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ABSTRACT

Multimodal Data Fusion and Machine Learning for Deciphering Protein-Protein Interactions

Arghamitra Talukder
Department of Electrical and Computer Engineering

Texas A&M University

Research Faculty Advisor: Dr. Yang Shen
Department of Electrical and Computer Engineering

Texas A&M University

Protein-protein interactions (PPIs) often underlie important biological processes. Due to

the vast quantity of potential PPIs in living organisms, it can be an expensive if not daunting task

to identify each PPI experimentally, thus computational methods have been developed in parallel

to facilitate the task. Despite various experimental or computational methods to determine or

predict PPIs, a knowledge gap is often there to understand the 3-dimensional interactions in atomic-

level details. This research project aims to leverage the existing protein data and emerging tools

of machine learning to both predict and explain protein-protein interactions. Specifically, using

various modalities of protein data including 1D sequences and 2D structures, several hierarchical

recurrent neural network (HRNN) and joint attention based models have been developed. These

models predict whether two proteins interact (the probability of PPI) and, if they do, how they

interact (the probabilities of their residue-residue contacts (RRC)). The prediction of PPI from

model I (uses only 1D sequences) has Area under the Precision-Recall Curve (AUPRC) output of

0.738. In the comparative analysis of model I with state-of-the-art PPI-detect [1], the precision,

sensitivity and accuracy increased 7.8%, 9.5% and 6.2% respectively setting the geometric mean

as binary threshold. To predict inter-protein RRC map, a gradual improvement has been observed
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from model I , model II (uses sequence pre-training and inter RRC maps to fine tune) and model III

(uses both sequences and intra-protein RRC maps) in case of test set. As a result, the best AUPRC

for test set reached 2.78e-3 (model III), from 2.51e-3 (model II) and 1.10e-3 (model I). Thus, model

III showed 153% AUPRC improvement than model I and 11% than model II; additionally model II

showed 128% improvement than model I. The performance evaluations of these models show that

the advantage of big data for 1D modality alone is not good enough to predict inter-protein RRC

maps; rather joint attentions supervised by training PPI structure data and pretraining sequence

embedding by model I as done in model II give much better inter-protein RRC predictions. The

further combination of sequences and intra-protein RRC maps in model III, two modalities of

individual protein data, shows the best results.
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NOMENCLATURE

PPI Protein-protein interaction

RRC Residue-residue contact

MSA Multi-sequence alignment

DCA Direct coupling analysis

plmDCA Pseudolikelihood maximization DCA

UniProt Universal Protein Resource

PDB Protein Data Bank

SOTA State of the art

HRNN Hierarchical recurrent neural network

GRU Gated recurrent units

HPRC High Performance Research Computing

AUPRC Area Under the Precision-Recall Curve

AUROC Area Under Curve - Receiver Operating Characteristics
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1. INTRODUCTION

1.1 Proteins and Protein-Protein Interactions

Living systems including the human body are organized in hierarchical levels such as

molecules, cells, tissues, and organs. One of the most important cellular molecules is the pro-

tein. Proteins contribute to most biological processes including genetic expression, intercellular

communication, morphology, nutrition absorption and so on.

Proteins are linear chains of amino acids bonded sequentially. The 1-dimensional (1D)

amino-acid sequences determine proteins’ identities; and they often “fold” into 3-dimensional

structures to express their specific functions. As the mechanisms of the human body are revealed,

proteins are often found to interact with each other (among other molecules). Analyzing protein

behaviors from the perspective of protein-protein interactions would help understand the biological

processes they underlie.

1.2 Current Methods for Studying Protein-Protein Interactions

For the binary outcome of PPIs (whether proteins interact), there are various experimental

methods such as affinity purification [2], yeast two hybrid [3], co-immunoprecipitation [4]. These

experimental methods are high-throughput and accumulating large amount of binary data on PPIs.

However, considering the vast space of potential PPIs in living systems, computational methods of

even higher throughput have been developed. Some computational methods adopted homology-

based approaches like interolog search. Interolog search is based on the principle that interactions

are conserved and interlogs are homologous pairs of protein interactions across different species.

The homology-based method also includes phylogenetic similarities which relates to the common

ancestor proteins among species [5]. The simulation-based methods include protein docking. Pro-

tein docking is molecular modeling which predicts the mutual orientation [6]. A lot of machine

learning techniques have been also applied based on protein sequence, structure and function. The

limitations with these approaches are the difficulties to model any conformational changes in dock-

ing and lack of thorough understanding of the binding mechanism in learning. [5]
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For the 3D structures of PPIs (how proteins interact), experimental methods are of lower

throughput compared to those to identify whether proteins interact. Such structure determination

experiments include X-ray crystallography [7], nuclear magnetic resonance (NMR) [8], and cryo-

EM [9], [10] . Besides the relatively lower throughput, they each have their limitations and are

not directly amenable to all PPIs. Computational methods are thus developed in parallel, includ-

ing principle-driven protein docking and data-driven machine learning methods. Protein docking

methods find the best fit between two protein structures, with atom-level details, by following

the principle of energy minimization, which faces the challenge to model protein conformational

changes, to derive a powerful energy function, and to search the conformational space efficiently.

Recently, data-driven methods have been developed to find coarser-grained, amino acid (or residue)

level 3D contact patterns between proteins. Examples include unsupervised methods such as di-

rect coupling analysis based on residue-residue co-evolution [11] as well as supervised machine

learning methods [12]. These data-driven methods face the challenges from limited data especially

evolution data and 3D structure data for protein pairs.

1.3 Project Overview

An accurate PPI prediction model will serve several objectives including pathways for un-

known proteins, different binding modes, specificity of protein based multiple targets, effectiveness

of drugs, and design of new protein etc. This project will take a data-driven approach to simultane-

ously predict whether and how proteins interact. And the method development directly addresses

aforementioned challenges to current methods, especially the data limitation, by data fusion in

machine learning.

Specifically, this project aims to address several aspects of protein-protein interactions.

Given two proteins (protein A and protein B), the project will try to answer three questions with

data-driven predictive models:

1. Are the proteins interacting? With a binary output (1 being yes and 0 being no) it would aim

to predict if two proteins are interacting or not.
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2. If they are interacting what are the specific positions of interactions? As mentioned before

proteins are made of amino acids or residues. The second focus of the project would be to

predict if the ith amino acid of protein A is interacting with the jth amino acid of protein B.

3. Considering distance as continuous random variable, what is the distance distribution be-

tween residues of protein A and protein B.

4. Lastly the performance evaluation with respect to the SOTA methods.

To answer the above questions, several modalities would be used. Examples include the 1-D

sequences of proteins or the strings of amino acids, the 2-D structure modality of two individual

proteins, and cross modality embedding.

The rest of the thesis is organized as follows. Chapter 2 would describe data extraction and

curation methodologies, different model functionalities and architectures and a baseline model;

Chapter 3 includes comparative analysis and thorough description of the model performance fol-

lowed by last chapter which includes conclusion and future directions.
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2. METHODS

This chapter focuses on our methodology and is divided into three main sections: data

curation and statistics, the model description and the baseline model. The data curation section

would describe the source databases selected to collect protein interaction data from. The model

description section would contain the machine learning tools used and their explanations. Finally,

the baseline model section would include the reference models and the state of the art (SOTA)

models used to compare the performance of the newly built model.

We aim at predictions for two different outputs: protein-protein interaction (PPI) and inter-

protein RRC (residue-residue contact) map. PPI prediction is about if two proteins are interacting

with each other or not; the output is either 0, when two proteins are not interacting or 1, when

they are interacting. On the other hand, Inter-protein RRC map represents the 3D interaction at the

residue level. If protein A has x residues (or amino acids) and protein B has y residues, inter protein

RRC map shows which pairs of residues i–j are interacting or not i = 1, . . . , x and j = 1, . . . , y.

Currently both PPI and RRC outputs are treated binary and predicted with a probability for each

protein pair or residue pair. In future, they can be extended to continuous outputs such as PPI

affinities and RRC distances, with predicted probabilities over discretized ranges.

2.1 Data Curation and Statistics

Various data sources are used in the study for the lists of positive and negative PPIs, the se-

quences and the (predicted) structures of individual proteins involved, and the complex structures

of selected positive PPIs.

2.1.1 PPIs and 1D Modality of Protein Sequences

Four source datasets which store and provide various PPI data (positive and negative PPIs

as well as positive PPIs with 3D complex structures) were used to further extract protein sequences

and structures. The description of the source databases is given below in Table 2.1.

The extraction of 1D modality of protein sequence data was done for both a benchmark
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Table 2.1: Description of the source PPI databases

Name Description
iRefWeb [13] Contains proteins identities known to interact with each other
Negatome [14] Contains proteins identities known to not interact with each other
INstruct [15] Contains proteins identities known to interact with each other

and their interacting structures are also available
3did [16] Contains domain identities known to interact with each other

and their interacting structures are also available

dataset of PPI prediction [1] and our own curated dataset of both PPI and RRC predictions. The

protein sequences were collected using an automated python script

To evaluate and compare the performance of our model, a specific data set has been used

from PPI-Detect [1]. The website associated with the paper provides 4,327 pairs of proteins (in-

volved in 1,922 interacting and 2,405 non-interacting pairs) and their sequences in the FASTA

format. The dataset was split into training and test sets following [1]. Specifically, the test set con-

tained three subsets. (1) The easy subset has 426 pairs (150 positive and 276 negatives) of proteins

A-B where both A and B are present in the training set but interacting with other proteins. (2) The

mid-hard subset is made of 307 pairs (102 positive and 205 negative ones) of proteins A-B where

either A or B (but not both) is present in the training set. (3) The very hard subset is made of 103

pairs (57 positive and 46 negative ones) of proteins A-B, where neither protein A nor protein B is

found in the training set.

For our own dataset, 310,180 unique positive PPIs were collected from iRefWeb [13] and

5685 unique negative PPIs (protein pairs validated to not interact) were collected from Negatome [14].

Both positive and negative interaction lists had some unique proteins only present in either list. In-

cluding such proteins in a training set can make the resulting machine-learning model biased.

Therefore a shorter protein list was made where each retained protein was present in both positive

and negative interaction lists. After such a procedure to remove the exclusive bias, we had 4941

positive interactions and 4326 negative interactions made of 1031 unique proteins; 289 positive in-

teractions and 120 negative interactions are homodimers. To remove the redundancy CD-Hit [17]
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was used with a 40% cutoff and we had 991 unique proteins. Both positive and negative interaction

data set were randomly divided as follows: The validation set 10%, test set 10% and the remaining

80% was included in the training set.

As the protein identities for these PPIs were available in UniProt ID [18] which also gives

a formatted link of a sequence file in the FASTA format. A link has been made based on the ID

to access the FASTA file. For example, if the UniProt ID of a protein is Q6ZNK6, the FASTA

file would have a common link pattern of ‘https://www.uniprot.org/uniprot/ Q6ZNK6.fasta’. The

FASTA file contains the sequence which has been automatically read from the web and stored in a

.csv file along with the label if they are interacting or not. Each sequence is made of amino acids or

residues presented with different single letters; for example, Alanine is represented as ‘A’, Aspartic

acid is represented as ‘D’, and so on. Using a custom python dictionary the letters are converted

in numerical orders for the one-hot encoding input to neural networks. The data statistics of the

PPI dataset and corresponding protein sequences are shown in Table 2.2. And the distributions of

protein sequences for iRefWeb [13] (positive PPI) and Negatome (negative PPI) [14]are shown in

Figure 2.3.

Table 2.2: PPI and protein sequence data statistics

Name Statistics
iRefWeb [13] Extracted unique positive interactions: 310180

Unique proteins: 67607
The number of homodimers: 6814
Average length of protein sequences: 548
Maximum length of protein sequences: 32759
Minimum length of protein sequences: 12

Negatome [14] Extracted unique negative interactions: 5685
Unique proteins: 3214
The number of homodimers: 70
Average length of protein sequences: 339
Maximum length of protein sequences: 7074
Minimum length of protein sequences: 16

10



.

Figure 2.1: Protein sequence length distribution in iRefWeb [13] (top) and Negatome [14]
(bottom).
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2.1.2 2D Modality of Intra- and Inter-Protein 3D Structures

The 2D modality or protein structure data is gathered in two parts: inter-protein residue-

residue contact (RRC) maps derived from 3D structures of bound protein-protein complexes and

intra-protein RRC maps derived from unbound structures of individual proteins (or predicted from

their sequences).

For inter-protein RRC data, it is the overlapping part between the previously mentioned

positive PPI dataset (iRefWeb [13]) and a database of positive PPIs with known complex struc-

tures (INstruct [15]). Entries in INstruct [15] are based on two major sources of domain-domain

interaction evidence: direct co-crystal structures and indirect inference from the co-crystal struc-

tures of homologous domains. Since the inter-protein contacts represent a major objective of this

paper, their high precision is desired. Therefore we only used the entries evidenced by the di-

rect co-crystal structures and found 2,422 positive PPIs with co-crystal structures. After removing

the redundancy of the entries representing the same domain-domain interaction and the entries

of the same protein pairs but representing different domain-domain interactions, 1,001 pairs were

obtained, with protein data bank (PDB) IDs of their co-crystal structures provided.

To calculate inter-protein contact maps for the 1,001 positive PPIs in INstruct [13], their 3D

structures were retrieved and analyzed in Python scripts using Biopython (a Python tool for molec-

ular biology) and atomium [19]. For a given pair between protein A and B, either a homo-mer

of identical proteins or a hetero-mer of different proteins, chains in the structure were aligned to

corresponding protein UniProt sequences and residues in the structure are re-indexed with the cor-

responding residue index in the sequence. For each pair of residues i-j, we determined whether any

distance between a heavy atom of residue i and a heavy atom of residue j was within 5Å and only

assigned a nonzero value of 1 to the (i, j) element of the inter-protein contact map when that is the

case. We note that the zero elements of the inter-protein contact maps could indicate either a non-

contact between the two residues or the missing 3D structural information of at least one residue.

We also removed 47 homo-mers because no information about inter-protein residue-residue con-

tacts can be obtained from the PDB structure (often originating from the lack of stoichiometry
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information in the biological assembly files). In total, 954 inter-protein RRC maps were curated

for INstruct [15], and 68 of them overlap with the curated 1D modality sequences.

For intra-protein contact maps for the 79 unique proteins involved in the 68 overlapping

pairs, the predicted intra-protein residue-residue contact results from RaptorX [20] are used which

is a reasonably reliable source of intra-protein contact information.

Removing proteins which had more than 1,000 residues the resulting dataset of 57 positive

PPIs with co-crystal structure information, a subset of our curated positive PPIs with just binary

information, was split into 30 training, 8 validation, and 19 test pairs. Figure 2.2 shows the data

division among PPIs (positive and negative PPIs as well as PPIs with structures).

Figure 2.2: Data Division:1D and 2D modality

2.2 Model Description

2.2.1 Prediction of PPI Using 1D Sequence: Model I

Model I is designed to take protein sequences or 1D modality as input and predict PPIs as

binary outcomes. The input of the model includes two protein sequences and the output of the

model is a probability vector of PPI. To train the model, interacting labels for training protein pairs

are also available (if they are interacting label = 0, otherwise label = 1). To implement model I
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the idea of hierarchical recurrent neural networks (HRNN) [21] has been used to encode protein

sequences. The mechanism of HRNN is well used for modeling sequential data - its application

to natural language processing exploits the relations among word embedding in a sentence embed-

ding. The concept to use HRNN to detect PPI was very similar: residues in a protein sequence

interact locally to fold into k-mers and secondary structures and globally to fold into tertiary struc-

tures before they interact across proteins to form quaternary structures. A sequence of proteins has

been padded to reach length 1000 (the maximum length of proteins in the dataset) and divided into

k-mers.

Mathematically a vector of length 1000 has been converted into a matrix of dimension

25×40 assuming when proteins fold in a 3-dimensional space, each row interacts with each other.

The model architecture is made of amino acid or residue embedding. First, each residue has been

embedded into a vector of length 128. Two interacting proteins have converted into matrices of

dimension 25×40×128 and have passed two hierarchical stages of GRUs (a form of RNN) first

horizontally and then vertically. Figure 2.3 shows the entire conversion of interacting protein

sequences. Two proteins with length L1 and L2 are interacting with proteins of length L3 and

L4; In the second stage they are padded with 0 so that all of the proteins have a new length Lmax

= 1000; in the last stage of conversion vectors of length Lmax are transformed into a matrix of

25×40 (25 k-mers of length k = 40). The activation function ReLU is used on both of the

protein embeddings and passed through the linear transformation of joint attention, dimension of

128×128. Both of the attention are concatenated by the Pytorch Einsum function and the activation

function Sigmoid is finally used to get the inter-protein RRC map. In the following mathematical

expressions, x is the input, y is the output, b is bias and w is the weight vector.

ReLU(x) = (x)+ = max(0, x);

Sigmoid(x) = σ(x) =
1

1 + exp(−x)
;

y = xAT + b

(Eq. 1)
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To get the PPI predictions, both protein embeddings are concatenated and passed through

the Tanh activation function. The joint protein embedding is concatenated with an inter RRC

map and passed through two different sequential models: one was made of one 1 dimensional

convolution, LeakyReLU activation function, and max pooling; and the other used two similar

layouts one after another (these layouts include one layer of linear transformation followed by

LeakyReLU with a dropout rate of 0.7). Lastly, one last layer of linear transformation gives out

the prediction of PPI.

LeakyReLU(x) = max(0, x) + negative_slope ∗min(0, x) (Eq. 2)

BCE loss or binary cross entropy loss has been used between PPI prediction and PPI labels

to calculate PPI cross entropy.

BCEloss = ll(x, y) = L = l1, ...lN
T ,

ln = −wn[yn ∗ log(xn) + (1− yn) ∗ log(1− xn)]

(Eq. 3)

To optimize the model performance, the optimization step size (learning rate), the dropout rate

and other hyperparameters have been tuned over the validation set and finally got the best value for

a step size of 1e-3, dropout 0.7, 200 epochs, and batch size of 8. The ADAM algorithm has been

for backpropagation training. The best AUPRC value of the validation dataset was used to select

the epoch and save optimal parameters of the neural network model. The overall picture of protein

embedding through GRU and the output format is shown in Figure 2.4.
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Figure 2.3: Protein conversion from 1D sequence to k-mer matrix

As of software CUDAtoolkit of version 10.2 and PyTorch version 1.6 have been used so that

the training of the model can be done effectively through GPU computing. All the experiments

are done using the Terra cluster at Texas A&M High Performance Research Computing facility

(TAMU HPRC).
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Figure 2.4: Model I: Protein embedding and output format

2.2.2 Prediction of Inter-Protein RRC Using 1D Sequence: Model II

Model II takes interacting protein sequences and predicts the inter RRC map. The inputs

of model II are two sequences of interacting proteins and their inter RRC maps as the label to

calculate the loss. The architecture of model II is very similar to model I; additionally, the concept

of pretraining and fine-tuning is used. As the output of model II is different from model I, new loss

calculations also have been introduced.

Model I has a huge advantage of using big data of binary information for PPI. As mentioned

earlier, the available dataset of PPI is much bigger than inter RRC map or inter protein structure.

To use this advantage of big data, the parameters of protein embedding in model II are initialized

with the optimum parameters obtained from model I (Figure 2.5). This pre-training of embedding

parameters in model II connects the 1D modality with the 2D modality. This embedding part

consists of amino-acid or residue embedding and two layers of GRU.

As shown in Figure 2.5, the outputs of model II are inter RRC maps or matrices of dimen-

sion 1000×1000. After pre-training model II, the available inter RRC map or labels have been

used to fine-tune the model. That is why the loss calculation includes the weighted sum of two

different losses: the L1 sparsity of neural network parameters and a BCE loss. But this time the

17



BCE loss is calculated between predicted and true inter RRC maps; this can be also considered as

inter-protein RRC cross-entropy. As the maximum protein length is 1000, each protein is padded

to make length 1000 while the actual length of protein A is x and the actual length of protein B is

y (x, y < 1000).

Though the output, inter RRC map, is a matrix of 1000×1000 where the rows are protein

A residues and column are protein B residues. To calculate the loss, the padded portion of the

inter RRC map needs to be discarded. Thus the matrix is multiplied with a row vector and column

vector of length 1000 made of 1 and 0. The row vector has the first x number of 1 and the next

1000 − x number of 0; similarly, the column vector has y number of 1 and 1000 − y number of

0. The sparsity regularization has been adjusted with a weight factor. Four different models were

trained with sparsity regularization factor of 1e-3, 1e-4 and learning rate of 1e-3, 1e-4. The best

performance of among these four different combinations were considered and mentioned in the

result section.

Figure 2.5: Model II: Pre-training from model I and fine-tuning through inter RRC map labels

2.2.3 Prediction of Inter-Protein RRC Using Both 1D Sequence and 2D Intra-Protein RRC:

Model III

Model III can be considered as an expansion of model II. This model takes two different

modalities of input: protein sequences as 1D modality and intra RRC map or intra-protein struc-

18



ture as 2D modality. And it predicts inter-protein RRC map. Explicitly, as input, there are two

sequences and two intra protein structures of the interacting proteins. The intra-protein RRC map

represents which of the residue positions within a protein interact with each other. Like model II,

model III also takes inter-protein RRC map from the training data to evaluate the loss Figure 2.6.

The embedding of protein sequences in model III follows the same architecture as that in

model I. Additionally, the intra-protein RRC maps are processed as protein graphs where each

node is a residue and each edge represents a spatial contact. The embedding of intra-protein RRC

maps follows another neural-network architecture named Graph Attention Networks (GAT) which

is made of layers of linear transformation and ReLU activation function. The protein sequence

embeddings and protein graph embeddings are concatenated. The prediction of inter-protein RRC

is very similar to the calculation mentioned for model I and model II.

Similar to model II the loss calculation is done through PyTorch BCE to calculate intra

RRC cross-entropy. Hyper-parameter tuning was done for similar parameters and values as model

II.

Figure 2.6: Model III: Multi-modality protein input and inter-protein RRC map output
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2.3 Baseline Model

It is also a very important aspect of the project to choose and work on the baseline models or

the SOTA methods to compare or evaluate the performance of the new model. The baseline method

for the PPI prediction is PPI-detect[1]. PPI-detect is a website to predict PPI. The underlying

algorithm is based on numerical encoding procedure to develop a support vector machine model.

To evaluate inter-protein RRC prediction, SOTA methods can be divided into two cate-

gories: unsupervised and supervised.

One of the unsupervised model is plmDCA or Pseudo-likelihood Maximization DCA [11].

This model works on the principle of coevolution among homologous proteins. Given two strings

of protein, the model firstly performs MSA or Multi Sequence Alignment. The homologous pro-

teins are arranged in each row in a way so that their correlations can be visualized in the best

way and that process is called MSA. Based on the Pseudo-likelihood Maximization algorithm, the

model calculates DCA which is described as Direct Coupling Analysis score between the amino

acid positions. As the positions get higher scores, the probability of their interaction is higher.

From the PDB IDs of the proteins, the actual distal distances between these two residues’

Cβ atoms are extracted. If the distance is less than 8 Angstrom, the contact between two protein

positions is considered positive. The output matrix of the unsupervised model as plmDCA can be

considered and used as an important feature for the newly developed model. (Figure 2.7) shows

the output matrix with DCA score between residues of protein A placed as rows and protein B

placed as columns.

One of the supervised models which is filterDCA already uses the output of the plmDCA

as one of the features; filterDCA takes the output of the plmDCA which is an adjacency matrix and

filters it using several filters [12]. These filters are made from the secondary structure of the pro-

teins. These filters can be considered as the graph modality or protein. (Figure 2.7) demonstrates

the output of filterDCA.
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Figure 2.7: plmDCA output (up), filterDCA Output Matrix (down)

21



3. RESULTS

This chapter covering results is divided into two sections. In the first part, we would com-

pare the PPI-prediction performance of model I with PPI-detect [1] over their dataset. In the second

part, the PPI- and RRC-prediction performance of our models (model I, model II, and model III)

would be evaluated on our curated datasets.

3.1 Comparative Evaluation of Model I with PPI-detect [1]

To evaluate the performance of our model we first use the area under the precision-recall

curve (AUPRC) and the Area Under the Receiver Operating Characteristics (AUROC). Though

PPI-detect [1] has published Precision-recall curves (PRC) but not the numerical values for the

areas under the PRC. We thus compare our model I to PPI-detect using accuracy next. The AUPRC

and AUROC of model I are still reported in the following Table 3.1.

Table 3.1: AUPRC and AUROC values of model I

Name Training Validation Easy test Mid hard test Hard test
AUPRC 0.9981 0.769 0.847 0.640 0.769
AUROC 0.9983 0.691 0.912 0.768 0.691

Besides PRC curve PPI-detect [1] has also published Precision (Pr), Sensitivity(Sn) and

Accuracy (Acc) of their mid-hard and hard test set. The calculations of these quantities are done

as follows:

Pr =
TP

TP + FP
, Sn =

TP

TP + FN
, Acc =

TP + TN

TP + FP + TN + FN
(Eq. 1)

where TP = True positive and FP = False positive, FN = False negative, TN = True negative

and FN = False negative.

The comparative values are shown below Table 3.2:
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Table 3.2: Comparison of performance measures for model I with PPI-Detect hard test set (mid-
hard + very-hard subsets)

Name Precision Sensitivity Accuracy Threshold to binarize
PPI-detect 0.554 0.648 0.661 0.5
Model I 0.529 0.779 0.646 0.5
Model I 0.597 0.710 0.702 g-mean

Figure 3.1: PRC curve obtained from model I on different dataset

3.2 Performance of Models for Our Curated Dataset

PPI-prediction AUPRC and AUROC of Model I are in Table 3.3. Even better accuracy was

achieved for this larger PPI dataset compared to the benchmark from PPI-detect.

Before explaining the performance on inter RRC map, the ratio of positive interactions or

average minority in the labeled inter RRC map is very important because it reflects the performance

of a random classifier:

Random =

∑X
n=1

(PP )n
(L1)n∗(L2)n
X

(Eq. 1)
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Table 3.3: AUPRC and AUROC of Model I

Name Training Validation Test
AUPRC 0.8850 0.738 0.776
AUROC 0.8858 0.734 0.797

where X is the number of interactions present in any dataset, (PP )n is the number of positive

RR contacts in interaction n, (L1)n is length of protein 1 in interaction n and (L2)n is length

of protein 2 in interaction n. In the case of PPI prediction, the ratios of positive and negative

interactions were almost 0.5 and 0.5. However, in the case of RRC prediction, the ratio of residue

contacts 0.11e-3, 0.0404e-3, and 0.0807e-3 in test, validation, and training sets of the 57 PPIs with

structures, respectively. That is why the AUPRC and AUROC values in the case of PPI are much

more different than those in the case of inter RRC map to be seen next.

The summary of inter RRC map AUPRC of our three models is given in table 3.4. We make

the following observations.

Table 3.4: Comparative AUPRC of inter RRC map among Model I, II and III

Dataset Average minority Model I Model II Model III
Training 0.081e-3 1.12e-3 0.4 0.065
Validation 0.0404e-3 0.33e-3 6.56e-3 4.08e-3
Test 0.11e-3 1.09e-3 2.51e-3 2.78e-3

Firstly, we tried to also evaluate the performance of model I to predict the inter-protein

RRC map. For model I, the AUPRC for validation and test were 0.33e-3 and 1.10e-3, almost 7.17

and 9 times better than random values (average minority) respectively (Figure 3.2). The selected

hyper-parameters are: sparsity regularization factor 0.01 and learning rate 1e-3.

Secondly, model II showed better RRC prediction results as expected. The AUPRC for test

and validation are 6.56e-3, 2.51e-3 (161.38 and 21.82 times better than average minority) (Figure

3.2). The selected hyper-parameters are: sparsity regularization factor 0.1e-3 and learning rate 1e-
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3. These results show that supervised joint attentions are more accurate in predicting RRC maps

than unsupervised ones in Model I.

Figure 3.2: Inter RRC Performance of Model I, II, III and their performance improvement
compared to random values (average minority)

Lastly, model III showed the best results for test set and significant improvement than aver-

age minority; the AUPRC are 4.08e-3 and 2.78e-3, respectively; again 100 and 24.27 times better

performance than random values respectively (Figure 3.2). These results show that combining

both modalities of protein sequences and structures, i.e., data fusion, can further improve the ac-

curacy of RRC prediction.The selected hyper-parameters are: sparsity regularization factor 0.1e-3

and learning rate 0.1e-3.

As shown in Table 3.4, model II outperforms model III in validation data set AUPRC (61%

better performance). This result can be explained by the training AUPRC values of both models.

Model II training AUPRC is 0.4 which almost 5000 times greater than the random value and 5
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times greater than model III training value. This big difference of training AUPRC between the

two models shows, for the selected hyper parameter model II is more overfitting than model III.

That is why, in future model II can be trained with a bigger value of sparsity regularization factor

and model III can be trained with a smaller value. Though the inter RRC map predictions have

not been compared with SOTA methods such as unsupervised plmDCA [11], filterDCA [12], and

supervised ComplexContact [22], this is a part of the upcoming expansion of the project.

26



4. CONCLUSIONS AND FUTURE DIRECTIONS

From the comparative evaluation of the models, we can conclude that the layer embedding

of HRNN works much better than the SOTA which is a vector machine based algorithm. On the

other hand, the combinations of the sequences with structures have the best performance to predict

inter-protein RRC maps.

This project has multiple future directions such as evaluating the prediction of PPI using

only intra-protein RRC maps and the effect of pre-training (warm start). Another direction can be

reforming the fine-tuning with structures with generalization and clustering. For further evaluation,

the inter-protein RRC prediction can be compared with the SOTA methods (unsupervised and

supervised). This project can be extended to predict inter-protein RRC distances and angles as

well.
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APPENDIX

All necessary codes and extracted data can be found in this github repository:

https://github.com/Arghamitra/senior-design

For 2D modality interactions are:

Training set: (UniProt1 UniProt2 PDB)

P25963 Q04206 1nfi; O75531 O75531 1qck; Q96B26 Q9NQT4 2nn6; Q99497 Q99497 2r1v;

Q14186 P06400 2aze; P32321 P32321 2w4l; Q13616 Q13616 1ldk; P05412 P01100 1s9k; Q13309

P63208 1fs1; P06730 P06730 2v8w; P12755 Q13485 1mr1; Q13309 Q13309 1fs2; P17676 P17676

1gtw; P06400 P06400 2r7g; P46063 P46063 2wwy; P12004 P12004 1vyj; Q13616 Q13309 1ldk;

P36894 P36894 2goo; P31785 P60568 2b5i; P46527 P24941 1jsu; P16070 P16070 1uuh; P13861

P13861 2izx; P51149 Q96NA2 1yhn; Q9Y5X1 Q9Y5X1 2rai; P13010 P12956 1jeq; P22681

P22681 1b47; P49763 P49763 1fzv; P10415 P10415 2w3l; P84022 P84022 1mhd; P27487 P27487

3kwf;

Validation set: (UniProt1 UniProt2 PDB)

O95786 O95786 2qfd; P12830 P12830 3ff8; P45973 P45973 3i3c; O14745 P26038 1sgh; P19838

P19838 1svc; P24864 P24941 1w98; Q12933 Q15628 1f3v; P05067 P05067 1aap

Test set: (UniProt1 UniProt2 PDB)

Q8WXD5 Q9H840 1y96; Q13541 P06730 2v8w; P01730 P01730 1wio; P12956 P13010 1jeq;

P37108 P49458 1e8o; P08670 P08670 1gk4; P35222 Q9NSA3 1t08; P25963 P19838 1nfi; P20963

P20963 2hac; Q13263 Q13263 2yvr; P61981 P61981 2b05; Q9Y6D9 Q9Y6D9 1go4; Q13363

Q13363 1mx3; P43351 P43351 1h2i; Q13485 Q13485 1g88; Q07817 Q07817 2p1l; P60709

P60709 3lue; O43187 O43187 3mop; P04156 P04156 3hj5
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