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ABSTRACT 

 

 

Deep Learning for Plant Disease Classification 

 

 

Srishti Kumar 

Department of Electrical Engineering 

Texas A&M University 

 

 

Research Advisor: Dr. Xiaoning Qian 

Department of Electrical Engineering 

Texas A&M University 

 

 

Deep learning using convolutional neural networks (CNNs) has become increasingly 

successful in plant disease diagnosis, and consequently offers new promise in the ongoing battle 

against crop disease. While many studies continue to demonstrate its continued success in plant 

disease diagnosis, the complexity of the CNN architecture remains largely unexplored. The aim 

of this thesis is to shed more light onto the architectures of the CNNs for plant disease 

classification specifically, ensuring its reliability and authenticity by human intervention. These 

results can then be utilized to further improve the prediction accuracy of deep models by 

optimizing the underlying architecture. Four models are trained and tested on the PlantVillage 

dataset: InceptionV3, AlexNet, GoogLeNet, and ResNet50. To further improve the CNN model, 

attention modules are applied to the baseline CNN model. Last but not least, several visualization 

techniques (feature visualization) are explored. These visualizations will help to uncover the 

CNN “black box,” and shed light on features learned by the CNNs.  
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NOMENCLATURE 
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CHAPTER I 

INTRODUCTION 

 

 

One of the most significant threats to food security is plant disease. Historically, plant 

disease has taken a large negative toll on both crop yield and quality. Identification and diagnosis 

of these diseases has always been a significant problem. Past efforts involved chemical analysis 

(for pathogen detection), optical technologies (plant monitoring), and human visual inspection. 

However, these methods are often time-consuming and expensive. Deep learning, with 

advancing high-throughput image acquisition capabilities, offers a more accurate and practical 

solution for plant disease diagnosis. First, it only needs images of plants (leaves, fruits, etc.), 

thereby bypassing the need for laboratory analysis of plant samples. Next, it offers more 

versatility, as it can deal with various lighting conditions, resolution, and object size. Lastly, it 

offers a more cost-efficient method as images can be taken with even a cell phone camera, thus 

eliminating the need for expensive equipment or technology [1].  

Among the many models used in deep learning, CNNs are used extensively in computer 

vision and image analysis, and have been used for plant image analysis. However, the 

complexity of the model has caused it to be perceived as a “black box,” thus raising the concerns 

of interpretability of the learned model [2]. Observing and analyzing intermediate outputs during 

the classification will produce more insight into the particular features learned by the CNN. 

Careful analysis of these observations will then help optimize the model appropriately to 

improve its accuracy in plant disease identification and diagnosis.  

First, four CNN models will be presented, along with a brief discussion of each model’s 

structure. Next, the results of corresponding CNN models, trained on a plant disease image 
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benchmark focusing on plant leaves – PlantVillage [8] – will be presented and analyzed. The 

focus will then shift to several visualization techniques, their implementation, and interpretation 

of the results. Lastly, several user applications will be discussed. 
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CHAPTER II 

METHODS 

 

 

Dataset  

The dataset used for the project is the PlantVillage dataset, a public GitHub consisting of 

54,306 images [8]. Images are of size 224 x 224, and of 3 types – color, grayscale, and 

segmented. They are divided into 38 categories (26 diseases, 14 total crop species). Figure 1 

displays images of all 38 plant species.  

 

Figure 1. PlantVillage Dataset [1] 

Model Architectures 

Four CNN models were trained and tested on the PlantVillage dataset: InceptionV3, 

AlexNet, GoogLeNet, and ResNet50. Images of size 224 x 224 were fed to each model, and 

classified into one of the 38 PlantVillage categories.   

InceptionV3 

The InceptionV3 model consists of 25 million parameters. Model construction and 

training was done using Keras (a Python library) with the Tensorflow backend [5]. The network 

was initialized with a random set of weights, and optimized using the Adam optimizer with a 

learning rate of 0.005. Images were split into training, validation, and testing data in a 60:20:20 
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ratio, and were fed into the network in batches of 128 [2]. Figure 2 illustrates the model 

structure in more detail. 

 

Figure 2. Inception V3 Model Architecture [2] 

AlexNet 

The AlexNet and GoogLeNet models were built using Caffe, a deep learning framework, 

and were based on the implementation in [1]. While the original paper uses five different train-

test splits (20:80, 40:60, 50:50, 60:40, 80:20), this implementation only used the 80:20 split. To 

reduce training time, the models used were pretrained on ImageNet. Both AlexNet and 

GoogLeNet were trained for 30 epochs, with a learning rate of 0.005. Weights were optimized 

using stochastic gradient descent. Both implementations were done on a single GPU. 
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AlexNet is comprised of 5 convolution layers, followed by 3 fully connected layers and 

finally a softmax layer. In contrast to InceptionV3, the model is much larger (60 million weights 

vs 25 million weights). The model was trained with a batch size of 24. 

 

Figure 3. AlexNet Model Architecture [9] 

GoogLeNet 

GoogLeNet is comprised of 22 layers. It is also known as InceptionV1, as it was the first 

model to that used inception modules. Out of the 4 models analyzed, GoogLeNet has the 

smallest number of parameters (5 million weights); however, the complexity of the model (22 

layers) made training from scratch undesirable. The model was trained with a batch size of 100.  

 

Figure 4. GoogLeNet Model Architecture [9] 

ResNet50 

The ResNet50 implementation was taken from the standard Keras implementation [5], 

and consists of over 23 million parameters [4]. The model was trained from scratch using Keras. 
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The model consists of repeating convolution and identity layers, as detailed in Figure 5. The 

advantage of the ResNet50 model is its ability to train very deep networks. Training of such 

networks had previously been impractical, due to problems such as vanishing and exploding 

gradients. ResNet50 cleverly avoids this problem through its use of skip connections, which 

connect a layer’s output to the output of the layer before it, thus creating an identity function. 

This prevents gradient degradation during backpropagation to ensure that deeper layers will 

perform at least as well as shallow layers, and not worse.  

 

Figure 5. ResNet50 Model Architecture 
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The network was initialized with a random set of weights, and optimized using the Adam 

optimizer with a learning rate of 0.005. Images were split into training, validation, and testing 

data in a 60:20:20 ratio, and were fed into the network in batches of 32. 

Attention Modules 

Lastly, the structure of attention modules was also explored [3]. An attention module uses 

a bottom-up, top-down feedforward structure to generate attention-aware features. This 

feedforward structure was used to combine the feedforward and feedback process into a single 

process. Figure 6 illustrates the structure of AttentionResnet56, a model constructed in [3] using 

a stacked attention module structure. 

 

Figure 6. AttentionResnet56 Model Architecture [3] 
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CHAPTER III 

RESULTS 

 

 

The following section analyzes the training results for the models previously described. 

All implementations and experiments were performed on Texas A&M’s HPRC Terra cluster.  

InceptionV3  

Figures 7 and 8 illustrate the performance of InceptionV3. The model was trained on 

each of the color, grayscale, and segmented categories. Validation accuracies were 94.9%, 

93.2%, and 92.8%, respectively. Both the grayscale and segmented categories converged before 

50 epochs based on the trend of improvement in validation loss.  

 

Figure 7. InceptionV3 training results. (Left) Training accuracy, (Right) Training loss 

 

Figure 8. InceptionV3 validation results. (Left) Validation accuracy, (Right) Validation loss 
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AlexNet 

Figures 9 and 10 illustrate the performance of AlexNet. The model was trained on each 

of the color, grayscale, and segmented categories. Test accuracies were 99.2%, 97.0%, and 

98.4%, respectively. These are higher than the accuracies obtained for InceptionV3, most likely 

because a pretrained model is used. 

 

 

Figure 9. AlexNet training results. (Left) Training accuracy, (Right) Training loss 

 

Figure 10. AlexNet testing results. (Left) Testing accuracy, (Right) Testing loss 

 

GoogLeNet 

Figures 11 and 12 illustrate the performance results of GoogLeNet. Again, the model 

was trained on each of the color, grayscale, and segmented categories, and achieved test 

accuracies of 99.5%, 98.1%, and 99.2%, respectively. As in the case of AlexNet, the test 
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accuracy is higher than the accuracies obtained for InceptionV3, most likely because a pretrained 

model is used. 

 

 

Figure 11. GoogLeNet training results. (Left) Training accuracy, (Right) Training loss 

 

Figure 12. GoogLeNet testing results. (Left) Testing accuracy, (Right) Testing loss 

 

Further analysis of the above three models shows that while the grayscale category 

tended to reach a lower accuracy than the color/segmented categories, every model reached a 

consistent >95% test accuracy. The lower grayscale accuracy can be attributed to the fact that 

lesions often have a different color than the leaf itself, making them less likely to be captured by 

a grayscale image.   
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ResNet50  

Figure 13 illustrates the performance results for ResNet50. In contrast to the other 

models, it was only trained on the color category. The model reached a validation accuracy of 

86%, which is the lowest of all models trained. Due to the limited computational resources, the 

reported accuracy may not reach the local optimum as there are oscillations of training curves. 

With more training epochs, accuracy may be further improved.  

 

Figure 13. ResNet50 results. (Left) Training and Validation accuracy, (Right) Training and 

Validation loss 
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CHAPTER IV 

VISUALIZATION 

 

 

The InceptionV3, AlexNet, and GoogLeNet models achieved very high accuracies for the 

PlantVillage dataset. It was unclear, however, how the models made their predictions – for 

instance, which features the model responded positively/negatively to, and how those choices 

affected the final classification results. Probing the network to gain more insight into these 

learned features could potentially lead to further model fine-tuning. In this section, the 

InceptionV3 model structure is analyzed through various visualization methods. The 

implementation for these methods is based on the work done in [2]. 

Feature Visualization 

To gain a better understanding of features learned by the CNN, random neurons from 

every layer were optimized for a given input image. Because shallow layers are primarily 

focused on edge/corner detection, it was expected that their constituent neurons would produce 

images containing simple patterns, while deeper neurons would be geared towards object-

specific shapes. The resultant images produced by the optimized neurons are depicted in Figure 

14. As expected, the neuron from the Conv5 layer appears to be activated by simple, repetitive 

patterns – possibly indicative of striations on plant leaves. On the other hand, the Mixed10 

neuron appears to be learning more image-specific objects, such as color or texture, as evidenced 

by the more abstract image. While multiple convolutional and mixed layers were investigated 

using this method, the majority of the images generated were rather abstract and their 

interpretation prone to subjectivity. Thus, this method was not pursued further. 
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Figure 14. Feature visualization of neurons. (Left) Conv5 layer. (Right) Mixed10 layer. 

Grad-CAM 

The second approach tested was Grad-CAM, a type of attention map. Grad-CAM, or 

Gradient-weighted Class Activation Mapping, highlights the region of interest for a given image 

[6]. Figure 15 shows the results of applying Grad-CAM to a leaf belonging to the Grape Black 

Rot category. From the figure, it is seen that the initial layers – Conv1 to Mixed0 – produce 

images with highlighted edges, indicating that the model believes these regions to be an 

important feature for classification. Inspection of the input image reveals the same regions of the 

leaf to be affected by black rot. These results affirm that the model is indeed capable of detecting 

lesions, and moreover, that they are a significant feature for classification. While the images 

corresponding to the deeper Mixed layers are nearly completely highlighted, this is most likely 

because the image size is continually decreased through the successive convolutional layers, 

resulting in a lower-resolution image. 
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Figure 15. Grad-CAM results for Grape Black Rot 

Figure 16 shows the results of applying Grad-CAM to a leaf of type Tomato Yellow 

Leaf Curl Virus. Again, images produced from the shallower layers are of higher resolution than 

deeper ones. While the yellowed leaf edges are not distinctly marked, the model appears to be 

learning the texture of the tomato leaf. This is most apparent in the Conv2 and Conv3 layers, in 

which even the most minute texture details are clearly marked. In comparison to feature 

visualization, Grad-CAM provides more meaningful insights into features learned by the model. 

Nevertheless, the suitability of the model layer must be evaluated for the plant species 

beforehand [3]. 
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Figure 16. Grad-CAM results for Tomato Yellow Leaf Curl Virus 

Attention Modules 

 While feature visualization and attention maps provide useful insights into features 

learned, they are primarily for human interpretation, and do not influence the actual training 

process. In contrast, attention modules generate attention-aware features [3], and adding them to 

the ResNet50 model could lead to improved performance.  

Addition of the attention modules was done after careful study of the ResNet50 and 

AttentionResNet56 structures. Both models consist of a repeating structural pattern – 

convolution and identity blocks in ResNet50, compared to residual and attention blocks in 

AttentionResNet56. Upon further inspection, it was noted that the conv_block in ResNet50 and 

residual_block in AttentionResNet56 are similar, as both consisted of 3 convolutional layers and 

a skip connection. Thus, the identity blocks in ResNet50 were replaced with attention modules in 
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multiple stages, as detailed in Figure 17. The resultant models were then trained, but only on the 

color image category of the PlantVillage dataset.  

 

Figure 17. Proposed changes to ResNet50 

Addition of the first and second attention blocks produced validation accuracies of 86% 

and 90%, respectively. However, addition of the third attention block led to a visible decrease in 

performance, and the model achieved 77% accuracy. Both the training and validation plots are 

characterized by many inconsistencies and sudden jumps in accuracy, as depicted in Figure 18.  
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Figure 18. ResNet50 model (3 attention blocks) results. (Left) Training and Validation accuracy, 

(Right) Training and Validation loss 

These results demonstrated that addition of multiple attention blocks resulted in an overly 

complex model for the PlantVillage dataset. It was then speculated that decreasing the model 

complexity could potentially increase accuracy. To test this hypothesis, Stage 3 of ResNet50 was 

removed altogether. Figure 19 displays the model results. The model achieved a validation 

accuracy of 95%, much higher than the 86% observed earlier. These results illustrate that 

increased model complexity can adversely affect performance. By the same reasoning, 

elimination of layers could lead to performance improvements.  

 

Figure 19. ResNet50 model (3 attention blocks, 3rd stage removed) results. (Left) Training and 

Validation accuracy, (Right) Training and Validation loss 
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CHAPTER V 

APPLICATIONS 

 

 

Deep learning has proved to be quite successful for plant disease diagnosis. While the 

models discussed thus far have achieved high accuracy, it is essential to provide a user interface 

to the system. The model can then be easily accessed by scientists, researcher, or farmer for their 

work. Two interfaces were developed for this purpose. The first is a mobile application and 

allows real-time classification of plant leaves. The second is a GUI and allows users to upload 

images of plant leaves for classification. Both interfaces function independently of each other. 

Mobile Application 

In today’s technology-dominated society, nearly every individual either possesses or has 

access to a smartphone. Thus, deploying the model to a smartphone seemed the most ideal 

consumer application, especially considering its small size and ease of use. The app was created 

using the Tensorflow Lite Android library [7], and based on the library’s Image Classification 

template. The app takes as input a live camera preview and outputs instantaneous classification 

results.  

Model deployment consisted of several steps. Due to size and memory restrictions of 

smartphones, the existing model (.h5 file) needed to be converted into a more lightweight model 

(.tflite file). Many attempts were made to directly convert the model from .h5 to .tflite, in 

addition to using a .pb file as an intermediate. However, the results were either inconsistent or 

locked at a single classification, most likely due to unseen conversion errors related to the model 

weights. Thus, to avoid any conversion errors, the model was retrained and directly saved as a 
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.tflite file. The model was trained on images from 2 of the 38 plant species: Corn (maize) 

healthy, and Grape Black Rot. As seen in Figure 20, the app successfully classifies this 

particular leaf as Corn (maize) healthy, with 99.95% accuracy.  

 

Figure 20: Mobile Application 

Graphical User Interface (GUI) 

To further facilitate user interaction with the model, a Graphical User Interface (GUI) 

was also developed. The GUI was developed using the Python (Tkinter) library. To classify an 

image, the user simply selects the “Upload image” button to upload an image from their file 

system. The image is then processed by the GUI backend, and outputs a classification. The 

classification results then appear on the GUI, as shown in Figure 21. With the exception of the 

initial image, individual images are classified within seconds. While the GUI could be extended 
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to provide support for batch classification, this interface is primarily focused on providing a 

simple high-level understanding of the overall classification process. 

  

Figure 21: GUI Classification Example 
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CHAPTER V 

CONCLUSION 

 

 

Deep learning models hold great potential in plant disease diagnosis. In particular, CNN 

models have been shown to produce excellent results, due to their image-oriented model 

structure. Four different models were tested in this work, each possessing distinct characteristics 

such as inception modules, residual learning, and pretrained weights. While each model achieved 

high accuracies, further analysis of the effect of these traits on the overall result could lead to 

development of more suitable models. Visualization methods such as feature visualization and 

attention maps shed more light on the features learned, by probing the network at various layers. 

These visualizations effectively opened the CNN “black box” for human inspection, and allowed 

validation of the aforementioned results. Moreover, it was also discovered that the removal of 

intermediate layers led to higher accuracy on the PlantVillage data, most likely due to the 

controlled leaf image quality. Additional efforts in model simplification could lead to further 

improvements in accuracy and loss, as well as reduction of training time. The classification 

success of the two user interfaces, developed to facilitate user interaction with the model, 

suggests their potential deployment in the field. While CNNs have shown great success in plant 

disease classification, crop disease diagnosis is but one of many fields to be yet transformed by 

deep learning.  
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APPENDIX 

 

 

All codes, images, and model weights can be found on my GitHub repository: 

https://github.tamu.edu/skumar55/Senior_Research_Project 

https://github.tamu.edu/skumar55/Senior_Research_Project

