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ABSTRACT 

 The objective of this research was to demonstrate the capability of a novel design 

of a high-speed spindle using combination active magnetic bearings (AMBs) with a 

nonlinear time-frequency controller. The spindle modeled for this research was a five 

degree of freedom system with a fixed constant rotational velocity in the z-direction of 

192,000 RPMs. The spindle was also considered a flexible shaft with static and dynamic 

eccentricities. The AMBs used in this research were a homopolar design that included 

both the radial and thrust components in one AMB. These AMBs also used permanent 

magnets to levitate the system. One combination AMB, along with another radial AMB, 

was used to support the system.  

 The controller algorithm was based on discrete wavelet transformations (DWT) 

and filtered-x least-mean-square (FXLMS) algorithm. The logic of this controller 

implements DWT and FXLMS adaptive filters to perform a feedforward control, online 

identification and to construct parallel adaptive filter banks. The use of DWT allows the 

controller to simultaneously control time and frequency of the system, and the 

transformation between the two domains is a lossless transformation. 

 For test purposes the controller was brought online at the same time the system 

was turned on. Once the system was under control an impulse force of 250 kN was 

applied to the system to see if the controller was capable of bringing the system back 

under control. The controller demonstrated control in both the time and frequency 

domain. The controlled system had a maximum controlled displacement of 2.85x10-5 

meters with an allowable displacement of 0.55x10-3 meters. In the frequency domain, 
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instantaneous frequency shown using the Hilbert-Huang Transformation (HHT) was 

used. The frequency response was a highly nonlinear broadband response that was 

brought under control, and the frequency bandwidth was reduced to a quasiperiodic and 

predictable response. The bandwidth of the system was reduced to 1.5% of the original 

bandwidth. 

 Overall this high-speed spindle design demonstrated the capability of running 

and being controlled at a speed of 192,000 RPMs. The next step is to validate the 

controller and AMBs using a physical system. 
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1. INTRODUCTION 

1.1 Overview 

 The world is relentlessly striving to build devices that are faster and smaller than 

their previous versions. This effort poses problems of how to create and control these 

new devices. This paper will focus on high-speed spindles and how to control them 

using new methods. These spindles are located in a range of different devices. Some 

examples of these devices are lathes, mills, turbines and windmills. The spindle is the 

most important part of these devices because this part translates the rotational input from 

the motor. In a lathe the spindle is what transfers the rotational energy to the work piece 

so cutting may occur. An example of a lathe spindle can be seen below in Figure 1. 

 

 

Figure 1: Lathe Headstock Spindle [1] 

 

All of these devices have limited operational speed due to limitations of the control 

system and the mechanical bearings used in these systems. Some of the main issues with 

these systems are the increased amounts of friction, vibration and heat generated during 
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higher operational speeds. This research is done to prove the capability of a new spindle-

AMBs design configuration that has the potential to eliminate some of these main issues. 

With these issues eliminated the systems could be redesigned for the optimal size, 

weight and speed.  

1.2 Active Magnetic Bearings 

 The component responsible for most of the issues with spindles is the mechanical 

bearings. This research uses active magnetic bearings (AMBs) to reduce the effects of 

these issues. The concept of using magnets to levitate an object freely dates back as early 

as 1842 with Samuel Earnshaw’s experiments [2]. It was not until recently that this 

concept became a viable option with the use of AMBs and the switch from analog to 

digital controllers. The two main types of AMBs are radial and thrust bearings. An 

example of a radial and thrust AMB assembly can be seen below in Figure 2. 

 

 

Figure 2: Radial and Thrust AMBs 
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 The AMBs use an electromagnetic force, f, to levitate an object and the equation 

for the force is given by: 

 
𝑓 =

𝐵$𝐴&
𝜇(

 (1.1) 

The electromagnetic flux density, B, is the amount of electromagnetic flux per unit area: 

 𝐵 =
𝜙
𝐴&

 (1.2) 

where, 𝜙, is the electromagnetic flux, 𝐴&, is the area of the coil and, 𝜇(, is the 

permeability of the free space [3]. The field traveling from the north pole to the south 

pole creates this electromagnetic field. An example of this is presented in Figure 3. 

 

 

Figure 3: Magnetic Field Lines 
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The rotation of the object through the non-uniform electromagnetic field causes eddy 

currents and leads to a skin effect. This skin effect is a thin layer that holds the 

electromagnetic force from the AMBs because the eddy currents cause the 

electromagnetic field to be expelled from the rotor. The thinner this layer is the less 

efficient the AMB will be. The thickness of this layer is calculated using the equation 

below: 

 
𝛿 =

1
𝜋𝜇(𝜇𝜎𝑓.

 (1.3) 

where 𝜇 and 𝜎 are the permeability and conductivity of the object and 𝑓. is the electrical 

frequency which is based on the rotor rotational frequency and the pole orientation of the 

AMB [4]. The best way to increase the thickness of this skin layer and reduce the effects 

of eddy currents is to laminate the material [5]. This works by blocking the eddy currents 

from disrupting and expelling the electromagnetic field.  

 A sensor that constantly measures the air gap distance, a control scheme, and a 

power amplifier are needed to control the position of the spindle in the AMB. A basic 

schematic of the AMB and the components needed is shown below in Figure 4. 
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Figure 4: AMB and Basic Components 

 

With the traditional AMB design a current is constantly required to keep the spindle 

from contacting the AMB. This current is called the bias current and is used to levitate 

the spindle. The limitation of this bearing design requires the AMB to always be 

powered. Because these AMBs require a bias current they also have a backup 

mechanical bearing in case the system was to lose power. These backup mechanical 

bearings are used to protect the AMB from any contact with the spindle. The backup 

bearings limit the operational speed of the system because they need to be able to handle 

the operational speed if any contact were to occur. 

 The AMBs used in this research is a combination design. This design 

encompasses a radial and thrust bearing in one AMB. With this design, the number of 
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AMBs needed to control the system is reduced. This reduction of AMBs will also 

contribute to a reduction of size and weight of the system. A conventional three AMB 

system can be seen below in Figure 5. 

 

 

Figure 5: Conventional Three AMB System 

 

With the combination design AMB, the same system can be reduced to two AMBs. An 

example of the combination two AMB system can be seen below in Figure 6. 
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Figure 6: Combination Two AMB System [6] 

 

Some of the other benefits to these combination bearings is the construction in a 

homopolar configuration. This allows the bias field to be of one polarity on the radials 

and the opposite polarity on the axial poles [6]. This design eliminates the field polarity 

changes in the radial direction and will minimize eddy current effects [6]. This 

combination design does not require a bias current because the AMBs use permanent 

magnets to initially levitate the spindle [6]. An example of the combination bearing 

design can be seen below in Figure 7. 
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Figure 7: Combination Bearing Layout [6] 

 

With the use of permanent magnets, the spindle does not need backup mechanical 

bearings because if power is lost to the system the permanent magnets will keep the 

spindle from contacting the AMB. The removal of the backup mechanical bearings will 

allow the system to reach speeds that are not currently reachable. Another benefit of 

these combination AMBs is no cross-coupling in the design [6]. Neither the radial 

direction nor the axial direction has any cross-coupling during the operation of these 

AMBs. This lack of cross coupling has been verified in real world models [6]. The lack 

of cross coupling allows for easier control and modeling of the AMBs. With these 

AMBs, the system will be smaller and lighter than a system with conventional AMBs. 
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1.3 Issues of Present Work  

 The current machining spindle is designed with the mitigation of vibration as the 

primary driving factor. Spindle designs accomplish this by making the system very stiff 

with the help of mechanical bearings and increasing mass. A downside to this design is 

the stiffness and damping coefficients are not adjustable and a special foundation is 

required to mount these machines. This foundation helps to isolate the system from 

outside vibrations. Also, the mechanical bearings limit the operation speed of the 

machine because their damping coefficient is a set parameter that cannot be adjusted for 

varying speeds. This is a rudimentary approach to the problem of vibrations in a spindle.  

The best way to remove vibrations is to completely isolate the spindle from the system 

and have the ability to adjust the stiffness and damping coefficients. This is possible with 

AMBs because the spindle will be suspended using magnetic force, thus removing 

vibrations in the spindle caused by the contact of the machine. The only vibration 

remaining is caused by the imbalance in the spindle, which can be mitigated using a 

robust controller for the AMBs. 

 AMBs have been a highly-researched topic lately for their benefits of controlling 

rotating objects. A combination of radial and axial AMBs allows the system to control 

five degrees-of-freedom. With the use of AMBs, the systems mass can be greatly 

reduced because it will no longer be needed for vibration mitigation. Also, the decrease 

in mass and adjustable parameters will allow the system to be placed on a normal 

foundation. The current models for AMBs linearize the governing equations of the 

spindle, ignore gyroscopic effects in the spindle, and use a linear control method [7]. All 
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of these issues cause the actual system to not reach high speed operation. When the 

spindle is linearized and the gyroscopic effects ignored the controller is not capable of 

controlling a real system. So, when the controller is implanted into a real-world system it 

is unable to bring the system under control and leads to a failure. For short spindles, 

ignoring gyroscopic effects would have negligible effects but for this research a long 

spindle was tested so ignoring gyroscopic effects would be an incorrect assumption. 

Also, linearizing the spindle governing equations is an incorrect assumption for all 

spindle lengths when the system is being tested at high speeds. These high speeds cause 

the system to behave highly nonlinear. 

 The other major issue is the majority of control schemes for these systems use 

PID [8]. PID is a linearized control method and does not work at high speeds for these 

spindle designs because they are highly nonlinear systems. When the system is 

linearized the controller is developed based on the simplified model. As the physical 

system cannot be fully characterized by the simplified model, the controller is ineffective 

in mitigating dynamic instability. This inability to fully characterize the system leads to 

AMBs being operated at speed below what they are capable of reaching with the correct 

controller. Most of these control methods only control the system in the time domain. 

When the time domain error is small, the system could appear to be under control but in 

the frequency domain the system would still be unstable and can lead to system failure 

due to high frequency vibrations. This research controls a combination AMB system in 

the time and frequency domain simultaneously. The control in both domains will ensure 

that the system is stable and safe to operate at high speeds. 
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 The combination of these factors being corrected will lead to the system having 

an increased production rate, a decreased power consumption, and the machine will 

generate less waste when compared to current spindle design. 

1.4 Research Objective 

 The objective of this research is to demonstrate the capability of a design for a 

high-speed spindle using a Simulink model, which uses AMBs to support the load of the 

spindle and the excitation forces. This study will allow for the verification of a high-

speed spindle design that uses AMBs along with a controller. The design for the AMBs 

that will be utilized is a combination design of a radial and thrust bearing. A 

combination design will decrease the amount of AMBs needed to support the spindle 

and the amount of power required to create the electromagnetic force, compared to 

having radial and thrust AMBs separately. This design will include a robust controller 

for the AMBs. The type of controller that will be developed is a wavelet-based nonlinear 

time-frequency controller. This controller will be extensively tested to validate the 

superiority of this type of controller. A nonlinear time-frequency controller has already 

demonstrated the capability of controlling a spindle at 187,500 RPMs with support only 

in the radial directions [3]. This study however will demonstrate the capability of 

controlling a five degrees-of-freedom system. After the system is under control an 

impulse force will be applied in multiple axes to verify that the controller is robust. 

Upon completion of the research, a numerical and simulink model for a high-speed 

spindle system will have been created. The following chapters will record the findings of 

this research. Chapter 2 will present the model for the spindle and the electromagnetic 
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forces for the AMBs used for the simulations. It will also go over the nonlinear time-

frequency controller used during the research. Chapter 3 will represent the results 

obtained from the simulations and discuss the findings of those results. Chapter 4 will 

draw conclusions based on the findings of the research and it will present the future 

work recommended after the findings of this research. 

1.5 Research Plan 

1. Derive the corresponding dynamic model for a scaled version of a spindle. 

2. Find a combination radial-axial AMB design and validate the feasibility of a 

combination design. 

3. Derive the corresponding dynamic model that describes the AMB design. 

4. Develop and implement a nonlinear time-frequency controller design based on 

the derived AMB model. 

5. Generate numerical results to validate the AMB model and the controller design. 
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2. METHOD 

 The following free body diagram, seen below in Figure 8, is used to create the 

governing equations of the spindle. The system has one combination AMB at the “A” 

location and a radial AMB at the “B” location. The x, y and z coordinate system is 

defined at the center of gravity of the spindle and 𝜓, 𝜃 and 𝜙 are the rotational directions 

about those axes, respectively. This is a five degrees-of-freedom system with the 

rotational speed in the 𝜙-direction at a constant velocity. 

 

 

Figure 8: Free Body Diagram of System 

 

2.1 Equations of Motion 

 The equations of motion for the spindle were derived as a nonlinear set of 

governing equations in [3]. It was crucial these equations be nonlinear so it was possible 
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for the controller to demonstrate its robustness. Most research in this area is done with 

linearized equations. Linearization leads to negating parts of the equations of motion that 

are crucial for understanding how this high-speed spindle behaves. This research is a 

nonlinear approach with the inclusion of gyroscopic effects and eccentricities. These 

effects are considered significant because of the shaft length and the speed at which the 

system rotates. The shaft is also considered flexible, thus imparting more nonlinearities 

into the system and allowing for whirling. Whirling occurs when the system reaches a 

speed that induces violent vibrations in the system. These vibrations can lead to system 

failure if the system is not controlled properly to mitigate these vibrations. The equations 

of motion for the spindle can be seen below in Equations 2.1 through 2.5. 

𝑥 =
1
𝑚3

𝐹56 + 𝐹58 + 𝐹5. + 𝐹9  (2.1) 

𝑦 =
1
𝑚3

𝐹;6 + 𝐹;8 + 𝐹;. − 𝐹9  (2.2) 

𝑧 =
1
𝑚3

𝐹>6 + 𝐹9  (2.3) 

𝜃 =
𝑀5

𝐼3
+

𝐼A
𝐼3

𝜙𝜓 − 𝜓 sin 𝜃 +
𝐼A
𝐼3

𝜓$ sin 𝜃  (2.4) 

𝜓 =
𝑀;

𝐼3
−

𝐼A
𝐼3

𝜙𝜃 −
𝐼A
𝐼3

𝜓𝜃 sin 𝜃 + 𝜓𝜃 sin 𝜃

− 𝜓$ sin 𝜃 cos 𝜙 sin 𝜙 − cos 𝜃  

(2.5) 

Where 𝐹5. and 𝐹;. are the forces due to the static and dynamic eccentricity. The 𝐹9 is the 

impulse force that is used to agitate the system after it is under control. The impulse 

force is used to represent the system being hit by an outside body or the spindle being 
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used in its normal operations. The impulse force is important for demonstrating the 

robustness of the controller. This impulse force occurs over a time frame of one 

thousandth of a second and it is introduced at the center of gravity. The eccentricity 

forces can be seen below in Equations 2.6 through 2.11. 

 𝐹5. = 𝑓5G + 𝑓HG (2.6) 

 𝐹;. = 𝑓;G + 𝑓IG (2.7) 

 𝑓5G = 𝑚3𝜇𝜙$sin 𝜙𝑡  (2.8) 

 𝑓;G = 𝑚3𝜇𝜙$cos 𝜙𝑡  (2.9) 

 
𝑓HG =

2 𝐼A − 𝐼3
𝐿 𝜏𝜙$sin 𝜙𝑡  (2.10) 

 
𝑓IG =

2 𝐼A − 𝐼3
𝐿 𝜏𝜙$cos 𝜙𝑡  (2.11) 

Where 𝐼A and 𝐼3 are the polar and radial moments of inertia. The 𝜇 and 𝜏 represent the 

static and dynamic eccentricity values. These eccentricity forces are used to try to best 

represent a real-world spindle design that is not a perfect spindle. Without these forces, 

the spindle would not behave as it would in the real world. The moments about the x-

axis and y-axis can be seen below in Equations 2.12 and 2.13. These moment equations 

are used to reduce the number of unknowns in the system. 

 𝑀5 = −𝐹;6
𝐿
2 + 𝐹;8

𝐿
2  (2.12) 

 𝑀; = 𝐹56
𝐿
2 − 𝐹58

𝐿
2  (2.13) 
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The force in these moment equations are the electromagnetic forces generated by the 

AMBs. Each AMB location has its own set of force equations. The electromagnetic 

force equations are discussed in the following section. 

2.2 Electromagnetic Forces 

 The AMBs used for this system are a homopolar design that use coils to produce 

the electromagnetic force. The homopolar design of these AMBs helps reduce the eddy 

current effect. The radial direction force is generated by energizing coil pairs on the 

laminated stator [6]. These coil pairs are located 180 degrees apart with two pairs in the 

AMB. The force generated is added to the permanent magnetic force and the controller 

is able to reduce the energy in either coil depending on the needed position of the 

spindle. The axial force is also generated by energizing two coaxial coils that are located 

inside the outer edge of the AMB [6]. The axial force is also added to the permanent 

magnet force in the axial direction and is also able to be controlled depending on the 

desired position of the spindle. The permeant magnet force can be adjusted depending on 

the demands of the AMB. The assumptions used for the development of the AMB forces 

are as follows: flux leakage is negligible, fringing effect of the flux is negligible, 

constant permeability of the stator and rotor and the cross section is uniform along the 

entire magnetic loop. The equations used to represent the magnetic forces can be seen 

below in Equations 2.14 through 2.28 [9]. 

 𝐹56 = 𝑓N6 − 𝑓86 (2.14) 

 𝐹;6 = 𝑓36 − 𝑓O6 (2.15) 

 𝐹58 = 𝑓N8 − 𝑓88 (2.16) 
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 𝐹;8 = 𝑓38 − 𝑓O8 (2.17) 

 𝐹>6 = 𝑓>6P − 𝑓>6$ (2.18) 

 
𝑓N6 =

𝜇(𝑁N$𝐴& 𝑖( + 𝜇56 $

4 𝐶3 + 𝑥6 $  (2.19) 

 
𝑓86 =

𝜇(𝑁N$𝐴& 𝑖( − 𝜇56 $

4 𝐶3 − 𝑥6 $  (2.20) 

 
𝑓36 =

𝜇(𝑁N$𝐴& 𝑖( + 𝜇;6
$

4 𝐶3 + 𝑦6 $  (2.21) 

 
𝑓O6 =

𝜇(𝑁N$𝐴& 𝑖( − 𝜇;6
$

4 𝐶3 − 𝑦6 $  (2.22) 

 
𝑓N8 =

𝜇(𝑁N$𝐴& 𝑖( + 𝜇58 $

4 𝐶3 + 𝑥8 $  (2.23) 

 
𝑓88 =

𝜇(𝑁N$𝐴& 𝑖( − 𝜇58 $

4 𝐶3 − 𝑥8 $  (2.24) 

 
𝑓38 =

𝜇(𝑁N$𝐴& 𝑖( + 𝜇;8
$

4 𝐶3 + 𝑦8 $  (2.25) 

 
𝑓O8 =

𝜇(𝑁N$𝐴& 𝑖( − 𝜇;8
$

4 𝐶3 − 𝑦8 $  (2.26) 

 
𝑓>6P =

𝜇(𝑁N$𝐴& 𝑖( + 𝜇>6 $

4 𝐶3 + 𝑧6 $  (2.27) 

 
𝑓>6$ =

𝜇(𝑁N$𝐴& 𝑖( − 𝜇>6 $

4 𝐶3 − 𝑧6 $  (2.28) 

It is important to note that these equations do not have a geometric coupling factor and 

this is due to the design of these AMBs which do not experience geometric coupling. In 

the above equations 𝜇( is the permeability of free space 4𝜋 ∗ 10WX Y
Z[

, 𝑁N is the 
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number of turns per coil, 𝐴& is the area of the coil, 𝑖( is the current used to produce to 

the bias force for this system that is zero because it uses permanent magnets to produce 

that force, 𝜇56 …𝜇>6 is the control current, 𝐶3 is the nominal air gap between the stator 

and rotor, and 𝑥6 … 𝑧6 are the positions of the spindle from its zero state. The positions 

are measured in reference to the center of gravity of the spindle. To obtain the position at 

the individual AMBs, the below Equations 2.29 through 2.33 are used. 

 𝑥6 = 𝑥 +
𝐿
2 sin 𝜃  (2.29) 

 𝑥8 = 𝑥 −
𝐿
2 sin 𝜃  (2.30) 

 𝑦6 = 𝑦 −
𝐿
2 sin 𝜓  (2.31) 

 𝑦8 = 𝑦 +
𝐿
2 sin 𝜓  (2.32) 

 𝑧6 = 𝑧 −
𝐿
2 sin 𝜃 −

𝐿
2 sin 𝜓  (2.33) 

2.3 Spindle and AMB Parameters 

 The constants used in the above equations are based off an existing model [3]. 

These constants are based on a real spindle design. Having these constants represent real 

values help to validate the controller design and the capability of actually controlling this 

system in the real world. The constant values for the spindle and AMB can be found 

below in Table 1 and Table 2. 
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Table 1: Spindle Parameters 

Parameter Symbol Value Unit 

Length of Spindle 𝐿 0.33 m 

Mass of Spindle 𝑚3 13.9 kg 

Static Eccentricity 𝜇 1 ∗ 10W] m 

Dynamic Eccentricity 𝜏 4 ∗ 10W^ rad 

Polar Moment of Inertia 𝐼A 0.0134 kg * m2 

Radial Moment of Inertia 𝐼3 0.232 kg * m2 

Spindle Speed 𝜙 192,000 RPM 

 

 

 Table 2: AMB Parameters 

Parameter Symbol Value Unit 

Permeability of Free Space 𝜇( 4𝜋 ∗ 10WX Henry/meter 

Area of Coil 𝐴& 1.532 ∗ 10Wb m2 

Number of Turns 𝑁N 400 turns 

Nominal Air Gap 𝐶3 0.55 ∗ 10Wb m 

Bias Current 𝑖( 0 A 
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2.4 Nonlinear Time-Frequency Control 

 The controller used for this research is a nonlinear time-frequency controller. The 

controller algorithm was based on the discrete wavelet transformations (DWT) and 

filtered-x least-mean-square (FXLMS) algorithm [10]. The specific wavelets used for 

this research are the Daubechies-3 wavelets. The scaling and wavelet functions are 

constructed using exact filter coefficients. The coefficients used can be seen below in  

 

Table 3 and the functions created using the coefficients are given in Figure 9 and Figure 

10 [10].  

 

Table 3: Daubechies-3 Filter Coefficients 

Low-Pass Filter Coefficients High-Pass Filter Coefficients 

h1 = 0.33267055295095688 g1 = 0.035226291882100656 

h2 = 0.80689150931333875 g2 = 0.085441273882241486 

h3 = 0.45987750211933132 g3 = -0.13501102001039084 

h4 = -0.13501102001039084 g4 = -0.45987750211933132 

h5 = -0.085441273882241486 g5 = 0.80689150931333875 

h6 = 0.035226291882100656 g6 = -0.33267055295095688 
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Figure 9: Scaling Function for Dauechies-3 Wavelet 

 

 

Figure 10: Wavelet Function for Dauechies-3 Wavelet 
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 The logic of this controller implements DWT and FXLMS adaptive filters to 

perform a feedforward control, online identification and to construct parallel adaptive 

filter banks [10]. The controller uses feedforward to update the adaptive filter 

coefficients with the data obtained from the system error. The use of DWT allows the 

controller to simultaneously control time and frequency responses of the system and the 

transformation between the two domains is lossless. The simultaneous control of both 

domains is important for a high-speed spindle design. 

 The controller logic has two main loops. These loops are the inner and outer 

loops. Both of these loops are used simultaneously to bring the system online and under 

control. The main purpose of the inner loop is online system identification which enables 

the outer loop to bring the identified system to the desired position. All of this is done by 

using feedforward control through updating the adaptive filter coefficients. The outer 

loop starts by decomposing the input signal, x(n), into its wavelet coefficients using the 

N by N DWT matrix, T. Then the adaptive filter, W2, takes the decomposed information 

and generates the controlled signal, u(n). This control signal is based on the actual error, 

e(n), of the system which is the difference of the desired position, d(n), from the actual 

position, y(n), of the system. Adaptive filter, W2, is updated using the actual error of the 

system, e(n). Adaptive filter, W1, is updated from the system identification error, f(n), 

which is the difference of the actual error of the system, e(n), and the predicted system 

error, 𝑒. This process is repeated while continually updating the values of the adaptive 

filters by trying to minimize the error. The logic of the controller can be seen below in 

Figure 11. 
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Figure 11: Logic of Nonlinear Time-Frequency Controller [10] 

 

 All of the information in this controller is stored in signal vectors of length N. 

The information is stored in vectors so the N by N DWT matrix, T, can be incorporated 

into the algorithm. These vectors are updated by adding the incoming data and dropping 

the last data point every iteration. The signal vectors in Equations 2.34 through 2.38 are 

as follows: X(n) is the input signal, U(n) is the controlled signal, X’(n) is the 

transformed input signal for the feedforward part of the controller, E(n) is the error 

signal, and F(n) is the difference of predicted and actual system error [10]. 

 𝑋 𝑛 = 𝑥 𝑛 			𝑥 𝑛 − 1 			… 			𝑥 𝑛 − 𝑁 + 1 g (2.34) 

 𝑈 𝑛 = 𝑢 𝑛 			𝑢 𝑛 − 1 			… 			𝑢 𝑛 − 𝑁 + 1 g (2.35) 

 𝑋′ 𝑛 = 𝑥′ 𝑛 			𝑥′ 𝑛 − 1 			… 			𝑥′ 𝑛 − 𝑁 + 1 g (2.36) 
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 𝐸 𝑛 = 𝑒 𝑛 			𝑒 𝑛 − 1 			… 			𝑒 𝑛 − 𝑁 + 1 g (2.37) 

 𝐹 𝑛 = 𝑓 𝑛 			𝑓 𝑛 − 1 			… 			𝑓 𝑛 − 𝑁 + 1 g (2.38) 

The adaptive filter coefficients are also updated and stored in a vector. The weight vector 

can be seen below in Equations 2.39 and 2.40 [10]. 

 𝑊P 𝑛 = 𝑤P,( 𝑛 			𝑤P,P 𝑛 − 1 			…			𝑤P,YWP 𝑛 − 𝑁 + 1 g
 (2.39) 

 𝑊$ 𝑛 = 𝑤$,( 𝑛 			𝑤$,P 𝑛 − 1 			…			𝑤$,YWP 𝑛 − 𝑁 + 1 g
 (2.40) 

The predicted system error can be calculated using Equation 2.41 [10]. This is calculated 

using the desired position and the predicted system position. 

 𝑒 𝑛 = 𝑑 𝑛 − 𝑦(𝑛) (2.41) 

The predicted system position can be calculated using Equation 2.42 where W1 is an 

adaptive filter, and T is the DWT matrix, and U(n) is the control signal vector [10]. 

 𝑦 𝑛 = 𝑊P
g 𝑛 𝑇𝑈(𝑛) (2.42) 

The actual system error can be calculated using Equation 2.43 [10]. This is calculated 

using the desired position and the actual position. 

 𝑒 𝑛 = 𝑑 𝑛 − 𝑦(𝑛) (2.43) 

The difference between the actual and predicted system error can be represented as [10]. 

 𝑓(𝑛) = 𝑒 𝑛 − 𝑒(𝑛) (2.44) 

The least-mean-square algorithm used to update the adaptive filters can be seen below in 

Equations 2.45 and 2.46 [10]. With 𝜇P and 𝜇$ being the optimization step sizes that are 

user defined. 

 𝑊P 𝑛 + 1 = 𝑊P 𝑛 − 𝜇P𝑇𝑈 𝑛 𝑓(𝑛) (2.45) 
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 𝑊$ 𝑛 + 1 = 𝑊$ 𝑛 + 𝜇$𝑇𝑋′ 𝑛 𝑒(𝑛) (2.46) 

The transformed input signal, x’(n), can be seen below in Equation 2.47 [10]. 

 𝑥′ 𝑛 = 𝑊P
g 𝑛 𝑇𝑋(𝑛) (2.47) 

This is used to update the, X’(n), signal vector which will be used to update the, W2, the 

adaptive filter bank. 
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3. RESULTS AND DISCUSSION 

 The high-speed spindle and AMB design are programmed in a Matlab/Simulink 

environment. For this simulation, a driving frequency of 3,200 Hz and an integration 

time step of 1x10-5 seconds are used. This time step allowed for the detection of 

frequencies up to 50 kHz. The time step is verified to be correct by using convergence 

study before proceeding with testing the system. Also during the simulations an impulse 

force is used after the system had reached a controlled state. This impulse force is used 

to demonstrate the robustness of the controller and its abilities to regain control of the 

system after a large impulse force is exerted. The impulse force used in the x-axis and y-

axis is 500 kN in magnitude and the force in the z-axis is 250 kN in magnitude. The 

force is applied at all the axes at the same time. The impulse force is applied at t = 0.3 

seconds during the simulation. Both the x-axis and z-axis have the force applied in the 

positive direction and the y-axis has the force applied in the negative direction. This 

impulse force is applied over a time frame of one thousandth of a second. With such a 

large force over a short time period it could have caused the system to enter chaotic 

state. Also, to better represent a real world shaft a static eccentricity is used to create an 

imperfect shaft. This static eccentricity value is 1.0x10-5 meters. The shaft is also 

considered flexible so as to lead to whirling and more nonlinearities being introduced 

into the system. Whirling occurs when the system reaches a speed that induces excessive 

vibrations in the system. The assumptions used for the development of the AMB forces 

are as follows: flux leakage is negligible, fringing effect of the flux is negligible, 

constant permeability of the stator and rotor and the cross section is uniform along the 
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entire magnetic loop. The following sections presents the data obtained from the 

simulations for the time and frequency domain. 

3.1 Time Domain Results 

 The time domain results in this section represent the displacement of the spindle. 

These displacements are generated by driving the system at an operational speed of 

192,000 RPMs. At this speed, the whirling of the flexible shaft becomes a major driving 

force for unwanted vibrations in the system. These vibrations could lead to system 

failure. The type of failure that could occur in this system is an excessive amount of 

displacement due to the vibrations. The displacement can cause the spindle to hit the 

AMBs and result in a total system failure. If the AMBs fail, the spindle will no longer be 

supported by the electromagnetic force that is keeping the system under control. The 

maximum displacement the spindle can undergo before hitting the AMBs in the x-

direction is the nominal air gap value of 0.55x10-3 meters. The maximum displacement 

the spindle moves in the x-direction is during the impulse force. This force of 500 kN is 

representing an object striking the spindle during operation. The force moves the spindle 

1.07x10-4 meters which is less than a fifth of the maximum displacement allowed. This 

amount of movement is considered acceptable for the system. During the initial stages of 

the simulation when the controller is still trying to bring the system under control it 

experiences a smaller displacement value than that of the impulse force. The initial 

displacement value is 8.70x10-5 meters which is also less than a fifth of the maximum 

displacement allowed. This initial displacement is also considered an acceptable amount 

for the system. Once the controller is able to control the system the displacement of the 
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spindle is greatly reduced. The controlled displacement of the spindle is 2.85x10-5 

meters which is slightly more than a twentieth of the maximum displacement allowed. 

This demonstrates how capable the controller is in bringing the system under control. 

The displacements at bearing A and B are the same because of the symmetry of the 

system. The spindle displacement for bearing A and B at a velocity of 192,000 RPMs 

can be seen below in Figure 12 and Figure 13. Also, the summarized displacement data 

for the x-direction are given in Table 4. 

 

 

Figure 12: Spindle Position Xa at 192,000 RPM 
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Figure 13: Spindle Position Xb at 192,000 RPMs 

 

Table 4: X-Direction Displacements of Spindle 

 Displacement (meters) Percentage of Air Gap (%) 

Initial Displacement 8.70 ∗ 10W] 15.8 

Impulse Displacement 1.07 ∗ 10W^ 19.5 

Controlled Displacement 2.85 ∗ 10W] 5.2 

 

 

 The maximum displacement in the y-direction is the same nominal air gap value 

of 0.55x10-3 meters used in the x-direction. The difference for the y-direction 

displacements is the maximum displacement occurred at the start of the system. Not 
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when the impulse force is applied to the spindle. The initial displacement is due to the 

acceleration of the spindle. This acceleration is caused by the eccentricities of the 

flexible shaft. The initial startup displacement of the spindle is 1.21x10-4 meters which is 

less than a quarter of the maximum displacement allowed. This displacement value is 

still considered acceptable for the system. The next largest displacement is caused by the 

impulse force at t = 0.3 seconds during the simulation. However, this impulse force is 

applied in the negative y-direction with a force of 500 kN. This force was applied at the 

same time as the positive x-direction impulse force. The displacement value caused by 

the impulse force is 9.38x10-5 which is less than a fifth of the maximum displacement 

allowed. Since this displacement is less than the startup displacement it is also 

considered acceptable. Also, just like in the x-direction when the controller gained 

control of the system it is able to reduce the maximum displacement seen in the y-

direction of the system. The controlled displacement value is 2.21x10-5 meters which is a 

less than a twentieth of the maximum displacement allowed. This demonstrates how 

capable the controller is in bringing the system under control in both the x-direction and 

y-direction. The displacements at bearing A and B are the same because of the symmetry 

of the system. The spindle displacement for bearing A and B at a velocity of 192,000 

RPMs can be seen below in Figure 14 and Figure 15. Also, the summarized 

displacement data for the y-direction are given in Table 5. 
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Figure 14: Spindle Position Ya at 192,000 RPMs 

 

 

Figure 15: Spindle Position Yb at 192,000 RPMs 
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Table 5: Y-Direction Displacements of Spindle 

 Displacement (meters) Percentage of Air Gap (%) 

Initial Displacement 1.21 ∗ 10W^ 22.0 

Impulse Displacement 9.38 ∗ 10W] 17.1 

Controlled Displacement 2.21 ∗ 10W] 4.0 

 

 

 The maximum displacement in the z-direction is the same nominal air gap value 

of 0.55x10-3 meters used for the x-direction and y-direction. The difference in the z-

direction from the other directions is the initial displacement value is user determined. 

This initial displacement is used to represent a spindle that is not perfectly aligned in the 

z-direction at the beginning of the simulation. The initial displacement has to be set 

because the shaft has no acceleration or velocity in the z-direction at time zero. The 

initial displacement value is 1.0x10-4 meters which is a little less than a twentieth of the 

maximum displacement allowed. This displacement is considered to be an acceptable 

amount for the needed representation of misalignment in the simulation. The impulse 

force for the z-direction is applied in the positive direction with a force of 250 kN. This 

force is also applied at the same time when all the other impulse forces are applied. The 

displacement caused by this impulse force is 8.16x10-5 meters which is less than a fifth 

of the maximum displacement allowed. This amount of displacement is considered 

acceptable. The displacement for the controlled z-direction is significantly smaller than 

all the other controlled directions because no imbalances are introduced in the spindle in 
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the z-direction. As the controller brings the z-direction under control, the displacement 

value in that direction will go to zero. This shows how well the controller is able to 

handle a system with no imbalances. Also, the controller is capable of reaching a zero 

state and staying there without continually oscillating around that value. Only bearing A 

has z-direction displacement because it is the only bearing that has the thrust component. 

The spindle displacement for bearing A at a velocity of 192,000 RPMs can be seen 

below in Figure 16. Also, the summarized displacement data for the z-direction are given 

in Table 6. 

 

 

Figure 16: Spindle Position Za at 192,000 RPMs 
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Table 6: Z-Direction Displacements of Spindle 

 Displacement (meters) Percentage of Air Gap (%) 

Initial Displacement 1.0 ∗ 10W^ 18.2 

Impulse Displacement 8.16 ∗ 10W] 14.8 

Controlled Displacement 0 0 

 

 

3.2 Frequency Domain Results 

 To further validate the robustness of the controller design, the controlled 

response of the system is transformed from the time domain to the frequency domain. 

This is done to show that the controller can simultaneously control the time and 

frequency domain. Many controllers can only control the time domain and that it is a 

mistake to assume if the time domain is controlled then the system is controlled. For a 

system to be truly controlled both the time and frequency domains need to be under 

control. The method used to transform the time domain information to the frequency 

domain is the Hilbert-Huang Transform (HHT). The HHT does not use a set of 

predetermined basis functions like the Fourier-based methods do. The HHT is a two-part 

process. The first part uses empirical mode decomposition (EMD) and the second part 

uses Hilbert spectral analysis. The HHT method has better temporal and frequency 

resolutions when compared to Fourier-based methods [11]. EMD is locally adaptive and 

suitable for analysis of nonlinear or nonstationary systems [11]. EMD starts by 

examining signals at their local level of oscillations. This decomposition technique 
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extracts a finite number of functions that are called intrinsic mode functions (IMFs). The 

IMFs are obtained using an algorithm called the shifting process. This process is based 

on two constraints that each mode has the same number of zero crossings and extrema 

and also has symmetric envelopes defined by the local maxima and minima [11]. Also, 

EMD assumes that the input signal has at least two extrema. The shifting process 

generates a finite number of IMFs that are orthogonal [11]. The first IMF contains the 

highest frequency information. As the decomposition continues each IMF after has a 

lower frequency than the previous IMF. Once all the IMFs are found the Hilbert spectral 

analysis can be used to create the corresponding monocomponent analytic signals and 

these obtained signals can then be used to determine the signals instantaneous 

frequencies and amplitude modulations [10]. The following instantaneous frequency 

information is for the x-direction and y-direction because these directions had the major 

nonlinearities in their frequency. The z-direction only has one frequency but it is 

mitigated as the system is brought to the desired location. The x-direction and y-

direction have three major modes of frequencies. These major modes are discussed 

below. 

 In the x-direction, the first major mode is caused by the driving frequency mode 

of 3,200 Hz. This driving frequency causes the system to enter a highly broadband state 

with frequencies ranging from 8,602 Hz to 723 Hz. This broadband state demonstrates 

how nonlinear the system response is. If this system is left in this state of broadband it 

would lead to a system failure even if the system is controlled in the time domain. Once, 

the controller brings the first mode under control it is able reduce the bandwidth of the 



 

 36 

system down to a frequency range of 3,274 Hz to 3,153 Hz. The first major mode can be 

seen below in Figure 17.  

 

 

Figure 17: First Major Mode of Frequency for X-Axis 

 

The second major mode of the system is also a broadband response but this response is 

not as broadband as the first mode. The range of this frequency response is 3,870 Hz to 

22 Hz. Once, the controller gained control of the system it is able to reduce the 

bandwidth of the system to a frequency range of 1,821 Hz to 1,440 Hz. The second 

major mode can be seen below in Figure 18. 
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Figure 18: Second Major Mode of Frequency for X-Axis 

 

The third major mode of the system is also a broadband response but this response is not 

as broadband as the first mode. The range of this frequency response is 2,276 Hz to 108 

Hz. Once, the controller gained control of the system it is able to reduce the bandwidth 

of the system to a frequency range of 840 Hz to 752 Hz. The third major mode can be 

seen below in Figure 19. 
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Figure 19: Third Major Mode of Frequency for X-Axis 

 

All three major modes and how they interact can be seen below in Figure 20. This 

instantaneous frequency response demonstrates the robustness of the controller. The 

controller is capable of bringing a highly nonlinear and broadband system response to a 

quasi-periodic response. With a quasi-periodic response, the nonlinear system is now a 

predictable system. 
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Figure 20: Instantaneous Frequency Response of X-Axis at 192,000 RPMs 

 

 In the y-direction, the first major mode is caused by the driving frequency of 

3,200 Hz. This driving frequency also causes the system to enter a highly broadband 

state just as it experienced in the x-direction. The frequencies ranged from 7,811 Hz to 

680 Hz. The y-direction is not as broadband as the x-direction but the system is still 

highly nonlinear and if left uncontrolled would lead to the failure of the system. Once 

the controller is able to gain control of the system it reduces the bandwidth of the 

frequency. The controlled frequency range is 3,327 Hz to 3,139 Hz. The first major 

mode can be seen below in Figure 21. 
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Figure 21: First Major Mode of Frequency for Y-Axis 

 

The second major mode is also a broadband response but not as broadband as the first 

major mode. The frequency range of this mode is 3,831 Hz to 2 Hz. Once, the controller 

is able to bring the system under controlled it is able to reduce the bandwidth of the 

system. The controlled frequency range is 1,891 Hz to 1,402 Hz. The second major 

mode can be seen below in Figure 22. 
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Figure 22: Second Major Mode of Frequency for Y-Axis 

 

The third major mode is also a broadband frequency response because of a major spike 

at the time 0.27 seconds. This response is broader than that of the second major mode. 

The frequency range of this mode is 4,824 Hz to 38 Hz. Even with this major spike the 

controller is still able to bring the system under control. The controlled frequency range 

is 842 Hz to 762 Hz. The third major mode can be seen below in Figure 23. 
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Figure 23: Third Major Mode of Frequency for Y-Axis 

 

All three major modes and how they interact can be seen below in Figure 24. The 

controller is also able to bring the y-direction under control. The controller reduces the 

highly nonlinear and broadband response to a quasi-periodic and predictable response. 

This demonstrates the robustness of the controller. 
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Figure 24: Instantaneous Frequency Response of Y-Axis at 192,000 RPMs 

 

In these simulations as the time progresses, the controller is continually decreasing the 

bandwidth of the frequency response. If the controller is given enough time without 

outside perturbation introduced into the system then the bandwidth of the modes will 

continue to reduce. But in real applications the system will always have some outside 

perturbation and the controller will be capable of reducing the bandwidths and bringing 

the system to a predictable quasi-periodic state. The summarized bandwidths for the 

system response are given in Table 7. 
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Table 7: Summarized Frequency Bandwidths 

 
Major Mode 

Maximum 
Bandwidth 

[Hz] 

Controlled 
Bandwidth 

[Hz] 

Percent 
Remaining 

[%] 

X-Axis 

1 7879 121 1.5 

2 3848 381 9.9 

3 2168 88 4.1 

Y-Axis 

1 7131 188 2.6 

2 3829 489 12.8 

3 4786 80 1.7 
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4. CONCLUSIONS AND FUTURE WORKS 

 The nonlinear time-frequency controller was demonstrated to be able to control a 

high-speed spindle in all the axes using active magnetic bearings in both the time and 

frequency domain simultaneously. These AMBs were tested to demonstrate the 

capability of a new bearing design that was different than the conventional AMB design. 

With these AMBs, the overall weight of the system will be reduced and the number of 

AMBs needed for stable control will also be reduced from three to two. Also with these 

bearings the need for a backup bearing will no longer be required because of the 

permanent magnetics used to levitate the shaft. This permanent magnet system will also 

allow the system to operate on less power than a conventional AMB performing the 

same task. 

 The design of this system was shown to be able to operate at speeds up to 

192,000 RPMs using combination bearings. During the controlled stage of operation, the 

spindle was only allowed to move 2.85x10-5 meters in the x-direction, 2.21x10-5 meters 

in the y-direction and the z-direction was approaching zero displacement from the 

desired location. The controller was proven capable of handling an impulse force added 

to the already controlled system. When the force excited the controlled system, the 

controller was able to bring the system back under control in 0.2 seconds. However, 

when the impulse force perturbed the system the controller immediately began bring the 

system back under control and to the desired position. 

 The controller was also capable of controlling the frequency domain 

simultaneously with the time domain. The system responded with a highly nonlinear 
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broadband frequency response when it was excited with the driving frequency of 3,200 

Hz. This broadband response ranged from 2 Hz to 8,602 Hz. Even though the systems 

response was broadband the controller was able to reduce the bandwidth of the response 

down to 1.5% of the original bandwidth. This capability to reduce the bandwidth and 

bring the system into a quasiperiodic state demonstrates the robustness of the controller. 

 Overall this high-speed spindle design demonstrated the capability of running 

and being controlled at a speed of 192,000 RPMs without the need of backup bearings. 

However, the system needs further investigation. The next step in the endeavor of this 

research would be to physically validate the AMBs and demonstrate that the controller 

can bring the spindle to a stable state in both the time and frequency domain. The system 

would be tested at lower speeds at first to validate the stability of the controller before 

proceeding to reach the speeds obtained in this research. To test the system at low speeds 

the spindle can be driven with an electric motor to validate the stability of the system. 

Once stability is verified the system could then be pushed further and the true maximum 

speed of the physical system could be discovered. Reaching speed of 192,000 RPMs will 

require other methods of driving the system. Some of the possible ways that have been 

researched are driving the system with another AMB. With this AMB driving the system 

no physical contact with the spindle and driving force would made. This method would 

reduce the amount of outside perturbations. However, validating the physical system 

would be a major step forward in this research even if at a speed lower than stated in this 

research.  
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