
 DOMAIN-BASED ISOLATION WITH SINGLE-CONTEXT TRUSTED 

EXECUTION ENVIRONMENT 

An Undergraduate Research Scholars Thesis 

by 

PABLO SAY 

Submitted to the LAUNCH: Undergraduate Research office at 

Texas A&M University 

in partial fulfillment of requirements for the designation as an 

UNDERGRADUATE RESEARCH SCHOLAR 

Approved by 

Faculty Research Advisor: Dr. Chia-Che Tsai 

May 2021 

Major:  Computer Engineering - Computer Science Track 

Copyright © 2021. Pablo Say.



RESEARCH COMPLIANCE CERTIFICATION 

Research activities involving the use of human subjects, vertebrate animals, and/or 

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory 

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement 

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M 

facilities or institutions. In both cases, students are responsible for working with the relevant 

Texas A&M research compliance program to ensure and document that all Texas A&M 

compliance obligations are met before the study begins. 

I, Pablo Say, certify that all research compliance requirements related to this 

Undergraduate Research Scholars thesis have been addressed with my Research Faculty Advisor 

prior to the collection of any data used in this final thesis submission. 

This project did not require approval from the Texas A&M University Research 

Compliance & Biosafety office. 



TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................... 1 

ACKNOWLEDGEMENTS ............................................................................................................ 3 

NOMENCLATURE ....................................................................................................................... 4 

SECTIONS 

 

1. INTRODUCTION .................................................................................................................... 5 

1.1 A Brief Overview of Intel SGX .................................................................................... 5 
1.2 Need for More Sophisticated SGX Models .................................................................. 6 

2. METHODS ............................................................................................................................... 8 

2.1 Threat Model ................................................................................................................ 8 

2.2 Goals of NesTEE LibOS .............................................................................................. 8 
2.3 Technical Principles in NesTEE LibOS ....................................................................... 9 

2.4 NesTEE LibOS Architecture ...................................................................................... 12 

3. RESULTS ............................................................................................................................... 18 

3.1 Importance of Evaluating Execution Performance ..................................................... 18 
3.2 Mprotect Functionality in NesTEE LibOS ................................................................. 18 

3.3 NesTEE LibOS Evaluations ....................................................................................... 22 

4. CONCLUSION ....................................................................................................................... 26 

REFERENCES ............................................................................................................................. 28 



1 

 

ABSTRACT 

Domain-based Isolation with Single-context Trusted Execution Environment  

Pablo Say 

Department of Computer Science and Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. Chia-Che Tsai 

Department of Computer Science and Engineering 

Texas A&M University 

Security continues to be an important topic as more businesses and individuals entrust 

software with sensitive information. One of the most important areas for security is that of the 

operating system and hardware of any computer – the most fundamental levels of any computer. 

Using Intel Software Guard Extensions (SGX), we set out to develop Nested Trusted Execution 

Environment Library Operating System (NesTEE LibOS), a prototype to build upon preexisting 

SGX features.  

This paper overviews the NesTEE LibOS prototype, documenting performance, features, 

and feasibility of the proposed system. Currently, SGX does to secure enclave contents through 

privilege separation design. NesTEE LibOS modifies SGX by adding additional trust levels and 

a refined control flow of data moving in and out of the enclave. Designing NesTEE LibOS with 

more security subdomains is a crucial step towards expanding hardware security capabilities.  

 The subdomain model is as follows. For an application to interact with the enclave, the 

program must interact first interact with NesTEE LibOS entry code. The entry code separates 

NesTEE LibOS from the internal SGX application, managing page protections and creating a 
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separate stack before execution can be handed over to NesTEE LibOS. From this domain, the 

software can securely perform SGX functions and interact with the outer kernel. After NesTEE 

LibOS Execution is complete, control is transferred back to the internal application through the 

NesTEE LibOS exit code. This portion of code changes page permissions, making NesTEE 

LibOS memory pages inaccessible. By doing so, NesTEE LibOS is protected from tampering.  

This module relies on three levels of trust. The highest trusted level is that of NesTEE LibOS, 

followed by the application and kernel. Following with design choices made by SGX, the outer 

kernel and internal application is least trusted due to the possibility of corruption.  

 Measuring performance on the SGX versions of mprotect reveal the initialization cost for 

NesTEE LibOS as being very light. Contrarily, evaluations performed show NesTEE LibOS, 

though secure, can be relatively expensive in terms of execution time to accomplish common 

tasks when compared to a standard SGX architecture. Future work will certainly focus on 

improving the overhead costs to take advantage of NesTEE LibOS. 
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NOMENCLATURE 

SGX  Intel Software Guard Extensions 

SDK  Software Development Kit 

CPU  Central Processing Unit 

LibOS  Library Operating System 

EENTER Enclave Enter 

EEXIT  Enclave Exit 

EMODPE Enclave Extend Page Permission 

EMODPR Enclave Restrict Page Permission 

ENCLU Enclave User Function 

OCALL Outer Call 

IOCTL  Input Output Control 

TRTS  Trusted Run Time System 

RWX  Read Write Execute 
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1. INTRODUCTION 

Our increased reliance on computing requires continuous security-related improvements 

to maintain trust between users and their devices. One such protective measure is Intel Software 

Guard Extension (SGX), a system which leverages hardware for additional security of private 

information via the CPU. In this paper, we document a proposed improvement to SGX’s 

architecture to further improve reliability. 

1.1 A Brief Overview of Intel SGX 

SGX is a CPU instruction set which provides hardware level protection against many 

known attack vectors [4, 15]. SGX provides the ability to create enclaves: portions of memory 

protected by hardware. This feature is significant for its ability to prevent malicious code and 

compromised kernel-level software from seeing protected data. For example, sensitive financial 

details could be stored within an enclave and intra-enclave application code could perform 

computations on the data without interference from outside the enclave [6]. Should the outer 

kernel be compromised or hardware memory tapped from traditional means, the enclave contents 

will remain secure.  

SGX uses a variety of techniques to seal the enclave off from the rest of the system. One 

of the most integral components is the attestation [4,14]. SGX requires external requests for data 

to provide a hash of enclave contents. Only after verifying the hash as legitimate will SGX 

disclose its contents. By design, SGX does not trust anything outside a secure enclave, including 

the outer kernel. The enclave’s cautious approach towards the kernel serves to protect itself in 

the event of a corrupted administrative process. The enclave design SGX uses not only secures 
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information, but also protects code which are to perform computations on the data. As an added 

layer of security, SGX encrypts its contents if it detects a possible attack. 

1.1.1 SGX Limitations  

SGX does have some limitations. While the system reduces the scope of successful attack 

vectors, some still do exist. By design, SGX trusts enclave contents, which can include 

application code [4]. An issue surrounding application code is developers normally employ third-

party libraries to perform certain actions [3, 16, 30]. In addition to their own application code, 

developers introduce a higher chance of bugs when introducing these external libraries. Hence, 

there exists the possibility of bugs in the application code corrupting the enclave. Additionally, 

SGX enclave have no controlling entity to mediate activity within the enclave. Without strict 

control of SGX functions, certain attack vectors will persist. 

1.2 Need for More Sophisticated SGX Models 

While SGX offers sufficient protection methods, it is limited in its ability to further 

separation within the enclave [4]. Enclave contents are not separated from one another, meaning 

application code within the enclave could potentially compromise the enclave itself. For 

instance, SGX deployment to compute sensitive information on a larger scale would require 

robust internal application code. Failure to do so by the developer could result in a compromised 

enclave and a potential data leak. This could also leave machines susceptible to malicious actors 

who could take control of the outer kernel. Should this occur, intervention would be required to 

regain control of the hardware. Without a more complex design, SGX’s effectiveness is limited 

against some attack vectors.   

Previous research has had a focus on different forms of protection [7,8,9]. Solutions 

explored includes encryption, attestation, and auditing of the system. However, none of these 
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solutions address the issue of no memory separation within an enclave. Without a solid form of 

internal enclave protection offered by SGX, users would spend considerable time investing in 

cybersecurity and similar methods to guarantee privacy in their services. Yet, sophisticated 

attackers could still bypass these protections should they somehow override the outer kernel of 

the machine itself or corrupt internal application code.  

In this paper, we propose a modified SGX architecture which remedies this enclave 

vulnerability. Our solution is Nested Trusted Execution Environment Library Operating System 

(NesTEE LibOS), a modification of the SGX architecture to support memory separation within 

the kernel which further secures the enclave. Since the solution builds upon SGX, NesTEE 

LibOS provides additional hardware protection against a hostile kernel or rouge application 

though the use of nested kernel design and privilege separation.   

The refined control flow we propose sees select application code and data inside the 

enclave as usual. However, the enclave will also contain NesTEE LibOS, a trusted execution 

framework which will handle enclave operations. NesTEE LibOS will handle interactions with 

the outer kernel and respond accordingly. To ensure NesTEE LibOS remains protected, memory 

permissions managed by the enclave will include that of NesTEE LibOS. Anytime the 

application wishes to interact with NesTEE LibOS, the enclave will update the page permissions 

as necessary using custom NesTEE LibOS functions. Should these custom functions be tampered 

with, NesTEE LibOS access will remain locked through an interrupt of the entry code.  

Evaluations of the prototype support the proposed architecture of NesTEE LibOS. 

Results recorded for several use cases of NesTEE LibOS describes a trade off in performance for 

a more complex and secure version of SGX architecture.  
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2. METHODS 

2.1 Threat Model 

NesTEE LibOS adopts the same threat model as that of SGX itself alongside previous 

work on nested kernels [4, 5]. In designing the overall architecture, we identified several attack 

vectors. First, we assume there will come a time the outer kernel will attack the application 

within the enclave or NesTEE LibOS. Additionally, just as is possible with SGX, we assume the 

enclave application is imperfect and can sabotage NesTEE LibOS. Given these two threat 

models, it is not a stretch to also assume it is possible for both the outer kernel and enclave 

application to attack NesTEE LibOS memory pages together. Hence, NesTEE LibOS does not 

trust the outer kernel nor does it trust any enclave contents outside the LibOS itself. As such, any 

functions the internal application would normally perform is now handled by NesTEE LibOS. 

In the design of NesTEE LibOS, we trust the base version of SGX to function properly 

and not fail against any attack vectors it has addressed in its design. We also trust the SGX SDK 

has not been tampered with. This is important as it is used extensively in the design of the exit 

gate. Additionally, hardware is trusted to not have any significant vulnerabilities.  

2.2 Goals of NesTEE LibOS 

This paper explores the thought process behind the creation of NesTEE LibOS and the 

viability of the solution. For NesTEE LibOS to be a viable solution, it must be built upon SGX. 

For us to create a solution from the ground up would produce errors and disregard the work 

already done to create a robust hardware framework. Regarding security, NesTEE LibOS must 

protect itself and enclave data against malicious actors. The option to handle security could be 

done using C code, however this approach can leave NesTEE LibOS vulnerable to attacks such 
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as buffer overflows [22]. Since nested kernel principles will be addressed, NesTEE LibOS will 

also serve as a control monitor for enclave activity. NesTEE LibOS can have excellent security, 

but it would find little viability if it is not easy for developers to use with their applications. 

Hence, a balance between security and usability must be maintained [23-25].  

2.3 Technical Principles in NesTEE LibOS 

For NesTEE LibOS to prove a viable solution, it should securely implement memory 

separation design into the enclave while having low impact to performance. Since we are 

building upon pre-existing SGX frameworks, our solution must also properly handle our 

additions in the event of an attack on the enclave.  

2.3.1 Privilege Separation 

An explored approach to improving SGX is the implementation of privilege separations 

and partitioning of enclaves. In essence, this approach rectifies one potential attack vector: faulty 

application code sabotaging its own enclave. Privilege Separation relies on additional security 

properties to function properly: least privilege, single enclave isolation, and secure data sharing 

[3]. SGX has commands which handle page protections which can be leveraged to implement 

this concept. 

2.3.1.1 Least Privilege 

When application code runs, it may only require a small portion of the dataset stored 

within the enclave. Hence, an approach to further secure the data is to partition it off into 

separate secure compartments within the enclave itself [3]. This allows the enclave to regulate 

which functions can access which portions of sensitive data parts of the application has access to.  



10 

 

2.3.1.2 Single Enclave Isolation 

In order to enforce least privilege security principles within a single enclave, the enclave 

data needs to be portioned off in a secure manner [3, 29]. Securing the sensitive data using 

software-only techniques may prove mute if the enclave itself were to be compromised. Hence, 

hardware level techniques can be implemented to guarantee security of in-enclave compartments.    

2.3.1.3 Secure Data Sharing 

Least Privilege implementation cannot separate each privilege level completely. We must 

assume data will need to be shared between levels to accomplish certain tasks. To allow 

flexibility as application code requests secured content within an enclave, the enclave can 

dynamically adjust access privileges based on which parts of the application are requesting 

information [3].  

2.3.2 Nested Kernel 

Nested Kernels is a fairly young subject in research which explores separating a small 

portion of kernel code from the rest of the kernel [5]. This design makes gaining full control by 

attacking the outer kernel becomes more difficult. We find previous research mature enough that 

we believe it can be applied to an enclave security context. There are two main elements of the 

nested kernel architecture proposed that we wish to include in our design: a skeptical security 

policy and separate execution stack.  

The nested kernel security policy is to assume the outer kernel is untrusted. Thus, to 

ensure the nested kernel data remains separate, it is initialized with read-only permissions on its 

own separate memory pages. In these pages are the sensitive instructions the nested kernel 

executes only upon verifying the outer kernel or memory has not been tampered with. To guard 

the nested kernel, entry and exit gates – portions of code which guard protected regions – are 
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included to adjust the permissions and interrupt to allow nested kernel code to execute without 

external interference. The entry gate will adjust permissions to allow the nested kernel to execute 

code safely, while the exit gate resets all permissions and settings.  

When executing nested kernel code, a separate execution stack is initialized for nested 

kernel use. An execution stack is what normal kernels use for executing instructions sequentially. 

Should the nested kernel share the same stack as the outer kernel, the possibility for stack-based 

attacks such as a buffer overflow attack is left unchecked. If left unchecked, a successful buffer 

overflow attack could make the nested kernel vulnerable. In creating a separate stack, the outer 

kernel stack would be set aside and the nested kernel would use its own stack. This approach 

further ensures the nested kernel is separated from the outer kernel. 

2.3.2.1 Privilege Separation between Kernels 

In normal use, the kernel operates with ring 0 privileges (that is, the highest possible 

privileges on a computer). As discussed at length in previous works, this attribute makes the 

kernel a prime target for attackers. SGX already has a form of privilege separation based on its 

ability to lock information away from the kernel [4]. With this in mind, a nested kernel can be 

placed within the enclave to handle management of the application.   

2.3.2.2 Managing Interactions with Application  

One possible attack vector towards a nested kernel within an enclave is that of the 

application inside the enclave [6]. The application is assumed to be stable, though in reality the 

application can sabotage the nested kernel just as it can sabotage SGX. To protect against rouge 

internal application code, a method similar to that proposed by previous research can be 

implemented [3,5]. As described before, entry and exit gates establish a boundary between the 
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outside and the nested kernel. While the assembly code shown in previous research is viable, it 

must be modified to support SGX commands as well. 

2.4 NesTEE LibOS Architecture 

 

Figure 2.1: NesTEE LibOS Architecture Control Flow 

Using principles from previous works, this section overviews the implementation of a 

nested kernel within an SGX enclave [3,4,5,17,18,19]. With the defined threat model in mind, 

NesTEE LibOS applies nested kernel and privilege separation principles by setting NesTEE 

LibOS as manager of enclave activity without interfering with SGX activity. Figure 2.1 

overviews the control flow, describing interactions with the outer kernel using EEXIT and 

EENTER commands just as SGX normally would, which accounts for external threats [1]. To 

manage interactions between NesTEE LibOS and the application, NesTEE LibOS entry and exit 

gates are implemented to protect NesTEE LibOS from the application, addressing any internal 

threats.  
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2.4.1 Isolation of NesTEE LibOS Memory Pages 

Separating the memory pages which the NesTEE LibOS data resides from the rest of the 

enclave contents is critical. Failing to do so could allow the internal application to modify the 

NesTEE LibOS data. To ensure NesTEE LibOS pages were separate upon initialization of the 

enclave, the linkerscript file had to be modified. A linkerscript decides how files are laid out in 

memory and converts their contents into an executable [20]. By modifying how NesTEE LibOS 

was laid out in memory, we ensure the memory is separate and aligned to its own page.   

2.4.2 Memory Mapping Implementation 

In order to properly implement the NesTEE LibOS design, the enclave would need to 

support dynamic memory mappings [21]. Without these functions, NesTEE LibOS wouldn’t be 

able to map memory like a normal kernel should. Intel SGX normally does not support these 

functions within the enclave, so these functions had to be implemented in the SGX source code. 

Implementation of these functions involved leveraging the OCALL and IOCTL properties of the 

SGX to call mimic the mmap function using enclave creator functionality. This ensures that the 

enclave accepts and trusts the accolated NesTEE LibOS memory pages.  

 Regarding mmap, the function would require changes to trusted runtime system code. 

Within the enclave call code, trts_mmap is implemented to start page allocation using an 

OCALL and executes the EACCEPT function for each newly created page. Regarding the 

OCALL itself, the function creates pages and runs the Linux mprotect function to apply the 

proper read write and execution permissions.  Since the functions of mmap and munmap are 

similar, the munmap implementation is very similar to that of mmap. The implementation of 

these functions also serves as an example of how NesTEE LibOS could be modified to add more 

enclave operations in the future.  
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2.4.3 Entry and Exit Gates 

By taking the nested kernel approach, NesTEE LibOS is out of reach from a potentially 

hostile kernel ([1,5]). However, application code within the enclave can still potentially sabotage 

NesTEE LibOS by tampering with the memory pages which contain NesTEE LibOS’ data. 

Success in modifying memory pages would render the benefits of NesTEE LibOS mute, just as it 

would to a normal SGX enclave. In addition to memory pages, a secure stack is required for 

NesTEE LibOS. If NesTEE LibOS ran using the user stack, commands in the user stack could 

potentially tamper with enclave functions. Thus, by separating the stacks, NesTEE LibOS 

commands can be executed securely. After NesTEE LibOS is no longer needed to perform 

certain actions, the user stack would be restored and the NesTEE LibOS memory pages would 

return to having read-only permissions. Failure to relock NesTEE LibOS upon exiting would 

leave the nested kernel vulnerable. A solution for this attack vector is the implementation of 

entry and exit gates which separates the stacks of the application from that of what NesTEE 

LibOS will be using.  

2.4.3.1 Entry Gate Implementation 

The implementation of the NesTEE entry gate is straight forward from a high level. The 

entry gate function must properly update the page permissions for NesTEE LibOS as well as set 

up a secure stack from which to work from. After both these actions have been taken, NesTEE 

LibOS actions can be taken.  

If this were to be done using C functions, we would leave the process vulnerable to an 

attacker overwriting NesTEE LibOS memory through the use of a buffer overflow attack. To 

ensure this process is secure, the implementation must be hard-coded using assembly. 
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Figure 2.2: NesTEE LibOS Entry Gate Pseudocode in Assembly 

The implementation described in Figure 2.2 relies on several SGX commands.  To 

change the page protections to read, write, execute (RWX), we employ the EMODPE command. 

EMODPE, an SGX CPU instruction, uses the supplied parameters in specified registers to adjust 

the access right to specified memory pages [1]. In the implementation, the NesTEE LibOS page 

permissions are changed from its default read-only permission to RWX. After, parameters are 

checked out of an abundance of caution. The register contents used to set up the EMODPE 

command are compared to the registers used to execute the command using the SGX CPU 

instruction ENCLU. Should any of them not match, the program will halt the process [2].  

Following the change in page permissions, a secure stack is set up. Prior to executing 

NesTEE LibOS instructions, a separate secure stack is initialized using the malloc function. This 

stack is passed to the assembly function, which then adjusts the stack pointer and base pointers 
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accordingly. Once the stack is securely set up, the program switches to the NesTEE LibOS 

secure stack.   

2.4.3.2 Exit Gate Implementation 

 

Figure 2.3: NesTEE LibOS Exit Gate Pseudocode in Assembly 

The exit gate implementation is very similar to that of the entry gate. From a high-level 

description, one can compare Figure 2.2 and Figure 2.3 and notice the similarities. The program 
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flow is after restricting the NesTEE LibOS pages, the EACCEPT function must be executed so 

that the enclave accepts the page change. Regarding actual implementation, the exit gate is more 

complex. EMODPR requires more work as it can only be executed outside the enclave [1]. To 

implement properly for use with NesTEE LibOS, additional SGX source code had to be written 

that did not depend on untrusted kernel operations. As such, the first half of the implementation 

cannot be done using assembly alone. To address the potential security risks of using an OCALL 

to protect NesTEE LibOS, the source code only uses kernel calls when absolutely necessary.  

For instance, the existing components for the SGX mprotect function was copied and 

modified to make a version specifically for NesTEE LibOS. The SGX mprotect execution flow 

was written generically to cover as many use cases as possible. When copying this code, the 

opposite approach was taken. By skipping some conditional statements and hardcoding portions 

of our NesTEE LibOS EMODPR code, we minimized our reliance on kernel functions when 

outside the kernel. After the OCALL is performed to lock the memory pages which contain 

NesTEE does program execution go back to inline assembly. After page changes are accepted 

and verified, the user stack is restored and execution returns to the internal application. 
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3. RESULTS 

3.1 Importance of Evaluating Execution Performance 

Evaluating performance of NesTEE LibOS is critical for examining feasibility of the 

prototype. While the prototype could work, overhead measurements are needed to determine 

validity. Hence, measuring execution time of NesTEE LibOS is necessary to determine what 

actions can be taken to further improve the prototype. 

3.1.1 Experiment setup 

We use an Intel NUC Kit NUC7CJYH desktop with a x86 64-bit Intel Pentium Silver 

J5005 4-core 1.5 GHz Intel CPU, 16 GB RAM paired with a 240 GB Kingston SV300S3 SSD. 

The OS used is Ubuntu 18.04.5 paired with Linux kernel 4.18.0-25-generic. Regarding the SGX 

versions, version 2.6 of the SGX Linux SDK and driver were used [26, 27]. 

3.2 Mprotect Functionality in NesTEE LibOS 

The performance of the SGX mprotect function is necessary as to evaluate the time it 

would take for changes of the NesTEE LibOS page permissions. Given how NesTEE LibOS 

page permissions will be frequently updating, timing overhead of this function best describes the 

feasibility of NesTEE LibOS.  

3.2.1 Method for Measuring Performance 

To measure performance, it is necessary to simulate the process of memory pages being 

mapped, permissions altered, then unmapped. To accomplish this, mmap and munmap functions 

had to be implemented in SGX’s source code since these actions require OCALLs. Regarding 

conditions for testing, we first allocated the maximum number of pages an SGX enclave would 

allow without crashing – that being around 128 pages. This memory allocation was then aligned 
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to its page boundary to reflect NesTEE LibOS’ actual page layout. Following this, a timing 

function executes mmap, munmap, and mprotect functions and records the execution times using 

the standard C time library. It’s important to note that when running the clock_gettime function, 

the CLOCK_MONOTONIC was used for higher precision [28]. After collecting all the times, 

the average is taken and the confidence interval for the data is computed as well. 

Given the design of a regular SGX enclave, the internal C time library is considered 

untrusted. Hence, OCALLs had to performed whenever time needed to be recorded. To ensure 

our information was accurate, OCALL execution time was recorded and found to have negligible 

impact to the results.  
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3.2.2 Mprotect Performance Results  

3.2.2.1 Changing Permissions to Read Only  

 

Figure 3.1: Mprotect Execution Time to Read Only Permissions 

Table 3.1: Mprotect Execution Time Numbers to Read Only Permissions 

Page Size Time (ns) Confidence Interval (ns) 

1 77637 576 

2 126773 701 

4 220821 335 

8 382452 207 

16 703831 474 

32 1376871 623 

64 2725279 2048 

128 5381173 4527 
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3.2.2.2 Change Permissions to RWX 

 

Figure 3.2: Mprotect Execution Time to RWX Permissions 

Table 3.2: Mprotect Execution Time Numbers to RWX Permissions 

Page Size Time (ns) Confidence Interval (ns) 

1 46890 208 

2 95078 212 

4 187833 232 

8 372960 328 

16 739459 433 

32 1473992 1015 

64 2943258 1921 

128 5860706 10879 
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The values gathered from timing mprotect show expected values. As expected, mprotect 

timings when changing from read-only to RWX took the longest, as more permissions settings 

had to be changed. Changing permissions from RWX to read-only also went as expected, 

normally being a faster process. In regards to the Linux counterparts to these functions, the 

timings are naturally larger. This is expected, given the SGX counterparts execute more steps to 

ensure enclave security remains intact in an OCALL. The linear increase in timing seen in Figure 

3.1 and Figure 3.2 is also expected. A larger number of pages means mapping pages, changing 

their permissions, and complete unmapping would take longer, which mimics the Linux 

counterparts. 

Observing the confidence intervals from both Table 3.1 and 3.2 leads us to conclude the 

data itself is reliable. Confidence interval measurements range from 208 ns on the low end to 

10879 ns on the higher end. These values fall within a reasonable range, giving us further 

confidence in the readings.  

3.3 NesTEE LibOS Evaluations 

The purpose of implementing NesTEE LibOS to SGX is to enforce separation between 

the internal enclave application, the outer kernel, and SGX enclave functions. As such, 

implementing sample use cases of NesTEE LibOS are necessary to both demonstrate 

applications of NesTEE LibOS and performance. Currently, the entry gate code is fully 

implemented but the exit gate is only missing the proper EACCEPT implementation. Given that 

EACCEPT is merely an enclave function which checks and and accepts page permissions, it is 

assumed EACCEPT execution time is negligible in the evaluations.   
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3.3.1 NesTEE LibOS OCALL Applications 

Enclave OCALLs are important features of the SGX enclave since they allow for 

interaction with the outer kernel. However, OCALLs can pose a security risk if used without 

oversight, especially if the kernel has been compromised. NesTEE LibOS addresses this flaw 

with its secure implementation. As such, NesTEE LibOS can act as a secure mediator between 

the enclave and the outer kernel.  To demonstrate, a sample OCALL was performed using the 

standard SGX architecture and the NesTEE architecture.  

The OCALL performed by both architectures simply wrote a statement to a text file, an 

action only possible with an OCALL. The standard SGX implementation consisted of the 

internal application code simply performing an OCALL. Contrarily, NesTEE LibOS performed 

the OCALL within the secured pages of the enclave. As such, performing an OCALL involved 

executing entry gate and exit gate functions.  

Table 3.3: OCALL Use Case Performance 

Architecture Time (ns) Confidence Interval (ns) 

Standard SGX  95990 9490 

NesTEE  131172 9759 

 

By keeping the OCALL action simple, measurements better reflect the time each 

architecture took to execute the OCALL rather than the time taken up by the OCALL itself. 

Observing values in Table 3.3 reveals NesTEE LibOS adds an overhead of about 130% to a 

simple OCALL. This overhead is expected given NesTEE LibOS must open and restrict page 

permissions before returning control to the internal application.  
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3.3.2 NesTEE LibOS Allocator Applications 

Allowing the internal application to allocate memory freely poses a vulnerability should 

the internal application be corrupted. Malicious allocations could be used to attack the enclave or 

the memory pages containing sensitive information could be overwritten and corrupted 

internally. Use of NesTEE LibOS removes this attack vector while adding greater protections 

towards the allocated memory. Through privilege separation, NesTEE LibOS memory pages are 

separate from the enclave memory pages, providing stricter access control and further 

protections to the allocated memory. To evaluate the cost of using NesTEE LibOS in a memory 

allocation context, two simple memory allocation sequences were set up. The standard SGX 

architecture was set to allocate memory as normal, while the NesTEE architecture could only 

allocate memory within the permitted memory pages inside NesTEE LibOS. 

Table 3.4: Memory Allocation Use Case Performance 

Architecture Time (ns) Confidence Interval (ns) 

Standard SGX  9975 229 

NesTEE  35640 208 

 

The results shown in Table 3.4 show the NesTEE architecture is about 3 times slower 

than its standard SGX counterpart. While NesTEE LibOS does provide benefits in the form of 

protection and control over allocated memory, evaluations show this approach is can be 

expensive.   

3.3.3 NesTEE LibOS Logging Applications 

When running important tasks, programs will often produce a log of actions taken while 

completing a task. If anything goes wrong, a user or developer can intervene and fix the issue. 
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Given the importance of logging, there has been much subject over maintaining reliability [11, 

13]. If an external source modifies the logs before they can be reported back to the user, the logs 

will be inaccurate [10, 12]. This could potentially lead to a user unaware of an attacker due to 

tampered logs. To enforce a pen-only policy regarding logs, NesTEE LibOS’ separation from the 

rest of the enclave can keep logs secure. Only after execution within NesTEE LibOS completes 

are the logs returned and printed.  To set up the evaluations, both architecture test cases consisted 

of pressing strings onto a buffer in the enclave. After control is handed back to the application 

the buffer contents are printed. 

Table 3.5: Logging Use Case Performance 

Architecture Time (ns) Confidence Interval (ns) 

Standard SGX  10338 36 

NesTEE  36741 211 

 

Table 3.5 summarizes the performance for each architecture. In this use case, the NesTEE 

architecture adds about 350% greater overhead. We find that NesTEE LibOS is an expensive 

tradeoff for the security it provides. This finding makes sense given the greater complexity 

NesTEE LibOS contains to enforce stricter control over enclave activity.   
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4. CONCLUSION 

This paper uses previous research over Nested Kernels [7], Privilege Separation [3], and 

work done by Intel [1] to introduce a modified version of Intel SGX. We provide a brief 

overview of SGX to establish the necessary context of why improvements are necessary. SGX 

security is limited due to the lack of memory isolation within the secure enclave. By missing this 

feature, SGX security remains limited. In addressing these issues, we present NesTEE LibOS, 

which promises to provide the groundwork for making SGX more applicable while maintaining 

security.  

By going over the principles introduced in previous research over nested kernels and 

privilege separation we argue its potential to improve SGX to create a more robust security 

system. Security gate principles taken from nested kernel research prove applicable to SGX, 

which now protects the NesTEE LibOS from the internal application code. The secure stack idea 

also finds its way into NesTEE LibOS, protecting enclave instruction execution from the 

application and outer kernel. The placement of NesTEE LibOS data on its own memory pages 

further protects against unapproved modifications. These principles applied to SGX results in 

finer control of enclave behavior, while also protecting against several attack vectors.  

Detailing the implementation of these principles in SGX code documents how these 

principles were translated into actual code and provides a low-level overview to how the overall 

proposed architecture works. Using SGX built-in commands to implement NesTEE LibOS 

functions reinforces the reliability of the overall architecture due to reuse of established code.  

In additional to implementing the architectural support, dynamic memory mapping was also 

implemented due to the need to perform benchmarks on page permission changes. These new 
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SGX functions also serve to demonstrate how additional functionality can potentially be added to 

NesTEE LibOS in the future.  

Evaluations of NesTEE LibOS show the increase in complexity for greater control within 

the enclave comes at a cost. When comparing standard use cases in both architectures, we find 

the standard SGX architecture performs about 3 times more efficiently than NesTEE LibOS. It is 

certain the higher complexity principles NesTEE LibOS is based on is a source for overhead. 

However, the security features may be enough to justify the current overhead and provide 

motivation for future improvements. 
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