
SYNTHESIZING NOVEL VIEWS WITH DIFFUSION MODELS

An Undergraduate Research Scholars Thesis

by

BRANDON G. NGUYEN

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. Nima Kalantari

May 2023

Major: Computer Science

Copyright © 2023. Brandon G. Nguyen.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or biohaz-

ards must be reviewed and approved by the appropriate Texas A&M University regulatory research

committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement applies

to activities conducted at Texas A&M and to activities conducted at non-Texas A&M facilities

or institutions. In both cases, students are responsible for working with the relevant Texas A&M

research compliance program to ensure and document that all Texas A&M compliance obligations

are met before the study begins.

I, Brandon G. Nguyen, certify that all research compliance requirements related to this

Undergraduate Research Scholars thesis have been addressed with my Faculty Research Advisor

prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research Compli-

ance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT . 1

ACKNOWLEDGMENTS . 2

NOMENCLATURE . 3

1. INTRODUCTION. 4

2. BACKGROUND . 5

2.1 Variational Auto-Encoders. 5
2.2 Diffusion Models . 6
2.3 Pinhole Camera . 11
2.4 Novel View Synthesis . 12
2.5 X-UNet . 14
2.6 Stable Diffusion . 15

3. METHODS . 17

3.1 3DiM. 17
3.2 Experiment . 19
3.3 Implementation . 20

4. RESULTS. 23

5. CONCLUSION. 27

5.1 Remarks . 27
5.2 Limitations . 27
5.3 Future Work . 27

REFERENCES . 30

APPENDIX: Additional Results . 33

ABSTRACT

Synthesizing Novel Views with Diffusion Models

Brandon G. Nguyen
Department of Computer Science and Engineering

Texas A&M University

Faculty Research Advisor: Dr. Nima Kalantari
Department of Computer Science and Engineering

Texas A&M University

Diffusion models have become the state-of-the-art generative model in a multitude of gen-

erative tasks such as audio and image synthesis. Until recently, there has not been much success

with the specific image-to-image task of novel view synthesis; where a model is given a reference

frame of a scene and is then queried about what the scene may look like from another, different,

view. One of these recent developments is the 3DiM model, where a conditional diffusion model

is modified with cross attention modules in order to leverage features across views in order to syn-

thesize more consistent and higher quality novel views. In this work, we re-implement this 3DiM

model with PyTorch to gauge its performance and to analyze its capabilities in synthesizing views

with varying parameters and spatial resolutions.

1

ACKNOWLEDGMENTS

Contributors

Thanks to Dr. Nima Kalantari and his students Avinash Paliwal and Pedro Figueirêdo for

their guidance and support throughout the course of this research.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Portions of this research were conducted with the advanced computing resources provided

by Texas A&M High Performance Research Computing.

2

NOMENCLATURE

VAE Variational Auto-Encoder

ELBO Evidence Lower Bound Objective

DDPM Denoising Diffusion Probabilistic Models

NeRF Neural Radiance Fields

LFN Light Field Networks

FID Fréchet Inception Distance

PE Sinusoidal Positional Embedding

FiLM Feature-wise Linear Modulation

3DiM 3D Diffusion Model

3

1. INTRODUCTION

Despite the proven success of diffusion models in a wide variety of image-to-image tasks,

there have been limited results with novel view synthesis until recently [1]. The objective of novel

view synthesis is to create a new view of a scene using information from existing different views

of the same scene.

Previous work in this area are limited in aspects resolution, quality, scene representation,

or multi-view consistency. 3D GANs can offer faster high quality sampling like with EG3D [2],

however, this is often at the expense of consistency. NeRF [3] are able to generate consistent

views, but are highly compute-intensive and do not generalize well to multiple scenes. And other

methods like MPI [4] are able to work on arbitrary scenes, but struggle with view-dependent effects

like reflections.

With diffusion [1], it is possible to obtain a model that is able to generate high quality

samples that is also generalizable to many different scenes. A few of the outstanding issues with

diffusion models is with synthesizing 3D consistent views, model size, and sampling speed. In [1]

they attend to the consistency issue, and in more recent work like [5] there has been attempts to

speed up diffusion sampling without sacrificing sample quality.

In this work, we aimed at reimplementing the 3DiM method [1] using PyTorch and to

evaluate the performance to see areas that can be extended in future work.

All codes used in this work has been published to GitHub as an open-source repository at

https://github.com/barnden/novel-view-diffusion. The data-sets [6] [7] [8]

have been either released to the public or can be obtained for research purposes.

4

https://github.com/barnden/novel-view-diffusion

2. BACKGROUND

2.1 Variational Auto-Encoders

The Variational Auto-Encoder (VAE) [9] is a generative model based in Bayesian networks.

As is usual in classification or regressive tasks learning a conditional model pθ(z|x) is more useful

than the unconditional pθ(x). That is, VAEs aim to answer the question of what is z if we have

made the observation of x? In the context of a classifier, a more concrete question that may arise

is that: if we are given an image x, then what is a likely label z which corresponds to the image?

In a regressive context, as is pertinent to this work, it may be that we have a directed

probabilistic process and we want to learn the probability of an event z conditioned against multiple

observations x1,x2, . . . ,xn. Or, suppose that the conditional distribution p(x|z) is known and we

wanted to reverse it to get p(z|x).

Unfortunately, computing the reverse probability p(z|x) is an intractable problem in most

situations. To see why, we use the definition of conditional probability to see that

p(z|x) = p(x|z)
p(x)

(1)

where p(x|z) is known due to the construction of the problem and the probability

p(x) =

∫
p(x, z) dz. (2)

In the context of deep learning networks, it is almost guaranteed that computing this integral for

p(x) is an intractable problem. The VAE utilizes a reparameterization trick to estimate a variational

lower bound to an otherwise intractable posterior distribution of a directed probabilistic model.

To explain the problem, suppose that there is some latent variable zi is generated from a

prior distribution pθ(zi), an xi ∼ pθ(x|z), and the true parameters θ and values of zi are unknown.

Then, it is often the case that the marginal likelihood pθ(x) =
∫
pθ(z)pθ(x|z) dz and the true poste-

5

rior pθ(z|x) = pθ(z|x)pθ(z/pθ(x)) are both intractable. The stochastic gradient variational Bayes

(SGVB) estimator [9] gives an efficient way to infer an approximation qϕ(z|x) of the posterior to

the latent z with observation x.

Without going into much detail, a random variable z(i) sampled from the approximate pos-

terior qϕ (z|x) can be reparameterized using a transformation gϕ
(
ϵ(i),x(i)

)
with ϵ(i) being sampled

from some probability distribution p(ϵ(i)) such that zi = gϕ
(
ϵ(i),x(i)

)
. Then, qϕ(z|x)

∏
i dzi =

p(ϵ)
∏

i dϵi. Therefore,
∫
qϕ(z|x)f(z) dz =

∫
p(ϵ)f(gϕ(ϵ,x)) dϵ. It is from this fact that the

SGVB is derived from [9].

In a VAE, the prior is the multivariate Gaussian pθ(z) = N (z; 0, I) and pθ(x|z) is also a

multivariate Gaussian with distribution parameters computed from z with a MLP and, as a result,

the true posterior pθ(z|x) is intractable. Then utilizing the trick, the variational approximation to

the posterior is also a multivariate Gaussian with respect to an observation x(i)

log qθ
(
z|x(i)

)
= logN

(
z;µ(i),σ2(i)I

)
(3)

where the mean and variance of the approximate posterior are outputs of the encoder. And the loss

L ≃ Eqϕ

[
log pθ

(
x(i)|z(i,l)

)]
(4)

where z(i,l) = µ(i) + σ(i)ϵ and ϵ ∼ N (0, I).

2.2 Diffusion Models

Diffusion models have proven to be successful in a multitude of generative tasks, and par-

ticularly in image-to-image applications that include image synthesis [10], super-resolution [11],

coloration, in-painting [12], and even video synthesis [13].

The diffusion process as outlined in [10] has two driving forces: the forward and the reverse

process. In each step of the forward process, small amounts of noise are gradually added onto a

clean image. As we tend towards infinity the result increasingly becomes indistinguishable from

pure noise. Then, in the reverse process we learn the noise that was added at each step in the

6

forward process. This reverse process will take a completely noised image or pure noise and

incrementally denoise it. At the end of the reverse process, a new clean image is formed that is

coherent to the images the model was trained on.

Compared to other methods like VAEs or flow models, diffusion models offer significantly

more mode coverage (diversity in generated images), and sample quality (quality in generated

images). However, this is with a trade-off with sampling speed; diffusion often requires a relatively

large model, and involves removing noise in many steps. There has been work with stable diffusion

[14] to reduce the size of diffusion models, and distillation [5] to reduce the number of denoising

steps. Unfortunately, both of these methods involve sacrificing visual fidelity or sample quality

according to quantitative metrics. But as emphasized in [14], it is only the perceptual uniformity

that matters in most cases and not the metrics.

2.2.1 Forward Process

From [10], the forward process is defined as a Markov chain that has T finite steps. This

process begins with a clean frame x0, at each step t a new frame xt is created by sampling a

Gaussian distribution q(xt|xt−1) which is conditioned on the observation of the past frame xt−1.

For large enough T , xT is nearly indistinguishable from pure Gaussian noise. In practice, xT is

sampled from the standard Gaussian N (0, I).

x0 x1 x2 · · · xT
q(x1|x0) q(x2|x1) q(x3|x2) q(xT |xT−1)

q(x1:T |x0)

q(x1:2|x0)

Figure 1: Illustration of the forward process.

In the forward process, sampling an xt given an x0 can be described as sampling from a

7

conditional isotropic multivariate Gaussian distribution

q(xt|xt−1) = N
(
xt;
√
1− βt xt−1, βtI

)
, (5)

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (6)

where βt is the variance at time t. These βt are defined as hyperparameters that increase according

to a linear schedule such that 0 < β1 < · · · < βT < 1.

The key insight is that with large T , each individual step has a very small variance βt. As

each step has a smaller variance, it gives a greater amount of certainty to the reverse posterior

distribution of the forward step q(xt−1|xt). As a result, this allows us to assume that the learned

prior distributions pθ in the reverse process are also modelled by unimodal multivariate Gaussians.

Later, this fact will allow us to reuse the reparameterization trick from [9] to find a tractable lower

bound to the reverse posterior.

The Markovian forward process increasingly adds Gaussian noise at each step with increas-

ing variance. A simple observation that can be made is to notice that the sum of Gaussians is a

Gaussian in and of itself. By leveraging this property, it is possible to sample the entire forward

process at an arbitrary timestep t with one step only. This thereby makes it possible to sample xt

knowing only the clean frame x0

q(xt|x0) = N
(
xt;

√
ᾱt x0, (1− ᾱt)I

)
, (7)

where αt = 1− βt and ᾱt =
∏t

s=1 αs.

2.2.2 Reverse Process

The prior distribution of the reverse process can be described with the joint probability

pθ(x0:T) which is also a result of a from a Markov chain that starts with p(xT) = N (xT ; 0, I).

Simply, the reverse process is iteratively removing the noise that was added in the forward process

in order to attain a new denoised clean frame x′
0.

8

x0 · · · xT−2 xT−1 xT
pθ(x0|x1) pθ(x1|x2) pθ(x1|x2) pθ(xT−1|xT)

pθ(x0:T)

pθ(xT−2:T)

Figure 2: Illustration of the reverse process.

From [10], the reverse prior distributions are given by

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (8)

pθ(x0:T) = p(xT)
T∏
t=1

pθ (xt−1|xt) , (9)

where Σθ is fixed according to a linear schedule, and µθ is the learning objective of the model. By

using the reparameterization trick from [9], xt can be rewritten as

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ (10)

where ϵ ∼ N (0, I). This reparameterization allows the model to learn the noise ϵ added rather

than predicting the distribution; experimentally this yielded in better sample quality [10].

9

•
xT

•

•
•

•

•

•

Image Space

Image Manifold

•
x′
0

•
x0

pθ(x0:T)

q(x1:T |x0)

Figure 3: Illustration of random walks from the source image x0 and to the generated image x′
0

on the image manifold in the image space corresponding to the forward and reverse
processes.

As solving pθ(x0) =
∫
pθ(x0:T dx1:T) is an intractable problem, we can instead optimize

for the variational lower bound. Instead of using the true evidence lower bound, the usual repa-

rameterization from (10) is used to get a simplified variational lower bound objective as given by

[10]

L = Et,x0,ϵ

[
∥ϵ− ϵθ (xt, t)∥2

]
, (11)

where t ∼ Unif{1, . . . , T} and ϵ ∼ N (0, I).

The time t is passed into the model where it is embedded into the data using sinusoidal

positional encodings (PEs) [15] given by

PEt,2i = sin

((
t

10000

)2i/d
)

(12)

PEt,2i+1 = cos

((
t

10000

)2i/d
)
. (13)

10

2.3 Pinhole Camera

Before discussing novel view synthesis, it is important to understand the image formation

process in cameras. In essence, the light in a 3D scene will bounce off of every point in the scene,

randomly in all directions. If we were to just take an image sensor and attempt to capture the light

in the scene, the resulting image will appear blurry. This is a by-product of the light scattering in

all possible directions. In a scene, there are many points which are able to reflect light towards the

same spot on the image sensor. As a result, this is a many-to-one mapping from points in the scene

to the image sensor.

Now, suppose we took a piece of paper and poked a very small hole through it. Looking

through this pinhole, we are still able to see the scene. However, a lot of the light from the scene

is getting blocked off. This means if we treat the pinhole as a singular point in space, then that

means that there is exactly one way to reach this point from anywhere else in the scene. That is, for

each point on the image sensor, only light from one direction will reach it rather than all possible

angles. This gives us a one-to-one mapping of points in the scene to points on the image sensor,

and we call the pinhole the center of projection, or the center of the camera.

With the pinhole camera, it is possible to trace the direction of the light rays that are hitting

each point on the image sensor. It should be noted that the image sensor is also referred to as

the image plane. If the image plane is placed in front of the center of projection, then the image

formed on the plane will be inverted. As a result, the image plane is typically placed behind the

center of projection in order to have an upright image which also has the benefit of simplifying the

calculations.

The direction of a ray hitting the sensor can be recovered using the intrinsic matrix K ∈

R3×3. Specifically, the intrinsic matrix can encodes information about the camera’s focal length,

skewing factor, offset, and aspect ratio. The direction of each ray from a camera with intrinsic

matrix K can be given with

dcamera = K−1x (14)

11

where x is a point on the image plane, typically this point is chosen to be the center of a pixel on

an image sensor.

However, the current direction vector we have is relative to the center of projection, or

expressed in the camera space. This direction vector tells us nothing about its actual direction with

respect to the world. To get the direction in the world, we require the extrinsic matrix often denoted

as [R|t] ∈ R3×4, this is also often referred to as the camera’s pose. The extrinsic matrix describes

the camera’s rotation and translation relative to the world origin. By rotating our direction vector

in camera space, we can get the direction in the world space

d = Rdcamera (15)

And the origin of the direction vector can be set to the center of projection, which in world coordi-

nates is equal to the t vector.

Often in novel view synthesis, the key concept is how two different views relate to one

another – or the relative pose. This is useful in instances where we aim to synthesize a novel view

utilizing a reference view with no known absolute pose, as is the case in most real-life photos. To

relativize the absolute camera rays from one camera pose to another, then the ray origins need to

be transformed by the inverse extrinsic and the directions by the inverse rotation.

2.4 Novel View Synthesis

In novel view synthesis the objective is to infer how a given 3D scene will look like from

a novel viewpoint with limited information about the scene. Some recent work into this area

includes neural radiance fields (NeRF) [3] that are so-called “geometry-aware” models in that

they synthesize views via volume rendering of an underlying 3D representation of a scene. More

specifically, NeRF works by training a new model for a specific scene, then querying the model

with novel views.

This class of geometry-aware models has the added benefit of guaranteeing a property

called “3D consistency”, i.e. each synthesized view of a scene will be consistent with one another.

12

To better understand this concept, think of a scene containing a ball. With no other references, it is

difficult to judge the scale of the ball, i.e. it can be a small ball near the camera, or a large ball in

the distance.

View with pose (R, t) Near and small Far and large

Figure 4: A visualization of the ambiguity arising from a single shot of a scene.

Another example from [1] is that there are many possible faces that can be associated with

a given view of the back of a head. With 3D consistency, these properties remain the same across

all views.

One issue with NeRF models in the few shot setting is that they must extrapolate informa-

tion about occluded regions of a scene. This extrapolation often manifests as undesirable artifacts

in synthesized views. As NeRF models are trained for a specific scene, they cannot leverage knowl-

edge about other scenes to better extrapolate the information. However, there has been some work

into optimization at test time to adapt off the shelf NeRF models to novel scenes in CodeNeRF

[16].

An alternative is to use a “geometry-free” approach for novel view synthesis such as Light

Field Networks (LFN) [17] and 3D Diffusion Models (3DiM) [1]. These models are focused on

novel view synthesis in a “few-shot” setting, i.e. generating novel views with only a few (≲ 10)

reference views.

Computing metrics such as the Fréchet Inception Distance (FID) on the geometry-free

model outputs against the training dataset is incapable of scoring 3D consistency. As metrics like

13

FID measure the disparity between datasets. To address this [1] propose a new method called 3D

consistency scoring. Their objective was to penalize inconsistent outputs but not outputs that are

consistent but have deviated from the ground truth. Their solution was to generate dozens of views

using the geometry-free models, then train a NeRF-like geometry-aware model. This NeRF-like

model is then queried with novel poses to generate views, these views are then compared using the

usual metrics against the ground truth.

2.5 X-UNet

Figure 5: Diagram of the X-UNet architecture.

Most diffusion models like [10] [11] [12] [13] [1] use a UNet backbone [18] with ResNet

blocks [19]. As well as some form of self-attention [15]. There has been prior work in conditional

diffusion models like [11] [12], however, when applied to novel view synthesis, they were unable

to synthesize views that were 3D consistent with one another. With [1], they introduce a new ar-

chitecture called X-UNet based off of the conditional model in [13] which was originally designed

for video synthesis.

Each residual block in X-UNet takes the feature maps and the positional embeddings as

inputs like [10]. Unlike [10], however, the input frame z
(λt)
k and the clean frame xk are allowed to

have different noise levels. Specifically xk has λmax which corresponds to a no noise being added

into the frame. Also following [10], each block is modulated with FiLM [20]. In X-UNet, the

FiLM modulation occurs by summing both the pose and noise encodings rather than just the noise.

Here, the pose encodings are the camera rays with some transformation applied to them, as a result

their encodings have the same dimensions as the frames.

Each block also utilizes self and cross attention layers. The self-attention layer is defined

14

as calling the multihead attention [15] passing the same frame’s feature vector for the query and

key-value pairs. In essence, this allows the model to learn which portions of the input vector are

important. The cross-attention layer is also based in the standard multihead attention, except the

query and key-value pairs are from the opposite frames’ feature vectors. By allowing each frame

to query each others’ feature maps, the model is able to leverage more information about the scene

from the conditioning view.

2.6 Stable Diffusion

As mentioned previously, the UNet network architectures used in diffusion models are

very large, especially when incorporating attention modules [15] to more effectively learn image

representations. Stable diffusion [14] offers a different diffusion technique in order to reduce the

size of such networks.

The key contribution from [14] is introducing an encoder/decoder processing step that

encapsulates the diffusion process. Effectively, this enables the diffusion process to be operate

in a low-dimensional latent vector space representation of an image rather than the actual high-

dimensional image space.

An RGB image x ∈ RH×W×3 is encoded by the encoder E into a latent representation

z = E(x), and z can be decoded back into the image space with the decoder x̄ = D(z) = D(E(x)).

The latent image representation z is in the vector space Rh×w×c, where, importantly, the spatial

resolution h = H/f,w = W/f has been down sampled by a constant factor f . In practice, the

scaling factor f = 2m where m is some positive integer. It is important to note that this is a lossy

operation, i.e. the recovered x̄, while very similar, is not necessarily the same image as the input

image x.

There is a risk of having a latent space with an arbitrarily high variance. Some learned

vector regularizations such as KL-reg or VQ-reg can be applied to reduce the variance. In KL-reg,

the vector space is biased towards a standard Gaussian akin to VAEs [9]. Whereas in VQ-reg, a

vector quantization layer is used inside the decoder.

Beginning with a clean image x, the stable diffusion process then uses the encoder to get

15

its compressed latent z. This latent is then then be passed as an input into a diffusion model, where

the usual diffusion processes occur. The output of the diffusion model is then another vector z̄

inside the latent space, this vector is then passed into the decoder to retrieve the generated image

x̄ = D(z̄).

The stable diffusion model also provides a method of conditioning the latent diffusion pro-

cess. This involves a processing the conditioning information y with a domain specific encoder τθ

that projects y into an intermediate representation. Then, this intermediate representation is used to

condition the diffusion process by either being passed into a cross attention module in each UNet

block or concatenated onto the latent vector.

The X-UNet model is a relatively large model. For example, an X-UNet model for images

with a spatial resolution of 128× 128 contains around 400 million parameters, 256× 256 over 2.8

billion, and 1024× 1024 over 30 billion. As a result, there is a strong incentive to finding methods

to reduce model size.

With stable diffusion, the target spatial resolution can be down sampled by a factor of f .

The space savings in terms of spatial resolution alone is directly proportional to f 2. With all other

things equal, an f = 2 will reduce the space requirements for 256×256 from 2.8 billion to just 700

million. In actuality, the number of parameters can be even lower than 700M when considering

that there will be fewer X-UNet layers.

16

3. METHODS

3.1 3DiM

3DiM aims to provide a simple framework using an image-to-image diffusion model to per-

form novel view synthesis. Following [5] and [1], given a distribution q(x1,x2) for pairs of views

for a given scene and poses p1,p2 ∈ SE(3), the forward Gaussian process from (5) is modified

to increasingly add noise to the image as with the log signal-to-noise-ratio λ = log [α2/σ2] with a

decreasing cosine schedule λmin = λT < λT−1 < · · · < λ0 = λmax as in [21].

q
(
z
(λ)
k |xk

)
= N

(
z
(λ)
k ;
√

S(λ)xk, S(−λ)I
)

(16)

where S(·) : [λmin, λmax] 7→ R is a sigmoid function, and z
(λ)
k is a noised frame with a different

pose with respect to the reference view xk. Again using the properties of the Gaussian like in (10),

we reparameterize the noised frame

z
(λ)
k =

√
S(λ)xk +

√
S(−λ) ϵ (17)

where ϵ ∼ N (0, I). Modifying the simplified training objective from (11) yields

L = Eq(x1,x2)Eλ,ϵ

∥∥∥ϵ− ϵθ

(
z
(λ)
2 ,x1, λ,p1,p2

)∥∥∥2
2

(18)

where ϵθ is now a model trained to denoise frame z
(λ)
2 given a clean reference frame from another

pose x1.

Ideally the frames of a 3D scene can be modelled with the decomposition

p(x) =
∏
i

p(xi|x<i), (19)

without any assumptions about conditional independence. Practically, we can at best generate a

17

view using a k-Markovian model that considers only k conditioning frames. Experimentally, [1]

found that k small yields the best sample quality and decided to set k = 2.

x0 x1 · · · xi−k · · · xi−2 xi−1 xi

k

Figure 6: Illustration of generating a frame xi with k-Markovian model.

Instead of sampling frames from the Markov process, [1] instead proposes a new method

stochastic conditioning. In this process, we begin with an initial set of conditioning views X =

{x1, . . . ,xk} with k small. As x̂k+1 and z
(λt)
k+1 are both known, the reverse of the forward process

can be obtained by using Bayes’ on the posterior distribution:

x̂k+1 =
(√

S(λt)
)−1 (

z
(λt)
k+1 −

√
S(−λt) ϵθ

(
z
(λt)
k+1,xi, λt,p1,p2

))
(20)

z
(λt−1)
k+1 ∼ q

(
z
(λt−1)
k+1

∣∣∣zλt
k+1, x̂k+1

)
, (21)

where each denoising step involves resampling i ∼ Unif{1, . . . , k}.

The key distinction from [10] is that each denoising step is conditioned against a different

and random frame from the set X , where as [10] conditions against the same clean frame at each

step. After generating the new frame xk+1, we let X := X ∪{xk+1}, and repeat. Another deviation

from [10] is that [1] uses only 256 denoising steps rather than 1000, and a bottle-neck with spatial

resolution 8× 8 instead of 4× 4. But alike regular diffusion, the noised frame at λT can be given

by z
(λT)
i ∼ N (0, I) and at the frame at λ0 is sampled noiselessly.

18

Following [5], the Bayesian reverse posterior in (21) is given by

q
(
z
(λt−1)
k+1

∣∣∣zλt
k+1, x̂k+1

)
= N

(
z
(λt−1)
k+1 ; µ̃t−1|t

(
z
(λt)
k+1, x̂k+1

)
,
(
σ̃2
t−1|t

)1−γ (
σ̃2
t|t−1

)γ
I
)

(22)

where

µ̃t−1|t

(
z
(λt)
k+1, x̂k+1

)
= eλt−λt−1(αt−1/αt)z

(λt)
k+1 +

(
1− eλt−λt−1

)
αt−1x̂k+1 (23)

σ̃2
u|v =

(
1− eλv−λu

)
σ2
u (24)

and γ is a hyperparameter that controls the amount of noise added during the sampling procedure

as in [21]. Finally, z(λt−1)
k+1 can be sampled from the reversed posterior via

z
(λt−1)
k+1 = µ̃t−1|t

(
z
(λt)
k+1, x̂k+1

)
+

√(
σ̃2
t−1|t

)1−γ (
σ̃2
t|t−1

)γ
ϵ

= eλt−λt−1(αt−1/αt)z
(λt)
k+1 +

(
1− eλt−λt−1

)
αt−1x̂k+1 +

√(
σ̃2
t−1|t

)1−γ (
σ̃2
t|t−1

)γ
ϵ

(25)

where ϵ ∼ N (0, I).

3.2 Experiment

Again, the basic idea of this work is to take the existing 3DiM model proposed by [1]

and reimplement it in the PyTorch framework instead of Jax in order to evaluate its performance

under different conditions and hyperparameter settings. Some questions would be (1) comparing

the model’s performance across different resolutions and (2) determining the size and speed of the

model to see if or how they can be improved. An added bonus would be accomplishing 3D (or

view) consistency between synthesized views à la the stochastic conditioning method as described

in [1].

19

3.3 Implementation

3.3.1 Architecture & Hyperparameters

The implementation of the X-UNet architecture was largely based off of the details and code

provided with the supplementary material and in the appendices of [1]. The provided code was

originally written for use in conjunction with the Jax [22] library. Due to unfamiliarity with Jax, it

was decided that it would be best to port the base code and recreate the model using the PyTorch

library instead. With PyTorch it was easier to refer to existing open-source implementations of

other UNet and diffusion models to quickly bootstrap and verify the X-UNet model.

By and large, the PyTorch implementation stayed true to the Jax code in [1]. One ma-

jor deviation, in terms of implementation, is that this implementation uses the built-in PyTorch

MultiheadAttention module. The authors of [1] opted to write a custom attention module

utilizing the generalized dot product attention from [15]. Reviewing the code in [1] did not reveal

any obvious difference from the standard description of multi-head attention.

The model’s hyperparameters again followed that of [1]. For images with a spatial resolu-

tion of 128× 128, 4 X-UNet layers were used with channel depths of 256× [1, 2, 2, 4] were used.

Each X-UNet layer down samples the input by a factor of 2 and eventually leads to a bottle-neck

with spatial resolution of 8× 8, which was noted by [1] to produce perceptually acceptable results.

The signal-to-noise ratio is defined using the cosine-shaped schedule from [5] with param-

eters λmin = −20 and λmax = 20:

λt = −2 log tan(at+ b), b = arctan exp
(
−1

2
λmax

)
, a = arctan exp

(
−1

2
λmin

)
− b, (26)

where t is the time-step normalized to the unit interval [0, 1]. It should be noted that αt and σt from

[5] and used in the ancestral sampler (25) is given by

αt = cos(at+ b), σt = sin(at+ b). (27)

20

3.3.2 Data-set & Training

All images used in training the model for novel view synthesis were generated by rendering

the SRN ShapeNet data-set [7]. Due to computation and time constraints, it was decided to not

follow [1] in training the model against all of ShapeNet, and rather focus on a specific subset of

the taxonomy.

To validate that the PyTorch code was able to perform diffusion, it was first trained on the

CelebA-HQ data-set [8]. In this experiment, the model synthesized faces at a 128× 128 resolution

with the standard hyperparameters and the cameras’ intrinsics and poses were set to the identity.

Initially, the model was trained on 64 × 64 spatial resolution images, obtained from the

NMR renderings [6] of the ShapeNet data-set. This was to validate that the ported PyTorch code

was able to perform diffusion, and potentially synthesize novel views. Each model in the NMR

data-set had 24 rendered views moving in a circular fashion around the object. Due to file storage

limitations on our clusters, we decided to limit ourselves to just the “vessels” taxonomy of the

data-set.

After validating the model’s correctness, data-sets with larger spatial resolutions were used.

This involved rendering the ShapeNet models at the desired custom resolution with Blender through

the Stanford ShapeNet Renderer script. Minor modifications were made to export the intrinsic K

and extrinsic [R | t] matrices from the cameras in the Blender scene. With this script, 12 views

in circular fashion of each model belonging to the “chairs” taxonomy were rendered; the camera

poses of the 12 views remained consistent for each model. No changes were made to the cameras’

calibration between models, meaning that the entire data-set shared the same camera intrinsics.

The models in this data-set were randomly split with a 83/12/5 ratio for training, validation, and

testing.

After getting subpar results from the low resolution vessels experiment, it was decided to

use the chairs ShapeNet category instead. The chairs category had approximately 4 times as many

models when compared against the pre-rendered NMR vessels. It was hypothesized that having

a larger data-set from the chairs would improve sample quality in addition to raising the spatial

21

resolution of the images.

An experiment done in [1] but not here was to perform hue modulation on the inputs to the

network to reduce the over-fitting to the training data.

All training of the models and rendering of the 3D ShapeNet scenes were performed using

the Texas A&M HPRC clusters on A100 GPUs. All of results shown are synthesized from the

same clean reference frame, instead of using the stochastic conditioning method and incrementally

synthesizing views from smaller changes in camera pose. Also, classifier-free guidance for training

the model was not implemented at the time of writing.

22

4. RESULTS

All synthesized results are generated using reference views inside of the testing split of

the data-set. Additionally, no real-world scenes were used due to the model’s extremely limited

resolution.

First, the validation with 128× 128 CelebA [8] data-set. This model was to verify that the

PyTorch implementation was able to perform standard diffusion with a standard 2D image data-

set, and as a result it was neither trained to completion nor with the optimal set of hyperparameters

for this type of diffusion task which explains the lower perceptual quality of these results. The

following faces are synthesized using the standard 1000 denoising steps from prior work [10],

instead of the 256 used in [1] for novel view synthesis.

Figure 7: Synthesized faces with diffusion and the X-UNet with CelebA dataset. Pure Gaussian
noise was used as the conditioning frame, and the pose inputs p1 = p2 = I3×4.

23

Next, a model trained at 64 × 64 with the “vessels” ShapeNet category. It is speculated

that due to the limited spatial resolution of the model, it is hard to discern and pick out features

of any object. As a result, many of the synthesized views at this resolution were not perceptually

coherent. The synthesized views that appear to be some-what acceptable in quality generally do

not represent the original object, such as in the case of Figure 8. In that figure, the conditioning

view is almost at top-down with the vessel facing the viewer. From this pose and with the limited

resolution, it is hard – even for a human – to discern what kind of vessel it is and what kind of

materials it is composed of.

One experiment that was not conducted, but could possibly improve results, is to instead

synthesize a novel view starting with K = |X | > 1, or in a few-shot setting instead of a single-

shot. Ideally, this experiment will allow the model to leverage more information about the scene

when limited by spatial resolution. Doing this will require fine-tuning of many hyperparameters,

as the authors of [1] have found that higher K correlates with lower sample quality.

Finally, the results of 3DiM at a resolution of 128×128 on the “chairs” ShapeNet category.

The increased resolution gives more information about the scene for the model to work with.

This is likely the reason why in these chair samples are able to preserve shape and texture when

compared against the vessels.

Initially, the model was being trained on renders with transparent backgrounds that were

later interpreted as a black background by the model. This led to strange artifacts in the results,

possibly due to the fact that there was very little contrast between the shadowed regions of a model

and the black background. However, some images were still able to yield acceptable sample quality

Figure 9.

24

(a) Conditioning view x0 (b) Target view

(c) Illustration of the diffusion denoising process to generate a novel view.

(d) Other attempts in synthesizing the same view with different input noise.

Figure 8: Synthesis of novel views of a vessel.

Unfortunately, this implementation of the model often yields low quality results as seen

in Figure 10. There are many factors that may contribute to this, such as training time, batch

sizing, incorrect hyperparameters or implementation. Due to time and computing constraints, not

all of these possibilities were able to be ruled out. Regrettably, again due to time, we were unable

to train a model of the vessels category at 128 × 128 resolution to directly compare against the

smaller 64 × 64 model to definitively answer the question about sample quality being negatively

impacted by low resolutions.

25

Figure 9: Synthesized novel views of various chairs.

Figure 10: Failures in synthesizing a novel view of chairs.

26

5. CONCLUSION

5.1 Remarks

This implementation of the 3DiM method is able to synthesize some novel views given a

single view of an existing 3D scene. However, there are a lot of areas that can still be improved,

such as sampling quality and model size.

5.2 Limitations

This implementation had many limitations, such as a very limited image resolution and

the slow sampling process that is typical of diffusion models. Another limitation that was not

addressed is the large model size which was the major limiting factor in training.

While we did not test the sample qualities with differing batch sizes, we suspect that there

may be some correlation between batch-size and

5.3 Future Work

5.3.1 Stable Diffusion

Diffusion models like the X-UNet used in 3DiM are relatively large, often requiring hun-

dreds of millions or billions of learnable parameters for relatively low resolution images. One

technique previously discussed, stable diffusion, aims to reduce the dimensionality of the input

image by passing it through an encoder and performing diffusion in the resulting latent space. This

latent representation has the benefit of being some squared factor f 2 less in spatial dimensionality

compared to the original input image. This would yield some benefits in reducing the size of the

UNet models used in diffusion.

A consideration to make are that these latent representations are inherently lossy. This can

manifest in artifacts with high frequency details such as reflections or text to being lost in the

process. Overall, this method may only work with novel view synthesis if beginning with a very

large resolution and small scaling factor like f = 2.

27

5.3.2 Distillation

Typically in diffusion, it takes many sampling steps to synthesize an image – typically on

the order of thousands or tens of thousands. Some recent work has been made in “distilling” these

diffusion models [5], in which a teacher model with N steps can be reduced to new student model

requiring only N/2 steps. In the extreme, a model with N steps can be reduced to as few as 4 or

even a single step process with minimal loss to the overall sample quality when compared against

the original model.

This method is an attractive method of speeding up the X-UNet model used in the 3DiM

process. The construction of the model is already based on the log signal-to-noise ratios as defined

in progressive distillation by [5]. Then, it should be trivial to apply the teacher-student model

to reduce the number of steps from 256 to a smaller number. However, in the 3DiM process,

stochastic conditioning is a required step in maintaining 3D consistency between synthesized novel

views. In this stochastic conditioning, each denoising step is conditioned against a different clean

frame of the same scene. This requirement may prevent the ability to significantly reduce the

number of steps, but even a reduction by a factor of 2 is very attractive.

5.3.3 In-painting

In other works involving novel view synthesis such as MPI methods like [4], a reference

view is warped using some transformation and only the previously occluded regions are generated

via some guided in-painting process.

This is contrast to the focus of this work, which was to synthesize an entirely new view

given a reference frame of a 3D scene. This required synthesizing all H×W pixels of an image of

the scene, rather than some smaller subset of pixels. By selectively in-painting a subset of pixels

in the scene, this can reduce the amount of time required to synthesize a novel view.

There has already been work in applying diffusion with in-painting tasks [12], so it may be

possible to apply those findings in the context of novel view synthesis.

28

5.3.4 Classifier-Free Guidance

Due to time constraints, this work did not implement classifier-free guidance that is com-

monly used in guided or conditional diffusion models. In VAEs or flow models, it is possible to do

truncated or low temperature sampling with decreased variance of the noisy inputs. This has the

effect of sacrificing some mode coverage of the model while boosting individual sample quality.

However, simply applying this same method of reducing variance to diffusion negatively impacts

the sample quality – often producing results that are blurry and low in quality.

This trade-off is particularly attractive in diffusion models, as they can already generate

high quality samples and have a larger mode coverage when compared against GANs or flow

models. Even if the diffusion model’s mode coverage is restricted, the model can potentially create

extremely high quality samples with more coverage compared to other existing generative models.

Classifier-free guidance [23] is a method that attempts to accomplish the same effects as

low temperature sampling with diffusion models, without the loss of sampling quality. This is a

simple method to implement for the 3DiM method. For a small probability ∼ 10 − 20% of the

time, pure Gaussian noise should be passed as the condition instead of a clean reference frame of

the scene in order to unconditionally synthesize a view. The model’s weights with conditional and

unconditional synthesis can then be mixed in order to maximize sample quality.

In contrast to [1] where they trained against the entirety of the ShapeNet data-set, this work

only trained the the 3DiM model against a single class of ShapeNet objects, i.e. only chairs or

vessels. Applying classifier-free guidance in this case might not have yielded the same benefits in

our case due to the limited nature of the data-set.

29

REFERENCES

[1] D. Watson, W. Chan, R. Martin-Brualla, J. Ho, A. Tagliasacchi, and M. Norouzi, “Novel view
synthesis with diffusion models,” 2022.

[2] E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. D. Mello, O. Gallo, L. Guibas,
J. Tremblay, S. Khamis, T. Karras, and G. Wetzstein, “Efficient geometry-aware 3D genera-
tive adversarial networks,” in arXiv, 2021.

[3] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf:
Representing scenes as neural radiance fields for view synthesis,” in ECCV, 2020.

[4] R. Tucker and N. Snavely, “Single-view view synthesis with multiplane images,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[5] T. Salimans and J. Ho, “Progressive distillation for fast sampling of diffusion models,” 2022.

[6] H. Kato, Y. Ushiku, and T. Harada, “Neural 3d mesh renderer,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[7] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene representation networks: Continuous
3d-structure-aware neural scene representations,” in Advances in Neural Information Pro-
cessing Systems, 2019.

[8] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceed-
ings of International Conference on Computer Vision (ICCV), December 2015.

[9] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd International Con-
ference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2014.

[10] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Proceedings
of the 34th International Conference on Neural Information Processing Systems, NIPS’20,
2020.

30

[11] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, “Image super-resolution
via iterative refinement,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 45, no. 4, pp. 4713–4726, 2023.

[12] C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and M. Norouzi,
“Palette: Image-to-image diffusion models,” in ACM SIGGRAPH 2022 Conference Proceed-
ings, SIGGRAPH ’22, (New York, NY, USA), Association for Computing Machinery, 2022.

[13] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet, “Video diffusion
models,” 2022.

[14] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image syn-
thesis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[16] W. Jang and L. Agapito, “Codenerf: Disentangled neural radiance fields for object cat-
egories,” in Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 12949–12958, 2021.

[17] V. Sitzmann, S. Rezchikov, B. Freeman, J. Tenenbaum, and F. Durand, “Light field networks:
Neural scene representations with single-evaluation rendering,” in Advances in Neural Infor-
mation Processing Systems (M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, eds.), vol. 34, pp. 19313–19325, Curran Associates, Inc., 2021.

[18] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical im-
age segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MIC-
CAI 2015 (N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, eds.), (Cham), pp. 234–
241, Springer International Publishing, 2015.

[19] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceedings of the British
Machine Vision Conference (BMVC) (E. R. H. Richard C. Wilson and W. A. P. Smith, eds.),
pp. 87.1–87.12, BMVA Press, September 2016.

[20] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C. Courville, “Film: Visual reasoning
with a general conditioning layer,” in AAAI, 2018.

31

[21] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in Pro-
ceedings of the 38th International Conference on Machine Learning (M. Meila and T. Zhang,
eds.), vol. 139 of Proceedings of Machine Learning Research, pp. 8162–8171, PMLR, 18–24
Jul 2021.

[22] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: Autograd and XLA.”
Astrophysics Source Code Library, record ascl:2111.002, Nov. 2021.

[23] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” 2022.

32

APPENDIX: Additional Results

33

	ABSTRACT
	ACKNOWLEDGMENTS
	NOMENCLATURE
	INTRODUCTION
	BACKGROUND
	Variational Auto-Encoders
	Diffusion Models
	Pinhole Camera
	Novel View Synthesis
	X-UNet
	Stable Diffusion

	METHODS
	3DiM
	Experiment
	Implementation

	RESULTS
	CONCLUSION
	Remarks
	Limitations
	Future Work

	REFERENCES
	APPENDIX: Additional Results

