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ABSTRACT 

A Time Series of NDVI at a High Arctic Peatland   

Daniel Maraldo 

Department of Geography 

Texas A&M University 

Faculty Research Advisor: Dr. Julie Loisel 

Department of Geography 

Texas A&M University 

Arctic greening has been studied as a significant and accelerating environmental change 

throughout the past few decades; however, most studies focus on greening across scales as large 

as the entire terrestrial Arctic and lack smaller-scale observations of vegetation at individual 

sites. Conducting such studies on peatlands is especially important, considering Arctic peatlands’ 

potential to act as an immense source of atmospheric carbon should they degrade as permafrost 

thaw accelerates. Additionally, while remote sensing studies cannot quantify any vegetation 

trends with complete accuracy, I aimed to prove the effectiveness of open-source, free satellite 

imagery in displaying the existence and strength of such trends. I produced a time series of 

NDVI at a well-studied catchment basin in the Canadian High Arctic, to illuminate trends of 

greening since the start of the 21st century. I compiled and analyzed MODIS imagery from peak 

growing seasons starting in 2000 until 2022. Without any in situ data to qualify the results from 

my analysis, I found a statistically significant trend in NDVI throughout the past 22 years; with 

in situ data, this data could be considered when mapping related physical attributes when trying 

to further quantify environmental changes at the site. Additionally, I found that, despite the 
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inherent flaws of remote sensing’s accuracy when collecting data, remote sensing datasets with 

low resolution are effective in uncovering trends as long as the temporal resolution is high; with 

daily image products from a platform like MODIS, outliers of snow, ice, and cloud cover can be 

accounted for, which sensors like Landsat and Sentinel could not despite higher spatial 

resolution. Greening is likely to continue at this site with climate change, and future studies are 

warranted to observe the cascading effects of warming and permafrost thaw on vegetation cover 

in peatlands.  
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1. INTRODUCTION 

The Arctic is warming quickly leading to longer growing seasons, shorter periods of 

snow and ice cover on the surface, and the thawing of permafrost (Box et al., 2019). These 

changing conditions have led to observable changes in vegetation on the surface, in both 

productivity and area, together creating higher density in vegetation (McPartland et al., 2019). 

This trend in vegetation density, today commonly referred to as “greening”, has been a dominant 

circumpolar environmental change recently (Arndt et al., 2019). However, the causes for this 

“greening” are complex, and although such a trend has been observed broadly across the entire 

Arctic for a few decades (Box et al., 2019), greening may not occur equally across all Arctic 

regions. Local topography, hydrology, species phenology, and bedrock chemistry are all factors 

that work in tandem with broad climate changes to affect vegetation cover (Lemly & Cooper, 

2011). 

1.1 Peatlands 

Peatlands are widespread and diverse terrestrial ecosystems that exist in climates around 

the world. They are important soil organic carbon (SOC) reserves; like forests, they absorb 

carbon from the atmosphere over time, but generally at a slower rate, storing carbon as dead 

organic matter accumulates over millennia - much longer than forest ecosystems (Joosten et al., 

2016). Peatlands today, while only covering about 3% of the planet’s terrestrial area, contain 450 

Gt of SOC (Joosten et al., 2016). Peatlands are not necessarily defined by any specific vegetation 

type; only that whatever vegetation present consistently grows and dies over time and does not 

decompose completely which allows for organic matter accumulation (Rydin & Jeglum, 2015). 

In the Arctic, most peatlands are composed of a matrix of sedge, moss (including Sphagnum), 
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and dwarf shrubs (Minayeva et al., 2016). Changes in vegetation type tend to correlate with 

climate, and to that extent, latitude. Peatlands are not beholden to any climatic regions across the 

world; they exist in virtually all latitudes and exercise different attributes at each, for example, 

peatlands in tropical regions tend to have a larger thickness than their high-latitude counterparts, 

accumulating tens of meters of decaying organic matter. In the Boreal zone and the Arctic, a lot 

of peatlands are locked in sporadic to continuous permafrost (Olefeldt et al., 2021). Permafrost in 

the Arctic is thawing at an accelerating rate, and active layers are getting deeper (Schuur et al., 

2015). As permafrost thaws, the ensuing moisture changes the hydrology of a given area, and 

exposes once shielded carbon reserves to decomposition, emitting the greenhouse gasses (GHGs) 

carbon dioxide (CO2) and methane (CH4) back into the atmosphere (Olefeldt et al., 2021). This 

feedback loop between warming temperatures, thawing permafrost, and carbon emission from 

peatlands could significantly add to the amount of GHGs in the atmosphere (Schuur et al., 2015). 

However, because greening trends are leading to denser vegetation cover on the surface, there is 

potential for peat accumulation to continue or perhaps accelerate (Loisel & Yu, 2013). There 

exists a possibility that process could tilt the Arctic’s carbon balance back in favor of 

sequestration over emission to an extent, but with greening trends themselves, the factors that 

fuel carbon balance in the Arctic are complex and multivariate.  

Arctic peatlands are difficult to access in situ. Extended field campaigns that require 

overnight camping can only take place in the summer months when snow and ice have melted, 

and air temperatures are not hazardous. The Arctic is also quite desolate, with only a few 

population centers with commercial flights available. Peatlands in Nunavut, the Arctic portions 

of the Yukon and Northwest Territories, and much of Alaska’s North Slope are also inaccessible 

by roads, requiring the financial burden of air travel to small population centers nearby. These 
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challenges open the door for remote sensing applications, which are conductible at home or 

anywhere the user works, and at a relatively low or nonexistent cost. There exist many pathways 

to evaluate environmental change using remotely sensed data, which vary in cost, resolution, file 

size, and data/sensor type.  

1.2 Remote Sensing Applications 

To map vegetation, NDVI can be extrapolated from satellite or airborne imagery to 

estimate the productivity of vegetation on the surface (Pettorelli et al., 2005). NDVI has often 

been used to measure bulk biomass greenness across study sites, particularly at peak-growing 

seasons to determine the density of green vegetation on the surface (Crichton et al., 2022; 

McPartland et al., 2019). The NDVI of a particular point on the surface is derived from the 

reflectance ratio of red and near-infrared (NIR) bands through the following equation, where 

NIR and Red represent the spectral reflectance values captured by the sensor for each respective 

spectral band. 

 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

(1) 

 

What’s communicated when analyzing NDVI at a particular site is the “green-ness” of 

the surface; NDVI values range from -1 to 1, where positive values indicate dense vegetation and 

negative values indicate snow, ice, or clouds. Therefore, the NDVI of a region could increase 

both as vegetation expands in quantity over a landscape, or as individual plants grow and become 

more productive. The data are compiled in a grid of pixels to form a raster, where the NDVI can 

be computed in the aggregate of a particular region in a geographic information system 

(Pettorelli et al., 2005). 
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NDVI is an effective tool for estimating how greening has occurred over time, with some 

caveats. Because the presence of snow, ice, clouds, and water on the surface is a potent influence 

on the NDVI of an area, they must be accounted for when performing a study of vegetation 

alone, since persistent cloudy weather or later-than-typical snowmelt can influence NDVI 

without communicating anything about vegetation density (Pettorelli et al., 2005). Although 

NDVI can be used to estimate annual snowmelt dates and surface water levels, which are useful 

attributes of how climate change may be affecting a region, their impact on NDVI for a study 

that focuses merely on vegetation cover is too great (McPartland et al., 2019). I address how I 

arranged NDVI data to account for these pitfalls in the following section. 

NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) is a specific sensor 

equipped on a constellation of two satellites: Terra, launched in 1999, and Aqua, launched in 

2002. Images of every point on the Earth’s surface are taken daily, with images stratified by data 

applications (land use, NDVI, etc.). Since MODIS began in 2000, it has published data spanning 

36 different spectral bands at spatial resolutions of 250 meters, 500 meters, or 1 kilometer. 

MODIS also publishes a vegetation index product that computes NDVI at 16-day increments, 

somewhat effectively neutralizing days with unusable data like high cloud cover, and forgoing 

imagery collection for winter months when snow and ice cover makes detection of vegetation 

cover impossible. For this study, NDVI data at 250-meter resolution were compiled beginning in 

the year 2000s growing season, which at my site, spans from the beginning of July to near the 

end of August, and each of the following growing seasons until 2022. MODIS’ 250-meter 

resolution for NDVI data isn’t poor, but is low compared to other open-access sensors on 

Sentinel and Landsat satellites. MODIS image products from each day are available free of 

charge from NASA’s Worldview website, where the user can browse the entire globe for a 
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specific point, and can scroll through time from the year 2000 up to the date of access. However, 

NASA forgoes taking imagery in certain locations that would not yield any benefit, such as 

vegetation indices in the Arctic during winter months, when snow and ice cover is present until 

the start of the next growing season. Because of MODIS’ excellent temporal resolution, it 

emerged as the primary source of data for this study. 

Because NDVI trends correlate with warming temperatures and permafrost thaw across 

the Arctic, it is important to quantify NDVI trends across the Arctic in smaller bits and pieces 

instead of broad, pan-Arctic studies so that any emergent trends can be tied to environmental 

changes at each site, coming together to paint a picture of how the Arctic peatlands are 

responding to climate change. There have been studies that observe trends in NDVI within a time 

series, but most of them apply these over large scales that span most or the entirety of the Arctic 

or limit their study boundary to certain well-studied sites (Crichton et al., 2022; McPartland et 

al., 2019). However, these studies often do not reveal local attributes in particular regions that 

can illuminate trends, such as unique surface hydrology, topography, or ecology. To investigate 

and piece together trends in Arctic greening, understudied sites must be studied individually to 

uncover unique local environmental qualities that might explain trends. While remote sensing 

has many advantages over in situ data collection, it alone cannot perfectly replace it to draw 

definitive conclusions for a site. Regardless, using remote sensing to add to the bank of 

knowledge regarding trends in smaller sites in the Arctic is a step in the right direction at worst 

and a revealing investigation at best.  

A proxy to be applied in tandem with others (soil moisture, GHG emissions, etc.), an 

empirical measure of NDVI in this region can support future studies to determine how peatlands 

have and will continue to respond to climate change. In this study, I investigated two specific 
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research questions: 1) Has the NDVI of the study site increased among each growing season 

since the year 2000? 2) What are the successes and shortcomings of a study that focuses solely 

on remote sensing to identify such trends?  
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2. METHODS 

 

Figure 1: Study site, ~2 km North of Greiner Lake 

2.1 Study Site 

While the Arctic is quite large in area and there is no objectively perfect site, the factors 

that went into choosing a location were relative accessibility for field study, unique 

characteristics of some kind (i.e. unique vegetation phenology), and a site that has had little 

analysis of NDVI throughout the past few decades, but has had some sort of other research 

presence recently. I chose a particular basin (Figure 1) near Cambridge Bay, Nunavut, Canada, a 

hamlet in the Canadian High Arctic where the Canadian High Arctic Research Station (CHARS) 

is located.  
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Figure 2: CHARS Campus, Field Operations building and Main building. 

CHARS (Figure 2) is supported by Polar Knowledge, a division of the Government of 

Canada aimed at “…advancing Canada’s knowledge of the Arctic, strengthening Canadian 

leadership in polar science and technology, and promoting the development and distribution of 

knowledge of other circumpolar regions…” (Government of Canada, 2023). Studies in a wide 

variety of subdisciplines within geosciences are conducted year-round by visiting scientists from 

around the world, making it an optimal location to base fieldwork operations for nearby potential 

sites. By choosing this site to begin a primitive time series analysis of carbon balance, the 

research in the scope of this study can be expanded upon with relative ease compared to 

peatlands in more remote locations. 
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Figure 3: The Greiner Lake watershed. Greiner Lake is highlighted in dark blue, along with a central body of water 

spanning from the eastern extremity of the watershed to the lake. 

 

 

Figure 4: Boundaries of the study site relative to notable locations nearby. 

 

 

CHARS has nearby field observation sites for different applications. The Experimental 

and Reference Area (ERA), mapped in Figure 3, is a particular observation site defined by the 

boundary of the Greiner Lake watershed, a ~1500 km2 basin that extends east from the physical 

Cambridge Bay. Greiner Lake itself is a ~6 km wide glacial lake situated 10 km north of 

CHARS. Within the ERA exists the Intensive Monitoring Area (IMA), mapped in Figure 4, 
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which contains a second-order catchment basin on the north shore of Greiner Lake. The IMA is 

equipped with a weather station and has been the site for numerous field campaigns measuring 

attributes of peat accumulation there. Because of its relative ease of access from CHARS and the 

increasing volume of research being conducted there, I delineated the boundaries for my study as 

the boundaries of the main catchment basin within the IMA. 

The wetland site is dominated by herbaceous plants (sedge) and mosses. A notable point 

is the absence of Sphagnum moss, the most dominant moss genus in peatlands across the Arctic. 

Reasons for this absence could include alkaline bedrock chemistry or the peatlands’ shallow 

depth. The site’s shallow peat accumulation depth is notable compared to most peatlands, even in 

the Arctic. From field campaigns to this site in 2019 and 2022, we found that, with the exception 

of samples taken along permafrost polygon edges where peat depth is uniformly thicker, peat 

depth across the basin is about 30 cm on average.  

 

 

Figure 5: Edge of a permafrost polygon, where peat accumulation is notably deeper than in the center of polygons 

or where polygons are absent. This polygon is located in a wet sedge fen. 
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Because peat depth across the basin does not continuously reach 40 cm in depth, the 

Government of Canada, ironically, would not define this site as a peatland (Government of 

Canada, 2023). However, it exercises all the attributes of classic peatlands that do meet that 

depth threshold, so it’s useful to study so that it could be compared with other emerging, or 

“proto-peatlands'', across the Arctic (Yu et al., 2010). Finally, while this site has been the 

location for some past remote sensing-based studies for reconnaissance purposes (Ponomarenko 

et al., 2019), to my knowledge there has not been any published analysis of NDVI on a 

multidecadal scale. After deciding to apply my study in one or many basins around CHARS, the 

next step was to delineate the specific boundaries of a site. 

2.2 Satellite Imagery 

MODIS data are available from an online, open-access platform. While MODIS was the 

only satellite imagery source used in this study, attempts were made to apply data from four 

other platforms: Landsat 5, 7, and 8, and Sentinel 2. However, while each has certain benefits 

over the other, each of the forgone satellite imagery sources’ respective drawbacks prevents a 

successful analysis of long-term changes in vegetation cover at my study site. Sentinel-2 and 

Landsat 8 have a much higher spatial resolution than MODIS at the Red and NIR bands, but their 

images are taken at a much sparser time interval, 5 and 16 days respectively. Because the peak 

growing season of the study area is so short, about two months, only 5-10 images can be used per 

year of analysis, and that figure excludes imagery that is unusable due to cloud cover. More 

importantly, they were launched in 2015 and 2013 respectively, which is quite recent compared 

to other platforms. Landsat 5 and 7 do have a multidecadal catalog of data but have the same 

issue of too few images captured at the Red and NIR bands. These attributes make the total 
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amount of usable imagery quite small, so it would be quite difficult to uncover any sort of spatial 

trend in the data with so few examples. Although MODIS data’s highest spatial resolution 

product is 250 meters, which is usable but quite coarse compared to the other platforms, it was 

effective enough in conveying trends in vegetation growth.   

2.3 Google Earth Engine 

An automated method of processing and compiling the data from each of the 2,087 

images was necessary to fit time constraints. I synthesized JavaScript code that I wrote with code 

that I accessed on open Google forums and rewrote to apply to my data and methodology. Using 

the finished code, I was able to retrieve, compile, and process the NDVI value from each image 

into a comma separated values (CSV) table. Google Earth Engine (GEE) is an efficient and 

useful platform for applying this code, because of its many built-in tools and simplicity in 

operating. The full extent of GEE can be accessed and operated from an internet browser on any 

computer, while other more powerful geoprocessing software like ArcGIS Pro cannot. 

Using GEE’s map window, I hand-delineated a boundary containing the study site, an 

area of ~15 km. Using the compiled Java code, GEE compiled all MODIS NDVI data from the 

months of June-August, 2000-2022 within the boundary. I created a histogram of this data to 

determine the average peak growing season of all years in the study and found that NDVI 

typically began to increase drastically around June 30 (DOY 181) and decline again around 

August 26 (DOY 238). Although this 57-day window isn’t a perfect representation of the peak 

growing season of each year, it effectively accounts for the thawing of snow and ice in early 

summer and ends before plants begin to die as temperatures plummet in late summer. I then re-

ran the same code but adjusted the image date window to DOY 181-238 instead of all photos 
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from June, July, and August. GEE then produces a feature with the 2,087 data points, which was 

processed into a downloadable CSV file that could be cleaned in spreadsheet editing software. 

2.4 Data Processing Workflow 

Once the CSV file was downloaded, I opened it in Microsoft Excel to format it to 

perform a time series analysis. To begin creating a dataset containing a 7-day maximum value 

for the data to reduce the impact of single-day NDVI outliers, I first arranged the original CSV 

file, which was arranged in two rows with 2,087 columns, into a standard, two-column table. The 

Cut & Transpose functions were used to rearrange the data into a two-column table. After the 

metadata was cleared from the table to leave only the image date and NDVI values, the table was 

brought to the Transform from Table/Range editor. The date text was delimited by the 

underscore (_) symbol that the image dates were automatically formatted in, to create 3 more 

rows each containing the date, month, and year of the image capture respectively. The table was 

brought back to a standard Excel window to create a new column with the image capture date in 

the proper date format. Containing the columns for Year, Month, Day, Date, and NDVI, the table 

was brought back to the Transform from Table/Range editor. 

By copying the date column two different times and transforming the values to new 

formats, two new columns were created displaying each image capture’s day of the year (DOY) 

and week of the year (WOY). From there, using the “Group By” tool, two additional columns 

were created, one with each week in the peak season and the week’s maximum NDVI value. 

With these two columns completed, the data was ready for time series analysis of NDVI over the 

past two decades. 

Although Excel is useful for creating a wide variety of charts that could be used to 

visualize the data and any trends within it, the most powerful statistical analysis in Excel that 
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could be used to perform trend analysis comes at the price of purchasing a license for an add-on. 

To streamline the data analysis and create aesthetically pleasing visualizations, I opted for the 

free statistical analysis software RStudio. Before switching over to R, the data from the columns 

containing the 7-day maximum NDVI and the dates starting each week in the peak season were 

copied and placed into a fresh Excel file. 

The packages “readxl”, “trend”, and “ggplot2” were accessed in a new R script. The data 

from excel was then read into the script and set as the data frame.  The package “readxl” allows 

Excel sheets to be imported directly from Excel, instead of having to save a spreadsheet as a 

CSV file which can affect date formatting (Wickham, Bryan, et al., 2023). The package “trend” 

is designed to run non-parametric trend tests and conduct change-point detection (Pohlert, 2023). 

Finally, the package “ggplot2” is a widely used package with a suite of tools that allow the user 

to create aesthetically pleasing visualizations beyond the scope of RStudio’s basic plotting 

functions (Wickham, Chang, et al., 2023).  

The Mann-Kendall trend analysis test was applied to the data using a function within 

“trend” on the NDVI values of the data frame alone. The Mann-Kendall test is a particular 

method of regression analysis that can identify the existence and strength of a monotonic trend, 

either positive or negative, of any variable over time, represented by Kendall’s τ (Gilbert, 1987; 

Kendall, 1948; Mann, 1945). The test may identify a positive trend, but it may not necessarily be 

linear. The test assumes a normal distribution and can account well for seasonal variations, 

making it the most effective regression analysis method for a study such as this one that focuses 

only on values during the peak growing season.  

 

  



18 

 

3. RESULTS 

The workflow was successful in identifying a positive trend in NDVI over time, however, 

the exact slope of the trend should be qualified as potentially affected by errors, as with any 

remote sensing analysis. Among the four different data sets analyzed, there existed different 

levels of statistical significance and strength of trends in NDVI over time. The two statistically 

significant data sets came from the 7-day averaged data and the 7-day averaged data with outliers 

removed. Both exhibited positive trends in NDVI over time. The all-data and annual peak data 

sets were not statistically significant; however, with that qualification given, the annual peak data 

did have a positive trend, while the all-image dataset had no trend at all, due to the strong 

presence of outliers among the data from cloud cover. Also, because image resolution is too 

coarse to visualize specifics into how certain species of vegetation at the IMA have changed over 

time, NDVI was calculated only in the aggregate of all vegetation types combined, without 

revealing trends among individual species. 
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Figure 6: Graph of 7-day average data. 

 

Figure 6 shows the 7-day average data. With a null hypothesis claiming that the 

Kendall’s τ is equal to 0, and an alternative hypothesis of Kendall’s τ being greater than or less 

than but not equal to 0, the 7-day averages data set exhibited a Kendall’s τ of .15, which 

indicates a slight yet certainly present trend in NDVI since 2000. To confirm the significance of 

the data, it required a p-value less than .05. This data had a p-value of .0016 among 206 samples, 

so I was able to reject the null hypothesis and accept the alternative hypothesis, confirming that a 

positive trend does exist between NDVI and time within this data set. However, I felt that a 

stronger trend could be produced with cleaner data. 
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Figure 7: Cleaned 7-day average data.  

Figure 7 shows the 7-day averaged data with statistical outliers removed. With a null 

hypothesis claiming that the Kendall’s τ is equal to 0, and an alternative hypothesis of a 

Kendall’s τ greater than or less than but not equal to 0, the 7-day averages with outliers removed 

data set exhibited a Kendall’s τ of .19, which indicates a more positive trend than the 7-day 

averages data set without the outliers removed. This data had a p-value of .00009 among 187 

samples, so I was able to reject the null hypothesis and accept the alternative hypothesis, 

confirming that a positive trend between NDVI and time does exist within this data set, a trend 

stronger than the data set with 7-day average values with the outliers. 
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Figure 8: Annual NDVI Highs. 

Figure 8 shows the peak NDVI value at the site every year. With a null hypothesis 

claiming that the Kendall’s τ is equal to 0, and an alternative hypothesis of a Kendall’s τ greater 

than or less than but not equal to 0, the annual peaks data set exhibited a Kendall’s τ of .2, which 

indicates a more positive trend than all other data sets compiled in this study. However, because 

the data had a statistically insignificant p-value of .208 among 23 data points, I had to reject the 

alternative hypothesis, qualifying the positive trend peak annual NDVI highs as intriguing yet 

not meaningful for this study. This result is most likely related to the low number of data points 

(n=23); over the next few decades, with many more data points, the same analysis could be done 

and the statistical significance may improve.  
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Figure 9: NDVI values from all images. 

Figure 9 shows the NDVI values of every day captured by MODIS during each peak 

season. With a null hypothesis claiming that the Kendall’s τ is equal to 0, and an alternative 

hypothesis of Kendall’s τ greater than or less than but not equal to 0, the data set containing all 

1,297 images exhibited a Kendall’s τ of .013, which indicates an extremely slight positive trend 

in annual NDVI. However, because the data had a statistically insignificant p-value of .49, I had 

to reject the alternative hypothesis, qualifying the already very slight trend as not meaningful to 

the goals of this study. 
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4. CONCLUSION 

The study of Arctic peatlands is becoming vital to assessing the Arctic’s capacity to 

become either a net carbon source or sink, in a future characterized by warming temperatures and 

increasing soil moisture amid permafrost thaw. Pathways in both in situ investigation and the 

utilization of remote sensing applications have been useful for such assessment at regional 

scales, but in order to identify environmental attributes unique to local ecosystems, it becomes 

important to decrease the scale of analyses.  

Similar to scales that quantify greening trends across the entire Arctic, there appears to be 

a significant increase in NDVI at the CHARS IMA site since 2000. The strongest trend in NDVI 

over time appeared in the 7-day averaged data with outliers removed. Because observed NDVI 

values are extremely sensitive to abnormalities in surface color, such as clouds or ice, there 

existed many outliers even among the 7-day averaged data on account of persistent cloudy 

weather, despite the MODIS imagery product already pooling together images to neutralize such 

outliers.  Although the actual value of the trend over time isn’t extreme, its robust statistical 

significance confirms that trend’s presence, and I can conclude that this site has gotten 

significantly greener since 2000. An increasing NDVI, indicating an increase in plant 

productivity, could indicate that this site is increasing in its carbon sequestration potential. 

Besides increasing atmospheric CO2 absorption, high biomass could lead to an increased rate of 

peat accumulation. However, it is yet to be seen whether the same warming and wetting 

processes will influence the depth of the active layer of permafrost, increasing degradation and 

decomposition of peat, causing wide-scale emission of GHGs back into the atmosphere (Olefeldt 

et al., 2021). 
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Such a strong trend did not exist when the highest NDVI value of every year in the study 

was compiled, or when every single data point was compiled. In theory, if this site has gotten 

greener over time, which it appears to have from the cleaned data, then it would make sense for 

there to be a trend present in the high points of every year and raw data sets. However, colder 

years, cloudy growing seasons, or late snowmelt dragged down the average to create an 

imperfect timeline of NDVI over time. 

For this study, I forewent any image pre-processing that could have more effectively 

revealed a more accurate trend in NDVI averages, particularly the removal of clouds from 

images where clouds shroud the study site and register negative NDVI. It would be plausible to 

mask clouds out of MODIS images using software like ArcGIS Pro or ENVI; however, with 

more than 1,000 total images, this process would have taken an immense amount of time, which 

I did not have in the scope of this study. By keeping these images and accounting for them on the 

statistical analysis side of the data processing workflow, a trend was still observed, albeit at a 

value that may not be completely accurate. In the future, given more time and a savvy processing 

workflow, I would preprocess these images to produce a more accurate, and perhaps stronger, 

trend. Regardless, such inaccuracy comes with the territory of studies focusing heavily on remote 

sensing.  

Remotely sensed data should always be treated as supplementary to data taken in situ. 

While monitoring NDVI using satellite imagery is extremely useful for tracking plant 

productivity across a vast array of applications, conclusions from the data must be qualified by 

the fact that the data itself isn’t a true representation of activity on the surface, but only a register 

of certain aspects of that activity by a sensor hundreds of miles above it. For example, while 

quite unlikely, it’s possible that cloudiness drastically decreased at the site over twenty years, 
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displaying a perceived increase in NDVI. The opposite could also be true; perhaps cloudiness 

increased over time, but so too did the NDVI of the site, and so the data set has a weaker trend 

than it should have. These problems could be resolved through the usage of high-resolution data, 

but the process of gathering, processing, and analyzing that data would be costly and time-

consuming. High-resolution satellite imagery is available to commission through companies like 

Planet Labs, which can take a picture at a specific site at a specific date and time, which could 

potentially resolve the issue of cloud cover and changes in annual snowmelt. With accessibility 

to such higher-resolution imagery, specific variations among specific plant communities may 

also reveal themselves; for example, shrubs may be responsible for more greening than mosses 

or grasses in fens (Mekonnen et al., 2021). These specific trends could be compared to data from 

other sites across the Arctic, which would better identify any environmental controls unique to 

the ERA. However, compiling a number of images near the amount of MODIS images may yield 

a similar result to MODIS, but only after exhausting much time and resources to obtain the data. 

Generally, while remote sensing provides the capability to analyze data from anywhere and at 

any time over the past few decades, which in situ analysis cannot, remote sensing cannot be the 

only aspect of a study meant to draw definitive conclusions about a site. 

The two purposes of this study were to identify trends in NDVI at the site since 2000, and 

identify shortcomings of the use of remote sensing to identify those trends. There has been a 

trend in NDVI at the catchment basin within the CHARS IMA site since 2000, indicating that 

Arctic Greening is occurring there and warranting future studies at other sites that may very well 

reveal the same result. However, given the opportunity to conduct this study with more time and 

a larger budget, I would adjust aspects of the main questions of this study as well as the means to 

answer them. Assessing ecosystem carbon balance capabilities requires the study of more than 
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just the surface; analysis of the depth of peat accumulation, soil moisture, GHG flux, vegetation 

species, and mapping of elevation to visualize catchment basins and surface hydrology. Using 

these data, questions of not only vegetation productivity, but also wide-scale carbon potential 

could be answered at the local scale, which would be much more revealing than simply looking 

at how NDVI has changed. The CHARS IMA site is equipped to handle these questions in the 

future, so continuous monitoring of NDVI there is warranted via studies similar to this one. 

Highlighted as a significant player in climate change in both the Arctic and the entire 

world by the IPCC in 2019 (Shukla et al., 2019), peatlands are hanging in the balance. Their 

growth in the Arctic could help soothe the adverse effects of rising GHG emissions by 

sequestering atmospheric carbon for the long term. Or just the opposite; should permafrost thaw 

disturb peatlands, a vicious positive feedback loop between rising temperatures and GHG 

emissions could be on our hands (Schuur et al., 2015). Much future study is needed to analyze 

peatlands at smaller scales, to identify the environmental controls that may have cascading 

effects on the health of the planet in the years to come. As innovations in sensor technology and 

processing software continue, accessibility to the Arctic will improve in the future, affording the 

ability to monitor climate change dynamics as they become more complex. 
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