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ABSTRACT

Matching and Coarsening in GraphBLAS

Vidith Madhu
Department of Computer Science and Engineering

Texas A&M University

Faculty Research Advisor: Dr. Timothy Davis
Department of Computer Science and Engineering

Texas A&M University

Recently, there has been a significant desire both within the scientific community and in-

dustry to write graph algorithms using linear algebraic operations. This leads to algorithms that

can leverage many important algebraic properties of matrix operations, as well as the vast body

of research conducted in high performance and parallel linear algebra computations. In addi-

tion, such formulations usually lead to highly expressive and short code. To this end, SuiteS-

parse:GraphBLAS is a framework developed to easily write graph algorithms in the language of

linear algebra. LAGraph is a test harness and collection of algorithms written with SuiteSparse;

this work will detail the contribution of new algorithms to this collection, which perform maximal

matching and coarsening of undirected graphs.

A matching is a subset of the edges of a graph such that no two edges in the set share a

common vertex. A maximal matching is one that is not a proper subset of any other matching.

Finding any maximal matching is a simple process, but it is hard to find ones with optimal charac-

teristics (i.e. maximum sum of edge weights, maximum size of matching, etc). Coarsening refers

to reducing the size of a graph in a manner that preserves connectivity information. One way
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to achieve this is by collapsing edges in a maximal matching. It is known from prior work that

matching-based coarsening produces small graphs that can be easily bisected (a process known

as multilevel bisection). By projecting the coarsened graph back to its original size, and applying

refinements at each stage, multilevel bisection can be recursively used to approximate good k-way

partitions, which is known to be an NP-complete problem.

We begin with a discussion of the mathematical background behind linear algebraic graph

algorithms and the GraphBLAS standard. We then discuss graph partitioning and multilevel tech-

niques further in depth. Finally, we present our algorithms, their performance results, and discuss

avenues for future work.
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1. INTRODUCTION

1.1 Graph Algorithms in the Language of Linear Algebra

There has been a long observed duality between graphs in their standard representation as

a set of vertices and edges and representations in matrix form (such as an adjacency matrix). In

fact, this connection was noted alongside the inception of graph theory itself by Konig. In recent

years, there has been a mounting desire in both academic and industrial sectors to develop graph

algorithms using matrix operations. Not only are such algorithms concise and highly expressive,

they can also leverage the large body of research conducted in high performance linear algebra

computations and exploit properties of matrix operations to yield better performance than their

conventional counterparts.

1.1.1 GraphBLAS

GraphBLAS [1, 2] is a standard for developing graph algorithms using matrix operations

that has gained great popularity in recent years. Like many other linear algebra standards, it is

influenced by the BLAS (Basic Linear Algebra Subprograms) specification. It utilizes several al-

gebraic properties of matrix multiplication to allow for the development of a wide variety of graph

algorithms using a relatively small feature set. The major pieces that constitute GraphBLAS are

collections (such as matrices and vectors, which may contain entries of a variety of data types), al-

gebraic objects (such as semirings, monoids, and binary/unary operators), and operations (such as

mxv (matrix-vector multiply) and eWiseMult (element-wise multiply)). One of the key proper-

ties that GraphBLAS takes advantage of is the consistency of matrix multiplication over an algebra

of semirings.

A semiring is an algebraic structure (D, ⊕, ⊗), consisting of a set D and two binary opera-

tors, one additive (⊕), and one multiplicative (⊗), both of which take D ×D → D. The additive

operator must have an identity (the zero element) which annihilates multiplication (meaning for all

x ∈ D, x⊗ 0 = 0). We can further describe the additive operator as a monoid (D, ⊗). A monoid is
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another algebraic structure that generalizes the notion of a group; for the purposes of GraphBLAS

algorithms, the monoid can be thought of as the part of the semiring that joins the results of indi-

vidual multiplications into a single scalar. There are a handful of important differences between the

rigorous definition of a semiring and that used within GraphBLAS. For example, in GraphBLAS,

⊗ need not distribute over ⊕. Such relaxations greatly increase the flexibility of algorithm develop-

ment and result in better performance, while potentially sacrificing some conventional properties

of matrix multiplication. Additionally, GraphBLAS semirings admit two input domains Din1 and

Din2 and a codomain Dout, which is useful when there is a mismatch in the data types of two input

structures that can be reconciled via casting. By this definition, ⊗ : Din1 × Din2 → Dout and

⊕ : Dout ×Dout → Dout.

Intuitively, the purpose of semirings in GraphBLAS is to control the behavior of ma-

trix multiplications. In canonical matrix multiplication, the semiring used is PLUS_TIMES;

the monoid, which is listed first, is PLUS, which is arithmetic addition, and the multiplicative

operator is TIMES, which is artihmetic multiplication. If we perform a multiplication A⃗b over

PLUS_TIMES, we can think of first performing an element-wise multiply on each row of A with

b⃗ using TIMES to get a new matrix A′. Then, we reduce the rows of A′ to a single scalar using

PLUS to obtain the result. If, for example, we changed the monoid to MIN, the reduction would

take the minimum of each row of A′ instead of the sum of entries in the row. One important point

that must be understood to clear potential confusion is the role of the implied zero in GraphBLAS.

When the semiring applied in a matrix multiplication has an additive identity that annihilates mul-

tiplication, we can take advantage of sparsity by having non-existent entries for any zero element,

and only consider the results of multiplications where both entries are present. This works because

multiplications with zero will not contribute anything to the summation by the monoid. In other

words, we can use a sparse representation of the matrix (storing values and positions of entries)

rather than a dense one (storing an explicit structure that matches the shape of the matrix). All of

the semirings presented in this work take advantage of this implied zero feature.
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1.1.2 SuiteSparse and LAGraph

SuiteSparse:GraphBLAS [3] (herein referred to as SuiteSparse), is the first implementation

of the GraphBLAS standard that is fully compliant, and acts as the official reference implementa-

tion of GraphBLAS. It was developed by Timothy A. Davis at Texas A&M University, and is used

to develop the algorithms detailed in this work. LAGraph is a collection and test harness for algo-

rithms developed using SuiteSparse; we will refer to some algorithms in LAGraph that influenced

the development of the algorithms in this work.

1.1.3 Breadth-First Search in SuiteSparse

To demonstrate the application of SuiteSparse in a real algorithm, we will walk through a

basic implementation of breadth-first search of an unweighted graph. We need to have the N ×N

Boolean adjacency matrix A and a Boolean vector v⃗0 of size N . v⃗0 will mark the source vertex,

and all other entries will be empty (implied zeroes). To perform one step of the BFS, we can do

⃗vi+1 = AT v⃗i over ANY_ONE1. ANY is an example of a monoid that has been introduced in SuiteS-

parse but not specified in GraphBLAS. In particular, ANY is special in that it is non-deterministic:

ANY(X, Y) can result in either X or Y. As such, using this monoid when possible can lead to per-

formance optimizations at runtime, when we simply want the monoid to output the result of any

multiplication. The ONE operator is simply defined as ONE(X, Y) = 1. For example, if we did

v⃗1 = AT v⃗0, v⃗1 will mark all the entries that are one step away from the source vertex marked in v⃗0.

The intuition for how this works should be clear if we revisit the explanation of the PLUS_TIMES

semiring in section 1.1.1 and substitute it with the ANY monoid and ONE operator. While relatively

simple, there is a key advantage that this formulation has over a standard BFS implementation, in

that it is inherently parallel. Thus, this simple example demonstrates one of they key reasons to

formulate graph algorithms in this manner.

1In SuiteSparse, the semirings are named as follows: G<x/r>B_<add>_<mult>_<type>. The prefix GrB is
used for semirings defined in the GraphBLAS standard, whereas GxB is used for those exclusively in SuiteSparse.
<type> refers to the data type of the first argument of the multiply op. So, in this case, the full name would be
GxB_ANY_ONE_BOOL.
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Figure 1: Illustration of a step in a basic BFS with GraphBLAS

1.2 Graph Partitioning

Graph partitioning refers to the problem of assigning labels to the vertices of a graph such

that the total weight of edges incident to vertices of different labels (called the edge-cut of the

partition) is minimized. Formally, if we have a graph G = (V,E), a partition is a set of pairwise

disjoint subsets {V1, V2, ...Vk} where
⋃k

i=1 Vi = V . The focus of this work is on methods that build

towards k-way graph partitioning, where we enforce that we must partition the graph into exactly

k subsets of roughly equal size. We also focus only on undirected graphs with no self-loops. This

problem is known from prior work to be NP-complete, but has numerous real-world applications2

[4]. For example, we can model a distributed system using a graph, where the vertices are tasks

that must be performed, and edges encode overhead costs incurred by communication between

tasks. The problem of allocating these tasks to k compute nodes while minimizing communication

2This problem is closely related to the minimum cut problem. In general, finding the k-min cut can be done in
polynomial time if k is fixed. However, this is no longer the case if we require a balanced partition; this is what
differentiates k-way partitioning from min cut.
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costs and achieving good load balancing reduces to k-way graph partitioning. Numerous methods

have been developed to approximate k-way partitions; this work builds towards a technique known

as multilevel bisection, which uses maximal matching and coarsening (the focus of the algorithms

presented in this work) as subroutines.

1.2.1 Maximal Matching

Given a graph G = (V,E), a matching E ′ ⊂ E is a subset of edges such that no vertex in

the graph is incident to more than one edge in the matching. A matching is maximal if it is not

a proper subset of any other matching. In particular, it is important to understand the difference

between maximal and maximum. A maximum matching is a maximal matching that is maximized

by some metric, such as the size of matching or the sum of edge weights in the matching. It

is not necessary for a maximal matching to be maximum since a matching can be chosen in a

non-optimal manner. In fact, finding any maximal matching is relatively easy; we can show that

greedily choosing edges in some arbitrary order will result in a maximal matching. However, for

many real-world use cases, it is useful to find maximal matchings that are close to maximum. For

example, HEM (heavy edge matching) is a heuristic used in multilevel bisection where the total

weight of the matching is maximized [5]. Doing so produces partitions with smaller edge cuts.

1.2.2 Multilevel Bisection

A common approach to partitioning a graph is to recursively bisect it. A bisection is a

partition of a graph into two subsets of roughly equal size; we can then bisect each subset as

needed until we reach k partitions. An iterative multilevel technique can be used to reduce the

graph so that it can be easily bisected by heuristics such as the Kernighan-Lin algorithm (KLA)

[6]. This reduction is done by first finding a maximal matching as described above, and then

applying a coarsening operation on the graph with that matching. In this context, coarsening refers

to collapsing matched edges, and merging the endpoints of each matched edge into a vertex. In

particular, we would like to consider these new vertices as a cluster of original vertices in the

graph. It is also possible that edges that form a triangle with a matched edge will collapse into a
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single edge. In such cases, it is typical to sum the edge weights so that we encode the total weight

of edges incident to one of the vertices in the cluster. Once the coarsened graph is bisected, it

must be projected back to its initial size. Given the sequence of coarsened graphs G1, G2, ..., Gn

with Gi = (Vi, Ei) (G1 being the original graph), let Pi : Vi → {0, 1} map vertices in Gi to a

bisection, and for all v ∈ Vi, let Cv ⊂ Vi−1 be the vertices of Vi−1 contained in v. To obtain Pi−1,

we can simply do ∀v ∈ V and ∀u ∈ Cv, Pi−1(u) = Pi(v). However, this approach can upset the

quality of the bisection as the uncoarsening proceeds. To address this, local refinement strategies

are employed that improve a given Pi to be more optimal (a popular choice is again the Kernighan-

Lin algorithm). There exist other multilevel techniques that are used to indirectly partition graphs.

For example, a multilevel approach may be used to speed up the computation of the Fiedler vector

of a graph, which allows for a technique known as spectral partitioning. However, this is a separate

topic and is not related to this work.
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2. METHODS

2.1 Maximal Matching

2.1.1 Luby’s Algorithm

Luby’s algorithm [7] is one of the well-known, practical solutions for finding maximal in-

dependent sets of graphs. Briefly, a maximal independent set of an undirected graph is a maximal

subset of vertices of the graph such that no two chosen vertices are adjacent to each other. The al-

gorithm works by performing several rounds; in each round, the remaining vertices in the graph are

assigned random scores weighed by their degrees (lower degrees are given higher scores). Then,

vertices which have larger scores than all of their neighbors are included in the result. The cho-

sen vertices and their neighbors are eliminated from the graph, and the next round begins1. What

distinguishes Luby’s method from other, naive MIS algorithms is that the core components of the

algorithm, the score assignment and vertex selection, can be done in parallel. This also means

it is highly suitable for implementation in SuiteSparse. In fact, there exists an experimental LA-

Graph function LAGraph_MaximalIndependentSet that uses a modified version of Luby’s

method. While not an explicit approach for maximal matching, it turns out that we can use the

same principles of Luby’s method to build our maximal matching implementation.

2.1.2 Line Graphs

In order to see how to apply Luby’s method to the maximal matching problem, we can

transform the maximal matching problem to a maximal independent set problem. In particular,

this means that given a graph G = (V,E), we want to somehow transform it into G′ = (V ′, E ′),

where there is a bijection f : V ′ → E and there exists (u′, v′) ∈ E ′ if and only if f(u′) and

f(v′) share a vertex in G. From an intuitive sense, we are building a new graph that represents the

adjacency between edges in the original graph. Such a graph is called a line graph.

1It is easy to see that this algorithm is correct. Let u and v be neighboring vertices, and f(u) and f(v) be their
respective scores. For both vertices to be added to the set, they must both be chosen in the same round. This forms a
contradiction, since it implies f(u) > f(v) and f(u) < f(v).
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Figure 2: Illustration of a line graph. Line graph vertices are green ovals, and edges are dashed
green lines.

2.1.3 Maximal Matching in SuiteSparse

We use the LAGraph_MaximalIndependentSet function mentioned earlier as a ba-

sis for our implementation. Given a graph with N vertices and M edges, the MIS function takes

in the N ×N adjacency matrix A of the graph as input. So, we want to find a method to transform

A to A′, where A′ is the adjacency matrix of the line graph. To do this, we introduce a new matrix

encoding of a graph, called the incidence matrix. The incidence matrix E is a N×M matrix where

Eij ̸= 0 if and only if vertex i is an endpoint of edge j. As is the case with adjacency matrices, the

value of the non-zero entries themselves can be of any type, depending on if we want to encode

edge weights or simply the connectivity pattern of the graph. As we will see later, for our algo-

rithms we want E to contain edges weights. However, for now, it suffices to have E ′ be a Boolean

matrix, meaning A′ will also be Boolean. In addition, LAGraph (the algorithm collection we are

contributing to) offers a wrapper object for graphs called LAGraph_Graph, which contains the

adjacency matrix A of the graph. So, given some black box function A_to_E which can convert

A to E, we can concisely express the desired translation as follows:

A′ = ETE − I (1)

11



where I is the M ×M identity matrix. In this context, subtraction means eliminating any non-zero

entries in the result that line up with non-zero entires in the right-hand side matrix. In GraphBLAS,

this can be done either explicitly with eWiseMult, or can be achieved by using I as a comple-

mented mask when performing the matrix multiplication. This subtraction is needed as performing

ETE introduces self-loops from each edge to itself. We can use ANY_ONE as our semiring for the

matrix multiplications. However, there is a significant problem with this formulation that must

be addressed, which is memory consumption. In particular, explicitly computing A′ for certain

graphs can result in memory blow-ups. Specifically, in order to store a matrix with k entries, it is

necessary to use at least O(k) space. Let us consider the basic example of a star graph, where there

is a central "hub" vertex, and edges only from the hub to every other vertex in the graph. Let the

number of edges in this graph be M ; hence, we need O(M) space to store A. It is clear that the

line graph will have M2 edges, meaning A′ will consume O(M2) space. Even with a modest M

such as 105, using the above formulation is infeasible on most workstations. Therefore, we must

seek an implicit approach to using A′. In other words, we want to perform all operations that use

A′ without explicitly computing it using the above formula.

Assume we have A′. One of the steps we need to perform according to Luby’s method is

computing the maximum score neighboring edge of every edge. Given some vector x⃗ that contains

the scores of all edges currently in the graph, computing A′x⃗ over MAX_SECOND would produce

the desired result. We can use Equation 1 to expand this to (ETE−I)x⃗. What we ideally want is to

be able to distribute this as ETEx⃗− Ix⃗, and then use associativity to compute ETEx⃗ as ET (Ex⃗).

This would be possible with the conventional PLUS_TIMES semiring, however MAX_SECOND

does not behave nicely in this sense, since there is no additive inverse for MAX, and hence the

subtraction cannot be performed. So, we must discard this exact representation of A′, and instead

redefine A′ to be the adjacency matrix of the line graph with self-loops, allowing us to still use

associativity and hence use A′ implicitly:

A′ = ETE (2)

12



One of the immediate concerns that arises from using A′ in an implicit manner is the effect of

having self-loops. Indeed, we must reinterpret the vertex selection step of Luby’s algorithm, since

the max score neighbor of a particular edge will now include the score of that edge itself. This

means that it will be impossible for the algorithm to make progress, since no edge can have a

score greater than its own. For our implementation, we change the condition for including an

edge in the matching to check for equality instead of a strictly greater score. This gives rise to

another concern, which is that adjacent edges sharing the same score will both be included in the

matching. To address this, we simply repeat the vertex selection if such an invalid matching is

produced. While this may initially seem massively detrimental to performance, as we see in the

results our algorithm still performs quite well. In particular, it is highly unlikely for the vertex

selection step to produce an invalid matching given a wide enough range of possible scores.

Algorithm 1 Maximal Matching in SuiteSparse
Input

E incidence matrix
RE pointer for result
MT matching type (RM, HEM, LEM)

Output
None

1. Initialize all objects (ET , misc. GrB_Vector and GrB_Matrix)

2. Use "2-hop" step to compute edge degree. Use E to build weight vector

3. Generate random seed for each edge. Add all edges to candidate set

4. While candidate edges remain:

(a) Generate scores by weighing seeds by edge degree
(b) Based on MT (matching type), further weigh scores by edge weight
(c) Perform "2-hop" step to get max score neighbor for each edge
(d) Select edges that have score ≥ max neighbor score
(e) Verify selected edges form a matching. If not, reseed and return to (a)
(f) Perform "2-hop" step to get selected edges + their neighbors
(g) Remove all edges found in previous step from candidate set, add to result
(h) Reseed and return to (4)

5. Set RE = result, free allocated objects
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The core computation that occurs throughout the algorithm as a result of using A′ implicitly is

a process that can be intuitively thought of as a sequence of two "hops": One from edges to

vertices, and the next from vertices back to edges. Let v⃗ = Ex⃗ for some vector x⃗. Then, the first

hop computes v⃗, and the second hop computes ET v⃗. This process is concretely implemented by

two successive GrB_mxv operations. Assuming our graph has N vertices and M edges, x⃗ will

correspond to an "edge" vector of length M , v⃗ will correspond to a "vertex" vector of length N ,

and the result ET v⃗ will again be an edge vector. Tying both hops together yields a single BFS-like

step in the line graph. It then becomes clear how the implicit computations with A′ correspond to

a single matrix-vector multiply using an explicitly built A′; this makes it relatively straightforward

to interpret the above algorithm in terms of the steps of Luby’s method.

It should also be noted that we provide the user with multiple options for how they want to optimize

the matching towards a maximum metric. The default is random matching (RM), which uses

the same approach as LAGraph_MaximalIndependentSet. However, for the purposes of

coarsening, it may be beneficial to generate heavy-edge matchings (HEM) or light-edge matchings

(LEM) as discussed earlier, as greedy heuristics that minimize the cost of the bisection of the final

coarsened graph. For this reason, we also build a weight vector in our implementation, and is the

reason we want E to contain edge weights (we can use GrB_reduce on E to build a weight

vector). For weighted matchings, we perform an arithmetic element-wise multiply between the

weight vector and scores to favor heavier or lighter edges.

Note that in the above algorithm, we do not use the black box A_to_E function as discussed

earlier. This is because the coarsening function also needs access to the incidence matrix E, so

in the context of this work it is more efficient to compute the E matrix in each coarsening step

and pass it to the maximal matching function. We will discuss the implementation of the A_to_E

function in section 2.3.

2.2 Coarsening

Generally speaking, coarsening from an undirected graph Gi to Gi+1 where Gi = (V,E) and

Gi+1 = (V ′, E ′) involves choosing an bijection f : V → V ′ where for all v ∈ V if f(v) ̸= v, then
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f(f(v)) = f(v). Then, we construct G′ such that for all (u, v) ∈ E, we add (f(u), f(v)) to E ′ if

and only if f(u) ̸= f(v). Oftentimes, we want to know the strength of connection between vertices

in the coarsened graph. If so, we can slightly alter the procedure for coarsening to instead have an

inserted edge (u′, v′) ∈ E ′ have an edge weight that is the sum of weights of edges (u, v) ∈ E such

that f(u) = u′ and f(v) = v′. There are numerous methods to coarsen a graph. For example, in

directed graphs, a meaningful choice of f could be based on which strongly connected component

a vertex belongs to. In our case, we want to generate the mapping f from a maximal matching,

which will intuitively result in a collapsing of edges. Fortunately for us, there exists an established

method for coarsening graphs in parallel if we know what f is, meaning it can be directly imple-

mented in SuiteSparse. This involves building a Boolean S matrix from f , where Sij = 1 if and

only if f(j) = i. So, columns in this matrix correspond to the uncoarsened (original) vertices, and

rows correspond to coarsened vertices. To perform a single coarsening step given the adjacency

matrix A, we can do A′ = SAST , where A′ corresponds to the coarsened adjacency matrix. The

choice of semiring depends on whether we want the edge weights to sum as described above. If so,

we can use PLUS_TIMES, else ANY_ONE. The shape of this S matrix depends on how we want to

do the coarsening: When applying the coarsening, vertices where u ̸= f(u) will be removed from

the graph. However, this removal can be interpreted in different ways. If we want to retain the

size of the graph (for example, to easily identify which vertices in the original graph correspond

to vertices in the coarsened graphs), we can simply "exile" these nodes by making them single-

tons2 for the remainder of the coarsening scheme. Alternatively, we can compress the size of the

graph and explicitly remove vertices that will disappear once a coarsening is performed, meaning

we will need to potentially relabel many of the vertices in the graph. This will perform better for

size-sensitive algorithms that use the coarsening results, but will require maintaining mappings of

old vertices to new vertices for each coarsening step.

2A singleton is a vertex with degree 0.
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Algorithm 2 Coarsening in SuiteSparse
Input

G LAGraph graph object (contains A)
REA pointer for result adj mat
REMpointer for result parent mappings
MT matching type (RM, HEM, LEM)
PW Whether to preserve graph size
CW Whether to combine edge weights
N Number of coarsening levels

Output
None

1. Initialize all objects (ET , result A, misc. GrB_Vector and GrB_Matrix)

2. While N > 0:

(a) Use A_to_E to convert the current A matrix to a E matrix
(b) Rebuild ET using current E
(c) Run maximal matching function with E and MT
(d) Build S matrix (details in 2.3.2)
(e) Update REM with generated parent mapping, if PW is false (details in 2.3.2)
(f) Run SAST to get the next A matrix, using CW. Decrement N
(g) Free objects allocated for this coarsening step

3. Set REA, REM to appropriate results, free allocated objects
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2.3 Utility Methods

2.3.1 Building Incidence Matrices

As referenced in the above sections, we need an A_to_E function in order to build the

required incidence matrix for our algorithms to operate on, due to it not being already available

as an attribute of LAGraph_Graph. To do this, we note that entries in an adjacency matrix A

correspond to edges in the graph. Therefore, we need a method to extract all non-zero entries in A

and build an incidence matrix E with them. The GraphBLAS standard defines such functions:

GrB_extractTuples and GrB_Matrix_build. In particular, GrB_extractTuples

gives us the rows, columns, and values of non-zero entries via user-provided arrays. It is im-

portant to note that since we are dealing with undirected graphs, A will be symmetric, so to ignore

redundant entries we only consider upper-triangular entries. Suppose the i-th upper-triangular en-

try is given as a tuple (r, c, v) corresponding to a row, column, value in A. We want to create two

entries in E in the i-th column for the two endpoints of this edge. Specifically, this will be Eri = v,

and Eci = v.

2.3.2 Converting Matchings to Mappings

In our coarsening method, we want a function that will allow us to convert the result pro-

duced by our maximal matching function into the S matrix as discussed above to perform coars-

ening. For this, we want a two step process: Note that if our graph has N vertices and M edges,

the matching vector is a Boolean vector of length M marking which edges are selected as part

of the matching. The first step involves translating this vector to a new vector p⃗ of length N that

specifies a parent mapping on the vertices of the graph. In particular, referencing the definition of

a coarsening at the beginning of section 2.2, p⃗i = f(i). The key property to observe here is that

every vertex will be incident to at most one matched edge. So, for a matched edge, we arbitrarily

choose one of the endpoints to be the parent of both endpoint vertices. To implement this, we can

first perform a multiplication with ET and a full vector of 1s, o⃗. Recall that ET is an M -by-N

matrix, so o⃗ should be of length N , and the result will be of length M . We use a special semiring
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here, ANY_SECONDI; the multiplicative operator will not use the value of the entries, but rather

the index. Finally, we want to mask the output using the matching vector, so that unmatched edges

are excluded from the result. Intuitively, the result of this operation will be an arbitrary picking

of a parent vertex for each matched edge; let this be p⃗′. Next, we initialize p⃗ to be a full vector

with p⃗i = i, which handles vertices not engaged in a matching. Finally, performing p⃗ = Ep⃗′

over ANY_SECOND with the appropriate masking produces the desired result. Now, we can use

GrB_Matrix_build as was done for the A_to_E function to build the corresponding S matrix

using the parent vector. This second step is encapsulated in a Parent_to_S utility function.

It is important to note that exactly one of the endpoint vertices of every matched edge will have

degree 0 for the remainder of the coarsening scheme. As discussed in the coarsening section, we

can either choose to keep this vertex in the graph or to eliminate it. From an implementation per-

spective, the former approach is slightly simpler since we only deal with multiplication of square

matrices, while in the latter we will need to be constantly changing the size of our S matrices after

determining vertices that are no longer relevant in the graph.
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3. RESULTS

To test our algorithms, we developed a testing suite that allows us to evaluate algorithm per-

formance on both quality and runtime metrics using graphs that are randomly generated according

to user-provided parameters. In addition, we have run tests using graphs from the GAP benchmark

suite [8], which is a well-known standard for evaluating graph processing performance. At the

time of writing, we are still in the process of testing our coarsening algorithm, so the results listed

here are for maximal matching.

3.1 Custom Benchmarking

We first begin by describing our custom testing suite for evaluating maximal matching. Our

objective was to be able to evaluate the quality of the produced matching (i.e. how close it is to

maximum), and runtime performance of the algorithm. In all cases, we first generate a random

graph according to user-provided parameters. These parameters include the number of vertices

in the graph, a sparse factor k which controls the average degree of vertices, and whether the

graph (and matching) should be weighted. The generation of the graph is handled by a call to the

utility function LAGraph_Random_Matrix, which builds the corresponding adjacency matrix.

Additional user-provided parameters specify what type of test should be run (quality/performance)

and other options that are detailed below.

3.1.1 Quality Testing

For quality testing, we provide two options: evaluation against a maximum matching, or

against the results of a simple greedy (naive) algorithm. If testing on weighted matchings, the

greedy algorithm attempts to add edges to the matching in sorted order depending on if a light or

heavy matching is specified. When sorting, if two edges have the same weight, the one with a lower

edge degree is favored (similar to the degree weighing that Luby’s method uses). For unweighted

matchings, the edge selection is done in arbitrary order. Evaluation against a maximum matching

is more interesting as it involves exploring existing algorithms for computing exact maximum
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matchings. Note that currently, we only support this option for random (unweighted) matchings.

For bipartite graphs, a well-known and classic solution is maximum-flow, for example using the

Ford-Fulkerson algorithm [9]. Lesser known, however, is a method discovered by Edmonds [10]

that extends the augmenting path concept of Ford-Fulkerson to enable finding maximum matchings

on general (non-bipartite) graphs, called the Blossom algorithm. Ford-Fulkerson runs in O(Mf)

for a graph with M edges and a maximum-flow of f ; since f ≤ N if the graph has N vertices and

M ≤ N(N−1)
2

, this gives us a O(N3) worst-case running time. Similarly, the Blossom algorithm

is also O(N3). Due to this, and the fact that these algorithms are not parallelizable, for practical

purposes, we can only run tests against maximum matchings on smaller graphs (N ≤ 1000).

3.1.2 Performance Testing

The performance testing option is relatively straightforward, and compares the runtime of

our algorithm against the greedy algorithm described above. The user still has the ability to choose

the matching type, but we do not compare runtime performance against the maximum matching

methods for obvious reasons.
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Table 1: Custom quality results for N = 1000

Graph Type Matching Type k Adversary Method Quality

Bipartite RM 10 Max-Flow 0.958

Bipartite RM 10 Naive 0.985

Bipartite RM 100 Max-Flow 0.998

Bipartite RM 100 Naive 0.998

Bipartite HEM 10 Naive 0.942

Bipartite HEM 100 Naive 0.963

Bipartite LEM 10 Naive 0.911

Bipartite LEM 100 Naive 0.941

General RM 10 Blossom 0.946

General RM 10 Naive 0.989

General RM 100 Blossom 0.986

General RM 100 Naive 1.012

General HEM 10 Naive 0.943

General HEM 100 Naive 0.963

General LEM 10 Naive 0.921

General LEM 100 Naive 0.941

Table 1 demonstrates quality results from our custom benchmarking that we collected on

random graphs with N = 1000. Each result was generated using the average of 10 SuiteSparse

and adversary method (either naive or maximum) runs. We chose this fixed size for all tests due to

the size constraints imposed by the maximum matching methods and to have a uniform compar-

ison. The matching type refers to random matching (RM) or heavy/light matching (HEM/LEM,

respectively). k is the average degree of vertices in the graph, meaning higher k is a more dense

graph. The quality metric is an optimality proportion for how good the SuiteSparse result was
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compared to the adversary method. For example, for weighted matchings, this would be the pro-

portion of the matching weight SuiteSparse produced vs. the adversary method. Generally, we

find very favorable results, with quality increasing for denser graphs. One peculiar and possibly

questionable aspect to note is that the naive method actually produces higher quality matchings for

nearly all tests, which suggests that the naive method actually produces higher quality results than

the modified Luby’s method SuiteSparse uses. However, as we will see, the naive method suffers

a major drawback in performance since by design it is serial; as stated in 2.1.1, Luby’s method

allows SuiteSparse to take full advantage of parallelism. In order to see the true performance ben-

efits that SuiteSparse offers, it helps to use graphs that are far larger than N = 1000, to minimize

the effect of irrelevant overhead.

Table 2: Custom performance results for N = 106, bipartite, random matching

k Threads Performance

10 24 15.54

100 24 16.32

10 12 13.85

100 12 9.13

10 8 10.38

100 8 6.62

10 1 2.01

100 1 1.25

Table 2 showcases runs of a large bipartite graph (N = 106) at various densities and thread

counts, for random matching. The performance metric here is the speedup factor that SuiteSparse

was able to achieve over the naive method on the same graph. Again, each result was computed

as an average across 10 SuiteSparse and naive runs. The machine used to collect this data was the
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backslash machine at Texas A&M, which features a 12-core Intel Xeon processor, 2 threads

per core. With over an order of magnitude speedup, these results illustrate the sheer power of

the parallelism that SuiteSparse offers; while scratch implementations of Luby’s method can be

written to achieve similar performance, it would be a laborious task compared to the SuiteSparse

implementation. Thus, we again reiterate the key strengths of SuiteSparse:GraphBLAS: ease of

use, combined with out-of-the-box parallel performance.

3.2 GAP Benchmark

As stated above, we have also run tests on our maximal matching implementation using

the GAP benchmark suite. Unlike our custom benchmarking, this benchmark does not rely on

comparison against an adversary method, but rather provides insight into the absolute performance

of the algorithm, which allows for easy and standardized comparison against other algorithms. We

selected two graphs in the suite, GAP-road and GAP-twitter to run our tests on. The former

stores the US road network; it is characterized by a large diameter and relatively uniform degree

across all vertices. On the other hand, GAP-twitter stores the social connections on Twitter,

and hence is structurally quite different from GAP-road - it is much more dense, low-diameter,

and its degree distribution is mostly uniform except for some "celebrity" vertices with extremely

high degree.

Table 3: Performance on GAP Benchmark Suite graphs

Threads GAP-twitter time (s) GAP-road time (s)
24 544.43 2.33
12 963.10 3.27
8 1411.79 4.23
4 2947.02 7.67
2 5461.45 13.71
1 9289.61 22.17
1 (Naive method) 7686.55 70.59

The results of the GAP runs are presented in Table 3. Again, these results were collected on
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backslash. These results used weighted matchings (the GAP benchmark graphs are weighted).

One important concern that must be addressed are the fact that these graphs are directed, and our

algorithms only work for undirected graphs. Indeed, we first converted these graphs to undirected

graphs using an eWiseAdd with A and AT before running the tests. This may be cause for

concern since this means these results are not admissible as true GAP benchmarks; however, this is

inherently the case since the GAP standard defines a set of kernels (algorithms) to be tested against,

which excludes maximal matching. Nevertheless, given these results and the general properties of

the tested graphs, we hope that we can both offer some absolute insight into the performance of

the algorithm, as well as an additional reference to evaluate improvements we make in the future.
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4. CONCLUSION

4.1 Conclusion

In this work, we have discussed the mathematical background and value of linear algebraic

graph algorithms. We briefly surveyed the GraphBLAS standard before exploring the topics of

this work, maximal matching and coarsening of undirected graphs. We motivated the need for

our algorithms via applications of graph partitioning. We then discussed the implementation of

our algorithms, associated utility functions, and their performance/quality results. Overall, our

results suggest that our maximal matching algorithm outperform naive implementations of maxi-

mal matching heuristics, despite lagging behind in quality by a few percentage points. In future

work, we hope to develop and present results for our coarsening methods, further improve the

performance of our maximal matching algorithm, as well as investigate the development of an un-

coarsening algorithm in SuiteSparse to produce a complete multilevel bisection algorithm. We also

hope to investigate the application of more classical, exact algorithms such as the Hungarian algo-

rithm for maximum weight matching to allow us to generate more robust benchmarks for maximal

matching.
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