
INTERCONNECTED FINANCIAL PREDICTION USING TIME-SERIES

AND NETWORK DATA

An Undergraduate Research Scholars Thesis

by

MAXWELL HUFFMAN

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Yang Shen

May 2021

Major: Electrical & Computer Engineering

Copyright © 2021. Maxwell Huffman

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or biohaz-

ards must be reviewed and approved by the appropriate Texas A&M University regulatory research

committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement applies

to activities conducted at Texas A&M and to activities conducted at non-Texas A&M facilities

or institutions. In both cases, students are responsible for working with the relevant Texas A&M

research compliance program to ensure and document that all Texas A&M compliance obligations

are met before the study begins.

I, Maxwell Huffman, certify that all research compliance requirements related to this Un-

dergraduate Research Scholars thesis have been addressed with my Research Faculty Dr. Yang

Shen prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research Compli-

ance & Biosafety office

TABLE OF CONTENTS

Page

ABSTRACT . 1

ACKNOWLEDGMENTS . 2

NOMENCLATURE . 3

1. INTRODUCTION. 4

1.1 Investment Fundamentals . 4
1.2 Deep Neural Networks . 5
1.3 Mathematical Notations. 5
1.4 Problem Definition . 6
1.5 Trading Strategy. 6
1.6 Organization . 6

2. GROUNDWORK . 8

2.1 Coding Environment . 8
2.2 Data Types . 8
2.3 Data Collection . 8
2.4 Assessment Metrics . 10
2.5 Baseline Average for Comparison . 11

3. MODELING TEMPORAL DATA . 12

3.1 Methods. 12
3.2 Results . 17
3.3 Conclusions. 21

4. JOINTLY MODELING TEMPORAL AND RELATIONAL DATA . 22

4.1 Methods. 22
4.2 Results . 25
4.3 Conclusions. 31

5. MODEL INTERPRETABILITY . 34

5.1 Temporal Feature Importance with Perturbation Analysis . 34
5.2 Company Relation Importance with Heatmap Analysis . 36

6. CONCLUSIONS AND FUTURE DIRECTIONS . 38

6.1 Conclusions. 38
6.2 Future Directions . 38

REFERENCES . 40

ABSTRACT

Interconnected Financial Prediction Using Time-Series and Network Data

Maxwell Huffman
Department of Electrical & Computer Engineering

Texas A&M University

Research Faculty Advisor: Yang Shen
Department of Electrical & Computer Engineering

Texas A&M University

The digital technology age has created an unprecedented production and consumption of

data. With this surge, data-analytics have become increasingly important in industries that can gen-

erate value based on predictive models: online retail, meteorology, transportation, social media,

etc. This paper will focus on the finance industry because it contains years of available time-series

data, a high correlation between prediction accuracy and generated value, and a high ceiling for

creating a perfect prediction. Historically, time-series forecasting has been used to predict how

different companies’ stock prices might behave in the future given how they have behaved in the

past. However, focusing solely on sequential data for prediction is missing the potential of inter-

dependency within the information. Companies do not exist in a vacuum; they exist in markets

that can heavily influence multiple entities at once: government regulation, supply and demand,

etc. By grouping these entities and examining their relationships in the form of graph based net-

works, interdependent data can be used in conjunction with sequential data to improve prediction

accuracy. In this thesis, Long Short-Term Memory (LSTM) deep neural networks will act as the

foundation for which Graph Convolutional Neural networks (GCN) will be built atop each other

to combine both sequential and relational embeddings in formulating stock price prediction. To

verify this hypothesis, closing stock price data from over a five year period was used.

1

ACKNOWLEDGMENTS

Contributors

I would like to thank my faculty advisor, Dr. Yang Shen, his research student, Yuning You,

and my undergraduate senior design teaching assistant, Sambandh Dhal, for their guidance and

support throughout the course of this research.

Thanks also go to my friends, colleagues and the department faculty and staff for making

my time at Texas A&M University a great experience.

The data analyzed for this project was provided by the Electrical & Computer Engineering

Department at Texas A&M University. All other work conducted for the thesis was completed by

the student independently.

Funding Sources

Undergraduate research was supported by the Electrical & Computer Engineering Depart-

ment at Texas A&M University.

2

NOMENCLATURE

NASDAQ National Association of Securities Dealers Automated Quotations

NYSE New York Stock Exchange

TYO Tokyo Stock Exchange

B3 São Paulo Stock Exchange

JPX Japenese Exchange Group

MA Moving Average

CSV Comma-Separated Values

JSON JavaScript Object Notation

LSTM Long Short-Term Memory

GCN Graphical Convolutional Network

3

1. INTRODUCTION

The finance market is an ever growing industry. As of August 2020, global market capital-

ization reached 87.8 trillion US dollars, which is a 37% increase from 64.3 trillion US dollars in

December 2015. The total value of money invested in the stock market is increasing every year,

on average [1]. Outside of fundamental company values, entities invest their money in financial

markets because it is more profitable than letting inflation reduce their individual dollar value.

Choosing incorrect companies to invest in though, can be devastating to an investor’s portfolio,

which is why many investors select index or mutual funds that diversify their capital among many

companies instead of few. This reduces volatility and risk, and has historically been the safest

method of increasing capital value. These funds are limited to growing at the pace of the market,

which decreases both upside and downside. However, if only the best companies were selected

from day to day, capital growth could be multiplied significantly beyond average market increase.

Therefore, there is always a critical need of predictive models to optimize the investment options

and maximize the investment return.

In this chapter, we will first introduce traditional analytic methods and emerging machine-

learning methods (in particular, deep neural networks) for financial market prediction. We will

then describe the mathematical notations and accordingly define the problem in this study. We will

end this chapter with the organization for the rest of the thesis.

1.1 Investment Fundamentals

There are two types of analyses for financial market prediction: fundamental and technical

analyses. Fundamental analysis determines a company’s value based on economic environment,

industry status, internal financial performances, and more. Technical analysis evaluates historic

movements of price and volume to predict future outcomes under the assumption that a stock’s

numeric value already incorporates fundamental data intrinsically. Both types of analyses are used

in varying amounts across individuals and companies to predict which stocks will rise and which

4

stocks will fall. However, stock markets have existed for hundreds of years, and many people have

attempted to create perfect models for capital growth. While it has been shown that no investment

portfolio manager has ever accurately and consistently forecast the stock market [2], the field is

divided on whether or not the stock market can be regarded as truly random [3]. In the field of

machine learning, many state of the art models have been created for technical analysis; however,

company stocks can move in aggregate based on external factors, and fundamental analysis of

markets demonstrates potential for prediction improvement [4].

1.2 Deep Neural Networks

Historically, machine learning models in finance have focused on technical analysis, which

generates predictions based on analyzing time-series data sets. Examples include convolutional

and recurrent neural networks. Baseline time-series data consists of price and volume, and using

regression to predict their future values is a common technique for forecasting future movements

of stock price. They’ve been utilized for time series prediction on the NYSE, B3, JPX, and TYO

stock exchanges with varying degrees of success [5] [6] [7], but we are currently on the edge of

new discoveries with state-of-the-art deep learning models that utilize graph structures to yield

increased performance [8].

1.3 Mathematical Notations

Throughout the paper, capital script letters (e.g. X) denote tensors, bold capital letters (e.g.

X) denote matrices, and bold lowercase letters (e.g. x) denote vectors. Constants are represented

by normal uppercase letters (e.g.N) Scalars are represented by normal lowercase letters (e.g. x)

and hyperparameters are represented by Greek symbols (e.g. α, β, . . .). Subscripts i and j denote

the i-th row and j-th column of a given matrix, where i and j span the total number of entities; the

superscript t represents the time-step where a given scalar, vector, or matrix stores data.

For matrix operations, · represents matrix multiplication, and � represents element-wise

multiplication. For 3-dimensional tensors with a time dimension, the previous operations will be

applied to their slices at various time points (thus matrices) for each time-step within the time

dimension. As an example, to calculate C = A×B, where A ∈ RX×T×Y , B ∈ RY×T×Z and C ∈

5

RX×T×Z each time step in the time (T) dimension of C is the result of At×B t where At ∈ RX×Y

and Bt ∈ RY×Z .

1.4 Problem Definition

On each day t, given historical price data in a fixed-sized time window, our goal is to select

the stock(s) with the highest potential to increase in value of the next day price so that we can sell

the stock on day t+1 and iterate the process for the testing set. To determine which stock increases

the most between two consecutive time steps we use the return ratio:

r̂t+1 =
p̂t+1 − pt

pt
(Eq. 1)

Given the predictions for day t+1, represented as p̂t+1, we can compare the predicted price

with the ground-truth price on the previous day, pt, to predict the next-day return-ratio r̂t+1. The

company with the highest predicted return ratio,will be the highest-ranked choice for day t + 1

according to the model having seen history within the specified window size. To achieve this goal

we minimize the loss function LR described in Section 3.1.3.

1.5 Trading Strategy

To determine the performance of each model after training, the following trading strategy

is used: Each model is given $10,000 for investing and will purchase the highest ranked stock(s) at

their closing price on day t, which we can assume is equivalent to the opening price on day t + 1

if the model trades during the after-market. At the end of day t + 1, the model will sell the shares

it purchased on the previous day and purchase the next highest rated stock(s) for day t+ 2, having

seen price history up to t+ 1 within the time window. The model will spend no more than $10,000

per day, and will invest the entire portfolio if it has fallen below the $10,000 thresh hold.

1.6 Organization

The remainder of the paper is organized as follows: Chapter 2 will lay the foundation

for preliminary information such as mathematical notation, data types, and assessment metrics.

Chapter 3 will explain the theory behind the temporal model used in this thesis and the results

6

it achieved on our data set. Chapter 4 will expand upon Chapter 3 by introducing a graph based

structure to enhance predictions to be interdependent rather than independent. Chapter 5 details

our strategies for unraveling the mysteries inside our models, and we will conclude with Chapter 6,

where we comment on overarching results of our models and further research that can be explored.

7

2. GROUNDWORK

The chapter covers our coding framework, how data was collected and evaluated, their

dimensionality, their sources, and our baseline prediction strategies. We will also define our metrics

for assessing model performance.

2.1 Coding Environment

All machine learning code for this project was built using Tensorflow 2.3 and implemented

using Python 3.8. JupyterNotebook, Ipywidgets, bqplot, and Matplotib were used in conjunction to

create interactive models and plots for viewing and interpreting the data. Resources for reproducing

the results in this paper can be found in our GitHub repository.1

2.2 Data Types

2.2.1 Time-Series Data

The temporal training data used as the input for each model is stored as a tensor X ∈

RN×T×D where N is the number of entities, T is the number of time-steps, and D is the number of

features. The output labels are stored as Y ∈ RN×T ; given T time-steps as input, the output is T

time-steps shifted 1 day into the future.

2.2.2 Network Data

For relational data, the initial information is stored in a one-hot encoded adjacency ma-

trix, A ∈ RN×N , where a 1 represents a relationship and a 0 represents nothing. This adjacency

structure models a graph network where each company is a node and each relationship is an edge.

2.3 Data Collection

The project uses data from the NASDAQ stock exchange as curated in [5], which can be

found on their GitHub repository2.

1https://github.com/maxoflife-student/TAMU-ECEN-404-IFPTSND
2https://github.com/fulifeng/Temporal_Relational_Stock_Ranking

8

2.3.1 Time-Series Data

The dataset spans from 01/02/2013 to 12/08/2017, which is 1239 time-steps of trading days

after pruning, and contains the closing prices of 1,026 trading companies. However, in place of

masking, we reduced the data set to 880 companies to remove entities that contained missing values

for days that they were not publicly available for trading. For every company, 5 features were used

as input data: closing price and the 5-day, 10-day, 20-day, and 30-day moving averages (MA) of

the closing price. Additionally, each feature was normalized by dividing by the maximum value

within each time series; this guarantees that all features are bounded between 0 and 1. There are

various normalization techniques that can affect the performance of time-series, so we note that

this could be expanded in further research [9]. The features for Apple Inc. (AAPL) can be seen as

an example in Table 2.1.

Table 2.1: Example Input Features after Normalization for AAPL

Closing Price 5D-MA 10D-MA 20D-MA 30D-MA
0.429273 0.439414 0.428402 0.425433 0.441990
0.431209 0.427177 0.427924 0.425488 0.441073
0.433480 0.424421 0.426965 0.425639 0.440044

...

Each entities’ time-series data was saved using the comma-separated value (CSV) format and

such data for all companies were stored in the same directory with their company name as the file

name; this allows the relational code to categorize the companies by name.

2.3.2 Network Data

For relational data between companies, they are divided into 92 industries derived from

company classification for stocks within the NASDAQ. All companies that share an industry are

designated as having a relationship. All relations are stored within a .JSON file containing key val-

ues corresponding to industry type. Each key contains a list of all companies within that industry.

9

After the previous data set was reduced from 1,026 to 880 companies, the network data file was

also cleaned of companies that were removed from the data set.

2.4 Assessment Metrics

For the models compared in this thesis, 4 assessment metrics will be used to evaluate their

performance. While the Intraday Return Ratio is the most important, the Mean-Squared-Error,

Mean Rank, and Diversity provide a more holistic picture for model assessment, reducing the

black-box nature of their results.

1. Intraday Return Ratio (IRR)

The IRR for a given testing set is the total return ratio of a model’s portfolio value between

the first and last days of the testing set. This metric is extremely important because the

model with the highest IRR is the ultimate goal of stock prediction. However, a model can

be successful due to many reasons, one of which is random chance, so other metrics need to

be evaluated to ensure the model has learned a pattern rather than blindly generated value.

2. Mean-Squared-Error (MSE)

The MSE is a standard metric for evaluating model accuracy in regression problems. The

more accurately a model can predict the next-day price of a stock, the more accurate it

should be in predicting which stock will have the highest next-day return ratio. However,

if the model has a distribution of accuracy between high-value stocks and low-value stocks,

then a lower MSE might not necessarily mean a higher value return.

3. Mean Rank (MR)

The MR is the average ground truth rank position of the stock selected by the model. If

the model selected the stock with the highest ground truth return ratio for each day of the

testing set, i.e., a perfect prediction, this score would be 1. If the model selected the stock

with the lowest ground truth return ratio for each day in the testing set, the score would be

N , the total number of available choices to make each day. This metric is valuable because

it demonstrates performance based on rank-ability at each time step rather than at the end of

10

the test set.

4. Diversity

The diversity of a model is a simple validation that the model is making varied decisions day

to day rather than selecting one entity and purchasing it for the entire testing period. Let Nu

be the number of unique choices made on a given data set, and let Ttest be the number of days

in a testing set:

Diversity =
Nu

Ttest
(Eq. 2)

If the diversity is 1, then a unique stock choice was made on each day of the testing set. If the

diversity is approximately 0, then the model only selected the same few stocks during the testing

set. A low diversity score is not always a negative performance indicator for a model.

2.5 Baseline Average for Comparison

To realistically evaluate each model’s performance, its IRR is compared to the IRR of a

baseline model that equally divides its capital among all stocks on every time step as a lower limit.

This mimics the least volatile and lowest risk investment strategy: dividing capital equally among

all stocks in the market. This metric is useful for comparing models on the same data set since

long periods of negative return ratios are possible depending on external factors: recession, market

crash, or a global pandemic. A model might be able to achieve significantly less loss than the

aggregate average, so this baseline comparison ensures that the market itself is considered when

evaluating the model’s performance. Regardless of the state of the market, a model that is unable

to achieve a higher IRR than the aggregate average is a failure, since its stock choices are no better

than the expected value.

11

3. MODELING TEMPORAL DATA

In this chapter we study machine learning models that make use of temporal data. An

LSTM [10] network is used as the foundation to capture long-term temporal dependencies on the

time-series dataset. Earlier Recurrent Neural Networks (RNN), which are the predecessors for

LSTM networks, focus on pattern recognition and prediction for data formatted in a sequence:

speech recognition, natural language processing, or video classification. They have been widely

used in many fields of data science for learning systems that can be improved with historical in-

formation. However, earlier RNN models suffer from the “vanishing gradient problem”, where no

useful gradient information can back-propagate deeply to train the models [11]. LSTM networks

avoid this by using cell-states that can capture dependencies on hundreds of time steps without

losing relevant information. In this chapter, an LSTM network will be trained over the time-series

features of company stock closing prices predict the next-day closing price of each stock; using

this information, we implement the trading strategy described in Section 1.4 using the resulting

predictions.

3.1 Methods

3.1.1 LSTM Model

State information is passed forward through LSTM cells through a vector Ct, which allows

prior information to be passed to future outputs. Within each cell is a forget gate (ft), input gate

(it), and output gate (ot) each with dimensionality RU, where U is size of the hidden layer. The

forget gate contains a learnable parameter, Wf , to determine the magnitude of how much old

information will be utilized from the previous timestep’s LSTM cell; the input gate contains a

learnable parameter, Wi, to determine the magnitude of how much the current input and previous

output will be utilized, and the output gate contains a learnable parameter, Wo, which is multiplied

by a hyperbolic tangent activation of the sum of input and forget gates, Ct, to calculate the final

output [12].

12

LSTM Cell Visualization

Figure 3.1: Internal information gates of an individual LSTM cell remade based on figures in [12]

ft = σ(Wf [et−1, xt] + bf) (Eq. 3)

it = σ(Wi[et−1, xt] + bi)

Ĉt =tanh(WC [et−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ Ĉt

ot = σ(Wo[et−1, xt] + bo)

et = ot ∗ tanh(Ct)

Note: the subscript t used within the LSTM cells represents an index for past and future cells,

while the subscript t on output and input vectors represent which time step they originate

from.

13

While specific internal implementation may vary, Figure 3.1 is the general structure and di-

mensionality of an LSTM cell. To formulate the final prediction for each company’s next day price,

the output embeddings of each cell, eti ∈ RU , are summarized as a layer to encompass all time steps

and companies as Et ∈ RN×T×U , which is fed into a dense layer with output dimensionality RN×T

so that all next day time steps can be calculated and trained for each company.

3.1.2 Hyperparameters

3.1.2.1 Batch Size

When training an LSTM model in Tensorflow, the input data is of shape [batch size, number

of time steps, number of features]. This means our data, which is of dimensionality RN×T×D, uses

companies as the batch-dimension. The batch-size hyperparameter was tuned after realizing that

batches of different sizes were affecting how much the loss function could be minimized. By

changing the batch size, we divide the initial input data into varying batches of companies that are

passed through the model. For example, with a batch size of 10, the input is of dimensionality

R10×T×D and the output is R10×T×1. After each batch, the internal model parameters are updated

using the loss function. The results of varying the batch size for a subset of our data are shown in

Figure 3.2.

3.1.2.2 Window Size

On day t, the model is given a window of historical price data as input which spans [t −

WindowSize, t]. Using this data, the model will form a prediction for days [t−WindowSize+1,

t + 1]. As t is incremented, the sliding window of input data shifts so that the most recent data is

appended to the front and the oldest data is truncated from the back.

Using the implementation of the LSTM model provided by TensorFlow, we have the option

of implementing our model with return sequences. Using return sequences expands the output

dimension of our model from RN to RN×T so that a prediction is generated between every time

step rather than just the final one. Additionally, this requires that the input time dimension of the

model remain static, so the training and validation splits must be identical for training.

14

3.1.3 Loss Functions

3.1.3.1 Mean-Squared-Error

The MSE is a common loss function used in regression models. It converges to 0 as the

predicted value converges to the ground truth. In our model, the output predictions are price,

but the ground truth and predicted return ratios are used for calculating the MSE. See Eq. 1 for

calculating r from p.

LMSE(pt, p̂t) =
∥∥rt − r̂t∥∥2 (Eq. 4)

For predicting the next day closing price of each stock using regression, the MSE is calcu-

lated between the predicted return ratio and the ground truth return ratio at time t. However, since

the primary objective of the model is to choose the most profitable stock(s) regardless of their

ground truth closing price, a pair-wise ranking-aware loss term [5] is added to the loss function.

3.1.3.2 Rank Oriented Pair-Wise Margin Loss

LR(pt, p̂t) =
∥∥rt − r̂t∥∥2 + α ·

∑N
i=0

∑N
j=0ReLU(−(r̂ti − r̂tj)(rti − rtj))

N2
(Eq. 5)

The first term encourages the model to correctly predict closing price by punishing pre-

dictions based on their difference with the ground truth return ratio. The second term encourages

the relative order of each stock’s return ratio to match the ground truth’s order as a pair-wise

max-margin loss [13]. For each entity pair, the difference between their predicted return ratios

is multiplied by the difference between their ground truth return ratios with a sign inversion; A

ReLU function is applied, creating a loss term that is nonzero and increases for entity pairs that

are incorrectly ranked. The final values of the second term are averaged to avoid scaling the loss

function with the number of entities or time steps present in the training data. Additionally, the

hyperparameter α is added and tuned to balance the impact of the rank-loss term which might have

a vastly different magnitude than the MSE. The results of varying the magnitude of α is shown in

15

Figure 3.4.

3.1.4 Adam Optimizer

We used the Adam optimizer proposed in [14] to optimize the parameters of our models.

The internal mechanisms for controlling the learning rate for gradient descent are adaptive and

require little modification to achieve optimal results.

3.1.5 Implementing the Trading Strategy

In order to implement the trading strategy described in Section 1.5, we calculate the next

day return ratios as a vector, r̂t+1, described in Eq. 1 using the output predictions, p̂t+1, of the

LSTM model. Since each value in the vector corresponds to an individual company’s predicted

next day return ratio, we select the index with the maximum value to determine the company

selection. For the top k selections, this process is iterated on a single time-step until the k highest

stocks have been selected. Once the top stock(s) have been selected, $10,000 from the portfolio is

multiplied by the average ground truth return ratios for the selected stock(s) from rt+1 + 1.

16

3.2 Results

3.2.1 Hyperparameter Tuning

3.2.1.1 Batch Size Tuning

MSE vs. Batch Size

Figure 3.2: Comparison of the average prediction MSE for the validation set between LSTM
models of varying batch sizes

As seen in Figure 3.2, when the batch size is reduced to N/5 or lower, the average MSE

on the validation set significantly drops. This pattern continues with incrementally smaller batch

sizes but does not yield the same magnitude of increased accuracy.

17

IRR vs. Batch Size

Figure 3.3: Comparison of the IRR at the end of the validation set between LSTM models trained
with various batch sizes

As seen in Figure 3.3, a batch size of N /40 yielded the highest IRR on the validation set.

There is a trend that decreasing the batch size increases the IRR, but the N /40 variation yields the

highest return. Thus, we adoptN/40 for the remainder of the thesis. Note: On this dataset Y-axis

is flipped.

18

3.2.1.2 Rank Loss Tuning

IRR vs. Alpha

Figure 3.4: Comparison of the IRR at the end of the validation set between LSTM models of
varying alpha magnitudes

Table 3.1: Validation Metrics for Various α Values.

α MSE IRR MR Di

0 8.03e-04 1.5890 438.19 39.19%

1 7.68e-03 -0.3014 384.35 9.09%

10 5.91e-04 2.2649 421.79 28.69%

100 5.73e-04 -0.2767 358.40 9.70%

1000 8.27e-04 -0.1417 457.81 13.94%

10000 1.11e-02 -0.6280 540.59 29.29%

20000 3.15e-02 -0.5910 407.05 11.11%

19

As can be seen in Figure 3.4, the LSTM model with α = 10 yielded the highest IRR after

making predictions on the validation set. We note that the model with α = 0 is equivalent to the

baseline MSE model with no regard to stock ranking, which performed worse. These results attest

to the importance of both MSE and rank-based loss functions.

3.2.2 Tuned Temporal Model Performance

Temporal Model Trading Strategy on the Testing Set

Figure 3.5: The baseline LSTM model and the model trained with a rank aware loss function are
compared against the testing set average

20

Table 3.2: Comparison between baseline LSTM, rank oriented LSTM, and the testing set average

Model MSE IRR MR Di

Average - 0.1689 - -

LSTM (MSE) 5.03e-04 -0.5336 374.53 31.33%

LSTM (α = 10) 6.30e-04 0.4782 449.90 42.17%

3.3 Conclusions

3.3.1 Decreased Batch Size

One hypothesis for why decreasing the batch size increases model accuracy is that a lower

batch size encourages more generalized prediction results [15]. If the model updates the internal

parameters after viewing each subset of companies, the outlier entities are less likely to affect the

standard entities since their impact on the overall model is reduced by a factor of the batch size.

Since a batch size of N/40 produced the highest IRR on its validation set, it will be used for the

remainder of the thesis within the LSTM model.

3.3.2 Rank Oriented Loss Function

By introducing a rank-oriented loss function [5] into our temporal model, we were able

to significantly increase model performance compared to both the standard LSTM with an MSE

loss function and the average return rate for the testing period. With an increase in model perfor-

mance, this model is better equipped for the next chapter in which we will build upon the temporal

embeddings by introducing relational information.

21

4. JOINTLY MODELING TEMPORAL AND RELATIONAL DATA

In this chapter, we aim to further improve model performance by using additional data

beyond temporal. Whereas LSTM models treat temporal data of individual companies as indepen-

dent, new structures will be introduced to consider the dependency among companies. We will do

this using a GCN, which is currently a state-of-the-art deep neural network structure that’s found

success in protein-protein interactions, social networks, transportation, and many more fields [16].

Our GCN will learn parameters over a graph structure where each company is a node with edges

connected to other companies. It will be combined with our pre-trained LSTM by smoothing its

embeddings using learned parameters from relational data. Predictions will not only be based on

historical information of a company, but also the historical information of all companies in its

shared industry. Using sector-industry relationships described in Section 2.3.2 as a baseline, we

hope to learn relationships utilizing the output embeddings of the LSTM in both explicit and im-

plicit forms. We will expand upon previous work by implementing a different variation of the

explicit model.

4.1 Methods

4.1.1 LSTM + Aggregate Smoothing

The output embeddings of the LSTM model have already captured the time-dependent

patterns of stock price. The goal of the relational layer is to further enhance those sequential

embeddings by introducing a learned, interdependent connection between companies within the

same industry. Initially, the predicted closing price of each stock is dependent only upon its own

prior history; after inserting an aggregate smoothing layer into the model, the predicted closing

price will also be dependent on the values of its neighbors.

22

Figure 4.1: Comparison of network layers between the temporal and temporal-relational models

4.1.2 Modeling Relationship Strength

Expanding upon the research done in [5], we model a GCN using aggregate feature smooth-

ing where the strength function, g, is learned from the output sequential embeddings of the tempo-

ral model. This introduces interdependencies into the model before finalizing its prediction values.

Let nr be the number of relationships between any company i and j.

ēti =
nr∑
j=0

g(aij, eti, etj)
dj

etj (Eq. 6)

In the following sections, we will outline different variations of the strength function g, that

utilize the output embeddings and relational data in different ways.

23

4.1.2.1 Explicit Model

For the explicit model, we let the weight matrix Wg learn a strength value using only the

given adjacency matrix. The output embeddings of company i and j are multiplied using the dot

product, which is an explicit and intuitive way to determine the similarity between the two entities

at a given time step t. The more highly correlated that two companies’ histories are, the higher the

the value of the strength function:

g(aij, eti, e
t
j) = (et>i etj)φ(w>g aij + bg) (Eq. 7)

4.1.2.2 Implicit Model

In the implicit design, we let the weight matrix Wg learn the strength value based on the

given adjacency matrix, output embeddings for company i, and the output embeddings for com-

pany j. Instead of forcing a strength function based on similarity, the weight matrix should be

capable of learning the relationships implicitly without the need for explicitly defining it.

g(aij, eti, e
t
j) = φ(w>g [aij, eti, etj] + bg) (Eq. 8)

4.1.2.3 Expanded Explicit Model (Explicit+)

To expand upon the explicit design, we hypothesize that it might be possible to have the

benefits of explicitly defining the similarity function between two entities, but also reap the benefits

of learning the strength value using a weight matrix and non-linear activation function. Let St ∈

RN×N contain all (et>i etj) pairs.

g(aij, eti, e
t
j) = σ(w>e st)φ(w>g aij + bg) (Eq. 9)

24

4.2 Results

4.2.1 Highest Rank Choice for GCN Models

Single Layer Temporal-Relational Model Trading Strategy on the Testing Set

Figure 4.2: Temporal-relational models are compared on the testing set compared to average:
explicit, implicit, explicit+

Table 4.1: Comparison between the explict, implict, explicit+, and the testing set average

Model MSE IRR MR Di

Average - 0.1689 - -

Explicit 2.59e-02 -0.1761 218.02 0.80%

Implicit 1.94e-03 0.3314 426.53 15.26%

Explicit+ 1.88e-02 0.0082 335.19 2.01%

25

4.2.2 Top k Choices for GCN Models

Explicit Model Top k Choices Trading Strategy on the Testing Set

Figure 4.3: The daily portfolio value of explicit model strategies where the top k companies are
selected

26

Table 4.2: Performance comparison between explicit model strategies where the top k companies
are selected

Model MSE IRR MR Diversity

Average - 0.1689 - -

Explicit - Top 1 2.59e-02 -0.1761 218.02 0.80%

Explicit - Top 4 2.59e-02 -0.1037 249.27 1.91%

Explicit - Top 8 2.59e-02 0.0957 266.24 2.41%

Explicit - Top 16 2.59e-02 0.2826 281.61 2.66%

Explicit - Top 44 2.59e-02 0.2821 322.79 2.58%

Explicit - Top 220 2.59e-02 0.2984 443.22 1.24%

Implicit Model Top k Choices Trading Strategy on the Testing Set

Figure 4.4: The daily portfolio value of implicit model strategies where the top k companies are
selected

27

Table 4.3: Performance comparison between implicit model strategies where the top k companies
are selected

Model MSE IRR MR Diversity

Average - 0.1689 - -

Implicit - Top 1 1.94e-03 0.3314 426.53 15.26%

Implicit - Top 4 1.94e-03 0.2199 419.98 14.16%

Implicit - Top 8 1.94e-03 0.4851 419.95 14.91%

Implicit - Top 16 1.94e-03 0.2619 419.83 11.72%

Implicit - Top 44 1.94e-03 0.3191 424.73 6.50%

Implicit - Top 220 1.94e-03 0.2758 480.16 1.60%

Explicit+ Model Top k Choices Trading Strategy on the Testing Set

Figure 4.5: The daily portfolio value of explicit+ model strategies where the top k companies are
selected

28

Table 4.4: Performance comparison between explicit+ model strategies where the top k
companies are selected

Model MSE IRR MR Diversity

Average - 0.1689 - -

Explicit+ - Top 1 1.88e-02 0.0082 335.19 2.01%

Explicit+ - Top 4 1.88e-02 0.1207 351.49 3.51%

Explicit+ - Top 8 1.88e-02 0.0337 353.58 3.66%

Explicit+ - Top 16 1.88e-02 0.0075 357.59 3.01%

Explicit+ - Top 44 1.88e-02 0.2569 378.57 2.47%

Explicit+ - Top 220 1.88e-02 0.2578 460.89 1.35%

4.2.3 Similarity among Various Models’ Investment Choices

Let Ttest represent the number of time steps present in the testing set. At each time step, each

model selects the highest-ranked choice based on its predictions of return ratios. Each selection

is stored as an integer c (company index) where c ∈ {0, ..., (N − 1)}. By counting the total

occurrences when two models made the same decision on the same day, and then dividing by Ttest,

we calculate a percentage total of pairwise similarity between any pair of models. In Table 4.5 we

show the pair-wise similarity between the between all k = 1 models trained up to this point.

29

Table 4.5: Similarity comparison between all the k = 1 models

LSTM LSTM LSTM+GCN LSTM+GCN LSTM+GCN

(α = 0) (α = 10) Explicit Implicit Explicit+

LSTM (α = 0) 100% 53.04% 0% 21.86% 6.07%

LSTM (α = 10) 53.04% 100% 2.83% 31.17% 6.47%

LSTM + GCN Explicit 0% 2.83% 100% 45.74% 89.47%

LSTM + GCN Implicit 21.86% 31.17% 45.74% 100% 55.06%

LSTM + GCN Explicit+ 6.07% 6.48% 89.47% 55.06% 100%

Alpha-10 and Implicit Model Choice Similarity on the Testing Set (31.17% Similarity)

Figure 4.6: Alpha-10 and implicit model portfolios are shown, and the day is highlighted if
models chose the same company on the same day

30

Explicit and Implicit Model Choice Similarity on the Testing Set (45.74% Similarity)

Figure 4.7: Implicit, and explicit model portfolios are shown, and the day is highlighted if models
chose the same company on the same day

4.3 Conclusions

4.3.1 Implicit vs. Explicit Modeling

Looking at the results of the single-choice implicit and explicit models in Section 4.2.1,

the implicit model is vastly superior on this testing set. Not only did it increase its portfolio value

by 33.14%, but it was also able to do so with diverse company decisions, choosing 37 different

companies over the trading year. The explicit and explicit+ models were worse than average,

meaning they are not viable in a real financial market. Their diversity scores indicated that they

only chose 2 companies and 5 companies respectively. In [5], selecting the highest ranked company

on each time-step returned the highest IRR. However, given the low diversity score of the explicit

models, but better mean-rank score, perhaps selecting the top k choices can improve performance.

31

4.3.2 Top k Stock Selection

4.3.2.1 Explicit Model

When looking at the top k selection strategies for the explicit model, the results drastically

improve. The k = 8 model resulted in an IRR below average. But past k = 8, the IRR continued

to improve with each successive increase in the number of stocks selected. For this data set, this

implies that the similarity between two stocks is not optimal selecting the best possible stock on

any given day. However, using the similarity to provide a general ranking was effective because

the top 25% of selections performed better than the expected value.

4.3.2.2 Implicit Model

Given that the highest-ranked choice was better than average, it is not surprising to see that

all implicit models performed better than average given that the success of the selected stocks in

the k = 1 case was not an outlier. As can be seen in Figure 4.4, the k = 220 and k = 44 models

demonstrate sustained growth rather than the volatile nature of k = 1. Either model choice might

be preferred depending on the investor, state of the market, and individual risk tolerances.

The k = 8 choice for the implicit also model demonstrated the best performance out of all

models tested on this data set with a portfolio increase of 48.51% after approximately one trading

year. However, this result was only achieved after a significant price increase near day 200, which

might be an outlier.

4.3.2.3 Explicit+ Model

While expanding our horizons to look at different k top choices for the explicit and implicit

models revealed interesting insights into their performances, the explicit+ model appears to be

worse than either predecessor. The addition of a learned parameter only hindered the original

explicit model rather than improve it. The IRR was worse than average until k = 44, at which

point the model improved similarly, but less effectively, compared to the implicit and explicit

models.

32

4.3.3 Selected Company Similarity

For the models demonstrated so far, we’ve only compared their performance as functions of

individual decisions. When looking at the portfolio values across time, most model choices visibly

diverge. However, sometimes two models will make identical decisions later in the dataset because

internal indicators for prediction are strong enough to pull both models to a certain choice. This is

visibly apparent on day 130 of Figure 4.2, and then verified by Figure 4.7 where we’ve highlighted

all time steps where both models invested in the same company.

We show the similarity percentage between models in Table 4.5 to further validate and

assess their overall performances. It provides numerical proof that the consecutive upgrades of

each model are not only providing an increase in return ratio but that they do so by learning new

strategies that can avoid pitfalls of previous models while still relying on old successes. As can be

seen in 4.6, even though the two portfolios are visually similar, their choices are 68.8% dissimilar,

highlighting that visual interpretations of time-series data can be misleading without understanding

the underlying systems.

Not only can we assess our models using their similarity, but we can also use their simi-

larity to assess the qualities of our data. By analyzing which time steps are most similar or most

dissimilar across drastically different models, we can gain insights about the outlier time steps. If

a certain stock is always purchased on a certain time step across all temporal models but never

purchased for temporal-relational models, we learn more about the nature of our data. If a poor

investment choice is made across all models, as can be seen on day 118 of both Figure 4.6 and Fig-

ure 4.7, perhaps a deeper issue exists with the trading strategy or data set which cannot be solved

by training or tuning models with the given data alone.

33

5. MODEL INTERPRETABILITY

While the ultimate goal of model performance is to select the highest-ranked stocks, treat-

ing a model as a black box is wasting the potential in interpreting and understanding underlying

patterns of financial markets. In this chapter, we will cover several methods for better understand-

ing and evaluating the internal mechanisms that govern our model decisions.

5.1 Temporal Feature Importance with Perturbation Analysis

To analyze the feature importance of our temporal models , we run our testing data X

through the LSTM (α = 10) model undisturbed to output a resultant Y . Then we perturb one

feature, fi (i = 1, . . . , 5), of the input data by adding a random normal variable V ∼ N (0, 0.2) to

every value in the feature column. The perturbed X̂ is run through the model to produce Ŷ , which

can be compared to the original Y using the MSE to determine what effect the perturbation had on

the output. This process is repeated for each individual feature. Since each feature was perturbed

with the same Gaussian distribution with a sufficiently large sample size, we can normalize the

results to determine the relative strength that each feature has on the output prediction.

Table 5.1: Output perturbation values for individual features of the temporal data set

Feature Perturbation Effect Perturbation Effect (Normalized)

Closing Price 0.0823 0.468

5D-MA 0.0324 0.184

10D-MA 0.0238 0.135

20D-MA 0.0230 0.131

30D-MA 0.0142 0.081

34

Normalized Temporal Feature Importance

Figure 5.1: The strength of each feature on the temporal data set is shown

Unsurprisingly, the most important feature for the LSTM model was the closing price of

each stock. This makes sense given that, on average, the previous day’s closing price should be

closer to the current day’s actual price compared to the 5, 10, 20, and 30-day moving averages.

This pattern is sequentially shown as well; as the number of days calculated within the MA in-

creases, the feature importance decreases. While the value of the 30D-MA is pessimistically low

for attempting to learn extremely long temporal patterns, it is motivating to know that over 50% of

feature importance is not reliant on just the previous day’s closing price.

Given that the feature importance decreases approximately by a factor of 2 with each ad-

dition of an MA, expanding the features on this data set to 50D-MA and 100D-MA might further

improve model performance. Many other temporal stock indicators like volume, volatility, and

momentum could also be added for improved performance or for interpretability about which pre-

dictors are best suited for different markets or strategies. Additionally, the perturbation method

for extracting feature importance can be expanded into the graph domain for better understanding

relational models as well.

35

5.2 Company Relation Importance with Heatmap Analysis

To interpret the mechanisms behind decisions made by a GCN, we start with a heatmap

where the X and Y axes are symmetric and each tick is a company, and the strength between them

is represented by a gradient color-scale. Shown below in Figure 5.2 are four random subsets of

companies and their relationship pairs.

Heatmaps of Company Relationship Strength - Before & After (Implicit Model)

Figure 5.2: Each row shows input company relationship strengths, their weight initialization, and
post-training relationship strengths for a random subset of companies

36

The first column visualizes the original relationships specified in our adjacency matrix, A.

The second column shows the internal adjacency matrix of the implicit model after one epoch

of training. The third column shows the matrix after the last epoch of training. Each column’s

relationship strength scale is normalized by the minimum and maximum of the entire N × N

adjacency matrix for that epoch.

As can be seen in the original relationships column, the diagonal of each matrix is 1; this

represents the self-loop of the graph, specifying that every company shares a relationship with it-

self [17]. Intuitively, this makes sense because even though our objective is to utilize relational

information, attempting to predict the closing price of a company while only relying on neighbor-

ing values seems unnecessarily difficult. However, by looking at the third column, we see that

some companies learned not to purely rely on their own price history after training. Table 3.2 and

Table 4.1 support this result since they show that temporal models have lower MSE than temporal-

relational models. Instead of utilizing the self-loop, it appears as though the model has found a

local minimum where some company predictions are the result of hundreds of small aggregations;

this might be correlated with the higher error.

After training, the distribution total of strength is much more dispersed compared to the

original adjacency matrix. Even if the contributions are small, almost every company relationship

pair is aggregated with each other since the minimum value is non-zero. Interestingly, in Figure

5.2, we cannot find an occurrence where an initially zero strength relationship became darker than

the surrounding aggregate noise. This signifies that our implementation of the learned relationships

might be too restrictive and limiting the exploratory capabilities of machine learning models.

For future research, we will analyze the outlier relationships where the model decided to

ignore the self-loop or was able to maintain a strong strength function. Companies without a self-

loop might be too volatile to predict, whereas relationships that withstood hundreds of epochs of

training could indicate two extremely correlated companies. Figure 5.2 only scratches the surface

of possible interpretabilities for GCNs.

37

6. CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

In this thesis, we conducted numerical experiments demonstrating gradual improvements in

time-series forecasting accuracy for the NASDAQ financial market. Starting with a state-of-the-art

sequential model (LSTM) as a baseline, we showed that LSTM models can be further enhanced

by considering entity ranking in the loss function beyond standard regression errors. The addition

of a graph structure allowed the resulting LSTM+GCN models to aggregate time-series data of

multiple entities together before making a prediction. This demonstrated similar and better than

average accuracy compared to independent models but did so by choosing different stock choices:

signifying that multiple successful strategies for investment are possible on a given data set.

We also provided multiple methods for comparing and understanding the output predictions

of our models, such as selection similarity for all models and heatmap visualizations for relational

models. We hope that any data scientist or finance-market stakeholder interested in the field of

temporal, relational, or temporal-relational machine learning models can also utilize these methods

for their own interpretability or assessment.

6.2 Future Directions

We note that this is only the tip of the iceberg for the potential of graphical neural networks

in financial market predictions. The models were only applied to the NASDAQ stock exchange as a

proof of concept, but can be applied to other exchanges. Additionally, less traditional markets like

cryptocurrency [18] and trading card exchanges [19] have seen a surge in market capacity during

the COVID-19 pandemic and unexplored strategies in these markets might also be uncovered.

The ultimate objective of our models was to maximize profits by purchasing a stock each

day and selling it the next day with a fixed spending budget. This is a simple trading strategy

that mimics rational actors in a system, but financial markets offer a variety of different trading

strategies that can be researched further:

38

• Variable Investments - Instead of always investing the same amount of money each day, the

model could be incentivized to learn a confidence interval for each investment. Time steps

with large losses could be minimized while time steps with large gains could be exploited.

• Buy and Hold - We can incentivize longer investment positions by predicting how long a

stock should be held instead of selling it after one time step. Expanding the time window

in which a stock’s value moves might generate models with less risk or assist in avoiding

situations where multiple good options are neglected for the best option.

• Short Selling - Short selling allows investors to profit on a stock’s value decreasing rather

than increasing. Instead of selecting the best potential stock at any given time step, it might

be more effective to select the worst potential stock and utilize short positions. Indicators for

failure might be more trainable than indicators for success.

Another application of jointly modeling sequential and relational predictions in the finance

market is reinforcement learning. Since the ultimate objective of financial prediction is earning the

most return, it might be more effective to skip the regression step of predicting each stock’s rank

and directly incorporate the IRR into the loss function. GCN structures have already shown success

in the reinforcement field [20], and applying those models to the financial market should produce

completely new results since the problem is being approached from a different perspective.

The results of this thesis would not be possible without the combined efforts of many re-

searchers and data scientists building its foundations. Anyone is welcome to reproduce the results

in this thesis or utilize the models on another data set to expand the research. The availability

information of our codes and data is provided in Section 2.1.

39

REFERENCES

[1] Bloomberg, “Global market capitalisation exceeds world gdp, evoking ’bub-
ble’ concern,” Business Standard, Aug 2020. Available: https://www.business-
standard.com/article/markets/global-market-capitalisation-exceeds-world-gdp-evoking-
bubble-concern-120081100073_1.

[2] G. L. Musgrave, “Review: A random walk down wall street,” Business Economics, vol. 32,
no. 2, pp. 74–75, 1997.

[3] A. Lo and A. MacKinlay, A Non-Random Walk Down Wall Street, pp. 3–11. Princeton Uni-
versity Press, 2011.

[4] E. Beyaz, F. Tekiner, X.-j. Zeng, and J. Keane, “Comparing technical and fundamental indica-
tors in stock price forecasting,” in 2018 IEEE 20th International Conference on High Perfor-
mance Computing and Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pp. 1607–1613, IEEE, 2018.

[5] F. Feng, X. He, X. Wang, C. Luo, Y. Liu, and T.-S. Chua, “Temporal relational ranking for
stock prediction,” ACM Transactions on Information Systems (TOIS), vol. 37, no. 2, pp. 1–30,
2019.

[6] D. M. Nelson, A. C. Pereira, and R. A. de Oliveira, “Stock market’s price movement predic-
tion with lstm neural networks,” in 2017 International joint conference on neural networks
(IJCNN), pp. 1419–1426, IEEE, 2017.

[7] D. Matsunaga, T. Suzumura, and T. Takahashi, “Exploring graph neural networks for stock
market predictions with rolling window analysis,” arXiv preprint arXiv:1909.10660, 2019.

[8] R. Kim, C. H. So, M. Jeong, S. Lee, J. Kim, and J. Kang, “Hats: A hierarchical graph attention
network for stock movement prediction,” arXiv preprint arXiv:1908.07999, 2019.

[9] S. Bhanja and A. Das, “Impact of data normalization on deep neural network for time series
forecasting,” arXiv preprint arXiv:1812.05519, 2018.

40

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[11] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural nets and
problem solutions,” International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 6, no. 02, pp. 107–116, 1998.

[12] C. Olah, “Understanding lstm networks,” 2015. Available: https://colah.github.io/posts/2015-
08-Understanding-LSTMs.

[13] Z. Zheng, K. Chen, G. Sun, and H. Zha, “A regression framework for learning ranking func-
tions using relative relevance judgments,” in Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval, pp. 287–294,
2007.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[15] I. Kandel and M. Castelli, “The effect of batch size on the generalizability of the convolutional
neural networks on a histopathology dataset,” ICT express, vol. 6, no. 4, pp. 312–315, 2020.

[16] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph neural
networks: A review of methods and applications,” AI Open, vol. 1, pp. 57–81, 2020.

[17] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-
works,” arXiv preprint arXiv:1609.02907, 2016.

[18] B. Bambrough, “Bitcoin’s next boom has already begun,” Forbes, Apr 2020.
Available: https://www.forbes.com/sites/billybambrough/2020/04/10/bitcoins-next-boom-
has-already-begun/?sh=15db19885c64.

[19] T. Beer, “Ebay reports increase of 4 million trading cards sold in 2020,” Forbes, Feb 2021.
Available: https://www.forbes.com/sites/tommybeer/2021/02/11/ebay-reports-increase-of-4-
million-trading-cards-sold-in-2020/?sh=4d2d34f91963.

[20] J. Jiang, C. Dun, T. Huang, and Z. Lu, “Graph convolutional reinforcement learning,” arXiv
preprint arXiv:1810.09202, 2018.

41

	ABSTRACT
	ACKNOWLEDGMENTS
	NOMENCLATURE
	INTRODUCTION
	Investment Fundamentals
	Deep Neural Networks
	Mathematical Notations
	Problem Definition
	Trading Strategy
	Organization

	GROUNDWORK
	Coding Environment
	Data Types
	Data Collection
	Assessment Metrics
	Baseline Average for Comparison

	MODELING TEMPORAL DATA
	Methods
	Results
	Conclusions

	JOINTLY MODELING TEMPORAL AND RELATIONAL DATA
	Methods
	Results
	Conclusions

	MODEL INTERPRETABILITY
	Temporal Feature Importance with Perturbation Analysis
	Company Relation Importance with Heatmap Analysis

	CONCLUSIONS AND FUTURE DIRECTIONS
	Conclusions
	Future Directions

	REFERENCES

