gives the calculated values of these parameters for each 

zone. 

 

�̅�𝐿&𝑃𝑖,𝑀𝑎𝑥 = �̅�𝐿&𝑃𝑖,𝑀𝑎𝑥𝛼𝐾𝑤𝑇𝑜𝐵𝑡𝑢𝑃𝑒𝑟𝐻𝑜𝑢𝑟 5.23 

�̅�𝑆𝑖,𝑃𝑒𝑜𝑝𝑙𝑒,𝑀𝑎𝑥 =
�̃�𝑆,𝑃𝑒𝑟𝑃𝑒𝑟𝑠𝑜𝑛

𝑂𝑐�̃�𝑖,𝑀𝑎𝑥
5.24 

�̅�𝐿𝑖,𝑃𝑒𝑜𝑝𝑙𝑒,𝑀𝑎𝑥 =
�̃�𝐿,𝑃𝑒𝑟𝑃𝑒𝑟𝑠𝑜𝑛

𝑂𝑐�̃�𝑖,𝑀𝑎𝑥
5.25 

 

Table 17 – Calculated Zone Peak Loads 

Parameter 
Symbol 

(Zone i) 

Zone 1  

(Perimeter 

Office) 

Zone 2  

(Interior 

Office) 

Zone 3 

(Computer 

Lab) 

Unit 

Peak Lighting and 

Plug Load 
�̅�𝐿&𝑃𝑖,𝑀𝑎𝑥 4.44 4.44 6.82 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2
 

Peak Sensible 

Occupancy Load 
�̅�𝑆𝑖,𝑃𝑒𝑜𝑝𝑙𝑒,𝑀𝑎𝑥 2.0 2.0 3.75 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2
 

Peak Latent 

Occupancy Load 
�̅�𝐿𝑖,𝑃𝑒𝑜𝑝𝑙𝑒,𝑀𝑎𝑥 1.67 1.67 3.125 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2
 

 

 Zone electric usages and loads on a particular time step of a simulation equal the 

peak load scaled by the current lighting and plug load or people load ratio.  Equations 

5.26 and 5.27 gives the effective lighting and plug electric usage for each zone and the 

overall building in 
𝑊

𝑓𝑡2
.  Equations 5.28 and 5.29 give the total effective sensible and 

latent loads of a zone on in 
𝐵𝑡𝑢

ℎ∙𝑓𝑡2
. 

 

�̅�𝐿&𝑃𝑖 = 𝑋𝐿&𝑃�̅�𝐿&𝑃𝑖,𝑀𝑎𝑥 5.26 

�̅�𝐿&𝑃 =
�̅�𝐿&𝑃1𝐴𝑍1 + �̅�𝐿&𝑃2𝐴𝑍2 + �̅�𝐿&𝑃3𝐴𝑍3

𝐴𝑍
5.27 



 

61 

 

�̅�𝑆𝑖 = 𝑋𝐿&𝑃�̅�𝐿&𝑃𝑖,𝑀𝑎𝑥 + 𝑋𝑃𝑒𝑜𝑝𝑙𝑒�̅�𝑆𝑖,𝑃𝑒𝑜𝑝𝑙𝑒,𝑀𝑎𝑥 5.28 

�̅�𝐿𝑖 = 𝑋𝑃𝑒𝑜𝑝𝑙𝑒�̅�𝐿𝑖,𝑃𝑒𝑜𝑝𝑙𝑒,𝑀𝑎𝑥 5.29 

 

Single Duct Constant Air Volume (SDCAV) Systems 

Single duct constant air volume systems control zone temperatures by reheating a 

constant flow of conditioned supply air [72].  Figure 42 shows the schematic of a single 

duct constant air volume air handler with terminal reheat for the three zoned building. 

 

 
Figure 42 – SDCAV System Layout 

 

SDCAV Input Parameters 

Table 18 and 

Table 19 give values of system wide and zone parameters that are specific to the 

SDCAV system.  The system has a constant outside air flow rate of 0.3 
𝐶𝐹𝑀

𝑓𝑡2
 and a 

constant fan usage of 0.8 
𝐻𝑝

𝑘𝐶𝐹𝑀
.  The tilde over the fan usage parameter indicates that it’s 

normalized but not to floor area.  The cooling coil set point is kept at a constant 55°𝐹 

over the entire year.  The zones themselves have different control parameters, with the 

computer lab having both a lower set point and a higher flow rate. 
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Table 18 – SDCAV System Parameters 

Parameter Symbol Value Unit 

Outside Air Flow 

(Normalized) 
�̅�𝑂𝐴 0.3 

𝐶𝐹𝑀

𝑓𝑡2
 

Fan Power per 1000 CFM 𝐻�̃�𝑓𝑎𝑛 0.8 
𝐻𝑝

𝑘𝐶𝐹𝑀
 

Cooling Coil Set Point 

Temperature 
𝑇𝐶𝐶,𝑆𝑃 55 °𝐹 

 

Table 19 – SDCAV Zone Parameters 

Parameter 
Symbol 

(Zone i) 

Zone 1  

(Perimeter 

Office) 

Zone 2  

(Interior 

Office) 

Zone 3 

(Computer 

Lab) 

Unit 

Zone Temperature 

Set Point 
𝑇𝑍𝐴𝑖,𝑆𝑃 70 70 68 °𝐹 

Supply Air Flow 

(Normalized) 
�̅�𝑆𝐴𝑖 1.0 1.0 2.0 

𝐶𝐹𝑀

𝑓𝑡2
 

 

Precalculated SDCAV Parameters 

 Equations 5.30–5.32 give the equations for the total supply air flow rate, the fan 

horsepower per square foot of floor area, and the temperature rise across the supply fan.  

These values can be precalculated before simulating the constrained optimization part of 

the SDCAV model.  Table 20 gives the values of these parameters. 

 

�̅�𝑆𝐴 =
�̅�𝑆𝐴1𝐴𝑍1 + �̅�𝑆𝐴2𝐴𝑍2 + �̅�𝑆𝐴3𝐴𝑍3

𝐴𝑍
5.30 

𝐻𝑝̅̅ ̅̅ 𝑓𝑎𝑛 = 𝐻�̃�𝑓𝑎𝑛�̅�𝑆𝐴𝛼𝐶𝑓𝑚𝑇𝑜𝐾𝐶𝑓𝑚 5.31 

∆𝑇𝑆𝐹 =
𝐻𝑝̅̅ ̅̅ 𝐹𝑎𝑛𝛼𝐻𝑝𝑇𝑜𝐵𝑡𝑢𝑃𝑒𝑟𝐻𝑜𝑢𝑟

𝜌𝑐𝑝�̅�𝑆𝐴
5.32 
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Table 20 – Precalculated SDCAV Parameters 

Parameter Symbol Value Unit 

Supply Air Flow 

(Normalized) 
�̅�𝑆𝐴 1.125 

𝐶𝐹𝑀

𝑓𝑡2
 

Fan Power Normalized to 

Floor Area 
𝐻𝑝̅̅ ̅̅ 𝑓𝑎𝑛 0.0009 

𝐻𝑝

𝑓𝑡2
 

Air Temperature Rise 

across the Supply Fan 
∆𝑇𝑆𝐹 3.39 °𝐹 

 

The SDCAV Model 

 Figure  gives a constrained optimization model for the SDCAV system.  SDCAV 

systems operate to control zone temperatures to a fixed set point, so the objective 

function is set to the sum of zone temperature errors.  The constraints in this model 

describe how equipment in the system operates, define the zone temperature errors, and 

give definitions for overall energy usages over a time step period. 

 

minimize: 𝐸𝑇𝑍𝐴 5.33 
subject to: AHU Temperature Balance 

�̅�𝑆𝐴𝑇𝑀𝐴 = �̅�𝑂𝐴𝑇𝑂𝐴 + (�̅�𝑆𝐴 − �̅�𝑂𝐴)𝑇𝑅𝐴 5.34 
𝑇𝑆𝐹 = 𝑇𝑀𝐴 + ∆𝑇𝑆𝐹 5.35 

𝑇𝐶𝐶 = 𝑀𝑖𝑛(𝑇𝑆𝐹 , 𝑇𝐶𝐶,𝑆𝑃) 5.36 

�̅�𝑆𝐴𝐴𝑍𝑇𝑅𝐴 = �̅�𝑆𝐴1𝐴𝑍1𝑇𝑍𝐴1 + �̅�𝑆𝐴2𝐴𝑍2𝑇𝑍𝐴2 + �̅�𝑆𝐴3𝐴𝑍3𝑇𝑍𝐴3 5.37 
 

AHU Humidity Balance 
�̅�𝑆𝐴𝑊𝑀𝐴 = �̅�𝑂𝐴𝑊𝑂𝐴 + (�̅�𝑆𝐴 − �̅�𝑂𝐴)𝑊𝑅𝐴 5.38 

𝑊𝐶𝐶,𝑆𝑎𝑡𝑃𝑂𝐴 = (𝑀𝑟𝑎𝑡𝑖𝑜 +𝑊𝐶𝐶,𝑆𝑎𝑡)𝑃𝑤𝑠(𝑇𝐶𝐶) 5.39 

𝑊𝐶𝐶 = 𝑀𝑖𝑛(𝑊𝑀𝐴,𝑊𝐶𝐶,𝑆𝑎𝑡) 5.40 

�̅�𝑆𝐴𝐴𝑍𝑊𝑅𝐴 = �̅�𝑆𝐴1𝐴𝑍1𝑊𝑍𝐴1 + �̅�𝑆𝐴2𝐴𝑍2𝑊𝑍𝐴2 + �̅�𝑆𝐴3𝐴𝑍3𝑊𝑍𝐴3 5.41 
 

Zone 1 
𝑇𝑆𝐴1 ≥ 𝑇𝐶𝐶 5.42 

𝜌𝑐𝑝�̅�𝑆𝐴1(𝑇𝑆𝐴1 − 𝑇𝑍𝐴1) + 𝑈𝐴̅̅ ̅̅ 𝑍1(𝑇𝑂𝐴 − 𝑇𝑍𝐴1) + �̅�𝑆1 = 0 5.43 

𝜌ℎ𝑓𝑔�̅�𝑆𝐴1(𝑊𝐶𝐶 −𝑊𝑍𝐴1) + �̅�𝐿1 = 0 5.44 

Figure 43 – Model of a Single Duct Constant Air Volume System 
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subject to: Zone 1 
𝑇𝑆𝐴1 ≥ 𝑇𝐶𝐶 5.42 

𝜌𝑐𝑝�̅�𝑆𝐴1(𝑇𝑆𝐴1 − 𝑇𝑍𝐴1) + 𝑈𝐴̅̅ ̅̅ 𝑍1(𝑇𝑂𝐴 − 𝑇𝑍𝐴1) + �̅�𝑆1 = 0 5.43 

𝜌ℎ𝑓𝑔�̅�𝑆𝐴1(𝑊𝐶𝐶 −𝑊𝑍𝐴1) + �̅�𝐿1 = 0 5.44 
 

Zone 2 
𝑇𝑆𝐴2 ≥ 𝑇𝐶𝐶 5.45 

𝜌𝑐𝑝�̅�𝑆𝐴2(𝑇𝑆𝐴2 − 𝑇𝑍𝐴2) + 𝑈𝐴̅̅ ̅̅ 𝑍2(𝑇𝑂𝐴 − 𝑇𝑍𝐴2) + �̅�𝑆2 = 0 5.46 

𝜌ℎ𝑓𝑔�̅�𝑆𝐴2(𝑊𝐶𝐶 −𝑊𝑍𝐴2) + �̅�𝐿2 = 0 5.47 
 

Zone 3 
𝑇𝑆𝐴3 ≥ 𝑇𝐶𝐶 5.48 

𝜌𝑐𝑝�̅�𝑆𝐴3(𝑇𝑆𝐴3 − 𝑇𝑍𝐴3) + 𝑈𝐴̅̅ ̅̅ 𝑍3(𝑇𝑂𝐴 − 𝑇𝑍𝐴3) + �̅�𝑆3 = 0 5.49 

𝜌ℎ𝑓𝑔�̅�𝑆𝐴3(𝑊𝐶𝐶 −𝑊𝑍𝐴3) + �̅�𝐿3 = 0 5.50 
 

Zone Temperature Errors 
𝐸𝑇𝑍𝐴1 ≥ 𝑇𝑍𝐴1,𝑆𝑃 − 𝑇𝑍𝐴1 5.51 
𝐸𝑇𝑍𝐴1 ≥ 𝑇𝑍𝐴1 − 𝑇𝑍𝐴1,𝑆𝑃 5.52 
𝐸𝑇𝑍𝐴2 ≥ 𝑇𝑍𝐴2,𝑆𝑃 − 𝑇𝑍𝐴2 5.53 
𝐸𝑇𝑍𝐴2 ≥ 𝑇𝑍𝐴2 − 𝑇𝑍𝐴2,𝑆𝑃 5.54 
𝐸𝑇𝑍𝐴3 ≥ 𝑇𝑍𝐴3,𝑆𝑃 − 𝑇𝑍𝐴3 5.55 
𝐸𝑇𝑍𝐴3 ≥ 𝑇𝑍𝐴3 − 𝑇𝑍𝐴3,𝑆𝑃 5.56 

𝐸𝑇𝑍𝐴,𝑆𝑢𝑚 = 𝐸𝑇𝑍𝐴1 + 𝐸𝑇𝑍𝐴2 + 𝐸𝑇𝑍𝐴3 5.57 
 

Energy Usage 
�̅�𝐹𝑎𝑛 = 𝐻𝑝̅̅ ̅̅ 𝑓𝑎𝑛𝛼𝐻𝑝𝑇𝑜𝑊𝑎𝑡𝑡𝑠 5.58 

�̅�𝑇𝑜𝑡𝑎𝑙 = �̅�𝐿&𝑃 + �̅�𝐹𝑎𝑛 5.59 

�̅�𝐶𝐶,𝑆 = 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝐶𝐶 − 𝑇𝑆𝐹) 5.60 

�̅�𝐶𝐶,𝐿 = 𝜌ℎ𝑓𝑔�̅�𝑆𝐴(𝑊𝐶𝐶 −𝑊𝑀𝐴) 5.61 

�̅�𝐶𝐶,𝑇𝑜𝑡𝑎𝑙 = �̅�𝐶𝐶,𝑆 + �̅�𝐶𝐶,𝐿 5.62 

�̅�𝑅𝐻1 = 𝜌𝑐𝑝�̅�𝑆𝐴1(𝑇𝑆𝐴1 − 𝑇𝐶𝐶) 5.63 

�̅�𝑅𝐻2 = 𝜌𝑐𝑝�̅�𝑆𝐴2(𝑇𝑆𝐴2 − 𝑇𝐶𝐶) 5.64 

�̅�𝑅𝐻3 = 𝜌𝑐𝑝�̅�𝑆𝐴3(𝑇𝑆𝐴3 − 𝑇𝐶𝐶) 5.65 

�̅�𝑅𝐻,𝑇𝑜𝑡𝑎𝑙 = �̅�𝑅𝐻1 + �̅�𝑅𝐻2 + �̅�𝑅𝐻3 5.66 

Figure 43 Continued 

 

This model was formulated to represent normal operating conditions in addition 

to scenarios where all zone temperature setpoints can’t be achieved.  Factors that limit 
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the model’s validity are all assumptions that can be modified if desired.  For instance, 

functions for air and water properties can be used instead of constant values.  Also, water 

saturation in places other than the cooling coil can be modeled by limiting humidity 

ratios throughout a system to the local saturation humidity ratio. 

 

SDCAV Simulation Results 

Figure 44 shows the total cooling and reheat usages for the SDCAV system with 

a time step period of one hour.  The system performs cooling for the entire simulation 

year, with less cooling required during a lower outside air temperature.  In cool 

temperatures with no latent cooling the total cooling usage trend forms a straight line.  

However, at higher temperatures the totals cooling trend forms a cloud due to the 

different levels of humidity in the air that must be removed by the cooling coil.   

Total reheat usage from the building’s 3 zones decreases with the outside air 

temperature until the perimeter zone uses no reheat.  With a constant chilled air flow and 

no reheat the system loses the ability to keep the perimeter zone’s temperature at its set 

point at high outside air temperatures.  Figure 45 shows the actual perimeter zone 

temperature versus the outside air temperature.  Perimeter zone temperatures above 70°𝐹 

are time steps where the zone set point cannot be met. 

Bands that appear in the perimeter zone temperature and total reheat usage plots 

are due to the discretization of load schedules.  Discretizing the load schedules on one 

hour increments results in five possible values.  Figure 40 shows the hourly values used 

for the weekday lighting and plug load schedule.  Using a smaller time step periods 

would result in more bands since a larger range of loads would be simulated. 
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Figure 44 – SDCAV Heating and Cooling Usages 

 

 
Figure 45 – Loss of Perimeter Zone Temperature Control in the SDCAV 

Simulation 
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Modifying the Air Handler Equipment 

 Modifying source code for building energy simulation tools to handle new 

equipment or equipment configurations can be difficult.  With a model based on 

constrained optimization modifying the objectives and constraints can account for 

different system behaviors. 

Figure 46 shows the system of Figure 42 modified to include outside air preheat 

and the effect of infiltration and exfiltration in the perimeter zone.  Table 21 gives the 

two additional parameters used in this model: a preheat coil set point of 45°𝐹 and a 

maximum perimeter zone outside air exchange rate of 1.2 
𝐴𝑖𝑟 𝐶ℎ𝑎𝑛𝑔𝑒𝑠

ℎ
.  The energy source 

of the preheat coil is assumed to be hot water, the same as the reheat coils.  Infiltration 

and exfiltration rates are assumed to be equal, due to badly placed supply and return 

ducts. 

 

 
Figure 46 – The SDCAV Model of Figure 42 with Outside Air Preheat and 

Perimeter Zone Infiltration 

 

Table 21 – Added Parameters for SDCAV Model Changes 

Parameter Symbol Value Unit 

Preheat Coil Set Point 𝑇𝑃𝐻,𝑆𝑃 45 °𝐹 

Outside Air Changes per 

Hour for Zone 1 
𝐴𝐶𝐻𝑍1,𝑀𝑎𝑥 1.2 

𝐴𝑖𝑟 𝐶ℎ𝑎𝑛𝑔𝑒𝑠

ℎ
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Equation 5.67 gives the maximum perimeter zone outside air exchange volume 

flow rate in terms of the air changes per hour, zone volume, and zone floor area.  Table 

22 gives the calculated maximum value for this parameter.  The exchange rate 

experienced at a given moment is assumed to scale with the occupancy of the building.  

Equation 5.68 gives the actual air exchange rate to use on a time step of a simulation. 

 

�̅�𝐼𝑛𝑓/𝐸𝑥𝑓,𝑍1,𝑀𝑎𝑥 =
𝐴𝐶𝐻𝑍1,𝑀𝑎𝑥𝑉𝑍1

60𝐴𝑍1
5.67 

 

Table 22 – Calculated Parameters for SDCAV Model Changes 

Parameter Symbol Value Unit 

Infiltration/Exfiltration 

Flow Rate of Zone 1 
�̅�𝐼𝑛𝑓/𝐸𝑥𝑓,𝑍1,𝑀𝑎𝑥 0.3 

𝐶𝐹𝑀

𝑓𝑡2
 

 

�̅�𝐼𝑛𝑓/𝐸𝑥𝑓,𝑍1 = 𝑋𝑃𝑒𝑜𝑝𝑙𝑒�̅�𝐼𝑛𝑓/𝐸𝑥𝑓,𝑍1,𝑀𝑎𝑥 5.68 

 

 Modifying the SDCAV model to include infiltration and exfiltration involves 

adding terms to the perimeter zone’s sensible and latent heat balance equations.  For 

balancing air flows it’s assumed that the perimeter zone has equal infiltration and 

exfiltration rates.  Equation 5.43 of the original SDCAV model is modified into equation 

5.69 and equation 5.44 of the SDCAV model is modified into equation 5.70. 

 

𝜌𝑐𝑝�̅�𝑆𝐴1(𝑇𝑆𝐴1 − 𝑇𝑍𝐴1) + 𝜌𝑐𝑝�̅�𝐼𝑛𝑓/𝐸𝑥𝑓,𝑍1(𝑇𝑂𝐴 − 𝑇𝑍𝐴1)

+𝑈𝐴̅̅ ̅̅ 𝑍1(𝑇𝑂𝐴 − 𝑇𝑍𝐴1) + �̅�𝑆1 = 0 5.69
 

𝜌ℎ𝑓𝑔�̅�𝑆𝐴1(𝑊𝐶𝐶 −𝑊𝑍𝐴1) + 𝜌ℎ𝑓𝑔�̅�𝐼𝑛𝑓/𝐸𝑥𝑓,𝑍1(𝑊𝑂𝐴 −𝑊𝑍𝐴1) + �̅�𝐿1 = 0 5.70 

 

Modifying the SDCAV model to reflect the preheat equipment change involves 

adding two equations and modifying a third.  Equation 5.71 is added gives the preheat 

coil leaving air temperature, taking the preheat coil set point into account, and equation 

5.72 gives the preheat coil hot water usage.  Equation 5.34 of the original SDCAV 
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model is modified into equation 5.73 to account for outside air passing through a preheat 

coil before being replaced with return air. 

 

𝑇𝑃𝐻 = 𝑀ax(𝑇𝑂𝐴, 𝑇𝑃𝐻,𝑆𝑃) 5.71 

�̅�𝑃𝐻 = 𝜌𝑐𝑝�̅�𝑂𝐴(𝑇𝑃𝐻 − 𝑇𝑂𝐴) 5.72 

�̅�𝑆𝐴𝑇𝑀𝐴 = �̅�𝑂𝐴𝑇𝑃𝐻 + (�̅�𝑆𝐴 − �̅�𝑂𝐴)𝑇𝑅𝐴 5.73 

 

 Figure 47 shows preheat coil leaving air temperatures versus outside air 

temperature for the modified and unmodified SDVAV models.  Below the preheat coil 

setpoint of 45°𝐹 preheat is used to raise outside air to that temperature. 

 

 
Figure 47 – Preheat Coil Leaving Air Temperature for the Modified SDCAV Model 

 

Figure 48 shows cooling coil chilled water usages for the modified and 

unmodified SDVAV models.  Cooling occurs year round in both models, so the cooling 

coil leaving air temperature stays constant at 55°𝐹.  At low outside air temperatures 
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preheat usage causes the cooling coil to perform additional cooling.  At higher 

temperatures extra cooling is necessary due to infiltration and exfiltration. 

 

 
Figure 48 – Cooling Coil Chilled Water Usages for the Modified and Unmodified 

Systems 

 

 Figure 49 shows reheat usages for the modified and unmodified SDVAV models.  

At low temperatures less reheat is required due to infiltration and exfiltration.  At high 

temperatures more reheat is required.  Bands in reheat usages are due to the 

discretization of the people load profile. 
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Figure 49 – Reheat Coil Hot Water Usages for the Modified and Unmodified 

Systems 

 

Single Duct Variable Air Volume (SDVAV) Systems 

 The Single Duct Variable Air Volume system uses the same equipment layout as 

the Single Duct Constant Air Volume system of Figure 42.  However, a variable speed 

drive powers the fan instead of running the fan at a constant speed, as shown in Figure 

50.  This variable speed drive maintains a static pressure setpoint approximately 2/3 of 

the way down the duct.  Zone terminal boxes independently control dampers to provide 

supply air flow for cooling.  Reheat is used if a zone needs heating, which only occurs 

when the terminal box is providing the minimum possible amount of flow. 

 



 

72 

 

 
Figure 50 – A Single Duct Variable Air Volume System with Static Pressure 

Control 

 

SDVAV Parameters 

Table 23 gives the values of system wide parameters that are specific to the 

SDVAV model.  The system uses a constant outside air percentage of 20% of the current 

supply air flow, which translates to an outside air fraction of 0.2.  The cooling coil cools 

entering air to a fixed setpoint of 55°F. 

The remaining parameters specify the operation of the fan.  The motor that drives 

the fan has a constant efficiency of 88%.  With all zone terminal box dampers fully open 

the system has a maximum supply air flow of 1.45 
𝐶𝐹𝑀

𝑓𝑡2
.  At a design operating fraction 

of 0.625 the system has a velocity pressure of 0.25 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂, a total pressure of 6.0 

𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂, and a total fan horsepower of 1.3 
𝐻𝑃

𝑘𝐶𝐹𝑀
.  At design conditions the system 

has a static pressure set point of 2.0 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂, but is currently operating with a static 

pressure set point of 1.5 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂.  Figure 51 shows these parameters on the fan and 

system curves that they define. 
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Table 23 – SDVAV System Parameters 

Parameter Symbol Value Unit 

Outside Air Fraction 𝑋𝑂𝐴 0.2 0 − 1 

Cooling Coil Set Point Temperature 𝑇𝐶𝐶,𝑆𝑃 55 °𝐹 

Fan Motor Efficiency 휂𝑀𝑜𝑡𝑜𝑟 0.88 0 − 1 

Maximum Supply Air Flow at Design 

Conditions 
�̅�𝑆𝐴,𝑀𝑎𝑥,𝐷𝑒𝑠𝑖𝑔𝑛 1.45 

𝐶𝐹𝑀

𝑓𝑡2
 

Fan Design Fraction of Maximum Flow 𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛 0.625 0 − 1 

Fan Design Velocity Pressure 𝑃𝑉,𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛 0.25 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Fan Design Total Pressure 𝑃𝑇,𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛 6.0 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Fan Design Total Horsepower 𝐻�̃�𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛 1.3 
𝐻𝑃

𝑘𝐶𝐹𝑀
 

Design Static Pressure Set Point 𝑃𝑆𝑃,𝐷𝑒𝑠𝑖𝑔𝑛 2.0 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Current Static Pressure Set Point 𝑃𝑆𝑃,𝐶𝑢𝑟𝑟 1.5 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 
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Figure 51 – Fan Curve Inputs for the SDVAV Model 

 

Table 24 gives zone parameters for the SDVAV system.  Heating and cooling 

setpoints and minimum and maximum supply air flow settings vary by zone.  These 

minimum and maximum supply air flow settings control how much air terminal boxes 

will try to provide.  The fan system is modeled separately.  The fan and variable speed 

drive’s physical characteristics and the static pressure set point ultimately determine how 

much air flow the system can provide.  This model assumes that the fan can at least 

provide enough air flow to meet the minimum terminal box flow rates. 
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Table 24 – SDVAV Zone Parameters 

Parameter 
Symbol 

(Zone i) 

Zone 1  

(Perimeter 

Office) 

Zone 2  

(Interior 

Office) 

Zone 3 

(Computer 

Lab) 

Unit 

Zone Heating Set 

Point Temperature 
𝑇𝑍𝐴𝑖,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 68 68 67 °𝐹 

Zone Cooling Set 

Point Temperature 
𝑇𝑍𝐴𝑖,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 73 73 71 °𝐹 

Minimum Supply 

Air Flow 

(Normalized) 

�̅�𝑆𝐴𝑖,𝑀𝑖𝑛 0.3 0.3 0.3 
𝐶𝐹𝑀

𝑓𝑡2
 

Maximum Supply 

Air Flow 

(Normalized) 

�̅�𝑆𝐴𝑖,𝑀𝑎𝑥 1.5 1.0 2.0 
𝐶𝐹𝑀

𝑓𝑡2
 

 

Fan Curve Functions 

Figure 52 shows the shape of typical static pressure and brake horsepower curves 

for a backward curved centrifugal fan [73].  This figure also gives cubic polynomials fit 

to this data that can be used in a constrained optimization based SDVAV model.  The 

curves and equations shown in this figure and equations 5.74 and 5.75 are unitless.  They 

represent the relative magnitude of the fan static pressure and brake horsepower curves 

as the fraction of a fan’s maximum open flow increases and must be scaled by an 

appropriate factor in an actual model. 
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Figure 52 – Typical Static Pressure and Brake Horsepower Power Curves for a 

Backward Curved Centrifugal Fan 

 

�̂�𝑆,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛) = −1.3969𝑋𝐹𝑎𝑛
3 + 0.0476𝑋𝐹𝑎𝑛

2 + 0.3414𝑋𝐹𝑎𝑛 + 1 5.74 

𝐵ℎ�̂�𝐹𝑎𝑛(𝑋𝐹𝑎𝑛) = −0.7415𝑋𝐹𝑎𝑛
3 + 0.0146𝑋𝐹𝑎𝑛

2 + 1.4807𝑋𝐹𝑎𝑛 + 0.263 5.75 

 

 The typical fan curve shapes used came in the form of static pressure and brake 

horsepower curves in terms of a fan’s flow with zero resistance.  However, the SDVAV 

model uses fan total pressure and brake horsepower in terms of actual supply air flow 

rates.  Creating these functions involves scaling and converting equations in the form of 

equations 5.67 and 5.77 into the form shown in equations 5.78 and 5.79 with units of 𝑝𝑠𝑖 

and 
𝐻𝑝

𝑓𝑡2
. 

 

�̂�𝑆,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛) = �̂�3𝑋𝐹𝑎𝑛
3 + �̂�2𝑋𝐹𝑎𝑛

2 + �̂�1𝑋𝐹𝑎𝑛 + �̂�0 5.76 

𝐵ℎ�̂�𝐹𝑎𝑛(𝑋𝐹𝑎𝑛) = �̂�3𝑋𝐹𝑎𝑛
3 + �̂�2𝑋𝐹𝑎𝑛

2 + �̂�1𝑋𝐹𝑎𝑛 + �̂�0 5.77 

𝑃𝑇,𝐹𝑎𝑛(�̅�𝑆𝐴) = 𝑎3�̅�𝑆𝐴
3
+ 𝑎2�̅�𝑆𝐴

2
+ 𝑎1�̅�𝑆𝐴 + 𝑎0 5.78 
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𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐹𝑎𝑛(�̅�𝑆𝐴) = 𝑏3�̅�𝑆𝐴

3
+ 𝑏2�̅�𝑆𝐴

2
+ 𝑏1�̅�𝑆𝐴 + 𝑏0 5.79 

 

 A fan’s total pressure is the sum of the fan’s static and velocity pressures.  

Equation 5.80 shows this balance at design conditions.  Replacing the values in equation 

5.80 for known input variables results in equation 5.81.  In equation 5.81 only 𝛼𝑃𝑠 is 

known, so it can be solved for to give equation 5.82.  

 

𝑃𝑇,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛) = 𝑃𝑆,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛) + 𝑃𝑉,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛) 5.80 

𝑃𝑇,𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛 = 𝛼𝑃𝑠�̂�𝑆,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛) + 𝑃𝑉,𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛 5.81 

𝛼𝑃𝑠 =
𝑃𝑇,𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛 − 𝑃𝑉,𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛

�̂�𝑆,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛)
5.82 

 

Equation 5.83 gives the total pressure drop across a fan in terms of a general a 

general 𝑋𝐹𝑎𝑛.  Substituting equation 5.74 for the normalized static pressure drop and 

adding the equation for fan velocity pressure gives equation 5.84.  Rearranging this in 

terms of polynomial coefficients of 𝑋𝐹𝑎𝑛 gives equation 5.85. 

 

𝑃𝑇,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛) = 𝛼𝑃𝑠�̂�𝑆,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛) + 𝑃𝑉,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛) 5.83 

𝑃𝑇,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛) = 𝛼𝑃𝑠(�̂�3𝑋𝐹𝑎𝑛
3 + �̂�2𝑋𝐹𝑎𝑛

2 + �̂�1𝑋𝐹𝑎𝑛 + �̂�0) +
𝑃𝑉,𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛

𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛
2 𝑋𝐹𝑎𝑛

2 5.84 

𝑃𝑇,𝐹𝑎𝑛(𝑋𝐹𝑎𝑛) = 𝛼𝑃𝑠�̂�3𝑋𝐹𝑎𝑛
3 + (𝛼𝑃𝑠�̂�2 +

𝑃𝑉,𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛

𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛
2)𝑋𝐹𝑎𝑛

2

+𝛼𝑃𝑠�̂�1𝑋𝐹𝑎𝑛 + 𝛼𝑃𝑠�̂�0 5.85

 

 

 Equation 5.86 gives the relationship between a fan’s air flow and its fraction of 

maximum flow at design conditions.  The variable 휁 is defined in equation 5.86 to 

reduce the length of other equations.  Substituting 𝑋𝐹𝑎𝑛 in equation 5.85 in terms of �̅�𝑆𝐴 

results in equation 5.89, the fan total pressure curve used in the SDVAV models. 
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�̅�𝑆𝐴,𝑀𝑎𝑥,𝐷𝑒𝑠𝑖𝑔𝑛

�̅�𝑆𝐴
=
𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛

𝑋𝐹𝑎𝑛
5.86 

𝑋𝐹𝑎𝑛 =
𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛

�̅�𝑆𝐴,𝑀𝑎𝑥,𝐷𝑒𝑠𝑖𝑔𝑛
�̅�𝑆𝐴 = 휁�̅�𝑆𝐴 5.87 

휁 =
𝑋𝐷𝑒𝑠𝑖𝑔𝑛

�̅�𝑆𝐴,𝑀𝑎𝑥,𝐷𝑒𝑠𝑖𝑔𝑛
5.88 

𝑃𝑇,𝐹𝑎𝑛(�̅�𝑆𝐴) = 𝛼𝑃𝑠�̂�3휁
3�̅�𝑆𝐴

3
+ (𝛼𝑃𝑠�̂�2 +

𝑃𝑉,𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛

𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛
2)휁

2�̅�𝑆𝐴
2

+𝛼𝑃𝑠�̂�1휁�̅�𝑆𝐴 + 𝛼𝑃𝑠�̂�0 5.89

 

 

 Equation 5.90 gives the fan design horsepower normalized to floor area instead 

of 
𝐻𝑃

𝑘𝐶𝐹𝑀
.  Taking motor efficiency into account gives the brake horsepower in equation 

5.91.  Equation 5.92 shows how the typical brake horsepower cure of equation 5.75 is 

scaled.  5.93 gives the formula for 𝛼𝐵ℎ𝑝 using equation 5.92 and known parameters at 

design conditions.  Substituting the typical brake horsepower curve of equation 5.75 into 

equation 5.92 gives equation 5.94.  Substituting 𝑋𝐹𝑎𝑛 in equation 5.94 in terms of �̅�𝑆𝐴 

results in equation 5.95, the fan brake horsepower curve used in the SDVAV models.  

Table 25 gives the values of the fan curve coefficients used in the final model, and 

equations 5.96 and 5.97 give equations 5.94 and 5.95 with all values substituted. 

 

𝐻𝑝̅̅ ̅̅ 𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛 = 𝐻�̃�𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛�̅�𝑆𝐴,𝑀𝑎𝑥,𝐷𝑒𝑠𝑖𝑔𝑛𝛼𝐶𝑓𝑚𝑇𝑜𝐾𝐶𝑓𝑚 5.90 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛 = 𝐻𝑝̅̅ ̅̅ 𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛휂𝑀𝑜𝑡𝑜𝑟 5.91 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐹𝑎𝑛(𝑋𝐹𝑎𝑛) = 𝛼𝐵ℎ𝑝𝐵ℎ�̂�𝐹𝑎𝑛(𝑋𝐹𝑎𝑛) 5.92 

𝛼𝐵ℎ𝑝 =
𝐵ℎ𝑝̅̅ ̅̅ ̅̅

𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛

𝐵ℎ�̂�𝐹𝑎𝑛(𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛)
5.93 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝑓𝑎𝑛(𝑋𝐹𝑎𝑛) = 𝛼𝐵ℎ𝑝�̂�3𝑋𝐹𝑎𝑛

3 + 𝛼𝐵ℎ𝑝�̂�2𝑋𝐹𝑎𝑛
2 + 𝛼𝐵ℎ𝑝�̂�1𝑋𝐹𝑎𝑛 + 𝛼𝐵ℎ𝑝�̂�0 5.94 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝑓𝑎𝑛(�̅�𝑆𝐴) = 𝛼𝐵ℎ𝑝�̂�3휁

3�̅�𝑆𝐴
3
+ 𝛼𝐵ℎ𝑝�̂�2휁

2�̅�𝑆𝐴
2
+ 𝛼𝐵ℎ𝑝�̂�1휁�̅�𝑆𝐴 + 𝛼𝐵ℎ𝑝�̂�0 5.95 
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Table 25 – Denormalized Fan Curve Coefficients for the SDVAV Model 

Coefficient Formula Value 

𝑎3 𝛼𝑃𝑠�̂�3휁
3 -0.722 

𝑎2 (𝛼𝑃𝑠�̂�2 +
𝑃𝑉,𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛

𝑋𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛
2)휁

2 0.176 

𝑎1 𝛼𝑃𝑠�̂�1휁 0.95 

𝑎0 𝛼𝑃𝑠�̂�0 6.45 

𝑏3 𝛼𝐵ℎ𝑝�̂�3휁
3 -9.7E-5 

𝑏2 𝛼𝐵ℎ𝑝�̂�2휁
2 4.44E-6 

𝑏1 𝛼𝐵ℎ𝑝�̂�1휁 1.05E-3 

𝑏0 𝛼𝐵ℎ𝑝�̂�0 4.31E-4 

 

𝑃𝑇,𝐹𝑎𝑛(�̅�𝑆𝐴) = −0.722�̅�𝑆𝐴
3
+ 0.176�̅�𝑆𝐴

2
+ 0.95�̅�𝑆𝐴 + 6.45 5.96 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐹𝑎𝑛(�̅�𝑆𝐴) = −9.7𝐸−5�̅�𝑆𝐴

3
+ 4.44𝐸−6�̅�𝑆𝐴

2
+ 1.05𝐸−3�̅�𝑆𝐴 + 4.31𝐸

−4 5.97 

 

The SDVAV Model 

 Figure  gives a model for the SDVAV system.  Like the SDCAV model of Figure 

, the constraints describe how equipment in the system operates, define temperature 

errors, and give definitions for overall energy usages over a time step period.  However, 

this model uses lexicographic objectives to describe how the system seeks to control 

zone temperatures while minimizing reheat and air flow.  Minimizing zone temperature 

error, the sum of deviations from the valid set point range serves as the highest objective.  

Minimizing air flow as the second objective ensures that the lowest amounts of reheat 

and air flow are used while zone temperatures are controlled as close to the 

heating/cooling set point range as possible. 
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minimize: 
(in order) 

𝐸𝑇𝑍𝐴 5.98 
�̅�𝑆𝐴 5.99 

�̅�𝑅𝐻,𝑇𝑜𝑡𝑎𝑙 5.100 

subject to: AHU Temperature Balance 
𝑇𝑀𝐴 = 𝑋𝑂𝐴𝑇𝑂𝐴 + (1 − 𝑋𝑂𝐴)𝑇𝑅𝐴 5.101 

𝜌𝑐𝑝�̅�𝑆𝐴∆𝑇𝑆𝐹 = �̅�𝐹𝑎𝑛,𝐶𝑢𝑟𝑟𝛼𝐾𝑤𝑇𝑜𝐵𝑡𝑢𝑃𝑒𝑟𝐻𝑜𝑢𝑟 5.102 
𝑇𝑆𝐹 = 𝑇𝑀𝐴 + ∆𝑇𝑆𝐹 5.103 

𝑇𝐶𝐶 = 𝑀𝑖𝑛(𝑇𝑆𝐹 , 𝑇𝐶𝐶,𝑆𝑃) 5.104 

�̅�𝑆𝐴𝐴𝑍𝑇𝑅𝐴 = �̅�𝑆𝐴1𝐴𝑍1𝑇𝑍𝐴1 + �̅�𝑆𝐴2𝐴𝑍2𝑇𝑍𝐴2
+�̅�𝑆𝐴3𝐴𝑍3𝑇𝑍𝐴3 5.105

 

 
AHU Humidity Balance 

𝑊𝑀𝐴 = 𝑋𝑂𝐴𝑊𝑂𝐴 + (1 − 𝑋𝑂𝐴)𝑊𝑅𝐴 5.106 
𝑊𝐶𝐶,𝑆𝑎𝑡𝑃𝑂𝐴 = (𝑀𝑟𝑎𝑡𝑖𝑜 +𝑊𝐶𝐶,𝑆𝑎𝑡)𝑃𝑤𝑠(𝑇𝐶𝐶) 5.107 

𝑊𝐶𝐶 = 𝑀𝑖𝑛(𝑊𝑀𝐴,𝑊𝐶𝐶,𝑆𝑎𝑡) 5.108 

�̅�𝑆𝐴𝐴𝑍𝑊𝑅𝐴 = �̅�𝑆𝐴1𝐴𝑍1𝑊𝑍𝐴1 + �̅�𝑆𝐴2𝐴𝑍2𝑊𝑍𝐴2

+�̅�𝑆𝐴3𝐴𝑍3𝑊𝑍𝐴3 5.109
 

 
Fan Pressure and Power Calculations 

𝑃𝑇,𝐹𝑎𝑛(�̅�𝑆𝐴,𝑀𝑎𝑥,𝐷𝑒𝑠𝑖𝑔𝑛) = 𝑃𝑆𝑃,𝐷𝑒𝑠𝑖𝑔𝑛 + 𝛼𝑆𝑦𝑠�̅�𝑆𝐴,𝑀𝑎𝑥,𝐷𝑒𝑠𝑖𝑔𝑛
2
5.110 

𝑃𝑇,𝐹𝑎𝑛(�̅�𝑆𝐴,𝑀𝑎𝑥,𝐶𝑢𝑟𝑟) = 𝑃𝑆𝑃,𝐶𝑢𝑟𝑟 + 𝛼𝑆𝑦𝑠�̅�𝑆𝐴,𝑀𝑎𝑥,𝐶𝑢𝑟𝑟
2

5.111 

𝑃𝑇,𝐹𝑎𝑛,𝐶𝑢𝑟𝑟 = 𝑃𝑆𝑃,𝐶𝑢𝑟𝑟 + 𝛼𝑆𝑦𝑠�̅�𝑆𝐴
2

5.112 

𝑃𝑇,𝐹𝑎𝑛,𝐶𝑢𝑟𝑟
𝑃𝑇,𝐹𝑎𝑛,𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

=
�̅�𝑆𝐴

2

�̅�𝑆𝐴,𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡
2 5.113 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐹𝑎𝑛,𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = 𝐵ℎ𝑝̅̅ ̅̅ ̅̅

𝐹𝑎𝑛(�̅�𝑆𝐴,𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) 5.114 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐹𝑎𝑛,𝐶𝑢𝑟𝑟

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐹𝑎𝑛,𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

=
�̅�𝑆𝐴

3

�̅�𝑆𝐴,𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡
3 5.115 

 
AHU Flow Balance 

�̅�𝑆𝐴𝐴𝑍 = �̅�𝑆𝐴1𝐴𝑍1 + �̅�𝑆𝐴2𝐴𝑍2 + �̅�𝑆𝐴3𝐴𝑍3 5.116 
�̅�𝑆𝐴 ≤ �̅�𝑆𝐴,𝑚𝑎𝑥,𝑐𝑢𝑟𝑟 5.117 

 
Zone 1 

𝑇𝑆𝐴1 ≥ 𝑇𝐶𝐶 5.118 
𝜌𝑐𝑝�̅�𝑆𝐴1(𝑇𝑆𝐴1 − 𝑇𝑍𝐴1) + 𝑈𝐴̅̅ ̅̅ 𝑍1(𝑇𝑂𝐴 − 𝑇𝑍𝐴1) + �̅�𝑆1 = 0 5.119 

𝜌ℎ𝑓𝑔�̅�𝑆𝐴1(𝑊𝐶𝐶 −𝑊𝑍𝐴1) + �̅�𝐿1 = 0 5.120 

�̅�𝑆𝐴1,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴1 ≤ �̅�𝑆𝐴1,𝑀𝑎𝑥 5.121  

Figure 53 – Model of a Single Duct Variable Air Volume System 
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subject to: Zone 2 
𝑇𝑆𝐴2 ≥ 𝑇𝐶𝐶 5.122 

𝜌𝑐𝑝�̅�𝑆𝐴2(𝑇𝑆𝐴2 − 𝑇𝑍𝐴2) + 𝑈𝐴̅̅ ̅̅ 𝑍2(𝑇𝑂𝐴 − 𝑇𝑍𝐴2) + �̅�𝑆2 = 0 5.123 

𝜌ℎ𝑓𝑔�̅�𝑆𝐴2(𝑊𝐶𝐶 −𝑊𝑍𝐴2) + �̅�𝐿2 = 0 5.124 

�̅�𝑆𝐴2,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴2 ≤ �̅�𝑆𝐴2,𝑀𝑎𝑥 5.125 
 

Zone 3 
𝑇𝑆𝐴3 ≥ 𝑇𝐶𝐶 5.126 

𝜌𝑐𝑝�̅�𝑆𝐴3(𝑇𝑆𝐴3 − 𝑇𝑍𝐴3) + 𝑈𝐴̅̅ ̅̅ 𝑍3(𝑇𝑂𝐴 − 𝑇𝑍𝐴3) + �̅�𝑆3 = 0 5.127 

𝜌ℎ𝑓𝑔�̅�𝑆𝐴3(𝑊𝐶𝐶 −𝑊𝑍𝐴3) + �̅�𝐿3 = 0 5.128 

�̅�𝑆𝐴3,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴3 ≤ �̅�𝑆𝐴3,𝑀𝑎𝑥 5.129 
 

Zone Temperature Errors 
𝐸𝑇𝑍𝐴1 ≥ 0 5.130 

𝐸𝑇𝑍𝐴1 ≥ 𝑇𝑍𝐴1,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 − 𝑇𝑍𝐴1 5.131 
𝐸𝑇𝑍𝐴1 ≥ 𝑇𝑍𝐴1 − 𝑇𝑍𝐴1,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 5.132 𝐸𝑇𝑍,𝑀𝑎𝑥 ≥ 0 𝐴. 𝑓 

𝐸𝑇𝑍𝐴2 ≥ 0 5.133 
𝐸𝑇𝑍𝐴2 ≥ 𝑇𝑍𝐴2,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 − 𝑇𝑍𝐴2 5.134 
𝐸𝑇𝑍𝐴2 ≥ 𝑇𝑍𝐴2 − 𝑇𝑍𝐴2,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 5.135 

𝐸𝑇𝑍𝐴3 ≥ 0 5.136 
𝐸𝑇𝑍𝐴3 ≥ 𝑇𝑍𝐴3,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 − 𝑇𝑍𝐴3 5.137 
𝐸𝑇𝑍𝐴3 ≥ 𝑇𝑍𝐴3 − 𝑇𝑍𝐴3,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 5.138 
𝐸𝑇𝑍𝐴 = 𝐸𝑇𝑍𝐴1 + 𝐸𝑇𝑍𝐴2 + 𝐸𝑇𝑍𝐴3 5.139 

 

Energy Usage 

�̅�𝐹𝑎𝑛 =
𝐵ℎ𝑝̅̅ ̅̅ ̅̅

𝑓𝑎𝑛,𝑐𝑢𝑟𝑟𝛼𝐻𝑝𝑇𝑜𝑊𝑎𝑡𝑡𝑠

휂𝑀𝑜𝑡𝑜𝑟
5.140 

�̅�𝑇𝑜𝑡𝑎𝑙 = �̅�𝐿&𝑃 + �̅�𝐹𝑎𝑛 5.141 
�̅�𝐶𝐶,𝑆 = 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐹 − 𝑇𝐶𝐶) 5.142 

�̅�𝐶𝐶,𝐿 = 𝜌ℎ𝑓𝑔�̅�𝑆𝐴(𝑊𝑀𝐴 −𝑊𝐶𝐶) 5.143 

�̅�𝐶𝐶,𝑇𝑜𝑡𝑎𝑙 = �̅�𝐶𝐶,𝑆 + �̅�𝐶𝐶,𝐿 5.144 

�̅�𝑅𝐻1 = 𝜌𝑐𝑝�̅�𝑆𝐴1(𝑇𝑆𝐴1 − 𝑇𝐶𝐶) 5.145 

�̅�𝑅𝐻2 = 𝜌𝑐𝑝�̅�𝑆𝐴2(𝑇𝑆𝐴2 − 𝑇𝐶𝐶) 5.146 

�̅�𝑅𝐻3 = 𝜌𝑐𝑝�̅�𝑆𝐴3(𝑇𝑆𝐴3 − 𝑇𝐶𝐶) 5.147 

�̅�𝑅𝐻,𝑇𝑜𝑡𝑎𝑙 = �̅�𝑅𝐻1 + �̅�𝑅𝐻2 + �̅�𝑅𝐻3 5.148 

Figure 53 Continued 
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subject to: Costs 
𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = �̅�𝐹𝑎𝑛,𝐶𝑢𝑟𝑟𝑃𝑟𝑖𝑐𝑒𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 5.149 

𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝐶ℎ𝑊 = 𝛼𝑀𝑀𝐵𝑡𝑢𝑃𝑒𝑟𝐵𝑡𝑢�̅�𝐶𝐶,𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝐶ℎ𝑊 5.150 

𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝐻𝑊 = 𝛼𝑀𝑀𝐵𝑡𝑢𝑃𝑒𝑟𝐵𝑡𝑢�̅�𝑅𝐻,𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝐻𝑊 5.151 

𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝑇𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝐶ℎ𝑊 + 𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅

𝐻𝑊 5.152 
Figure 53 Continued 

 

 Figure 54 shows zone temperatures for the SDVAV model of Figure .  Bands in 

this figure are due to the discretization of load schedules.  As outside air temperatures 

and loads increase each zone transitions from heating mode to cooling mode.  Figure 55 

shows zone supply air flows for the model.  Supply air flows also increase as outside air 

temperatures and loads for each zone rise.  Figure 56 plots supply air flow versus reheat 

usage for each zone, which verifies that reheat is only used when a zone is using its 

minimum required air flow. 

 

 
Figure 54 – SDVAV Zone Temperatures 
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Figure 55 – SDVAV Supply Air and Zone Temperatures 

 

 
Figure 56 – SDVAV Supply Air Flow versus Reheat Usage 

 

Optimizing Energy Cost 

The original SDVAV model adjusts flow rates so that fan power and reheat are 

minimized while achieving zone temperature control.  This optimization mimics the 

behavior of a variable air volume control system with a fan controlled to maintain a 

static pressure setpoint.  Other control system behaviors can be simulated by modifying 

the model’s objective functions. 

A control behavior that optimizes energy cost can be simulated by replacing the 

last two objective functions of the original SDVAV model with the total energy cost 

𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝑇𝑜𝑡𝑎𝑙.  Figure 57 shows the resulting lexicographic objectives. 
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minimize: 
(in order) 

𝐸𝑇𝑍𝐴 5.153 
𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅

𝑇𝑜𝑡𝑎𝑙 5.154 

Figure 57 – Lexicographic Objective Functions to Optimize Energy Cost for the 

SDVAV Model 

 

 Figure 58 shows the monthly energy costs for the cost optimized SDVAV model.  

These costs turn out to be the same as the energy costs as the original SDVAV model.  

This shows that the original SDVAV control strategy is an optimal control strategy for 

the free variables of this model under the simulated conditions. 

 

 

Figure 58 – Monthly Energy Costs for the Cost Optimized SDVAV Model 

 

The original and cost optimization SDVAV models both use the same 

lexicographic nonlinear programming structure.  This allows both problems to be solved 

in a similar amount of time.  It also allows any variable that varies on each time step be 

optimized with nonlinear programming methods that take advantage of a problem’s 

gradients and second derivatives. 
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Cooling Coil Setpoint Optimization 

 The cooling coil set point of the SDVAV model can be optimized on each time 

step by replacing its constant value with minimum and maximum bounds.  This involves 

adding equation 5.155 to the original SDVAV model.  During a simulation time step the 

cooling coil set point varies freely between the two bounds while the objective functions 

force it to a value that optimizes cost while achieving zone temperature control.  Table 

26 shows the values of the bounds used in simulations. 

 

𝑇𝐶𝐶,𝑆𝑃,𝑀𝑖𝑛 ≤ 𝑇𝐶𝐶,𝑆𝑃 ≤ 𝑇𝐶𝐶,𝑆𝑃,𝑀𝑎𝑥 5.155 

 

Table 26 – SDVAV Cooling Coil Setpoint Optimization Additional Parameters 

Parameter Symbol Value Unit 

Minimum Allowable 

Cooling Coil Set Point 

Temperature 

𝑇𝐶𝐶,𝑆𝑃,𝑀𝑖𝑛 53 °𝐹 

Maximum Allowable 

Cooling Coil Set Point 

Temperature 

𝑇𝐶𝐶,𝑆𝑃,𝑀𝑎𝑥 65 °𝐹 

 

In general, constant variables that vary from time step to time step can be 

optimized by removing their constant values.  Minimum and maximum bounds can then 

be added to constraint parameters within a specified range.  This allows optimal 

parameter settings to be calculated without having to iterate on multiple simulations. 

 High cooling coil setpoints reduce the dehumidification abilities of SDVAV 

systems.  Taking humidity control into account avoids settings that result in high zone 

relative humidities.  To implement this, first equations 5.156–5.158 are added to the 

SDVAV cost optimization model for calculating the relative humidity of each zone.  

Next, equations 5.159– 5.165 are added to define the relative humidity control error.  

The relative humidity error of each zone is defined as the amount its relative humidity 

goes above a maximum allowed value.  Finally, the total relative humidity error from 
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equation 5.165 is added.  This total error is defined as the sum of the individual zone 

relative humidity errors.  No minimum relative humidity limits are given, and the 

equations 5.156–5.165 allow for relative humidities over 100% since saturation isn’t 

modeled. 

 

𝑃𝑤𝑠(𝑇𝑍𝐴1)(𝑊𝑍𝐴1 +𝑀𝑟𝑎𝑡𝑖𝑜)𝑅ℎ𝑍𝐴1 = 100𝑃𝑂𝐴𝑊𝑍𝐴1 5.156 

𝑃𝑤𝑠(𝑇𝑍𝐴2)(𝑊𝑍𝐴2 +𝑀𝑟𝑎𝑡𝑖𝑜)𝑅ℎ𝑍𝐴2 = 100𝑃𝑂𝐴𝑊𝑍𝐴2 5.157 

𝑃𝑤𝑠(𝑇𝑍𝐴3)(𝑊𝑍𝐴3 +𝑀𝑟𝑎𝑡𝑖𝑜)𝑅ℎ𝑍𝐴3 = 100𝑃𝑂𝐴𝑊𝑍𝐴3 5.158 

𝐸𝑅ℎ𝑍𝐴1 ≥ 0 5.159 

𝐸𝑅ℎ𝑍𝐴1 ≥ 𝑅ℎ𝑍𝐴1 − 𝑅ℎ𝑀𝑎𝑥,𝑍1 5.160 

𝐸𝑅ℎ𝑍𝐴2 ≥ 0 5.161 

𝐸𝑅ℎ𝑍𝐴2 ≥ 𝑅ℎ𝑍𝐴2 − 𝑅ℎ𝑀𝑎𝑥,𝑍2 5.162 

𝐸𝑅ℎ𝑍𝐴3 ≥ 0 5.163 

𝐸𝑅ℎ𝑍𝐴3 ≥ 𝑅ℎ𝑍𝐴3 − 𝑅ℎ𝑀𝑎𝑥,𝑍3 5.164 

𝐸𝑅ℎ𝑍𝐴 = 𝐸𝑅ℎ𝑍𝐴1 + 𝐸𝑅ℎ𝑍𝐴2 + 𝐸𝑅ℎ𝑍𝐴3 5.165 

 

The objective functions of the original cooling coil setpoint optimization model 

ensure that energy costs are minimized while keeping zone temperatures as close as 

possible to their set points.  Adding relative humidity control so that zones avoid high 

humidity levels involves adding an additional objective function to minimize the overall 

zone relative humidity error 𝐸𝑅ℎ𝑍𝐴.  This objective function is placed between the zone 

temperature error minimization and cost minimization as shown in Figure 59.  This 

ordering prioritizes temperature control over humidity control and humidity control is 

prioritized over energy cost. 

Turning the cooling coil set point from a constant to a variable creates an 

additional degree of freedom in the simulation state.  With zone temperature setpoint 

ranges it’s possible that multiple cooling coil set points will achieve the proper control.  

To resolve these ambiguities a fourth objective function is added to use the highest 

cooling coil set point that achieves zone temperature and humidity control.  Figure 59 
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shows this fourth objective of equation 5.169 placed after the first three objectives of 

equations 5.166–5.168.  This causes a nonlinear programming algorithm to choose the 

highest cooling coil set point when multiple set points achieve the same cost 

optimization. 

 

minimize: 
(in order) 

𝐸𝑇𝑍𝐴 5.166 
𝐸𝑅ℎ𝑍𝐴 5.167 

𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝑇𝑜𝑡𝑎𝑙 5.168 

−𝑇𝐶𝐶,𝑆𝑃 5.169 

Figure 59 – New Objective Functions for Achieving Relative Humidity Control 

while Optimizing Cooling Coil Setpoints 

 

 Figure 60 shows the cooling coil set points that optimize energy costs while 

maintaining zone temperature and relative humidity control.  At high temperatures a low 

cooling coil set point is required, while at lower temperatures a higher value can be used.  

Yearly energy costs for the building amount to $30,326 when a cooling coil set point of 

55°𝐹 is used, and $26,528 when the cooling coil set point is optimized.  This yearly 

energy savings of 12.5% can serve as an upper bound on the energy savings potential of 

using a cooling coil schedule instead of a constant value. 
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Figure 60 – Optimal Cooling Coil Set Points for the SDVAV Cost Optimization 

Model 

 

Dual Duct Variable Air Volume (DDVAV) Systems 

 Dual Duct Variable Air Volume systems supply cooled and heated air to zones 

using separate ducts.  One duct supplies cool air, the other supplies heated air, and 

mixing boxes mixes controlled amounts of air from each duct before supplying the 

mixed air to zones.  The schematic of Figure 61 shows a version of this system that uses 

one fan to pressurize both ducts. 
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Figure 61 – DDVAV System Layout 

 

 The following DDVAV model uses the same zone cooling and heating setpoints 

and minimum and maximum air flow rates as the SDVAV system.  These parameters are 

given in Table 24.  Outside air for DDVAV simulations is kept at a constant rate of 20% 

of the supply air flow.  The cold deck setpoint is a constant 55°𝐹 and the hot deck 

setpoint is a constant 120°𝐹.  These parameters along with the fan temperature rise and 

power at maximum flow are given in Table 27.  Equation 5.170 gives the fan power at 

maximum flow translated into 
𝑊

𝑓𝑡2
, which is given in Table 28. 

 

Table 27 – DDVAV System Parameters 

Parameter Symbol Value Unit 

Outside Air Fraction 𝑋𝑂𝐴 0.2 0 − 1 

Cold Deck Set Point Temperature 𝑇𝐶𝐷,𝑆𝑃 55 °𝐹 

Hot Deck Set Point Temperature 𝑇𝐻𝐷,𝑆𝑃 120 °𝐹 

Maximum Fan Delta-T ∆𝑇𝑆𝐹,𝑀𝑎𝑥 2.0 °𝐹 

Fan Maximum Total Horsepower 𝐻�̃�𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛 0.8 
𝐻𝑃

𝑘𝐶𝐹𝑀
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�̅�𝐹𝑎𝑛 = 𝐻�̃�𝐹𝑎𝑛,𝐷𝑒𝑠𝑖𝑔𝑛�̅�𝑆𝐴,𝑀𝑎𝑥,𝐷𝑒𝑠𝑖𝑔𝑛𝛼𝐶𝑓𝑚𝑇𝑜𝐾𝐶𝑓𝑚𝛼𝐻𝑝𝑇𝑜𝑊𝑎𝑡𝑡𝑠 5.170 

 

Table 28 – Calculated DDVAV System Parameters 

Parameter Symbol Value Unit 

Fan Maximum Energy Usage �̅�𝐹𝑎𝑛,𝑀𝑎𝑥 1.54 
𝑊

𝑓𝑡2
 

 

A constrained optimization based DDVAV model is given in Figure .  Airflow 

balance, temperature balance, and humidity balance equations are modified from the 

SDCAV and SDVAV models to account for the new duct layout.  Also, the supply fan 

temperature rise and energy usage are assumed to be quadratic functions of the current 

fraction of supply air flow. 

For system control objectives the zone temperature error is minimized first so 

that supply air flow rates can take whatever values necessary to achieve zone 

temperature control.  Next, supply air flow is minimized since DDVAV control systems 

are designed to use as little flow as possible.  Minimizing this objective using heating 

and cooling set points at a zone’s minimum flow can result in situations where a variety 

of cold and hot deck flows achieve a valid zone temperature.  To give a single solution, 

the total hot deck flow is minimized as the third objective so that air flow through the 

cold deck is preferred. 

 

minimize: 
(in order) 

𝐸𝑇𝑍𝐴,𝑆𝑢𝑚 5.171 
�̅�𝑆𝐴 5.172 

�̅�𝐻𝐷 5.173 

subject to: AHU Air Flow Balance 
�̅�𝑆𝐴𝐴𝑍 = �̅�𝑆𝐴1𝐴𝑍1 + �̅�𝑆𝐴2𝐴𝑍2 + �̅�𝑆𝐴3𝐴𝑍3 5.174 

�̅�𝑆𝐴 = �̅�𝐶𝐷 + �̅�𝐻𝐷 5.175 
�̅�𝐶𝐷𝐴𝑍 = �̅�𝐶𝐷1𝐴𝑍1 + �̅�𝐶𝐷2𝐴𝑍2 + �̅�𝐶𝐷3𝐴𝑍3 5.176 

�̅�𝐻𝐷𝐴𝑍 = �̅�𝐻𝐷1𝐴𝑍1 + �̅�𝐻𝐷2𝐴𝑍2 + �̅�𝐻𝐷3𝐴𝑍3 5.177 
Figure 62 – Model of a Dual Duct Variable Air Volume System (Continued Below) 
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subject to: AHU Temperature Balance 
�̅�𝑆𝐴𝑇𝑀𝐴 = �̅�𝑂𝐴𝑇𝑂𝐴 + (�̅�𝑆𝐴 − �̅�𝑂𝐴)𝑇𝑅𝐴 5.178 

∆𝑇𝑆𝐹 = ∆𝑇𝑆𝐹,𝑀𝑎𝑥 (
�̅�𝑆𝐴

�̅�𝑆𝐴,𝑀𝑎𝑥
)

2

5.179 

𝑇𝑆𝐹 = 𝑇𝑀𝐴 + ∆𝑇𝑆𝐹 5.180 
𝑇𝐶𝐷 = 𝑀𝑖𝑛(𝑇𝑆𝐹 , 𝑇𝐶𝐷,𝑆𝑃) 5.181 

𝑇𝐻𝐷 = 𝑀𝑎𝑥(𝑇𝑆𝐹 , 𝑇𝐻𝐷,𝑆𝑃) 5.182 

�̅�𝑆𝐴𝐴𝑍𝑇𝑅𝐴 = �̅�𝑆𝐴1𝐴𝑍1𝑇𝑍𝐴1 + �̅�𝑆𝐴2𝐴𝑍2𝑇𝑍𝐴2 + �̅�𝑆𝐴1𝐴𝑍3𝑇𝑍𝐴3 5.183 
 

AHU Humidity Balance 
�̅�𝑆𝐴𝑊𝑀𝐴 = �̅�𝑂𝐴𝑊𝑂𝐴 + (�̅�𝑆𝐴 − �̅�𝑂𝐴)𝑊𝑅𝐴 5.184 

𝑊𝐶𝐷,𝑆𝑎𝑡𝑃𝑂𝐴 = (𝑀𝑟𝑎𝑡𝑖𝑜 +𝑊𝐶𝐷,𝑆𝑎𝑡)𝑃𝑤𝑠(𝑇𝐶𝐷) 5.185 

𝑊𝐶𝐷 = 𝑀𝑖𝑛(𝑊𝑀𝐴,𝑊𝐶𝐷,𝑆𝑎𝑡) 5.186 
�̅�𝑆𝐴𝐴𝑍𝑊𝑅𝐴 = �̅�𝑆𝐴1𝐴𝑍1𝑊𝑍𝐴1 + �̅�𝑆𝐴2𝐴𝑍2𝑊𝑍𝐴2

+�̅�𝑆𝐴3𝐴𝑍3𝑊𝑍𝐴3 5.187
 

 
Zone 1 

�̅�𝑆𝐴1𝑇𝑆𝐴1 = �̅�𝐶𝐷1𝑇𝐶𝐷 + �̅�𝐻𝐷1𝑇𝐻𝐷 5.188 
𝜌𝑐𝑝�̅�𝑆𝐴1(𝑇𝑆𝐴1 − 𝑇𝑍𝐴1) + 𝑈𝐴̅̅ ̅̅ 𝑍1(𝑇𝑂𝐴 − 𝑇𝑍𝐴1) + �̅�𝑆1 = 0 5.189 

�̅�𝑆𝐴1𝑊𝑆𝐴1 = �̅�𝐶𝐷1𝑊𝐶𝐷 + �̅�𝐻𝐷1𝑊𝑀𝐴 5.190 
𝜌ℎ𝑓𝑔�̅�𝑆𝐴1(𝑊𝑆𝐴1 −𝑊𝑍𝐴1) + �̅�𝐿1 = 0 5.191 

�̅�𝑆𝐴1 = �̅�𝐶𝐷1 + �̅�𝐻𝐷1 5.192 
�̅�𝑆𝐴1,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴1 ≤ �̅�𝑆𝐴1,𝑀𝑎𝑥 5.193 

�̅�𝐶𝐷1 ≥ 0 5.194 
�̅�𝐻𝐷1 ≥ 0 5.195 

 
Zone 2 

�̅�𝑆𝐴2𝑇𝑆𝐴2 = �̅�𝐶𝐷2𝑇𝐶𝐷 + �̅�𝐻𝐷2𝑇𝐻𝐷 5.196 
𝜌𝑐𝑝�̅�𝑆𝐴2(𝑇𝑆𝐴2 − 𝑇𝑍𝐴2) + 𝑈𝐴̅̅ ̅̅ 𝑍2(𝑇𝑂𝐴 − 𝑇𝑍𝐴2) + �̅�𝑆2 = 0 5.197 

�̅�𝑆𝐴2𝑊𝑆𝐴2 = �̅�𝐶𝐷2𝑊𝐶𝐷 + �̅�𝐻𝐷2𝑊𝑀𝐴 5.198 
𝜌ℎ𝑓𝑔�̅�𝑆𝐴2(𝑊𝑆𝐴2 −𝑊𝑍𝐴2) + �̅�𝐿2 = 0 5.199 

�̅�𝑆𝐴2 = �̅�𝐶𝐷2 + �̅�𝐻𝐷2 5.200 
�̅�𝑆𝐴2,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴2 ≤ �̅�𝑆𝐴2,𝑀𝑎𝑥 5.201 

�̅�𝐶𝐷2 ≥ 0 5.202 
�̅�𝐻𝐷2 ≥ 0 5.203 

Figure 62 Continued 
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subject to: Zone 3 
�̅�𝑆𝐴3𝑇𝑆𝐴3 = �̅�𝐶𝐷3𝑇𝐶𝐷 + �̅�𝐻𝐷3𝑇𝐻𝐷 5.204 

𝜌𝑐𝑝�̅�𝑆𝐴3(𝑇𝑆𝐴3 − 𝑇𝑍𝐴3) + 𝑈𝐴̅̅ ̅̅ 𝑍3(𝑇𝑂𝐴 − 𝑇𝑍𝐴3) + �̅�𝑆3 = 0 5.205 
�̅�𝑆𝐴3𝑊𝑆𝐴3 = �̅�𝐶𝐷3𝑊𝐶𝐷 + �̅�𝐻𝐷3𝑊𝑀𝐴 5.206 
𝜌ℎ𝑓𝑔�̅�𝑆𝐴3(𝑊𝑆𝐴3 −𝑊𝑍𝐴3) + �̅�𝐿3 = 0 5.207 

�̅�𝑆𝐴3 = �̅�𝐶𝐷3 + �̅�𝐻𝐷3 5.208 
�̅�𝑆𝐴3,𝑀𝑖𝑛 ≤ �̅�𝑆𝐴3 ≤ �̅�𝑆𝐴3,𝑀𝑎𝑥 5.209 

�̅�𝐶𝐷3 ≥ 0 5.210 
�̅�𝐻𝐷3 ≥ 0 5.211 

 
Zone Temperature Errors 

𝐸𝑇𝑍𝐴1 ≥ 0 5.212 
𝐸𝑇𝑍𝐴1 ≥ 𝑇𝑍𝐴1,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 − 𝑇𝑍𝐴1 5.213 
𝐸𝑇𝑍𝐴1 ≥ 𝑇𝑍𝐴1 − 𝑇𝑍𝐴1,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 5.214 

𝐸𝑇𝑍𝐴2 ≥ 0 5.215 𝐸𝑇𝑍,𝑀𝑎𝑥 ≥ 0 𝐴. 𝑓 
𝐸𝑇𝑍𝐴2 ≥ 𝑇𝑍𝐴2,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 − 𝑇𝑍𝐴2 5.216 
𝐸𝑇𝑍𝐴2 ≥ 𝑇𝑍𝐴2 − 𝑇𝑍𝐴2,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 5.217 

𝐸𝑇𝑍𝐴3 ≥ 0 5.218 
𝐸𝑇𝑍𝐴3 ≥ 𝑇𝑍𝐴3,𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑃 − 𝑇𝑍𝐴3 5.219 
𝐸𝑇𝑍𝐴3 ≥ 𝑇𝑍𝐴3 − 𝑇𝑍𝐴3,𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑃 5.220 

𝐸𝑇𝑍𝐴,𝑆𝑢𝑚 = 𝐸𝑇𝑍𝐴1 + 𝐸𝑇𝑍𝐴2 + 𝐸𝑇𝑍𝐴3 5.221 
 

Energy Usage 

�̅�𝐹𝑎𝑛 = �̅�𝐹𝑎𝑛,𝑀𝑎𝑥 (
�̅�𝑆𝐴

�̅�𝑆𝐴,𝑀𝑎𝑥
)

3

5.222 

�̅�𝑇𝑜𝑡𝑎𝑙 = �̅�𝐿&𝑃 + �̅�𝐹𝑎𝑛 
�̅�𝐶𝐶,𝑆 = 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝑆𝐹 − 𝑇𝐶𝐷) 5.223 

�̅�𝐶𝐶,𝐿 = 𝜌ℎ𝑓𝑔�̅�𝑆𝐴(𝑊𝑀𝐴 −𝑊𝐶𝐷) 5.224 
�̅�𝐶𝐶,𝑇𝑜𝑡𝑎𝑙 = �̅�𝐶𝐶,𝑆 + �̅�𝐶𝐶,𝐿 5.225 
�̅�𝐻𝐶 = 𝜌𝑐𝑝�̅�𝑆𝐴(𝑇𝐻𝐷 − 𝑇𝑆𝐹) 5.226 

 
Costs 

𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = �̅�𝐹𝑎𝑛𝛼𝑊𝑎𝑡𝑡𝑠𝑇𝑜𝐾𝑤𝑃𝑟𝑖𝑐𝑒𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 5.227 

𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝐶ℎ𝑊 = �̅�𝐶𝐶,𝑇𝑜𝑡𝑎𝑙𝛼𝐵𝑡𝑢𝑇𝑜𝑀𝑀𝐵𝑡𝑢𝑃𝑟𝑖𝑐𝑒𝐶ℎ𝑊 5.228 

𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝐻𝑊 = �̅�𝑅𝐻,𝑇𝑜𝑡𝑎𝑙𝛼𝐵𝑡𝑢𝑇𝑜𝑀𝑀𝐵𝑡𝑢𝑃𝑟𝑖𝑐𝑒𝐻𝑊 5.229 

𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝑇𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅
𝐶ℎ𝑊 + 𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅

𝐻𝑊 5.230 
Figure 62 Continued 

 

During a yearly simulation of the DDVAV system the cold deck and hot deck 

temperatures stayed at their set points.  Figure 63 shows cold deck and hot deck air flow 
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rates for the perimeter zone.  At low outside temperatures the system only performed 

heating, at high temperatures the system only performed cooling, and at intermediate 

temperatures the system performed heating and cooling to maintain the minimum zone 

flow rate of 0.3 
𝐶𝐹𝑀

𝑓𝑡2
. 

 

 
Figure 63 – Perimeter Zone DDVAV Air Flow Rates 

 

Modeling Thermal Mass 

 A single node wall thermal mass model can be implemented in the DDVAV 

model by adding equations 5.232 and 5.233 and replacing equation 5.189 of the model in 

Figure  with equation 5.234. 

 

𝜏𝑊𝑎𝑙𝑙�̇�𝑊𝑎𝑙𝑙(𝑡) = −4𝑇𝑊𝑎𝑙𝑙(𝑡) + 2𝑇𝑂𝐴 + 2𝑇𝑍𝐴1 5.232 

𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 =
1

𝛿
∫ 𝑇𝑊𝑎𝑙𝑙(𝑡)𝑑𝑡
𝛿

0

5.233 

𝜌𝑐𝑝�̅�𝑆𝐴1(𝑇𝑆𝐴1 − 𝑇𝑍𝐴1) + 𝑈𝐴̅̅ ̅̅ 𝑍1,𝑊𝑖𝑛𝑑𝑜𝑤/𝑅𝑜𝑜𝑓(𝑇𝑂𝐴 − 𝑇𝑍𝐴1)

+2𝑈𝐴̅̅ ̅̅ 𝑍1,𝑊𝑎𝑙𝑙(𝑇𝑊𝑎𝑙𝑙,𝐴𝑣𝑔 − 𝑇𝑍𝐴1) + �̅�𝑆1 = 0 5.234
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 Figure 64 shows three days of simulation results for the dynamic DDVAV 

model.  During this period outside air temperatures peak at approximately 1:00 PM and 

the wall temperature peaks at approximately 5:00 PM, which delays the effect of wall 

heat conduction on the zone control response.  This delay can be seen in the zone air 

temperature plot.  Dynamic wall temperatures are also plotted along with the average 

wall temperature on each time step. 

 

 
Figure 64 – Dynamic Wall Temperature for the DDVAV Model 

 

 Figure 65 shows monthly total energy costs for the DDVAV model with and 

without single node wall dynamics using a time step of one hour.  Incorporating wall 

dynamics reduced the simulated total yearly energy costs by 3%, with hotter months 

having the largest difference.  A wall model with six nodes was also run, and its yearly 

energy cost difference with the one node model was just 0.08%. 

 



 

95 

 

 
Figure 65 – Monthly DDVAV Energy Costs with and without Dynamics 

 

Effect of Time Step Period Length 

 A building energy use model’s time step period length controls the resolution of 

the part load conditions that it considers.  For instance, the 15 minute time schedule of 

Figure 66 considers 10 separate electric and people load levels while the 1 hour schedule 

from Figure 40 considers 5.  This improves the simulation’s accuracy while increasing 

the simulation time in proportion to the number of time steps used. 
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Figure 66 – Weekday Electric and People Load Schedules for a Time Step of 15 

Minutes 

 

 Figure 67 shows monthly total energy costs for the non-dynamic DDVAV model 

with time steps of 1 minute, 1 hour, 4 hours, 8 hours, 12 hours, and 1 day.  The 1 hour 

time step results was almost identical to the 1 minute results, with 0.08% of a difference 

in their yearly totals.  As the time step grew the difference between 1 minute results 

grew, with 1% for the 4 hour time step, 2% for the 8 hour time step, 7% for the 12 hour 

time step, and 8% for the 1 day time step. 
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Figure 67 – Monthly Energy Costs for Different Time Step Sizes for the Steady 

State DDVAV Model 

 

 On each time step the outside air temperature and perimeter zone air temperature 

are assumed to be constant while the wall temperature is allowed to vary over time.  An 

energy balance assures that energy transfer from or to the wall equals the energy lost or 

gained in the zone.  This means that dynamic wall temperatures on a time step follow an 

exponential curve, as shown in Figure 32. 

Figure 68 shows the dynamic wall temperature for the DDVAV system with a 

single wall node for three different time step periods over two days.  Shorter time steps 

result in smoother, more accurate curves than longer time steps.  The exponentially 

decaying nature of heat transfer can especially be seen with a time step of 6 hours.  

However, despite these differences the total yearly energy cost with a 6 hour time step 
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was only 1.4% different than using a 1 hour time step, and the total yearly cost with a 1 

hour time step was only 0.06% different than using a 1 minute time step. 

 

 
Figure 68 – Dynamic DDVAV Wall Temperatures for Different Time Step Periods 
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CHAPTER VI 

AN AUTOMATED SOLUTION ALGORITHM 

 

 Computers use numerical algorithms to solve systems of algebraic equations, 

systems of differential equations, and constrained optimizations.  Solving these problems 

in a robust and fast way involves manipulating the mathematics and choosing optimal 

algorithms and algorithm settings.  Handling this manually complicates HVAC modeling 

processes by requiring that users be familiar with how many different numerical 

algorithms work internally.  An automated solution algorithm for converting models to 

executable programs simplifies this process. 

Overall Algorithm 

The solution algorithm presented in this chapter performs a simulation by 

manipulating the mathematics and compiling an executable program that’s tailored to 

solve each individual problem.  Differential-algebraic equation solvers such as 

JModelica [74] can use the same approach.  However, this algorithm is tailored for 

steady state HVAC simulations with embedded dynamic models.  Figure 69 shows the 

solution algorithm’s breakdown.  It first uses a preprocessing algorithm create a set of 

solution steps for the model.  After preprocessing the solution algorithm generates 

source code for the overall solution algorithm, before finally compiling a digital linked 

library, or DLL file for execution.  Executing this program calculates the model outputs 

and writes them to an Excel file. 
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Figure 69 – Automated Compilation Process 

 

Input Models 

An equation-based building energy model can be formulated as a set of nonlinear 

lexicographic optimization problems with dynamics as in Figure 10.  This model paired 

with simulation start and stop dates, a time step period, time varying input data such as 

weather conditions and loads, optional information on how to override default 

preprocessing and numerical algorithm settings, and desired output variables gives 

enough information to process a model and perform a simulation.  Table 29 lists these 

components. 

 

Table 29 – Input Model Components 

Component Description 

Mathematical Model An optimization problem in the form of Figure 10 

Simulation Start Date The inclusive date/time that a simulation starts 

Simulation End Date The exclusive date/time that a simulation ends 

Time Step Period A time step length that evenly divides the simulation period 

Input Data 
Varying parameters on each time step, like weather conditions 

and loads 

User Settings 
User preferences for how models are processed and how 

algorithms are run 

Output Variables The desired outputs of a simulation 
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 The preprocessing algorithm described in this chapter cannot always decompose 

a system when it’s beneficial to do so.  For instance, humidity calculations can be 

decoupled from temperature calculations in systems that control temperatures only, but 

no algorithm that can detect that situation was discovered.  Solving for temperatures and 

flows first and then solving for humidity variables allows smaller subproblems to be 

solved.  This decomposition can increase the speed of calculations by allowing smaller 

matrices to be used, and calculations can be more robust since there’s fewer nonlinear 

equations being solved simultaneously. 

Manually created partitions in mathematical models allow for decompositions 

that can’t be identified automatically.  Figure 70 shows the SDCAV system of Figure 15 

with humidity calculations.  The figure on the left shows the combined model while the 

figure on the right shows the humidity calculations partitioned out. 

 

 
Figure 70 – Partitioning a SDCAV Model into Smaller Subproblems 

 

Model Preprocessing 

Preprocessing a model simplifies its mathematics, eliminates calculable 

variables, decomposes it into multiple subproblems, selects algorithms to use on each 
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subproblem, and modifies subproblems so that they run robustly and quickly for the 

selected algorithm.  These operations make simulations run faster and more robustly for 

the numerical algorithms used. 

Figure 71 shows pseudo-code for the preprocessing algorithm.  First, the user-

partitioned model is translated into subproblems.  Next, a series of preprocessing 

operations are applied to subproblems to convert a model to its final set of calculation 

steps.  Each preprocessing operation performs a specific task such as splitting 

independent subproblems or solving linear equations.  The preprocessing algorithm 

terminates when no more operations can be applied. 

 

 
Figure 71 – Preprocessing Algorithm Pseudocode 

 

Subproblem Graphs 

A subproblem graph represents all calculations to perform in a single time step of 

a steady state building energy simulation, as shown in Figure 72.  Each vertex of a 

subproblem graph represents a subproblem to solve with a numerical algorithm.  Edges 

between vertices define the order that subproblems must be solved in.  After a vertex is 

calculated the variables it fixes can be used as inputs on child vertices.  This gives 

subproblem graphs directed and acyclic structure.  The preprocessing algorithm 

decomposes and simplifies problems by modifying subproblem graphs and the 

subproblems stored in their vertices.  When these modifications change the inputs or 
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outputs of a vertex a topological sorting algorithm such as a depth-first search can be 

used to order vertices so that subproblems are calculated in the right order. 

The subproblem graph of Figure 72 shows five algebraic equations decomposed 

into an optimal solution order.  Variables in each subproblem are fixed after being 

calculated on each time step, and these fixed variables serve as inputs to child vertex 

subproblems.  Solving the subproblems of Vertex 1, then Vertex 2, then Vertices 3 and 4 

in either order gives the same results as solving all 5 equations simultaneously. 

 

 
Figure 72 – A Subproblem Graph for Algebraic Equations 

 

Preprocessing Operations 

Preprocessing operations are atomic operations that modify a subproblem graph 

based on a detected scenario.  For instance, the preprocessing operation of deleting a 

vertex looks for vertices with subproblems that have no constraints or optimization 

goals.  It will only delete the vertex if it meets that criteria.  Operations within the 

preprocessing algorithm are ordered to look for trivial simplifications and 
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decompositions first to make the final subproblems as small as possible.  Later 

operations process subproblems so that they’re solved efficiently on the particular 

numerical solver used on them.   

Table  summarizes the operations performed by the preprocessing algorithm.  

Each operation is described on a single row.  The left-hand column describes the type of 

subproblem or mathematical function that an operation applies to.  When an operation 

applies to an entire subproblem the equations and constraints appear in brackets.  The 

right-hand column describes the operations performed on a subproblem or function.  

Operations are applied in the order given in Table  in the preprocessing algorithm, and 

the preprocessing algorithm terminates when an error is detected or no more operations 

apply. 

 

Table 30 – Preprocessing Operations 

Applicable Subproblem or Function Operation Performed 

{
 

 
𝒇(𝒙, 𝒚)

𝒈(𝒙, 𝒚) ≤ 𝟎

𝒉(𝒙, 𝒚) = 𝟎

𝒂(𝒚) ≤ 𝒙 ≤ 𝒃(𝒚)}
 

 
 

• No solved variables are outputs or used 

as inputs later in the simulation 

• Can be an empty subproblem 

Unused Vertex Deletion 

• Delete the unused vertex from the 

subproblem graph 

𝑓(𝒄) = 0 𝑜𝑟 𝑓(𝒄) ≤ 0 

• A trivial equality or inequality with only 

known constants 

• For example, 𝑒𝑙𝑛(1) − 1 = 0 

Trivial Constraint Removal 

• Assert the validity of the equality or 

inequality 

• Add an error if the error is above some 

epsilon 

• Remove the equality or inequality from 

the subproblem 

𝑓(𝒚) = 0 𝑜𝑟 𝑓(𝒚) ≤ 0 

• A trivial equality or inequality with input 

variables that change on each time step 

Trivial Constant Processing 

• Move the equality or equality to a new 

vertex 

• Assert that functions of input variables 

hold during a simulation 
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Table 30 Continued 

Applicable Subproblem or Function Operation Performed 

𝑎𝑥 + 𝑏 = 0 

• A linear equation with a single solved 

variable 

Constant Solving 

• Delete the equation from the vertex 

• Set 𝑥 to a constant value for the entire 

subproblem graph 

• Assert any constant bounds of 𝑥 

• Remove variable bounds of 𝑥 to their 

own new vertex for asserting during a 

simulation 

{𝑃1, 𝑃2, . . . , 𝑃𝑛} 

• A subproblem with multiple independent 

partitions 

Independent Problem Partitioning 

• Move each independent subproblem to 

their own vertex 

𝑓(𝒚) ≤ 𝑥 ≤ 𝑓(𝒚) 

• A solved variable with the same 

minimum and maximum bounds 

• 𝑓(𝒚) is a function of output variables 

Removing Forced Bounds 

• Create a vertex with the equation 𝑥 =
𝑓(𝒚) 

• 𝑥 becomes an input variable on the 

original vertex 

• Delete the bounds for 𝑥 on the original 

vertex 

• Reformulate bounds for 𝑥 on other 

vertices 

𝑓(𝒚)𝑥 + 𝑔(𝒚) = 0 

• An algebraic linear equation with a 

single solved variable 

• Coefficients can be functions of y 

• The vertex contains more than one 

function 

Univariate Linear Equality Solving 

• Create a new vertex with the equation 

𝑥 = −
𝑔(𝒚)

𝑓(𝒚)
 

• Delete the equation from the original 

vertex 

• Reformulate any bounds on x 

• Delete the bounds for 𝑥 on the original 

vertex 

• Reformulate bounds for 𝑥 on other 

vertices 
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Table 30 Continued 

Applicable Subproblem or Function Operation Performed 

𝑓(𝒚)𝑥1 + 𝑔(𝒚)𝑥2 + ℎ(𝒚) = 0 

• A bivariate linear equation 

• Equation is linear in terms of 𝑥1 and 𝑥2 

• 𝑓(𝒚) is not zero 

• The 𝑥2 coefficient must be constant 

(nonzero), positive definite, or negative 

definite if bounds exist (use the variable 

with constant bounds) 

Bivariate Linear Equality Solving 

• Create a new vertex with the equation   

𝑥1 = −
𝑔(𝒚)

𝑓(𝒚)
𝑥2 −

ℎ(𝒚)

𝑓(𝒚)
 

• Replace 𝑥1 on all vertex equations 

• Remove 𝑥1 from the list of solved 

variables 

• Update bounds of 𝑥2 taking the bounds 

of 𝑥1 into account 

𝑓(𝒚)𝑥 + 𝑔(𝒚) ≤ 0 

• An inequality with one solved variable 

• 𝑔(𝒚) is constant or a function of input 

variables 

• 𝑓(𝒚) ≠ 0 

• 𝑓(𝒚) is positive semidefinite or negative 

semidefinite for all possible input values 

Linear Inequality Reformulating 

• Reformulate as a bound on 𝑥 on the 

vertex 

𝑓(𝒙, 𝒚) ≤ 0 

• A general inequality 

 

General Inequality Reformulating 

• Reformulate the inequality with a slack 

variable and a bound on the vertex 

𝑓(𝒙, 𝒚) − 𝑧 = 0 

𝑧 ≤ 0 

𝒅𝒙𝒅𝒚𝒏

𝒅𝒕
= 𝑨𝒙𝒅𝒚𝒏 +𝑩𝒙𝒂𝒗𝒈 + 𝒇(𝒚) 

• A vertex containing a linear system of 

differential equations 

• 𝒙𝒅𝒚𝒏 are dynamic variables 

• 𝒙𝒂𝒗𝒈 are averaged variables 

• 𝒇(𝒚) is a linear or nonlinear function of 

output variables 

Linear ODE Solving 

• Delete the differential equations 

• Add equations for the averages of the 

dynamic variables over a time step 

𝑥 = 𝑓(𝒙𝒐𝒕𝒉𝒆𝒓, 𝒚) 

• An algebraic equation 

• One solved variable is solvable in terms 

of other solved variables 

• 𝑥 does not have any bounds 

• 𝑥 is not in any inequalities 

General Algebraic Decomposition 

• Place the equation to a new vertex 

• Replace 𝑥 with the function in the 

current subproblem 

• Remove 𝑥 variable from the vertex 
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Table 30 Continued 

Applicable Subproblem or Function Operation Performed 

{
 

 
𝒇(𝒙, 𝒚)

𝒈(𝒙, 𝒚) ≤ 𝟎

𝒉(𝒙, 𝒚) = 𝟎

𝒂(𝒚) ≤ 𝒙 ≤ 𝒃(𝒚)}
 

 
 

• An unscaled optimization or algebraic 

problem that must use a numerical solver 

Optimization and Algebraic Problem 

Scaling 

• Scale the solved variables so they lie 

between -1 and 1 

• Add new variables for the scaled 

variables 

• Add vertices to solve for the unscaled 

variables 

{
 

 
𝒇(𝒙, 𝒚)

𝒈(𝒙, 𝒚) ≤ 𝟎

𝒉(𝒙, 𝒚) = 𝟎

𝒂(𝒚) ≤ 𝒙 ≤ 𝒃(𝒚)}
 

 

 

• A constrained optimization with 

multiple, lexicographic objectives 

Lexicographic Decomposition 

• Perform lexicographic decomposition to 

separate the subproblem into one stage 

for each objective. 

• This process is shown in Figure 11. 

{
 

 
𝑓(𝒙, 𝒚)

𝒈(𝒙, 𝒚) ≤ 𝟎

𝒉(𝒙, 𝒚) = 𝟎

𝒂(𝒚) ≤ 𝒙 ≤ 𝒃(𝒚)}
 

 
 

• A constrained optimization with a single 

objective 

Optimization Function Scaling 

• Scale the optimized functions so they 

typically lie between -1 and 1 

• Any expression with a 𝑀𝑖𝑛, 𝑀𝑎𝑥, or 

𝐴𝑏𝑠 function in it 

• On a vertex of an unscaled optimization 

or algebraic problem that must use a 

numerical solver 

Equation Smoother 

• Smooth discontinuous expressions 

• Replace Max, Min, and Absolute Value 

functions with smooth versions described 

in Appendix B 

𝒉(𝒙) = 𝟎 

• A system of algebraic equations with no 

input variables 

 

Algebraic Presolving 

• Solve the system of equations 

• Set the solved variables as constants 

throughout the subproblem graph 

• Delete the vertex 

{

𝑓(𝒙)

𝒈(𝒙) ≤ 𝟎

𝒉(𝒙) = 𝟎
𝒂 ≤ 𝒙 ≤ 𝒃

} 

• A constrained optimization with a single 

objective and no input variables 

Optimization Presolving 

• Solve the constrained optimization 

• Set the solved variables as constants 

throughout the subproblem graph 

• Delete the vertex 
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Basic Subproblem Graph Operations 

Preprocessing operations make use of a few basic operations that change a 

subproblem graph’s structure.  Figure 73 shows these basic graph operations.  Modifying 

a subproblem involves making changes to the equations, constraints, objective functions, 

or variables in a vertex’s subproblem.  Vertices can be added to split up subproblems or 

deleted if a step isn’t required.  For instance, a vertex with two equations with 

independent variables can split into two vertices with one equation each.  If one of those 

equations isn’t used that vertex can be deleted.  Reordering vertices ensures that edges 

describe a valid solution order as vertex modifications are made. 

 

 
Figure 73 – Basic Subproblem Graph Operations 

 

Code Generation, Compilation, and Execution 

 After preprocessing, a model the automated solution algorithm generates 

customized source code for the model and compiles it for execution.  This allows low 

level optimizations to be written into the source code, and third-party numerical libraries 

or programs can be linked as well.  Next this source code is compiled into an executable 

program.  Finally, the program is executed, running the simulation and creating outputs 

for the model. 
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CHAPTER VII 

SOLVER PROGRAM IMPLEMENTATION 

 

A prototype solver named Beryl was developed to provide an upper bound on the 

efficiency and robustness building energy models based on constrained optimization.  

with lexicographic goals and integrated dynamics.  Beryl allows models to be entered 

and simulated from a text format and returns outputs in an Excel format or displayed as a 

chart window.  This chapter discusses the internal structure of the program, while 

Appendix E describes its input file format and how to run models. 

 Beryl was primarily written in C# in Visual Studio 2017.  Linear algebra 

calculations were performed using Intel’s MKL library [75] and compiled using Intel 

Parallel Studio XE.  The C# language, Visual Studio development environment, and 

plugin extensions such as ReSharper were useful in maintaining the code base, which 

consists of over 2,000 pages of code.  However, most algebraic and constrained 

optimization algorithms are centered around intensive linear algebra calculations. 

 During testing Beryl successfully simulated the models given in Chapter V, with 

models taking between 0.5 and 5.0 seconds to perform a yearly calculation with hourly 

time steps.  Using sensitivity analysis to predict the solution of one time step from the 

previous time step’s result allowed the constrained optimization algorithm to converge in 

as little as 7 iterations per time step.  All models successfully executed on the solver’s 

default settings, which solves the Karush-Kuhn-Tucker conditions of models to a 

relative error of 10-9. 

Program Structure 

Figure 69 shows the process used by Beryl in performing a simulation.  First, 

models are decomposed and simplified using the automated solution algorithm from 

Chapter VI.  Next, C# source code is generated for the model and linked to external 

numerical solvers.  Finally, the source code is executed and output Excel files are written 

and charts are displayed. 
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 Beryl’s source code consists of eight major modules, listed in Table 31.  Users 

interact with the user interface, where models can be created and run from text files.  

The simulation manager coordinates the overall simulation process, from parsing an 

input text file to compiling a program for a model.  The simulation manager itself uses 

the text input parser, model preprocessor, the code generation library, and the 

compilation module for this process.  All of these modules use a custom computer 

algebra library for representing mathematical expressions.  Also, custom numerical 

algorithms are used during model preprocessing and in the executable programs 

generated to simulate a model.  Figure 74 shows the relationship between these different 

modules. 

 

Table 31 – Major Modules of Beryl 

Module Function 

User Interface Allows users to create and run simulations 

Simulation Manager Coordinates the overall simulation process 

Text Input Parser Parses text input files to input models 

Model Preprocessor Simplifies and reformulates a model for numerical solvers 

Code Generation Library Generating customized source code for a model 

Compilation Module Compiles source code into an executable .dll 

Computer Algebra Library Parsing and modifying mathematical expressions 

Numerical Algorithms Solves model subproblems during a simulation 
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Figure 74 – Usage Relationships between Beryl’s Modules 

 

User Interface 

Beryl’s user interface allows users to create, modify and run building energy 

models.  Figure 75 shows a screen shot of the user interface.  This window contains a 

code editor and controls to open and close files, select working directories, and run 

simulations. Details of constructing models and running simulations are discussed in 

Appendix E. 
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Figure 75 – A Screenshot of Beryl’s User Interface 

 

Simulation Manager 

 The simulation manager controls the process of parsing, simplifying, and running 

a simulation.  It interfaces the various code modules that perform each of these tasks and 

returns an error message if calculations fail.  Having this module independent allows 

simulations to be executed from other interfaces besides the current user interface.  

 

Text Input Parser 

 The text input parser validates text inputs from the UI and parses them into an 

internal model structure.  Errors found in a model are displayed to the user through the 

user interface, as seen in Figure 76.  If a model is valid it can be simulated, and to 

simulate a model the internal model structure created by the text input parser is sent to 

the model preprocessor, which implements the decomposition and simplification 

algorithm from Chapter VI. 
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Figure 76 – An Error Message for an Undefined Variable in Beryl 

 

Model Preprocessor 

 The model preprocessor module implements the preprocessing algorithm from 

Chapter VI.  This simplifies a model, eliminates unneeded variables, splits the model 

into a sequence of subproblems, and selects the numerical solver to use on each 

subproblem.  A sequence of steps from this process serves as the algorithm used to 

simulate one time step of a specific model.  After preprocessing this sequence is used to 

generate an executable program in C# to simulate a model. 

The automated solution process assigns a numerical solver for each subproblem 

in a model after they can no longer be decomposed into simpler calculations.  

Lexicographic optimizations are decomposed earlier in preprocessing so at the numerical 

solver selection stage only problems with one or zero objective functions remain.  The 

executable .dll that Beryl generates for a model links to external numerical solvers and 

generates the required source code for its calculations. 

 

Code Generation Library 

A code generation library was created for generating source code that’s 

customized for individual problems in a way that’s readable and avoids naming 

conflicts.  The code generation library allows abstract syntax trees [76] that represent the 

calculations performed in a program to be built up.  It does this using C# statements that 

are structured in the same way as the code they generate for easy debugging.  For 
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example, the C# code of Figure 77 can be used to generate code that multiplies two 

matrices stored as two dimensional arrays.  The code generation library generates C# 

source code, but it can be extended other programming languages like C++ and Fortran. 

 

 
Figure 77 – Code to Generate an Abstract Syntax Tree to Multiply Two 2D 

Matrices 

 

The abstract syntax trees used by the code generation library represents C# code 

elements such as classes, variables, and loops in a tree data structure.  For example, the 

top of Figure 78 shows generation library code for a for loop that adds one array to 

another element by element.  This generates the abstract syntax tree shown in the 

middle, with nodes of the graph representing parts of the C# language structure.  This 

keeps track of which variables are used where so that any naming conflicts can be 

resolved by renaming variables.  The code at the bottom of Figure 78 shows what the 

abstract syntax tree generates when no naming conflicts exist. 
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Figure 78 – Code Generation Library of a For Loop, It’s Abstract Syntax Tree, and 

the Generated Code Output 

 

Numerical Algorithms 

 Beryl uses custom written numerical solvers to solve four fundamental types of 

subproblems: solvable variables, systems of algebraic equations, unconstrained 

optimizations, and constrained optimizations.  Table 32 lists information on these 

problems and the numerical algorithms used to solve them.  If a solver fails on a time 

step or an infeasible constrained optimization is detected variables for the entire time 

step are set to not a number (NaN).  If a dynamic simulation is being performed this ends 

the simulation since no initial conditions can be calculated for the next time step. 
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Table 32 – Numerical Algorithms Implemented in the Beryl 

Subproblem 

Type 
Applicable Subproblems Numerical Algorithm 

Solvable 

Variable 

𝑥 = 𝑓(𝒚) 
 

• A single equation. 

• 𝑥 is solved. 

• 𝒚 variables are previously calculated 

variables or inputs. 

• A single line of code that 

sets 𝑥 to 𝑓(𝒚) 
• No iterations are required. 

System of 

Equations 

𝒇(𝒙, 𝒚) = 𝟎 

 

• One or more linear or nonlinear 

equations. 

• 𝒙 variables are solved. 

• 𝒚 variables are previously calculated 

variables or inputs. 

• Use Newton’s Method 

with the Levenberg-

Marquardt algorithm 

• Named ALM (Algebraic 

Levenberg-Marquardt) 

Unconstrained 

Optimization 

minimize: 𝑓(𝒙, 𝒚) 

 

• Minimizes a single function. 

• No constraints. 

• 𝒙 variables are solved. 

• 𝒚 variables are previously calculated 

variables or inputs. 

• Use a quasi-Newton’s 

method based on the 

BFGS algorithm 

Constrained 

Optimization 

minimize: 𝑓(𝒙, 𝒚) 

subject to: 𝒉(𝒙, 𝒚) = 𝟎

𝒂(𝒚) ≤ 𝒙 ≤ 𝒃(𝒚)  

 

• Minimizes a single function subject 

to constraints. 

• 𝒙 variables are solved. 

• 𝒚 variables are previously calculated 

variables or inputs. 

• Minimum and maximum bounds.  

𝒂(𝒚) and b(𝒚) are can be a function 

of the problem’s inputs. 

• Use IPNLP, an interior 

point algorithm based on 

IPOPT 
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Nonlinear Algebraic Equation Solver 

Systems of algebraic equations in Beryl are solved using the Levenberg-

Marquardt algorithm [77].  This finds a search direction vector 𝜹 using 7.1.  This 

equation uses the current function errors 𝒇(𝒙, 𝒚) and Jacobian matrix 𝑱(𝒙, 𝒚) from 7.2 at 

the current estimated output 𝒙 and input parameter vector 𝒚, as well as a damping 

parameter 𝜆.  The damping parameter is adjusted during a calculation to switch between 

a Gauss-Newton approach and a gradient descent approach.  Cholesky factorizations are 

used to factor the matrix on the left-hand side of 7.1 when solving for 𝜹. 

 

(𝑱𝑇𝑱 + 𝜆 𝑑𝑖𝑎𝑔(𝑱𝑇𝑱))𝜹 = −𝑱𝑇𝒇 7.1 

𝑱(𝒙, 𝒚) = [
𝑑𝒇(𝒙, 𝒚)

𝑑𝑥1
…

𝑑𝒇(𝒙, 𝒚)

𝑑𝑥𝑛
] =

[
 
 
 
 
𝑑𝑓1(𝒙, 𝒚)

𝑑𝑥1
⋯

𝑑𝑓1(𝒙, 𝒚)

𝑑𝑥𝑛
⋮ ⋱ ⋮

𝑑𝑓𝑛(𝒙, 𝒚)

𝑑𝑥1
⋯

𝑑𝑓𝑛(𝒙, 𝒚)

𝑑𝑥𝑛 ]
 
 
 
 

7.2 

 

Nonlinear Unconstrained Optimization Solver 

  Unconstrained optimizations minimize the function 𝑓(𝒙, 𝒚), where the 𝒙 vector 

contains variables to optimize and the 𝒚 vector contains input parameters that can 

change from time step to time step.  Newton’s method solves unconstrained 

optimizations by finding the solution to the system of equations in equation 7.3 [77].  It 

uses the first and second derivatives of 𝑓(𝒙, 𝒚) to calculate a search direction 𝜹 for a 

time step.   The second derivative of 𝑓(𝒙, 𝒚) is known as the Hessian matrix.  The 

Hessian matrix has the symbol 𝑯(𝒙, 𝒚) and its structure is shown in equation 7.4. 

 

𝑯(𝒙, 𝒚)𝜹 = −∇𝑓(𝒙, 𝒚) 7.3 
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𝑯(𝒙, 𝒚) =

[
 
 
 
 
 
 
 
𝜕2𝑓(𝒙, 𝒚)

𝜕𝑥1
2

𝜕2𝑓(𝒙, 𝒚)

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓(𝒙, 𝒚)

𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑓(𝒙, 𝒚)

𝜕𝑥2𝜕𝑥1

𝜕2𝑓(𝒙, 𝒚)

𝜕𝑥2
2 ⋯

𝜕2𝑓(𝒙, 𝒚)

𝜕𝑥2𝜕𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝜕2𝑓(𝒙, 𝒚)

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓(𝒙, 𝒚)

𝜕𝑥𝑛𝜕𝑥2
⋯

𝜕2𝑓(𝒙, 𝒚)

𝜕𝑥𝑛2 ]
 
 
 
 
 
 
 

7.4 

 

Beryl solves unconstrained optimizations using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [77].  This algorithm iteratively updates an estimate of the 

inverse of the Hessian matrix 𝑩−1 to avoid the need for matrix factorizations.  The 

algorithm starts with 𝑩−1 equal to the identity matrix.  On each iteration 𝒌 a line search 

algorithm is used to find a step size 𝒔𝑘.  This step size and the change in gradient 𝒚𝑘 =

∇𝒇(𝒚𝑘+1) − ∇𝒇(𝒚𝑘) are used to update the estimate of the inverse Hessian without any 

need for temporary matrices.  Equation 7.5 shows the inverse Hessian update.  This 

solver is entirely generated with no calls made to external libraries to demonstrate how 

solvers can be customized to specific problems.   

 

𝑩𝑘+1
−1 = 𝑩𝑘

−1 +
(𝒔𝑘
𝑇𝒚𝑘 + 𝒚𝑘

𝑇𝑩𝑘
−1𝒚𝑘)(𝒔𝑘𝒔𝑘

𝑇)

(𝒔𝑘
𝑇𝒚𝑘)2

−
𝑩𝑘
−1𝒚𝑘𝒔𝑘

𝑇 + 𝒔𝑘𝒚𝑘
𝑇𝑩𝑘

−1

𝒔𝑘
𝑇𝒚𝑘

7.5 

 

Nonlinear Programming Solver 

 A constrained optimization solver was written in C# to solve single objective 

optimization problems with parametric equations and bounds.  This solver, named 

IPNLP (Interior Point Non-Linear Program Solver), uses the same interior point 

algorithm as IPOPT [41] but is structured for the small, parametric models that occur in 

simplified building energy simulation models.  For instance, it uses dense matrices and 

allocates arrays once at the beginning of a simulation since the variables that use bounds 

do not change.  It also uses first and second derivative information at the end of a time 

step and the change in input parameters to initialize the next time step’s calculations. 
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 IPNLP uses array calculations based on BLAS (Basic Linear Algebra 

Subproblems) and dense matrix calculations based on LAPACK (Linear Algebra 

PACKage).  These two libraries provide a standard way for performing array and linear 

algebra calculations [78].  They were compiled using Intel’s Parallel Studio plugin to 

Microsoft’s Visual Studio [75].  Parallel Studio includes an implementation of Intel’s 

MKL Library (Math Kernel Library) which implements and compiles BLAS and 

LAPACK calls optimized for Intel processors. 

Dense matrices can be factored more quickly than sparse matrices for low matrix 

orders.  Figure 79 shows the results of a MATLAB calculation that demonstrates the 

relative speed of the two approaches.  This calculation factored symmetric band matrices 

with random coefficients using a Block LDL factorization for different matrix orders.  

This matrix structure is often encountered in HVAC simulations.  Below a matrix 

dimension of 64 dense matrices factored faster than sparse matrices.  However, 

limitations in the precision of MATLAB’s timing functions effect accuracy below an 

order of 28. 
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Figure 79 – Sparse vs. Dense Matrix Factorization Speed 

 

 In a building energy simulation, parameters such as outside air conditions and 

loads vary from time step to time step.  Sensitivity analysis [42] uses matrix 

factorizations on a previous simulation time step to estimate the solution on next time 

step.  Initializing a constrained optimization calculation this way reduces the number of 

iterations required to solve the problem and can result in more robust solutions. 

Appendix D gives the derivation for the sensitivity analysis equations used.  

These equations were derived to handle parametric upper and lower bounds on variables.  

The parametric solver sIPOPT cannot take parametric bounds into account directly since 

it was built using the constraints of the IPOPT solver.  Parametric bounds can occur in 

HVAC simulation problems such as when minimum supply air flow rates are on a time 

schedule. 
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Compilation 

After generating C# source code for a model, the compilation module compiles it 

into an executable .dll.  This uses Microsoft’s Roslyn compiler, which allows C# 

programs to be compiled within other C# programs.  Roslyn is part of the .NET 

framework, so Beryl doesn’t need any external libraries to compile and execute 

generated C# source code.  Since Roslyn is the default C# compiler for Visual Studio 

2017, programs compiled with it perform the same as programs compiled in Visual 

Studio itself. 

Computer Algebra Library 

Computer algebra systems allow symbolic mathematical operations to be 

performed and on computers.  A computer algebra library was implemented in C# to 

parse, manipulate, differentiate, and simplify mathematical expressions.  All modules 

except for the numerical algorithms make use of this library. 

Expression Trees 

The computer algebra library represents mathematical expressions using 

expression tree data structures, as seen in Figure 80.  In expression trees operators serve 

as internal nodes and constants or variables serve as leaf nodes.  Evaluating an 

expression tree involves fixing variables to constant values and performing a traversal 

that evaluates subtrees from the children up to the root. 
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Figure 80 – A Linear Function Represented with an Expression Tree 

 

Algebraic Simplification 

Automatic simplification of algebraic expressions involves applying 

simplification rules to remove extraneous symbols from expressions and transform them 

into a standard form.  The computer algebra library implements the algebraic 

simplification algorithm from [79].  This algorithm recursively applies transformations 

to an algebraic expression tree to transform it to a more compact form.  Automatic 

simplification is used during preprocessing so that expressions don’t grow to an 

unnecessary length.  Also, constants in expression trees are stored as rational numbers 

with an infinite precision so no precision is lost during the simplification process. 

Edge cases exist where the rules of auto-simplification can produce different 

results for equivalent expressions.  For instance, equation 7.6 shows zero raised to the 

power of one, which simplifies to zero.  However, in equation 7.7 zero raised to the 

same power simplifies to undefined since the simplification algorithm can’t simplify the 

trigonometric part of the expression.  Cases such as this are an inherent part of computer 

algebra systems and can require users to understand computer algebra on a deeper level 

to ensure that algebraic expressions are processed correctly. 
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01 → 0 7.6 

02−𝑠𝑖𝑛
2(𝑥)−𝑐𝑜𝑠2(𝑥) → 𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 7.7 

 

Built-In Functions 

The computer algebra library includes two special functions and their first and 

second derivatives for use in HVAC modeling and optimization problems.  First, 𝑃𝑤𝑠(𝑇) 

gives water saturation pressures in 𝑝𝑠𝑖𝑎 are given as a function of temperature in °𝐹.  

Appendix B gives the formulas used in this equation.  Also, for smoothing discontinuous 

functions the library implements the gamma function from Bertsekas [58, 80].  

Appendix A discusses this function in more detail. 

Running a Simulation 

 When a user runs a simulation from the user interface the process of parsing an 

input, preprocessing a model, compiling the model’s source code, executing a model, 

and showing the model’s outputs is shown in Beryl’s Project Runner Window.  Figure 

81 shows this window.  In this window information is given for each of the five 

execution stages.  When a model executes successfully green check marks show up for 

first three stages, and the Running Simulation stage shows a simulation’s progress, failed 

iterations, and expected runtime.  After a simulation completes output Excel files and 

charts are written and opened.  Iterations that fail due to algorithms not converging 

appear as blank rows in the output Excel file.  
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Figure 81 – The Project Runner Window 

 

 If an execution stage fails information can be displayed on why this happened.  If 

input validation, source code generation, or source code compilation fails a list of errors 

can be displayed.  Uncaught exceptions can also be viewed.  This allows Beryl to be 

more easily debugged. 

 Clicking “View Presolve Graphs” in the Project Runner Window displays the 

Presolve Graph Window, shown in Figure 82.  This window displays time inputs, 

constants, and the compilation graph after each action performed by the presolving 

algorithm from Chapter VI.  Connections between vertices give the dependence between 

displayed subproblems.  This allows for the preprocessing process to be examined more 

closely. 

 



 

125 

 

 
Figure 82 – Presolve Graph Window 

 

 Clicking “View Source Code” in the Project Runner Window creates and 

displays a text file of the source code that was generated to simulate a model.  If source 

code was generated with errors the compiler generated error messages are displayed 

above the line where the error was detected.  Clicking “Create Solution” in the Project 

Runner Window generates a Visual Studio solution with the generated source code and a 

console app that calls the generated source code with the same inputs as the Beryl model 

that was ran.  This was used to debug generated code by viewing its calculations line by 

line. 

 Model outputs from each time step can be displayed in an output Excel file or a 

chart.  Excel outputs can be raw data from each time step or an hourly, daily, monthly, or 

yearly summation can be performed.  For dynamic simulations the instantaneous values 

of dynamic variables at different points in a time step can be outputted, as seen in the 

dynamic wall temperature of Figure 64.  Figure 83 shows an example of a chart window 

where three zone air temperatures are plotted against the outside air temperature. 
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Figure 83 – An Output Chart Window in Beryl 

 

Validation and Unit Testing 

 Unit tests are executable pieces of code written to automatically test the 

correctness of other code modules [81].  Unit tests allow more in-depth testing of code 

than manual tests because of their speed.  For instance, in a unit test for the computer 

algebra library 50,000 algebraic expressions were randomly generated and tested to 

ensure that converting expressions to strings works correctly.  This type of testing helps 

catch edge cases that a programmer might not realize exist when designing manual tests.  

Unit tests can be performed regularly to flag source code changes that break previously 

working implementations.  This helps uncover bugs that were introduced during 

refactoring, maintenance, and when making minor changes.   

Unit tests make up over 6,300 lines of Beryl’s source code, which is 

approximately 20% of the code base.  Unit tests were created at several levels of 

resolution to validate functions, classes, projects, and the overall program execution.  

Debugging modules from the bottom up was critical to getting the program working by 

helping to ensure that bugs were uncovered while modules were being created and 

before integrating them together.  
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Performance 

 Calculation speed and robustness limit the practical applications where models 

can be used.  This is due to limits on computer resources and the limited amount of work 

time that modelers have.  These limitations are made worse by the need for multiple 

model runs to calibrate or optimize a model.  Beryl was able to simulate a single AHU 

model from Chapter V for an entire year using hourly time steps in approximately 0.5 to 

5.0 seconds.  The following analysis uses this baseline to make projections for the speed 

of larger and more complex models, including cases where additional model features can 

be added at little or no cost. 

Limiting Factors in Calculation Speed 

 Beryl’s numerical solvers for algebraic, unconstrained optimization, and 

constrained optimization problems are all based on linear algebra.  The main bottlenecks 

of these solvers are linear algebra factorization, linear algebra solving, and function and 

gradient evaluations.  In a CPU usage profile of a typical SDVAV simulation Beryl 

spent approximately 60% of its computational effort in linear algebra and approximately 

20% of its effort in function evaluations. 

 Time wise, building energy use simulations in Beryl primarily use the 

constrained optimization solver IPNLP.  Internally, IPNLP factors and solves square 

symmetric indefinite matrices known as KKT matrices [82].  KKT matrices have a 

dimension of 𝑛 +𝑚, where 𝑛 is the number of variables and 𝑚 is the number of equality 

constraints.  Internally they have a 2 × 2 block structure, as shown in 7.8.   The upper 

left submatrix 𝐻 is symmetric with a dimension of 𝑛 × 𝑛, and the lower right-hand 

submatrix 𝐶 has a diagonal structure with a dimension of 𝑚 ×𝑚. 

 

[
𝐻 𝐴
𝐴𝑇 −𝐶

] 7.8 

 

The number of operations to factor a KKT matrix is proportional to (𝑛 + 𝑚)3, 

and the number of operations to solve a system of linear equations using a factored KKT 
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matrix is (𝑛 +𝑚)2 [75].  Factoring algorithms that take advantage of symmetry can use 

fewer floating point operations than matrix algorithms that don’t, but the number of 

floating point operations required is still proportional to (𝑛 + 𝑚)3.  Interior point 

algorithms tend to solve convex optimizations in the same number of iterations 

regardless of problem size [83].  This was found to be true for building energy 

simulations as well, so as the number of variables and equality constraints in a problem 

grows the inefficiency matrix factorization can eventually be expected to dominate the 

computational effort.  Beryl’s other numerical solvers are dominated by matrix 

factorization in the same way.  However, their matrices scale with 𝑛 alone instead of 𝑛 +

𝑚. 

Table 33 lists several model additions and their effect on a model’s runtime.  

Adding variables and equations that don’t increase the size of the KKT matrix used in 

the interior point algorithm don’t increase the runtime at a polynomial rate.  Because of 

this, adding a variable and equation that can be calculated from outputs of an interior 

point model or adding dynamics in the form of linear differential equations with a 

constant 𝑨 matrix can be performed at the cost of calculating a single function.  Adding 

an inequality to a problem or a zone model typically increases the KKT matrix size 

though due to slack variables that are added or equations that aren’t decomposable.  

Adding a lexicographic objective creates an additional optimization that has to be 

performed, so the runtime is increased proportionally assuming that the complexity of all 

optimizations are the same.  Similarly, adjusting the time step size proportionally scales 

the time required to perform a simulation.  Simulating a building as a whole by coupling 

multiple air handlers together has the largest effect of these modifications.  This is due to 

how matrix factorization has a cubic dependence, how combining multiple air handlers 

multiplies the KKT matrix’s size, and how problems at this scale can’t take advantage of 

using dense matrices in their calculations. 
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Table 33 – Effect of Model Additions on Runtime 

Feature Typical Effect on Runtime 

Adding a linear equation and 1 variable KKT matrix stays the same 

Adding a decomposable nonlinear equation 

and 1 variable 
KKT matrix stays the same 

Adding dynamics in the form �̇� = 𝑨𝒙 + 𝒃(𝒚) KKT matrix stays the same 

Adding an inequality 
Increases the KKT matrix dimension by 

up to 2 

Adding a zone Increases KKT matrix size 

Adding a lexicographic objective 
Runtime scales linearly with the 

number of objectives 

Adjusting time step size Linearly scales the simulation time 

Coupling AHUs 

Doubles the KKT matrix size, 

increasing matrix factorization 

operations by a factor of 8  

 

Measured Performance 

 The runtime performance of the models presented in Chapter 5 were analyzed to 

determine the main factors effecting performance.  These results were then extrapolated 

to determine the limits of where constrained optimization based building energy 

simulation can be performed.  All simulations were performed on a desktop computer 

Intel Core i7-3770 CPU at 3.40 GHz with 6 GB of RAM.  All model variables that 

change from time step to time step were calculated as outputs over the course of a year 

using hourly time steps, and calculations took place on a single thread.  When running 

the same model multiple times runtimes were found to vary approximately 1%. 

 Table 34 gives the runtimes of the models from Chapter V where the output 

equations of each model was placed in a single initial partition.  The decomposition 

algorithm from Chapter VI reduced the constrained problems down to the dimension 

shown.  Default user options for all algorithms were used, which are given in Appendix 

E. 
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The SDCAV system ran the fastest due to its smaller problem size, more linear 

structure and the way that having one lexicographic objective means that only one 

constrained optimization needs to be performed on each time step.  The SDVAV system 

ran slowest due to it requiring larger matrix factorizations, having to perform three 

constrained optimizations per time step, and its more complex nonlinear structure due to 

static pressure modeling.  The DDVAV system ran faster than the SDVAV system even 

though it requires factoring the largest matrices and uses three constrained optimizations 

per time step because of its simpler equation structure. 

 

Table 34 – Full Model Runtimes 

Model 

Number of 

Lexicographic 

Objectives 

(𝒒) 

Reduced Matrix Sizes for Each 

Objective 

(𝒏 +𝒎) 

Yearly 

Simulation 

Runtime 

(𝒔𝒆𝒄𝒐𝒏𝒅𝒔) 

SDCAV 1 16 (11 + 5) 0.38 

SDVAV 3 39 (24 + 15), 40 (24 + 16), 35 (21 + 14) 4.84 

DDVAV 3 51 (30 + 21), 52 (30 + 22), 53 (30 + 23) 4.54 

 

 Beryl models can be manually partitioned to take advantage of decompositions 

that the simplification algorithm in Chapter VI can’t detect.  To test the effectiveness of 

this, Temperature and humidity calculations were manually decoupled in the models 

from Table 34.  Table 35 shows the reduced constrained optimization matrix sizes and 

runtimes after making this simplification.  Compared to the models that start in a single 

partition, the partitioned models ran approximately 30% to 40% faster and used matrices 

that were approximately 20% to 30% smaller. 
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Table 35 – Partitioned Temperature and Humidity Model Runtimes 

Model 

Number of 

Lexicographic 

Objectives 

(𝒒) 

Reduced Matrix Sizes for Each 

Objective 

(𝒏 +𝒎) 

Yearly 

Simulation 

Runtime 

(𝒔𝒆𝒄𝒐𝒏𝒅𝒔) 

SDCAV 1 12 (9 + 3) 0.26 

SDVAV 3 29 (19 + 10), 30 (19 + 11), 27 (17 + 10) 2.86 

DDVAV 3 35 (22 + 13), 36 (22 + 14), 37 (22 + 15) 2.97 

 

 Adding dynamics based on linear differential equations with a constant 𝑨 matrix 

to a model has a minor impact on the model’s runtime.  This is due to how the 

decomposition algorithm solves the equations for their average values over a time step 

and can remove the resulting linear equations.  To demonstrate this, the single-partition 

models for each system type were simulated with a six-node dynamic wall model instead 

of using a constant R-value.  As a result, the SDCAV and SDVAV systems ran 

approximately 25% slower due to more iterations being required time step, while the 

DDVAV system ran in approximately the same time. 

   

Table 36 – Full Model Runtimes with Six Node Wall Dynamic Model 

Model 

Number of 

Lexicographic 

Objectives 

(𝒒) 

Reduced Matrix Sizes for Each 

Objective 

(𝒏 +𝒎) 

Yearly 

Simulation 

Runtime 

(𝒔𝒆𝒄𝒐𝒏𝒅𝒔) 

SDCAV 1 16 (11 + 5) 0.49 

SDVAV 3 39 (24 + 15), 40 (24 + 16), 35 (21 + 14) 6.06 

DDVAV 3 51 (30 + 21), 52 (30 + 22), 53 (30 + 23) 4.51 

 

 Sensitivity analysis for constrained optimization plays a large role in reducing the 

runtime of a model by choosing better starting conditions.  This results in fewer 

iterations being required to solve constrained optimizations.  Table 37 shows runtimes of 

the full model without sensitivity analysis.  The amount of slowdown from not using 

sensitivity analysis was relative to the complexity of the model.  The SDCAV model was 
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slower by a factor of 2.7 while the SDVAV and DDVAV models were slower by factors 

of 26 and 16. 

 

Table 37 – Full Model Runtimes without Sensitivity Analysis 

Model 

Number of 

Lexicographic 

Objectives 

(𝒒) 

Reduced Matrix Sizes for Each 

Objective 

(𝒏 +𝒎) 

Yearly 

Simulation 

Runtime 

(𝒔𝒆𝒄𝒐𝒏𝒅𝒔) 

SDCAV 1 16 (11 + 5) 1.02 

SDVAV 3 39 (24 + 15), 40 (24 + 16), 35 (21 + 14) 124.52 

DDVAV 3 51 (30 + 21), 52 (30 + 22), 53 (30 + 23) 71.55 
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CHAPTER VIII 

CONCLUSIONS AND FUTURE RESEARCH 

 

 Future building energy simulation tools must deal with the increasing complexity 

of buildings and their systems.  Equation-based modeling aids this by separating the 

domains of modeling and solving and allowing for modular approaches.  Extending the 

math that an equation-based modeling tool can process offers a way to model multiple 

domains in the same environment.  This thesis presented a way to model steady state 

building energy usage using an equation-based approach, an extended the approach to 

model wall dynamics, and a solver to investigate the practicality of this approach. 

Conclusions 

Constrained optimization allows building energy models to be constructed that 

are equation-based models and solvable by numerical solvers.  These numerical solvers 

are based on linear algebra calculations, which makes models scalable in the same way 

as models that use algebraic or differential equations.   

A strategy for adding dynamic variables to steady state building energy models is 

to couple their averages over a time step with the steady state variables.  This can be 

accomplished by embedding the solutions of differential equations over a time step into 

the steady state part of the model.  Due to presolving, simulations with added dynamics 

perform on the same order of magnitude of time when dynamic variables are described 

by linear differential equations with constant coefficients.  

Simplified building energy use models for three air handler types were presented.  

These models are on the order of complexity as Knebel [9], with additional features such 

as additional zones and static pressure setpoint modeling.  The techniques used in 

constructing these models can be extended to larger models and different types of 

equipment. 

 An algorithm to decompose and simplify lexicographic constrained optimizations 

with embedded dynamics was developed to solve simplified building energy models in a 

practical way.  This algorithm decomposes lexicographic optimizations into a series of 
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optimizations and embeds linear differential equations with constant coefficients for the 

dynamic variables into the model. 

A numerical solver named Beryl was created to test the level of speed and 

robustness that could be achieved when solving constrained optimization based building 

energy models.  Beryl was optimized for the small, parametric problems of simplified 

building energy use modeling, since dense matrices calculate faster than sparse matrices. 

 Beryl contains a user interface where models can be created using a domain 

specific language that was created for simplified building energy modeling.  When 

models are simulated the decomposition algorithm is first executed on it to simplify the 

calculations and develop a solution strategy.  Next, a custom program is written and 

compiled to run the simulation before displaying outputs in an Excel file or chart format.  

This program links to external numerical solvers, including a constrained optimization 

solver based on the IPOPT and sIPOPT solvers. 

 Performance wise, Beryl was able to perform yearly simulations using hourly 

time steps for the example AHU models in approximately 0.5 to 5.0 seconds on a single 

thread.  Model runs succeeding on Beryl’s default settings meant that models could be 

simulated and modified without having to worry about lowering convergence errors or 

tweaking settings to ensure that models calculate.  Having a runtime in seconds 

combined with the runtime scaling properties of matrices mean that this approach can be 

used for larger, more detailed models as well. 

Future Research 

Modeling Improvements 

 Models for variations SDCAV, SDVAV, and DDVAV systems were presented, 

and the techniques used in these models can be extended to larger models and different 

air handler types.  However, modeling different equipment requires taking the features 

of nonlinear programming algorithms into account.  Formulations of existing equipment 

models may need to be modified to run successfully or more efficiently in a nonlinear 

programming solver. 
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 The lexicographic constrained optimization models that were presented use 

floating point variables.  Integer variables can also be used to model features such as 

AHU on/off schedules or staged chillers where one or more can be on at the same time.  

In the case of AHU on/off schedules, a binary variable could determine which model to 

use over a time step.  The value of this variable would be known before a simulation.  In 

the case of staged chillers binary variables could be used to signify that a chiller is on or 

off.  Their values would have to be simultaneously calculated with unknown floating 

point variables, resulting in a mixed-integer optimization. 

 Building energy models are often used to optimize a control parameter such as a 

temperature setpoint or schedule.  Parameter optimizations using the methods presented 

optimize parameters on each individual time step but let the optimized value vary across 

time steps.  Time steps can be calculated simultaneously in order to optimize parameters 

across time steps.  In this strategy variables and equations are repeated over multiple 

time steps and combined into a single problem.  However, this creates a very large 

problem.  It would be ideal to exploit the independence or sequential nature of time steps 

within a problem.  Sensitivity analysis provides a way to directly calculate gradients for 

a model.  This could allow optimizations of parameters that stay fixed over the course of 

a year to be solvable in the time it takes to perform a few dozen yearly simulations. 

Solver Improvements 

The overall strength of the numerical solver depends on the algorithms it calls 

during a simulation.  Beryl uses an interior point method for constrained optimization 

calculations and the Levenberg-Marquardt algorithm for algebraic calculations, but this 

can be extended to use other solvers that work better for specific problem cases.  For 

instance, a linear algebra solver can be used to solve linear algebraic problems, or 

sequential quadratic programming can be used in addition to interior point methods.  

Solvers that provide a global solution or use quad or infinite precision mathematics can 

be added as well to be able to calculate more accurate solutions.  Also, sparse matrix 

calculations can be added in addition to the dense matrix calculations that are used to 

more efficiently handle large building simulations. 
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Time steps of steady state simulations are typically simulated in order from the 

simulation start date to end date.  However, the solutions for the time steps of steady 

state models don’t depend on one another.  This allows multithreading to be used, which 

increases the calculation speed proportionally to the number of threads used.  However, 

the time step solutions for dynamic models depend on each other, so they can’t be 

executed out of order.  Multithreading can also be used to speed up linear algebra 

calculations if a linear algebra library that implements multithreading is used. 

 The structure of a constrained optimization problem allows any equation-based 

model to be coupled together.  For instance, partial differential equations and dynamic 

control models can be coupled with steady state building energy models by coupling the 

equations and embedding dynamic solutions within the steady state model.  

Optimizations of these models can also be expressed by adding optimization objectives.  

This allows a single simulation environment to be used for a variety of building 

modeling types, with the ability to combine different modeling methods together.  Such 

a solver could also make reusing models easier since inputs could be shared by a variety 

of users, such as architects, building retro-commissioners, and HVAC control designers. 
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APPENDIX A 

TIME AVERAGES OF SOLUTIONS TO LINEAR DIFFERENTIAL EQUATIONS 

 

 Variables that vary continuously over time can be coupled to steady state 

building energy models by embedding equations for their average value over a time step 

period within the model.  Equation A.1 shows the form of a linear differential equation 

where the 𝑨 and 𝒃 matrices are constant over a time period from its start at 𝑡 = 0 to its 

end at 𝑡 = 𝜌.   The average value of 𝒙(𝑡) over a time step is calculated by first 

calculating the time varying solution of 𝒙(𝑡) and then averaging it over a time step. 

 

�̇�(𝑡) = 𝑨𝒙(𝑡) + 𝒃 𝐴. 1 

 

Time Varying Solution 

Equation A.2 gives the overall solution to the system of linear equations in 

equation A.1 starting at 𝑡 = 0 [84].  The properties of matrix exponential functions are 

used to transform equation A.2 into equation A.4 in equations A.2–A.4.  The matrix 

integral is evaluated in equation A.6 using equation A.5.  After this, the properties of 

matrix exponentials are used to transform equation A.6 into the solution’s final form in 

equation A.8 in equations A.6-A.8.  

 

𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0) + ∫ 𝑒𝑨(𝑡−𝜏)𝒃𝑑𝜏
𝑡

0

𝐴. 2 

𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0) + ∫ 𝑒𝑨𝑡𝑒−𝑨𝜏𝒃𝑑𝜏
𝑡

0

𝐴. 3 

𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0) + 𝑒𝑨𝑡∫ 𝑒−𝑨𝜏𝑑𝜏
𝑡

0

𝒃 𝐴. 4 

∫ 𝑒𝑨𝜏𝑑𝜏
𝑡

0

= (𝑒𝑨𝑡 − 𝑰)𝑨−1 𝐴. 5 

𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0) − 𝑒𝑨𝑡(𝑒−𝑨𝑡 − 𝑰)𝑨−1𝒃 𝐴. 6 
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𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0) − (𝑰 − 𝑒𝑨𝑡)𝑨−1𝒃 𝐴. 7 

𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0) + (𝑒𝑨𝑡 − 𝑰)𝑨−1𝒃 𝐴. 8 

 

Average of Time Varying Solution 

Equation A.9 is the general equation for the time-average of a function over time 

step with a period of 𝜌.  Equation A.10 shows equation A.9 with the time varying 

solution of equation A.8 substituted into it.  Equations A.11–A.15 evaluates and 

simplifies these integrals.  This results in A.15, the average of the dynamic states as 

linear functions of the initial conditions and the input vector 𝒃. 

 

�̅� =
1

𝜌
∫ 𝒙(𝜏)𝑑𝜏
𝜌

0

𝐴. 9 

�̅� =
1

𝜌
∫ 𝑒𝑨𝜏𝒙(0) + (𝑒𝑨𝜏 − 𝐼)𝑨−1𝒃𝑑𝜏
𝜌

0

𝐴. 10 

�̅� =
1

𝜌
∫ 𝑒𝑨𝜏𝒙(0) + 𝑒𝑨𝜏𝑨−1𝒃 − 𝑨−1𝒃𝑑𝜏
𝜌

0

𝐴. 11 

𝒙 =
1

𝜌
∫ 𝑒𝑨𝜏𝒙(0)𝑑𝜏
𝜌

0

+
1

𝜌
∫ 𝑒𝑨𝜏𝑨−1𝒃𝑑𝜏
𝜌

0

−
1

𝜌
∫ 𝑨−1𝒃𝑑𝜏
𝜌

0

𝐴. 12

 

�̅� =
1

𝜌
∫ 𝑒𝑨𝜏𝑑𝜏
𝜌

0

𝒙(0) +
1

𝜌
∫ 𝑒𝑨𝜏𝑑𝜏
𝜌

0

𝑨−1𝒃

−
1

𝜌
∫ 𝑑𝜏
𝜌

0

𝑨−1𝒃 𝐴. 13

 

𝒙 =
1

𝜌
(𝑒𝑨𝜌 − 𝑰)𝑨−1𝒙(0) +

1

𝜌
(𝑒𝑨𝜌 − 𝑰)𝑨−1𝑨−1𝒃 − 𝑨−1𝒃 𝐴. 14 

�̅� =
1

𝜌
(𝑒𝑨𝜌 − 𝑰)𝑨−1𝒙(0) + (

1

𝜌
(𝑒𝑨𝜌 − 𝑰)𝑨−1 − 𝑰)𝑨−1𝒃 𝐴. 15 

 



 

147 

 

APPENDIX B 

HVAC MODELING 

 

Control Error Functions 

 An HVAC system’s primary purpose is to control the temperature and humidity 

of the spaces they serve.  An error function that equals zero when a control objective is 

met and increases as the control error increases can be used to describe how much this 

occurs.  Minimizing such an error function subject to the physical constraints of a system 

gives the steady state system states for that the control that’s represented.   

Figure 84 shows four basic control error functions: right sided, left sided, two-

sided, and two-sided with a deadband.  These four functions can be used in modeling 

different HVAC control scenarios.  For example, the control error of a system 

controlling a zone to a fixed temperature set point can be modeled using a two-sided 

error function centered around the set point temperature.  If a zone has a deadband the 

control error can be modeled using a two-sided error function with deadband.  Zone 

relative humidity control error can be modeled with a right sided error function, where 

any relative humidity above the maximum allowable relative humidity has a positive 

error. 
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Figure 84 – Basic Control Error Functions 

 

 Table 38 shows the error functions of Figure 84 in two equivalent mathematical 

forms.  The second column shows each error function as a discontinuous mathematical 

function.  These functions can be used directly as the objective function of a model.  

However, nonlinear programming algorithms may not be able to calculate discontinuous 

functions, or they might have to be smoothed which can result in less accurate and 

reliable results.  Another method of implementing a control error function is to integrate 

it into the constrained optimization itself.  The third column shows each control error 

function as a linear program. 
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Table 38 – Basic Error Function Equations 

Error 

Function 
As a Mathematical Function As a Constrained Optimization 

 

Right Sided 
𝑦 = 𝑀𝑎𝑥(0, 𝑥 − 𝑥𝑚𝑎𝑥) 

 

minimize: 𝑦 

subject to: 𝑦 ≥ 0 

𝑦 ≥ 𝑥 − 𝑥𝑚𝑎𝑥 

 

Left Sided 
𝑦 = 𝑀𝑎𝑥(0, 𝑥𝑚𝑖𝑛 − 𝑥) 

 

minimize: 𝑦 

subject to: 𝑦 ≥ 0 

𝑦 ≥ 𝑥𝑚𝑖𝑛 − 𝑥 

 

2 Sided 

𝑦 = 𝑀𝑎𝑥(𝑥𝑐 − 𝑥, 𝑥 − 𝑥𝑐) 
= |𝑥𝑐 − 𝑥| 

 

minimize: 𝑦 

subject to: 𝑦 ≥ 0 

𝑦 ≥ 𝑥𝑐 − 𝑥 

𝑦 ≥ 𝑥 − 𝑥𝑐 

 

2 Sided, with 

Deadband 

𝑦 = 𝑀𝑎𝑥(0, 𝑥𝑚𝑖𝑛 − 𝑥, 𝑥 − 𝑥𝑚𝑎𝑥) 

 

minimize: 𝑦 

subject to: 𝑦 ≥ 0 

𝑦 ≥ 𝑥𝑚𝑖𝑛 − 𝑥 

𝑦 ≥ 𝑥 − 𝑥𝑚𝑎𝑥 
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Static Pressure Control 

 Many commercial HVAC systems control fan speeds to maintain a static 

pressure down a duct.  In these systems, terminal boxes adjust dampers to maintain zone 

loads while the fan controller adjusts the fan’s speed to maintain a static pressure set 

point down the duct.  This can be seen in Figure 85.  This section presents a simplified 

fan static pressure model based on the Darcy-Weisbach equation, fan models, and 

HVAC control schemes.  It can be used in simplified building energy analysis models 

without requiring detailed fan and building pressure modeling such as the methods used 

in COMIS [22] or CONTAM [24]. 

 

 
Figure 85 – Fan Static Pressure Control in a VAV System 

 

Fan Pressure Curves 

 The fan pressure model uses three types of curves that relate air flow rate to total 

pressure: fan total pressure curves, pressure characteristic curves, and system curves.  

Figure 86 gives examples of these three curves.  Fan total pressure curves give fan total 

pressure as a function of air flow rate at full speed.  This function is a property of the fan 

used in a system.  Pressure characteristic curves describe how the fan total pressure 

curve scales at different fan speeds based on the fan laws [72].  They take the form of 

equation B.1.  Finally, system curves describe how fan total pressure in a system with 
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static pressure control changes for different air flow rates.  System curves take the form 

of equation B.2 due to features of VAV systems with static pressure control, as 

explained below. 

 

𝑃1
𝑃2
= (

�̅�1

�̅�2
)

2

𝐵. 1 

𝑃𝑡,𝑠𝑦𝑠𝑡𝑒𝑚(𝑉) = 𝑃𝑠𝑝 + 𝛼𝑠𝑦𝑠�̅�
2 𝐵. 2 

 

 
Figure 86 – Fan Pressure Curves 

 

 Maintaining a static pressure setpoint with zero flow isn’t possible in a real 

system, but it would be if terminal box dampers could completely close and ducts had no 

leakage.  Under these hypothetical conditions a system would still maintain the static 

pressure set point, so the system curve intersects the y axis at the static pressure set 

point.  At the maximum possible flow all terminal box dampers would be fully open, and 

the system curve intersects the fan total pressure curve.  If all terminal boxes have the 

same loads the dampers open and close together, which would give a single curve that 

connects these two points.  It’s assumed that a quadratic curve connects these two points 
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due to the way pressure changes with flow across ducts and dampers, which 

approximates the Darcy-Weisbach equation. 

Modeling fan power makes use of two types of curves that relate air flow rate to 

brake horsepower, as seen in Figure 87.  First, fan brake horsepower curves give fan 

power as a function of air flow rate at full speed.  This function is a property of the fan 

used in a system.  Next, fan power characteristic curves describe how the fan total 

pressure curve scales at different fan speeds.  They take the form of equation B.3. 

 

 
Figure 87 – Fan Brake Horsepower Curves 

 

𝑃1
𝑃2
= (

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
1

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
2

)

3

𝐵. 3 
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Fixed Static Pressure Set Point Model 

 Table 39 gives the required inputs for the fan static pressure model based on the 

curves of the previous section.  These inputs are the fan total pressure and brake 

horsepower curves at full speed, the maximum possible system flow at the static 

pressure set point, and the static pressure set point. 

 

Table 39 – Fixed Static Pressure Set Point Model Inputs 

Parameter Symbol Unit 

Fan Total Pressure vs. Flow Curve at Full Speed 𝑃𝑇,𝐹𝑎𝑛(�̅�) 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Fan Brake Horsepower vs. Flow Curve at Full Speed 𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐹𝑎𝑛(�̅�) 

𝐻𝑝

𝑓𝑡2
 

Maximum Air Flow Rate �̅�𝑀𝑎𝑥 
𝐶𝐹𝑀

𝑓𝑡2
 

Static Pressure Set Point 𝑃𝑆𝑃 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Current Air Flow Rate �̅�𝐶𝑢𝑟𝑟 
𝐶𝐹𝑀

𝑓𝑡2
 

 

Table 40 – Fixed Static Pressure Set Point Model Outputs 

Parameter Symbol Unit 

System Curve Quadratic Factor 𝛼𝑆𝑦𝑠 

𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂

(
𝐶𝐹𝑀
𝑓𝑡2

)
2  

Air Flow Rate at the Fan Curve/System Curve Intersect 

Point 
�̅�𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 

𝐶𝐹𝑀

𝑓𝑡2
 

Current Fan Total Pressure 𝑃𝑇,𝐶𝑢𝑟𝑟 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Fan Total Pressure the Fan Curve/System Curve 

Intersect Point  
𝑃𝑇,𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Fan Brake Horsepower at the Fan Curve/System Curve 

Intersect Point 
𝐵ℎ𝑝̅̅ ̅̅ ̅̅

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 
𝐻𝑝

𝑓𝑡2
 

Current Fan Brake Horsepower 𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐶𝑢𝑟𝑟 

𝐻𝑝

𝑓𝑡2
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 Equations B.4–B.8 describe the curves of Figure 86 and Figure 87.  Equations 

B.4–B.6 describe fan pressure calculations.  Equation B.4 describes the intersection of 

the fan total pressure curve and the system curve, equation B.5 describes the intersection 

of the fan total pressure curve and the current characteristic pressure curve, and equation 

B.6 describes the current fan characteristic pressure curve.  Equations B.7–B.8 describes 

fan brake horsepower calculations.  Equation B.7 describes the intersection of the fan 

brake horsepower curve and the current fan characteristic brake horsepower curve, and 

equation B.8 describes the current fan characteristic brake horsepower curve. 

 

𝑃𝑇,𝐹𝑎𝑛(�̅�𝑀𝑎𝑥) = 𝑃𝑆𝑃 + 𝛼𝑆𝑦𝑠�̅�𝑀𝑎𝑥
2

𝐵. 4 

𝑃𝑇,𝐶𝑢𝑟𝑟 = 𝑃𝑆𝑃 + 𝛼𝑆𝑦𝑠�̅�𝐶𝑢𝑟𝑟
2

𝐵. 5 

𝑃𝑇,𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡
𝑃𝑇,𝐶𝑢𝑟𝑟

= (
�̅�𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

�̅�𝐶𝑢𝑟𝑟
)

2

𝐵. 6 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = 𝐵ℎ𝑝̅̅ ̅̅ ̅̅

𝐹𝑎𝑛(�̅�𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) 𝐵. 7 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐶𝑢𝑟𝑟

= (
𝑉𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

�̅�𝐶𝑢𝑟𝑟
)

3

𝐵. 8 

 

Effect of Changing the Static Pressure Set Point 

 In a system with static pressure control, different damper positions are required 

for different static pressure set points to achieve the same air flow rates.  At a lower 

static pressure set point a higher overall flow is possible with dampers fully open.  

However, at zero flow the pressure drop on a fully closed system would still equal the 

static pressure set point.  This variation defines how the system curve varies for different 

static pressure setpoints, as shown in Figure 88. 
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Figure 88 – System Curve Changes versus Static Pressure Setpoint Changes 

 

Pressure changes on a single loop of a Single Duct Variable Air Volume 

(SDVAV) system are used to model how the maximum possible flow changes with the 

static pressure set point.  Figure 89 shows this loop and breaks it down into 4 

components: 1) the pressure rise across the fan, 2) the pressure drop down the ducts, 3) 

the static pressure drop across the static pressure sensor, and 4) the pressure drop down 

the plenum.  The pressure drop is zero across the entire loop. 

 

 
Figure 89 – Pressure Changes in a System with Static Pressure Control 
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 Equations B.9–B.12 give models for the various pressure drop components.  

Equation B.9 holds that the total pressure drop around the loop is zero.  Total pressure 

drop across the fan in the loop given by the fan total pressure curve.  The pressure drop 

across ducts and the plenum is assumed to be proportional to the flow squared from the 

Darcy-Weisbach equation, as shown in equation B.10.   During operation the system 

maintains the static pressure set point, so the drop across the sensor is equal to that, as 

shown in equation B.11.  Equation B.12 gives the overall result that can be solved for the 

max flow 𝑉𝑀𝑎𝑥 as a function of the static pressure set point 𝑃𝑆𝑃 when the fan curve and a 

system coefficient 𝛼𝑆𝑦𝑠 calculated from nominal operating conditions are known. 

 

𝑃𝑇,𝐹𝑎𝑛 + 𝑃𝐷𝑢𝑐𝑡 + 𝑃𝑆𝑒𝑛𝑠𝑜𝑟 + 𝑃𝑃𝑙𝑒𝑛𝑢𝑚 = 0 𝐵. 9 

𝑃𝐷𝑢𝑐𝑡 + 𝑃𝑃𝑙𝑒𝑛𝑢𝑚 = −𝛼𝑆𝑦𝑠𝑉
2 𝐵. 10 

𝑃𝑆𝑒𝑛𝑠𝑜𝑟 = −𝑃𝑆𝑃 𝐵. 11 

𝑃𝑇,𝐹𝑎𝑛(𝑉𝑀𝑎𝑥) = 𝑃𝑆𝑃 + 𝛼𝑆𝑦𝑠𝑉𝑀𝑎𝑥
2 𝐵. 12 

 

Variable Static Pressure Set Point Model 

 Table 41 gives the required inputs for a fan static pressure model that takes 

varying static pressures into account.  This model uses the same fan curves, current 

volume flow rate, and current static pressure setpoints as the constant static pressure set 

point model.  However, it uses the maximum possible flow and static pressure setpoint 

under known, nominal conditions as a reference point for calculating system curves 

under other static pressure set points. 
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Table 41 – Variable Static Pressure Set Point Model Inputs 

Parameter Symbol Unit 

Fan Total Pressure vs. Flow at Full Speed Curve 𝑃𝑇,𝐹𝑎𝑛(�̅�) 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Fan Brake Horsepower vs. Flow at Full Speed Curve 𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐹𝑎𝑛(�̅�) 

𝐻𝑝

𝑓𝑡2
 

Maximum Air Flow Rate at the Design Static 

Pressure Set Point 
�̅�𝑀𝑎𝑥,𝐷𝑒𝑠𝑖𝑔𝑛 

𝐶𝐹𝑀

𝑓𝑡2
 

Design Static Pressure Set Point 𝑃𝑆𝑃,𝐷𝑒𝑠𝑖𝑔𝑛 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Current Static Pressure Set Point 𝑃𝑆𝑃,𝐶𝑢𝑟𝑟 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Current Air Flow Rate �̅�𝐶𝑢𝑟𝑟 
𝐶𝐹𝑀

𝑓𝑡2
 

 

Table 42 – Variable Static Pressure Set Point Model Outputs 

Parameter Symbol Unit 

System Curve Quadratic Factor 𝛼𝑆𝑦𝑠 

𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂

(
𝐶𝐹𝑀
𝑓𝑡2

)
2  

Maximum Flow at the Current Static Pressure Set 

Point 
�̅�𝑀𝑎𝑥,𝐶𝑢𝑟𝑟 

𝐶𝐹𝑀

𝑓𝑡2
 

Air Flow Rate at the Fan Curve/System Curve 

Intersect Point 
�̅�𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 

𝐶𝐹𝑀

𝑓𝑡2
 

Current Fan Total Pressure 𝑃𝑇,𝐶𝑢𝑟𝑟 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Fan Total Pressure the Fan Curve/System Curve 

Intersect Point 
𝑃𝑇,𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑖𝑛𝑐ℎ𝑒𝑠 𝐻2𝑂 

Fan Brake Horsepower at the Fan Curve/System 

Curve Intersect Point 
𝐵ℎ𝑝̅̅ ̅̅ ̅̅

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 
𝐻𝑝

𝑓𝑡2
 

Current Fan Brake Horsepower 𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐶𝑢𝑟𝑟 

𝐻𝑝

𝑓𝑡2
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 Equations B.13–B.17 describe the fan pressure curves of Figure 88.  Equation 

B.13 describes the intersection of the fan total pressure curve and the system curve at a 

reference static pressure set point.  Equation B.14 describes intersection of the of the fan 

total pressure curve and the system curve at the current static pressure set point.  

Equation B.15 describes the intersection of the current system curve and the 

characteristic curve at the current flow rate and fan total pressure.  Equation B.16 

describes the intersection of the fan total pressure curve and the characteristic curve.  

Finally, equation B.17 describes the characteristic curve.  Brake horsepower calculations 

of equations B.18 and B.19 are the same as in the constant static pressure set point 

equations. 

 

𝑃𝑇,𝐹𝑎𝑛(�̅�𝑀𝑎𝑥,𝑁𝑜𝑚) = 𝑃𝑆𝑃,𝑁𝑜𝑚 + 𝛼𝑆𝑦𝑠�̅�𝑀𝑎𝑥,𝑁𝑜𝑚
2

𝐵. 13 

𝑃𝑇,𝐹𝑎𝑛(�̅�𝑀𝑎𝑥,𝐶𝑢𝑟𝑟) = 𝑃𝑆𝑃,𝐶𝑢𝑟𝑟 + 𝛼𝑆𝑦𝑠�̅�𝑀𝑎𝑥,𝐶𝑢𝑟𝑟
2

𝐵. 14 

𝑃𝑇,𝐶𝑢𝑟𝑟 = 𝑃𝑆𝑃,𝐶𝑢𝑟𝑟 + 𝛼𝑆𝑦𝑠�̅�𝐶𝑢𝑟𝑟
2

𝐵. 15 

𝑃𝑇,𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = 𝑃𝑆𝑃,𝐶𝑢𝑟𝑟 + 𝛼𝑆𝑦𝑠�̅�𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡
2

𝐵. 16 

𝑃𝑇,𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡
𝑃𝑇,𝐶𝑢𝑟𝑟

= (
�̅�𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

�̅�𝐶𝑢𝑟𝑟
)

2

𝐵. 17 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = 𝐵ℎ𝑝̅̅ ̅̅ ̅̅

𝐹𝑎𝑛(�̅�𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) 𝐵. 18 

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

𝐵ℎ𝑝̅̅ ̅̅ ̅̅
𝐶𝑢𝑟𝑟

= (
�̅�𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

�̅�𝐶𝑢𝑟𝑟
)

3

𝐵. 19 
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Psychrometrics 

𝑀𝑟𝑎𝑡𝑖𝑜 =
𝑀𝑤

𝑀𝑑𝑎
=
18.015268

28.966
= 0.621945 𝐵. 20 

 

Water Saturation Pressure 

Figure 90 shows a plot of water saturation pressure in 𝑝𝑠𝑖𝑎 versus temperature in 

°F.  This equation is based off equations B.21 and B.22 where less than or equal to 32°F 

the function uses equation B.21 and above 32°F the function uses equation B.22.  The 

variable 𝑇𝑅 in these equations is the absolute temperature in Rankine.  Table 43 shows 

the values of the coefficients used in these equations [72]. 

 

 
Figure 90 – Water Saturation Pressure Equation from ASHRAE 

 

𝐿𝑛(𝑃𝑤𝑠(𝑇𝑅)) =
𝐶1
𝑇𝑅
+ 𝐶2 + 𝐶3𝑇𝑅 + 𝐶4𝑇𝑅

2 + 𝐶5𝑇𝑅
3 + 𝐶6𝑇𝑅

4 + 𝐶7𝐿𝑛(𝑇𝑅) 𝐵. 21 

𝐿𝑛(𝑃𝑤𝑠(𝑇𝑅)) =
𝐶8
𝑇𝑅
+ 𝐶9 + 𝐶10𝑇𝑅 + 𝐶11𝑇𝑅

2 + 𝐶12𝑇𝑅
3 + 𝐶13𝐿𝑛(𝑇𝑅) 𝐵. 22 
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Table 43 – Coefficients for Saturation Water Pressure Calculations 

Coefficient Value 

𝐶1 -1.0214165E4 

𝐶2 -4.8932428 

𝐶3 -5.3765794E-3 

𝐶4 1.9202377E-7 

𝐶5 3.5575832E-10 

𝐶6 -9.0344688E-14 

𝐶7 4.1635019 

𝐶8 -1.0440397E4 

𝐶9 -1.1294650E1 

𝐶10  -2.7022355E-2 

𝐶11  1.2890360E-5 

𝐶12  -2.4780681E-9 

𝐶13  6.5459673 

 

Saturation Humidity Ratio 

𝑊𝑆𝑎𝑡 =
𝑀𝑟𝑎𝑡𝑖𝑜𝑃𝑤𝑠(𝑇)

𝑃 − 𝑃𝑤𝑠(𝑇)
𝐵. 23 

𝑊𝑆𝑎𝑡𝑃 = (𝑀𝑟𝑎𝑡𝑖𝑜 +𝑊𝑆𝑎𝑡)𝑃𝑤𝑠(𝑇) 𝐵. 24 

 

Relative Humidity 

𝑅ℎ =
100𝑃𝑊

𝑃𝑤𝑠(𝑇)(𝑊 +𝑀𝑟𝑎𝑡𝑖𝑜)
𝐵. 25 

 

RC Networks for Wall Thermal Mass 

 RC networks can be used to approximate one dimensional heat transfer [70].  

Figure 92 shows an RC network in a “Tee” configuration, where each node of the 

network is evenly spaced.  Table 44 lists parameters that are commonly used in 

modeling wall heat transfer.  Equations B.26 and B.27 define R-Values and U-Values 

based on more fundamental parameters, equation B.28 defines thermal capacitance, 

equation B.29 defines a wall’s time constant, and equation B.30 defines a wall’s UA-

Value divided by the floor area connected to the wall.  Normalized UA-Values can be 

used in building energy calculations to help keep variables within known ranges. 
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Table 44 – Parameters Used in Wall Thermal Modeling 

Parameter Symbol Unit 

Wall Density 𝜌𝑊𝑎𝑙𝑙 
𝑙𝑏𝑚

𝑓𝑡3
 

Wall Thermal Conductivity 𝑘𝑊𝑎𝑙𝑙 
𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡 ∙ °𝐹
 

Wall Specific Heat 𝑐𝑝,𝑊𝑎𝑙𝑙 
𝐵𝑡𝑢

𝑙𝑏𝑚 ∙ °𝐹
 

Wall Thickness 𝑙𝑊𝑎𝑙𝑙 𝑓𝑡 

Wall Surface Area 𝐴𝑊𝑎𝑙𝑙 𝑓𝑡2 

Wall Volume 𝑉𝑊𝑎𝑙𝑙 𝑓𝑡3 

Zone Area Connected to the Wall 𝐴𝑍 𝑓𝑡2 

Wall R-Value 𝑅𝑊𝑎𝑙𝑙 
ℎ ∙ 𝑓𝑡2 ∙ °𝐹

𝐵𝑡𝑢
 

Wall U-Value 𝑈𝑊𝑎𝑙𝑙 
𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2 ∙ °𝐹
 

Wall Thermal Capacitance 𝐶𝑊𝑎𝑙𝑙 
𝐵𝑡𝑢

𝑓𝑡2 ∙ °𝐹
 

Wall Time Constant 𝜏𝑊𝑎𝑙𝑙 ℎ 

Wall UA-Value Normalized to a 

Zone Area 
𝑈𝐴̅̅ ̅̅ 𝑊𝑎𝑙𝑙 

𝐵𝑡𝑢

ℎ ∙ 𝑓𝑡2 ∙ °𝐹
 

 

𝑅𝑊𝑎𝑙𝑙 =
𝑙𝑊𝑎𝑙𝑙
𝑘𝑊𝑎𝑙𝑙

𝐵. 26 

𝑈𝑊𝑎𝑙𝑙 =
1

𝑅𝑊𝑎𝑙𝑙
=
𝑘𝑊𝑎𝑙𝑙
𝑙𝑊𝑎𝑙𝑙

𝐵. 27 

𝐶𝑊𝑎𝑙𝑙 = 𝜌𝑊𝑎𝑙𝑙𝑐𝑝,𝑊𝑎𝑙𝑙𝑙𝑊𝑎𝑙𝑙 𝐵. 28 

𝜏𝑊𝑎𝑙𝑙 = 𝑅𝑊𝑎𝑙𝑙𝐶𝑊𝑎𝑙𝑙 =
𝜌𝑊𝑎𝑙𝑙𝑐𝑝,𝑊𝑎𝑙𝑙𝑙𝑊𝑎𝑙𝑙

2

𝑘𝑊𝑎𝑙𝑙
𝐵. 29 

𝑈𝐴̅̅ ̅̅ 𝑊𝑎𝑙𝑙 =
𝐴𝑊𝑎𝑙𝑙
𝑅𝑊𝑎𝑙𝑙𝐴𝑍

=
𝑘𝑊𝑎𝑙𝑙𝐴𝑊𝑎𝑙𝑙
𝑙𝑊𝑎𝑙𝑙𝐴𝑍

𝐵. 30 
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Modeled with a Single Node 

 Figure 91 shows an RC network modeled with a single thermal mass node 

𝑇𝑊𝑎𝑙𝑙(𝑡).  Equations B.31–B.33 show the derivation and simplification of the differential 

equation of equation B.33 that describes this system.  Equation B.34 gives the heat 

transfer into side B from the wall node in 
𝐵𝑡𝑢

ℎ
, and equation B.35 gives the heat transfer 

into side A from the wall node in 
𝐵𝑡𝑢

ℎ
. 

 

 

Figure 91 – RC Network with a Single Node 

 

𝐶𝑊𝑎𝑙𝑙�̇�𝑊𝑎𝑙𝑙(𝑡) +
2(𝑇𝑊𝑎𝑙𝑙(𝑡) − 𝑇𝐴(𝑡))

𝑅𝑊𝑎𝑙𝑙
+
2(𝑇𝑊𝑎𝑙𝑙(𝑡) − 𝑇𝐵(𝑡))

𝑅𝑊𝑎𝑙𝑙
= 0 𝐵. 31 

𝑅𝑊𝑎𝑙𝑙𝐶𝑊𝑎𝑙𝑙�̇�𝑊𝑎𝑙𝑙(𝑡) = −2𝑇𝑊𝑎𝑙𝑙(𝑡) + 2𝑇𝐴(𝑡) − 2𝑇𝑊𝑎𝑙𝑙 + 2𝑇𝐵(𝑡) 𝐵. 32 

𝜏𝑊𝑎𝑙𝑙�̇�𝑊𝑎𝑙𝑙(𝑡) = −4𝑇𝑊𝑎𝑙𝑙(𝑡) + 2𝑇𝐴(𝑡) + 2𝑇𝐵(𝑡) 𝐵. 33 

𝑄𝑊𝑎𝑙𝑙→𝐵(𝑡) =
2𝐴𝑊𝑎𝑙𝑙
𝑅𝑊𝑎𝑙𝑙

(𝑇𝑊𝑎𝑙𝑙(𝑡) − 𝑇𝐵(𝑡)) 𝐵. 34 

𝑄𝑊𝑎𝑙𝑙→𝐴(𝑡) =
2

𝑅𝑊𝑎𝑙𝑙
(𝑇𝑊𝑎𝑙𝑙(𝑡) − 𝑇𝐴(𝑡)) 𝐵. 35 
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Modeled with Multiple Nodes 

 More detailed wall thermal mass models than the single node model can be 

constructed by dividing a wall into 𝑛 sections.  Each section represents a single node and 

is represented by an equally divided “Tee” network.  Models with multiple nodes can be 

more accurate by modeling the temperature distribution within a wall’s depth. 

 

 

Figure 92 – An Equally Divided RC Network with Multiple Nodes 

 

 Figure 93 shows an RC network for an interior node of the model in Figure 92.  

Equations B.36–B.38 show the derivation and simplification of the differential equation 

that describes the change in the temperature of 𝑇𝑊𝑎𝑙𝑙,𝑖.  Equation B.39 gives the heat 

transfer from wall node 𝑖 to wall node 𝑖 + 1 in 
𝐵𝑡𝑢

ℎ
. 

 

 

Figure 93 – RC Network for an Interior Node 

 

𝐶𝑊𝑎𝑙𝑙
𝑛

�̇�𝑊𝑎𝑙𝑙,𝑖(𝑡) +
𝑛 (𝑇𝑊𝑎𝑙𝑙,𝑖(𝑡) − 𝑇𝑊𝑎𝑙𝑙,𝑖−1(𝑡))

𝑅𝑊𝑎𝑙𝑙
+
𝑛 (𝑇𝑊𝑎𝑙𝑙,𝑖(𝑡) − 𝑇𝑊𝑎𝑙𝑙,𝑖+1(𝑡))

𝑅𝑊𝑎𝑙𝑙
= 0𝐵. 36 

𝑅𝑊𝑎𝑙𝑙𝐶𝑊𝑎𝑙𝑙
𝑛2

�̇�𝑊𝑎𝑙𝑙,𝑖(𝑡) = −𝑇𝑊𝑎𝑙𝑙,𝑖(𝑡) + 𝑇𝑊𝑎𝑙𝑙,𝑖−1(𝑡) − 𝑇𝑊𝑎𝑙𝑙,𝑖(𝑡) + 𝑇𝑊𝑎𝑙𝑙,𝑖+1(𝑡) 𝐵. 37 
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𝜏𝑊𝑎𝑙𝑙
𝑛2

�̇�𝑊𝑎𝑙𝑙,𝑖(𝑡) = −2𝑇𝑊𝑎𝑙𝑙,𝑖(𝑡) + 𝑇𝑊𝑎𝑙𝑙,𝑖−1(𝑡) + 𝑇𝑊𝑎𝑙𝑙,𝑖+1(𝑡) 𝐵. 38 

𝑄𝑊𝑎𝑙𝑙,𝑖→𝑊𝑎𝑙𝑙,𝑖+1(𝑡) =
𝑛𝐴𝑊𝑎𝑙𝑙
𝑅𝑊𝑎𝑙𝑙

(𝑇𝑊𝑎𝑙𝑙(𝑡) − 𝑇𝑊𝑎𝑙𝑙,𝑖+1(𝑡)) 𝐵. 39 

 

 Figure 94 shows an RC network for an exterior node of the model in Figure 92.  

Equations B.40–B.42 show the derivation and simplification of the differential equation 

that describes the change in the temperature of 𝑇𝑊𝑎𝑙𝑙,1.  The equation for 𝑇𝑊𝑎𝑙𝑙,𝑛 can be 

derived in a similar way.  Equation B.43 gives the heat transfer from wall node 1 to the 

exterior node 𝐴 in 
𝐵𝑡𝑢

ℎ
, and equation B.44 gives the heat transfer from wall node 1 to 

wall node 2, which has twice the resistance, in 
𝐵𝑡𝑢

ℎ
.  A matrix form of a “Tee” RC 

network in general with 𝑛 nodes is given in equation B.45. 

 

 

Figure 94 – RC Network for an Exterior Node 

 

𝐶𝑊𝑎𝑙𝑙
𝑛

�̇�𝑊𝑎𝑙𝑙1(𝑡) +
2𝑛 (𝑇𝑊𝑎𝑙𝑙,1(𝑡) − 𝑇𝐴(𝑡))

𝑅𝑊𝑎𝑙𝑙
+
𝑛 (𝑇𝑊𝑎𝑙𝑙,1(𝑡) − 𝑇𝑊𝑎𝑙𝑙,2(𝑡))

𝑅𝑊𝑎𝑙𝑙
𝐵. 40 

𝑅𝑊𝑎𝑙𝑙𝐶𝑊𝑎𝑙𝑙
𝑛2

�̇�𝑊𝑎𝑙𝑙1(𝑡) = −2𝑇𝑊𝑎𝑙𝑙,1(𝑡) + 2𝑇𝐴(𝑡) − 𝑇𝑊𝑎𝑙𝑙,1(𝑡) + 𝑇𝑊𝑎𝑙𝑙,2(𝑡) 𝐵. 41 

𝜏𝑊𝑎𝑙𝑙
𝑛2

�̇�𝑊𝑎𝑙𝑙1(𝑡) = −3𝑇𝑊𝑎𝑙𝑙,1(𝑡) + 2𝑇𝐴(𝑡) + 𝑇𝑊𝑎𝑙𝑙,2(𝑡) 𝐵. 42 

𝑄𝑊𝑎𝑙𝑙,𝑖→𝐴(𝑡) =
2𝑛𝐴𝑊𝑎𝑙𝑙
𝑅𝑊𝑎𝑙𝑙

(𝑇𝑊𝑎𝑙𝑙,1(𝑡) − 𝑇𝐴(𝑡)) 𝐵. 43 
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𝑄𝑊𝑎𝑙𝑙,1→2(𝑡) =
𝑛𝐴𝑊𝑎𝑙𝑙
𝑅𝑊𝑎𝑙𝑙

(𝑇𝑊𝑎𝑙𝑙,1(𝑡) − 𝑇𝑊𝑎𝑙𝑙,2(𝑡)) 𝐵. 44 

 

𝜏𝑊𝑎𝑙𝑙
𝑛2

[
 
 
 
 
 
 
 
 
�̇�𝑊𝑎𝑙𝑙,1(𝑡)

�̇�𝑊𝑎𝑙𝑙,2(𝑡)

�̇�𝑊𝑎𝑙𝑙,3(𝑡)

⋮
�̇�𝑊𝑎𝑙𝑙,𝑛−2(𝑡)

�̇�𝑊𝑎𝑙𝑙,𝑛−1(𝑡)

�̇�𝑊𝑎𝑙𝑙,𝑛(𝑡) ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
−3 1 0 ⋯ 0 0 0
1 −2 1 ⋯ 0 0 0
0 1 −2 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ −2 1 0
0 0 0 ⋯ 1 −2 1
0 0 0 ⋯ 0 1 −3]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑇𝑊𝑎𝑙𝑙,1(𝑡)

𝑇𝑊𝑎𝑙𝑙,2(𝑡)

𝑇𝑊𝑎𝑙𝑙,3(𝑡)

⋮
𝑇𝑊𝑎𝑙𝑙,𝑛−2(𝑡)

𝑇𝑊𝑎𝑙𝑙,𝑛−1(𝑡)

𝑇𝑊𝑎𝑙𝑙,𝑛(𝑡) ]
 
 
 
 
 
 
 

 

+

[
 
 
 
 
 
 
2 0
0 0
0 0
⋮ ⋮
0 0
0 0
0 2]

 
 
 
 
 
 

[
𝑇𝐴(𝑡)

𝑇𝐵(𝑡)
] 𝐵. 45 
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Infiltration and Exfiltration Calculations 

 Equation B.46 shows how air changes per hour can be converted into a flow rate 

for zones where infiltration and exfiltration are the same.  Table 45 lists the variables 

used in equation B.46. 

 

Table 45 – Infiltration/Exfiltration Variables 

Parameter Symbol Unit 

Zone Air Changes per 

Hour 
𝐴𝐶𝐻 

𝐴𝑖𝑟 𝐶ℎ𝑎𝑛𝑔𝑒𝑠

ℎ
 

Zone Air Volume 𝑉𝑍𝑜𝑛𝑒 𝑓𝑡3 

Zone Floor Area 𝐴𝑍𝑜𝑛𝑒 𝑓𝑡2 

Infiltration/Exfiltration 

Flow Rate 
�̅�𝐼𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

𝐶𝐹𝑀

𝑓𝑡2
 

 

�̅�𝐼𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐴𝐶𝐻 ∙ 𝑉𝑍𝑜𝑛𝑒
60 ∙ 𝐴𝑍𝑜𝑛𝑒

𝐵. 46 
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APPENDIX C 

CONSTRAINED OPTIMIZATION REFERENCE 

 

Nonlinear Programming Reformulations 

 Nonlinear programming solvers may not be able to handle certain types of 

functions, such as functions with discontinuities.  Reformulating problems in these cases 

might result in a solvable model.  Table 46 gives reformulations that may be useful for 

modeling HVAC systems with absolute values. 

 

Table 46 – Nonlinear Programming Reformulations 

Situation Original Form Reformulated Form 

Absolute value in 

constraints 

|𝑓(𝑥)| ≤ 𝑧 𝑓(𝑥) ≤ 𝑧

−𝑓(𝑥) ≤ 𝑧
 

Absolute value in the 

objective 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝑓(𝑥)| + 𝑔(𝑦) Introduce a new variable 𝑧, 

substitute it for 𝑥 in the objective. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝑓(𝑧)| + 𝑔(𝑦) 

Add 2 new constraints 

𝑥 ≤ 𝑧
−𝑥 ≤ 𝑧

 

 

Discontinuous Function Approximations 

 Nonlinear programming algorithms such as the one used in IPOPT can fail when 

objective functions or equality constraints are not twice continuously differentiable [41].  

However, discontinuous functions such as min, max, and absolute values can appear in 

HVAC modeling in situations such as cooling coils, heating coils, and optimization 

objectives.  Smoothing these functions using approximations around discontinuous 

points can help make models run more robustly. 
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 Approximations of the functions |𝑥| or 𝑀𝑎𝑥(𝑥, 0)  can be used to smooth 

discontinuous functions.  Equations C.1–C.4 can be used to approximate 𝑀𝑖𝑛(𝑥, 𝑦), 

𝑀𝑎𝑥(𝑥, 𝑦), and |𝑥| from either of these two approximations.  The prototype solver Beryl 

contains user options to automatically smooth discontinuous functions based on these 

two functions. 

 

𝑀𝑎𝑥(𝑥, 𝑦) = 𝑦 +𝑀𝑎𝑥(𝑥 − 𝑦, 0) 𝐶. 1 

𝑀𝑖𝑛(𝑥, 𝑦) = 𝑥 −𝑀𝑎𝑥(𝑥 − 𝑦, 0) 𝐶. 2 

𝑀𝑎𝑥(𝑥, 0) =
1

2
(𝑥 + |𝑥|) 𝐶. 3 

|𝑥| = 2 ∙ 𝑀𝑎𝑥(𝑥, 0) − 𝑥 𝐶. 4 

 

 Equation C.5 shows a smooth approximation for an absolute value that uses a 

square root and a positive parameter 휀 to dampen the discontinuity.  Figure 95 compares 

this approximation with an absolute value and shows that its maximum error occurs at 

𝑥 = 0 where the error equals √휀. 

 

|𝑥| ≈ √𝑥2 + 휀 𝐶. 5 
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Figure 95 – Continuous Approximation of an Absolute Value 

 

 Equation C.6 shows a piecewise continuous approximation for 𝑀𝑎𝑥(𝑥, 0) 

developed by Bertsekas for optimizing nondifferentiable problems [80].  This function 

depends on two scaling parameters, 𝜆 and 𝑐.  The first parameter 𝜆 ∈ [0, 1] controls 

which side the function is tight on, while the second parameter 𝑐 ∈ (0,∞) controls the 

tightness of the fit.  Figure 96 shows 𝑀𝑎𝑥(𝑥, 0) and this approximation when 𝜆 = 0.5 to 

distribute errors evenly on both sides and 𝑐 = 1. 

 

𝑀𝑎𝑥(𝑥, 0) ≈ 𝛾(𝑥, 𝜆, 𝑐) =

{
  
 

  
 𝑥 −

(1 − 𝜆)2

2𝑐
𝑖𝑓 
1 − 𝜆

𝑐
≤ 𝑥

𝜆𝑥 +
𝑐

2
𝑥2 𝑖𝑓 −

𝜆

𝑐
≤ 𝑥 ≤

1 − 𝜆

𝑐

−
𝜆2

2𝑐
𝑖𝑓 𝑥 ≤ −

𝜆

𝑐

𝐶. 6 
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Figure 96 – Continuous Approximation of Max(x, 0) by Bertsekas 
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APPENDIX D 

NONLINEAR PROGRAMMING SENSITIVITY ANALYSIS DERIVATION 

 

 Building energy simulations consist of several time steps, where parameters such 

as outside air temperature and loads vary over time.  To solve these problems using 

constrained optimization a sequence of problems must be solved.  This is known as a 

parametric nonlinear program.  Figure 97 shows the box-constrained form of a 

parametric nonlinear programming problem used by IPNLP, the constrained 

optimization solver developed for Beryl. 

 

minimize: 𝑓(𝒙, 𝒚) 

subject to: 𝒉(𝒙, 𝒚) = 𝟎 

𝒂(𝒚) ≤ 𝒙 ≤ 𝒃(𝒚) 

Figure 97 – A Parametric Nonlinear Programming Problem 

 

 Sensitivity analysis uses the KKT matrix factorizations performed in a previous 

simulation to estimate the solution for new parameters.  Table 47 gives descriptions and 

dimensions of some variables used in the derivation of the equations needed to perform 

sensitivity analysis calculations. 

 

Table 47 – Parameters Used in Solving Parametric Nonlinear Programming 

Problem 

Variable Description 

𝒙 Primal variables 

𝝀 Equality constraint dual variables 

𝒛𝑳 Lower bound dual variables 

𝒛𝑼 Upper bound dual variables 

𝒚 Parameters that change on each time step 
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The matrices 𝑬𝑳 and 𝑬𝑼 are used to add or remove rows in vectors or matrices to 

change their number of rows between the number of lower or upper bounds and the full 

length of the 𝒙 vector, as seen in equations D.4–D.5.  They’re made up of column 

vectors for each upper or lower bound with a value of 1 on the bound index.  For 

instance, if 𝒙 had a length of 4 and lower bounds existed on indices 1 and 4, 𝑬𝑳, 𝒛𝑳, and 

𝒙 would have the values and structure seen in equations D.1–D.3.  Multiplying 𝑬𝑳 by 𝒛𝑳 

results in a vector with the length of 𝒙 with 𝒛𝑳’s indices placed in the indices of the 

lower bounds, as seen in equation D.4.  Multiplying the transpose of 𝑬𝑳 by 𝒙 results in a 

vector with the 𝒙 values of the used lower bounds, as seen in equation D.5.  𝒁𝑳 and 𝒁𝑼 

have the same structure as 𝑬𝑳 and 𝑬𝑼 except they use the dual vector parameters instead 

of 1’s, as seen in equation D.6. 

 

𝑬𝑳 = [

1 0
0 0
0 0
0 1

] 𝐷. 1 

 𝒛𝑳 = [
𝑧𝐿1
𝑧𝐿4
] 𝐷. 2 

𝒙 = [

𝑥1
𝑥2
𝑥3
𝑥4

] 𝐷. 3 

𝑬𝑳𝒛𝑳 = [

1 0
0 0
0 0
0 1

] [
𝑧𝐿1
𝑧𝐿4
] = [

𝑧𝐿1
0
0
𝑧𝐿4

] 𝐷. 4 

𝑬𝑳
𝑻𝒙 = [

1 0 0 0
0 0 0 1

] [

𝑥1
𝑥2
𝑥3
𝑥4

] = [
𝑥1
𝑥4
] 𝐷. 5 

𝒁𝑳 = [

𝑧𝐿1 0
0 0
0 0
0 𝑧𝐿4

] 𝐷. 6 
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 Functions for the distance between x and its used lower and upper bounds are 

given in equations D.7 and D.8.  Vectors given in capital letters are diagonalized 

versions of functions, as in equations D.9 and D.10. 

 

∆𝒙𝑳(𝒚) = 𝑬𝑳
𝑻𝒙 − 𝒂(𝒚) 𝐷. 7 

∆𝒙𝑼(𝒚) = 𝒃(𝒚) − 𝑬𝑼
𝑻𝒙 𝐷. 8 

∆𝑿𝑳(𝒚) = 𝑑𝑖𝑎𝑔(∆𝒙𝑳(𝒚)) 𝐷. 9 

∆𝑿𝑼(𝒚) = 𝑑𝑖𝑎𝑔(∆𝒙𝑼(𝒚)) 𝐷. 10 

 

 The Lagrangian for the constrained optimization problem of Figure 97 is given in 

equation D.11, and it’s gradient in terms of 𝒙, Hessian in terms of 𝒙, and gradient in 

terms of 𝒙 and 𝒚 are given in equations D.12–D.14 for later use. 

 

𝐿(𝒙, 𝝀, 𝒛𝑳, 𝒛𝑼, 𝒚) = 𝒇(𝒙, 𝒚) + 𝒉(𝒙, 𝒚)𝝀 − ∆𝒙𝑳(𝒚)
𝑇𝒛𝑳 − ∆𝒙𝑼(𝒚)

𝑇𝒛𝑼 𝐷. 11 

𝛻𝑥𝐿(𝒙, 𝝀, 𝒛𝑳, 𝒛𝑼, 𝒚) = 𝛻𝑥𝒇(𝒙, 𝒚) + 𝛻𝑥𝒉(𝒙, 𝒚)𝝀 − 𝑬𝑳𝒛𝑳 + 𝑬𝑼𝒛𝑼 𝐷. 12 

𝛻𝑥
2𝐿(𝒙, 𝝀, 𝒛𝑳, 𝒛𝑼, 𝒚) = 𝛻𝑥

2𝒇(𝒙, 𝒚) + 𝛻𝑥
2𝒉(𝒙, 𝒚)𝝀 𝐷. 13 

𝛻𝑥𝑦𝐿(𝒙, 𝝀, 𝒛𝑳, 𝒛𝑼, 𝒚) = 𝛻𝑥𝑦𝒇(𝒙, 𝒚) + 𝛻𝑥𝑦𝒉(𝒙, 𝒚)𝝀 𝐷. 14 

 

The Karush-Kuhn-Tucker conditions of the problem are given in equations 

D.13–D.18.  These conditions for the solution of Figure 97 can be translated into 

equation D.19 using the implicit function theorem [85].  This expresses the change in 𝒙, 

𝝀, 𝒛𝑳, and 𝒛𝑼 required to maintain the solution to the KKT equations after a small 

change in 𝒚 parameters.  Matrix row operations are then used to translate equation D.19 

into equation D.22.  The block structure of equation D.22 can then be decomposed into 

equations D.23–D.25.  The matrix on the left-hand side of D.23 is the solution used in 

IPNLP’s algorithm.  Its factorization can be reused to estimate new values for 𝒙, 𝝀, 𝒛𝑳, 

and 𝒛𝑼 after a parameter change.   
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𝛻𝑥𝐿(𝒙, 𝝀, 𝒛𝑳, 𝒛𝑼, 𝒚) = 𝛻𝑥𝒇(𝒙, 𝒚) + 𝛻𝑥𝒉(𝒙, 𝒚)𝝀 − 𝑬𝑳𝒛𝑳 + 𝑬𝑼𝒛𝑼 = 𝟎 𝐷. 15 

𝒉(𝒙, 𝒚) = 𝟎 𝐷. 16 

∆𝑿𝑳(𝒚)𝒛𝑳 = 𝟎 𝐷. 17 

∆𝑿𝑼(𝒚)𝒛𝑼 = 𝟎 𝐷. 18 

 

[
 
 
 
 
𝛻𝑥
2𝒇(𝒙, 𝒚) + 𝛻𝑥

2𝒉(𝒙, 𝒚)𝝀 𝛻𝑥𝒉(𝒙, 𝒚) −𝑬𝑳 𝑬𝑼
𝛻𝑥𝒉(𝒙, 𝒚) 0 0 0

𝒁𝑳
𝑻 0 ∆𝑿𝑳(𝒚) 0

−𝒁𝑼
𝑻 0 0 ∆𝑿𝑼(𝒚)]

 
 
 
 

[
 
 
 
 
𝛻𝑦𝒙

𝛻𝑦𝝀

𝛻𝑦𝒛𝑳
𝛻𝑦𝒛𝑼]

 
 
 
 

 

= −

[
 
 
 
 
𝛻𝑥𝑦𝒇(𝒙, 𝒚) + 𝛻𝑥𝑦𝒉(𝒙, 𝒚)𝝀

𝛻𝑦𝒉(𝒙, 𝒚)

𝛻𝑦∆𝑿𝑳(𝒚)𝒛𝑳
𝛻𝑦∆𝑿𝑼(𝒚)𝒛𝑼 ]

 
 
 
 

𝐷. 19 

[
 
 
 
 
𝛻𝑥
2𝒇(𝒙, 𝒚) + 𝛻𝑥

2𝒉(𝒙, 𝒚)𝝀 𝛻𝑥𝒉(𝒙, 𝒚) −𝑬𝑳 𝑬𝑼
𝛻𝑥𝒉(𝒙, 𝒚) 0 0 0

∆𝑿𝑳(𝒚)
−1𝒁𝑳

𝑻 0 𝑰 0

−∆𝑿𝑼(𝒚)
−1𝒁𝑼

𝑻 0 0 𝑰 ]
 
 
 
 

[
 
 
 
 
𝛻𝑦𝒙

𝛻𝑦𝝀

𝛻𝑦𝒛𝑳
𝛻𝑦𝒛𝑼]

 
 
 
 

= −

[
 
 
 
 
𝛻𝑥𝑦𝒇(𝒙, 𝒚) + 𝛻𝑥𝑦𝒉(𝒙, 𝒚)𝝀

𝛻𝑦𝒉(𝒙, 𝒚)

∆𝑿𝑳(𝒚)
−1𝛻𝑦∆𝑿𝑳(𝒚)𝒛𝑳

∆𝑿𝑼(𝒚)
−1𝛻𝑦∆𝑿𝑼(𝒚)𝒛𝑼 ]

 
 
 
 

𝐷. 20

 

[
 
 
 
 
𝛻𝑥
2𝒇(𝒙, 𝒚) + 𝛻𝑥

2𝒉(𝒙, 𝒚)𝝀 + 𝑬𝑳∆𝑿𝑳(𝒚)
−1𝒁𝑳

𝑻 𝛻𝑥𝒉(𝒙, 𝒚) 0 𝑬𝑼
𝛻𝑥𝒉(𝒙, 𝒚) 0 0 0

∆𝑿𝑳(𝒚)
−1𝒁𝑳

𝑻 0 𝑰 0

−∆𝑿𝑼(𝒚)
−1𝒁𝑼

𝑻 0 0 𝑰 ]
 
 
 
 

[
 
 
 
 
𝛻𝑦𝒙

𝛻𝑦𝝀

𝛻𝑦𝒛𝑳
𝛻𝑦𝒛𝑼]

 
 
 
 

 

= −

[
 
 
 
 
𝛻𝑥𝑦𝒇(𝒙, 𝒚) + 𝛻𝑥𝑦𝒉(𝒙, 𝒚)𝝀 + 𝑬𝑳∆𝑿𝑳(𝒚)

−1𝛻𝑦∆𝑿𝑳(𝒚)𝒛𝑳
𝛻𝑦𝒉(𝒙, 𝒚)

∆𝑿𝑳(𝒚)
−1𝛻𝑦∆𝑿𝑳(𝒚)𝒛𝑳

∆𝑿𝑼(𝒚)
−1𝛻𝑦∆𝑿𝑼(𝒚)𝒛𝑼 ]

 
 
 
 

𝐷. 21 
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[
 
 
 
 
 (

𝛻𝑥
2𝒇(𝒙, 𝒚) + 𝛻𝑥

2𝒉(𝒙, 𝒚)𝝀

+𝑬𝑳∆𝑿𝑳(𝒚)
−1𝒁𝑳

𝑻 + 𝑬𝑼∆𝑿𝑼(𝒚)
−1𝒁𝑼

𝑻) 𝛻𝑥𝒉(𝒙, 𝒚) 0 0

𝛻𝑥𝒉(𝒙, 𝒚) 0 0 0

∆𝑿𝑳(𝒚)
−1𝒁𝑳

𝑻 0 𝑰 0

−∆𝑿𝑼(𝒚)
−1𝒁𝑼

𝑻 0 0 𝑰]
 
 
 
 
 

[
 
 
 
 
𝛻𝑦𝒙

𝛻𝑦𝝀

𝛻𝑦𝒛𝑳
𝛻𝑦𝒛𝑼]

 
 
 
 

 

= −

[
 
 
 
 
 (

𝛻𝑥𝑦𝒇(𝒙, 𝒚) + 𝛻𝑥𝑦𝒉(𝒙, 𝒚)𝝀

+𝑬𝑳∆𝑿𝑳(𝒚)
−1𝛻𝑦∆𝑿𝑳(𝒚)𝒛𝑳 − 𝑬𝑼∆𝑿𝑼(𝒚)

−1𝛻𝑦∆𝑿𝑼(𝒚)𝒛𝑼
)

𝛻𝑦𝒉(𝒙, 𝒚)

∆𝑿𝑳(𝒚)
−1𝛻𝑦∆𝑿𝑳(𝒚)𝒛𝑳

∆𝑿𝑼(𝒚)
−1𝛻𝑦∆𝑿𝑼(𝒚)𝒛𝑼 ]

 
 
 
 
 

𝐷. 22 

 

 Equations D.23–D.25 are used to calculate the change in 𝒙, 𝝀, 𝒛𝑳, and 𝒛𝑼 

required to maintain the solutions to the KKT conditions with an infinitesimal change in 

𝒚 parameters from a successfully completed simulation.  Equation D.23 is calculated 

first using the factored matrix of the previous time step.  Next, the solution to 𝛻𝑦𝒙 is used 

in equations D.24 and D.25.  The amount to adjust 𝒙, 𝝀, 𝒛𝑳, and 𝒛𝑼 for a new solution 

can be calculated from equation D.26, where 𝒚𝒏𝒆𝒙𝒕 is the parameter value vector for the 

next time step.  Making this adjustment provides the new solution estimate after an input 

parameter change. 

 

[
𝛻𝑥
2𝒇(𝒙, 𝒚) + 𝛻𝑥

2𝒉(𝒙, 𝒚)𝝀 + 𝑬𝑳∆𝑿𝑳(𝒚)
−1𝒁𝑳

𝑻 + 𝑬𝑼∆𝑿𝑼(𝒚)
−1𝒁𝑼

𝑻 𝛻𝑥𝒉(𝒙, 𝒚)

𝛻𝑥𝒉(𝒙, 𝒚) 0
] [
𝛻𝑦𝒙

𝛻𝑦𝝀
]  

= −[
(

𝛻𝑥𝑦𝒇(𝒙, 𝒚) + 𝛻𝑥𝑦𝒉(𝒙, 𝒚)𝝀

+𝑬𝑳∆𝑿𝑳(𝒚)
−1𝛻𝑦∆𝑿𝑳(𝒚)𝒛𝑳 − 𝑬𝑼∆𝑿𝑼(𝒚)

−1𝛻𝑦∆𝑿𝑼(𝒚)𝒛𝑼
)

𝛻𝑦𝒉(𝒙, 𝒚)

] 𝐷. 23 

𝛻𝑦𝒛𝑳 = −∆𝑿𝑳(𝒚)
−1(𝒁𝑳

𝑻𝛻𝑦𝒙 + 𝛻𝑦∆𝑿𝑳(𝒚)𝒛𝑳) 𝐷. 24 

𝛻𝑦𝒛𝑼 = ∆𝑿𝑼(𝒚)
−1(𝒁𝑼

𝑻𝛻𝑦𝒙 − 𝛻𝑦∆𝑿𝑼(𝒚)𝒛𝑼) 𝐷. 25 

[

∆𝒙
∆𝝀
∆𝒛𝑳
∆𝒛𝑼

] =

[
 
 
 
 
𝛻𝑦𝒙

𝛻𝑦𝝀

𝛻𝑦𝒛𝑳
𝛻𝑦𝒛𝑼]

 
 
 
 

∆𝒚 =

[
 
 
 
 
𝛻𝑦𝒙

𝛻𝑦𝝀

𝛻𝑦𝒛𝑳
𝛻𝑦𝒛𝑼]

 
 
 
 

(𝒚𝒏𝒆𝒙𝒕 − 𝒚) 𝐷. 26 
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APPENDIX E 

BERYL USERS GUIDE 

 

User Interface 

Beryl’s main user interface is shown in Figure 98.  Icons in the upper left allow 

users to create new models, open an existing model, save models, and run a simulation.  

The browse button allows a root directory to be selected for where weather files come 

from.  The selected root directory appears in the text box by the browse button, and the 

open button opens the root directory.   

 

 
Figure 98 – Beryl's Main User Interface 

 

Input Model Format 

 Input models for Beryl are stored as plain text files with an extension of .brl.  

Beryl adds color formatting itself, but .brl files can be viewed and edited in any text file 
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viewer.  Two statements cannot appear on the same line, and keywords are case 

sensitive.  Optional comments can be added to the end of any line in a file by adding two 

backslashes “//” and the comment text. 

Model input files have an overall structure that consists of a setup section 

followed by one or more non-nested problem sections, as shown in Figure 99.  The setup 

section contains overall information for a simulation such as the start date, end date, time 

step period, input file locations, outputs, and special compilation options for models.  

Problem sections contain mathematical models, where each problem section defines an 

initial partition for the preprocessing algorithm.  Each section’s keyword (setup or 

problem), brackets, and information must appear on a new line as in Figure 99. 

 

 
Figure 99 – Model Input Structure of Beryl 
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The Setup Section 

 The setup section of a model contains the overall parameters for a simulation 

such as the duration, time step period, input file locations, outputs, scales definitions, 

and compilation options.  As shown in Figure 99, it consists of a line with the keyword 

“setup”, a line with an open bracket, lines that define its parameters, and a line with a 

closed bracket to end the section.   

Setup Section Line Types 

Table 48 gives the line types used in the setup section and their formatting.  

These line types, blank lines, and comments lines are the only lines allowed in problem 

sections.  In strings to show a line’s general format items in brackets “[]” are optional. 

 

Table 48 – Setup Section Line Types 

Line Type Format 

Simulation 

Start Date 

startdate "1/1/2007 12:00 AM" 

• The start date of a simulation. 

• A single start date is required. 

startdate "MM:dd:YYYY hh:mm[:ss] AM/PM" 

Item Description 

startdate The keyword for the start date definition 

MM Month 

dd Day 

YYYY Year 

hh Hour (1-12) 

mm Minutes (0-59) 

ss Seconds (0-59) (optional) 

AM/PM AM or PM 
 

Simulation 

End Date 

enddate "1/1/2008 12:00 AM" 

• The end date of a simulation. 

• A single end date is required. 

• The keyword enddate followed by a date in quotes. 

• Same format as start dates. 
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Table 48 Continued 

Line Type Format 

Simulation 

Time Step 

Period 

timestep "1:0:0" 

• The time step period of a simulation. 

• A single time step period is required. 

• The keyword timestep followed by the time step period in quotes. 

timestep "[d.]hh:mm:ss[.fffffff]" 

Item Description 

timestep The keyword for the time step period definition 

d Days 

hh Hours (0-23) 

mm Minutes (0-59) 

ss Seconds (0-59) 

fffffff Fractional seconds (0-9999999) (optional) 
 

Dynamic 

Outputs per 

Time Step 

substeps 100 

• Gives the number of instantaneous dynamic readings that are taken on 

each time step of a simulation. 

• The keyword substeps followed by a positive integer. 

• Only required when dynamic variables are being outputted. 

Input 

Source 

Definition 

input weather, "root\Houston2007Weather.csv" 

• Defines an input data location and a name for it. 

• The keyword input followed by a name for the input source, followed 

by a comma, followed by a file name. 

• For the file name and path: 

o “root” in the file name above refers to the root directory selected 

in the user interface. 

o A full path can also be entered. 

• Must be a CSV (comma separated variable) file. 
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Table 48 Continued 

Line Type Format 

Excel 

Output 

Worksheet 

Definition 

excel Toa, Tma, Tccla, Tsa, Tza, Eza, "root\output.xlsx:Temps:Yearly" 

• Defines outputs for a single worksheet of an Excel output spreadsheet. 

• Multiple Excel Output Worksheet Definition lines can be defined to 

write multiple worksheets to the same Excel file. 

 

excel Inputs, "OutputLocation:OutputWorksheet[:CollectionType]" 

Parameter Description 

excel Keyword for an Excel output line. 

Inputs Comma separated list of variables to output. 

OutputLocation The name of the new Excel file to write to. 

OutputWorksheet The name of the worksheet to write to. 

CollectionType • How to sum or average output data over time 

before writing it. 

• Allowable values: 

Collection 

Type 

Description 

blank Write data from each time step. 

Hourly Sum or average data by hour. 

Daily Sum or average data by day. 

Monthly Sum or average data by month. 

Yearly Sum or average data by year. 

• Outputs are only written if full and valid data is 

available to sum. 

• Inputs such as dollars or energy use are 

summed, while temperatures, flow rates, 

humidity ratios, and energy usages normalized 

to time are averaged. 
 

Chart 

Output 

Definition 

chart Toa, Tma, Tccla, Tsa, Tza, Eza 

• The keyword chart followed by a comma delimited list of output 

variables to display. 

• Charts are initially shown with all variables on the y-axis and the date 

as the x-axis. 

Scale 

Definition 

scale temperatureScale => [30, 100] 

• Defines a scale so it can be reused on multiple variables in a model. 

• The keyword scale followed by a name for the scale, followed by a 

“=>” followed by the min and max values in bracket. 
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Table 48 Continued 

Line Type Format 

Compilation 

Option 

Definition 

option SmoothExpressions = true 

• The keyword option followed by the option name, an equals sign, and 

the option’s set value. 

• Descriptions of the different user options allowed are given in Table 

49. 

 

Beryl User Options 

 Compilation options in the setup section allow the compilation process to be 

modified.  This is useful for experimenting with different preprocessing steps and 

settings for numerical methods to improve the overall solving process.  Table 49 lists the 

available user options, their allowed values, and their default values.  Default values are 

used when the user option isn’t defined. 

 

Table 49 – Beryl User Options 

Option and Default Value 

MaxPresolvingOperations = 1000 

• The maximum number of presolving operations to perform before terminating the 

algorithm. 

• Must be greater than zero. 

IgnoreAssertions = true 

• Whether to ignore vertices that only contain previously calculated states 

• Allowed values: true/false 

DecomposeUnivariateLinearEqualities = true 

• Whether to perform univariate linear equality solving from Ch VI 

• Allowed values: true/false 

DecomposeBivariateLinearEqualities = true 

• Whether to perform bivariate linear equality solving from Ch VI 

• Allowed values: true/false 

DecomposeGeneralLinearEqualities = false 

• Whether to perform general algebraic decomposition from Ch VI on linear 

functions. 

• Allowed values: true/false 
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Table 49 Continued 

Option and Default Value 

SmoothExpressions = false 

• Whether to smooth expressions with discontinuous first derivatives. 

• Allowed values: true/false 

SmoothExpressions.SmoothingFunction = Sqrt 

• The function to use to smooth expressions with discontinuous first derivatives. 

• Allowable values: 

Value Description 

Sqrt Smoothes discontinuities based on a square root 

approximation of absolute values |𝑥| ≈ √𝑥2 + 휀. 
BGamma Smoothes discontinuities using Bertsekas’s gamma function 

𝑀𝑎𝑥(𝑥, 0) ≈ 𝛾(𝑥, 𝜆, 𝑐) from Appendix C 
 

SmoothExpressions.Epsilon = 1E-12 

• The 휀 to use in the square root smoothing function 

• 휀 ≥ 0 

SmoothExpressions.Lambda = 0.5 

• The 𝜆 to use in Bertsekas’s gamma function 

• 𝜆 ∈ [0, 1] 

SmoothExpressions.C = 1,000 

• The value of 𝑐 to use in the Bertsekas’s gamma function. 

• 𝑐 ≥ 0 

IPNLP.MaxAttempts = 4 

• The maximum number of attempts to successfully use IPNLP algorithm from a 

unique starting position before giving up. 

• Must be greater than zero. 

IPNLP.MaxIterations = 200 

• The maximum number of iterations for a single attempt of the IPNLP algorithm. 

• Must be greater than zero. 

• Corresponds to the “max_iter” option in IPOPT. 

IPNLP.EpsilonTolerance = 1E-9 

• The convergence tolerance for the IPNLP algorithm. 

• IPNLP terminates successfully when this error value is reached 

• Must be greater than or equal to zero. 

• Corresponds to the “tol” option in IPOPT. 

IPNLP.EpsilonToleranceAcceptable = 1E-8 

• Failed calculations in the IPNLP algorithm are accepted if their error is below this. 

• Must be greater than or equal to zero. 
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Table 49 Continued 

Option and Default Value 

IPNLP.MuInitial = 0.1 

• The initial value of the barrier parameter in the IPNLP algorithm. 

• Must be greater than zero. 

• Corresponds to the “mu_init” option in IPOPT 

IPNLP.MuInitialWithSensitivityAnalysis = 1E-4 

• The initial value of the barrier parameter in the IPNLP algorithm when the 

calculation was initialized using a previous solution. 

• Must be greater than zero. 

IPNLP.KappaMu = 0.2 

• Controls the linear decrease rate of the barrier parameter in the Fiaco-McCormick 

barrier update procedure. 

• Must be between 0 and 1. 

• Corresponds to the “mu_linear_decrease_factor” option in IPOPT. 

IPNLP.ThetaMu = 1.5 

• Controls the superlinear decrease rate of the barrier parameter in the Fiaco-

McCormick barrier update procedure. 

• Must be between 1 and 2. 

• Corresponds to the “mu_superlinear_decrease_power” option in IPOPT. 

IPNLP.ScaleOptimizationVariables = true 

• Whether to scale optimized variables when using the IPNLP algorithm to 

constrained optimizations. 

• Allowed values: true/false 

IPNLP.ScaleOptimizationFunctions = true 

• Whether to scale optimization functions when using the IPNLP algorithm to 

constrained optimizations. 

• Allowed values: true/false 

IPNLP.MainLineSearchReductionFactor = 0.5 

• The factor to reduce the main line search step size by when searching for a better 

solution in the main phase of the IPNLP algorithm. 

• Must be between 0 and 1. 

• Corresponds to the “alpha_red_factor” option in IPOPT. 

IPNLP.RestorationLineSearchReductionFactor = 0.5 

• The factor to reduce the main line search step size by when searching for a better 

solution in the restoration phase of the IPNLP algorithm. 

• Must be between 0 and 1. 
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Table 49 Continued 

Option and Default Value 

IPNLP.InitializeWithSensitivityAnalysis = true 

• Whether to try to initialize the problem with sensitivity analysis on a first attempt 

after a successful previous run. 

• Allowed values: true/false 

IPNLP.KappaEpsilon = 10 

• Mu is decreased when the barrier function error is less than this times mu. 

• Must be greater than zero 

• Corresponds to the “barrier_tol_factor” option in IPOPT 

IPNLP.EnablePreconditioning = true 

• Whether to allow preconditioning in linear algebra calculations. 

• Allowed values: true/false 

IPNLP.EnableSolutionRefinement = false 

• Whether to refine search directions using iterative refinement in linear algebra 

calculations. 

• Allowed values: true/false 

 

Problem Sections 

 Problem sections in a file contain all mathematical modeling.  As shown in 

Figure 99, it consists of a line with the keyword “problem”, a line with an open bracket, 

lines that define its parameters, and a line with a closed bracket to end the section. 

Problem Section Line Types 

Table 50 gives the line types used in the problem section and their formatting.  

These line types, blank lines, and comments lines are the only lines allowed in problem 

sections. 
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Table 50 – Problem Section Line Types 

Line Type Format 

Constant 

Floating Point 

Variable 

double V̅sa = 1.4 CFM/ft² 

• Defines a constant floating point variable. 

• The keyword double, followed by the constant’s variable name, 

followed by an equals sign, followed by the constant value, 

followed by the unit. 

• Allowed units are described below. 

Averaged 

Floating Point 

Variable 

double Tsa, °F  

double Tsa, °F => [40, 100] 

double Tsa, °F => temperatureScale 

• Defines a floating point variable that represents an average value 

over a time step. 

• The keyword double, followed by the variable name, followed by a 

comma, followed by the unit, followed by an optional “=>” and 

scale. 

• Allowed units are described below. 

• The optional scale can be in the “[min, max]” format or can be a 

reference to a pre-defined scale from the setup section. 

Input Variable 

Definition 

double[] Toa = weather["A", "B", "2"], °F 

• Defines a variable and how it’s derived from an input source. 

 

double[] Variable = InputSource["DateColumn", "DataColumn", 

"StartRow"], Unit 

Item Description 

double[] The keyword for an input variable definition. 

Variable 
The name of the loaded variable for use in 

calculations. 

InputSource 

The name of the input source to load data from.  

This comes from an input line in the setup 

section. 

DateColumn 
The column for dates in the input’s CSV file, in 

Excel’s letter column format. 

DataColumn 
The column for data in the input’s CSV file, in 

Excel’s letter column format. 

StartRow 
The row to start getting data from, in Excel’s 

numeric row format. 

Unit The variable’s unit. 
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Table 50 Continued 

Line Type Format 

Schedule 

Definition 

double<> XPeople = <{1/1/2007-1/1/2008: [Weekdays: (12AM, 0), 

(7:30AM, 0), (9:30AM, 1), (4:30PM, 1), (6:30PM, 0), (12AM*, 0)], 

[Weekends: (12AM, 0), (12AM*, 0)]}>, 0-1 

 

• Defines a variable that changes over time. 

• The overall schedule is formatted as follows: 

double<> Variable = <Schedules >, Unit 

Item Description 

double<> The keyword for a schedule definition. 

Variable The name of the schedule variable. 

Schedules 
A comma separated list of schedules, as 

described below, placed in round brackets. 

Unit The schedule variable’s unit. 

 

• Schedules are defined as nested lists with four different levels: 

List Level Description 

Time/Value Pair 
A time of day paired with an 

instantaneous value at that time. 

Day Schedule 

A list of time/value pairs that define how 

a value changes on a particular type of 

day. 

Time Schedule 
A list of day schedules that define how a 

value changes between two dates. 

Overall Schedule 

A list of time schedules that define a 

variable’s value over a complete 

simulation. 

 

• Time/Value Pairs are placed in round brackets: 

(TimeOfDay, Value) 

Item Description 

TimeOfDay The time of day for the value 

Value The value at that time of day 

o An asterisk after the time of day means the next day. 

o A schedule extending into the next day overrides the normal 

existing schedule. 
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Table 50 Continued 

Line Type Format 

Schedule 

Definition 

(Continued) 

• Day schedules are placed in square brackets: 

[DayType: ScheduleForDay] 

Item Description 

DayType The type of day that the time schedule is for. 

ScheduleForDay 
A list of time/value to define the schedule for 

the day 

o DayType choices are All, Weekdays, Weekends, Sundays, 

Mondays, Wednesdays, Thursdays, Fridays, Saturdays, 

Sundays. 

 

• Time schedules are placed in curly brackets: 

{StartDate-EndDate: [DaySchedules]} 

Item Description 

StartDate When the schedule starts applying. 

EndDate When the schedule stops applying. 

DaySchedules 
A list of day schedules that define a 

value between the start and end date. 
 

Dynamic 

Variable 

Definition 

dynamic TWallDyn, TWallAvg, 70.0, °F 

• Defines a variable that varies over time and an associated variable 

to represent its average over a time step. 

• The keyword dynamic, followed by a comma delimited list with the 

continuous variable name, averaged variable name, initial value, 

and unit. 

Minimization 

Objective 

minimize Eza1 + Eza2, 0 

• The keyword minimize followed by an algebraic expression to 

minimize, followed by a comma, followed by the lexicographic 

priority. 

• 0 is the highest lexicographic priority, with higher numbers having 

a lower priority. 

Maximization 

Objective 

maximize X1 + X2, 0  

• The keyword maximize followed by an algebraic expression to 

maximize, followed by a comma, followed by the lexicographic 

priority. 

• 0 is the highest lexicographic priority, with higher numbers having 

a lower priority. 
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Table 50 Continued 

Line Type Format 

Equality or 

Inequality 

Constraint 

constraint V̅sa >= V̅saMin 

• Defines an equality or inequality constraint. 

• The keyword constraint followed by an equality or inequality. 

• Inequality operators can be less than or equal or greater than or 

equal only. 

 

Units 

Every variable in a model is required to have a unit associated with it.  This helps 

keep track of unit consistency in equations.  A variable’s unit can be displayed in the 

user interface by holding a mouse over it.  This displays a tooltip window that shows text 

from the variable’s definition line. 

Table 51 displays the units available in Beryl.  For faster access in the user 

interface a list of these units can be displayed by entering pound ‘#’ into the code editor.  

These units are typically used in building energy modeling, so not all units are 

implemented.  If a desired unit is missing the unit 𝑁𝑜𝑛𝑒 can be used as a placeholder to 

run a simulation. 
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Table 51 – Units Implemented in Beryl 

Type SI Units IP Units 

No Unit 𝑁𝑜𝑛𝑒, 0 − 1,% 

Length 𝑚 𝑓𝑡 

Area 𝑚2 𝑓𝑡2 

Volume 𝑚3 𝑓𝑡3 

Velocity 𝑚 𝑠⁄  𝑓𝑡 𝑠⁄  

Flow 𝑚3 𝑠⁄  𝐶𝐹𝑀 

Flow per Unit Area 𝑚 𝑠⁄  𝐶𝐹𝑀 𝑓𝑡2⁄  

Density 𝑘𝑔 𝑚3⁄  𝑙𝑏𝑚 𝑓𝑡3⁄  

Energy 𝐽 𝐵𝑡𝑢,𝑀𝑀𝐵𝑡𝑢, 𝑘𝑊ℎ 

Power 𝑊,𝑘𝑊 ℎ𝑝, 𝐵𝑡𝑢 ℎ⁄ ,𝑀𝑀𝐵𝑡𝑢 ℎ⁄  

Power Density 𝑊 𝑓𝑡2⁄ , 𝑘𝑊 𝑓𝑡2⁄  ℎ𝑝 𝑓𝑡2⁄ , 𝐵𝑡𝑢 (ℎ ∙ 𝑓𝑡2)⁄ ,𝑀𝑀𝐵𝑡𝑢 (ℎ ∙ 𝑓𝑡2)⁄  

R-Value (𝑚2 ∙ 𝐾) 𝑊⁄  (ℎ ∙ 𝑓𝑡2 ∙ °𝐹) 𝐵𝑡𝑢⁄  

U-Value 𝑊 (𝑚2 ∙ 𝐾)⁄  𝐵𝑡𝑢 (ℎ ∙ 𝑓𝑡2 ∙ °𝐹)⁄  

UA-Value 𝑊 𝐾⁄  𝐵𝑡𝑢 (ℎ ∙ °𝐹)⁄  

Thermal Conductivity 𝑊 (𝑚 ∙ 𝐾)⁄  𝐵𝑡𝑢 (ℎ ∙ 𝑓𝑡 ∙ °𝐹)⁄  

Heat Capacity 𝐽 𝐾⁄  𝐵𝑡𝑢 °𝐹⁄  

Specific Heat Capacity 𝐽 (𝑘𝑔 ∙ 𝐾)⁄  𝐵𝑡𝑢 (𝑙𝑏𝑚 ∙ °𝐹)⁄  

Temperature °𝐶, 𝐾 °𝐹, °𝑅 

Pressure 𝑃𝑎 𝑃𝑠𝑖, 𝑖𝑛𝐻2𝑂 

Humidity Ratio 𝑘𝑔𝑤 𝑘𝑔𝑑𝑎⁄  𝑙𝑏𝑤 𝑙𝑏𝑑𝑎⁄  

Frequency 𝐻𝑧 

Cost $ 

Cost per Unit Area $ 𝑚2⁄  $ 𝑓𝑡2⁄  

Cost per Unit Time 

per Unit Area 
$ (ℎ ∙ 𝑚2)⁄  $ (ℎ ∙ 𝑓𝑡2)⁄  
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Scales 

 Scaling of variables in constrained optimization problems is enabled by 

associating variables with a scale.  A variable’s scale can be defined as a fixed min and 

max value in square brackets or it can be the identifier of a reused scale that’s defined in 

the setup section.  Scales are not required for all variables, but the preprocessing process 

won’t succeed if a constrained optimization that needs to be scaled has unscaled 

variables. 

  Scaling the variables and functions of constrained optimization based building 

energy models is important because of the sensitivity of constrained optimization solvers 

and the wide variation of variables in these models.  For instance, a humidity ratio 

balance function may involve humidity ratios on the order of 0.1 𝑘𝑔𝑤 𝑘𝑔𝑑𝑎⁄ , while an 

air flow balance in the same model may involve air flows on the order of 100,000 𝐶𝐹𝑀.  

Not scaling these functions to the same magnitude could result in a failed calculations or 

large humidity errors in calculated humidities that cause large errors in a building’s 

calculated energy usage. 
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Problem Section Order 

Multiple problem sections in an input file serve as the original partitioned 

subproblems.  This allows problems to be partitioned in ways the automatic 

preprocessing algorithm can’t detect.  For instance, temperature and humidity 

calculations can be decoupled when no relative humidity control is present.  However, 

but this must be done manually because no algorithm to decouple the problem as 

formulated in Chapter V could be found.  Multiple problem sections can also serve as 

containers for model code so that models are more readable. 

Problem sections must be entered in a valid solution order, where no problem 

section uses variables solved later as inputs.  This means that problem sections can’t 

have cyclic dependencies between the variables they solve.  Figure 100 shows a model 

that’s invalid because of cyclic dependencies.  Valid dependencies between problem 

sections are shown using green arrows, and the invalid dependency is shown using a red 

arrow.  The first problem section uses the variable 𝑧 in its equations but 𝑧 is calculated in 

the third problem section.   The dependencies between the first and second problem 

sections and the second and third create a cycle of dependence between all three problem 

sections.   
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Figure 100 – Problem Sections with a Cyclic Dependency 

 

Running a Model 

Models can be run by clicking the “run” button in the upper left-hand corner of 

the main window.  One of two windows is shown depending on whether the model has 

input errors.  If input errors exist the Input File Error Window of Figure 101 is shown.  

This window lists each error and its position in the file.  If no input errors exist the 

Project Runner Window of Figure 102 is shown.  This window gives details on the 

processing of a model and running of the simulation. 

 

 
Figure 101 – Input File Error Window 
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Figure 102 – Project Runner Window 

 

 Processing and running a model takes place in five phases: input validation, 

source code generation, source code compilation, running the simulation, and writing 

and showing simulation outputs.  The Project Runner Window displays information 

from each of these phases.  If a phase fails a red x is shown and an error message may be 

viewed.  If a phase succeeds it’s given a green check or bar. 

 When running a model, first the input validation phase validates the internal 

model that was made from the text input file.  This validation is independent of the UI 

validation and was made so that models can be validated when created from another user 

interface. 

 Next, the source code generation phase runs the automated solution algorithm 

from Chapter VI and results in C# source code to compile and execute.  The “View 

Presolve Graphs” button shows this process in detail by opening the window from 
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Figure 82.  The “View Source Code” button displays a text file of the generated source 

code.  Finally, the “Create Solution” button creates and opens a Visual Studio solution 

containing the source code and inputs from the simulation.  This solution executes the 

same code as a simulation, which allows generated code to be debugged line by line. 

 Next, in the source code compilation phase the generated source code is 

compiled.  If the compilation fails a button is displayed that displays model errors when 

clicked.  This is used for debugging the code generation process. 

 If source code is compiled successfully it’s then executed.  A progress bar is 

displayed to show how much of a simulation has been completed, and information on the 

run time, current time step, failed iterations, expected completion time, and the number 

of iterations required for each run of the IPNLP algorithm are given.  This information is 

used to fine tune the solution algorithms used. 

 Finally, if a simulation completes successfully its outputs are written and 

displayed.  Charts and Excel files are displayed automatically and clicking the “View 

Outputs” button reopens the Excel files.  A “View Exception” button appears if the steps 

of the Project Runner Window fail.  Clicking this button gives information on what part 

of the process has failed. 


