
BRANCH-DIRECTED DATA PREFETCHING

An Undergraduate Research Scholars Thesis

by

SCOTT SHEPHERD

Submitted to the LAUNCH: Undergraduate Research office at

Texas A&M University

in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by

Faculty Research Advisor: Dr. Paul V. Gratz

May 2023

Major: Electrical Engineering

Copyright © 2023. Scott Shepherd.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M

facilities or institutions. In both cases, students are responsible for working with the relevant

Texas A&M research compliance program to ensure and document that all Texas A&M

compliance obligations are met before the study begins.

I, Scott Shepherd, certify that all research compliance requirements related to this

Undergraduate Research Scholars thesis have been addressed with my Faculty Research Advisor

prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ACKNOWLEDGEMENTS .. 2

1. INTRODUCTION .. 3

1.1 Background ... 3

1.2 Motivation .. 5

2. DESIGN .. 7

2.1 Design Overview .. 7
2.2 Branch Spy Design ... 8

2.3 Branch-Directed Signature Path Prefetcher Design ... 14

3. RESULTS ... 17

3.1 Performance Metrics ... 17
3.2 Simulation Methodology .. 17

3.3 Control & Baseline Results .. 19
3.4 Signature Table Index Variation Results .. 19

3.5 Pattern Table Index Variation Results .. 21
3.6 Analysis .. 23

4. FUTURE WORK .. 25

4.1 Loop Handling .. 25
4.2 Signature Size ... 26
4.3 Storage Considerations ... 26

5. CONCLUSION ... 28

REFERENCES ... 29

1

ABSTRACT

Branch-Directed Data Prefetching

Scott Shepherd

Department of Electrical and Computer Engineering

Texas A&M University

Faculty Research Advisor: Dr. Paul V. Gratz

Department of Electrical and Computer Engineering

Texas A&M University

Memory prefetching in computer processors is the practice of predicting memory

addresses that will need to be accessed and issuing requests to pull data from those addresses

ahead of time. These circuits are crucial to combatting the "memory wall", a bottleneck in

processor speed caused by the relatively slower progression of memory access speeds compared

to progress in instruction execution speed.

This project builds upon the Signature Path Prefetcher (SPP), a prefetcher for the L2C

cache developed in Professor Gratz’s CAMSIN research group. The SPP decides prefetch

addresses based on a delta access history signature. This project explores the possibility of

enhancing the SPP by incorporating branch history data (branch decisions & target addresses)

into the existing prefetcher structure.

The Branch-Directed SPP aims to improve overall performance as measured by IPC

speedup. Results show that the design performs similarly to baseline SPP across these metrics,

outperforming slightly on some trace sets and underperforming slightly on others.

2

ACKNOWLEDGEMENTS

Contributors

I would like to thank my faculty advisor, Dr. Paul V. Gratz, and my doctoral candidate

advisor, Nathan Gober, for their guidance and support throughout the course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for

making my time at Texas A&M University a great experience.

The original SPP code built upon throughout this project was provided by Nathan Gober.

The remaining work conducted for the thesis was primarily completed by the student

independently, with assistance from Nathan Gober throughout the development.

Funding Sources

No funding was received for this project.

3

1. INTRODUCTION

1.1 Background

1.1.1 Prefetching Background

Many developments in computer processors focus on increasing instruction execution

rate through shrinking transistor gate size, improving pipelining techniques, and other methods.

However, developments in memory have historically focused primarily on size rather than speed.

These contrasting goals have led to a bottleneck in processor speed known as the memory wall,

since accessing memory takes significantly longer than executing instructions [1].

A contemporary computer memory system is organized into tiered levels, with small

capacity, low access latency memory (caches) at the high levels and high capacity, high access

latency memory at the lowest. When memory instructions are executed, the processor first looks

for the specified address in the highest level cache, called the L1 cache, which stores a small

amount of information that is very likely to be used. If the address is not found in the L1 cache,

the processor then progresses down a level to check the second level, or L2 cache, then the Last

Level Cache (LLC), and finally the DRAM or main memory. These levels of the memory

hierarchy increase in size and decrease in access speed going down the hierarchy, so it is

beneficial for memory access times to store the most proximately used information in the higher

levels. To decide which memory is most likely to be accessed, processor designers use the

principles of temporal locality and spatial locality. These principles refer to the observed

increased likelihood that a future memory access will either be the same address as a recent

access (temporal locality) or a nearby address to a recent access (spatial locality) [1].

4

Data prefetching takes the idea of deciding which information should be stored in caches

one step further. Rather than placing recently used information or information from nearby

memory addresses in a cache, prefetcher circuits attempt to predict memory addresses that will

need to be accessed based on several factors. Then, a prefetcher issues requests to bring that

information into caches ahead of time to reduce memory access latency [1].

1.1.2 Prior Work in Prefetching

The simplest and earliest form of prefetcher is the Next Line prefetcher. On each cache

access (read or write), the Next Line prefetcher simply pulls in the next line of physical memory

into the cache [1]. This approach takes advantage of spatial locality with a fixed behavior of

fetching one line ahead of the current memory access.

The Stride prefetcher works similarly to the Next Line, but it uses a “stride” or delta

value to fetch N lines ahead of the current cache access rather than just one line [1]. The stride

value updates whenever two access deltas in a row are equivalent. For example, if sequential

accesses were to address 0x4000 followed by 0x4002 and 0x4004, the difference between

memory lines is +2 then +2, so the stride will be set at +2. This approach still takes advantage of

spatial locality while accommodating array-type data structures since with certain data types,

consecutive elements could be more than one cache line apart. With the Stride prefetcher, there

is still a fixed behavior of fetching N lines ahead, but N is variable based on previous strides

seen.

The Signature Path Prefetcher (SPP) is a more complex prefetcher that is still based on

the line deltas between cache access addresses. SPP generates a signature based on the four most

recent line deltas. Then, the most likely next delta is predicted, the resulting address is

prefetched, and a speculative signature is developed based on the predicted delta [2]. This

5

process continues recursively until the confidence of the prefetches reaches a lower bound, at

which further prefetches are presumed to pollute the cache with useless data.

SPP operates using a signature table, pattern table, prefetch filter, and global history

register. When an L2C access is seen by the prefetcher, the page bits of the address are used to

index the signature table, which holds 12-bit signatures made of delta history. The 12-bit

signature is then used to index the pattern table, which holds the four most frequently seen page-

offset delta values for a given delta history signature. The prefetcher then prepares to issue a

request for the memory address found at the current L2C access address plus the delta value. The

prefetch filter keeps a record of recent prefetches issued to avoid duplicate prefetches. Lastly, the

global history register works to maintain delta history across physical page boundaries when a

new delta takes the requested address to a new physical page. SPP adds an extra source of

variability when compared to the Stride prefetcher since it can predict variable access patterns

rather than a simple string of N-line deltas.

1.2 Motivation

It is reasonable to expect that different parts of a program have different memory access

patterns. Depending on the location within a program (in instruction address space) and the

operations and progression of the program (looping, function calls, recursion, etc.), memory

could be accessed in many ways. In other words, program control flow should affect memory

access patterns, meaning that a prefetcher could benefit from utilizing program control flow data

in its memory prefetching decisions.

SPP takes a step in this direction by looking at varying access patterns throughout a

program and correlating them with future access patterns. However, SPP does not take into

account a global view of how the program is behaving. SPP does not consider location within

6

instruction address space, branch decision patterns, or anything of the sort. We hypothesize that

incorporating branch data could improve the prefetching capabilities of SPP.

This paper will explore the possibility of improving the performance of the Signature

Path Prefetcher by basing prefetching decisions on branch history data, including branch

decisions and instruction targets, in addition to the line delta history built into the original SPP

design.

7

2. DESIGN

2.1 Design Overview

The Branch History Based Data Prefetcher (BHBDP) aims to improve upon the Signature

Path Prefetcher (SPP) by incorporating branch history as a factor in its prefetching predictions.

At the system level, the BHBDP aims to improve the instruction execution speed of a processor

through a reduction in memory access latency by requesting data from memory before it is

needed. There are two main subsystems within the overall BHBDP system: the Branch Spy

L1I/D prefetcher and the Branch-Directed SPP L2C prefetcher. Figure 1 illustrates the

subcomponents of the Branch-Directed SPP and the connections between the two subsystems.

Figure 1: Block Diagram of Branch History Based Data Prefetcher System

8

The BHBDP uses L2 accesses (checking L2 cache after an L1 cache miss) and metadata

outputs from the L1 cache level (branch history data passed through along with L2 access).

When L1 cache accesses are made, the Branch Spy subsystem records branch decisions (branch

taken or not taken) and sends that data through to the L2 prefetcher (Branch-Directed SPP

subsystem) upon an L1 cache miss.

Within the Branch-Directed SPP subsystem, the signature table uses delta patterns from

recent L2 accesses and branch history information to calculate a 12-bit signature for each

physical memory page. The PT subsystem stores predicted delta patterns along with a confidence

estimation (based on prefetch success) evaluating whether the resulting prefetched address will

be useful to the processor.

If the predicted address (current demand address + predicted delta) remains in the current

physical page, the prediction moves on to the filter subsystem. The filter subsystem runs a final

check to ensure that the predicted address is not a redundant prefetch before sending it off to the

cache hierarchy. This step reduces unnecessary memory bus traffic. The filtered prefetch

addresses are sent to the L2 cache so that it will be placed in a more readily accessible location.

If the predicted address from the PT subsystem (current offset + predicted delta) leaves

the current physical page, the prediction moves on to the GHR subsystem. The GHR stores

prefetch requests that cross a page boundary so that the new page can retain the learning stored

in the 12-bit signature from accesses in the previous page.

2.2 Branch Spy Design

The Branch Spy subsystem is module that records branch history data based on

instruction demand fetch to the L1I cache. When a branch target is fetched, the branch is known

to be taken. If a branch decision is made, but no target is fetched, the branch is known to be not

9

taken. The Branch Spy maintains a history of recent branch decisions. Each time a new branch

decision is made, the branch history value is shifted left by one bit, then the new decision is

placed in the least significant bit as a zero or one. In this manner, the most recent 63 branch

decisions can be held in the integer (leaving the most significant bit at zero to avoid issues with

signage and integer overflow). The Branch Spy is placed between the L1 and L2 cache levels to

observe branch history data from L1I cache accesses and pass that data along to the L2C cache

(where SPP is located) on L1I cache misses.

Branch history data is sent from the Branch Spy subsystem to the Branch-Directed SPP

subsystem via the metadata feature of the ChampSim processor simulator [3]. When a cache

operation occurs (memory read, for example), a 32-bit integer is passed in as a metadata input,

and a 32-bit metadata output can be passed on to the next cache level. Since the Branch Spy

subsystem operates as an L1 prefetcher and the SPP subsystem operates as an L2C prefetcher,

the branch history data stored in the Branch Spy can be sent through its metadata output into the

metadata input of the SPP subsystem.

Once each branch decision is known, and the target of each decision is known, there are

many ways to record branch history data in a way that differentiates the value by branch decision

patterns. Five categories of recording branch history data were tested: bimodal, bins, majority,

target, and overlay. These categories are listed in Table 1 with a brief description for reference.

The remainder of Section 2.2 will describe them in more detail.

10

Table 1: Branch History Data Indicator Categories

Name Bits Description

Bimodal 2-3 3-, 4-, or 5-bit counter. +1 for branch taken, -1 for branch not taken.

Differentiates between long stretches of a particular decision (ex. looping)

and transitions between the two. The 2 to 3 most significant bits of the

counter are used for the branch history indicator.

Bins 3 3-bit representation of N branch decisions. For a 3-bit bin indicator using

23 branch decisions, Bin 0 means 0-2 of the decisions were taken. Bin 1

means 3-5, …, and Bin 7 means 21-23 decisions were taken. Tested with N

= 7, 23, 63.

Majority 1 Majority decision of last N branch decisions (1 for majority taken, 0 for

majority not taken). Tested with N = 7, 15, 31, 63.

Target 3-6 3 or 6 bits of the most recent branch target address (64-bit address) that was

taken. Tested with target address bits [23:21], [23:18], [17:15], and [17:12].

Overlay 12 12-bit value of 12 most recent branch decisions XOR with 12-bit signature

(for indexing pattern table) or 12-bit L2C access page (for indexing

signature table)

Many of the branch data indicators used are based on those used in branch predictors

since they have a similar goal of using past branch data for future predictions. The bimodal

indicator is based on the bimodal counter developed for an early branch predictor [4]. This

indicator is a saturating counter that increments by one whenever a branch is taken, and

decrements by one whenever a branch is not taken. When the maximum value is reached (2N – 1,

where N is the number of bits in the counter), a subsequent taken branch does not increment the

11

counter, and similarly when the minimum value of zero is reached, a subsequent “not taken”

branch does not decrement the counter. The bimodal indicator was tested for 3-bit or 4-bit

counter in which the two most significant bits are used as the indicator and for a 4-bit or 5-bit

counter in which the three most significant bits are used as the indicator. To refer to these

indicators, they are named as “bimodal_XofN” in which X is the number of bits in the indicator

(2 or 3), and N is the number of bits in the counter (3, 4, or 5).

The overlay indicator is based on the XOR computation used in the gshare branch

predictor, which showed a positive effect when combining global branch decision history and

branch PC page with an XOR operation [5]. Its XOR operation is also similar to that of a branch

table buffer (BTB). This indicator is calculated as the XOR of a 12-bit value holding the 12 most

recent branch decisions (least significant bit is most recent decision, 0 for not taken, 1 for taken)

with the 12-bit index that the original SPP design uses, which varies depending on which table

(signature table or pattern table) the overlay indicator is indexing. There are no additional

variations of this indicator, so it is simply named as “overlay” for future reference.

The bins and majority indicators were developed for this paper as methods of

summarizing recent branch decisions to understand the type of code that the program might be

in. The bins indicator takes the count of N branch decisions modulo the number of values in each

bin. For example, the indicator bins_63to3 in Table 2 takes the count of the past 63 branch

decisions that were “taken” divided by 8: 64 count options (0-63 branches taken) divided by 8

value options (0-7 since it is a 3-bit indicator). Three bins indicators were tested, in which 7, 23,

or 63 branch decisions are translated to 1 of 8 bins in the 3-bit indicator. The bins indicators are

named as “bins_Nto3” in which 3 is the number of bits in the indicator and N is the number of

decisions compressed into the bin indicator (7, 23, or 63). The majority indicator is similar, but

12

only sets one bit based on whether the majority of N decisions were taken (1) or not taken (0).

The majority indicator was tested for N = 7, 15, 31, and 63, and the indicators are named as

“majority_N” for future reference. The bins and majority indicators aim to show approximate

trends in program behavior since a large amount of “taken” branches could indicate loop-like

behavior, which would be caught by the majority flag or by a high bin value.

Finally, the target indicators record a portion of the instruction address (bits [X:X-2] for 3

bits of target or [X:X-5] for 6 bits of target) for the most recent branch target address taken. The

goal of the target indicator is to separate signature development and/or delta prefetches based on

the approximate location of the code that the program is in. The address segments tested were

[17:12], [17:15], [23:18], and [23:21] to test variation in the number of bits and to test the higher

and lower bits of the address. The lowest 12 bits, which comprise the physical page offset, were

avoided to avoid too much noise and variation. The goal is to distinguish the general area of the

program, not the specific part of the code. The indicators are named as “target_X_X-2” for the 3-

bit target indicators and “target_X_X-5” for the 6-bit indicators, in which X is the most

significant bit grabbed from the recent branch target address.

With all the variations to the branch data indicators discussed in this section, there are 16

total indicators tested in this paper. The indicators are listed in Table 2 with their category, name,

number of bits, and a brief description.

Next, the indicator value must be sent through to the SPP subsystem. The bimodal and

target indicators are updated on each branch decision and stored until the next L1 miss to be sent

through to SPP. The bins and majority indicators are calculated from the 64-bit branch decision

history integer immediately before sending metadata through to SPP. The overlay indicator is

decided within the Branch-Directed SPP subsystem since other information is needed for the

13

Table 2: Branch Data Indicators Tested

Category Name Bits Description

Bimodal

bimodal_2ofN 2 Bits [N-1:N-2] of N-bit bimodal counter (two most

significant bits)

bimodal_3ofN 3 Bits [N-1:N-3] of N-bit bimodal counter (three most

significant bits)

Bins

bins_Nto3 3 Count of previous N branch decisions that were “taken”

reduced to 8 bins (number of distinct 3-bit values)

Majority majority_N 1 Majority decision of last N branch decisions

Target

target_X_X-2 3 Bits [X:X-2] of the most recent branch target address that

was taken

target_X_X-5 6 Bits [X:X-5] of the most recent branch target address that

was taken

Overlay

overlay 12 12-bit value of 12 most recent branch decisions XOR with

existing 12-bit index

XOR operation to compute the final indicator, so the raw branch decision history is sent through

to SPP rather than the final overlay indicator.

Once branch data is sent through to SPP, it can be incorporated in two different places:

the signature table, and the pattern table. Different branch data indicators can be tested for

indexing each of these tables, so the metadata output value must be structured to fit any two of

the branch data indicators shown above. Therefore, there must be 6 bits of space for each. Bits

[11:6] will store the indicator used to index the signature table of the SPP, and bits [5:0] will

14

store the indicator used to index the pattern table of the SPP. The upper 4 bits of the metadata

output store a 4-bit value, 4’b0101, which is checked to confirm that any metadata entering SPP

is only coming from the Branch Spy, as expected. This leaves bits [27:12] unused for the current

design.

2.3 Branch-Directed Signature Path Prefetcher Design

The original Signature Path Prefetcher, which this research expands upon to include

branch history data, operates using a signature table, pattern table, prefetch filter, and global

history register. When an L2C access is seen by the prefetcher, the page bits of the address are

used to index the signature table, which holds 12-bit signatures made of page-offset delta history.

The 12-bit signature is then used to index the pattern table, which holds the four most frequently

seen page-offset delta values for a given 12-bit delta history signature.

The operation of the new Branch-Directed SPP design maintains a similar approach of

using page-offset delta values to inform prefetch requests, but the delta values are accessed using

a combination of both delta history and branch history data. Instead of indexing the signature

table by solely the L2C access page, branch history data is included in the index. Similarly, the

12-bit signature used to index the pattern table is no longer comprised solely of delta history. The

top bits of the signature are replaced with branch history data to allow for delta access patterns to

be based on branch decisions and/or targets as well.

As seen in Section 2.2, six methods of recording branch history data were researched this

semester. Each of these branch history indicator values were incorporated into the signature table

index and pattern table index separately to research their impact on memory latency and

therefore overall processor performance. The signature table indices tested are shown in Table 3.

Additionally, the pattern table indices tested are shown in Table 4.

15

Table 3: Signature Table Indexing Methods Using Branch History Data

 Bit

Method 11 10 9 8 7 6 5 4 3 2 1 0

majority_N
1-bit

BHI
Lowest 11 bits of L2C access page

bimodal_2ofN
2-bit branch

hist indicator
Lowest 10 bits of L2C access page

bimodal_3ofN,

bins_Nto3,

target_X_X-2

3-bit branch history

indicator
Lowest 9 bits of L2C access page

target_X_X-5 6-bit branch history indicator Lowest 6 bits of L2C access page

overlay 12-bit decision history XOR 12 bits of L2C access page

Table 4: Pattern Table Indexing Methods Using Branch History Data

 Bit

Method 11 10 9 8 7 6 5 4 3 2 1 0

majority_N
1-bit

BHI
11-bit delta history (4 deltas, left-shifted by 3 bits per lookahead)

bimodal_2ofN
2-bit branch

hist indicator
10-bit delta history (4 deltas, left-shifted by 3 bits per lookahead)

bimodal_3ofN,

bins_Nto3,

target_X_X-2

3-bit branch history

indicator
9-bit delta history (3 deltas, << left-shifted by 3 bits per lookahead)

target_X_X-5 6-bit branch history indicator
6-bit delta history (2 deltas, left-shifted by 3

bits per lookahead)

overlay 12-bit decision history XOR 4 deltas, left-shifted by 3 bits per lookahead

Another part of the design that must be discussed is the table size changes. The original

SPP design used 5.31 KB of storage space [2]. In hardware design, greater storage space is

equivalent to greater physical space in the processor, and therefore a higher cost of

manufacturing. Therefore, it is important to maintain a small size in the prefetcher. The current

design for the branch directed SPP uses 45.53 KB of storage. This design choice was made to

16

allow for the maximum possible improvements in processor performance by creating enough

entries in the signature table and pattern table that each possible index would have its own entry.

That way, no delta history data is overwritten throughout the progress of the simulation. Future

work can be done to reduce the storage space of the prefetcher, but the analysis of this paper is

limited to the larger signature and pattern tables to better understand the upper bound of

performance for the tested prefetcher designs. Additionally, to better compare the design of this

paper to the original SPP design, the baseline SPP used for comparison later in the Results

section uses the larger table size. By doing so, the performance of the designs in this paper can

be fairly compared to the original SPP design. Table 5 compares the storage space of the original

SPP design to the storage space of the current branch directed SPP design.

Table 5: Storage Space of Original SPP Design vs. Branch Directed SPP Design

 Original SPP Design
Branch Directed SPP

Design

Structure
Bits per

Entry
Entries Bits Entries Bits

Signature Table 41 256 10496 4096 167936

Pattern Table 48 512 24576 4096 196608

Prefetch Filter 8 1024 8192 1024 8192

Global History

Register
33 8 264 8 264

Total Bits: 43528 Total Bits: 373000

Total KB: 5.31 Total KB: 45.53

17

3. RESULTS

3.1 Performance Metrics

The primary performance indicator of a processor core is instructions per cycle, or IPC.

IPC is proportional to performance since the goal of a processor is to execute the maximum

number of instructions in the minimum number of clock cycles. It is a useful measure of relative

performance between prefetchers because it is not influenced by the clock frequency of the

processor or any other physical characteristics. Instead, as long as all other variables are kept

consistent across runs (branch predictors, cache sizes, core characteristics, etc.), the only

variation in IPC is a result of more or fewer addresses being prefetched into the cache

successfully. Cache misses slow the processor down (lower IPC) since the next level down in the

cache hierarchy will have a longer access time. If a prefetcher does its job properly and pulls

relevant data into the cache ahead of its usage, the cache miss ratio will be reduced, leading to a

lower clock cycle count for the program. Therefore, the denominator of the IPC will decrease,

increasing the value. The analysis of these prefetcher designs will be limited to performance as a

measure of IPC only.

3.2 Simulation Methodology

The design was evaluated using the trace-based ChampSim processor simulator. The

simulations were set up to model a single out-of-order core, with its parameters and the

parameters of the memory hierarchy shown in Table 6.

18

Table 6: Processor and Memory Hierarchy Parameters for ChampSim Simulation

Processor

Element

Parameters

Core 1 Core, 3.2 GHz, 256 entry ROB, 4-wide, 64 entry scheduler, 64 entry load

buffer

Branch Predictor 16K entry gshare, 20 cycle mispredict penalty

L1D Cache 32KB, 8-way, 4 cycle delay, 8 MSHRs, LRU replacement policy

L1I Cache 32KB, 8-way, 4 cycle delay, 8 MSHRs, LRU replacement policy

L2 Cache 256KB, 8-way, 8 cycle delay, 16 MSHRs, LRU replacement policy, non-

inclusive policy

L3 / LLC 2 MB, 16-way, 12 cycle delay, LRU replacement policy, non-inclusive

policy

The full set of traces using during the Third Data Prefetching Championship (DPC-3)

was used to evaluate the design. In total, there are 48 traces used. Multiple weighted SimPoints

were used for each trace. SimPoints [6] are representative samples of a benchmark program used

to better understand the performance of a long program without needing to simulate too many

instructions, keeping the simulation resource usage down. Each SimPoint ran in ChampSim for

200 million warmup instructions plus 1 billion simulation instructions. ChampSim records key

statistics throughout the run, such as instructions per cycle (IPC), cache hits and misses, and

prefetcher accuracy and coverage for each cache level.

Since only single core simulations were performed, a single DRAM channel was used.

ChampSim uses separate virtual and physical address spaces, with arbitrarily randomized

mappings between the two. For these simulations, a 4KB page size is used when mapping virtual

to physical addresses, consistent with the original SPP paper [2].

19

3.3 Control & Baseline Results

Before examining the results for the index variations tested, we must discuss the control

and baseline results that will be used for comparison. The control test for this paper uses the

same processor and memory hierarchy parameters as defined in Table 6, but no prefetchers are

attached to any cache level. By testing the no-prefetcher control across the same trace set, we can

ensure that the tested SPP variations are improving performance, and we have a good standard

by which to compare the SPP versions. When the IPC speedup of each SPP version is tested with

respect to the control, we can see the performance improvement by implementing a given L2C

prefetcher. Additionally, the original SPP design is tested across all traces as a baseline for

comparison of the SPP variations designed in this paper. When the IPC speedup of each SPP

variation is tested with respect to baseline SPP, we can see the performance change when

swapping out the original SPP design for the new design. Table 7 shows the geometric mean IPC

of the no-prefetcher control design and baseline SPP design, along with their geometric mean

speedup when compared to the control design. The geometric mean speedup of baseline SPP

compared to control, 1.1360, will then be used in Sections 3.4 and 3.5 when comparing speedup

of each index variation design with the baseline SPP design.

Table 7: Geometric Mean IPC for No-Prefetcher Control and Baseline SPP

Name Geometric Mean IPC Speedup vs. No-PF Control

No-Prefetcher Control 0.9601 1.0000

Baseline SPP 1.0907 1.1360

3.4 Signature Table Index Variation Results

The first step in testing the design of the branch-directed SPP was to examine the effects

of basing the index to the signature table on branch history data. In the baseline SPP design, the

20

index to the signature table is simply the lowest 12 bits of the current L2 cache access page (bits

[23:12] of the address being accessed). Therefore, the 12-bit signatures held by the signature

table are distinguished by the current physical page of memory being accessed. By replacing part

of the signature table index with each of the 16 branch history data indicators discussed in Table

2, this paper examines the possibility of better separating the use and development of delta

history signatures based on information from recent branch decisions or targets. Table 7 shows

the geometric mean IPC speedup of each signature table index variation compared to both a

control processor (no prefetcher implemented) and a baseline SPP implementation. IPC speedup

is simply a ratio of the IPC for a given design to the IPC for a design used for comparison. For

example, if a design has an IPC speedup of 2 vs. the control, the design runs twice as fast as the

control.

As seen in Table 8, none of the signature table indexing variations tested outperform the

baseline SPP design. Baseline SPP has a geometric mean IPC speedup over the no-prefetcher

control of 1.1360. The highest geometric mean IPC speedup of the signature indexing variation

methods tested was the target_23_21 design with a speedup over control of 1.1360, and speedup

over baseline of 1.0000. Therefore, the best design exactly matches the baseline SPP speedup,

but none of the designs improve performance.

There are still some trends we can see from the signature table indexing data, even if

there were no performance improvements. The target indicators performed the best overall for

indexing the signature table, with the more significant target bits performing better than the less

significant bits. The remaining indicators, in descending order of performance, were majority,

bimodal, bins, and finally overlay, which performed the worst by far.

21

Table 8: IPC Speedup vs. No-Prefetcher Control & Baseline SPP for Signature Table Indexing Variations

Category Name Speedup vs. Control Speedup vs. Baseline

SPP

Bimodal bimodal_2of3 1.1244 0.9897

bimodal_2of4 1.1286 0.9934

bimodal_3of4 1.1230 0.9886

bimodal_3of5 1.1271 0.9921

Bins bins_7to3 1.1166 0.9849

bins_23to3 1.1249 0.9902

bins_63to3 1.1291 0.9939

Majority majority_7 1.1280 0.9929

majority_15 1.1296 0.9944

majority_31 1.1338 0.9980

majority_63 1.1342 0.9984

Target target_17_12 1.1321 0.9965

target_17_15 1.1333 0.9976

target_23_18 1.1340 0.9982

target_23_21 1.1360 1.0000

Overlay overlay 1.0669 0.9391

3.5 Pattern Table Index Variation Results

The next step in testing the branch-directed SPP design was to examine the effects of

basing the index to the pattern table on branch history data. In the baseline SPP design, the index

to the pattern table is simply the 12-bit signature found in the signature table based on a history

of page offset deltas between subsequent L2 cache accesses. Therefore, the most likely next page

offset delta (the output of the pattern table when accessed) is based solely on previous delta

history. By replacing part of the pattern table index with each of the 16 branch history data

indicators discussed in Table 2, this paper examines the possibility of more accurately predicting

22

future delta accesses using information from recent branch decisions or targets. Table 9 shows

the IPC speedup of each pattern table index variation compared to both a control processor (no

prefetcher implemented) and a baseline SPP implementation, in the same way as Table 8.

Table 9: IPC Speedup vs. No-Prefetcher Control & Baseline SPP for Pattern Table Indexing Variations

Category Name Speedup vs. Control Speedup vs. Baseline

SPP

Bimodal bimodal_2of3 1.1345 0.9984

bimodal_2of4 1.1343 0.9982

bimodal_3of4 1.1338 0.9979

bimodal_3of5 1.1336 0.9976

Bins bins_7to3 1.1346 0.9987

bins_23to3 1.1341 0.9983

bins_63to3 1.1341 0.9981

Majority majority_7 1.1353 0.9992

majority_15 1.1351 0.9990

majority_31 1.1354 0.9993

majority_63 1.1354 0.9993

Target target_17_12 1.1308 0.9950

target_17_15 1.1345 0.9986

target_23_18 1.1284 0.9933

target_23_21 1.1324 0.9965

Overlay overlay 1.1258 0.9910

As seen in Table 9, none of the pattern table indexing variations tested outperform the

baseline SPP design. The highest geometric mean IPC speedup of the pattern indexing variation

methods tested was a tie between the majority_63 and majority_31 designs with a speedup over

23

control of 1.1354, and speedup over baseline of 0.9993. Therefore, the best design has

approximately a 0.07% reduction in speed, virtually the same as the baseline SPP design.

There are still some trends we can see from the pattern table indexing data, even if there

were no performance improvements. The majority indicators performed the best overall for

indexing the signature table, with the higher decision count indicators (majority of 31, 63)

performing better than the lower options (majority of 7, 15). The remaining indicators, in

descending order of performance, were bins, bimodal, target, and finally overlay, which

performed the worst by a small margin.

3.6 Analysis

Across both the signature table and pattern table, none of the 16 indexing variations

tested improved the performance of SPP. All variations performed better than the no-prefetcher

control, but none outperformed the baseline SPP design.

Based on the speedup results from testing each of the indexing variation options in the

signature table and pattern table, branch history data is not beneficial to making prefetching

decisions in the SPP framework. The modifications tested in this paper, though detrimental to

performance, help to clarify why the baseline SPP design works well.

It is clear from testing the overlay indicator as a pattern table index that it is valuable to

maintain the shifted delta structure for the 12-bit signature, even though the 12-bit signature is

compressed. Conventional wisdom would suggest that the XOR of distinct table indices can

produce a composite index with the information of both, as shown in the gshare branch predictor

[5]. However, this appears not to be generalizable to all tables. The structure of the SPP signature

is valuable for use as an index into the pattern table, and the XOR of the branch target obscures

24

the signature data. The overlay indicator, which imitates the gshare XOR operation, also does not

perform well as a signature table index.

Based on the branch target indicators tested, it is better to use target data to separate

signature developments rather than to alter signatures themselves. At a high level, the signature

table correlates memory access patterns distinguished with the memory region the program is

using. The pattern table, on the other hand, attempts to discern what the next cache line delta will

be based on a string of past deltas. It follows that the instruction target information would be

more in line with the purpose of the signature table, since its incorporation into the signature

table index would begin to distinguish memory access pattern histories by program region in

addition to memory region. The more positive results for incorporating instruction target data in

the signature table index as opposed to the pattern table index confirms that the signature table

functions according to this intuition, separating out memory access history based on the general

state of the program.

25

4. FUTURE WORK

While this project may not have shown positive performance results in terms of processor

IPC, there are plenty of valuable learnings. The negative results show which directions not to

pursue moving forward, which in turn narrows down the recommended paths forward. The

following subjects are areas which this project has not considered, so there is potential for SPP

performance improvements down these paths.

4.1 Loop Handling

The main idea that can be pursued in future work in this research topic of delta- and

branch history-based data prefetching is to better handle looping. Looping structures will have

access patterns distinct from non-looping patterns, so it may be beneficial to separate learning

based on whether the program is in a loop, as well as the expected length of the current loop.

One possible solution is to partition the signature table into two signatures for each entry,

accessed by L2 cache address page (same as original SPP design): a loop mode signature and a

linear mode signature. Access patterns can differ greatly when in a loop or not in a loop. For

example, when looping through an array of items, it is likely to see constant delta accesses when

moving from one element of the array to the next. On the other hand, when not in a loop, it may

be more common to access several pieces of data from a single instantiation of a class or struct,

in which the access pattern could differ based on the size of each piece of data.

Another consideration for handling loops is to predict when loops will terminate and use

the remaining length of the loop to influence the depth of future prefetches. For example, if a

loop is entered with an expected 100 iterations remaining, it would be beneficial to prefetch

26

deeper than the average depth of 2-3 seen throughout the simulations examined in this paper.

Similarly, if a loop is likely to end within a few iterations, prefetching too deep could fill the

cache with unnecessary information, reducing its effectiveness. Prior research has been done in

the area of loop termination prediction for the application of branch predictors [7], but a similar

approach could be used to predict the remaining length of loops and override the prefetch depth

of SPP to better accommodate the loop.

4.2 Signature Size

In the original SPP design, the signature used to index the pattern table performed best

with a size of 12 bits. To maintain a level playing field to compare the indexing variations tested

in this paper, the signature size was fixed at 12 bits. However, now that program control data has

been added into the SPP structure, the 12-bit signature is not necessarily the best option to handle

the data. Future work could look into expanding the signature size to accommodate for the new

information being included in the signature. For example, rather than replacing 3 bits of the

delta-only signature with a bimodal indicator, the bimodal indicator could be appended to the

front of the signature, resulting in a 15-bit signature that includes the full 12-bit delta history and

a 3-bit bimodal indicator. An increased signature length may help provide better delta predictions

since the full 12-bit delta history could still be included, and the branch history data would

simply be used to differentiate between the same delta pattern occurring in different areas of the

program.

4.3 Storage Considerations

For the simulations conducted in this paper, the storage capacity of the design was not

considered as a limitation. We assumed perfect preservation of pattern table and signature table

contents, increasing the size to accommodate all data with no aliasing. Once the loop handling

27

approaches and signature length variations are tested with the large signature and pattern tables

(to eliminate overwrites of signatures and predicted deltas), the next step will be to reduce the

table sizes to a physically implementable size. The goal will be to reduce the storage space to a

similar level to the original SPP design, maintaining its classification as a lightweight prefetcher.

28

5. CONCLUSION

Through this project, we sought to design a new version of the Signature Path Prefetcher

that handles program control flow data, such as branch decision history and branch target

addresses. After incorporating control flow data into SPP prefetching decisions through varied

implementations of the signature table and pattern table indices, the original SPP design

remained the top performer in terms of IPC.

The results discussed in this paper provide a better understanding of which elements in

SPP are most essential. It is clear from the underperformance of the overlay indicator in the

pattern table index that the structure of shifted cache line deltas is essential to SPP’s

performance. From a broader perspective, we can also see that the XOR approach adapted from

the gshare branch predictor and BTB structure does not apply as generally as we had hoped,

considering the decrease in performance when using the overlay indicator in the signature table

index. Finally, branch target addresses prove more useful in separating signature development

than in predicting next deltas, so future developments in SPP should utilize target address data in

the signature table rather than the pattern table.

Moving forward, the results of this paper demonstrate that indexing changes alone are

unlikely to improve SPP performance. Some potential directions for future work include loop

handling, experimenting with signature length, and working toward a physically implementable

storage size.

29

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall,” ACM SIGARCH Computer

Architecture News, vol. 23, no. 1, pp. 20–24, 1995.

[2] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson, and Z. Chishti, “Path

confidence based lookahead prefetching,” 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2016.

[3] N. Gober, G. Chacon, L. Wang, P. V. Gratz, D. A. Jimenez, E. Teran, S. Pugsley, and J.

Kim, "The Championship Simulator: Architectural Simulation for Education and

Competition," 2022.

[4] J. E Smith. A study of branch prediction strategies. In Proc. 8th Int. Sym. on Computer

Architecture, pages 135–148, May 1981.

[5] S. McFarling. Combining Branch Predictors. WRL Technical Note TN-36, June 1993.

3.2, 3.4, 5.2.2, 6

[6] G. Hamerly, E. Perelman, J. Lau, and B. Calder, "SimPoint 3.0: Faster and More Flexible

Program Analysis," 2005.

[7] Sherwood, T., & Calder, B. (2000). Loop termination prediction. Lecture Notes in

Computer Science, 73–87. https://doi.org/10.1007/3-540-39999-2_8

