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ABSTRACT 

Application of MEMS-Based Inertial Gravimetry to the Planetary Sciences  

Chandler S. Lawson 

Department of Marine and Coastal Environmental Science 

Texas A&M University 

Research Faculty Advisor: Dr. Michael E. Evans 

Department of Marine and Coastal Environmental Science 

Texas A&M University 

Gravimetry, the measurement of slight variations in gravitational acceleration, can be 

used to infer density distributions and structures in the crust of a planetary body. The vast 

majority of studies on bodies other than the Earth have been constrained to orbital surveys, 

restricting the resolution of the data. Conducting surveys on or near the surface would allow for 

higher resolution data to be collected and the ability to resolve the finer scale structure of 

planetary crusts. On Earth, such surveys are conducted using a device known as a gravimeter. 

Traditional gravimeters are relatively massive, expensive, and fragile which limits their 

suitability for planetary exploration.    

In this thesis, a project that supports wider efforts to mature micro-electromechanical 

systems (MEMS) gravimeters is discussed. NASA has developed an instrument with the goal of 

using MEMS technology to conduct gravity surveys. The instrument, named HELIX, includes a 

MEMS inertial measurement unit (IMU) that contains an accelerometer triad – such as those 

found in most smartphones, though more sensitive. The use of a precision accelerometer triad for 

gravimetry is referred to as “inertial gravimetry.” The efforts that this project supports aim to 
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develop MEMS accelerometers that are sensitive and stable enough to qualify as gravimeters, 

which on Earth is the measurement of the solid Earth tides, and then utilize these devices for 

planetary exploration. Such devices are more robust and have lower mass, cost, and power 

requirements than traditional gravimeters making them well-suited for extraterrestrial 

applications.    
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1. INTRODUCTION 

The gravitational field of a planetary body is directly proportional to the distribution of its 

mass. Based on this relationship, measuring changes in gravitational acceleration with changes in 

position and elevation can reveal density distributions in the subsurface. Thus, the measurement 

of the gravitational field is desirable in a variety of applications. For example, in natural resource 

exploration, the density distributions inferred from gravitational data can reveal dense mineral 

ore bodies, oil-containing sediments, and changes in natural gas saturation. In geodesy, gravity 

can be used to accurately define the shape of the Earth. In the Earth sciences, it has been used to 

map Earth’s hydrological cycle, determine ocean bottom pressure, and help quantify sea level 

rise. Recently, the first gravity survey from the surface of Mars was conducted using one of the 

MEMS IMUs on the Curiosity rover (Lewis et. al., 2019). This survey highlighted the potential 

of using MEMS devices for geophysical and planetary exploration. Chapter 1 will give an 

overview of gravimetry, MEMS gravimeters, and inertial gravimetry. 

1.1 Gravimetry  

The development of modern gravimetry can arguably be traced back hundreds of years to 

the pendulum experiments of Galileo Galilei. Such pendulums began as timekeeping instruments 

and gradually developed into gravimeters due to the observation that the period of a pendulum is 

only dependent on its length and the local gravitational acceleration. Gravimeters have since 

developed into two broad categories: absolute and relative gravimeters. Absolute gravimeters 

perform absolute measurements of gravity by measuring the acceleration of a freefalling proof 

mass in a vacuum, whereas relative gravimeters determine gravitational acceleration relative to a 

baseline by measuring the displacement of a proof mass on a spring (Niebauer, 2015). The 
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following sections give an overview of gravity surveying and the platforms with which 

gravimetry is performed.  

1.1.1 Gravity Surveying  

There are a variety of factors that affect gravity readings during a survey. The first being 

variations in the gravity field due to planetary rotation and flattening. The centrifugal 

accelerations and forces experienced by rotating bodies cause slight deformations in their 

spherical shapes. As a planet rotates, the poles are flattened and the equator bulges outward. The 

resulting shapes were termed ‘oblate spheroids’ by Isaac Newton. This flattening causes the 

poles of a rotating body to be closer to its center of mass and thus have a higher gravitational 

acceleration, as evidenced by Newton’s universal law of gravitation (Newton, 1687): 

𝐹 = 𝐺
𝑚1𝑚2

𝑟2
(1.1) 

where 𝐹 is the force of gravitational attraction between two masses, 𝑚1and 𝑚2, where the 

centers of mass are separated by a radius of 𝑟. Conversely, the bulging causes a lower 

gravitational acceleration at the equator of the body. On Earth, the gravitational acceleration at 

sea level is 9.832186 m s-2 at the poles and 9.780327 m s-2 at the equator (Blakely, 1995). This is 

a difference of approximately 0.4% or 4 Gal. The unit ‘Gal’ is named for Galileo and is the 

common unit used in gravimetry. 1 Gal is equal to 1 cm s-2. 

One of the standard reference systems used for computing gravity at a point on the 

Earth’s surface, known as the normal gravity, is the World Geodetic System 1984 (WGS84) 

reference ellipsoid. WGS84 is a close approximation to the gravitational equipotential surface 

and represents a rotating ellipsoid with its surface at mean sea level. The normal gravity can be 

computed using (Blakely, 1995): 
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𝑔𝑛𝑜𝑟𝑚 = 9.783267714 (
1 + 0.00193185138639 𝑠𝑖𝑛2(𝜆)

√1 − 0.00669437999013 𝑠𝑖𝑛2(𝜆)
) (1.2) 

where  is latitude. The gravity vector on the surface of the ellipsoid has two components: 

gravitation and centrifugal acceleration as shown in figure 1.1. 

 

Figure 1.1 Gravity on the surface of the ellipsoid as a sum of gravitation and centrifugal acceleration. Reproduced 

from Lowrie, 2007. 

Also derived from Newton’s universal law of gravitation is the effect of elevation on 

Earth’s gravitational field. By equating Newton’s second law and the law of universal 

gravitation, Earth’s gravitation can be computed: 

𝑔 = 𝐺
𝑀𝐸

𝑟2
(1.3) 

where  is the mass of the Earth. This relationship implies that the gravitational field 

attenuates as elevation increases above sea level, thereby increasing the radius from the Earth’s 
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center of mass. Correcting for this effect results in the free-air gravity anomaly given by 

(Blakely, 1995): 

𝛿𝑔𝑓 =
−2𝐺𝑀𝐸ℎ

𝑅𝐸
3 (1.4) 

where  is the elevation above sea level and  is the radius of the Earth. Using the gravitational 

attraction and radius at sea level, the free-air anomaly is: 

𝛿𝑔𝑓 = 0.3086ℎ (1.5) 

where there is a gravity gradient of -0.3086 mGal per meter of elevation gain. This effect is 

added to the observed gravity to correct the reading to what would be observed at sea level. 

 Elevation also affects the observed gravity through the gravitational attraction of mass 

between mean sea level and the elevation at which an observation is made. This mass causes an 

increase in the local gravitational acceleration and is assumed to be an infinite slab of rock with a 

uniform density. The resulting effect is known as the simple Bouguer anomaly given by 

(Blakely, 1995): 

𝛿𝑔𝑏 = 2𝜋𝐺𝜌ℎ (1.6) 

where ρ is the density of the slab of rock and  is the slab’s thickness (elevation). This effect is 

subtracted from the observed gravity. Additionally, complex terrain such as hills or valleys can 

contribute to the observed gravitational acceleration. For example, if a measurement is taken 

near a hill, the hill’s center of mass is at a higher elevation than the measurement point. This 

results in an upward gravitational acceleration, decreasing the observed gravity. If near a valley, 

the observed gravity would also decrease due to a lack of mass. To compensate for this effect, a 

terrain correction must be performed that essentially levels the terrain. To compute the terrain 

correction, a digital elevation model is typically used. The topography surrounding the 
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measurement location is divided into cylindrical vertical components and a correction for each 

component is computed depending on its elevation above or below the measurement point. The 

total correction is the sum of all individual corrections (Lowrie, 2007). This process is shown in 

figure 1.2. 

 

Figure 1.2. Terrain correction to observed gravity. (a) The topography is divided into vertical components, (b) 

corrections are computed for each component, (c) the sum of all individual components results in the total 

correction. Reproduced from Lowrie, 2007. 

The sum of all aforementioned corrections to the observed gravity results in the complete 

Bouguer anomaly (Lowrie, 2007): 
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𝑔𝑏 = 𝑔𝑜𝑏𝑠 + 𝛿𝑔𝑓 − 𝛿𝑔𝑏 + 𝛿𝑔𝑇 − 𝑔𝑛𝑜𝑟𝑚 (1.7) 

where  is the observed gravity and  is the terrain correction. The effects considered in this 

study are represented by figure 1.3. There are additional factors to take into consideration when 

conducting gravity surveys such as the solid earth tides and ocean and atmospheric loading. 

These effects are on the μGal level and below the accelerometers’ limit of detection, and as such, 

will not be discussed in this study. 

 

Figure 1.3. Effects of elevation, density, and topography on observed gravity.  

1.1.2 Surface Gravimetry   

Surface gravimetry concerns surveys conducted on the surface of the Earth or another 

body. The typical surface-based survey involves the gravimeter performing measurements in a 

static position at points along a traverse, though moving-base surveys may be conducted. Surface 

gravimetry allows for high resolution data to be collected since there is no limit on how closely 

spaced the survey points are. High accuracies are also achievable since the gravitational field 

strengthens with decreasing elevation. However, surface gravimetry is limited by the time-

consuming nature of the surveys as well as large areas of the Earth’s surface being inaccessible 

by land. This is true of other bodies as well, but since current data has almost exclusively been 

collected from orbit, higher resolution data collected from the surface would be invaluable for 

the exploration of such bodies.   
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1.1.3 Satellite Gravimetry 

 Launched in 2000, the CHAMP (Challenging Minisatellite Payload) satellite began 

spaceborne observations of Earth’s gravity field (Reigber, Lühr, and Schwintzer, 2002). Two 

additional missions have since been launched into Earth-orbit: GOCE (Gravity Field and steady-

state Ocean Circulation Explorer) and the twin GRACE (Gravity Recovery And Climate 

Experiment) satellites (Drinkwater et. al., 2003; Tapley et. al., 2004). In 2011, the GRAIL 

(Gravity Recovery And Interior Laboratory) satellite mission was launched with the goal of 

mapping the Lunar gravity field (Zuber et. al., 2013). On Mars, a global gravity model has been 

constructed as a composite of satellite tracking data, a reference gravity field, and modelling 

coupled with high-resolution laser altimetry data (Hirt et. al., 2012).  

The GRACE and GRAIL missions consisted of satellite pairs which used satellite-to-

satellite tracking to determine the mutual distances between each satellite. Variations in the 

mutual distances were due to local variations in gravitational accelerations. Thus, the variations 

in mutual distance allowed for gravity to be inferred. The GOCE mission used a gravity 

gradiometer that incorporated three accelerometer pairs to measure both gravity and gravity 

gradients.  

While satellite gravimetry allows for the construction of global gravity models, the 

spatial resolution of the collected data is limited by both the platform’s altitude of orbit and high 

inherent speed. The spatial resolutions achieved by each of the aforementioned missions are on 

the order of several to hundreds of kilometers. Thus, satellite gravimetry alone is insufficient for 

determining localized (tens of meters) gravity field variations at a sufficient resolution. 
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1.1.4 Airborne Gravimetry  

Airborne gravimetry represents an efficient method of yielding gravity data with a higher 

resolution than satellite gravimetry. It can serve as an intermediate between satellite and surface 

gravimetry by covering the spatial scale gap between the two methods. Airborne gravity surveys 

are typically conducted by combining a gravimeter designed for airborne or seaborne 

applications with a global navigation satellite system (GNSS) receiver.  

There are two ways in which a gravimeter is used in airborne operations and both are 

defined by the way the gravimeter is mounted to a vehicle, also known as the instrument’s 

mechanization. These are the platform-stabilized mechanization and strapdown mechanization. 

The platform-stabilized mechanization keeps the gravimeter’s measuring axis aligned with the 

vertical component of the gravity vector through the use of a mechanically stabilized platform. 

When in the strapdown mechanization, the gravimeter is fixed to the body of the vehicle. 

Strapdown gravimetry requires the use of an accelerometer triad since the vehicle body is not 

aligned with the vertical component of the gravity vector. The orientation of the accelerometer 

triad is determined by angular rate measurements taken from a triad of gyroscopes. 

1.2 MEMS Gravimeters 

In order to understand the significance of MEMS gravimeters, it is necessary to 

understand the significance of MEMS devices as a whole. MEMS devices encompass 

microscopic sensors fabricated using silicon. These devices can be mass produced with 

exceptionally low costs, sizes, and power requirements. Since the inception of such devices in 

the 1960s, the field has developed into many sub-fields, including inertial MEMS sensors – the 

sub-field under which MEMS accelerometers fall. In the 1990s, the precision of MEMS 

accelerometers increased from the mg level to the μg level (Wise, 2007). With 1 g being equal to 
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9.80665 m s-2. While MEMS accelerometers have been used in a variety of applications, few 

have ever had the proper sensitivity and stability to qualify as a gravimeter.  

In 2016, the first detection of the solid Earth tides with a MEMS device was performed, 

initiating the development of a new class of gravimeter (Middlemiss et. al., 2016). The device 

achieved a sensitivity of 40 μGal Hz-1/2 – sensitive enough to measure the movement of magma 

beneath a volcano before an eruption – and is small enough to be mounted to a drone. Following 

this breakthrough, other highly precise devices have been developed (Tang et. al., 2019; 

Mustafazade et. al., 2020). Based on the design of Mustafazade et. al. (2020), an instrument is 

being developed that is dedicated to the exploration of extraterrestrial bodies (Lewis et. al., 

2020). Additionally, the first mission concept that employs a MEMS gravimeter, GEMMA 

(Geophysical Exploration of the Moon with MEMS Accelerometers), has been proposed (Lewis 

et. al., 2019). These developments represent a paradigm shift for the geophysical exploration of 

the Solar System and the field of gravimetry as a whole.   

1.3 Inertial Gravimetry 

Inertial gravimetry is the use of a precision accelerometer triad rather than a dedicated 

gravimeter to conduct gravity surveys. The accelerometer triad is provided via an IMU that is 

designed for inertial navigation, not gravimetry. Inertial gravimetry has been utilized in geodetic 

applications for nearly three decades (Wei and Schwarz, 1998). The most common method has 

been to conduct airborne gravity surveys using a combined inertial navigation system (INS) and 

GNSS (Jekeli, 2012). One of the goals of an INS in navigation is to determine the kinematic 

accelerations of a vehicle for further processing, which requires the determination and removal 

of the gravitational acceleration from the INS acceleration measurements. Thus, it follows that 

this process could be reversed, and measurements of gravity could be made. 
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 There are two types of inertial gravimetry: vector and scalar. Vector inertial gravimetry 

is the measurement of both the vertical and horizontal components of the gravity vector, whereas 

scalar inertial gravimetry only focuses on either the vertical component or the magnitude of 

gravity. This study is concerned with scalar gravimetry as a means for probing subsurface 

structure.  

1.3.1 Accelerometers 

MEMS-based inertial gravimetry provides a practical, low-cost method for the 

development of procedures, algorithms and modelling techniques that pertain to the development 

of MEMS gravimeters. However, there are a number of challenges that need to be addressed 

when performing inertial gravimetry. The first of these is that accelerometers measure the 

superposition of gravitational, , and non-gravitational, , accelerations known as the specific 

force : 

𝑓 = 𝑥 − 𝑔 (1.8) 

thus, the fundamental problem in inertial gravimetry is the separation of gravity from the total 

acceleration. In the moving scenario, this is typically accomplished through the differentiation of 

GNSS positions and some form of filtering. In the static case, non-gravitational accelerations 

could have various sources including seismic, anthropogenic, or environmental sources such as 

wind.   

The second challenge is that accelerometers have inherent tilt-related bias and scale 

errors and, when in the tri-axial configuration, these errors occur along each accelerometer axis. 

Disregarding any external effects and noise, the output of the accelerometer triad can be modeled 

as (Titterton and Weston, 2004): 
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[

𝐴𝑥

𝐴𝑦

𝐴𝑧

] = [

𝑎𝑥

𝑎𝑦

𝑎𝑧

]([

𝑆𝑥 0 0
0 𝑆𝑦 0

0 0 𝑆𝑧

] + 𝐼3×3) + [

𝑏𝑥

𝑏𝑦

𝑏𝑧

] (1.9) 

with raw measurements, , true measurements, , bias and scale errors,  and , and the 

identity matrix, . The bias error is the offset that can be observed when there are no external 

stimuli acting on the accelerometers. It can be interpreted as the force required to keep the proof 

mass in its zero position when there is no specific force applied to the accelerometer. The scale 

error, or scale factor, arises from errors in the analog-to-digital conversion of voltages to units of 

acceleration performed by the converter in the accelerometer. An error in the defined 

proportionality factor between the electric current and measured accelerations causes the output 

of the accelerometers to be scaled by a certain value. The bias and scale errors contain two 

components: a constant, deterministic component and a variable component that is usually 

temperature dependent (Titterton and Weston, 2004).  

Additionally, accelerometers often exhibit time-dependent unidirectional drifts over long 

periods of operation, variations in the bias and scale errors between instrument power-ups, 

thermo-mechanical white noise, and vibration induced noise (Titterton and Weston, 2004). The 

accelerometers used in this study were contained within an IMU-3030 manufactured by 

MEMSense. The standard accelerometer characteristics are listed in Table 1.1 (MEMSense, 

2019).  
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Table 1.1 IMU-3030 Accelerometer characteristics. 1Typical to maximum values. 

Axis Bias (μg)1 Scale Factor 

(ppm)1 

Bias 

Temperature 

Coefficient 

(μg °C-1) 

Scale Factor 

Temperature 

Coefficient 

(ppm °C-1) 

Resolution 

(μg) 

x ±383 – 1959  ±1205 – 2088  11.51 – 19.24 7.14 – 12.86 10 

y ±383 – 1959  ±1205 – 2088  11.51 – 19.24 7.14 – 12.86 10 

z ±485 – 1982  ±3243 – 4700  11.51 – 19.24 17.36 – 20.96 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

2. METHODS 

In this chapter, the setting of a field test is introduced followed by the methods used to 

attempt static measurements of the Bouguer anomaly induced by lateral density variations in the 

subsurface.     

2.1 Field Test 

A field test of the instrument was carried out at the High Island salt dome on the Texas 

Gulf Coast. Three surveys were conducted along a traverse over the dome. Salt domes are 

diapiric structures that vertically migrate through the subsurface predominantly through 

differential loading of the overlying sediment (Jackson and Talbot, 1986). Salt has the ability to 

flow in the solid-state at relatively low temperatures and pressures thus, when the pressure 

caused by differential loading is high enough, the salt begins an upward intrusion into the 

overlying sediment.  

The standard density of halite is 2.165 g cm-3, typically lower than the sediments that 

surround most salt dome structures along the Gulf Coast (Anthony et. al., 2003; Talbot, 1993).  

The site was chosen because this should provide an apparent negative anomaly. In addition to 

density contrast, the site was chosen due to the dome being situated in the shallow subsurface 

with depths as shallow as approximately 120 meters (Halbouty, 1936). At these depths, the dome 

significantly uplifts the overlying surface, allowing the dome’s boundaries to be approximated 

using a digital elevation model. The digital elevation model is shown in figure 2.1 and an 

elevation profile that encompasses the traverse is shown in figure 2.2.  
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Figure 2.1. Digital elevation model of High Island overlain with traverse.  

 

Figure 2.2. Elevation profile over the High Island dome.  
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A summary of the surveys is included in table 2.3. Initially, the points were planned to be 

spaced 100 meters apart. This proved to be unfeasible due to private property constraints, 

construction and highway barriers, and inundated areas were the traverse lies below sea level. 

Additionally, each survey contains a different number of points due to changes in construction 

over the three-week time period that the surveys were conducted. However, this is unproblematic 

because all points are crossover points between the surveys.  

Table 2.1 Survey summary. 

Survey Line Date Number of Data Points 

1 03/14/2021 55 

2 03/20/2021 78 

3 03/27/2021 50 

 

The accelerometers sample data at 800 Hz, which are decimated by a factor of 40 to 

produce 20 Hz samples. These data were then averaged to create 1-minute samples at each 

location. Environmental data were collected using a Dracal Technologies PTH-200. The 

environmental data were sampled at 1 Hz and averaged over the same interval as the 

accelerometer data.   

2.2 Calibration and Noise Compensation  

2.2.1 Non-Linear Regression 

As previously stated, accelerometers typically exhibit long-term unidirectional drift and 

temperature-dependent bias drifts. The thermal drifts can arise from the behavior of the internal 

electronics in response to temperature instabilities and from the thermal expansion of silicon 

(Titterton and Weston, 2004; Watanabe, Yamada and Okaji, 2004; Middlemiss et. al., 2016). 
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Laboratory calibration methods exist that aim to reduce thermal drifts; an overview can be found 

in Becker (2016). These methods generally require equipment such as precision rate tables and 

thermal chambers. In the absence of such equipment, a simpler method must be performed. 

Various regression techniques have been used to model drifts that are temperature or 

time-dependent (Becker et. al., 2015; Middlemiss et. al., 2016; Lewis et. al., 2019). In this study, 

non-linear least squares regression is chosen to model the response of the accelerometers to 

external effects. Non-linear least squares regression is used to fit a set of observations to a set of 

unknown parameters using a model that is non-linear. The non-linear model is successively 

approximated using a linear model and the parameter estimates are continuously tuned until a 

suitable fit is established (Seber and Wild, 2005).  

The model developed for this study accounts for survey duration , and variations in 

sensor temperature , ambient temperature , and barometric pressure, . The bias and 

scale errors are modeled as constant offsets in the data given that the IMU remains powered over 

the duration of each survey and that relative changes in gravity are of concern. Instrument drifts 

are considered more important in the relevant literature, where residual constant offsets are 

corrected using least-squares adjustments based on crossover points or gravity models (Glennie 

and Schwarz, 1999; Hwang et. al., 2006; Ayres-Sampaio et. al., 2015).  Additionally, the gravity 

corrections from equation (1.7) are used to estimate the simple Bouguer anomaly. The terrain 

correction was neglected due to the flatness of the terrain around the dome. The correction is 

applied to the difference between the raw accelerometer data and the gravity corrections such 

that the Bouguer anomaly estimate will lie within the model residuals, : 

𝑔𝐵 = √𝐴𝑇𝐴 + (𝛽1𝑑 + 𝛽2𝑇𝑖𝑚𝑢 + 𝛽3𝑇𝑎𝑚𝑏 + 𝛽4𝑝) + 𝛿𝑔𝑓 − 𝛿𝑔𝑏 − 𝑔𝑛𝑜𝑟𝑚 + 𝜖 (2.1) 
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where  is equivalent to equation (1.9), and  denotes the coefficients that represent the effect 

of the parameters on the accelerometer outputs. Note that the inclusion of barometric pressure 

variations in the model is novel. Multiple laboratory datasets indicate a correlation between the 

output of the accelerometers and variations in barometric pressure, though the reason for this is 

unclear.  

2.2.2 Wavelet Denoising  

As will be shown in the next chapter, the residuals of the model will still be corrupted by 

noise. There could be a number of sources for this remaining noise such as random vibrations 

caused by wind or passing vehicles given that the traverse lies along a state highway. Here, 

wavelet shrinkage denoising is used to mitigate these effects. Wavelets are mathematical 

functions that can be used to partition signals into different scales based on frequency 

components and localize various features in the signal (Donoho and Johnstone, 1994). This 

allows features of interest to be retained whilst reducing noise. An additional benefit is that while 

traditional smoothing techniques generally remove only the high frequency noise components, 

wavelet denoising attempts to remove all noise components. The method has been successfully 

applied to inertial navigation and gravity data collected via inertial gravimetry (Nassar and El-

Sheimy, 2005; Bruton et. al., 2000; Li and Jekeli, 2004; Li and Jekeli, 2008). The principle used 

in this study is that the underlying gravity signal should be correlated among the different 

surveys, and the random noise should be uncorrelated. By partitioning the signals into different 

components, comparisons of each component can be made.  

An in-depth description of wavelet shrinkage denoising can be found in Donoho and 

Johnstone (1994) and Donoho (1995). Here, a general overview is provided. Assuming that  

is a function representing the gravity data, the function can be decomposed into two parts: 
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𝑦(𝑡) = 𝑔(𝑡𝑖) + 𝜎휀𝑖 , 𝑖 = 1,… , 𝑛 (2.2) 

where  is the underlying gravity signal and  represents the additive noise. The 

decomposition is performed using wavelet coefficients. First, the wavelet coefficients  are 

obtained by applying the discrete wavelet transform  to the signal where a convolution is 

performed using scaling coefficients: 

𝑌 = 𝑊{𝑦(𝑡)} (2.3) 

The wavelet transformation of a signal in the time-domain is essentially the projection of the 

signal onto a set of functions that are the result of compressing and scaling a single function 

known as the mother wavelet. Examples of mother wavelets are shown in figure 2.3.  

 

Figure 2.3. Examples of mother wavelets from the Symlet and Daubechies families of wavelets.  

The coefficients are processed through a method called thresholding. The underlying signal is 

associated with only a few large coefficients, thus by removing (shrinking) the smaller 

coefficients associated with noise, the underlying signal can be reconstructed with much of the 
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noise removed. There are two thresholding methods: hard and soft. Here, a soft threshold is used, 

details on thresholding can be found in Donoho (1995):   

𝐷𝑠(𝑑|𝜆) = {
0,            𝑓𝑜𝑟 |𝑑| ≤ 𝜆

𝑑 − 𝜆, 𝑓𝑜𝑟 𝑑 > 𝜆  
𝑑 + 𝜆, 𝑓𝑜𝑟 𝑑 < −𝜆

 (2.4) 

where  denotes the wavelet coefficients and  is the threshold value. Following thresholding, 

the inverse wavelet transform is used to reconstruct the denoised signal:  

𝑔(𝑡𝑖) = 𝑊−1{𝑍} (2.5) 

where  is the denoised signal and  denotes the processed wavelet coefficients. 
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3. RESULTS 

In this chapter, results from laboratory analyses are presented followed by the initial 

results of the field tests.  

3.1 Laboratory Analyses 

The calibration model used in the field tests was developed based on laboratory analyses 

of static data. It was found that the accelerometers have a warm-up period of approximately 25-

minutes. To be certain that this effect did not show up in the field data, the instrument was 

allowed to warm-up for 30-minutes before each survey. The warm-up effect in laboratory data is 

shown in figure 3.1.  

 

Figure 3.1. Instrument warm-up effect. The duration of the effect is denoted by the red line. 

The effects of variations in sensor temperature, ambient temperature, and barometric 

pressure are shown to be repeatable across multiple datasets where significant variations occur. 
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A long-term unidirectional drift is observed across all datasets. The correlations between each 

individual parameter and measured accelerations are shown in figures 3.2 to 3.4, the linear drift 

is shown in figure 3.5, and a combined model with only linear terms is shown in figure 3.6. The 

specific dataset shown was collected over a period of 12-hours. 

 

Figure 3.2. Total acceleration readings from the three accelerometers versus sensor temperature.  



26 

 

 

Figure 3.3. Total acceleration versus ambient air temperature.  

 

Figure 3.4. Total acceleration versus barometric pressure. 
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Figure 3.5. Observed linear drift over 12-hours. 

 

 

Figure 3.6. Combined drift model of the accelerometer triad. The residuals of the model are 20 mgal. Residuals can 

be reduced to 15 mgal with a quadratic term for pressure. All terms are statistically significant.  
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The bias and scale errors were estimated using a linear estimation algorithm (Lötters et. 

al., 1998). It was found that while the estimation error was low, significant offsets relative to the 

proposed application were still present. This contributed to the decision to include the errors as 

constant offsets in the model.   

3.2 Field Test Results  

After fitting the data from the three surveys with the above parameters and constant 

offsets, it was found that for all three surveys the scale factor terms were statistically 

insignificant. Upon further investigation, it was determined that the scale errors were absorbed 

by the bias estimates. This is consistent with the fact that when the instrument is static during a 

continuous survey, the scale errors can become indistinguishable from the biases (Farrell et. al., 

2019). Therefore, all scale terms were eliminated in the models.  

It was theorized that dynamic pressures induced by wind may introduce additional noise 

to the datasets. Therefore, terms to account for the effect of wind were added to the models. 

Wind speed, gust, and direction data were obtained from a NOAA weather station at High Island 

(NOAA, 2021). The station collects data at 6-minute intervals. The data were linearly 

interpolated to the start and end point of each 1-minute averaging interval for the accelerometer 

data and then averaged. Only wind speed was found to have a significant effect on the data. 

Wind gusts could have a significant effect; however, given the transient nature of wind gusts and 

the relatively long interpolation period of 6-minutes, it is likely that the interpolation is unable to 

yield accurate values for wind gusts. A summary of the results of the initial models are shown in 

table 3.1. Figures 3.7 to 3.9 show the results of each model with means removed from the raw 

and fitted data for clarity.   
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Table 3.1. Survey calibration model summaries.  

Survey Residuals (mgal) Variance 

Reduction (%) 

1 35  88 

2 29 98 

3 30 87 

 

 

Figure 3.7. Survey 1 calibration results. The source of the large amount of variance at the start of the survey is 

unknown, though it could be due to a prolonged instrument warm-up.  
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Figure 3.8. Survey 2 calibration results.  

 

Figure 3.9. Survey 3 calibration results. 
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The correlation matrices of the models were obtained by computing the covariance 

matrix for each model. It was found that a high degree of multicollinearity among the 

environmental parameters is present. Namely, between survey duration and barometric pressure, 

and between the two temperature terms. The correlation matrices are shown in figures 3.10 to 

3.12. w denotes the term for wind speed.   

 

Figure 3.10. Survey 1 model correlation matrix.  
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Figure 3.11. Survey 2 model correlation matrix. 

 

Figure 3.12. Survey 3 model correlation matrix. 
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This collinearity causes redundant information to be contained within the predictor 

variables and reduces the stability of the models. However, as the laboratory data shows, the 

parameters are all significant contributors to accelerometer drifts even when uncorrelated. In the 

field test data, the collinearity between the temperatures is likely due to the ambient temperature 

being the primary driver of variations in sensor temperature as opposed to mechanical and 

electrical self-heating of the IMU in the lab. Additionally, ambient temperature affecting the data 

acquisition module that is connected to an instrument control laptop could be an additional 

source of noise, along with affecting other electronic components not contained within the IMU 

enclosure. Therefore, in order to remove the multicollinearity while retaining non-redundant 

variance due to parameters that would otherwise be removed from the model, principal 

component analysis (PCA) is used. 

PCA is used to find direction vectors of best fit lines through the data such that each 

vector is orthogonal to the previous vectors, known as the principal components (PCs). The PCs 

are the eigenvectors of the predictor variables’ covariance matrix and are constructed as linear 

combinations of the predictor variables (Jolliffe, 1986). The number of PCs is equal to the 

number of predictor variables with most of the information in the original variables being 

contained in the first few PCs. The resulting variables are uncorrelated and contain the maximum 

amount of information from the original variables with redundant information removed. In the 

models, the drift terms are replaced by their PCs. The resulting correlation matrices are shown in 

figures 3.13 to 3.15. Even though the models using PCA are almost identical to the original 

models, they are still shown in figures 3.16 to 3.18 for completeness. A summary of the models 

using PCA is shown in table 3.2.  

 



34 

 

 

Figure 3.13. Survey 1 model correlation matrix using principal components. 

 

Figure 3.14. Survey 2 model correlation matrix using principal components. 
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Figure 3.15. Survey 3 model correlation matrix using principal components. 

 

Figure 3.16. Survey 1 model using PCA. 
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Figure 3.17. Survey 2 model using PCA. 

 

Figure 3.18. Survey 3 model using PCA. 
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Table 3.2. Summary of models using PCA. 

Survey Residuals (mgal) Variance 

Reduction (%) 

1 33  88 

2 29 97 

3 28 88 

 

The residuals are relatively large when compared to results from the laboratory analyses 

and the specified resolution of the accelerometers. There could be a variety of sources for this 

residual noise such as the uncompensated wind gusts and passing vehicles on the nearby 

highway. The residuals were decomposed into 5 levels using the discrete wavelet transform. The 

corresponding levels for each survey were compared against one another where a large threshold 

value was applied to levels containing uncorrelated signals and smaller coefficients. The 

decompositions are shown side-by-side for a visual comparison in figure 3.10.  

 

Figure 3.10. Wavelet decompositions of model residuals. A) Survey 1. B) Survey 2. C) Survey 3. The highest 

correlations occur in the approximation level (a5) and detail level 5 (d5).  
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The highest correlations occur in levels a5 and d5. The uncorrelated levels are given larger 

threshold values and all of the coefficients in the correlated levels are retained. The signals were 

then reconstructed. The final estimates all have precisions of approximately 10 mgal.  Table 3.3 

shows the correlations between the three surveys through 50 crossover points (all points of 

survey 3).  Figure 3.11 shows the final anomaly estimates through the same 50 points.  

Table 3.3. Correlation coefficients of the surveys. 

Surveys R 

1,2 0.15 

2,3 0.89 

1,3 0.26 

 

 

 

Figure 3.11. Bouguer anomaly estimates over the High Island salt dome. The black arrows denote the boundaries of 

the dome approximated using the digital elevation model.  
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The low correlation of survey 1 is due to the large variance at the northern endpoint of 

the survey. When these points are removed, the correlations increase to 0.55 and 0.85 for surveys 

2 and 3, respectively. The source of this variance is unknown, though it may be due to a more 

prolonged instrument warm-up time.  
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4. DISCUSSION, FUTURE WORK & CONCLUSION 

4.1 Discussion 

The positive Bouguer anomaly estimate over the salt dome was initially unexpected. 

While most sediments are deposited with densities lower than that of salt domes, they compact, 

dehydrate, or lithify to greater densities than when deposited (Jackson and Talbot, 1986). The 

densities of sediments along the Northwestern Gulf Coast range from 2.51 – 2.95 g cm-3, which 

should provide a positive density contrast with rock salt (Murray, 1961; Baker, 1995).  

In the 1930s, core samples were taken at the High Island dome. It was found that a series 

of cap rocks existed above the dome (Halbouty, 1936). The top layer of the caps is composed of 

compact sand and limestone (ρ = 1.55 – 2.75 g cm-3) with caps at increasing depths composed of 

calcite (ρ = 2.71 g cm-3), gypsum (ρ = 2.31 g cm-3), and massive anhydrite (ρ = 2.95 g cm-3), 

with the anhydrite permeating through the lower layers (Halbouty, 1936; Anthony et. al., 2003). 

The uniform anhydrite cap that lies just above the salt is the dominant member of the series. 

Given the high density of anhydrite relative to the Quaternary sediments surrounding the dome 

(ρ = 2.51 g cm-3), it is feasible that the cap rock could induce a positive anomaly (Murray, 1961).  

It is not unheard of for dense salt dome cap rocks to induce a positive gravity anomaly 

signature (Jenkins, Messfin, and Moon, 1983). Gravity gradiometry data acquired at the Vinton 

salt dome in Louisiana shows the cap rock inducing a strong positive anomaly signal on all 

components of the gradient (Ennen and Hall, 2011). A gravity survey from a dome in Denmark 

showed a positive Bouguer anomaly caused by a thick cap rock within a wider low anomaly 

caused by salt, though the magnitude of the anomaly is smaller than observed for the High Island 

dome (Ramberg and Lind, 1968). Benassi et. al. (2006) in particular found that even in the 
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absence of a dense caprock, a salt dome can still produce a positive anomaly when the dome 

pierces all sedimentary layers.  

The results of the field test align well with previous studies of domes in the shallow 

subsurface and domes which have high density cap rocks. The results are promising when 

compared with the Vinton dome given that, while there are significant geochemical variations 

within individual cap rocks, domes along the Gulf Coast follow similar developmental patterns 

and compositional trends (Kyle and Posey, 1991; Walker, 1976). Given the shallow depth of the 

top of the cap rock at High Island (120 m), the density contrast between the caps and the lower 

density Quaternary sediments becomes dominant. In order to confirm the detection of the dome, 

an additional survey along the same traverse has been planned. This survey will be conducted 

using a CG-5 gravimeter.    

4.2 Future Work 

The development of a method to conduct airborne gravimetry using MEMS 

accelerometers is ongoing and a primary goal of the HELIX project. Airborne gravimetry could 

be useful on bodies such as Mars which have atmospheres that could support powered flight. 

Potential platforms include drones, balloons, and robotic helicopters such as the Ingenuity 

helicopter included in the Mars 2020 mission. As stated earlier, an airborne platform would 

allow some closure of the spatial scale gap between surface and orbital surveys in an efficient 

manner. It could also allow data to be collected over areas that are inaccessible by rovers or be 

valuable for studying crater fill in a relatively low-risk manner.  

The fundamental problem in moving-base inertial gravimetry is the separation of gravity 

from kinematic accelerations. Given that inertial gravimetry is, in essence, a reversal of the 
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process used for determining kinematic accelerations in inertial navigation, many of the methods 

used in inertial navigation apply to inertial gravimetry.    

4.2.1 Inertial Navigation 

An INS is a three-dimensional dead-reckoning navigation system that incorporates 

triaxial accelerometers and gyroscopes as part of an IMU combined with a navigation processor. 

The navigation processor integrates the outputs of the accelerometers and gyroscopes to obtain 

position, velocity, and orientation information. The INS uses gravity models to obtain specific 

force measurements from which the kinematic acceleration of a vehicle is obtained. The 

integration of the kinematic acceleration gives the velocity solution, and the subsequent 

integration of velocity gives the position solution. These solutions are collectively known as the 

navigation solutions to the navigation equations used by the processor.  The angular rate 

measurements output from the gyroscopes are integrated to give the orientation of the system.   

As with moving-base gravimetry, the two mechanizations of INSs are strapdown and 

stabilized-platform. In the strapdown mechanization, the system is subject to the dynamics of the 

vehicle, which has an adverse effect on performance. However, a strapdown INS is small, 

lightweight, low cost, and easy to implement. The method under development is concerned with 

the strapdown mechanization. 

4.2.2 Coordinate Frames  

In order to describe positions on a surface, a system of coordinates is necessary. This 

holds true for planetary surfaces as well. Additionally, specific coordinate frames must be 

defined in which changes in motion, orientation, and position can be described. In navigation, a 

system of Cartesian coordinates with orthogonal axes, x, y, and z is defined in three-dimensional 

space. However, the defined axes can have various orientations in space. The sets of coordinate 
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axes define the coordinate frames. Coordinate frames can describe either a global or local frame 

of reference, which is dependent on the application. On Earth, the global frames are fixed to the 

Earth as it rotates or to stars that exhibit no relative motion, whereas the local frames are fixed to 

local directions. 

 The first frame to consider is the inertial frame (i-frame) – the coordinate system in 

which Newton’s laws of motion are true. The inertial frame exhibits no rotation or acceleration 

with respect to the rest of the Universe. It is defined by the positions of stable quasars relative to 

the Earth and is Earth-centered (Jekeli, 2012). The i-frame is shown in figure 4.1. 

 

Figure 4.1 The Earth-Centered inertial frame. 

The frame that is fixed to – and rotates with – the Earth is known as the Earth-Centered-

Earth-Fixed frame (e-frame). The frame’s origin is defined as the center of the ellipsoid, or 

approximately the Earth’s center of mass. The z-axis is aligned with Earth’s rotational axis, the 

y-axis is defined by the intersection between the equator and the 90° east meridian, and the x-

axis is defined by the intersection between the equator and 0° longitude (Groves, 2013).  

The last Earth-based frame considered in this study is the local navigation frame (n-

frame). The frame in which the navigation equations are formulated. The frame is typically 
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defined by the local North-East-Down directions (Jekeli, 2012). The n-frame and e-frame are 

shown in figure 4.2. 

 

Figure 4.2. The Earth-Centered-Earth-Fixed frame with axes denoted by superscript e and local navigation frame 

with axes denoted by superscript n. 𝜔𝑒  is the rotation rate of the Earth, 𝜆 is latitude and 𝜑 is longitude. 

In the strapdown configuration, an additional frame is used for the body of the carrier 

vehicle (b-frame) that defines the accelerometer axes relative to the vehicle. The x-axis points 

toward the front of the vehicle, the y-axis to the left of the vehicle, and the z-axis toward the 

bottom of the vehicle.  

4.2.3 Orientation and Coordinate Transformations 

The use of different coordinate frames naturally gives rise to relationships between each 

frame, which in turn gives rise to transformations between them. Assume  is a matrix that 

rotates coordinates in the vector  from the t-frame to the s-frame, then: 

𝑥𝑠 = 𝐶𝑡
𝑠𝑥𝑡 (4.1) 

The same operation can be performed on a matrix with the following modification: assume  is 

a matrix in the t-frame, then: 
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𝐴𝑠 = 𝐶𝑡
𝑠𝐴𝑡𝐶𝑠

𝑡 (4.2) 

Orientations can be described using a sequence of rotations about different axes by angles known 

as Euler angles. The three rotations , known as roll,  pitch,  and yaw, , can be 

combined into what is known as a direction cosine matrix (Jekeli, 2012): 

𝑅3(𝛾)𝑅2(𝛽)𝑅1(𝛼) = [

𝑐𝑜𝑠(𝛾) 𝑐𝑜𝑠(𝛽) 𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛽) 𝑠𝑖𝑛(𝛼) + 𝑠𝑖𝑛(𝛾) 𝑐𝑜𝑠(𝛼) −𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛼) + 𝑠𝑖𝑛(𝛾) 𝑠𝑖𝑛(𝛼)

−𝑠𝑖𝑛(𝛾) 𝑐𝑜𝑠(𝛽) −𝑠𝑖𝑛(𝛾) 𝑠𝑖𝑛(𝛽) 𝑠𝑖𝑛(𝛼) + 𝑐𝑜𝑠(𝛾) 𝑐𝑜𝑠(𝛼) 𝑠𝑖𝑛(𝛾) 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛼) + 𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛼)

𝑠𝑖𝑛(𝛽) −𝑐𝑜𝑠(𝛽) 𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛽) 𝑐𝑜𝑠(𝛼)
]

(4.3)

 

Which can then be used as the transformation matrix . Additionally, a rotation can be 

represented by quaternions. Quaternions are hyper-complex numbers consisting of four 

components: 

𝑞 = [𝑎, 𝑏, 𝑐, 𝑑] (4.4) 

where  represents the magnitude of the rotation and the following components represent the 

rotational axes (Groves, 2013). Quaternions can represent vectors in four dimensions just as 

complex numbers can represent vectors in two dimensions. Rotations of three-dimensional 

vectors by an angle, , can also be represented by specific quaternions such as (Jekeli, 2012): 

𝑞𝜁 = 𝑐𝑜𝑠 (
휁

2
) + 𝑠𝑖𝑛 (

휁

2
) (𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘) = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 (4.5) 

Then the quaternion vector is given by: 

𝑞 = [𝑐𝑜𝑠 (
휁

2
) 𝑏 𝑠𝑖𝑛 (

휁

2
) 𝑐 𝑠𝑖𝑛 (

휁

2
) 𝑑 𝑠𝑖𝑛 (

휁

2
)]

𝑇

= [𝑎 𝑏 𝑐 𝑑]𝑇 (4.6) 

Most navigation systems use quaternions since they are computationally efficient due to 

having only four components and being useful in the integration of angular rates (Groves, 2013). 

In order to use a rotation quaternion to perform coordinate transformations, its relationship to the 
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direction cosine matrix must be derived. Again, using the hypothetical frames related by , this 

transformation can be described using an equivalent single rotation by  in the direction defined 

by the unit rotation vector, , using spherical polar coordinates, ,  (Jekeli, 2012): 

𝑒𝜁
𝑡 = [

𝑏
𝑐
𝑑
] = [

𝑠𝑖𝑛(휃) 𝑐𝑜𝑠(𝜆)

𝑠𝑖𝑛(휃) 𝑠𝑖𝑛(𝜆)

𝑐𝑜𝑠(휃)
] (4.7) 

A new frame, the -frame, must be defined that represents the rotation in this direction. The 

transformation from the 𝑡-frame to the -frame can be accomplished by: 

𝐶𝑡
𝜁

= 𝑅2(−휃)𝑅3(−𝜋 + 𝜆) = [
−𝑐𝑜𝑠(휃) 𝑐𝑜𝑠(𝜆) 𝑐𝑜𝑠(휃) 𝑠𝑖𝑛(𝜆) 𝑠𝑖𝑛(휃)

𝑠𝑖𝑛(𝜆) −𝑐𝑜𝑠(𝜆) 0
𝑠𝑖𝑛(휃) 𝑐𝑜𝑠(𝜆) 𝑠𝑖𝑛(휃) 𝑠𝑖𝑛(𝜆) 𝑐𝑜𝑠(휃)

] (4.8) 

The rotation about  in this frame is described by . According to equation (4.2), the same 

rotation in the 𝑡-frame, which can be used as , is given by: 

𝐶𝑡
𝑠 = 𝐶𝜁

𝑡𝑅3(휁)𝐶𝑡
𝜁 (4.9) 

The matrix  can be expressed in terms of the elements of the quaternion shown in equation 

(4.6) and using equation (4.7): 

𝐶𝑡
𝜁

=

[
 
 
 
 

−𝑑𝑏

√1 − 𝑑2

−𝑑𝑐

√1 − 𝑑2
√1 − 𝑑2

𝑐

√1 − 𝑑2

−𝑏

√1 − 𝑑2
0

𝑏 𝑐 𝑑 ]
 
 
 
 

(4.10) 

From equation (4.7) and using the elements of equation (4.6) the transformation  can be 

expressed as: 
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𝐶𝑡
𝑠 = [

𝑎2 + 𝑏2 − 𝑐2 − 𝑑2 2(𝑏𝑐 + 𝑎𝑑) 2(𝑏𝑑 − 𝑎𝑐)

2(𝑏𝑐 − 𝑎𝑑) 𝑎2 − 𝑏2 + 𝑐2 − 𝑑2 2(𝑐𝑑 + 𝑎𝑏)

2(𝑏𝑑 + 𝑎𝑐) 2(𝑐𝑑 − 𝑎𝑏) 𝑎2 − 𝑏2 − 𝑐2 + 𝑑2

] (4.11) 

Thus, demonstrating the relationship between quaternions and direction cosines.  

In order to determine the transformation matrix from one frame to another, one must 

consider the fact that the relative orientation of the frames change with time due to movement. 

Thus, it is necessary to find the derivative of the transformation with respect to time. The 

derivative of the rotational transformation with respect to time is:   

�̇�𝑡
𝑠 = 𝑙𝑖𝑚

𝛿𝜏→0

𝐶𝑡
𝑠(𝜏 + 𝛿𝜏) − 𝐶𝑡

𝑠(𝜏)

𝛿𝜏
 (4.12) 

The transformation that occurs at time 𝜏 + 𝛿𝜏 results from the transformation up to time 𝜏 

accompanied by a small change of the 𝑠-frame relative to the 𝑡-frame during the interval of 𝛿𝜏. 

This can be represented as: 

𝐶𝑡
𝑠(𝜏 + 𝛿𝜏) = 𝛿𝐶𝑠𝐶𝑡

𝑠(𝜏) (4.13) 

with: 

𝛿𝐶𝑠 = 𝐼 − 𝛹𝑠 (4.14) 

 where 𝐼 is the identity matrix and Ψ is a skew symmetric matrix of small Euler angles: 

𝛹 = [
0 −𝛾 𝛽
𝛾 0 −𝛼

−𝛽 𝛼 0
] (4.15) 

By substituting equations (4.13) and (4.14) into equation (4.12), the angular velocity of the 𝑠-

frame relative to the 𝑡-frame with coordinates in the 𝑠-frame can be obtained: 
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�̇�𝑡
𝑠 = 𝑙𝑖𝑚

𝛿𝜏→0

(𝐼 − 𝛹𝑠)𝐶𝑡
𝑠(𝜏) − 𝐶𝑡

𝑠(𝜏)

𝛿𝜏
 

= 𝑙𝑖𝑚
𝛿𝜏→0

−𝛹𝑠𝐶𝑡
𝑠(𝜏)

𝛿𝜏
= − 𝑙𝑖𝑚

𝛿𝜏→0

𝛹𝑠

𝛿𝜏
𝐶𝑡

𝑠(𝜏) 

= −𝛺𝑠𝑡
𝑠 𝐶𝑡

𝑠 (4.16) 

where  is a skew-symmetric matrix of angular rates: 

𝛺𝑠𝑡
𝑠 = [

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
] (4.17) 

Using equation (4.2) and considering the relationship: 

𝛺𝑡𝑠
𝑠 = −𝛺𝑠𝑡

𝑠 (4.18) 

then: 

𝛺𝑡𝑠
𝑠 = −𝛺𝑠𝑡

𝑠 = −𝐶𝑡
𝑠𝛺𝑠𝑡

𝑡 𝐶𝑠
𝑡 (4.19) 

Thus, the derivative of the transformation matrix with respect to time is: 

�̇�𝑡
𝑠 = 𝐶𝑡

𝑠𝛺𝑠𝑡
𝑡 (4.20) 

Using quaternions to solve the equation by substituting equation (4.11) into equation (4.20) 

yields the differential equation in terms of quaternions: 

�̇� =
1

2
𝐴𝑞 (4.21) 

with 𝐴 being a skew-symmetric matrix of the time-dependent angular rates: 

𝐴 =

[
 
 
 
 

0 𝜔𝑥 𝜔𝑦 𝜔𝑧

−𝜔𝑥 0 𝜔𝑧 −𝜔𝑦

−𝜔𝑦 −𝜔𝑧 0 𝜔𝑥

−𝜔𝑧 𝜔𝑦 −𝜔𝑥 0 ]
 
 
 
 

(4.22) 

with the angular rates being output from the gyroscopes, which sense the angular velocity of the 

b-frame relative to the i-frame: 
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𝜔𝑖𝑏
𝑖 = [

𝜔𝑥

𝜔𝑦

𝜔𝑧

] (4.23) 

The output from the gyroscopes represents angular increments per unit time. The angular 

increments from the gyroscopes are then given by: 

𝛿휃𝑘 = ∫ 𝜔𝑖𝑏
𝑖 𝑑𝑡

𝑡𝑘

𝑡𝑘−1

(4.24) 

The solution to equation (4.21) using gyroscope data is: 

�̂�𝑘 = (𝐼 +
1

2
𝛩𝑘 +

1

8
𝛩𝑘

2 +
1

48
𝛩𝑘

3 + ⋯) �̂�𝑘−1 (4.25)  

Where: 

𝛩𝑘 = ∫ 𝐴𝑑𝑡

𝑡𝑘

𝑡𝑘−1

(4.26) 

In order to solve equation (4.25) an initialization procedure must be performed that gives 

the initial quaternion vector . Then the equation becomes an iterative algorithm that solves for 

the subsequent quaternions . One way to perform the initialization procedure is to use the 

initial Euler angles in a direction cosine matrix that describes the rotation from the b-frame to the 

n-frame: 

𝐶𝑏
𝑛 =

[

𝑐𝑜𝑠(𝛼0) 𝑐𝑜𝑠(𝛽0) 𝑐𝑜𝑠(𝛼0) 𝑠𝑖𝑛(𝛽0) 𝑠𝑖𝑛(𝛾0) − 𝑠𝑖𝑛(𝛼0) 𝑐𝑜𝑠(𝛾0) 𝑐𝑜𝑠(𝛼0) 𝑠𝑖𝑛(𝛽0) 𝑐𝑜𝑠(𝛾0) + 𝑠𝑖𝑛(𝛼0) 𝑠𝑖𝑛(𝛾0)

𝑠𝑖𝑛(𝛼0) 𝑐𝑜𝑠(𝛽0) 𝑠𝑖𝑛(𝛼0) 𝑠𝑖𝑛(𝛽0) 𝑠𝑖𝑛(𝛾0) + 𝑐𝑜𝑠(𝛼0) 𝑐𝑜𝑠(𝛾0) 𝑠𝑖𝑛(𝛼0) 𝑠𝑖𝑛(𝛽0) 𝑐𝑜𝑠(𝛾0) − 𝑐𝑜𝑠(𝛼0) 𝑠𝑖𝑛(𝛾0)

− 𝑠𝑖𝑛(𝛽0) 𝑐𝑜𝑠(𝛽0) 𝑠𝑖𝑛(𝛾0) 𝑐𝑜𝑠(𝛽0) 𝑐𝑜𝑠(𝛾0)
]

(4.27)

 

the initial transformation matrix from the b-frame to the i-frame is then: 

𝐶𝑏
𝑖 = 𝐶𝑛

𝑖 𝐶𝑏
𝑛 (4.28) 

with: 



50 

 

𝐶𝑛
𝑖 = 𝐶𝑒

𝑖𝐶𝑛
𝑒 (4.29) 

𝐶𝑒
𝑖 = [

𝑐𝑜𝑠(𝜔𝐸𝑡) − 𝑠𝑖𝑛(𝜔𝐸𝑡) 0

𝑠𝑖𝑛(𝜔𝐸𝑡) 𝑐𝑜𝑠(𝜔𝐸𝑡) 0
0 0 1

] (4.30) 

𝐶𝑒
𝑛 = [

−𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜆) −𝑠𝑖𝑛(𝜆) − 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜆)

− 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝜆) 𝑐𝑜𝑠(𝜆) − 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜆)

𝑐𝑜𝑠(𝜙) 0 −𝑠𝑖𝑛(𝜙)
] (4.31) 

where 𝜔𝐸 is the mean rotation rate of the Earth and 𝜙 and 𝜆 are latitude and longitude, 

respectively. Then the initial quaternion can be found via (Jekeli, 2012): 

𝑎0 =
1

2
(1 + 𝐶𝑏

𝑖
1,1

+ 𝐶𝑏
𝑖
2,2

+ 𝐶𝑏
𝑖
3,3

)

1
2 (4.32) 

𝑏0 =
1

4𝑎0

(𝐶𝑏
𝑖
2,3

− 𝐶𝑏
𝑖
3,2

) (4.33) 

𝑐0 =
1

4𝑎0

(𝐶𝑏
𝑖
3,1

− 𝐶𝑏
𝑖
1,3

) (4.34) 

𝑑0 =
1

4𝑎0

(𝐶𝑏
𝑖
1,2

− 𝐶𝑏
𝑖
2,1

) (4.35) 

 

4.2.4 Kalman Filter Approach   

Both GPS and INS systems can provide position and velocity solutions, however, the 

differences in the solutions of each system will gradually increase over time due to systematic 

errors and drifts. Therefore, an integration algorithm that fuses information provided by each 

system should be applied in order to yield accurate solutions and estimates of the system errors. 

The most commonly used algorithm in inertial navigation and gravimetry is the Kalman filter. 

The Kalman filter is an optimal estimation algorithm that derives a minimum error estimate of 

the state of a system based on measurements, modeled system dynamics, and assumed statistics 

of the present noise processes (Kalman, 1960).  
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The standard Kalman filter operates as a best linear unbiased estimator when modeling 

linear systems. However, when modelling a non-linear system, such as the system under 

consideration, the extended Kalman filter (EKF) is used (Gelb, 1974). In inertial navigation and 

gravimetry, a common approach is to use the EKF to estimate the orientation of the INS along 

with the errors of the system (Glennie and Schwarz, 1999; Groves, 2013; Jekeli, 2012). For 

inertial gravimetry, the filter is sometimes augmented with modeled gravity disturbance 

estimates, though this method has produced mixed results (Kwon and Jekeli, 2001). The standard 

Kalman equations are as follows. Given an n-dimensional system state vector  at time , 

the transition of the state to the next epoch  is: 

𝑋𝑘 = 𝐹𝑘𝑋𝑘−1 + 𝑤𝑘−1 (4.36) 

where  is the non-linear state transition matrix and  is a Gaussian white noise vector, also 

known as the system noise, such that ~ . Where  is the system noise covariance 

matrix. Equation (2.36) can be linearized to give the discrete time form: 

𝑥𝑘 = 𝛷𝑘−1𝑥𝑘−1 + 𝑤𝑘−1 (4.37) 

𝛷𝑘−1 = 𝐼 + 𝐹𝑘−1𝑑𝑡𝑘−1 (4.38) 

The observability of the system is based on the concept of measurements, which are assumed to 

be linearly related to the system state via: 

𝑧𝑘 = 𝐻𝑘𝑋𝑘 + 𝑣𝑘 (4.39) 

where  are measurements,  is the observation matrix and,  is the measurement noise such 

that . Where  is the measurement noise covariance matrix. The filter is 

initialized with an initial state  and state covariance matrix . The filter then performs a two-

step algorithm at every epoch. The first step is the prediction step, where the filter determines the 
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state transition from  to . The second step is the measurement update, where the system 

state is filtered using the measurement . The prediction is based on the estimates from the 

previous epoch: 

�̂�𝑘
− = 𝛷𝑘−1�̂�𝑘−1 (4.40) 

�̂�𝑘
− = 𝛷𝑘−1�̂�𝑘−1𝛷𝑘−1

𝑇 + 𝑄𝑘−1 (4.41) 

where  is the estimated state vector,  is the predicted state vector of the following epoch, 

 is the estimated state covariance matrix, and  is the predicted state covariance matrix. The 

update using measurements is performed via: 

𝐾𝑘 = �̂�𝑘
−𝐻𝑘

𝑇(𝐻𝑘�̂�𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1

(4.42) 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘�̂�𝑘

−) (4.43) 

�̂�𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)�̂�𝑘
− (4.44) 

𝑖𝑘 = 𝑧𝑘 − ℎ(�̂�𝑘
−) (4.45) 

𝑆𝑘 = 𝐻𝑘�̂�𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘 (4.46) 

where  is the Kalman gain, which defines the relative weight between the measurements and 

the current state estimate based on the system model.  is known as the innovation, which 

compares the true measurement with a hypothetical measurement , which represents an 

error-free sensor measurement.  is the innovation covariance matrix. The following 

subsections provide an overview of the construction of the Kalman Filter to be used in this 

project. 

4.2.4.1 System State Propagation 

The EKF used in this study includes a 15-dimensional state space given by: 
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𝑋 = [𝛹𝑖  𝛿�̇� 𝛿𝑥𝑖  𝛿𝑏𝑎
𝑏 𝛿𝑏𝜔

𝑏 ]𝑇 (4.47) 

where each component represents the 3-dimensional error in orientation Ψ , velocity 𝛿 ̇ , and 

position 𝛿  in the inertial frame. 𝛿  and 𝛿 𝜔 are accelerometer and gyroscope biases in the 

IMU body frame. Notice that the accelerometer scale errors are not included as states. This is 

because the scale errors can propagate into the accelerometer bias estimates, assuming a 

relatively constant orientation throughout a survey (Becker, 2016). However, the filter can be 

augmented with an additional state to account for the scale error. This will be performed as 

needed. The state transition matrix is defined by the propagation of the states through time. Thus, 

the system model is composed of the time derivatives of the error dynamics equations of the 

system (Groves, 2013). Here, ^, denotes quantities which are estimated or calculated from 

estimates and, ~, denotes quantities indicated by the INS.  

From equation (4.15), the attitude error is defined by small Euler angles thus, by taking 

the derivative of its transformation matrix counterpart, the attitude error propagation can be 

obtained which, after simplification, is dependent on the gyroscope errors:  

𝛿𝛹𝑖 ≈ �̂�𝑏
𝑖𝛿𝜔𝑖𝑏

𝑏 = �̂�𝑏
𝑖𝑏𝑔 (4.48) 

The propagation of the velocity error is dependent on the specific force: 

𝛿�̇�𝑖 = 𝑓𝑖 − 𝑓𝑖 + �̃�𝑖 − 𝑔𝑖 (4.49) 

Since the specific force is measured in the body frame, it is dependent on both the accelerometer 

errors and attitude errors: 
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𝑓𝑖 − 𝑓𝑖 = �̃�𝑏
𝑖𝑓𝑏 − 𝐶𝑏

𝑖𝑓𝑏 (4.50) 

𝑓𝑖 − 𝑓𝑖 ≈ �̂�𝑏
𝑖(𝑓𝑖 − 𝑓𝑖) + (�̃�𝑏

𝑖 − 𝐶𝑏
𝑖)𝑓𝑏 (4.51) 

The error in the specific force is given by equation (1.9), however, since only the accelerometer 

bias is modeled in the filter, the specific force error becomes: 

𝑓𝑖 − 𝑓𝑖 = 𝛿𝑓𝑏 ≈ 𝑏𝑎 (4.52) 
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Then, an attitude error approximation can be applied by using a rearranged version of equation 

(4.14): 

�̃�𝑏
𝑖 − 𝐶𝑏

𝑖 = (𝛿𝐶𝑏
𝑖 − 𝐼)𝐶𝑏

𝑖 ≈ 𝐶𝑏
𝑖𝛺𝑖𝑏

𝑖 (4.53) 

The gravity term in equation (4.49) can be approximated using: 

�̃�𝑖 − 𝑔𝑖 ≈
2𝑔0(�̂�𝑏)

𝑟𝑒𝑆
𝑒 (�̂�𝑏)

𝑥𝑖

|𝑥𝑖|2
𝑥𝑖𝑇𝛿𝑥𝑖 (4.54) 

where  is the normal gravity minus centripetal acceleration,  is geodetic longitude, and  is 

the geocentric radius at a given point on the Earth’s surface. The time derivative of the velocity 

error is then obtained by substituting equations (4.52) and (4.53) into equation (4.51), and 

equations (4.51) and (4.54) into equation (4.48): 

𝛿�̇�𝑖 = [−(�̂�𝑏
𝑖𝑓𝑏) ×]𝛿𝛹𝑖 +

2𝑔0(�̂�𝑏)

𝑟𝑒𝑆
𝑒 (�̂�𝑏)

𝑥𝑖

|𝑥𝑖|2
𝑥𝑖𝑇𝛿𝑥𝑖 + �̂�𝑏

𝑖𝑏𝑎 (4.55) 

The position error propagation in the i-frame is equal to the velocity error, thus: 

𝛿�̇�𝑖 = 𝛿𝑣𝑖 (4.56) 

The sensor biases are modeled as random constants with unknown variances: 

�̇�𝑎 = 0, �̇�𝑔 = 0 (4.57) 

The state transition matrix is then constructed as (Groves, 2013): 

𝛷𝑖 =

[
 
 
 
 
 
𝐼3×3 03×3 03×3 03×3 �̂�𝑏

𝑖𝑡𝑘
𝐹21

𝑖 𝑡𝑘 𝐼3×3 𝐹23
𝑖 𝑡𝑘 �̂�𝑏

𝑖𝑡𝑘 03×3

03×3 𝐼𝑡𝑘 𝐼3×3 03×3 03×3

03×3 03×3 03×3 𝐼3×3 03×3

03×3 03×3 03×3 03×3 𝐼3×3 ]
 
 
 
 
 

(4.58) 

where 

𝐹21
𝑖 = [−(�̂�𝑏

𝑖𝑓𝑏) ×] (4.59) 
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𝐹23
𝑖 =

2𝑔0(�̂�𝑏)

𝑟𝑒𝑆
𝑒 (�̂�𝑏)

𝑥𝑖

|𝑥𝑖|2
𝑥𝑖𝑇 (4.60) 

4.2.4.2 System Noise 

The noise covariance matrix is constructed using the noise characteristics of the inertial 

sensors (Groves, 2013): 

𝑄𝑘 =

[
 
 
 
 
 
휂𝑟𝑔

2 𝐼3×3 03×3 03×3 03×3 03×3

03×3 휂𝑟𝑎
2 𝐼3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 휂𝑏𝑖𝑎
2 𝐼3×3 03×3

03×3 03×3 03×3 03×3 휂𝑏𝑖𝑔
2 𝐼3×3]

 
 
 
 
 

(4.61) 

where,  and  are gyroscope and accelerometer random noise and,  and  are the bias 

instabilities of the accelerometers and gyroscopes, respectively. In this study, these parameters 

are determined using a method known as Allan Variance, which is designed to study the 

frequency stability of precision oscillators. The Allan Variance of a dataset is defined as half the 

time average of the squares of the differences between successive frequency deviations, , over a 

sampling period,  (Allan, 1966): 

𝜎𝑦
2(𝜏) =

1

2
〈(𝑦𝑛+1 − 𝑦𝑛)2〉 (4.62) 

The Allan Deviation, defined as the square root of the Allan Variance, provides the necessary 

information to analyze the noise characteristics of a device (Allan, 1966): 

𝜎𝑦(𝜏) = √𝜎𝑦
2(𝜏) (4.63) 

Since the Allan Deviation is directly measurable, the noise parameters can be obtained directly 

from a log-log plot of the Allan Deviation over the sampling period. The parameters of interest 

are the accelerometer and gyroscope random walks and bias instabilities. The integral solutions 

for these parameters are given by (El-Sheimy et. al., 2008): 



57 

 

𝜎2(𝜏) =
𝑁2

𝜏
(4.64) 

𝜎2(𝜏) =
2𝐵2

𝜋
[𝑙𝑛 2 −

𝑠𝑖𝑛3 𝑥

2𝑥2
(𝑠𝑖𝑛 𝑥 + 4𝑥 𝑐𝑜𝑠 𝑥) + 𝐶𝑖(2𝑥) − 𝐶𝑖(4𝑥)] (4.65) 

𝑥 =  𝜋𝑓0𝜏 (4.66) 

where  is the random walk coefficient,  is the bias instability coefficient,  is the cosine-

integral function, and  is the cutoff frequency. Detailed overviews can be found in Tehrani 

(1983), IEEE (1998), IEEE (1999), and El-Sheimy et. al. (2008). On a log-log plot of the Allan 

Deviation, the random walks of the sensors occur at a slope of -0.5 and the bias instabilities at a 

slope of 0 (El-Sheimy et. al., 2008). Allan deviation curves for 1 Hz data from the HELIX 

accelerometers and gyroscopes are shown in figures 4.3 and 4.4. The noise characteristics 

identified from these plots are shown in table 4.1.  

 

Figure 4.3. Accelerometer Allan deviation.  
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Figure 4.4. Gyroscope Allan deviation. 

 

Table 4.1. IMU Noise Characteristics 

Axis Accelerometer 

Random Noise 

Accelerometer 

Bias Instability 

Gyroscope 

Random Noise 

Gyroscope Bias 

Instability 

x 19.7 mgal 
1.33 mgal 4.35×10-4 ° s-1 2.14×10-4 ° h-1 

y 13.3 mgal 2.08 mgal 4.78×10-4 ° s-1 2.81×10-4 ° h-1 

z 31.4 mgal 2.12 mgal 1.90×10-3 ° s-1 2.31×10-4 ° h-1 

 

4.2.4.3 Measurements 

The measurements used to filter the system state are defined as the differences between 

the measurements of the GPS and INS (Groves, 2013). The measurement vector,  is then: 
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𝑧𝑘 = [𝛿𝑥𝑖

𝛿�̇�𝑖
] = [

𝑥𝐼𝑁𝑆
𝑖 − 𝑥𝐺𝑃𝑆

𝑖

�̇�𝐼𝑁𝑆
𝑖 − �̇�𝐺𝑃𝑆

𝑖
]
𝑘

(4.67) 

The observation matrix is (Groves, 2013): 

𝐻 = [
03×3 03×3 −𝐼3×3 03×3 03×3

03×3 −𝐼3×3 03×3 03×3 03×3
] (4.68) 

Finally, the measurement noise covariance matrix is composed of the standard deviations of the 

GPS position and velocity measurements: 

𝑅𝑘 = [
𝜎𝑥

2𝐼3×3 03×3

03×3 𝜎𝑥 ̇
2𝐼3×3

]
𝑘

(4.69) 

4.3 Conclusion 

To the author’s knowledge, the results of the High Island field test would represent the 

first detection of a subsurface structure using an IMU, if confirmed. This finding would further 

demonstrate the potential of MEMS devices for use in gravimetry. It could additionally serve as 

a proof of concept for instrumentation included in future NASA missions. The integration of 

MEMS devices into planetary exploration would constitute reductions in cost, mass, power 

requirements, and risks given their robustness. Additionally, by combining a triad of gravimeter-

qualifying MEMS accelerometers with precision rate gyroscopes, instruments that serve both 

scientific and engineering/navigation purposes could be integrated into future instrument suites, 

further reducing cost, mass, and power requirements.  

The findings of this thesis have direct implications for proposals currently under 

development such as the GEMMA instrument and the Intrepid Lunar rover. A MEMS IMU is 

currently planned to be integrated into the Intrepid instrument suite to measure subsurface 

density (Robinson et. al., 2020). The IMU is the LN-200s, which has a precision comparable to 
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the IMU-3030 used in this study. The drifts and calibration procedures identified in this thesis 

have direct applicability to the development of the Intrepid mission.  

Additionally, the importance of mitigating the effect of temperature variations were 

further confirmed. Future MEMS gravimetric instruments for planetary exploration would 

benefit enormously from a temperature stabilization system, which should be a major focus of 

future development. It could be feasible to develop internal temperature stabilization systems for 

such devices, though given the small size of MEMs instruments, an external thermally stabilized 

housing should be viable as well.  

Airborne-based planetary gravimetry could allow higher resolution gravity data to be 

collected at a rate that is currently unprecedented. Eventually, multiple small robotic aircraft 

could work in unison, surveying large portions of planetary surfaces. Near-term development of 

prototype platforms should focus on the following: 

1.) Determining the most effective airborne platforms, e.g.  fixed-wing drones, rotorcraft, 

balloons, etc. Initially, such a determination should be based on robustness to 

turbulence, endurance, and maximum payload.  

2.) Mitigating thermal drifts due to the instrument being exposed to large temperature 

variations given that such small aircraft will likely have no temperature regulation 

system available. 

3.) Considering the effect of significant orientation changes due to changes in wind 

direction and speed. 

Moving data was collected over the salt dome and will be subjected to the methods 

described in the future work section of this thesis. If the same precision is achieved in the 

moving datasets, it would constitute the first successful moving-base inertial gravimetry survey 
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conducted using a MEMS device, again, to the author’s knowledge. Additionally, it would likely 

help initiate the development of airborne platforms for planetary gravimetry, which would be an 

additional paradigm shift for planetary exploration.   
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