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ABSTRACT

Swimming is a complex and dangerous sport. A recent study found that swimming is

the third leading cause of death among children in the world each year. A significant factor

contributing to these statistics may be the limitations of current approaches to water-based

education. As such, the Red Cross and Bangladesh have started investing in research into

water-based education.

Current technology, monitors only the main swim styles backstroke, breaststroke,

butterfly, and freestyle. These existing systems are missing additional activities, such as

rest (treading water), transitions (flip turns), and low energy strokes (sidestroke). These

additional activities have an effect on a person’s swimming ability, and they form the

baseline for what is taught by the Red Cross, Bangladesh, and the military.

We developed and tested an aqua-tracker system for monitoring swimmers in all forms

of activities expected from a swimming-based training session. Our system uses a water-

proof mobile device to capture a swimmer’s flip-turns, ability to tread water, sidestroke,

freestyle, backstroke, breaststroke, and butterfly strokes. Activities are recognized us-

ing a sliding-window framework, comparing both a deep learning and a feature-based

recognition system. Our tracker has shown that the system can accurately detect each of

the activities, from beginner to expert level, with an f-measure of .94. Equipped with the

capabilities provided by our aqua-tracker system, people can monitor their own swimming

ability, parents can monitor their children while they are in the water, and lifeguards and

swimmers taking proficiency exams will be able to perform the exams without the needs

of a proctor.
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1. INTRODUCTION

1.1 Motivation

Swimming and water-related activities are fun and provide great exercise. Swimming

is considered one of the best physical activities thanks to the buoyancy of water and the

reduction of stress on physical joints. It allows everyone to be able to perform workouts

and has been proven to affect all muscle groups, as well as increase lung capacity and

improve breathing [1]. Furthermore, it can also help reduce weight gain and obesity.

Swimming is a major part of society, with triathlons, Olympics, and many water-based

sports promoting it to people of all ages and sizes.

While it is an extremely beneficial exercise, swimming can be very dangerous. Almost

half a million people in the world die from drowning each year [2]. On average, ten

people die every single day from drowning or other water-related accidents, and 1 of every

5 drowning victims is a child under the age of fourteen [3]. One of the major risks in these

drowning-related deaths is poor swimming ability and lack of awareness of water dangers.

This can be seen in the United States where more than 50% of Americans don’t know how

to swim, which increases to 61% for children [4, 5]. This can cause major neurological

effects on children as they age, including mental stability and mental damage [6].

The current methods to counteract this situation are through coaching and teaching

people multiple swim stroke techniques. The Red Cross suggests teaching basic swim-

ming styles such as sidestroke, backstroke, breaststroke, freestyle, butterfly, and treading

water. They have also created a set of exams in order to determine a person’s swimming

proficiency. These strokes and a person’s proficiency to swim have been shown to help

reduce the risk of drowning [7, 8].

While swimming courses and personal coaching can help reduce the risk of drowning,
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the number of drowning deaths continue to rise1 [9]. This may be due to the high cost

of swimming lessons, the difficulty of finding coaches who can provide rich, personalized

feedback, or the lack of a standardized water-based education curriculum in the United

States [10–13]. Technology may be able to provide a better, more accessible solution

toward reducing the dangers of swimming, but current offerings are quite limited. We

propose an aqua-tracking, wearable system which can detect a wide variety of swimming

activities and provide feedback which may be used by coaches and trainers to more quickly

provide feedback to a larger number of people, furthering our goal of making learning to

swim an accessible skill to everyone.

1.2 Domain Context

There are many health and related areas that can be affected by wearable technology.

Wearables allow users to track their health-related progress and understand if they are

improving or not. Most current research has been focused on understanding physical

activity in land-based environments.

The rise of mobile device technology has supported an increase in recognizing more

types of physical activities including workouts, aerobics, sports, and many other activities.

Recently, consumer devices like the Apple Watch have added capabilities to detect certain

water-based activities [14]. When it comes to swimming there are four major stroke

styles: freestyle, backstroke, breaststroke, and butterfly. These stroke styles are used in

competitions, ranging from school events to professional and Olympic activities. For each

of these competitions, flip-turns are used for transition-based swimming styles; this is

when a person reverses their direction while swimming. These styles transition to multiple

water-based events such as water polo and triathlons. For recreational swimming, there are

a couple of minor styles that are important for safety, which are swimming techniques like

1https://sls.com.au/coastal-drowning-deaths-rise/
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treading water and sidestroke.

1.3 Research Proposal

For this study, we targeted seven water-based activities. We covered the four major

styles: breaststroke, butterfly, backstroke, and freestyle, along with three minor activities:

flip turns, sidestroke, and treading water. We created software and hardware consisting

of sensors, data storage, and a waterproof system to allow recognition of the seven swim

styles. The developed algorithms can be separated into multiple different methods such

as cleaning and understanding the sensor data. Developing, evaluating, and validating the

features on multiple different time windows with several ML algorithms to find the best

statistical measurement of the system. Finally, we developed a prototype system that can

recognize and be tested on the user in a naturalistic setting.

The goal of this research is to answer the following questions:

1. What time and frequency domain features can accurately detect the four major swim

strokes (backstroke, breaststroke, freestyle, butterfly) and the three minor strokes

(sidestroke, treading water, flip turns)?

2. Is there a best sliding time window and machine learning algorithm that can detect

all of the swim strokes?

3. Will a personal deep learning neural network provide better performance and opti-

mized speed compared to other machine learning algorithms?

3



2. RELATED WORK

Research in activity recognition has provided promising results in many different fields

from healthcare, military, and personal/commercial uses [15–20]. With the advance-

ments in technology there have been expanding possibilities in using different sensors

to recognize human activity. Research surrounding these systems has been focused on

understanding sensors and sensor placement among activities. With the advancements

in mobile development and increased computational performance from these devices,

researchers have moved to recognize more and more human behaviors and activities. With

the combination of sensor placement and activity, recognition algorithms can recognize

many activities in real time. In industry, companies like Fitbit and Apple are using this

technology to monitor health and physical activity and have focused on recognizing sleep,

walking, running, and step counts [21, 22].

In the following sections we will cover work done in both land and water-based recog-

nition systems and what activities are covered. We will also present an in-depth analysis

of sensor placement and recognition methods that these systems use.

2.1 Wearable and Smart Phones

With the rise in products such as virtual realty, Apple, Samsung, and Google devices

there have been an increase in senors types, computational power, and memory. With the

rise of these ubiquitous smartphones, we have seen a rise in the simplistic capabilities

of programming provided several advantages with it came to research and their capa-

bility [17]. The embedded system provides a new area of research with the concept of

smartphones or applications [23–27] which have shown in the field of fashion, health,

and physical activity that provide more insight and can validate ones capabilities. For

non-embedded systems Kwapisz [16] used smart phones to recognize walking, jogging,

4



ascending stairs, descending stairs, sitting, and standing with an accuracy of 91.7%. This

has come to some trouble since two out of the six activities presented individually have

no greater accuracy than 61%. A similar study used a phone-based accelerometer to

detect walking, jogging, running, cycling, and sports which provided an accuracy of

71%. This is due to the fact that they claimed sports to have a variety of activities that

overlapped the other classifications [28]. With water-based wearables we need to consider

that limitations of water and its effect on these systems. This research [29–31] has shown

that mobile devices can provide some capability in recognizing water-based activity. With

MobyDick [31] showing the capabilities of developing a game for water-based swimming

the system wasn’t able to recognize the strokes in high accuracy and only relied on GPS

signals. Marshall [29] used an android mobile device to gather sensor data from swimmers.

This system was used to provide capabilities of mobile devices with water-based activities.

The system did not provide a recognition algorithm or features but rather showed the

understanding of if a mobile phone can gather sensor data in water-based activities.

2.2 Activity Recognition Wearable

Researchers have created many wearable solutions to recognize other human activities,

including detecting and distinguishing daily care events such as brushing teeth, washing

hands, or brushing hair [32]; detecting and distinguishing fitness activities including:

jumping jacks, situps, pushups, and squats [33], detecting and distinguishing military

emergency situations including: standing, lying down, and jumping [34]; and detecting

and distinguishing pedestrian events including: walking, running, standing, sitting, or

pacing [35]. Additionally, researchers at the Sketch Recognition Lab have created sensors

to map conditions of the world around us including: ultraviolet rays [36] ozone levels [37],

and even to aid in physical therapy [38], teach piano [39], and play an imaginary violin or

cello [40].
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These applications can be used in fields such as health care, assisted living, sports,

learning environments, and security [41, 42]. Some of the earliest works in the field fo-

cused on identifying optimal sensor placement, as researchers demonstrated varying levels

of success with sensors such as accelerometers, gyroscopes, and microphones commonly

placed on various combinations of the wrists, upper and lower arms, waist, head, and

chest [17, 43–47]. Pärkkä et al. [47] conducted a comprehensive study using nineteen

different types of sensors to identify several common scenarios such as visiting the li-

brary, restaurants, or shops and common physical activities such as walking, running,

and cycling. From this work, researchers found that accelerometers provided the most

accurate indicator of what activity was being performed. Bao & Intille [48] tested biaxial

accelerometers on the upper arm, wrist, hip, thigh, and ankle, and found that accelerome-

ters placed on the thigh, hip, and ankle were the best indicators for activities that had some

form of ambulation or posture, while accelerometers placed on the wrist and arm were

better indicators for activities that involved mostly the upper body.

This research in features extraction and development of machine learning algorithms

helps to detect activities. There has been researching in Deep Learning Neural networks.

There are multiple types of neural networks from Multi-Layer Perceptron (MLP), Convo-

lutional Neural Network (CNN), Recurrent Neural Network (RNN), and Modular Neural

Network. What we focus on is Multi-Layer Neural network which are classified as Feed

Forward Networks which are easy to maintain and help reduce noise. Research [49–51]

has focused on activity recognition systems use MLP as their machine learning recognition

system. Another reason researchers use MLP is that they do not require many input nodes

to provide the best performance comparatively to CNN. With the rise in features and new

sensor systems there has been an increase in multiple using the other neural networks.

Saez [52] presented that the use of a CNN is possible with 280 nodes as the input. These

nodes were from six sensors: two accelerometers, one gyroscope, GPS, and one magne-
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tometer each one provided a minimum of three features based on x,y,z-coordinates form

each of the sensor systems. What they do not focus on is the power performance and

real-time recognition of the system. CNN has also provided wide increase in activity

recognition in medical health [53], physical activity [52], and genetics [54].

2.3 Sensor Placement

When it comes to sensor placement there has been much research on where to place

sensors to recognize specific activities most accurately. Some research has focused on

sensors placed on the chest [47, 55–57], wrist [58], lower back [59, 60], upper back [61,

62], upper arm [48, 57], head [63–65], ankle [56–58], hip [48, 55, 57], thigh [57, 66–68],

and foot [17] for activity recognition. Cleland [69] presented the understanding of sensor

placement and how it effects activity recognition. Bergman and Cleland research [69,

70] shows that lower back is a conventional location where it can improve compliance

where it can be integrated in their daily life. Other research facilities created other forms

of wearable systems to recognize and show capabilities of sensor systems correlation to

swimmers techniques. Researchers presented that the location of sensors systems on the

body can differentiate between freestyle, breaststroke, butterfly, and backstroke [71–77].

In the field of aquatic based recognition it is important to understanding sensor placement

and numbers of sensors needed for optimal recognition. Current researchers has focused

specifically on the wrists, lower back, upper back, chest, legs, and shoulders. With these

studies their has been great results when it has come to sensor placement and research

in recognition. A good example is Marc Bachlin [78] used two wrist sensors, an upper

back sensor, and lower back sensors the purpose of the system is to compare mastery of

the system this is done based on rotation, arm movement and angle of body. The use of

multiple sensors was able to help the author with understanding that the important aspects

of swimming is in the angle of body, hand motion, and locomotion. The author used this
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to recognize professional or elite swimmers.

2.4 Water Activities Recognition

There has been some other research in the field of water-based activity recognition.

The main line of research is focused on recognizing the four major swim strokes (butterfly,

backstroke, freestyle, and breaststroke). When it comes to this form of activity recognition,

there are some important factors.

Sensor location is a major factor in activity recognition in general [57], as the location

on the body for activities such as running, walking, and other land-based activities has a

major effect on recognition precision. Swimming is no exception. Many researchers have

explored the use of multiple sensor placements such as wrist, head, upper back, lower

back, and ankle sensor placements [75–77]. Recent work has shown the lower back sensor

placement is the current best method in recognizing swimming activity [79].

The other factor in recognizing water-based activities are the types of sensors being

used such as gyroscope, accelerometer, and barometer. Choi [80] uses lower back sensor

placement of barometer, accelerometer, and gyroscope to detect the swimming activities

backcrawl (i.e., a type of backstroke), standing in the water, frontcrawl (i.e., freestyle), and

breaststroke. Choi was able to recognize these four basic water activities at 96% precision

through cross-validation. Our focus extends beyond these four activities to include the

complete set of water activities used for proficiency exams and motions that help with

reduction of drowning (e.g., treading water). The majority of papers only focus on a few

of swim activities or try to focus on the activity recognition and not in real time [81–89].

We argue that there is a need to recognize the major swimming stroke activities needed for

a proficient swimmer as well as the minor ones such as treading water and flip turns.
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2.5 Differentiation

This research builds on the concept of single sensor placement. We decided the lower

back is optimal with the current capabilities of a commercial mobile device. This allows

for reduction of cost and simplicity of design. We include activities that have slight differ-

entiation of movement and orientation of the body. The intention is to accurately and pre-

cisely detect the difference between nine swim strokes/activities (backstroke, breaststroke,

freestyle, butterfly, sidestroke, treading water, and flip turns) in a swimming environment

purely from the use of built-in sensors of a commercial mobile device (i.e., smartphone)

in real-time.
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3. STUDY DESIGN AND IMPLEMENTATION

The gathering of data and the methodology of the user studies influences the approach

that can be used for labeling and analysis. We conducted user studies in a controlled and

semi-naturalistic way to examine the activities of interest. In this chapter we describe the

studies, system, and implementation of our experiments.

3.1 Study Goals

We had several goals in our study design to effectively measure the goodness and

usability of our algorithm:

1. Collect enough data to measure the goodness of our algorithms.

2. Collect accurately labeled data.

3. Preserve some data for testing to ensure we do not over train on our available data.

4. Design a study that allows us to test if the algorithm could work in real-time.

5. Design a study that allows us to test if the algorithm works with both novice and

expert users.

3.2 Obtaining Users

Obtaining a large amount of accurately-labeled swimming data can be a difficult

prospect for a number of reasons: 1) not everyone knows how to swim, and not all

participants are expert level swimmers, 2) performing studies at a pool requires permission

from both the users and the pool administration, 3) obtaining an IRB for a swimming-based

study combined with electronics is a long and tedious process due to the perceived risk of

drowning.
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In addition to getting the appropriate pool and IRB permissions, to ensure that we

had enough accurately labeled good-quality data, we did two things: 1) designed a data

collection app that allowed us and/or the swimmer to label the strokes in real time as we

watched the swimmer (Section 3.4), and 2) worked with the TAMU swim-team (among

others) to obtain a large number of users who would provide us with good-quality data

(Section 3.3).

3.3 Gathering Participants

Obtaining participants with ranging swimming ability was a tough and complex pro-

cess. Through the support of the Texas A&M Recreational Department we were able to

communicate with several coaches and program directors that allowed us to gather varying

skilled level participants. Through the department, we were able to work with the Master’s

program, Adult Beginner program, and Texas A&M Physical Education Activity Programs

that are taught at the university.

3.4 Mobile Application Design and Implementation

To broaden the capabilities of a classification system, we conducted two types of

user studies, one focused on recognizing specific stroke activities and another targeted

at recognition in real-world scenarios. To collect accurately labelled data in both of these

scenarios, we developed two Android smartphone applications. We chose the Android

platform due to its open source platform and ability to easily support a wide amount

of development constraints. Android supports a versatile and compatible development

platform that is able to handle multiple tools and devices with backwards-compatibility.

With the device’s storage capability, our system is able to acquire sensor data for each

participant as well as label the raw data for each swimming motion.

The mobile application supports the recording of a single swimming stroke (described

in Section 3.4.1) as well as switching from stroke to stroke (described in Section 3.4.2).
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Any method of recording allows the users name or other ID to be attached to the data.

3.4.1 Android Application 1: Interface to Record a Single Swimming Stroke

As part of our study, we requested users to swim a particular swimming stroke for a

certain amount of time. To do this, the user would 1) open this application, 2) enter their

Name or ID (if they hadn’t already), 3) click the type of swimming activity (of six possible

activities), 4) press “Start,” 5) put the phone on their body (see Section 3.5), and then 6)

perform the activity.

The phone records the accelerometer data for exactly 120 seconds only. This was for

a variety of reasons: 1) The pressure of the water was interacting with the phone screen,

making the Android application think that the user was pressing buttons. Thus, a “Stop”

button was unfortunately impractical in this setting, usually being set up unintentionally.

2) This also ensured that the swimmers would stop after two minutes, allowing them

scheduled in rest times, ensuring better quality data.

The phone was operated by the proctor instead of the swimmer until the swimmer

became proficient with the app. Figure 3.1 is a visualization of the application that the

proctor would use to conduct a study with this application.

Because the user has to place the phone into the satchel before swimming (and remove

it after swimming), the first approximately 30–60 seconds of the activity were removed

manually (Section 4) to ensure that the data collected is actually that of the person swim-

ming.

3.4.2 Android Application 2: Interface Supporting Multiple Strokes

The first Android application (Section 3.4.1) only supports the data collection of a

single stroke at a time. The user has to take off the device and reprogram it after each

swimming stroke. This has two problems 1) the swimmer has to get out of the pool every

120 seconds, and 2) it does not allow us to collect longer data in a naturalistic setting.
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Figure 3.1: A screen shot of Android application created to measure a single stroke type
at a time.

Since one of our main goals of this research is to create an app that can be used in a

real-world setting and in real-time, we created a second Android application that allows the

user to perform multiple types of strokes without having to take off the device. It had the

disadvantage, however, of requiring two smartphones, one worn by the user and another

administered by the proctor. Thus, we kept the original app in service, since that app was

needed if the swimmer wanted to administer the phone. The single stroke application was

still needed for any developmental testing, where the proctor and swimmer were the same

person. The single stroke application was also helpful if the proctor was able to obtain

multiple swimmers for testing at the same time.

As mentioned, the main advantage of the second application is to allow the the par-

ticipant to never have to take off the device when swimming (so they don’t have to come

out of the pool every two minutes). However, it requires both a swimmer and a separate

13



proctor. Figure 3.2b shows the application for both the swimmer and the proctor.

The interaction of the proctor and the swimmer with their perspective app is:

1. Swimmer smartphone: open the swimmer application and obtain the current par-

ticipant number (essentially a count)

2. Proctor smartphone: open the proctor application

3. Proctor smartphone: press “Create Participant” on the proctor application and

enter their participant number

4. Swimmer smartphone: press “Start,”

5. Swimmer smartphone: put the swimmer smartphone on their body (see Sec-

tion 3.5)

6. Swimmer smartphone: start swimming

7. Proctor smartphone: label activities on the proctor application as they occur by

pressing the “Start” and “Stop” button next to each activity.

The two applications work in unison by flagging the data with the same participant

number. In other words, to make use of each application’s data, if the swimmer’s app had

”Participant 1” as its flag name, then the observer’s application would also be required to

have the same name.

As before, the swimmer’s app runs only for a limited amount of time, but in this case

it runs for 30 minutes instead of two minutes. 30 minutes was chosen based on feedback

from the swimmers who used the first application.

One programmatic difficulty that we had to overcome was, when entering sleep mode,

Android would deactivate data gathering after a short time. We solved this obstacle by

activating a flag in the code to force the processor to keep running even when in sleep
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(a) Swimmer’s UI for Multiple Strokes Data
Collection

(b) Proctor’s UI for Multiple Strokes Data
Collection

Figure 3.2: Screen shots of the Android application for collecting multiple strokes in a
single swimming session.

mode. This drains battery significantly, so if the application is released, it would need to

integrate a more efficient collection method.

3.5 Device Location and Water Proof Storage

We wanted to put the phone in a comfortable location that would not interrupt their

swim pattern. We initially thought about wearing an arm cuff, but many of the expert

swimmers complained that that would throw off their balance. Since they might only use

the application for practice and not for competition, it is vital that their balance be the same
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(a) Initial prototype design, involving a water-
proof pack, an HTC Android phone, and harness

(b) Initial prototype design being worn by a
swimmer

Figure 3.3: Version 1: Single-strap waterproof satchel

both with and without the device. Thus, rather than use a watch or arm cuff, we opted for a

waist implementation. This obviously would have ramifications for the data collection as

well, since accelerometer values will be very different when taken from the waist versus

the arm or wrist. While many smartphones now boast that they are waterproof, we did

not want to take that risk in this study. We developed a waterproof satchel that fits on the

lower lining of the back.

3.5.1 Waterproof Satchel Version 1: Single-strap

Our preliminary design followed a similar approach to systems discussed in existing

literature, with a single-strap system that fits the lower lining of the back [75]. Figure 3.3a

shows the physical design of the system. Figure 3.3b depicts the system as it is expected

to be worn by a swimmer.

3.5.2 Waterproof Satchel Version 2: Elastic Multi-Strap

In a round of pilot tests, we discovered that the initial single-strap satchel could be

shifted by the water’s movement over the course of a 30-minute session. We refined

the design including additional straps and adding constraints to prevent the device from

moving inside the waterproof enclosure. The new design moved from a single-strap to a
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(a) Final prototype design

(b) Final prototype design being worn by a
swimmer

Figure 3.4: Version 2: Elastic multi-strap waterproof satchel

3-strap system as seen in Figure 3.4a. Additionally, we now use elastic straps to allow

the system to remain in close contact with the contours of the body. Finally, we added a

second bag in which to hold the device. This allowed for improved ease of setup for user

studies since the pack fit perfectly around the participant’s back 3.4b.

3.6 User Study Design

We performed two separate user studies. The first study used the Android application

described in Section 3.4.1 with the goal of creating accurate user data for a single stroke.

The second study used the second Android application described in Section 3.4.2 with the

goal of obtaining data in a more naturalistic setting. This section describes the strokes

collected for each.
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3.6.1 User Study 1: Single Stroke Data Collection

Fifteen users (six females, nine males) participated in the single stroke user study.

The participants ranged in expertise from beginner to advanced proficiency in swimming.

The participants met the study proctor at the pool where: 1) the user filled out a pre-

questionnaire on their competency of swimming ability and the swimming styles they

are able to perform. 2) the user put on the satchel, and the proctor tested the smartphone

application first on land to ensure that everything was working correctly. 3) the participants

were then asked to swim two laps of each different type of swimming activity that they

were comfortable with in a calm body of water (pool). 4) the user completed a post-

questionnaire and feedback on the system. More details of each step are given below.

3.6.1.1 Pre-questionnaire

For the pre-questionnaire, we gathered the following information:

1. What is your age?

2. What is your gender?

3. What swimming strokes do you know how to perform (freestyle, backstroke, breast-

stroke, butterfly, sidestroke, treading water)?

4. Form previous question: list from best (LEFT) to worst (RIGHT) the strokes you

feel you have the most experience in.

5. How experienced a swimmer are you? 1 (Least) to 10 (Experienced)

6. Have you ever performed in a wearable user study yes/no?

7. If yes, what was the study about?
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The goal of the pre-questionnaire was to gather information that supplements the data.

For instance, we wished to provide more insight into how the swimming style can be

presented as well as find features correlating with proficiency levels.

3.6.1.2 Device Testing

After the pre-questionnaire was completed, we fitted the swimmer with the satchel,

adjusting the satchel with the phone inserted until it felt natural and the user was able to

swim comfortably with it. The proctor then started the application and asked the user to

walk a few paces on land to make sure that the device was accurately collecting data. Once

the device was confirmed as working, the study progressed to the swimming stage.

3.6.1.3 Swimming

The participants were then asked to swim the styles that they stated they were able to

perform based on their pre-questionnaire. For each swimming activity, the user was asked

to swim 50 meters (two laps of a 25 meter pool). Once they completed each swimming

activity, they were instructed to leave the pool and sit back on the side of the pool to take

off the device. They would repeat these actions until all swim styles were completed. This

provided us with with a total of two laps of data for each swimming activity.

3.6.1.4 Post-questionnaire

The post-questionnaire reflected on the position of the device and feedback on the data

collection mechanism.

1. Was the haptic (vibration) feedback responsive and intuitive?

2. Was the wearable device noticeable while swimming? If so, why?

3. Where would you prefer the device to be if you to use it for physical activity?
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4. List the most negative aspect(s) of using the device?

5. List the most positive aspect(s) of using the device?

These questions give insight into how people react to a wearable swimming device

and, in particular, their comfort with the vibrations and forms of haptic feedback. They

also provided aspects of the wearable device which could be improved.

3.6.2 User Study 2: Multiple Strokes in a Single Data Collection

The goal of our second study was to collect data in a semi-naturalistic setting, i.e., we

did not want the user to have to exit the pool after every swimming activity and reset the

device. Using two smartphones, one for the proctor and one for the swimmer as described

in Section 3.4.2, we gathered continuous swimming data for five participants. Because of

TAMU IRB delays in approval, we were not given permission in time by TAMU IRB to

collect demographic information for this second group of users (only the accelerometer

data itself). Thus, we do not know the gender nor experience level of this second group of

users.

In this study, the users were again first set up to ensure device comfort and that

the data collection applications were working properly. Each user was then asked to

swim for a total of thirty minutes, performing any of the swimming activities that they

were comfortable with in the allotted time. A proctor, with experience in all of the

swimming techniques, observed them while they swam. The proctor labelled the data

in real-time, pressing “Start” and “Stop” for the appropriate swim type on the proctor’s

smartphone application. These labels were applied to the continuous data stream later

during analysis. This second study was conducted with five participants with the majority

providing approximately thirty minutes of swimming data.
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4. PROCESSING AND MODIFYING RAW DATA

Raw data from both user studies contains multiple activities per file stored, which

needs to be cleaned and re-labelled. For example, in User Study 1, we need to separate

the pre-swimming activities from the swimming activities. Cleaning of data required a

process to accurately determine specific activities and separating it from the raw data. We

developed a system to accomplish these tasks for both sets of data related to each user

study. In this chapter we examine the methods taken in visualizing and cleaning of the raw

data.

4.1 Data File Representation and Visualization

In User Study 1, the user only performs a single stroke type, but we need to separate

the non-swimming activities from the swimming activities. In User Study 2, we have time

labels to help us automatically distinguish and separate different stroke times in the data,

however, we still must manually examine the data to make certain that there are no errors

in the labeling.

In order to manually divide the data accurately, we first need to visualize the raw data.

Visualization of raw data is necessary to see patterns and separate the activities that are in

each file. We use the python library pyplt to visualize the data with a graph. These graphs,

displaying the x,y,z, time raw data, provide a feature allowing zooming for precision data

division. Figure 4.1 shows sample data from User Study 1 zoomed in and zoomed out,

allowing us to manually accurately divide the pre-swimming activity from the swimming

activity. Figure 4.2 shows sample data from User Study 2 zoomed in and out complete

with the labeled time stamps. By zooming in and out we can ensure that the data is divided

accurately for training purposes.
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Figure 4.1: Visual method to processing data from User Study 1
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Figure 4.2: Visual method to processing data from User Study 2
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Figure 4.3: (X = Blue, Y = Orange, Z = Green) Sliding window representation based on
the colored blocks overlapping with the raw data

Figure 4.4: (X = Blue, Y = Orange, Z = Green) Sample graph of each activity where A =
freestyle, B = butterfly, C = breaststroke, D = backstroke, E = sidestroke, and F = treading
water
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Figure 4.5: (X = Blue, Y = Orange, Z = Green) These are Sample graphs of each activity
where A = Backstroke/Freestyle Flip Turn, B = Breaststroke/Butterfly Flip Turn

4.2 Sliding Window

We recognize activities by examining time segments for classification with the use of a

sliding window shown in Figure 4.3. The length of a window is based on how long it takes

to perform the specific activity. For example, the total expected time of brushing one’s

teeth takes two minutes, and four-second windows have been shown successful to identify

partial moments of activity [90]. The sliding windows, shift the time segments specified

for recognition. As shown in Figure 4.3, when we shift the window we overlap some

of the data to help ensure that the core of the activity is centered on some window and

better support activity transitions. To determine the best sliding window for water based

activity recognition we examined swimming patterns, looking at how long a single arm

cyle motion is for each style. A recent paper [91] suggested that 2.5 second windows was

ideal for distinguishing between freestyle, backstroke, and breaststroke. Using 2.5-second

windows as a baseline time for our system, we tested our recognition on 1.5, 2, 2.5, 3,

3.5, and 4-second windows with an overlap of 250 to 500 milliseconds. The purpose for

testing additional times is to determine which window size is best when we also include

additional swimming strokes (flip turns, treading water, sidestroke).
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4.3 User Study 1 Data Processing

In User Study 1, each swimming stroke is recorded in a separate file containing 120

seconds worth of data (Section 4.1). Due to varying skill levels, the participants completed

two-laps of the pool in varying times. The system starts recording at when the swimmer is

still on land, and in addition to the swimming stroke itself, will also include a flip turn at

the end of the first lap. We visualized the data through the python graph (Section 4.1), then

took several steps to precisely separate the data to their corresponding file (land, specific

stroke data, or flip turn). Visualization of these steps are presented in Figure 4.1 and on

the list below.

1. Produce raw data in a graph

2. Examine and find “starting location” of a pattern in the graph

3. Remove all data up to “starting location” and reproduce the graph

4. Find “ending location” where pattern ends

5. Remove all data after “end location” and reproduce the graph of a single activity

type

6. Write data to a text file with the name being the classification

4.4 User Study 2 Data Processing

Processing of User Study 2’s data is more complex due to the amount, or rather types,

of data in a single file. Multiple segmentation need to happen to implementation of a

second segmentation method was needed for the raw data. The purpose for this second

segmentation is due to the swimmer’s raw data consisting of many different strokes stored

in a single file. Each stroke type needs to be matched to a timestamp, label, and start/end
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stored in a separate file. For example in Figure 4.2 shows where a start and end timestamp

in represented for a swimming style, with the steps listed below:

1. Produce raw data between start and end timestamp

2. Examine and find “starting location” of a pattern in the graph

3. Remove all data up to “starting location” and reproduce the graph

4. Find “ending location” where pattern ends

5. Remove all data after “end location” and reproduce the graph

6. Write data between both locations to a text file with the name being the classification

7. Remove data up to ”end location” from larger raw data

8. Repeat step 2 to step 8 until all activities between start and end timestamp are

completed
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5. FEATURE EXTRACTION

Activity recognition relies on features to distinguish activities from each other. We

analyze the data and developed novel features and compare them to the traditional features

used in previous papers. In this chapter, we discuss the mathematical algorithms of the

traditional features and the novel features developed.

5.1 Traditional Features

Existing studies [79, 91] show a distinct set of features that provided high accuracy

when detecting swim strokes. These features used in previous papers we will classify

as traditional features. In the papers the traditional features were grouped between two

general categories: 1) Time Domain and 2) Frequency Domain.

5.1.1 Traditional Time Domain Features

When addressing the time domain features the focus is on the value set within that

window of time (Section 4.2). We address these as algorithms that use the entire array of

data sets. The flaw with time domain features is the inability to focus on a piece within

the pattern to pull important classifications. In the list we present below is the formulas

and algorithms used as traditional features. Each of these nine features were computed

from the three dimensions of accelerometer data (x, y, and z axis), producing a total of 27

features used for activity recognition.

• Peak count (x,y,z)

peak value threshold = median(a)+

((median(a)−max(a)) ∗ percent threshold)

(5.1)

28



• Valley count (x,y,z)

valley value threshold = median(a)−

((median(a)−min(a)) ∗ percent threshold)

(5.2)

• Mean (x,y,z)

ā =

∑
a

n
(5.3)

• Standard deviation (x,y,z)

σ =
√∑

(a−ā)2

n−1
(5.4)

• Root mean square (x,y,z)

arms =
√∑

a2

n
(5.5)

• Skewness (x,y,z)

γ =

∑ (a−ā)3

n

σ3
(5.6)

• Kurtosis (x,y,z)

K =

∑ (a−ā)4

n

σ4
(5.7)

• Correlation coefficient (xy,yz,xz)

CorrelationCoefficient(x,y) =
cov(x, y))

σxσy
(5.8)

Peak and valley threshold features are used to distinguish patterns for counting the

amount of peaks and valleys from the data sets. The way we use the performance of the

thresholds is to provide flags among the data within a time window. The steps taken when

counting the amount of peaks and valleys can be presented in the pseudocodes 5.1, with a
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visualization of the algorithms provided by Figure 5.1.

Table 5.1: Peak and Valley Algorithms In Python

def findpeakscount(data_array,percent_limit):
maxgroup = (max(data_array) - median(data_array)) * percent_limit
maxgroup = median(data_array) + maxgroup

counting = 0
in_peak_mode = False
for x in data_array:

if(x >= maxgroup):
in_peak_mode = True

if(x <= maxgroup) and in_peak_mode:
counting+=1
in_peak_mode = False

return counting

def findvalleyscount(data_array,percent_limit):
maxgroup = (max(data_array) - median(data_array)) * percent_limit
maxgroup = median(data_array) - maxgroup

counting = 0
in_valley_mode = False
for x in data_array:

if(x >= maxgroup):
in_valley_mode = True

if(x <= maxgroup) and in_valley_mode:
counting+=1
in_valley_mode = False

return counting

5.1.2 Traditional Frequency Domain Features

Frequency Domain feature category is a series of algorithms where the features are

extracted based on the repetition correlation of the periodic nature. These features use

frequency components such as Fast Fourier Transformation (FFT) or Fast Time-Frequency

Transformation (FTFT). The only feature that we use in this category is Domain Frequency
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Figure 5.1: Example peak and valley threshold for a time window

Entropy of the accelerometer data for motion in the X, Y, and Z axes. Many papers

such as [48, 92] present the methods in extracting information gain or Frequency Domain

Entropy. This can be shown in Formula 5.9.

FrequencyDomainEntropy =

√
a2i +b2i∑N−1

k=0

√
a2i +b2i

ai = xicos(
2πfi
N

) and bi = xisin(2πfi
N

)

(5.9)

5.2 Novel Features

Breathing patterns and swim stroke motions vary among swimmers based on size and

expertise. There is a need to focus on distinguished swim strokes based on a single body

motion. The traditional features really on the entire array of swimming data per window.

This issue causes butterfly and breast stroke as well flip turns to produce inaccuracies.

We derived our novel features based on the peaks and valleys that are in the varying time

sliding window sizes. We use peaks and valleys because they correlate to the locomotion
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and breathing patterns of the swim styles. We focused on these swim styles’ breathing

patterns due to each person having several varying breathing intervals, and with the time

window, the swim style’s pattern count would vary upon each individual.

5.2.1 Time Domain Novel Features

With motions of the swimmers having a pattern and fluctuations in the data. We

developed the time domain features focus on enhancing these fluctuation. The first features

we implemented cross correlation equation 5.10 to distinguish the displacement of the

accelerometer axis to each other.

CrossCorrelation(x,y) = maxn−1
d=1(

1

n

n∑
i=1

xi · yi−d) (5.10)

As we examined the data there is differences in the value range between stroke types.

Zero crossing feature provides a middle point in the range for counting the number of

times its passed. The Figure 5.2 shows the representation of how the feature works on an

example data set.

Figure 5.2: Example zero crossing for a time window
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The peak and valley features in the data represent the motions of the swimmer breath-

ing or performing a stroke. Focusing on the development of several features related to the

size, length of the peak and valley set. To address this, we use the angle from the max

peak value or min valley value to the passing of the thresholds. Figure 5.2.1 demonstrates

how we acquire A, B, and C point for the equation 5.11. Within the time window, there

will be several peak and values which are represented in Figure 5.2.1. Ultimately, we used

the total angled values to pull several features shown in the list 5.2.1.

A◦ = cos−1

(
ba · bc

2ba ∗ bc

)
(5.11)
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• max peak angle x,y,z

• min peak angle x,y,z

• average peak angle x,y,z

• max valley angle x,y,z

• min valley angle x,y,z

• average valley angle x,y,z

• total angle average x,y,z

5.2.2 Frequency Domain Novel Features

For frequency-domain features, we use similarity in the form of a Fast Fourier Trans-

formation (Equation 5.9), which gathers varying frequency values for the entire data set.

We focus on increasing said values and calculating the power spectral density (Equa-

tion 5.13) to measure the power of the signal compared to the usual frequency. The DC

component (Equation 5.12) is used to measure the Discrete Frequency of the signal based

on 0 Hz.
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DC =
1

N

N−1∑
i=0

a2
i (5.12)

PowerSeptralDensity =
1

N

N−1∑
i=0

a2
i + b2

i (5.13)
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6. MACHINE LEARNING EVALUATION AND METHODOLOGY

Machine learning is the prediction of outcomes based on a set of algorithms. For

activity recognition machine learning can classify and detect activities based on a feature

set. We have presented what features (Chapter 5) we have extracted from the swimming

styles. We have to focus on how we plan to evaluate these feature sets and compare the

novel and traditional features. In this chapter, we present: 1) the filtering of featured

data sets; 2) the machine learning algorithms tested; 3) the validation methods used to

determine the best algorithms and feature set; 4) the deep learning neural network layout

and development.

6.1 Filtering Method

With the large amount of features there may be some that have no correlation to the

activities or help in classifying them. The way we evaluate those best is through a filtering

method. The most popular one is best-first subset selection. This filtering method uses

forward evaluation on the paths of sub features that have the highest correlation when

distinguishing between classifications. For our analysis we use subset selection on the

entire training data set of fifteen participants. To avoid over fitting of the data, we 1)

use leave-one-user-out independent validation for subset selection, and 2) later test our

reduced set of features again on a separate new set of test data with different participants.

The goal of this filtering step is to provide features that distinguish between all activities.

6.2 Machine Learning Algorithms

From the wide range of machine learning classification algorithms, we decided to focus

on the Multilayer Perceptron, Naive Bayes, Random Forest, Random Tree, J48 Decision

Tree, Decision Stump, Nearest Neighbor, and RepTree classifiers. This selection gives us
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a diverse set of the most popular algorithms.

The Multilayer Perceptron is a neural network where the first layer of nodes is con-

nected to each feature. From there the first layer is connected to another layer. That layer

is called a hidden layer where each connection has a weighted value. The hidden layer

is then connected to a final node where, if the final value is closer to one, it classifies it

based on what that node is. Equation 6.1 shows the described multilayer. Neural networks

tend to perform quite well, but the multilayers tend to obfuscate the inner-workings of the

network.

Figure 6.1: Sample of what a ML perceptron looks like

Decision trees are trees with if-else statements based on values determined from a
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correlation algorithm. There are many kinds of decision trees: Random Forest, Random

Tree, J48 Decision Tree, Decision Stump, and REPTree. Random Forest involves many

decision trees that decides a classification based on individual tree decisions and produces

a confidence value, returning the classification that has the highest such value. The J48

decision tree is the fastest and most basic tree, which uses information entropy and in-

formation gain as the algorithms to build the tree. Random Tree uses a random feature

as a baseline and builds based on information gain from that starting node. REPTree

uses regression from information gain and prunes the tree with reduced-error pruning.

Finally, Decision Stump is a single level decision tree where the root is connected to the

classification. The decision tree, and by that nature also the decision stump, are useful

because they produce a human-readable algorithm of rules of if/then statements, from

which we can try to better understand how and why certain features are useful. A decision

tree is also very easy to implement in any mobile phone or microprocessor and requires

very little processing power, time, or space.

The next algorithm is the Naive Bayes classifier, which is a probabilistic classifier that

uses probability function from Gaussian Distribution to distinguish what feature goes to

what classification. By its very nature, a Bayes classifier is good at taking prior probabili-

ties into account.

Last is the nearest neighbor which has a long run time and requires more space com-

pared the other machine learning algorithms. The algorithm uses a distance algorithm such

as Euclidean distance for each feature from the guessing input and all the classifications

that are in the data. This is slow since it compares the input to each classification example.

After that, it takes the classification with the closes distance and claims be the output for

the data input. This is a suitable algorithm for large data sets since it can also help reduce

noise. It is particularly good when members of the same class may look more differently

from each other than they do to members of different classes. Its speed, however, limits its
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efficiency in modern applications.

6.3 Training Data Validation

To determine the best algorithm that will work we use an independent validation which

is when the data is separated based on the number of participants.This method is better than

the current method of cross validation which is when the total data set is randomly grouped

based on the number of folds. This is bad since some of the data from one participant may

end up in both training and testing. The accuracy would be to high due to the machine

learning algorithm fitting to the training data. The independent validation will reduce the

risk of over-fitting the algorithms and producing too high of results.

For deciding the statistical values of the ML algorithms, we have the true positives

(TP), false positives (FP), and false negatives (FN) and use them for calculation of mul-

tiple statistic values such as recall (Equation 6.2), sensitivity, precision (Equation 6.1),

f-measure, and accuracy. Among the statistic values, f-measure is the most important

since it determines are values based on Equation 6.3. The statistical algorithms also

consider the amount of each classification, since there might be an uneven distribution

in 1 classification over-encumbering the data compared to another.

precision =
TP

TP + FP
(6.1)

recall =
TP

TP + FN
(6.2)

f -measure = 2 ∗
precision ∗ recall
precision+ recall

(6.3)
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6.4 Testing Data Validation

Our goal in testing was to determine which features best approximate the different

swim strokes and swim styles. To prevent over-fitting, the data was a) randomly separated

into 1ten different data groups to allow for ten-fold cross validation and b) manually

separated into groups containing a single user’s data in each group to allow for leave-one-

out cross-fold validation. We first trained and tested on the six swim styles (freestyle, back-

stroke, butterfly, backstroke, treading water, and sidestroke) using 10-fold cross validation

on several sliding window sizes. We performed three different scenarios on these swim

stroke styles. With each scenario using cross and then leave-one-user-out user independent

validation. For the scenarios is was to use the original and current features as presented in

Section 2 and Section 3. We then use the new novel features with the final scenario being

the combination of the novel and original features. For all these scenarios we performed

them on multiple sliding windows of 2000, 2500, 3000, 3500, and 4000 milliseconds with

a 500 and 250-millisecond overlap.

We then used the same methodology for the flip turns, although the sliding windows

needed to be changed due to flip turns taking less time to perform. We chose to use

1500, 2000, 2500 millisecond sliding window with 500 and 250-millisecond overlap.

For flip turns professionals have two classifications backstroke\freestyle flip turns and

breaststroke\butterfly flip turns.

Finally, we take all the six major strokes and flip turns to develop a ML algorithm that

can recognize the total stroke types. We then test on the eight swim styles through the

same sliding windows (1500, 2000, 2500) as the flip turns since we want the time intervals

to be similar for the real-time recognition. We compared all these statistics values and

determine the best fitting time window, feature set, and machine learing algorithm.
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Figure 6.2: Testing Layout for ML algorithms
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7. DEEP LEARNING EVALUATION AND METHODOLOGY

With the advancements of deep learning and its capability performing tasks quickly

and efficiently, we propose a personal deep learning system to recognize swimming activ-

ity. This chapter describes the methodology in the development of a deep learning system

and the processing of input data.

7.1 Resampling Data

Visualization of the raw data identified that the application doesn’t constantly gather

sensor data at 100 Hz. The way we overcame this issue is through re-sampling. Re-

sampling helps us overcome latency that exists during value updates for the device. Re-

sampling allows us to specify the number of data points we desire per sliding window

(Section 4.2). The re-sampling algorithm is shown in the pseudocode Algorithm 1. Cur-

rently, the deep learning system uses the re-sampling method to modify the dataset to allow

for the data to be input into the convolutional layer of the neural network.

7.2 Neural Network Data Modification

Features extracted details the patterns and thresholds that differ between swimming

styles. For our deep learning neural network, we focus on the capabilities of using the

raw data set as the form of input. Our system uses a convolutional neural network which

requires the data to be in a 2-dimensional array. The way we were able to overcome that is

that we re-sampled the data in the sliding windows. We would then take that re-sampled

data and convert it into a 2D array. This is a tough process because the data being used

is on three axes. That means the array needs to be able to handle three data groupings.

The way to overcome all these mathematical issues to determine the best convolutional

input is to find a square that is divisible by 3 * 2 * (# of convolutional layers). After that
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Algorithm 1 Time based re-sampling
def distance(p1,p2):

dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
return float(math.sqrt((dx*dx) + (dy*dy)))

def pathlength(points):
d = 0.0
for index in range(1,len(points)):

d += distance(points[index-1],points[index])
return float(d)

def resample(points, totalPoints):
I = pathlength(points) / (totalPoints - 1)
D = 0.0
newpoints = [points[0]]
i = 1
while i <= len(points)-1:

d = distance(points[i-1],points[i])
if((D+d) >= I):

qx = points[i-1][0] + ((I-D)/d)*(points[i][0]-points[i-1][0
])

qy = points[i-1][1] + ((I-D)/d)*(points[i][1]-points[i-1][1
])

q = [qx,qy]
newpoints.append(q)
points.insert(i,q)
D = 0.0

else:
D += d

i+=1
if(len(newpoints) == totalPoints-1):

newpoints.append(points[-1])
return newpoints
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modify the data so that the x, y, z axis are next to each other in the 2D array which can be

represented in Figure 7.1.

A good example is: suppose we use a 2500 millisecond time window with a 500-

millisecond overlap. This produced a total of at most 250 data-points per window of the x,

y, z axis in the data. In order to reshape it to a 24x24 2d dimension, we had to manipulate

the data. We first converted the 24x24 into a single dimension value producing 576 total

data-sets. We then took the 576 and divided it by 3 to determine the number of points

needed per axis, this resulted in 192 data points. With the sliding window producing 250

data points, we used resampling to convert it to 192. After that we reshaped the data to fit

a 2d array where the x, y, z point location moves sequentially to the left for each row, this

can be visually shown in Figure 7.1.

7.3 Convolutional Neural Network

The development of a neural network requires to have at minimum two layers an input

layer and output layer. For some neural networks they may also contain hidden layers.

The purpose of the hidden layers is to manipulate the input data or add weighted variation

when it connects to the output.

For the convolutional neural network to connect to the output layer there is a need

to connect it to a single dimensional layer. This is performed through flattening which

reduces the 2-dimensional convolutional output layer to a single dimensional layer. Vi-

sually shown in Figure 7.2, the flattened layer connects to a fully connected layer which

is similar to a perceptron layer. The perceptron layer uses weighted values to produce an

output connection to a set of neurons equal to the classifications shown in Figure 7.2.

For our system, we used the convolutional neural network which requires a 2-dimensional

input as the first layer. The convolutional filtering dimensions used is 5x5 with a 1 by 1

stride extracted from a 24x24 dimensional input. Figure 7.2 and Figure 7.3a show that we

44



Figure 7.1: Reshape processing of accelerometer data

45



Figure 7.2: Convolutional Layer Deep Learning

connect the input layer to two more convolutional layers. This reduces the final output

of the last layer to 6X6 dimensions. The next steps were to convert the 2-dimension

convolutional layer into a single dimension. This step is performed during the flattening

layer which makes the 6x6 to a 36 neuron layer. This layer is connected to a 1024 neuron

dense connected layer which outputs to six neurons where each neuron represents the six

different swim stroke styles.

7.4 Testing

To validate our developed neural network, we compared it to a generic multi-layer

perceptron. The purpose is that the perceptron uses dense connected layers, which is

common in most neural networks. For the perceptron neural network, we used Weka, as it

was also used on the feature set as well, and offered some consistency across our studies

We computed the F-measure from Weka’s perceptron and compared it to our built neural

network.
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(a) Deep Learning Neural Network Layout (b) Application Recognition Tensorflow

Figure 7.3: Neural network flow charts
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7.5 Deep Learning Neural Network Android Application

With the neural network developed we integrated it with the android application to be

used in user study 2. The method we used to analyze and detect activities in real time

is presented in Figure 7.3b. The library we used to develop our neural network is with

TensorFlow, a deep learning system developed by Google. The reason is that Tensorflow

has a python and java model integration. This allows us to train and build the model on

the computer and integrate with the mobile system after completion. For the input into

the neural network, we used the similar sampling method as shown in the pseudocode in

Algorithm 1.

48



8. EVALUATION OF MAJOR SWIM STROKES RECOGNITION

From the collected data, we evaluated the recognition accuracy of major swim styles

(freestyle, backstroke, breaststroke, butterfly, treading water, sidestroke). We performed

two users studies with fifteen participants in the first user study and five participants in

the second user study. In this chapter, we discuss the processing of the data and the

results of both user studies on the machine learning algorithms. Within the chapter the

Xis traditional features, Xnovel features, Xcombination of both features.

8.1 Recognition Features Quantification

The filtered features provided insight in personal swim style and the comparison of

feature groupings. We examined traditional features and novel features by comparing the

features sets to each other and the combination of them both. In Figure 8.1 it shows that

both traditional and novel features are present when combined. We deducted that the

features displayed in the groups and the combination of groups are ruled as the dominant

features. An example is the Average-z feature presented between backstroke and all other

swim strokes. Figure 8.1 visualized that freestyle, backstroke, breaststroke, and sidestroke

use the Average-z feature when filtered.
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Traditional Novel Combined
x y z x y z

Average X X X
Standard Deviation X X X X X X
Root Mean Square X X X X

Peak Count X
Valley Count X

Skewness X X
Kuritosis X

Cross Correlation X X X
Entropy X X X X X

x y z
Max Peak Angle X
Min Peak Angle X X

Average Peak Angle X X
Max Valley Angle X X
Min Valley Angle X

Average Valley Angle X X
Axis Angle Average X X X

Cross Correlation X X X X X X
Zero Crossing X X X

DC Component X X X X X X
Power Spectral Density X X X

Table 8.1: Feature Selection All Strokes Types Main Swim Strokes
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Stroke Type Freestyle Backstroke BreastStroke Butterfly Sidestroke Treadingwater
Axis X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z

Average XX XX XX XX XX XX
Standard Deviation XX X X XX XX XX
Root Mean Square X X X X X XX XX XX

Peak Count XX X XX X
Valley Count X X X X XX X X

Skewness X X
Kuritosis X X

Correlation Coefficeint
Entropy X XX X XX X XX XX

Stroke Type Freestyle Backstroke BreastStroke Butterfly Sidestroke Treadingwater
Axis X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z

Peak Max Angle X XX X X
Peak Min Angle X X

Peak Average Angle X XX XX
Valley Max Angle X X X X XX X X
Valley Min Angle

Valley Average Angle X X XX X XX X
Total Angle XX XX X X X XX X

Cross Correlation X X X XX XX XX X X X X
Zero Crossing XX X X XX X XX X

DC Component X X X X XX XX X X X
Power Spectral XX X X XX X

Table 8.2: Features Selection Individual Stroke Types Main Swim Strokes
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8.2 Evaluation Machine Learning Algorithms

Activity recognition depends on a machine learning algorithm that provides the best

F-measure to the time window that will obtain the optimal results. The way we achieved

that is we compared several machine learning algorithms as presented in Chapter 6 with

multiple time windows. Figure 8.1 shows that the most optimal feature set represents the

combination of traditional and novel features. With the multilayer perceptron providing

.922 F-measure at a window of 3000ms with 500 millisecond overlap. Another factor

that is noticed is that traditional has .90 value which is a 2% difference to the combina-

tion recognition algorithm. Though the time window is larger to 4000 milliseconds, the

features implemented were half as much as the combination between both as shown in

Figure 8.1.
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Figure 8.1: Machine learning algorithms evaluation of subset features for major swimming strokes

Multilayer Perceptron Naive Bayes J48 Decision Tree Random Forest Tree
Traditional 0.8996 4000 / 250 Traditional 0.89 2000 / 500 Traditional 0.8619 1500 / 250 Traditional 0.9014 4000 / 500

Novel 0.9011 4000 / 250 Novel 0.8204 2500 / 250 Novel 0.8452 1500 / 500 Novel 0.8939 2500 / 500
Combine 0.9226 3000 / 500 Combine 0.9006 2000 / 250 Combine 0.865 2000 / 500 Combine 0.9138 4000 / 250

Random Decision Tree Repetitive Decision Tree Nearest Neighbor Decision Stump
Traditional 0.8535 1500 / 250 Traditional 0.8892 3500 / 500 Traditional 0.8892 3500 / 500 Traditional 0.3113 4000 / 500
Novel 0.8335 3000 / 500 Novel 0.8622 1500 / 250 Novel 0.8622 1500 / 250 Novel 0.3113 4000 / 500
Combine 0.8726 1500 / 500 Combine 0.8997 1500 / 500 Combine 0.8997 1500 / 500 Combine 0.4243 2000 / 250
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8.3 Independent Validation

With the independent validation providing high F-measure values we needed to com-

pare these values in a naturalistic setting. The way we address this is with the use of

User Study 2’s data as shown in Section 6.3. The results show that novel features are

capable of detecting breaststroke better than butterfly stroke compared to the traditional

features. When combined, the breast stroke stays accurate though butterfly stroke accuracy

decreases in value. The filtering of features shows that there are two traditional features

missing like entropy and Root Mean Square in the z-axis. When distinguishing between

breast and butterfly strokes the y and z-axis represents the most dominant features as shown

in Figure 4.4
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Table 8.3: Traditional features with 4000ms time window with 500ms overlap using
random forest

Freestyle Backstroke Breaststroke Butterfly Treading water Sidestroke
Total

Percent
144/1 0/0 0/0 0/0 0/0 0/0 Freestyle
0/0 60/1 0/0 0/0 0/0 0/0 Backstroke
0/0 0/0 87/1 0/0 0/0 0/0 Breaststroke
0/0 0/0 13/.24 42/.76 0/0 0/0 Butterfly
0/0 0/0 0/0 0/0 92/1 0/0 Treading water
0/0 0/0 0/0 0/0 5/.1 48/.9 Sidestroke

Table 8.4: Novel features with 4000ms time window with 250ms overlap using multilayer
perceptron

Freestyle Backstroke Breaststroke Butterfly Treading water Sidestroke
Total

Percent
129/.97 1/.01 3/.02 0/0 0/0 0/0 Freestyle
0/0 55/1 0/0 0/0 0/0 0/0 Backstroke
0/0 0/0 77/.95 4/.05 0/0 0/0 Breaststroke
0/0 0/0 20/.41 29/.59 0/0 0/0 Butterfly
0/0 0/0 0/0 0/0 83/.98 2/.02 Treading water
0/0 0/0 1/.02 0/0 4/.08 45/.9 Sidestroke

Table 8.5: Combined features with 3000ms time window with 500ms overlap using
multilayer perceptron

Freestyle Backstroke Breaststroke Butterfly Treading water Sidestroke
Total

Percent
172/1 0/0 0/0 0/0 0/0 0/0 Freestyle
0/0 69/1 0/0 0/0 0/0 0/0 Backstroke
0/0 0/0 103/1 0/0 0/0 0/0 Breaststroke
0/0 0/0 23/.37 38/.63 0/0 0/0 Butterfly
0/0 0/0 0/0 0/0 107/1 0/0 Treading water
0/0 0/0 0/0 0/0 6/.09 59/.91 Sidestroke
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9. EVALUATION OF FLIP TURNS RECOGNITION

From the collected data in the user studies, we acquired and labelled flip turns. We

evaluated the recognition of flip turns swim styles. The flip turns have been separated

into two categories backstroke/freestyle flip turn and breaststroke/butterfly flip turns. In

this chapter, we discuss the processing of the data and the results of the data evaluated on

the machine learning algorithms. Within the chapter the Xis traditional features, Xnovel

features, Xcombination of both features.

9.1 Recognition Features Quantification

Compared to Section 8.1 there were two flip turns that the features set will be on. When

visually looking at the flip turns as shown in Figure 4.5 there are considerable differences

in the z-axis. Figure 9.1 verifies this with the filters extracting features that are in the z-

axis. Feature Mean-z is presented in both combinations of features and in the traditional

features group. Though when evaluating the novel features there is no inclusion of novel

features in the combination of both feature sets.

9.2 Evaluation Machine Learning Algorithms

With the reduction in the amount of features in Section 9.1 there is an expected rise in

naive bayes, decision stump, and nearest neighbor recognition accuracy. We evaluated all

features set with Figure 9.1 displaying that decision stump provides the highest F-measure

of .9347222 in both traditional and combination of features. The decision stumps uses

a single layer with a single feature as its input. In the system the decision stump used

the Average Z axis which shows that both traditional and combination providing similar

values. This shows that currently the traditional features set providing high recognition

capabilities.
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Table 9.1: Subset selection on features related to flip turns

Traditional Novel Combined
x y z x y z

Average X X X
Standard Deviation X X
Root Mean Square X X

Peak Count
Valley Count

Skewness X
Kuritosis

Cross Correlation
Entropy

x y z
Max Peak Angle
Min Peak Angle

Average Peak Angle
Max Valley Angle
Min Valley Angle

Average Valley Angle
Axis Angle Average

Cross Correlation X
Zero Crossing

DC Component
Power Spectral Density
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Figure 9.1: Machine learning algorithms evaluation of subset features for swimming flip turns

Multilayer Perceptron Naive Bayes J48 Decision Tree Random Forest Tree
Traditional 0.8848485 2500 / 250 Traditional 0.8815851 2500 / 250 Traditional 0.872028 2500 / 250 Traditional 0.8632479 3000 / 500

Novel 0.7794949 2500 / 500 Novel 0.740404 2500 / 250 Novel 0.8252137 3000 / 500 Novel 0.8010989 3000 / 250
Combine 0.9181818 2500 / 250 Combine 0.8959998 2500 / 500 Combine 0.8592262 3000 / 250 Combine 0.9347222 3000 / 500

Random Decision Tree Repetitive Decision Tree Nearest Neighbor Decision Stump
Traditional 0.8668908 2500 / 500 Traditional 0.9157731 2500 / 250 Traditional 0.9157731 2500 / 250 Traditional 0.9347222 3000 / 500
Novel 0.7238966 2500 / 500 Novel 0.7354701 3000 / 500 Novel 0.7354701 3000 / 500 Novel 0.8380342 3000 / 500
Combine 0.8458333 3000 / 500 Combine 0.9135522 2500 / 250 Combine 0.9135522 2500 / 250 Combine 0.9347222 3000 / 500
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9.3 Independent Validation

We examine the flip turns in a naturalistic setting by handling the data from User Study

2. In the evaluation, the features show that traditional feature set provides virtually 50%

accuracy of freestyle/backstroke flip turns. While the majority classifier is classifying at

47%. Though when examining features from novel classifier that 95% of breaststroke/but-

terfly flip turns can be classified which is .1% higher then the traditional feature sets with

a similar count in features used. As shown in Figure 9.1 that in the y-axis was the only

feature filtered and the decision stump classified highest on average on traditional features.

Which means both used a single feature set in classification.
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Table 9.2: Traditional features with 3000ms time window with 500ms overlap using
decision stump

Total
Percent Freestyle/Backstroke Flip Breaststroke/Butterfly Flip

Freestyle/Backstroke Flip 35/.57 26/.43
Breaststroke/Butterfly Flip 4/.13 26/.87

Table 9.3: Novel features with 3000ms time window with 250ms overlap using decision
stump

Total
Percent Freestyle/Backstroke Flip Breaststroke/Butterfly Flip

Freestyle/Backstroke Flip 61/.77 18/.23
Breaststroke/Butterfly Flip 2/.05 38/.95

Table 9.4: Combined features with 3000ms time window with 500ms overlap using
decision stump

Total
Percent Freestyle/Backstroke Flip Freestyle/Backstroke Flip

Freestyle/Backstroke Flip 35/.57 26/.43
Breaststroke/Butterfly Flip 4/.13 26/.87
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10. EVALUATION OF MAJOR SWIM STROKES AND FLIP TURNS

RECOGNITION

From previous chapters we compared major swim styles (backstroke, breaststroke,

butterfly, freestyle, sidestroke, and treading water) and flip turns (backstroke/freestyle,

breaststroke/butterfly). With the results of the chapters we want to compare if possible

the combination of both flip turns and main swim styles. This is done through using

smaller time window sizes of 1500 to 2500. The reason for this is that flip turns actions

are smaller while main swim styles have several iterations based on when they breath and

motion. From the collected data we evaluated the features, machine learning recognition,

and validations of both flip turns and major swim styles. In this chapter we discuss the

data processing and the results of the data evaluated on the machine learning algorithms.

10.1 Recognition Features Quantification

Section 8.1 and Section 9.1 showed that average-z and average-x are the most optimal

features when distinguishing between flip turns and backstroke. We examined both flip

turns and swim styles and found an decrease in feature count to 23 features when combined

of main swim strokes was 25. The most desired features are Entropy, Correlation Coeffi-

cient, and DC Component. DC Component and Entropy are frequency-based features with

novel and traditional both presented in the combination of feature sets. When examining

individual swim styles both flip turns when filtered did not select the features in the x-axis.

Filtering features distinguish and separates the features that have a causation or a

correlation to understanding the motion as of each activity. The filtering was used on

traditional, novel, and the combination of both features when used on the data set of User

Study 1. Table 10.1 shows that when separated specific features were presented to have

more of an effect in the recognition of main stroke activities.
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Table 10.1: Subset selection for major swim strokes and flip turns

Traditional Novel Combined
x y z x y z

Average X X X X
Standard Deviation X X X X X X
Root Mean Square X X X X

Peak Count X X X X X
Valley Count X X X

Skewness X
Kuritosis X

Cross Correlation
Entropy X X X X X

x y z
Max Peak Angle X X X X
Min Peak Angle

Average Peak Angle X
Max Valley Angle X X X X
Min Valley Angle

Average Valley Angle
Axis Angle Average X X

Cross Correlation X X X X X X
Zero Crossing X X X X

DC Component X X X X X X
Power Spectral Density X X X
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Table 10.2: Features Selection Individual Stroke Types Main Swim Strokes

Stroke Type Freestyle Backstroke BreastStroke Butterfly Sidestroke Treadingwater Backstroke/Freestyle Flipturn Breaststroke/Butterfly Flipturn
Axis X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z

Average XX XX XX X XX XX X XX
Standard Deviation XX X X XX XX XX XX X X XX X XX XX
Root Mean Square XX XX X X XX XX XX XX X X

Peak Count X XX X X X XX X X X X XX X X X X XX
Valley Count X X XX X X X X XX X XX X XX

Skewness X X
Kuritosis X X X

Correlation Coefficeint
Entropy XX XX XX X X XX X X X

Stroke Type Freestyle Backstroke BreastStroke Butterfly Sidestroke Treadingwater Backstroke/Freestyle Flipturn Breaststroke/Butterfly Flipturn
Axis X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z

Peak Max Angle X X XX XX
Peak Min Angle

Peak Average Angle X X X X
Valley Max Angle XX XX X X X X X X XX X X
Valley Min Angle

Valley Average Angle X X X X
Average Combined Axis X X X X X XX

Cross Correlation X X X X XX XX X X X X X X XX X X
Zero Crossing X XX X X XX X X X

DC Component XX X X XX X X X X
Power Spectral X X X X XX XX X
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10.2 Evaluation Machine Learning Algorithms

For machine learning algorithms we examined on a smaller time varying window of

1500 to 3000 milliseconds. This is due to the single flip turn is a single iterations and lasts

less than 3000 milliseconds when analyzed. We examined the multiple machine learning

algorithms and found .88 F-measure is the highest with combination feature set. traditional

is .87 F-measure from a random forest. When examining the times both traditional and

combination used 3000 millisecond time window. Second highest is random forest with

1500 millisecond time window using combination of both feature sets.
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Figure 10.1: Machine learning algorithms evaluation of subset features for major swimming strokes and flip turns

(a) Machine Learning Algorithms Evaluation

Multilayer Perceptron Naive Bayes J48 Decision Tree Random Forest Tree

Traditional 0.8442944
2500 /

500 Traditional 0.841348
3000 /

250 Traditional 0.8191712
1500 /

250 Traditional 0.871019
3000 /

500
Novel 0.809792 3000 / 500 Novel 0.7532429 3000 / 250 Novel 0.7690283 3000 / 500 Novel 0.841635 2500 / 500

Combine 0.8803225 3000 / 500 Combine 0.8101258 3000 / 250 Combine 0.8325177 1500 / 250 Combine 0.8700408 1500 / 500
Random Decision Tree Repetitive Decision Tree Nearest Neighbor Decision Stump

Traditional 0.8019997
3000 /

250 Traditional 0.840087
3000 /

250 Traditional 0.840087
3000 /

250 Traditional 0.2747173
3000 /

500
Novel 0.7430475 3000 / 250 Novel 0.8050006 3000 / 250 Novel 0.8050006 3000 / 250 Novel 0.2649611 2000 / 250

Combine 0.8012022 2500 / 250 Combine 0.831065 1500 / 500 Combine 0.831065 1500 / 500 Combine 0.2478193 1500 / 250
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10.3 Independent Validation

When it comes to a naturalistic setting there was a need to examine all swim styles

based on the features set and machine learning algorithms. We evaluated traditional, novel,

and combined features sets with the optimal machine learning algorithms. It showed

that all groups can classify freestyle, backstroke, breaststroke, treading water at 100%

accuracy. Though both traditional and novel have issues in classification of flip turns. The

percent accuracy decrease by almost 30% for detecting breaststroke/butterfly flip turns.

Though when evaluating the combination there was a slight increase by .01 when evalu-

ating flip urns and sidestroke. Which currently shows that the combination of traditional

and novel features has a slight increase.
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Table 10.3: Traditional features with 3000ms time window with 500ms overlap using random forest

Total
Percent Freestyle Backstroke Breaststroke Butterfly Treadingwater Sidestroke Freestyle/Backstroke Flip Breaststroke/Butterfly Flip

Freestyle 208/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Backstroke 0/0 85/1 0/0 0/0 0/0 0/0 0/0 0/0
Breaststroke 0/0 0/0 125/1 0/0 0/0 0/0 0/0 0/0
Butterfly 0/0 0/0 27/.35 50/.65 0/0 0/0 0/0 0/0
Treadingwater 0/0 0/0 0/0 0/0 126/1 0/0 0/0 0/0
Sidestroke 0/0 0/0 0/0 0/0 7/.09 69/.90 0/0 0/0
Freestyle/Backstroke Flip 5/.08 4/.06 1/.02 0/0 0/0 1/.02 45/.74 5/.08
Freestyle/Backstroke Flip 2/.06 0/0 3/.1 4/.13 0/0 0/0 3/.1 18/.61

Table 10.4: Novel features with 2500ms time window with 500ms overlap using random forest

Total
Percent Freestyle Backstroke Breaststroke Butterfly Treadingwater Sidestroke Freestyle/Backstroke Flip Breaststroke/Butterfly Flip

Freestyle 268/1 0 0 0 0 0 0 0
Backstroke 0 109/1 0 0 0 0 0 0
Breaststroke 0 0 155/1 0 0 0 0 0
Butterfly 0 0 50/.52 46/.48 0 0 0 0
Treadingwater 0 0 0 0 160/1 0 0 0
Sidestroke 0 0 0 0 8/.08 91/.92 0 0
Freestyle/Backstroke Flip 20/.08 7/.06 1/.02 0 0 2/.02 50/.74 1/.08
Freestyle/Backstroke Flip 9/.22 0 12/.3 1/.02 0 2/.05 7/.17 10/.24

Table 10.5: Combined features with 3000ms time window with 500ms overlap using multilayer perceptron

Total
Percent Freestyle Backstroke Breaststroke Butterfly Treadingwater Sidestroke Freestyle/Backstroke Flip Breaststroke/Butterfly Flip

Freestyle 208/1 0 0 0 0 0 0 0
Backstroke 0 85/1 0 0 0 0 0 0
Breaststroke 0 0 85/1 0 0 0 0 0
Butterfly 0 0 18/.23 59/.77 0 0 0 0
Treadingwater 0 0 0 0 127/1 0 0 0
Sidestroke 0 0 0 0 7/.09 69/.91 0 0
Freestyle/Backstroke Flip 5/.08 0 0 0 0 0 52/.85 4/.06
Freestyle/Backstroke Flip 4/.13 0 3/.1 1/.03 0 0 2/.07 20/.67
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11. RECOGNITION EVALUATION DEEP LEARNING SYSTEM

A deep learning neural network is frequently utilized as a black box. This means

that features can’t be extracted easily due to the network reliance on weighted connecting

values. We developed a system that uses Tensorflow to implement convolutional layers

and is evaluated on 70/30 data split among the data of User Study 1. We stored the model

and integrated it into an Android mobile application. We developed the application to

recognize swim styles in real time which we used in a real-world setting as presented in

Section 7.2. In this chapter, we will present the neural network developed and results from

a real-world setting.

11.1 Development And Training

When considering the development of a neural network we need to consider the num-

ber of layers and input/output nodes. We used a python library Tensorflow to develop

the neural network. This allowed us to construct a deep learning system that will be

able to be integrated into an Android device. For the development, we built 3 connecting

convolutional layers and a dense layer as shown in Figure 7.3a. Section 7.2 shows how we

modified the data to be 512 nodes visually indicated in Figure 7.1. Allowing for reduction

as the data passes through the convolutional inputs as shown in Figure 11.2a.

For training the data we had to examine the number of epochs which is a group of

batches. Batches are groups that hold a number of data sets. For training, we use 10

epochs which contain 50 batches with each batch holding 50 datasets. In total 5000

datasets are examined per training session. After 10 epochs we tested the neural network

on 30% of the data to get the deep learning F-measure and ability to recognize swimming

activity. The results per every 10 epochs in training of the neural network can be presented

in Figure 11.1. Altogether the system was able to acquire 99% F-measure with a small
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number of epochs required.

Figure 11.1: Visualization graph of the F-measure for training Deep Learning Neural
Network

11.2 Main Strokes Swim Styles

For testing in a naturalistic setting, we developed an application that was integrated

with the model developed by Tensorflow. The application developed used the same UI

from User Study 1 as shown in Figure 3.1. We evaluated the system on a lone swimmer

and were capable of getting 98% accuracy in real time. With side stroke having 100%

classification on each side. All strokes were classified correctly except butterfly with 85%

accuracy. We hope to develop a more effective system that will allow for a reduction in

the incorrect classification of the butterfly swim style.
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(a) Visualization graph of the filters for layers of the convolutional neural
network

(b) Deep learning neural network real time evaluation

Total
Percent Freestyle Backstroke Breaststroke Butterfly Treading water Sidestroke

Freestyle 20/1 0 0 0 0 0
Backstroke 0 20/1 0 0 0 0
Breaststroke 0 0 20/1 0 0 0
Butterfly 0 0 3/.15 17/.85 0 0
Treading water 0 0 0 0 20/1 0
Sidestroke 0 0 0 0 0 40/1
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12. DISCUSSION

The results have provided some information on understanding the multiple algorithms

and time windows on a set of filtered features. We obtain a sufficient amount of data

analyzed, and we plan to understand all the swimming styles that is expected for survival

swimming. In this chapter we provide insight in the features, machine learning algorithms,

and deep learning algorithm.

12.1 Features Insight

We grouped the feature sets into two categories (traditional and novel) and compared

them to each other and the combination of both. We found that traditional features pro-

vided better accuracy in the butterfly stroke, with novel features providing higher accuracy

with breaststroke, as shown in Table 8.3. We believe this is because the peaks and valleys

features help to distinguish the difference between the breast and butterfly stroke. One is-

sue is the noise that the accelerometer provides causing multiple detections when searching

for peaks. The way we prepare to address that situation is by implementing a re-sampling

method to reduce the points that cause noise and increase smoothing.

For classifications, we found that the combination of features sets always provided the

highest f-measure. Though the combination of features increased the number of features

used and the overall output. Section 10.2 has provided the combined features had only .01

of a difference in F-measure when using all swim styles. Results of the features are due

to the time window being really small causing the peak detection to only detect 1 peak

causing issues when finding max and min. We plan to rectify this is by evaluating only

on the peaks and increasing the time window to a different time interval. This is an issue

when it comes to flip turns. Figure 4.4 and Figure 4.5 shows that the peaks are similar in

the y and z direction, but in the x direction there is a significant shift in value sets. This is
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because the x-axis focuses on the motions of the person’s body to move side to side. While

breaststroke and butterfly focus on up and down motions, unlike backstroke or freestyle.

12.2 Algorithm Insight

With the multiple machine learning algorithms used we compare several time win-

dows. This was achieved through independent validation and naturalistic validation. When

comparing the algorithms several stuck out, for example, Random Forest and multilayer

perceptron usually had the highest yield in classification. This is due to both classifications

rely on large feature sets which were provided even after filtering. Though for the smaller

feature sets as shown in Section 9.2 it shows independent validation had decision stump

providing the highest f-measure. That is because there is a considerable distinction when

it comes to both flip turns. When combined all swim styles we could find the smaller time

windows could not detect as accurately. Causing the data in the time windows to visually

look similar. Like sidestroke looking similar to the concluding parts of the flip turns as

shown in Figure 4.4 and Figure 4.5. Overall understanding the modified algorithms that

are best for swim styles are multilayer perceptron and random forest decision tree.

12.3 Deep Learning Insight

A deep learning model was designed and implemented in a real-world setting. The

system had 100% accuracy in detecting between all major swim styles except butterfly in

real time. Butterfly had 85% which is an 8% higher among major swim styles recognition

and total swim styles recognition. The deep learning recognition system is fast and effi-

cient with the ability to recognize in real time. Though if we were to expand on specifics

like peak detection, the deep learning would have a flaw in its ability to recognize peaks

locations. The deep learning system maintains better efficiency in recognizing all major

swim styles with the highest f-measure. In real time the system was capable to recognize

swim strokes fast and at 97% accuracy.
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13. FUTURE WORK

With the activity recognition of our system and the current statistics on swimmers,

there are several other areas of research this can expand on. With the current results, we

believe the recognition algorithm can serve as a form of restructuring the education, sports,

health, and safety fields.

13.1 Peak Analysis

For our system, we analyzed we discovered the peak and valley detection method

can be optimized to better fit multiple swimming proficiency levels. When analyzing the

data the x-axis for breaststroke/butterfly flip turns can be used to distinguish between is

designated swim strokes. With the ability to resampling the data we can eliminate noise

as well increase the ability to distinguish all swim styles.

With understanding and finding exact peaks we will, in addition, implement better

complex algorithms that are related to data between peak sets. Swimmers maintain varying

distances between peaks because swimmers possess various levels in their ability to hold

their breath. If we analyze the data between peaks, we may be capable to recognize

the swimmer’s proficiency level. With the added bonus of recognizing the swimmers

breathing ability and physical stress, the workout is providing.

13.2 Education and Sports

With the user studies, we examined there were distinctions between professional swim-

ming swim styles and beginner/inexperienced swim styles. This has presented the pos-

sibilities as our system with more data be able to provide feedback to swimmer while

they perform swimming style. This will allow for real-time recognition and feedback

to correct swimmers stroke style. Recognition can additionally be implemented as a
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testing system to evaluate peoples capability to swim. With an ability to provide feedback

on recommendations to swim school or certain recreational activities that best fit their

swimming expertise.

13.3 Navigation

Navigation can be implemented for safety, sports, and health. By utilizing haptic

feedback our system could navigate distressed people in the water to a safe location. We

can additionally use the navigation in professional contexts for triathletes, long distant

swimmers, and open water competitive swimmers. The reason for haptic feedback is that it

has provided significant results in navigation without an increase in impairment from users

reactions. Haptic solutions for intuitive navigation feedback and obstacle navigation for

paratroopers [93–96], motorcyclists [97], first responders [98], construction workers [99],

dementia patients [100], pedestrians [101, 102], the visually impaired [103–105], and even

children and adult gamers [106, 107]. The data show that haptic navigation sustains a

reduced cognitive load compared to both audio and visual navigation. This will allow

us to have the ability to process an immense amount of haptic information, especially in

emergency scenarios, because it is an underused sensory channel [108–110].
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14. CONCLUSION

The purpose of this research was to understand swim styles related to proficiency

examinations and survival swimming techniques. To be a proficient swimmer and acquire

the skills to survive water based activity and reduce the risk of drowning, a person must

be capable to learn how to breaststroke, sidestroke, freestyle, backstroke, and tread water.

Current research focuses on the recognition of the competitive swim styles (backstroke,

breaststroke, freestyle, butterfly).

Our research focuses on the competitive swim styles as well as other motions related

to recreational swimming and survival swimming like sidestroke, treading water, and flip

turns. This paper presented several methodologies in gathering data with the use of a

mobile device and ways to setup the system through wearable systems. We also show

current features and novel features used in recognizing these swim styles and which fea-

tures will indicate the most reliable results. With these features, we present and compare

multiple machine learning algorithms and found the best time window that produced the

highest f-measure. These algorithms help when recognizing swim styles, flip turns, and

the combination of both.

14.1 Methodology

With the advancement of technology and the ability that mobile devices are able to

perform. We wanted to develop a system that will allow us to collect swimming data. Two

user studies required different methods in extracting features. User Study 1 allowed an

individual to interact with the mobile device to extract data. This allowed for others to

develop a general system that can allow participants to provide their data. For User Study

2 it requires a proctor to record swimming styles but allowing the swimmer to maintain a

constant motion. With the ability to swim for a more extended period of time. With the
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increase in mobile system, researchers can employ our system to advance the knowledge

of swimming basted studies.

14.2 Features

For features, we compared traditional time window features to novel peak related

feature sets. We discovered that peak related features produced similar f-measures when

related to broader windows as shown in Chapter 8. When it came to flip turns and the

combination of flip turns and major swim styles. We evaluated that when the time window

was reduced it extracted much less novel feature sets but produced similar results when

traditional and combined features were produced. With more work, we believe that the

peak related features will allow us to recognize optimally. With the added bonus of

extracting motions related to a person performing a swim stroke and breathing motion

in the water.

14.3 Machine Learning Algorithm

Machine learning algorithms remain a fundamental aspect of recognizing swim styles.

We analyzed several machine learning algorithms to provide the optimal algorithm to the

best time window. We analyzed seven machine learning algorithms all having pros and

cons based on time window and features. We discovered when it came to the major swim

styles that novel and traditional had an f-measure of .91. The best sliding window obtained

is 4000 milliseconds. The pros in implementing the novel features is the ability to count

the peaks which exhibit the most significant correlation to the locomotion of the swimming

style.

For understanding, all swim styles we compared it to major and flip turns separated. It

shows the smaller time window reduces the novel features to recognize better as shown in

major swim styles requires a longer time. This means there needs to be an improvement in

the peak detection algorithm. To understand flip turns as a whole and utilize these peaks
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and compare it to peaks of the other swim styles.

14.4 Deep Learning Algorithm

For the deep learning algorithm, we wanted to analyze and determine if a neural

network can provide higher accuracy and be able to recognize faster. We developed a

convolutional neural network based on its capabilities in recognizing images based on

pixel color. As presented in Section 4.2, we employed a similar means to convert the

time windows data to a two-dimensional input as shown in Figure 7.1. This was then

implemented and tested on an actual swimmer in real time. It produced the highest

accuracy at 98%. The value is greater than the featured recognition system which can

analyze at 90%. Currently, this system is the most optimal form in detecting swimming

styles. The limit of a neural network is in the ability to detect peak values. This will require

more research, and we believe there are better methods in extracting peaks and inevitably

the locomotion.
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Ilkka Korhonen. Activity classification using realistic data from wearable sensors.

Information Technology in Biomedicine, IEEE Transactions on, 10(1):119–128,

2006.

[48] Ling Bao and Stephen Intille. Activity recognition from user-annotated acceleration

data. Pervasive computing, pages 1–17, 2004.

[49] Vo Quang Viet, Hoang Minh Thang, and Deok-Jai Choi. Balancing precision and

battery drain in activity recognition on mobile phone. In Parallel and Distributed

Systems (ICPADS), 2012 IEEE 18th International Conference on, pages 712–713.

IEEE, 2012.

[50] Susanna Pirttikangas, Kaori Fujinami, and Tatsuo Nakajima. Feature selection

and activity recognition from wearable sensors. In International Symposium on

Ubiquitious Computing Systems, pages 516–527. Springer, 2006.

[51] Shuangquan Wang, Jie Yang, Ningjiang Chen, Xin Chen, and Qinfeng Zhang.

Human activity recognition with user-free accelerometers in the sensor networks.

83



In Neural Networks and Brain, 2005. ICNN&B’05. International Conference on,

volume 2, pages 1212–1217. IEEE, 2005.

[52] Yago Saez, Alejandro Baldominos, and Pedro Isasi. A comparison study of

classifier algorithms for cross-person physical activity recognition. Sensors,

17(1):66, 2016.

[53] Robert DiPietro, Colin Lea, Anand Malpani, Narges Ahmidi, S Swaroop Vedula,

Gyusung I Lee, Mija R Lee, and Gregory D Hager. Recognizing surgical activities

with recurrent neural networks. In International Conference on Medical Image

Computing and Computer-Assisted Intervention, pages 551–558. Springer, 2016.

[54] Earnest Paul Ijjina and Krishna Mohan Chalavadi. Human action recognition using

genetic algorithms and convolutional neural networks. Pattern recognition, 59:199–

212, 2016.

[55] Daniel Olguın Olguın and Alex Sandy Pentland. Human activity recognition:

Accuracy across common locations for wearable sensors. In Proceedings of

2006 10th IEEE International Symposium on Wearable Computers, Montreux,

Switzerland, pages 11–14. Citeseer, 2006.

[56] Hristijan Gjoreski, Mitja Lustrek, and Matjaz Gams. Accelerometer placement for

posture recognition and fall detection. In Intelligent environments (IE), 2011 7th

international conference on, pages 47–54. IEEE, 2011.

[57] Louis Atallah, Benny Lo, Rachel King, and Guang-Zhong Yang. Sensor positioning

for activity recognition using wearable accelerometers. IEEE transactions on

biomedical circuits and systems, 5(4):320–329, 2011.

[58] Andrea Mannini, Stephen S Intille, Mary Rosenberger, Angelo M Sabatini, and

William Haskell. Activity recognition using a single accelerometer placed at the

wrist or ankle. Medicine and science in sports and exercise, 45(11):2193, 2013.

[59] Alberto G Bonomi, Annelies HC Goris, Bin Yin, and Klaas R Westerterp. Detection

84



of type, duration, and intensity of physical activity using an accelerometer.

Medicine & Science in Sports & Exercise, 41(9):1770–1777, 2009.
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[65] Marc Bächlin and Gerhard Tröster. Swimming performance and technique

evaluation with wearable acceleration sensors. Pervasive and Mobile Computing,

8(1):68–81, 2012.

[66] GM Lyons, KM Culhane, D Hilton, PA Grace, and D Lyons. A description of

an accelerometer-based mobility monitoring technique. Medical engineering and

physics, 27(6):497–504, 2005.

[67] Wee-Soon Yeoh, Isaac Pek, Yi-Han Yong, Xiang Chen, and Agustinus Borgy

Waluyo. Ambulatory monitoring of human posture and walking speed using

wearable accelerometer sensors. In Engineering in Medicine and Biology Society,

2008. EMBS 2008. 30th Annual International Conference of the IEEE, pages 5184–

85



5187. IEEE, 2008.

[68] Hristijan Gjoreski, Simon Kozina, Mitja Luštrek, and Matjaž Gams. Using multiple
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APPENDIX

Table A.1: Flip turns cross validation on traditional features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 75.0 79.310 83.222 85.731 81.843 82.288 81.856 80.705
Naive Bayes 79.688 77.586 78.667 79.599 75.821 76.102 76.564 76.685
Decision Stump 81.25 81.034 76.0 76.769 74.544 73.644 71.134 71.614
J48 Decision Tree 79.688 79.310 89.889 89.033 87.591 88.22 84.948 91.218
Random Forest Tree 79.688 82.758 92.111 93.632 92.062 92.627 91.34 94.805
Random Decision Tree 71.875 72.413 88.111 90.566 89.507 88.644 88.729 91.28
Repetitive Decision Tree 79.685 84.482 85.444 87.854 86.223 85.085 85.842 89.054
Nearest Neighbor 79.687 84.482 85.444 87.854 86.223 85.085 85.842 89.054

Table A.2: Flip turns independent validation on traditional features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 85.934 85.662 88.485 81.286 78.214 75.854 73.763 73.995
Naive Bayes 85.687 83.611 88.159 84.433 81.206 81.384 75.054 75.484
Decision Stump 88.661 93.472 82.556 77.822 78.489 76.392 58.755 68.127
J48 Decision Tree 86.126 84.274 87.203 84.891 76.566 83.657 73.221 76.879
Random Forest Tree 85.357 86.325 83.784 83.667 72.643 81.399 75.945 78.689
Random Decision Tree 82.857 84.274 79.254 86.689 68.245 75.902 72.894 75.148
Repetitive Decision Tree 88.434 87.094 91.577 79.68 78.489 80.63 73.446 79.222
Nearest Neighbor 88.434 87.094 91.577 79.68 78.489 80.63 73.446 79.222
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Table A.3: Flip turns cross validation on novel features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 63.793 65.625 82.23 77.829 79.166 75.989 74.145 74.038
Naive Bayes 65.517 68.75 45.588 43.533 42.234 37.994 34.33 39.807
Decision Stump 72.414 78.125 50.98 50.808 50.189 50.043 48.148 50.192
J48 Decision Tree 74.138 76.562 87.132 88.222 86.268 84.696 83.831 81.538
Random Forest Tree 74.138 54.688 96.078 97.46 96.022 95.162 93.874 94.23
Random Decision Tree 72.414 54.688 82.23 85.334 83.049 83.553 81.766 82.371
Repetitive Decision Tree 65.517 73.438 78.921 81.409 76.231 78.54 75.569 75.512
Nearest Neighbor 65.517 73.438 78.921 81.409 76.231 78.54 75.569 75.512

Table A.4: Flip turns independent validation on novel features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 67.793 74.744 77.117 77.949 67.781 71.213 66.702 66.673
Naive Bayes 61.062 67.222 74.04 73.203 67.012 57.648 64.613 65.747
Decision Stump 83.187 83.803 76.861 65.196 67.381 67.636 71.591 66.537
J48 Decision Tree 76.071 82.521 78.399 71.279 77.921 64.617 72.446 66.537
Random Forest Tree 80.11 62.906 64.211 79.744 69.655 73.328 60.542 58.51
Random Decision Tree 69.148 62.906 64.211 72.39 63.443 68.186 60.542 58.51
Repetitive Decision Tree 69.588 73.547 69.425 73.311 70.888 65.695 71.084 71.53
Nearest Neighbor 69.588 73.547 69.425 73.311 70.888 65.695 71.084 71.53
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Table A.5: Flip turns cross validation on traditional and novel features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 94.444 95.0 86.397 92.148 84.659 85.664 88.604 88.462
Naive Bayes 75.926 78.333 72.304 74.365 72.348 73.351 66.311 70.0
Decision Stump 77.778 85.0 74.142 74.365 72.443 72.032 69.801 70.705
J48 Decision Tree 88.889 91.667 91.176 91.686 88.92 91.557 91.667 93.718
Random Forest Tree 96.296 100.0 96.201 95.612 94.508 96.482 95.94 97.051
Random Decision Tree 96.296 98.333 91.422 91.57 89.678 93.14 90.527 92.372
Repetitive Decision Tree 88.889 86.667 90.319 88.568 85.985 88.918 89.103 91.538
Nearest Neighbor 88.889 86.667 90.319 88.568 85.985 88.918 89.103 91.538

Table A.6: Flip turns independent validation on traditional and novel features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 89.494 75.208 91.818 81.267 85.04 84.559 83.877 86.411
Naive Bayes 83.72 85.694 86.077 89.6 76.617 82.337 65.593 75.789
Decision Stump 88.661 93.472 88.325 90.283 77.153 78.268 68.127 58.755
J48 Decision Tree 85.923 78.542 77.214 82.709 84.544 82.598 80.158 76.162
Random Forest Tree 92.827 93.472 87.542 89.898 88.71 87.042 88.502 82.028
Random Decision Tree 83.105 84.583 79.714 83.666 80.109 76.258 77.567 78.412
Repetitive Decision Tree 81.161 82.917 91.355 87.793 80.377 73.284 75.859 75.917
Nearest Neighbor 81.161 82.917 91.355 87.793 80.377 73.284 75.859 75.917
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Table A.7: Combined flip turns and swim strokes cross validation using traditional features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 93.977 92.503 98.635 98.345 97.745 97.866 96.566 96.26
Naive Bayes 90.59 90.773 94.353 94.369 93.738 93.658 92.091 92.089
Decision Stump 35.508 39.446 35.592 35.061 34.93 34.906 33.614 33.994
J48 Decision Tree 90.59 91.119 98.449 98.675 98.102 98.139 96.987 97.137
Random Forest Tree 94.103 94.464 99.503 99.474 99.108 99.182 98.622 98.687
Random Decision Tree 88.457 91.003 98.234 98.443 97.847 97.837 96.813 96.81
Repetitive Decision Tree 89.21 89.619 97.915 98.114 97.203 97.238 96.487 96.27
Nearest Neighbor 89.21 89.619 97.915 98.114 97.203 97.238 96.487 96.27

Table A.8: Combined flip turns and swim strokes independent validation using traditional features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 83.989 82.554 82.892 84.429 81.611 83.322 80.877 82.991
Naive Bayes 84.135 82.658 82.904 82.59 82.386 82.904 82.057 81.431
Decision Stump 23.472 27.247 25.711 25.378 25.25 26.675 24.962 22.04
J48 Decision Tree 80.812 79.706 78.958 79.087 80.127 74.879 81.917 77.891
Random Forest Tree 86.188 87.102 85.653 87.035 84.569 85.625 83.946 84.447
Random Decision Tree 80.2 76.044 78.067 77.792 77.447 75.005 73.341 67.46
Repetitive Decision Tree 84.009 80.655 80.201 83.309 77.438 73.386 80.904 78.046
Nearest Neighbor 84.009 80.655 80.201 83.309 77.438 73.386 80.904 78.046
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Table A.9: Combined flip turns and swim strokes cross validation on novel features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 80.979 89.273 95.629 96.571 95.751 95.703 94.094 94.355
Naive Bayes 74.998 84.198 88.898 88.584 88.329 88.163 86.648 86.676
Decision Stump 25.576 39.331 40.928 40.867 40.243 40.258 39.567 39.511
J48 Decision Tree 76.903 88.351 97.358 97.567 96.859 96.859 95.809 96.142
Random Forest Tree 83.131 91.811 98.939 99.032 98.573 98.672 98.054 98.17
Random Decision Tree 72.298 85.121 96.764 96.746 96.592 96.444 94.789 95.237
Repetitive Decision Tree 76.231 87.889 96.445 96.403 95.713 95.886 94.904 95.184
Nearest Neighbor 76.231 87.889 96.445 96.403 95.713 95.886 94.904 95.184

Table A.10: Combined flip turns and swim strokes independent validation on novel features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 78.081 80.979 80.069 78.841 79.707 77.486 75.858 80.134
Naive Bayes 75.324 74.998 74.446 73.512 73.926 71.904 71.684 74.325
Decision Stump 24.295 25.576 26.105 24.8 26.496 26.43 24.894 21.386
J48 Decision Tree 74.522 76.903 73.273 74.605 72.22 74.843 76.331 73.855
Random Forest Tree 82.943 83.131 81.903 84.163 82.27 83.258 81.215 81.154
Random Decision Tree 74.305 72.298 69.756 70.53 73.322 71.144 67.766 71.724
Repetitive Decision Tree 80.5 76.231 76.249 74.581 73.832 75.168 73.215 76.403
Nearest Neighbor 80.5 76.231 76.249 74.581 73.832 75.168 73.215 76.403
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Table A.11: Combined flip turns and swim strokes cross validation on traditional and novel features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 96.487 96.77 98.575 98.647 97.541 97.955 96.247 96.461
Naive Bayes 89.711 89.504 94.13 93.935 93.273 93.041 90.755 90.59
Decision Stump 33.877 34.025 35.421 34.991 34.975 34.9 33.795 34.307
J48 Decision Tree 97.616 96.655 98.494 98.591 98.095 97.931 96.748 97.012
Random Forest Tree 98.62 98.731 99.391 99.439 99.044 99.146 98.424 98.432
Random Decision Tree 94.228 94.233 97.929 98.065 97.445 97.297 96.216 96.675
Repetitive Decision Tree 94.228 94.348 97.989 97.981 97.324 97.285 96.01 96.428
Nearest Neighbor 94.228 94.348 97.989 97.981 97.324 97.285 96.01 96.428

Table A.12: Combined flip turns and swim strokes independent validation on traditional and novel features

Window Size (ms) 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250
Multilayer Perceptron 86.209 88.032 87.714 86.158 84.997 84.92 85.778 83.767
Naive Bayes 81.013 80.783 78.85 78.035 78.223 78.463 79.002 79.258
Decision Stump 21.855 22.168 21.966 21.984 21.735 21.705 24.782 21.935
J48 Decision Tree 81.349 76.292 78.828 75.912 78.361 78.729 83.252 78.389
Random Forest Tree 86.261 86.628 86.231 85.845 86.214 85.912 86.567 87.004
Random Decision Tree 76.686 78.841 80.12 74.894 76.825 77.253 77.982 77.821
Repetitive Decision Tree 79.006 80.137 81.612 80.756 78.523 77.999 76.834 83.107
Nearest Neighbor 79.006 80.137 81.612 80.756 78.523 77.999 76.834 83.107
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Table A.13: Major swim styles cross validation on traditional features

Window Size (ms) 4000 3500 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250 500 250 500 250
Multilayer Perceptron 96.03 96.964 96.26 96.842 95.264 95.392 96.685 97.448 95.858 96.064 95.65 96.015
Naive Bayes 93.573 93.036 93.171 93.835 93.911 93.151 92.707 92.836 93.491 93.222 93.564 91.023
Decision Stump 43.1 43.571 40.325 42.556 42.219 40.847 42.099 42.198 41.927 41.983 41.597 41.575
J48 Decision Tree 93.195 94.107 96.26 95.789 93.369 94.396 94.033 95.976 93.66 94.606 93.981 95.199
Random Forest Tree 97.164 97.857 97.886 97.594 96.752 96.762 97.127 97.645 96.365 97.303 96.484 96.88
Random Decision Tree 94.896 94.107 94.959 94.586 94.452 93.275 92.818 94.701 93.322 94.534 93.981 94.095
Repetitive Decision Tree 94.14 94.286 95.447 94.586 94.993 94.396 94.696 94.603 95.097 95.044 94.994 95.247
Nearest Neighbor 94.14 94.286 95.447 94.586 94.993 94.396 94.696 94.603 95.097 95.044 94.994 95.247

Table A.14: Major swim styles independent validation on traditional features

Window Size (ms) 4000 3500 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250 500 250 500 250
Multilayer Perceptron 89.959 88.703 87.674 88.095 89.427 87.695 89.031 89.881 87.009 89.16 87.692 89.468
Naive Bayes 88.939 88.857 87.79 88.987 87.396 85.361 87.737 88.11 88.408 88.998 88.14 85.144
Decision Stump 30.92 31.134 25.921 30.269 29.85 30.216 29.99 29.494 28.312 27.166 27.054 28.177
J48 Decision Tree 83.463 80.803 80.663 81.9 75.754 80.358 80.755 83.429 79.907 79.872 86.193 82.231
Random Forest Tree 89.76 90.137 88.33 88.349 87.456 88.456 87.824 89.51 88.724 87.885 88.615 87.49
Random Decision Tree 83.209 79.401 81.056 81.549 83.027 82.753 80.755 83.175 83.546 77.411 85.344 84.942
Repetitive Decision Tree 86.551 81.618 87.63 88.919 85.368 88.519 84.896 81.917 86.257 83.932 86.563 84.321
Nearest Neighbor 86.551 81.618 87.63 88.919 85.368 88.519 84.896 81.917 86.257 83.932 86.563 84.321

98



Table A.15: Major swim styles cross validation on novel features

Window Size (ms) 4000 3500 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250 500 250 500 250
Multilayer Perceptron 99.023 98.809 98.754 99.156 98.513 98.649 98.564 98.418 98.016 98.64 97.848 98.003
Naive Bayes 93.422 93.556 93.749 93.746 93.785 93.645 93.628 93.686 93.17 93.121 91.666 91.649
Decision Stump 44.784 44.736 44.407 44.379 44.032 44.034 43.763 43.712 43.359 43.374 38.583 41.258
J48 Decision Tree 99.539 99.319 99.272 99.434 98.818 99.076 98.889 98.958 98.696 98.87 98.373 98.497
Random Forest Tree 99.78 99.777 99.721 99.655 99.66 99.709 99.611 99.573 99.506 99.54 99.246 99.331
Random Decision Tree 99.121 98.926 98.833 99.031 98.988 98.734 98.334 98.59 98.442 98.697 97.928 97.957
Repetitive Decision Tree 99.22 99.075 98.853 99.079 98.621 98.7 98.619 98.358 98.696 98.435 98.048 98.014
Nearest Neighbor 99.22 99.075 98.853 99.079 98.621 98.7 98.619 98.358 98.696 98.435 98.048 98.014

Table A.16: Major swim styles independent validation on novel features

Window Size (ms) 4000 3500 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250 500 250 500 250
Multilayer Perceptron 90.107 89.024 86.483 86.857 89.146 89.868 88.635 87.735 88.459 86.369 87.974 88.126
Naive Bayes 81.291 80.144 81.551 80.097 79.062 81.597 82.041 80.999 81.11 79.676 80.988 80.793
Decision Stump 28.357 31.134 27.32 28.459 26.565 28.881 28.18 28.213 22.104 28.645 22.866 19.469
J48 Decision Tree 82.726 83.021 77.471 83.003 80.812 82.967 82.123 84.057 83.917 81.549 82.188 84.522
Random Forest Tree 86.325 85.49 87.883 88.433 87.509 88.469 86.971 89.391 86.857 87.772 88.375 88.074
Random Decision Tree 82.205 81.56 78.063 79.302 83.174 83.351 80.06 81.696 83.162 81.051 82.465 81.796
Repetitive Decision Tree 84.641 80.086 80.239 82.356 80.262 83.186 84.976 84.24 82.203 83.173 86.217 83.477
Nearest Neighbor 84.641 80.086 80.239 82.356 80.262 83.186 84.976 84.24 82.203 83.173 86.217 83.477
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Table A.17: Major swim styles cross validation on traditional and novel features

Window Size (ms) 4000 3500 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250 500 250 500 250
Multilayer Perceptron 99.703 99.724 99.541 99.568 99.481 99.444 99.279 99.425 99.492 99.565 99.184 99.228
Naive Bayes 97.046 96.959 96.68 97.065 96.857 96.741 96.142 96.27 97.032 96.678 95.507 95.621
Decision Stump 44.784 44.736 44.407 39.363 44.032 44.034 42.536 42.888 37.669 43.652 41.472 35.711
J48 Decision Tree 99.649 99.713 99.601 99.53 99.463 99.521 99.396 99.419 99.445 99.468 99.144 99.069
Random Forest Tree 99.912 99.904 99.741 99.789 99.803 99.743 99.725 99.649 99.77 99.79 99.435 99.552
Random Decision Tree 99.583 99.479 99.043 99.434 99.051 99.128 98.799 98.927 98.992 99.07 98.476 98.755
Repetitive Decision Tree 99.605 99.49 99.302 99.357 99.31 99.299 99.08 99.189 99.191 99.243 98.898 98.914
Nearest Neighbor 99.605 99.49 99.302 99.357 99.31 99.299 99.08 99.189 99.191 99.243 98.898 98.914

Table A.18: Major swim styles independent validation on novel features

Window Size (ms) 4000 3500 3000 2500 2000 1500
Window Overlap (ms) 500 250 500 250 500 250 500 250 500 250 500 250
Multilayer Perceptron 90.566 88.435 91.707 90.932 89.343 92.263 90.249 89.365 90.444 89.791 90.362 87.781
Naive Bayes 89.513 88.697 86.781 88.419 85.565 86.394 88.39 85.887 90.061 83.609 85.338 85.006
Decision Stump 26.976 29.749 23.701 24.19 22.75 23.676 27.212 24.35 42.43 30.114 28.372 24.937
J48 Decision Tree 81.119 86.477 81.848 75.757 85.923 82.094 78.253 83.143 84.24 86.502 83.972 85.156
Random Forest Tree 91.381 89.59 90.447 90.821 90.048 89.175 88.021 89.887 87.641 88.267 90.442 90.38
Random Decision Tree 79.289 80.197 81.799 83.537 85.978 81.126 80.889 82.424 83.141 79.971 85.089 87.258
Repetitive Decision Tree 81.826 84.498 84.353 77.321 85.79 83.324 81.028 82.759 86.998 84.338 83.602 89.967
Nearest Neighbor 81.826 84.498 84.353 77.321 85.79 83.324 81.028 82.759 86.998 84.338 83.602 89.967
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