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ABSTRACT

Quantum Dynamics of Qubits

Brandon Lee Torres
Department of Physics and Astronomy

Texas A&M University

Faculty Research Advisor: Dr. Alexey Belyanin
Department of Physics and Astronomy

Texas A&M University

The basic unit of information within quantum mechanics can be modeled through two-level

systems to provide a foundational understanding of quantum information theory. These quantum

systems, which can be represented by qubits, can be transformed and manipulated when strongly

coupled to an applied electromagnetic field. I study the quantum dynamics of two-level systems

strongly coupled to a classical electromagnetic field, with the inclusion of dissipation and deco-

herence, to understand the method of using state transitions to transmit information. Furthermore,

I characterize physical properties of Al(III) and Silicon based molecules that can serve as possible

candidates for a qubit. Using the advantages of π pulses, I solve for analytical solutions of differ-

ing electromagnetic pulses that would create transitions within the variety of candidate molecules.

The stochastic Schrodinger equation approach for the Lindbald approximation is used to provide

insight into including dissipation of the states and decoherence of the electromagnetic field within

the quantum systems. The electromagnetic effects of a qubit-cavity system are observed to estab-

lish a realistic understanding of the scenario and provide the experimental requirements to create

transitions through the use of pulsed light. Additionally, I study the coupled interaction of elec-
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tromagnetic pulses between multiple qubits to determine the conditions for interchanging states

between them. The combination of classical and quantum electromagnetic effects are considered

to fulfill a scheme for a CNOT quantum gate. The goal of these theoretical topics is to create

a quantum system of qubits that can be used to function as a possible experimental basis of a

quantum gate for computation.
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1. INTRODUCTION

Quantum information is a growing field that provides technological innovation as well as

creates a more efficient method of computation and storage of memory. Solid-state quantum sys-

tems such as circuit quantum electrodynamics and cavity quantum electrodynamics offer a techno-

logically attractive monolithic solution as compared to other approaches such as ions in a vacuum

trap [1, 2]. In this project, we consider the qubits, i.e. two level systems, that are strongly cou-

pled to an electromagnetic field in a dielectric or plasmonic nanocavity [3]. By understanding

how qubits transition between states due to the interaction with the common cavity field or direct

coupling, quantum logic gates, which are necessary for computing, can be created. Furthermore,

the superposition of states within a qubit can lead to an exponential potential in the amount of

information such a system can hold [4] and a manipulation of this system is necessary to be able

to push the boundaries of computing power. Multi-qubit systems that include the interaction of the

coupled qubits should consider both quantum and classical electromagnetic field contributions to

best approach this topic [5, 1]. As such, this project initially explores the feasibility of the coher-

ent control of coupled qubit systems through the use of a classical electromagnetic field, then the

scheme of a quantum gate is determined through the use of the quantum electromagnetic interac-

tion of the qubit system with a probing photon.

The behavior of a simple setup of a classical electromagnetic field applied on a two level

system [6] will first be considered to understand the requirements in controlling the transitions

of the qubit. Candidate molecules for the role as the qubit will be used for the numerical solu-

tions. In order to use these molecules, specific physical characteristics such as their decay lifetime

and wavelength emission will have to be measured. Then, their individual dipole moments will be

determined in order to numerically solve their dipole interaction with the classical external electro-

magnetic pulse and cavity electromagnetic field. Once the foundation for manipulation of qubits’

energy states has been built, the effects of introducing a cavity will be considered in both the field
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experienced by the two level system that undergoes transitions as well as emissions that are re-

leased. A more realistic cavity geometry will then be considered and the effects of dissipation and

decoherence, through interaction with an environment, will be included[6, 5] to apply realism in

the system. A solution to this system will provide an understanding on how changing the applied

field can manipulate the transitions within a qubit and communicate what observables could be

used to allow storage and retrieval of information. Once a solution has been found, applications

of the system into a model of a quantum logic gate will be discussed. In order to create a gate,

multiple qubits will have to be introduced and their interaction between each other will be con-

sidered. While there are ideas for a single qubit quantum gate through the use of a multi-level

system within the qubit, this project will focus on the coupling of two qubits to the cavity field and

their possible entangled "dark" state to provide functionality of a CNOT gate. The design of the

multi-qubit scheme is shown in Fig. 1 . The logic operations for the gate will be determined by

the polarization of probing photons [7]. Therefore, single photon interactions with the cavity of

coupled qubits will be discussed.

Figure 1: The scheme for a multi-qubit cavity system with entangled states.

Overall, the goal of this project is to find a solution of a practical qubit scenario with can-
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didate molecules that stems from the usage of a classical electromagnetic field. Quantum electro-

dynamical effects will need to be considered for the later steps, however the semiclassical system,

one that describes the behavior of the particle quantum mechanically within a classical electro-

magnetic field, can bring insight into further research on the topic and possible functionality for a

quantum gate.
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2. TWO-LEVEL SYSTEMS AND THEIR TRANSITIONS

2.1 Finding Transition Probabilities from Applied Electric Field

Qubits are two-level quantum mechanical systems, typically the energy levels of particles,

that are able to undergo energy transitions. These transitions populate different states which deter-

mine the information of a system, such as the particle being in the ground state versus an excited

state. Energy transitions can be manipulated through the electric-dipole interaction between the

strong coupling of the particle and applied external electromagnetic field. With the correct field

amplitude applied onto the system, the probability is guaranteed and an energy transition occurs.

The transition probability between states in a basic two level system can be calculated through the

probability amplitude coefficients of the given particle’s eigenstates within a system. The proba-

bility amplitude coefficients are found by solving the Schrodinger differential equation using the

proper eigenstates of the two-level system’s Hamiltonian and correct wave function of the particle.

Figure 2: Two-level system with ground state |0⟩ energy Ea and excited state |1⟩ energy Eb.

In the case where there is a two-level system with discrete states 0 and 1, where 0 is the lower

energy state shown in Fig. 2., the wave function of the system can be written as

7



|Ψ(t)⟩ = c0(t) |0⟩+ c1(t) |1⟩ . (1)

The atomic Hamiltonian Ho is the following, and we can apply it to its eigenstates to get each

state’s energy value

Ho |0⟩ = Ea |0⟩ , Ho |1⟩ = Eb |1⟩ . (2)

A coupling potential component V can be included to give the full Hamiltonian H = Ho+V . The

Hamiltonian becomes

H =

E1 V12

V21 E2

 . (3)

In this case, the coupling potential is due to the coupling of the electric dipole d12 to the applied

electric field ϵ(t). This determines the transition between states.

V12(t) = −d12 · ϵϵϵ(t) = −d12 |1⟩ ⟨2| ϵ(t) cos νt. (4)

Here, ϵ represents the time dependent amplitude of the electric field with a frequency of ν. The

probability amplitude coefficients c1(t) and c2(t) can be solved for by applying the previous Hamil-

tonian into the Schrodinger differential equation.

In addition, the rotating wave approximation will be taken to simplify the equations where

the contribution of higher frequencies will be excluded. This is an appropriate approximation

when considering that the applied electric frequency is near resonance with the energy frequency

between the states.

ċ1(t) = i
d12ϵ(t)

2h̄
c2(t)e

i(w−ν)t, (5)

ċ2(t) = i
d21ϵ(t)

∗

2h̄
c1(t)e

−i(w−ν)t (6)

One can find numerical solutions of the coupled differential equations depending on the shape of

the electric field, however a general analytical solution assuming a constant electric field amplitude
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can be found to be

c1(t) = A1e
i
2
(∆+

√
∆2+Ω2

R)t + A2e
i
2
(∆−

√
∆2+Ω2

R)t, (7)

c2(t) = B1e
− i

2
(∆+

√
∆2+Ω2

R)t +B2e
− i

2
(∆−

√
∆2+Ω2

R)t. (8)

Here A and B represent coefficients that can be solved for using initial conditions of the system.

Additionally, ∆ = w − ν is defined as the difference in the field and energy frequencies and

ΩR = d12ϵ
h̄

is the Rabi frequency of the particle. The Rabi frequency is the characteristic atomic

transition frequency of a particle when influenced by an oscillating electromagnetic field, the pre-

viously mentioned electric-dipole interaction of primary focus.

Finally, using the following equation along with the correct wave function of the two-

level system and previously solved probability coefficients the transition probabilities can be de-

termined.

P1→2 = | ⟨2|Ψ(t)⟩ |2. (9)

P1→2 = | ⟨2|Ψ(t)⟩ |2. (10)

Specifically, this gives the probability of transition to the excited state. Initial conditions of the

particle being in the ground state c1(0) = 1 and c2(0) = 0 can be substituted in to produce the final

excited state transition probability,

P1→2(t) =
Ω2

R

∆2 + Ω2
R

sin

(√
∆2 + Ω2

R)t

2

)2

. (11)

In theory, an appropriate electromagnetic square pulse determined by the relation of the

Rabi frequency and probability amplitude coefficients of the particle could then be applied to the

two-level system to flip its energy state. The pulse would be a component of experiment that

could be chosen and controlled within the lab. The controlled energy transitions could then be

read in and interpreted as a form of quantum information. π pulses are popular choices due to the

dependence of the area of an electromagnetic pulse on the Rabi frequency. The pulse can be set
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at an appropriate electric field amplitude where, with its relation to the Rabi frequency, can equal

to π in order to flip the state. In the case of a constant square pulse, the π pulse is the integral of

a short electric square pulse due to its constant amplitude over time. Moreover, differing realistic

pulses can be applied to the scenario and through a numerical solution of the specific differential

equation, estimated values of the electric pulse amplitudes and pulse widths can also be found for

the purpose of experiment.

2.2 Including Dissipation and Decoherence

Dissipation of information and decoherence of energy states is a major limitation to quan-

tum computing and is an important factor to consider when implementing such a scheme. One

method of including dissipation into the picture is through the use of the Lindblad operator of the

stochastic equation from Markovian models of relaxation [5]. For the current system, the Lindblad

operator adds a noise reservoir that can be connected to the field and energy values of the qubits.

The inclusion of dissipation and decoherence consequently forms a new effective Hamiltonian ex-

perienced by the system and a noise vector |R⟩ that is a stochastic Langevin source. This source

is included due to the relaxation operator necessary in keeping the equation balanced. Overall, the

Langevin equation is a preferred method of combining random aspects of the environment, such as

dissipation and decoherence, along with deterministic values, such as our transition probabilities,

into a single understood and solvable scheme. The stochastic differential equation becomes

d

dt
|Ψ⟩ = − i

h̄
Ĥeff |Ψ⟩ − i

h̄
|R⟩ (12)

where the new effective Hamiltonian becomes

Ĥeff = Ĥ − ih̄

2
L̂ (13)

L̂ =
∑
j=1

γjσ
†
jσj. (14)
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Here, γ can represent the inelastic and elastic relaxation that represent the dissipation and deco-

herence of the states within the qubits, respectively. Within the summation, each jth component

represents a single qubit and thus the summation of all qubits’ contributions to the system. Inelastic

relaxation is the reason for dissipation within the qubits; the quantum electromagnetic contribution

can be considered when introducing individual photon states by using the Q-factor of the system,

which includes the build up of diffraction and ohmic losses within the cavity. Elastic relaxation,

the reason for decoherence, considers the collision that lead to dephasing within the system. There-

fore, the γtot that will consider the dissipation and decoherence within the effective Hamiltonian

becomes

γtot =
γd

2
+ γel. (15)

The R term within the stochastic differential equation is a random white noise term that helps

conserve the norm of the wave function when averaging the state vector. However, its contribution

within this system is minimal, as thermal fluctuations do not have much effect yet and therefore

can be ignored when solving for solutions of the equations. γd represents the dissipation factor and

γel represents the decoherence factor. The full stochastic differential equation with the inclusion

of the γtot factor leads to

ċ1(t) = i
d12ϵ(t)

2h̄
c2(t)e

i(w−ν)t, (16)

ċ2(t) = i
d21ϵ(t)

∗

2h̄
c1(t)e

−i(w−ν)t − (
1

2
γd + γel)c2(t). (17)

Numerical solutions will be found of the previous differential equations to solve the prob-

ability amplitude coefficients of the qubits. This will give information on how to create transitions

between energy states of the specific candidate molecules through the use of a pulsed electromag-

netic field when including the proper dissipation and decoherence.
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3. CANDIDATE MOLECULES AS QUBITS

For an experimentally feasible quantum gate, there needs to be specific particles that can

fulfill the role of the qubit. These particles need to be able to undergo energy transitions with

a specific electromagnetic pulse. That function requires an understanding the properties of the

particle and how it behaves within the qubit cavity system. The two potential molecules tested were

Al(III) Phthalocyanine Chloride Tetrasulfonic Acid Fig. 3, and Silicon Phthalocyanine Dichloride

Fig. 3. These two molecules are a mixture of a non-organic metal like inner structure with an

organic outer coating shell, a key component for candidacy. The inner core is more susceptible to

undergoing an energy transition due to an electromagnetic pulse, while the outer layer is able to

act as a shield to other electromagnetic sources.

Figure 3: Al(III) Phthalocyanine Chloride Tetrasulfonic Acid molecule structure.
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3.1 Decay Lifetime and Wavelength of Emission

When exciting particles in general, they will rise to a higher energy state, then whether

by the probe of an electromagnetic field or natural decay by the universe, the particle will decay

back into the lower energy state and emit a photon in stimulated emission or spontaneous emission,

respectively. Stimulation of the molecule is what we aim to due through an applied electromagnetic

pulse, however what is important to consider is the uncontrollable spontaneous decay that the

molecules will naturally undergo. This spontaneous decay will determine, on average, how long

the molecule can last in the excited state before it inevitably loses energy and decays. Furthermore,

the wavelength of its emission will inform us what energy of a photon would be needed to excite

the molecule initially, thus its photon emission from its decay is an important property to measure.

Fig. 4 and Fig. 6 show the emission values of AlPc and SiPc and Fig 5 and Fig. 7 show their decay

lifetimes as well, respectively.

Figure 4: Lifetime decay of the AlPc molecule.
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Figure 5: Wavelength emissions of the excited AlPc molecule.

Figure 6: Lifetime decay of the SiPc molecule.
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Figure 7: Wavelength emissions of the excited SiPc molecule.

The lifetime and emission wavelength will also be useful in calculating the dipole mo-

ment of each molecule. The dipole moment is an important factor, as the dipole of a particle will

interact with the external electromagnetic field, as well as the dipole interactions between each

of the qubits. These dipole considerations are included within the coupled differential equations

shown earlier in Eq. 16 and Eq. 17 and thus will be needed to solve for the probability amplitude

coefficients. The dipole moments will also help determine what value of electromagnetic field

amplitude and pulse width will be needed to apply energy transitions. Thus, these dipole moments

of the molecule are crucial to the development of the qubit cavity system.

3.2 Solving for the Dipole Moments

The solution for the dipole moments of a particle can originate from the derivation of the

popular Einstein coefficients. The Einstein coefficients explain the relation between the rate of

spontaneous and stimulated emissions of a particle. Each coefficient represents a rate value; A and

B correspond to spontaneous emission and stimulated emission, respectively. Assuming a number

of particles N, there will be a certain amount Na in the ground state Ψa and a certain amount Nb in

the excited state Ψb. Stimulated emission can transition a particle from ground to excited and vice

15



versa, where as spontaneous emission can only transition a particle from excited to ground. That

gives the following equations

dNb

dt
= −NbA−NbBρ(wab) +NaBρ(wab) (18)

dNa

dt
= −dNb

dt
(19)

where dNa

dt
represents the rate at which particles transition into the ground state and dNb

dt
represents

the rate at which particles transition into the excited state. Additionally, ρ(ωab) represents the

spectral energy density of the isotropic radiation field at a specific frequency of transition that

determines the energy splitting. In a closed system, the two rates equal the negative of each other.

Furthermore, within thermal equilibrium, the rate of transitions will cease and the state populations

will remain constant, meaning dNb

dt
= 0. We can solve for the spectral energy density of this system

and then equate it to Placks’s law for black body radiation at a specific temperature T . With the

stimulated emission depending on the dipole moment of the electromagnetic fields we have

ρ(wab) =
A

Na

Nb
B −B

, (20)

B =
d21,0π

√
ϵ

3h̄2 (21)

and setting the black body radiation equation to Eq. 20. we get the relation

A1,0 =
4w3

1,0d
2
1,0

√
ϵ

3c3h̄
. (22)

In the end, we end up with a smooth relation between the spontaneous coefficient of a par-

ticle, its dipole moment, and frequency of transition. The spontaneous coefficient is the efficiency

of converting absorbed light into emitted light, or quantum yield, divided by the lifetime of the par-

ticle in its excited state. Thus, we finally have our needed dipole relation, in terms of spontaneous
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emission wavelength, to be

d1,0 =

(
3h̄ λ3

sponQ

32π3 ϵ1/2t

)1/2

(23)

Using Eq. 23, along with the experimentally measured lifetime and emission wavelength,

the dipole moments of Al(III) Phthalocyanine Chloride Tetrasulfonic Acid (AlPc) and Silicon Ph-

thalocyanine Dichloride (SiPc) are shown in (Table 1). These calculated dipole moments of the

candidate molecules can now be used for a proper numerical solution of the coupled differential

equations.

Table 1: Experimentally Measured Values of Molecules

Molecule Quantum Yield Lifetime (s) λspon (nm) Dipole Moment (cm StatC)
AlPc 0.45 8.5× 10−9 690 6.45× 10−18

SiPc 0.15 5.5× 10−9 675 4.48× 10−18
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4. CLASSICAL ELECTROMAGNETIC EFFECTS ON CANDIDATE

MOLECULES

The previous section focused on calculating the dipole moments of the molecules in an

effort to use those values within the Hamiltonian of the proposed qubit cavity scheme. All that will

be needed for the numerical solution are assumed values of electromagnetic pulse amplitudes and

widths. With the lifetime being in the range of nanoseconds, the proposed pulse width would be in

the range of picoseconds, leaving the electromagnetic field amplitude of the pulse to range in the

tens of V/m. There are two types of electric field pulse shapes that will be applied to the system: a

constant square pulse and a Gaussian shaped pulse. Using Eq. 16 and Eq. 17, the dipole moment

of the molecule and the electric field values will be plugged in for d12 and ϵ(t), respectively. Both

types of pulses are realistic classical electromagnetic pulses that can be experimentally applied to

such a scenario, however the initial scenario will be an unrealistic system of a single qubit with no

cavity floating in a vacuum. This scheme will simply aid in understanding how manipulation of

the energy levels of the qubit can take place. The initial conditions for the differential equations

will be such that the qubit is initially in the ground state and the goal will be to raise it so that its

probability amplitude reaches a value of 1, meaning it is completely in the excited state after the

length of the pulse. This will be done for both molecules.

The next step will be to introduce the previously mentioned dissipation and decoherence

into the system. The decay of excited states will become much more important later on, but for

now this introduction is simply to include the realistic conditions of a qubit within a cavity with a

dissipative environment. It is important to note that since there is the consideration of dissipation,

the numerical solution requires specific values for the environment. Specific values would require

information on neighboring materials, dissipation of the specific experimental set up, and other

factors that are not as easy to introduce in such a numerical state. Thus, in an effort to target this

potential issue, dissipative values in ratio with the electromagnetic pulse width were considered in
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these calculations. Values such as fractions of the pulse width γ = τ
3

that should see no dissipative

effect, versus γ = 3τ , which should theoretically should give a much larger effect and skew with

the excitations, were the determining boundaries of the numerical solution. The hope is that with

a reference of the dissipation and decoherence with that excitation of the molecule, it can provide

enough insight into the scenario and give a proper stance on the feasibility of the system. The

effect of a square pulse can be seen in Fig. 8 and the effect of a Gaussian pulse can be seen in Fig.

9.

Figure 8: The effect of a square pulse on a qubit cavity system with the inclusion of dissipation and decoherence. It
is important to note that the oscillations are due to a constant square pulse throughout. In reality, a single smaller
square pulse and the decay is shown in the flow of the oscillations.
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Figure 9: The effect of a Gaussian pulse on a qubit cavity system with the inclusion of dissipation and decoherence.

Overall, this is the main concept to focus on when using a classical electromagnetic pulse.

The reason such a pulse would be useful in creating a gate is the ease the classical electromag-

netic pulse method provides in effectively applying transitions on the system. The next step for a

quantum gate will require the consideration of more qubits within the system, however the classi-

cal pulse will be the main component in transferring the system of qubits between different states

that will function as the control and target aspects of the CNOT gate. Furthermore, this next step

will need to consider the quantum electrodynamical properties of the qubits to initiate probing

and reading of information of the system. The combination of classical and quantum aspects of

electrodynamics is the key foundation of this scheme.
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5. SCHEME FOR THE QUANTUM GATE

There have been multiple designs for a quantum gate, ranging from ion traps and coupled

quantum dots to multi-level qubits. Normal logic gates serve many purposes in processing and

sending information and the gate at hand transforming into a quantum gate is the previously men-

tioned CNOT gate. This type of gate has many forms but the general purpose is to flip that state

of a signal; if an on signal is sent, then the signal is flipped and an off output is sent. Vice versa is

true as well. Normally in modern electronics this is done through a transistor switch and through

the flow of electrons, or current, the signal is either on or off. Quantum mechanically, the idea is

typically to have some type of control bit that functions as that gate keeper of the operation and

a target bit that will send the flipped or not flipped signal. For example, if the control bit is in a

state |0⟩, then regardless of the signal of the target, |0⟩ or |1⟩, the state of the target bit remains

the same. Furthermore, if the control bit is instead in a state of |1⟩, then the target will flip states.

Mathematically, this can be shown through a four by four matrix that represents a CNOT gate,

along with the state vectors of the qubits



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





α

β

γ

δ


=



α

β

δ

γ


. (24)

The scheme brought forward will have a control and target “bit”, where instead of a single

qubit acting as the bit of information, the state of the coupled qubits will give the effect of a control

bit. Moreover, the inclusion of quantum electromagnetic effects will be introduced to function as

the signal of the target bit. The scenario will be a multi-qubit cavity system that will have two

qubits coupled in a ground state that is coupled to the cavity electromagnetic field, these qubits

being the previously tested molecules. The qubits will have a strongly coupled transition when a

single photon, which acts as a probe, is sent to the system. With the qubits in their normal ground
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state and unaffected by any other pulses, they will excite and decay as normal. The probe photon

will have been sent with a specific electromagnetic polarization that would remain unaffected once

it is absorbed and emitted by the system of qubits. This would function the same as if the control

“bit” had been in a state of |0⟩. The signal, or in this case the polarization, of the probe photon

would remain unchanged and here the probe photon acts as the target “bit”. For the function of the

control “bit” being in the state |1⟩, the classical electromagnetic pulses and their effects would play

a role. Previously, the coupled qubits had been untouched within their cavity, however a specific

classical pulse can now be used to transition the qubits into an entangled state. This entangled

state is the key component for this CNOT functionality and the reason for the need of multiple

qubits. The entangled state would be such that it becomes a slowly decaying decoupled state from

the strong cavity field, a state that can be labeled a “dark” state of the cavity field. Now, the

probe of the photon would not read qubits in their ground state but instead what seemed to be an

empty cavity. This electromagnetically empty cavity would in turn cause a polarization shift of the

photon’s electromagnetic field. A reading of this shifted photon would serve as the flipping of a

state and thus output the second function of the CNOT gate. The functionality can be seen in Fig.

10 and Fig. 11.

Figure 10: The multi-qubit cavity system set up in control |0⟩ bit with probe of photon resulting in “bright” state.
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Figure 11: The multi-qubit cavity system set up in control |1⟩ bit with probe of photon resulting in the entangled“dark”
states as well as the “bright” state.

It is important to note a lingering flaw in this scheme. While the idea of a “dark” state is

physically possible, there are also the unavoidable effects of “bright” states. These “bright” states

function opposite to their counterpart; they are short lived transitions that remain coupled to the

strong cavity field. The glaring flaw comes when attempting to transition the qubits into the desired

entangled “dark” state. A classical field would be applied to the qubits in their ground state which

will not only cause the qubits to become entangled but also have the chance to excite both states

into a |1, 1⟩ “bright” state. Then, due to the fast acting dissipation of the system, the qubits also

have the probability of decaying back into the ground state once again. Thus, in reality, there is

not just a solo entangled state when applying the classical electrical pulse, but in fact the wave

function of the qubits can either be in the “dark” entangled state or the “bright” ground state. Thus,

a probe photon aimed at the cavity can hit the system and if returned unaffected, or the outcome

of a |0⟩ control bit, there is difficulty determining whether that came from a true |0⟩ control bit or

the reminisce of a “bright” state within a supposed entangled “dark” state of a |1⟩ control bit. The

hope is that the presence of the entangled state can change the photon polarization just enough to

be able to make a noticeable difference.
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5.1 Equations for Coupled Qubits in a Cavity

The scheme for coupled qubits provides four possible eigenstates that the qubits can fall into:

a ground state |0, 0⟩, excited state |1, 1⟩, and entangled states |1, 0⟩ and |0, 1⟩. Here, the first index

represents the value of the first qubit, whether it individually is in the excited or ground state, and

the second index represents the same individual value for the second qubit. This gives the wave

function to be:

Ψ = C0,0 |0, 0⟩+ C0,1 |0, 1⟩+ C1,0 |1, 0⟩+ C1,1 |1, 1⟩ . (25)

With this wave function, the goal is to solve for the values of the coefficients in order to get an

understanding of the behavior of the coupled qubits in a cavity and what initial values would

place the qubits in the entangled state. The Hamiltonian for this system now depends on how each

molecules’ dipole interacts with the cavity field. It will be assumed that each molecule has the same

Rabi Frequency, meaning the values of the dipole moments and electromagnetic field experienced

are the same. Furthermore, the same dissipation and decoherence methods for the cavity will be

considered as previously mentioned through the Lindblad operator and effective Hamiltonian. The

Hamiltonian will then be:

Hint = −h̄
N∑
j=1

(Ωjσ
†
je

i∆t + Ω∗
jσje

−i∆t)

Ω =
dj · E
h̄

d = −
N∑
j=1

(djσ
†
j + d∗σj)

(26)

With a defined Hamiltonian and state wave function, an understanding of the interaction can be un-

derstood by solving for the Schrodinger Equation of these two components. The resulting coupled
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differential equations become:

ċ00 = iΩ∗e−i∆tc01 + iΩ∗e−i∆tc10,

ċ01 = iΩ∗ei∆tc00 −
1

2
γ2c01 + iΩ∗e−i∆tc11,

ċ10 = iΩ∗ei∆tc00 −
1

2
γ1c10 + iΩ∗e−i∆tc11,

ċ11 = iΩ∗ei∆t(c01 + c10)−
1

2
(γ1 + γ2)c11.

(27)

The goal would be to find specific electromagnetic pulses that would result in purely entangled

states of the qubits. However, as previously mentioned, this becomes a struggle as it is not clear

how to solely get an entangled qubit dark state as the excitement and the decay of a classical

electromagnetic pulse would result in a combined state of the desired entangled state and ground

state. This would be a component of this scheme that would need to be later developed past the

timeline of this project.

5.2 Understanding the Polarization of a Photon

At a fundamental level, a photon is a particle that is a quantum of light and the carrier of

the electromagnetic field. Although it is a particle, it has wave-like properties that dictate the be-

havior of the particle. Under the properties of a sinusoidal wave, the photon can have polarization

which provides a degree of freedom in the direction in which the wave oscillates in. The photon

will propagate forward in a certain direction over time, but its polarization will be in some other

direction. For example, a photon can propagate in the x direction, which leaves its polarization to

fall into either the y or z direction or some linear combination of the two. Its polarization will de-

termine how the photon interacts and is either affected or unchanged due to other electromagnetic

fields, so it is crucial to understand this interaction. As previously mentioned, the scheme of the

quantum gate will depend on probing a photon onto the cavity. Once the photon interacts with the

cavity and is received, its polarization will determine the status of the cavity and information can

then be processed.
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5.3 How the Interaction with the Cavity Affects Photon Polarization

Within the scheme of a qubit cavity system, say the cavity holds a single mode in its electric

field. Here, a mode represents the allowed frequency in system and since electromagnetic fields

depend on a frequency, then there is only one frequency that propagates within the cavity. Outside

the cavity, there is an external multi-mode field. We can also say for now that the polarization of the

modes within the cavity and outside the cavity are in the same plane, so this is just pure interaction

between the fields [8]. The positive frequency components of the quantum electromagnetic field

for the external modes will be focused on excited modes centered on the resonant frequency of the

cavity. Having the cavity in a resonant frequency is a key component to having the qubits undergo

transitions for the quantum gate scheme, thus an understanding of the quantum electromagnetic

field interaction with a resonant cavity frequency is also needed. The external electrical field can

be described as

E(x, t) = i

(
h̄Ω

2ϵAL

)1/2 ∞∑
n=0

bne
−iωn(t−x/c) (28)

Here, bn is the coefficients of the allowed modes A is the characteristic transverse area of the field.

This is an operator of the quantum electromagnetic field, but for ease of use an operator of the field

will be Fourier transformed into a dependency of propagating frequency modes and time rather

than spatial components and time of the field.

b(x, t) = e−iΩ(t−x/c) 1

2π

∫ ∞

−∞
dωb(ω)e−iω(t−x/c) (29)

When probing the cavity qubit system, we only care for the interaction of the photon with

a single side, thus we can assume a single sided cavity. With this one sided cavity, the following

can be written to describe the interaction between the interaction Hamiltonian of the cavity and the

external electromagnetic field [8].

V (t) = ih̄

∫ ∞

−∞
dωg(ω)

[
b(ω)a† − ab†(ω)

]
(30)
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Here, g(ω) represents the coupling strength between the two fields as a function of the frequency

of the mode and a is the operator within the cavity interaction Hamiltonian. The Heisenberg

equation of motion for the b operator b(t, ω) can give the relation between the a operator in the

cavity interaction Hamiltonian and b operator of the external field. We can use initial conditions

of an input field, which in our case would represent characteristics of the probing photon, to get

a solution of the b operator. This b solution will be in terms of our cavity operator. Furthermore,

the cavity operator has its own Heisenberg equations of motion to obey. When substituting in

the previously mentioned solution of the external field operator, we get an equation for the cavity

operator to be

ȧ = − i

h̄
[Hsys, a]−

∫ ∞

−∞
d(ω)g(ω)b(t, ω). (31)

In terms of polarization, the input operator of the field polarization can be defined as [8]

aIN(t) =
−1

2π

∫ ∞

−∞
dωe−iω(t−to)bo(ω). (32)

With the input field polarization operator defined, it can be substituted into the Heisenberg equation

of motion of the cavity field operator to give the Quantum Stochastic Differential Equation

ȧ = − i

h̄
[a(t), Hsys]−

γ

2
a(t) +

√
γaIN(t). (33)

Additionally, the output field polarization operator can similarly be defined in terms of time and

frequency of mode as

aOUT (t) =
1

2π

∫ ∞

−∞
dωe−iω(t−to)b1(ω). (34)

Finally, using the Quantum Stochastic Differential Equation and defined values of the input and

output field polarization, the following relation can be made [8]

aIN(t) + aOUT (t) =
√
γa(t). (35)
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Understanding how the input and output field polarization operators of a photon interact

with, the cavity can now establish the assumption on what to expect from the probing photon for

the quantum gate scheme. With a now representing the input polarization operator of a photon and

b representing the output polarization operator of a photon, the following assumption can be made

[7]

bx = ax −
√
κa (36)

by = ay (37)

Same as before, the polarization of the cavity is in the x direction and none in the y, as the photon

propagates in the z. Thus, with no polarization in the y the operator in that direction remains

unaffected and the main change is the x component. This assumption [7, 8] leads to the following

expectation values on the output operator depending on the initial state of the coupled qubits within

the cavity.

As previously mentioned, if the qubits are initially in the ground state, they are in a bright

state that is resonant with the field of the cavity. Therefore the probe photon would be absorbed

and then emitted through decay, as it will also be at a frequency resonant with the cavity. While

the polarization is not completely unchanged as initially stated within the scheme the polarization,

it is instead shifted according to the following expectation values, which can be controlled through

the characteristics of the cavity system

⟨bx(ω)⟩ =
C − 1

C + 1
⟨ax(ω)⟩ (38)

where C = 2g2

κγ
is the atomic cooperatively. Controversially, if the coupled qubits are initially set

into the entangled state through the use of the classical field, the probing photon reads an empty

cavity since the qubits would have been in the ’dark’ state. Thus, the polarization of the probing
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photon is shifted and gives the following expectation value

⟨bx(ω)⟩ = −⟨ax(ω)⟩. (39)

In the end, the output polarization of a probing photon differs depending on the state that the cou-

pled qubits are placed into. This can develop further investigation into the experimental feasibility

of this type of quantum gate scheme.
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6. CONCLUSION

Overall, the scheme and functionality for a quantum gate through the use of qubits within

a cavity has been attempted and holds promise for the future. A foundation for classical electro-

magnetic transitions through the use of classical laser pulses has been established, including the

consideration of coupling dipole moments between multiple qubits with the cavity field and in-

clusion of dissipation and decoherence. Candidate particles have been experimentally tested and

numerically characterized, showing potential in filling the role as the qubit. All results lead to a

possible scheme for a CNOT gate that involves entanglement of multiple qubits within a cavity,

using both quantum and classical electromagnetic fields, which has been established for further

development and analysis. While there are flaws to the CNOT gate scenario, there are routes to

consider as a probe photon can still differentiate the signal of a fully grounded state versus the

mixture of an entangled and ground state through the use of photon polarization. Once that dif-

ference has been strongly established, this scheme holds strong promise, along with its potential

candidates, to be the next stepping stone in the realm of quantum computing and overall quantum

technologies.
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